xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 3665ce8aeee26b1a84fb98951ef011e0779e1ae2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2018 Joyent, Inc.
31  * Copyright (c) 2017, Intel Corporation.
32  * Copyright (c) 2017 Datto Inc.
33  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34  */
35 
36 /*
37  * SPA: Storage Pool Allocator
38  *
39  * This file contains all the routines used when modifying on-disk SPA state.
40  * This includes opening, importing, destroying, exporting a pool, and syncing a
41  * pool.
42  */
43 
44 #include <sys/zfs_context.h>
45 #include <sys/fm/fs/zfs.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zio.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_tx.h>
51 #include <sys/zap.h>
52 #include <sys/zil.h>
53 #include <sys/ddt.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/vdev_removal.h>
56 #include <sys/vdev_indirect_mapping.h>
57 #include <sys/vdev_indirect_births.h>
58 #include <sys/vdev_initialize.h>
59 #include <sys/vdev_trim.h>
60 #include <sys/metaslab.h>
61 #include <sys/metaslab_impl.h>
62 #include <sys/mmp.h>
63 #include <sys/uberblock_impl.h>
64 #include <sys/txg.h>
65 #include <sys/avl.h>
66 #include <sys/bpobj.h>
67 #include <sys/dmu_traverse.h>
68 #include <sys/dmu_objset.h>
69 #include <sys/unique.h>
70 #include <sys/dsl_pool.h>
71 #include <sys/dsl_dataset.h>
72 #include <sys/dsl_dir.h>
73 #include <sys/dsl_prop.h>
74 #include <sys/dsl_synctask.h>
75 #include <sys/fs/zfs.h>
76 #include <sys/arc.h>
77 #include <sys/callb.h>
78 #include <sys/systeminfo.h>
79 #include <sys/spa_boot.h>
80 #include <sys/zfs_ioctl.h>
81 #include <sys/dsl_scan.h>
82 #include <sys/zfeature.h>
83 #include <sys/dsl_destroy.h>
84 #include <sys/abd.h>
85 
86 #ifdef	_KERNEL
87 #include <sys/bootprops.h>
88 #include <sys/callb.h>
89 #include <sys/cpupart.h>
90 #include <sys/pool.h>
91 #include <sys/sysdc.h>
92 #include <sys/zone.h>
93 #endif	/* _KERNEL */
94 
95 #include "zfs_prop.h"
96 #include "zfs_comutil.h"
97 
98 /*
99  * The interval, in seconds, at which failed configuration cache file writes
100  * should be retried.
101  */
102 int zfs_ccw_retry_interval = 300;
103 
104 typedef enum zti_modes {
105 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107 	ZTI_MODE_NULL,			/* don't create a taskq */
108 	ZTI_NMODES
109 } zti_modes_t;
110 
111 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114 
115 #define	ZTI_N(n)	ZTI_P(n, 1)
116 #define	ZTI_ONE		ZTI_N(1)
117 
118 typedef struct zio_taskq_info {
119 	zti_modes_t zti_mode;
120 	uint_t zti_value;
121 	uint_t zti_count;
122 } zio_taskq_info_t;
123 
124 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125 	"issue", "issue_high", "intr", "intr_high"
126 };
127 
128 /*
129  * This table defines the taskq settings for each ZFS I/O type. When
130  * initializing a pool, we use this table to create an appropriately sized
131  * taskq. Some operations are low volume and therefore have a small, static
132  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133  * macros. Other operations process a large amount of data; the ZTI_BATCH
134  * macro causes us to create a taskq oriented for throughput. Some operations
135  * are so high frequency and short-lived that the taskq itself can become a
136  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137  * additional degree of parallelism specified by the number of threads per-
138  * taskq and the number of taskqs; when dispatching an event in this case, the
139  * particular taskq is chosen at random.
140  *
141  * The different taskq priorities are to handle the different contexts (issue
142  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143  * need to be handled with minimum delay.
144  */
145 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
154 };
155 
156 static void spa_sync_version(void *arg, dmu_tx_t *tx);
157 static void spa_sync_props(void *arg, dmu_tx_t *tx);
158 static boolean_t spa_has_active_shared_spare(spa_t *spa);
159 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
160 static void spa_vdev_resilver_done(spa_t *spa);
161 
162 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
163 id_t		zio_taskq_psrset_bind = PS_NONE;
164 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
165 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
166 
167 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
168 extern int	zfs_sync_pass_deferred_free;
169 
170 /*
171  * Report any spa_load_verify errors found, but do not fail spa_load.
172  * This is used by zdb to analyze non-idle pools.
173  */
174 boolean_t	spa_load_verify_dryrun = B_FALSE;
175 
176 /*
177  * This (illegal) pool name is used when temporarily importing a spa_t in order
178  * to get the vdev stats associated with the imported devices.
179  */
180 #define	TRYIMPORT_NAME	"$import"
181 
182 /*
183  * For debugging purposes: print out vdev tree during pool import.
184  */
185 boolean_t	spa_load_print_vdev_tree = B_FALSE;
186 
187 /*
188  * A non-zero value for zfs_max_missing_tvds means that we allow importing
189  * pools with missing top-level vdevs. This is strictly intended for advanced
190  * pool recovery cases since missing data is almost inevitable. Pools with
191  * missing devices can only be imported read-only for safety reasons, and their
192  * fail-mode will be automatically set to "continue".
193  *
194  * With 1 missing vdev we should be able to import the pool and mount all
195  * datasets. User data that was not modified after the missing device has been
196  * added should be recoverable. This means that snapshots created prior to the
197  * addition of that device should be completely intact.
198  *
199  * With 2 missing vdevs, some datasets may fail to mount since there are
200  * dataset statistics that are stored as regular metadata. Some data might be
201  * recoverable if those vdevs were added recently.
202  *
203  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
204  * may be missing entirely. Chances of data recovery are very low. Note that
205  * there are also risks of performing an inadvertent rewind as we might be
206  * missing all the vdevs with the latest uberblocks.
207  */
208 uint64_t	zfs_max_missing_tvds = 0;
209 
210 /*
211  * The parameters below are similar to zfs_max_missing_tvds but are only
212  * intended for a preliminary open of the pool with an untrusted config which
213  * might be incomplete or out-dated.
214  *
215  * We are more tolerant for pools opened from a cachefile since we could have
216  * an out-dated cachefile where a device removal was not registered.
217  * We could have set the limit arbitrarily high but in the case where devices
218  * are really missing we would want to return the proper error codes; we chose
219  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
220  * and we get a chance to retrieve the trusted config.
221  */
222 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
223 
224 /*
225  * In the case where config was assembled by scanning device paths (/dev/dsks
226  * by default) we are less tolerant since all the existing devices should have
227  * been detected and we want spa_load to return the right error codes.
228  */
229 uint64_t	zfs_max_missing_tvds_scan = 0;
230 
231 /*
232  * Debugging aid that pauses spa_sync() towards the end.
233  */
234 boolean_t	zfs_pause_spa_sync = B_FALSE;
235 
236 /*
237  * ==========================================================================
238  * SPA properties routines
239  * ==========================================================================
240  */
241 
242 /*
243  * Add a (source=src, propname=propval) list to an nvlist.
244  */
245 static void
246 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
247     uint64_t intval, zprop_source_t src)
248 {
249 	const char *propname = zpool_prop_to_name(prop);
250 	nvlist_t *propval;
251 
252 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
253 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
254 
255 	if (strval != NULL)
256 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
257 	else
258 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
259 
260 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
261 	nvlist_free(propval);
262 }
263 
264 /*
265  * Get property values from the spa configuration.
266  */
267 static void
268 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
269 {
270 	vdev_t *rvd = spa->spa_root_vdev;
271 	dsl_pool_t *pool = spa->spa_dsl_pool;
272 	uint64_t size, alloc, cap, version;
273 	zprop_source_t src = ZPROP_SRC_NONE;
274 	spa_config_dirent_t *dp;
275 	metaslab_class_t *mc = spa_normal_class(spa);
276 
277 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
278 
279 	if (rvd != NULL) {
280 		alloc = metaslab_class_get_alloc(mc);
281 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
282 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
283 
284 		size = metaslab_class_get_space(mc);
285 		size += metaslab_class_get_space(spa_special_class(spa));
286 		size += metaslab_class_get_space(spa_dedup_class(spa));
287 
288 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
289 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
290 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
291 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
292 		    size - alloc, src);
293 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
294 		    spa->spa_checkpoint_info.sci_dspace, src);
295 
296 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
297 		    metaslab_class_fragmentation(mc), src);
298 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
299 		    metaslab_class_expandable_space(mc), src);
300 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
301 		    (spa_mode(spa) == FREAD), src);
302 
303 		cap = (size == 0) ? 0 : (alloc * 100 / size);
304 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
305 
306 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
307 		    ddt_get_pool_dedup_ratio(spa), src);
308 
309 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
310 		    rvd->vdev_state, src);
311 
312 		version = spa_version(spa);
313 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
314 			src = ZPROP_SRC_DEFAULT;
315 		else
316 			src = ZPROP_SRC_LOCAL;
317 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
318 	}
319 
320 	if (pool != NULL) {
321 		/*
322 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
323 		 * when opening pools before this version freedir will be NULL.
324 		 */
325 		if (pool->dp_free_dir != NULL) {
326 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
327 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
328 			    src);
329 		} else {
330 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
331 			    NULL, 0, src);
332 		}
333 
334 		if (pool->dp_leak_dir != NULL) {
335 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
336 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
337 			    src);
338 		} else {
339 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
340 			    NULL, 0, src);
341 		}
342 	}
343 
344 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
345 
346 	if (spa->spa_comment != NULL) {
347 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
348 		    0, ZPROP_SRC_LOCAL);
349 	}
350 
351 	if (spa->spa_root != NULL)
352 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
353 		    0, ZPROP_SRC_LOCAL);
354 
355 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
356 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
357 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
358 	} else {
359 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
360 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
361 	}
362 
363 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
364 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
365 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
366 	} else {
367 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
368 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
369 	}
370 
371 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
372 		if (dp->scd_path == NULL) {
373 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
374 			    "none", 0, ZPROP_SRC_LOCAL);
375 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
376 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
377 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
378 		}
379 	}
380 }
381 
382 /*
383  * Get zpool property values.
384  */
385 int
386 spa_prop_get(spa_t *spa, nvlist_t **nvp)
387 {
388 	objset_t *mos = spa->spa_meta_objset;
389 	zap_cursor_t zc;
390 	zap_attribute_t za;
391 	int err;
392 
393 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
394 
395 	mutex_enter(&spa->spa_props_lock);
396 
397 	/*
398 	 * Get properties from the spa config.
399 	 */
400 	spa_prop_get_config(spa, nvp);
401 
402 	/* If no pool property object, no more prop to get. */
403 	if (mos == NULL || spa->spa_pool_props_object == 0) {
404 		mutex_exit(&spa->spa_props_lock);
405 		return (0);
406 	}
407 
408 	/*
409 	 * Get properties from the MOS pool property object.
410 	 */
411 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
412 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
413 	    zap_cursor_advance(&zc)) {
414 		uint64_t intval = 0;
415 		char *strval = NULL;
416 		zprop_source_t src = ZPROP_SRC_DEFAULT;
417 		zpool_prop_t prop;
418 
419 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
420 			continue;
421 
422 		switch (za.za_integer_length) {
423 		case 8:
424 			/* integer property */
425 			if (za.za_first_integer !=
426 			    zpool_prop_default_numeric(prop))
427 				src = ZPROP_SRC_LOCAL;
428 
429 			if (prop == ZPOOL_PROP_BOOTFS) {
430 				dsl_pool_t *dp;
431 				dsl_dataset_t *ds = NULL;
432 
433 				dp = spa_get_dsl(spa);
434 				dsl_pool_config_enter(dp, FTAG);
435 				err = dsl_dataset_hold_obj(dp,
436 				    za.za_first_integer, FTAG, &ds);
437 				if (err != 0) {
438 					dsl_pool_config_exit(dp, FTAG);
439 					break;
440 				}
441 
442 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
443 				    KM_SLEEP);
444 				dsl_dataset_name(ds, strval);
445 				dsl_dataset_rele(ds, FTAG);
446 				dsl_pool_config_exit(dp, FTAG);
447 			} else {
448 				strval = NULL;
449 				intval = za.za_first_integer;
450 			}
451 
452 			spa_prop_add_list(*nvp, prop, strval, intval, src);
453 
454 			if (strval != NULL)
455 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
456 
457 			break;
458 
459 		case 1:
460 			/* string property */
461 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
462 			err = zap_lookup(mos, spa->spa_pool_props_object,
463 			    za.za_name, 1, za.za_num_integers, strval);
464 			if (err) {
465 				kmem_free(strval, za.za_num_integers);
466 				break;
467 			}
468 			spa_prop_add_list(*nvp, prop, strval, 0, src);
469 			kmem_free(strval, za.za_num_integers);
470 			break;
471 
472 		default:
473 			break;
474 		}
475 	}
476 	zap_cursor_fini(&zc);
477 	mutex_exit(&spa->spa_props_lock);
478 out:
479 	if (err && err != ENOENT) {
480 		nvlist_free(*nvp);
481 		*nvp = NULL;
482 		return (err);
483 	}
484 
485 	return (0);
486 }
487 
488 /*
489  * Validate the given pool properties nvlist and modify the list
490  * for the property values to be set.
491  */
492 static int
493 spa_prop_validate(spa_t *spa, nvlist_t *props)
494 {
495 	nvpair_t *elem;
496 	int error = 0, reset_bootfs = 0;
497 	uint64_t objnum = 0;
498 	boolean_t has_feature = B_FALSE;
499 
500 	elem = NULL;
501 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
502 		uint64_t intval;
503 		char *strval, *slash, *check, *fname;
504 		const char *propname = nvpair_name(elem);
505 		zpool_prop_t prop = zpool_name_to_prop(propname);
506 
507 		switch (prop) {
508 		case ZPOOL_PROP_INVAL:
509 			if (!zpool_prop_feature(propname)) {
510 				error = SET_ERROR(EINVAL);
511 				break;
512 			}
513 
514 			/*
515 			 * Sanitize the input.
516 			 */
517 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
518 				error = SET_ERROR(EINVAL);
519 				break;
520 			}
521 
522 			if (nvpair_value_uint64(elem, &intval) != 0) {
523 				error = SET_ERROR(EINVAL);
524 				break;
525 			}
526 
527 			if (intval != 0) {
528 				error = SET_ERROR(EINVAL);
529 				break;
530 			}
531 
532 			fname = strchr(propname, '@') + 1;
533 			if (zfeature_lookup_name(fname, NULL) != 0) {
534 				error = SET_ERROR(EINVAL);
535 				break;
536 			}
537 
538 			has_feature = B_TRUE;
539 			break;
540 
541 		case ZPOOL_PROP_VERSION:
542 			error = nvpair_value_uint64(elem, &intval);
543 			if (!error &&
544 			    (intval < spa_version(spa) ||
545 			    intval > SPA_VERSION_BEFORE_FEATURES ||
546 			    has_feature))
547 				error = SET_ERROR(EINVAL);
548 			break;
549 
550 		case ZPOOL_PROP_DELEGATION:
551 		case ZPOOL_PROP_AUTOREPLACE:
552 		case ZPOOL_PROP_LISTSNAPS:
553 		case ZPOOL_PROP_AUTOEXPAND:
554 		case ZPOOL_PROP_AUTOTRIM:
555 			error = nvpair_value_uint64(elem, &intval);
556 			if (!error && intval > 1)
557 				error = SET_ERROR(EINVAL);
558 			break;
559 
560 		case ZPOOL_PROP_MULTIHOST:
561 			error = nvpair_value_uint64(elem, &intval);
562 			if (!error && intval > 1)
563 				error = SET_ERROR(EINVAL);
564 
565 			if (!error && !spa_get_hostid())
566 				error = SET_ERROR(ENOTSUP);
567 
568 			break;
569 
570 		case ZPOOL_PROP_BOOTFS:
571 			/*
572 			 * If the pool version is less than SPA_VERSION_BOOTFS,
573 			 * or the pool is still being created (version == 0),
574 			 * the bootfs property cannot be set.
575 			 */
576 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
577 				error = SET_ERROR(ENOTSUP);
578 				break;
579 			}
580 
581 			/*
582 			 * Make sure the vdev config is bootable
583 			 */
584 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
585 				error = SET_ERROR(ENOTSUP);
586 				break;
587 			}
588 
589 			reset_bootfs = 1;
590 
591 			error = nvpair_value_string(elem, &strval);
592 
593 			if (!error) {
594 				objset_t *os;
595 				uint64_t propval;
596 
597 				if (strval == NULL || strval[0] == '\0') {
598 					objnum = zpool_prop_default_numeric(
599 					    ZPOOL_PROP_BOOTFS);
600 					break;
601 				}
602 
603 				error = dmu_objset_hold(strval, FTAG, &os);
604 				if (error != 0)
605 					break;
606 
607 				/*
608 				 * Must be ZPL, and its property settings
609 				 * must be supported.
610 				 */
611 
612 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
613 					error = SET_ERROR(ENOTSUP);
614 				} else if ((error =
615 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
616 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
617 				    &propval)) == 0 &&
618 				    !BOOTFS_COMPRESS_VALID(propval)) {
619 					error = SET_ERROR(ENOTSUP);
620 				} else {
621 					objnum = dmu_objset_id(os);
622 				}
623 				dmu_objset_rele(os, FTAG);
624 			}
625 			break;
626 
627 		case ZPOOL_PROP_FAILUREMODE:
628 			error = nvpair_value_uint64(elem, &intval);
629 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
630 			    intval > ZIO_FAILURE_MODE_PANIC))
631 				error = SET_ERROR(EINVAL);
632 
633 			/*
634 			 * This is a special case which only occurs when
635 			 * the pool has completely failed. This allows
636 			 * the user to change the in-core failmode property
637 			 * without syncing it out to disk (I/Os might
638 			 * currently be blocked). We do this by returning
639 			 * EIO to the caller (spa_prop_set) to trick it
640 			 * into thinking we encountered a property validation
641 			 * error.
642 			 */
643 			if (!error && spa_suspended(spa)) {
644 				spa->spa_failmode = intval;
645 				error = SET_ERROR(EIO);
646 			}
647 			break;
648 
649 		case ZPOOL_PROP_CACHEFILE:
650 			if ((error = nvpair_value_string(elem, &strval)) != 0)
651 				break;
652 
653 			if (strval[0] == '\0')
654 				break;
655 
656 			if (strcmp(strval, "none") == 0)
657 				break;
658 
659 			if (strval[0] != '/') {
660 				error = SET_ERROR(EINVAL);
661 				break;
662 			}
663 
664 			slash = strrchr(strval, '/');
665 			ASSERT(slash != NULL);
666 
667 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
668 			    strcmp(slash, "/..") == 0)
669 				error = SET_ERROR(EINVAL);
670 			break;
671 
672 		case ZPOOL_PROP_COMMENT:
673 			if ((error = nvpair_value_string(elem, &strval)) != 0)
674 				break;
675 			for (check = strval; *check != '\0'; check++) {
676 				/*
677 				 * The kernel doesn't have an easy isprint()
678 				 * check.  For this kernel check, we merely
679 				 * check ASCII apart from DEL.  Fix this if
680 				 * there is an easy-to-use kernel isprint().
681 				 */
682 				if (*check >= 0x7f) {
683 					error = SET_ERROR(EINVAL);
684 					break;
685 				}
686 			}
687 			if (strlen(strval) > ZPROP_MAX_COMMENT)
688 				error = E2BIG;
689 			break;
690 
691 		case ZPOOL_PROP_DEDUPDITTO:
692 			if (spa_version(spa) < SPA_VERSION_DEDUP)
693 				error = SET_ERROR(ENOTSUP);
694 			else
695 				error = nvpair_value_uint64(elem, &intval);
696 			if (error == 0 &&
697 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
698 				error = SET_ERROR(EINVAL);
699 			break;
700 		}
701 
702 		if (error)
703 			break;
704 	}
705 
706 	if (!error && reset_bootfs) {
707 		error = nvlist_remove(props,
708 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
709 
710 		if (!error) {
711 			error = nvlist_add_uint64(props,
712 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
713 		}
714 	}
715 
716 	return (error);
717 }
718 
719 void
720 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
721 {
722 	char *cachefile;
723 	spa_config_dirent_t *dp;
724 
725 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
726 	    &cachefile) != 0)
727 		return;
728 
729 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
730 	    KM_SLEEP);
731 
732 	if (cachefile[0] == '\0')
733 		dp->scd_path = spa_strdup(spa_config_path);
734 	else if (strcmp(cachefile, "none") == 0)
735 		dp->scd_path = NULL;
736 	else
737 		dp->scd_path = spa_strdup(cachefile);
738 
739 	list_insert_head(&spa->spa_config_list, dp);
740 	if (need_sync)
741 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
742 }
743 
744 int
745 spa_prop_set(spa_t *spa, nvlist_t *nvp)
746 {
747 	int error;
748 	nvpair_t *elem = NULL;
749 	boolean_t need_sync = B_FALSE;
750 
751 	if ((error = spa_prop_validate(spa, nvp)) != 0)
752 		return (error);
753 
754 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
755 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
756 
757 		if (prop == ZPOOL_PROP_CACHEFILE ||
758 		    prop == ZPOOL_PROP_ALTROOT ||
759 		    prop == ZPOOL_PROP_READONLY)
760 			continue;
761 
762 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
763 			uint64_t ver;
764 
765 			if (prop == ZPOOL_PROP_VERSION) {
766 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
767 			} else {
768 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
769 				ver = SPA_VERSION_FEATURES;
770 				need_sync = B_TRUE;
771 			}
772 
773 			/* Save time if the version is already set. */
774 			if (ver == spa_version(spa))
775 				continue;
776 
777 			/*
778 			 * In addition to the pool directory object, we might
779 			 * create the pool properties object, the features for
780 			 * read object, the features for write object, or the
781 			 * feature descriptions object.
782 			 */
783 			error = dsl_sync_task(spa->spa_name, NULL,
784 			    spa_sync_version, &ver,
785 			    6, ZFS_SPACE_CHECK_RESERVED);
786 			if (error)
787 				return (error);
788 			continue;
789 		}
790 
791 		need_sync = B_TRUE;
792 		break;
793 	}
794 
795 	if (need_sync) {
796 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
797 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
798 	}
799 
800 	return (0);
801 }
802 
803 /*
804  * If the bootfs property value is dsobj, clear it.
805  */
806 void
807 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
808 {
809 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
810 		VERIFY(zap_remove(spa->spa_meta_objset,
811 		    spa->spa_pool_props_object,
812 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
813 		spa->spa_bootfs = 0;
814 	}
815 }
816 
817 /*ARGSUSED*/
818 static int
819 spa_change_guid_check(void *arg, dmu_tx_t *tx)
820 {
821 	uint64_t *newguid = arg;
822 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
823 	vdev_t *rvd = spa->spa_root_vdev;
824 	uint64_t vdev_state;
825 
826 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
827 		int error = (spa_has_checkpoint(spa)) ?
828 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
829 		return (SET_ERROR(error));
830 	}
831 
832 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
833 	vdev_state = rvd->vdev_state;
834 	spa_config_exit(spa, SCL_STATE, FTAG);
835 
836 	if (vdev_state != VDEV_STATE_HEALTHY)
837 		return (SET_ERROR(ENXIO));
838 
839 	ASSERT3U(spa_guid(spa), !=, *newguid);
840 
841 	return (0);
842 }
843 
844 static void
845 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
846 {
847 	uint64_t *newguid = arg;
848 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
849 	uint64_t oldguid;
850 	vdev_t *rvd = spa->spa_root_vdev;
851 
852 	oldguid = spa_guid(spa);
853 
854 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
855 	rvd->vdev_guid = *newguid;
856 	rvd->vdev_guid_sum += (*newguid - oldguid);
857 	vdev_config_dirty(rvd);
858 	spa_config_exit(spa, SCL_STATE, FTAG);
859 
860 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
861 	    oldguid, *newguid);
862 }
863 
864 /*
865  * Change the GUID for the pool.  This is done so that we can later
866  * re-import a pool built from a clone of our own vdevs.  We will modify
867  * the root vdev's guid, our own pool guid, and then mark all of our
868  * vdevs dirty.  Note that we must make sure that all our vdevs are
869  * online when we do this, or else any vdevs that weren't present
870  * would be orphaned from our pool.  We are also going to issue a
871  * sysevent to update any watchers.
872  */
873 int
874 spa_change_guid(spa_t *spa)
875 {
876 	int error;
877 	uint64_t guid;
878 
879 	mutex_enter(&spa->spa_vdev_top_lock);
880 	mutex_enter(&spa_namespace_lock);
881 	guid = spa_generate_guid(NULL);
882 
883 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
884 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
885 
886 	if (error == 0) {
887 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
888 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
889 	}
890 
891 	mutex_exit(&spa_namespace_lock);
892 	mutex_exit(&spa->spa_vdev_top_lock);
893 
894 	return (error);
895 }
896 
897 /*
898  * ==========================================================================
899  * SPA state manipulation (open/create/destroy/import/export)
900  * ==========================================================================
901  */
902 
903 static int
904 spa_error_entry_compare(const void *a, const void *b)
905 {
906 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
907 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
908 	int ret;
909 
910 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
911 	    sizeof (zbookmark_phys_t));
912 
913 	return (TREE_ISIGN(ret));
914 }
915 
916 /*
917  * Utility function which retrieves copies of the current logs and
918  * re-initializes them in the process.
919  */
920 void
921 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
922 {
923 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
924 
925 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
926 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
927 
928 	avl_create(&spa->spa_errlist_scrub,
929 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
930 	    offsetof(spa_error_entry_t, se_avl));
931 	avl_create(&spa->spa_errlist_last,
932 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
933 	    offsetof(spa_error_entry_t, se_avl));
934 }
935 
936 static void
937 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
938 {
939 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
940 	enum zti_modes mode = ztip->zti_mode;
941 	uint_t value = ztip->zti_value;
942 	uint_t count = ztip->zti_count;
943 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
944 	char name[32];
945 	uint_t flags = 0;
946 	boolean_t batch = B_FALSE;
947 
948 	if (mode == ZTI_MODE_NULL) {
949 		tqs->stqs_count = 0;
950 		tqs->stqs_taskq = NULL;
951 		return;
952 	}
953 
954 	ASSERT3U(count, >, 0);
955 
956 	tqs->stqs_count = count;
957 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
958 
959 	switch (mode) {
960 	case ZTI_MODE_FIXED:
961 		ASSERT3U(value, >=, 1);
962 		value = MAX(value, 1);
963 		break;
964 
965 	case ZTI_MODE_BATCH:
966 		batch = B_TRUE;
967 		flags |= TASKQ_THREADS_CPU_PCT;
968 		value = zio_taskq_batch_pct;
969 		break;
970 
971 	default:
972 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
973 		    "spa_activate()",
974 		    zio_type_name[t], zio_taskq_types[q], mode, value);
975 		break;
976 	}
977 
978 	for (uint_t i = 0; i < count; i++) {
979 		taskq_t *tq;
980 
981 		if (count > 1) {
982 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
983 			    zio_type_name[t], zio_taskq_types[q], i);
984 		} else {
985 			(void) snprintf(name, sizeof (name), "%s_%s",
986 			    zio_type_name[t], zio_taskq_types[q]);
987 		}
988 
989 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
990 			if (batch)
991 				flags |= TASKQ_DC_BATCH;
992 
993 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
994 			    spa->spa_proc, zio_taskq_basedc, flags);
995 		} else {
996 			pri_t pri = maxclsyspri;
997 			/*
998 			 * The write issue taskq can be extremely CPU
999 			 * intensive.  Run it at slightly lower priority
1000 			 * than the other taskqs.
1001 			 */
1002 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1003 				pri--;
1004 
1005 			tq = taskq_create_proc(name, value, pri, 50,
1006 			    INT_MAX, spa->spa_proc, flags);
1007 		}
1008 
1009 		tqs->stqs_taskq[i] = tq;
1010 	}
1011 }
1012 
1013 static void
1014 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1015 {
1016 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1017 
1018 	if (tqs->stqs_taskq == NULL) {
1019 		ASSERT0(tqs->stqs_count);
1020 		return;
1021 	}
1022 
1023 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1024 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1025 		taskq_destroy(tqs->stqs_taskq[i]);
1026 	}
1027 
1028 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1029 	tqs->stqs_taskq = NULL;
1030 }
1031 
1032 /*
1033  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1034  * Note that a type may have multiple discrete taskqs to avoid lock contention
1035  * on the taskq itself. In that case we choose which taskq at random by using
1036  * the low bits of gethrtime().
1037  */
1038 void
1039 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1040     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1041 {
1042 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1043 	taskq_t *tq;
1044 
1045 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1046 	ASSERT3U(tqs->stqs_count, !=, 0);
1047 
1048 	if (tqs->stqs_count == 1) {
1049 		tq = tqs->stqs_taskq[0];
1050 	} else {
1051 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1052 	}
1053 
1054 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1055 }
1056 
1057 static void
1058 spa_create_zio_taskqs(spa_t *spa)
1059 {
1060 	for (int t = 0; t < ZIO_TYPES; t++) {
1061 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1062 			spa_taskqs_init(spa, t, q);
1063 		}
1064 	}
1065 }
1066 
1067 #ifdef _KERNEL
1068 static void
1069 spa_thread(void *arg)
1070 {
1071 	callb_cpr_t cprinfo;
1072 
1073 	spa_t *spa = arg;
1074 	user_t *pu = PTOU(curproc);
1075 
1076 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1077 	    spa->spa_name);
1078 
1079 	ASSERT(curproc != &p0);
1080 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1081 	    "zpool-%s", spa->spa_name);
1082 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1083 
1084 	/* bind this thread to the requested psrset */
1085 	if (zio_taskq_psrset_bind != PS_NONE) {
1086 		pool_lock();
1087 		mutex_enter(&cpu_lock);
1088 		mutex_enter(&pidlock);
1089 		mutex_enter(&curproc->p_lock);
1090 
1091 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1092 		    0, NULL, NULL) == 0)  {
1093 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1094 		} else {
1095 			cmn_err(CE_WARN,
1096 			    "Couldn't bind process for zfs pool \"%s\" to "
1097 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1098 		}
1099 
1100 		mutex_exit(&curproc->p_lock);
1101 		mutex_exit(&pidlock);
1102 		mutex_exit(&cpu_lock);
1103 		pool_unlock();
1104 	}
1105 
1106 	if (zio_taskq_sysdc) {
1107 		sysdc_thread_enter(curthread, 100, 0);
1108 	}
1109 
1110 	spa->spa_proc = curproc;
1111 	spa->spa_did = curthread->t_did;
1112 
1113 	spa_create_zio_taskqs(spa);
1114 
1115 	mutex_enter(&spa->spa_proc_lock);
1116 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1117 
1118 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1119 	cv_broadcast(&spa->spa_proc_cv);
1120 
1121 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1122 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1123 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1124 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1125 
1126 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1127 	spa->spa_proc_state = SPA_PROC_GONE;
1128 	spa->spa_proc = &p0;
1129 	cv_broadcast(&spa->spa_proc_cv);
1130 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1131 
1132 	mutex_enter(&curproc->p_lock);
1133 	lwp_exit();
1134 }
1135 #endif
1136 
1137 /*
1138  * Activate an uninitialized pool.
1139  */
1140 static void
1141 spa_activate(spa_t *spa, int mode)
1142 {
1143 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1144 
1145 	spa->spa_state = POOL_STATE_ACTIVE;
1146 	spa->spa_mode = mode;
1147 
1148 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1149 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1150 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1151 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1152 
1153 	/* Try to create a covering process */
1154 	mutex_enter(&spa->spa_proc_lock);
1155 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1156 	ASSERT(spa->spa_proc == &p0);
1157 	spa->spa_did = 0;
1158 
1159 	/* Only create a process if we're going to be around a while. */
1160 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1161 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1162 		    NULL, 0) == 0) {
1163 			spa->spa_proc_state = SPA_PROC_CREATED;
1164 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1165 				cv_wait(&spa->spa_proc_cv,
1166 				    &spa->spa_proc_lock);
1167 			}
1168 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1169 			ASSERT(spa->spa_proc != &p0);
1170 			ASSERT(spa->spa_did != 0);
1171 		} else {
1172 #ifdef _KERNEL
1173 			cmn_err(CE_WARN,
1174 			    "Couldn't create process for zfs pool \"%s\"\n",
1175 			    spa->spa_name);
1176 #endif
1177 		}
1178 	}
1179 	mutex_exit(&spa->spa_proc_lock);
1180 
1181 	/* If we didn't create a process, we need to create our taskqs. */
1182 	if (spa->spa_proc == &p0) {
1183 		spa_create_zio_taskqs(spa);
1184 	}
1185 
1186 	for (size_t i = 0; i < TXG_SIZE; i++) {
1187 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1188 		    ZIO_FLAG_CANFAIL);
1189 	}
1190 
1191 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1192 	    offsetof(vdev_t, vdev_config_dirty_node));
1193 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1194 	    offsetof(objset_t, os_evicting_node));
1195 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1196 	    offsetof(vdev_t, vdev_state_dirty_node));
1197 
1198 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1199 	    offsetof(struct vdev, vdev_txg_node));
1200 
1201 	avl_create(&spa->spa_errlist_scrub,
1202 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1203 	    offsetof(spa_error_entry_t, se_avl));
1204 	avl_create(&spa->spa_errlist_last,
1205 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1206 	    offsetof(spa_error_entry_t, se_avl));
1207 
1208 	spa_keystore_init(&spa->spa_keystore);
1209 
1210 	/*
1211 	 * The taskq to upgrade datasets in this pool. Currently used by
1212 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1213 	 */
1214 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1215 	    minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1216 }
1217 
1218 /*
1219  * Opposite of spa_activate().
1220  */
1221 static void
1222 spa_deactivate(spa_t *spa)
1223 {
1224 	ASSERT(spa->spa_sync_on == B_FALSE);
1225 	ASSERT(spa->spa_dsl_pool == NULL);
1226 	ASSERT(spa->spa_root_vdev == NULL);
1227 	ASSERT(spa->spa_async_zio_root == NULL);
1228 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1229 
1230 	spa_evicting_os_wait(spa);
1231 
1232 	if (spa->spa_upgrade_taskq) {
1233 		taskq_destroy(spa->spa_upgrade_taskq);
1234 		spa->spa_upgrade_taskq = NULL;
1235 	}
1236 
1237 	txg_list_destroy(&spa->spa_vdev_txg_list);
1238 
1239 	list_destroy(&spa->spa_config_dirty_list);
1240 	list_destroy(&spa->spa_evicting_os_list);
1241 	list_destroy(&spa->spa_state_dirty_list);
1242 
1243 	for (int t = 0; t < ZIO_TYPES; t++) {
1244 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1245 			spa_taskqs_fini(spa, t, q);
1246 		}
1247 	}
1248 
1249 	for (size_t i = 0; i < TXG_SIZE; i++) {
1250 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1251 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1252 		spa->spa_txg_zio[i] = NULL;
1253 	}
1254 
1255 	metaslab_class_destroy(spa->spa_normal_class);
1256 	spa->spa_normal_class = NULL;
1257 
1258 	metaslab_class_destroy(spa->spa_log_class);
1259 	spa->spa_log_class = NULL;
1260 
1261 	metaslab_class_destroy(spa->spa_special_class);
1262 	spa->spa_special_class = NULL;
1263 
1264 	metaslab_class_destroy(spa->spa_dedup_class);
1265 	spa->spa_dedup_class = NULL;
1266 
1267 	/*
1268 	 * If this was part of an import or the open otherwise failed, we may
1269 	 * still have errors left in the queues.  Empty them just in case.
1270 	 */
1271 	spa_errlog_drain(spa);
1272 	avl_destroy(&spa->spa_errlist_scrub);
1273 	avl_destroy(&spa->spa_errlist_last);
1274 
1275 	spa_keystore_fini(&spa->spa_keystore);
1276 
1277 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1278 
1279 	mutex_enter(&spa->spa_proc_lock);
1280 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1281 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1282 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1283 		cv_broadcast(&spa->spa_proc_cv);
1284 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1285 			ASSERT(spa->spa_proc != &p0);
1286 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1287 		}
1288 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1289 		spa->spa_proc_state = SPA_PROC_NONE;
1290 	}
1291 	ASSERT(spa->spa_proc == &p0);
1292 	mutex_exit(&spa->spa_proc_lock);
1293 
1294 	/*
1295 	 * We want to make sure spa_thread() has actually exited the ZFS
1296 	 * module, so that the module can't be unloaded out from underneath
1297 	 * it.
1298 	 */
1299 	if (spa->spa_did != 0) {
1300 		thread_join(spa->spa_did);
1301 		spa->spa_did = 0;
1302 	}
1303 }
1304 
1305 /*
1306  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1307  * will create all the necessary vdevs in the appropriate layout, with each vdev
1308  * in the CLOSED state.  This will prep the pool before open/creation/import.
1309  * All vdev validation is done by the vdev_alloc() routine.
1310  */
1311 static int
1312 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1313     uint_t id, int atype)
1314 {
1315 	nvlist_t **child;
1316 	uint_t children;
1317 	int error;
1318 
1319 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1320 		return (error);
1321 
1322 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1323 		return (0);
1324 
1325 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1326 	    &child, &children);
1327 
1328 	if (error == ENOENT)
1329 		return (0);
1330 
1331 	if (error) {
1332 		vdev_free(*vdp);
1333 		*vdp = NULL;
1334 		return (SET_ERROR(EINVAL));
1335 	}
1336 
1337 	for (int c = 0; c < children; c++) {
1338 		vdev_t *vd;
1339 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1340 		    atype)) != 0) {
1341 			vdev_free(*vdp);
1342 			*vdp = NULL;
1343 			return (error);
1344 		}
1345 	}
1346 
1347 	ASSERT(*vdp != NULL);
1348 
1349 	return (0);
1350 }
1351 
1352 static boolean_t
1353 spa_should_flush_logs_on_unload(spa_t *spa)
1354 {
1355 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1356 		return (B_FALSE);
1357 
1358 	if (!spa_writeable(spa))
1359 		return (B_FALSE);
1360 
1361 	if (!spa->spa_sync_on)
1362 		return (B_FALSE);
1363 
1364 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1365 		return (B_FALSE);
1366 
1367 	if (zfs_keep_log_spacemaps_at_export)
1368 		return (B_FALSE);
1369 
1370 	return (B_TRUE);
1371 }
1372 
1373 /*
1374  * Opens a transaction that will set the flag that will instruct
1375  * spa_sync to attempt to flush all the metaslabs for that txg.
1376  */
1377 static void
1378 spa_unload_log_sm_flush_all(spa_t *spa)
1379 {
1380 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1381 
1382 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1383 
1384 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1385 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1386 
1387 	dmu_tx_commit(tx);
1388 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1389 }
1390 
1391 static void
1392 spa_unload_log_sm_metadata(spa_t *spa)
1393 {
1394 	void *cookie = NULL;
1395 	spa_log_sm_t *sls;
1396 
1397 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1398 	    &cookie)) != NULL) {
1399 		VERIFY0(sls->sls_mscount);
1400 		kmem_free(sls, sizeof (spa_log_sm_t));
1401 	}
1402 
1403 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1404 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1405 		VERIFY0(e->lse_mscount);
1406 		list_remove(&spa->spa_log_summary, e);
1407 		kmem_free(e, sizeof (log_summary_entry_t));
1408 	}
1409 
1410 	spa->spa_unflushed_stats.sus_nblocks = 0;
1411 	spa->spa_unflushed_stats.sus_memused = 0;
1412 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1413 }
1414 
1415 /*
1416  * Opposite of spa_load().
1417  */
1418 static void
1419 spa_unload(spa_t *spa)
1420 {
1421 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1422 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1423 
1424 	spa_load_note(spa, "UNLOADING");
1425 
1426 	/*
1427 	 * If the log space map feature is enabled and the pool is getting
1428 	 * exported (but not destroyed), we want to spend some time flushing
1429 	 * as many metaslabs as we can in an attempt to destroy log space
1430 	 * maps and save import time.
1431 	 */
1432 	if (spa_should_flush_logs_on_unload(spa))
1433 		spa_unload_log_sm_flush_all(spa);
1434 
1435 	/*
1436 	 * Stop async tasks.
1437 	 */
1438 	spa_async_suspend(spa);
1439 
1440 	if (spa->spa_root_vdev) {
1441 		vdev_t *root_vdev = spa->spa_root_vdev;
1442 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1443 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1444 		vdev_autotrim_stop_all(spa);
1445 	}
1446 
1447 	/*
1448 	 * Stop syncing.
1449 	 */
1450 	if (spa->spa_sync_on) {
1451 		txg_sync_stop(spa->spa_dsl_pool);
1452 		spa->spa_sync_on = B_FALSE;
1453 	}
1454 
1455 	/*
1456 	 * This ensures that there is no async metaslab prefetching
1457 	 * while we attempt to unload the spa.
1458 	 */
1459 	if (spa->spa_root_vdev != NULL) {
1460 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1461 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1462 			if (vc->vdev_mg != NULL)
1463 				taskq_wait(vc->vdev_mg->mg_taskq);
1464 		}
1465 	}
1466 
1467 	if (spa->spa_mmp.mmp_thread)
1468 		mmp_thread_stop(spa);
1469 
1470 	/*
1471 	 * Wait for any outstanding async I/O to complete.
1472 	 */
1473 	if (spa->spa_async_zio_root != NULL) {
1474 		for (int i = 0; i < max_ncpus; i++)
1475 			(void) zio_wait(spa->spa_async_zio_root[i]);
1476 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1477 		spa->spa_async_zio_root = NULL;
1478 	}
1479 
1480 	if (spa->spa_vdev_removal != NULL) {
1481 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1482 		spa->spa_vdev_removal = NULL;
1483 	}
1484 
1485 	if (spa->spa_condense_zthr != NULL) {
1486 		zthr_destroy(spa->spa_condense_zthr);
1487 		spa->spa_condense_zthr = NULL;
1488 	}
1489 
1490 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1491 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1492 		spa->spa_checkpoint_discard_zthr = NULL;
1493 	}
1494 
1495 	spa_condense_fini(spa);
1496 
1497 	bpobj_close(&spa->spa_deferred_bpobj);
1498 
1499 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1500 
1501 	/*
1502 	 * Close all vdevs.
1503 	 */
1504 	if (spa->spa_root_vdev)
1505 		vdev_free(spa->spa_root_vdev);
1506 	ASSERT(spa->spa_root_vdev == NULL);
1507 
1508 	/*
1509 	 * Close the dsl pool.
1510 	 */
1511 	if (spa->spa_dsl_pool) {
1512 		dsl_pool_close(spa->spa_dsl_pool);
1513 		spa->spa_dsl_pool = NULL;
1514 		spa->spa_meta_objset = NULL;
1515 	}
1516 
1517 	ddt_unload(spa);
1518 	spa_unload_log_sm_metadata(spa);
1519 
1520 	/*
1521 	 * Drop and purge level 2 cache
1522 	 */
1523 	spa_l2cache_drop(spa);
1524 
1525 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1526 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1527 	if (spa->spa_spares.sav_vdevs) {
1528 		kmem_free(spa->spa_spares.sav_vdevs,
1529 		    spa->spa_spares.sav_count * sizeof (void *));
1530 		spa->spa_spares.sav_vdevs = NULL;
1531 	}
1532 	if (spa->spa_spares.sav_config) {
1533 		nvlist_free(spa->spa_spares.sav_config);
1534 		spa->spa_spares.sav_config = NULL;
1535 	}
1536 	spa->spa_spares.sav_count = 0;
1537 
1538 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1539 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1540 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1541 	}
1542 	if (spa->spa_l2cache.sav_vdevs) {
1543 		kmem_free(spa->spa_l2cache.sav_vdevs,
1544 		    spa->spa_l2cache.sav_count * sizeof (void *));
1545 		spa->spa_l2cache.sav_vdevs = NULL;
1546 	}
1547 	if (spa->spa_l2cache.sav_config) {
1548 		nvlist_free(spa->spa_l2cache.sav_config);
1549 		spa->spa_l2cache.sav_config = NULL;
1550 	}
1551 	spa->spa_l2cache.sav_count = 0;
1552 
1553 	spa->spa_async_suspended = 0;
1554 
1555 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1556 
1557 	if (spa->spa_comment != NULL) {
1558 		spa_strfree(spa->spa_comment);
1559 		spa->spa_comment = NULL;
1560 	}
1561 
1562 	spa_config_exit(spa, SCL_ALL, spa);
1563 }
1564 
1565 /*
1566  * Load (or re-load) the current list of vdevs describing the active spares for
1567  * this pool.  When this is called, we have some form of basic information in
1568  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1569  * then re-generate a more complete list including status information.
1570  */
1571 void
1572 spa_load_spares(spa_t *spa)
1573 {
1574 	nvlist_t **spares;
1575 	uint_t nspares;
1576 	int i;
1577 	vdev_t *vd, *tvd;
1578 
1579 #ifndef _KERNEL
1580 	/*
1581 	 * zdb opens both the current state of the pool and the
1582 	 * checkpointed state (if present), with a different spa_t.
1583 	 *
1584 	 * As spare vdevs are shared among open pools, we skip loading
1585 	 * them when we load the checkpointed state of the pool.
1586 	 */
1587 	if (!spa_writeable(spa))
1588 		return;
1589 #endif
1590 
1591 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1592 
1593 	/*
1594 	 * First, close and free any existing spare vdevs.
1595 	 */
1596 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1597 		vd = spa->spa_spares.sav_vdevs[i];
1598 
1599 		/* Undo the call to spa_activate() below */
1600 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1601 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1602 			spa_spare_remove(tvd);
1603 		vdev_close(vd);
1604 		vdev_free(vd);
1605 	}
1606 
1607 	if (spa->spa_spares.sav_vdevs)
1608 		kmem_free(spa->spa_spares.sav_vdevs,
1609 		    spa->spa_spares.sav_count * sizeof (void *));
1610 
1611 	if (spa->spa_spares.sav_config == NULL)
1612 		nspares = 0;
1613 	else
1614 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1615 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1616 
1617 	spa->spa_spares.sav_count = (int)nspares;
1618 	spa->spa_spares.sav_vdevs = NULL;
1619 
1620 	if (nspares == 0)
1621 		return;
1622 
1623 	/*
1624 	 * Construct the array of vdevs, opening them to get status in the
1625 	 * process.   For each spare, there is potentially two different vdev_t
1626 	 * structures associated with it: one in the list of spares (used only
1627 	 * for basic validation purposes) and one in the active vdev
1628 	 * configuration (if it's spared in).  During this phase we open and
1629 	 * validate each vdev on the spare list.  If the vdev also exists in the
1630 	 * active configuration, then we also mark this vdev as an active spare.
1631 	 */
1632 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1633 	    KM_SLEEP);
1634 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1635 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1636 		    VDEV_ALLOC_SPARE) == 0);
1637 		ASSERT(vd != NULL);
1638 
1639 		spa->spa_spares.sav_vdevs[i] = vd;
1640 
1641 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1642 		    B_FALSE)) != NULL) {
1643 			if (!tvd->vdev_isspare)
1644 				spa_spare_add(tvd);
1645 
1646 			/*
1647 			 * We only mark the spare active if we were successfully
1648 			 * able to load the vdev.  Otherwise, importing a pool
1649 			 * with a bad active spare would result in strange
1650 			 * behavior, because multiple pool would think the spare
1651 			 * is actively in use.
1652 			 *
1653 			 * There is a vulnerability here to an equally bizarre
1654 			 * circumstance, where a dead active spare is later
1655 			 * brought back to life (onlined or otherwise).  Given
1656 			 * the rarity of this scenario, and the extra complexity
1657 			 * it adds, we ignore the possibility.
1658 			 */
1659 			if (!vdev_is_dead(tvd))
1660 				spa_spare_activate(tvd);
1661 		}
1662 
1663 		vd->vdev_top = vd;
1664 		vd->vdev_aux = &spa->spa_spares;
1665 
1666 		if (vdev_open(vd) != 0)
1667 			continue;
1668 
1669 		if (vdev_validate_aux(vd) == 0)
1670 			spa_spare_add(vd);
1671 	}
1672 
1673 	/*
1674 	 * Recompute the stashed list of spares, with status information
1675 	 * this time.
1676 	 */
1677 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1678 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1679 
1680 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1681 	    KM_SLEEP);
1682 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1683 		spares[i] = vdev_config_generate(spa,
1684 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1685 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1686 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1687 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1688 		nvlist_free(spares[i]);
1689 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1690 }
1691 
1692 /*
1693  * Load (or re-load) the current list of vdevs describing the active l2cache for
1694  * this pool.  When this is called, we have some form of basic information in
1695  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1696  * then re-generate a more complete list including status information.
1697  * Devices which are already active have their details maintained, and are
1698  * not re-opened.
1699  */
1700 void
1701 spa_load_l2cache(spa_t *spa)
1702 {
1703 	nvlist_t **l2cache;
1704 	uint_t nl2cache;
1705 	int i, j, oldnvdevs;
1706 	uint64_t guid;
1707 	vdev_t *vd, **oldvdevs, **newvdevs;
1708 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1709 
1710 #ifndef _KERNEL
1711 	/*
1712 	 * zdb opens both the current state of the pool and the
1713 	 * checkpointed state (if present), with a different spa_t.
1714 	 *
1715 	 * As L2 caches are part of the ARC which is shared among open
1716 	 * pools, we skip loading them when we load the checkpointed
1717 	 * state of the pool.
1718 	 */
1719 	if (!spa_writeable(spa))
1720 		return;
1721 #endif
1722 
1723 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1724 
1725 	if (sav->sav_config != NULL) {
1726 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1727 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1728 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1729 	} else {
1730 		nl2cache = 0;
1731 		newvdevs = NULL;
1732 	}
1733 
1734 	oldvdevs = sav->sav_vdevs;
1735 	oldnvdevs = sav->sav_count;
1736 	sav->sav_vdevs = NULL;
1737 	sav->sav_count = 0;
1738 
1739 	/*
1740 	 * Process new nvlist of vdevs.
1741 	 */
1742 	for (i = 0; i < nl2cache; i++) {
1743 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1744 		    &guid) == 0);
1745 
1746 		newvdevs[i] = NULL;
1747 		for (j = 0; j < oldnvdevs; j++) {
1748 			vd = oldvdevs[j];
1749 			if (vd != NULL && guid == vd->vdev_guid) {
1750 				/*
1751 				 * Retain previous vdev for add/remove ops.
1752 				 */
1753 				newvdevs[i] = vd;
1754 				oldvdevs[j] = NULL;
1755 				break;
1756 			}
1757 		}
1758 
1759 		if (newvdevs[i] == NULL) {
1760 			/*
1761 			 * Create new vdev
1762 			 */
1763 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1764 			    VDEV_ALLOC_L2CACHE) == 0);
1765 			ASSERT(vd != NULL);
1766 			newvdevs[i] = vd;
1767 
1768 			/*
1769 			 * Commit this vdev as an l2cache device,
1770 			 * even if it fails to open.
1771 			 */
1772 			spa_l2cache_add(vd);
1773 
1774 			vd->vdev_top = vd;
1775 			vd->vdev_aux = sav;
1776 
1777 			spa_l2cache_activate(vd);
1778 
1779 			if (vdev_open(vd) != 0)
1780 				continue;
1781 
1782 			(void) vdev_validate_aux(vd);
1783 
1784 			if (!vdev_is_dead(vd))
1785 				l2arc_add_vdev(spa, vd);
1786 		}
1787 	}
1788 
1789 	/*
1790 	 * Purge vdevs that were dropped
1791 	 */
1792 	for (i = 0; i < oldnvdevs; i++) {
1793 		uint64_t pool;
1794 
1795 		vd = oldvdevs[i];
1796 		if (vd != NULL) {
1797 			ASSERT(vd->vdev_isl2cache);
1798 
1799 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1800 			    pool != 0ULL && l2arc_vdev_present(vd))
1801 				l2arc_remove_vdev(vd);
1802 			vdev_clear_stats(vd);
1803 			vdev_free(vd);
1804 		}
1805 	}
1806 
1807 	if (oldvdevs)
1808 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1809 
1810 	if (sav->sav_config == NULL)
1811 		goto out;
1812 
1813 	sav->sav_vdevs = newvdevs;
1814 	sav->sav_count = (int)nl2cache;
1815 
1816 	/*
1817 	 * Recompute the stashed list of l2cache devices, with status
1818 	 * information this time.
1819 	 */
1820 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1821 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1822 
1823 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1824 	for (i = 0; i < sav->sav_count; i++)
1825 		l2cache[i] = vdev_config_generate(spa,
1826 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1827 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1828 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1829 out:
1830 	for (i = 0; i < sav->sav_count; i++)
1831 		nvlist_free(l2cache[i]);
1832 	if (sav->sav_count)
1833 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1834 }
1835 
1836 static int
1837 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1838 {
1839 	dmu_buf_t *db;
1840 	char *packed = NULL;
1841 	size_t nvsize = 0;
1842 	int error;
1843 	*value = NULL;
1844 
1845 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1846 	if (error != 0)
1847 		return (error);
1848 
1849 	nvsize = *(uint64_t *)db->db_data;
1850 	dmu_buf_rele(db, FTAG);
1851 
1852 	packed = kmem_alloc(nvsize, KM_SLEEP);
1853 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1854 	    DMU_READ_PREFETCH);
1855 	if (error == 0)
1856 		error = nvlist_unpack(packed, nvsize, value, 0);
1857 	kmem_free(packed, nvsize);
1858 
1859 	return (error);
1860 }
1861 
1862 /*
1863  * Concrete top-level vdevs that are not missing and are not logs. At every
1864  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1865  */
1866 static uint64_t
1867 spa_healthy_core_tvds(spa_t *spa)
1868 {
1869 	vdev_t *rvd = spa->spa_root_vdev;
1870 	uint64_t tvds = 0;
1871 
1872 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1873 		vdev_t *vd = rvd->vdev_child[i];
1874 		if (vd->vdev_islog)
1875 			continue;
1876 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1877 			tvds++;
1878 	}
1879 
1880 	return (tvds);
1881 }
1882 
1883 /*
1884  * Checks to see if the given vdev could not be opened, in which case we post a
1885  * sysevent to notify the autoreplace code that the device has been removed.
1886  */
1887 static void
1888 spa_check_removed(vdev_t *vd)
1889 {
1890 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1891 		spa_check_removed(vd->vdev_child[c]);
1892 
1893 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1894 	    vdev_is_concrete(vd)) {
1895 		zfs_post_autoreplace(vd->vdev_spa, vd);
1896 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1897 	}
1898 }
1899 
1900 static int
1901 spa_check_for_missing_logs(spa_t *spa)
1902 {
1903 	vdev_t *rvd = spa->spa_root_vdev;
1904 
1905 	/*
1906 	 * If we're doing a normal import, then build up any additional
1907 	 * diagnostic information about missing log devices.
1908 	 * We'll pass this up to the user for further processing.
1909 	 */
1910 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1911 		nvlist_t **child, *nv;
1912 		uint64_t idx = 0;
1913 
1914 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1915 		    KM_SLEEP);
1916 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1917 
1918 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1919 			vdev_t *tvd = rvd->vdev_child[c];
1920 
1921 			/*
1922 			 * We consider a device as missing only if it failed
1923 			 * to open (i.e. offline or faulted is not considered
1924 			 * as missing).
1925 			 */
1926 			if (tvd->vdev_islog &&
1927 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1928 				child[idx++] = vdev_config_generate(spa, tvd,
1929 				    B_FALSE, VDEV_CONFIG_MISSING);
1930 			}
1931 		}
1932 
1933 		if (idx > 0) {
1934 			fnvlist_add_nvlist_array(nv,
1935 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1936 			fnvlist_add_nvlist(spa->spa_load_info,
1937 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1938 
1939 			for (uint64_t i = 0; i < idx; i++)
1940 				nvlist_free(child[i]);
1941 		}
1942 		nvlist_free(nv);
1943 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1944 
1945 		if (idx > 0) {
1946 			spa_load_failed(spa, "some log devices are missing");
1947 			vdev_dbgmsg_print_tree(rvd, 2);
1948 			return (SET_ERROR(ENXIO));
1949 		}
1950 	} else {
1951 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1952 			vdev_t *tvd = rvd->vdev_child[c];
1953 
1954 			if (tvd->vdev_islog &&
1955 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1956 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1957 				spa_load_note(spa, "some log devices are "
1958 				    "missing, ZIL is dropped.");
1959 				vdev_dbgmsg_print_tree(rvd, 2);
1960 				break;
1961 			}
1962 		}
1963 	}
1964 
1965 	return (0);
1966 }
1967 
1968 /*
1969  * Check for missing log devices
1970  */
1971 static boolean_t
1972 spa_check_logs(spa_t *spa)
1973 {
1974 	boolean_t rv = B_FALSE;
1975 	dsl_pool_t *dp = spa_get_dsl(spa);
1976 
1977 	switch (spa->spa_log_state) {
1978 	case SPA_LOG_MISSING:
1979 		/* need to recheck in case slog has been restored */
1980 	case SPA_LOG_UNKNOWN:
1981 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1982 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1983 		if (rv)
1984 			spa_set_log_state(spa, SPA_LOG_MISSING);
1985 		break;
1986 	}
1987 	return (rv);
1988 }
1989 
1990 static boolean_t
1991 spa_passivate_log(spa_t *spa)
1992 {
1993 	vdev_t *rvd = spa->spa_root_vdev;
1994 	boolean_t slog_found = B_FALSE;
1995 
1996 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1997 
1998 	if (!spa_has_slogs(spa))
1999 		return (B_FALSE);
2000 
2001 	for (int c = 0; c < rvd->vdev_children; c++) {
2002 		vdev_t *tvd = rvd->vdev_child[c];
2003 		metaslab_group_t *mg = tvd->vdev_mg;
2004 
2005 		if (tvd->vdev_islog) {
2006 			metaslab_group_passivate(mg);
2007 			slog_found = B_TRUE;
2008 		}
2009 	}
2010 
2011 	return (slog_found);
2012 }
2013 
2014 static void
2015 spa_activate_log(spa_t *spa)
2016 {
2017 	vdev_t *rvd = spa->spa_root_vdev;
2018 
2019 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2020 
2021 	for (int c = 0; c < rvd->vdev_children; c++) {
2022 		vdev_t *tvd = rvd->vdev_child[c];
2023 		metaslab_group_t *mg = tvd->vdev_mg;
2024 
2025 		if (tvd->vdev_islog)
2026 			metaslab_group_activate(mg);
2027 	}
2028 }
2029 
2030 int
2031 spa_reset_logs(spa_t *spa)
2032 {
2033 	int error;
2034 
2035 	error = dmu_objset_find(spa_name(spa), zil_reset,
2036 	    NULL, DS_FIND_CHILDREN);
2037 	if (error == 0) {
2038 		/*
2039 		 * We successfully offlined the log device, sync out the
2040 		 * current txg so that the "stubby" block can be removed
2041 		 * by zil_sync().
2042 		 */
2043 		txg_wait_synced(spa->spa_dsl_pool, 0);
2044 	}
2045 	return (error);
2046 }
2047 
2048 static void
2049 spa_aux_check_removed(spa_aux_vdev_t *sav)
2050 {
2051 	for (int i = 0; i < sav->sav_count; i++)
2052 		spa_check_removed(sav->sav_vdevs[i]);
2053 }
2054 
2055 void
2056 spa_claim_notify(zio_t *zio)
2057 {
2058 	spa_t *spa = zio->io_spa;
2059 
2060 	if (zio->io_error)
2061 		return;
2062 
2063 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2064 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2065 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2066 	mutex_exit(&spa->spa_props_lock);
2067 }
2068 
2069 typedef struct spa_load_error {
2070 	uint64_t	sle_meta_count;
2071 	uint64_t	sle_data_count;
2072 } spa_load_error_t;
2073 
2074 static void
2075 spa_load_verify_done(zio_t *zio)
2076 {
2077 	blkptr_t *bp = zio->io_bp;
2078 	spa_load_error_t *sle = zio->io_private;
2079 	dmu_object_type_t type = BP_GET_TYPE(bp);
2080 	int error = zio->io_error;
2081 	spa_t *spa = zio->io_spa;
2082 
2083 	abd_free(zio->io_abd);
2084 	if (error) {
2085 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2086 		    type != DMU_OT_INTENT_LOG)
2087 			atomic_inc_64(&sle->sle_meta_count);
2088 		else
2089 			atomic_inc_64(&sle->sle_data_count);
2090 	}
2091 
2092 	mutex_enter(&spa->spa_scrub_lock);
2093 	spa->spa_load_verify_ios--;
2094 	cv_broadcast(&spa->spa_scrub_io_cv);
2095 	mutex_exit(&spa->spa_scrub_lock);
2096 }
2097 
2098 /*
2099  * Maximum number of concurrent scrub i/os to create while verifying
2100  * a pool while importing it.
2101  */
2102 int spa_load_verify_maxinflight = 10000;
2103 boolean_t spa_load_verify_metadata = B_TRUE;
2104 boolean_t spa_load_verify_data = B_TRUE;
2105 
2106 /*ARGSUSED*/
2107 static int
2108 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2109     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2110 {
2111 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2112 		return (0);
2113 	/*
2114 	 * Note: normally this routine will not be called if
2115 	 * spa_load_verify_metadata is not set.  However, it may be useful
2116 	 * to manually set the flag after the traversal has begun.
2117 	 */
2118 	if (!spa_load_verify_metadata)
2119 		return (0);
2120 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2121 		return (0);
2122 
2123 	zio_t *rio = arg;
2124 	size_t size = BP_GET_PSIZE(bp);
2125 
2126 	mutex_enter(&spa->spa_scrub_lock);
2127 	while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2128 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2129 	spa->spa_load_verify_ios++;
2130 	mutex_exit(&spa->spa_scrub_lock);
2131 
2132 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2133 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2134 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2135 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2136 	return (0);
2137 }
2138 
2139 /* ARGSUSED */
2140 int
2141 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2142 {
2143 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2144 		return (SET_ERROR(ENAMETOOLONG));
2145 
2146 	return (0);
2147 }
2148 
2149 static int
2150 spa_load_verify(spa_t *spa)
2151 {
2152 	zio_t *rio;
2153 	spa_load_error_t sle = { 0 };
2154 	zpool_load_policy_t policy;
2155 	boolean_t verify_ok = B_FALSE;
2156 	int error = 0;
2157 
2158 	zpool_get_load_policy(spa->spa_config, &policy);
2159 
2160 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2161 		return (0);
2162 
2163 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2164 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2165 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2166 	    DS_FIND_CHILDREN);
2167 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2168 	if (error != 0)
2169 		return (error);
2170 
2171 	rio = zio_root(spa, NULL, &sle,
2172 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2173 
2174 	if (spa_load_verify_metadata) {
2175 		if (spa->spa_extreme_rewind) {
2176 			spa_load_note(spa, "performing a complete scan of the "
2177 			    "pool since extreme rewind is on. This may take "
2178 			    "a very long time.\n  (spa_load_verify_data=%u, "
2179 			    "spa_load_verify_metadata=%u)",
2180 			    spa_load_verify_data, spa_load_verify_metadata);
2181 		}
2182 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2183 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2184 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2185 	}
2186 
2187 	(void) zio_wait(rio);
2188 
2189 	spa->spa_load_meta_errors = sle.sle_meta_count;
2190 	spa->spa_load_data_errors = sle.sle_data_count;
2191 
2192 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2193 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2194 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2195 		    (u_longlong_t)sle.sle_data_count);
2196 	}
2197 
2198 	if (spa_load_verify_dryrun ||
2199 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2200 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2201 		int64_t loss = 0;
2202 
2203 		verify_ok = B_TRUE;
2204 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2205 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2206 
2207 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2208 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2209 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2210 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2211 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2212 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2213 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2214 	} else {
2215 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2216 	}
2217 
2218 	if (spa_load_verify_dryrun)
2219 		return (0);
2220 
2221 	if (error) {
2222 		if (error != ENXIO && error != EIO)
2223 			error = SET_ERROR(EIO);
2224 		return (error);
2225 	}
2226 
2227 	return (verify_ok ? 0 : EIO);
2228 }
2229 
2230 /*
2231  * Find a value in the pool props object.
2232  */
2233 static void
2234 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2235 {
2236 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2237 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2238 }
2239 
2240 /*
2241  * Find a value in the pool directory object.
2242  */
2243 static int
2244 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2245 {
2246 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2247 	    name, sizeof (uint64_t), 1, val);
2248 
2249 	if (error != 0 && (error != ENOENT || log_enoent)) {
2250 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2251 		    "[error=%d]", name, error);
2252 	}
2253 
2254 	return (error);
2255 }
2256 
2257 static int
2258 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2259 {
2260 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2261 	return (SET_ERROR(err));
2262 }
2263 
2264 static void
2265 spa_spawn_aux_threads(spa_t *spa)
2266 {
2267 	ASSERT(spa_writeable(spa));
2268 
2269 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2270 
2271 	spa_start_indirect_condensing_thread(spa);
2272 
2273 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2274 	spa->spa_checkpoint_discard_zthr =
2275 	    zthr_create(spa_checkpoint_discard_thread_check,
2276 	    spa_checkpoint_discard_thread, spa);
2277 }
2278 
2279 /*
2280  * Fix up config after a partly-completed split.  This is done with the
2281  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2282  * pool have that entry in their config, but only the splitting one contains
2283  * a list of all the guids of the vdevs that are being split off.
2284  *
2285  * This function determines what to do with that list: either rejoin
2286  * all the disks to the pool, or complete the splitting process.  To attempt
2287  * the rejoin, each disk that is offlined is marked online again, and
2288  * we do a reopen() call.  If the vdev label for every disk that was
2289  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2290  * then we call vdev_split() on each disk, and complete the split.
2291  *
2292  * Otherwise we leave the config alone, with all the vdevs in place in
2293  * the original pool.
2294  */
2295 static void
2296 spa_try_repair(spa_t *spa, nvlist_t *config)
2297 {
2298 	uint_t extracted;
2299 	uint64_t *glist;
2300 	uint_t i, gcount;
2301 	nvlist_t *nvl;
2302 	vdev_t **vd;
2303 	boolean_t attempt_reopen;
2304 
2305 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2306 		return;
2307 
2308 	/* check that the config is complete */
2309 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2310 	    &glist, &gcount) != 0)
2311 		return;
2312 
2313 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2314 
2315 	/* attempt to online all the vdevs & validate */
2316 	attempt_reopen = B_TRUE;
2317 	for (i = 0; i < gcount; i++) {
2318 		if (glist[i] == 0)	/* vdev is hole */
2319 			continue;
2320 
2321 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2322 		if (vd[i] == NULL) {
2323 			/*
2324 			 * Don't bother attempting to reopen the disks;
2325 			 * just do the split.
2326 			 */
2327 			attempt_reopen = B_FALSE;
2328 		} else {
2329 			/* attempt to re-online it */
2330 			vd[i]->vdev_offline = B_FALSE;
2331 		}
2332 	}
2333 
2334 	if (attempt_reopen) {
2335 		vdev_reopen(spa->spa_root_vdev);
2336 
2337 		/* check each device to see what state it's in */
2338 		for (extracted = 0, i = 0; i < gcount; i++) {
2339 			if (vd[i] != NULL &&
2340 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2341 				break;
2342 			++extracted;
2343 		}
2344 	}
2345 
2346 	/*
2347 	 * If every disk has been moved to the new pool, or if we never
2348 	 * even attempted to look at them, then we split them off for
2349 	 * good.
2350 	 */
2351 	if (!attempt_reopen || gcount == extracted) {
2352 		for (i = 0; i < gcount; i++)
2353 			if (vd[i] != NULL)
2354 				vdev_split(vd[i]);
2355 		vdev_reopen(spa->spa_root_vdev);
2356 	}
2357 
2358 	kmem_free(vd, gcount * sizeof (vdev_t *));
2359 }
2360 
2361 static int
2362 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2363 {
2364 	char *ereport = FM_EREPORT_ZFS_POOL;
2365 	int error;
2366 
2367 	spa->spa_load_state = state;
2368 
2369 	gethrestime(&spa->spa_loaded_ts);
2370 	error = spa_load_impl(spa, type, &ereport);
2371 
2372 	/*
2373 	 * Don't count references from objsets that are already closed
2374 	 * and are making their way through the eviction process.
2375 	 */
2376 	spa_evicting_os_wait(spa);
2377 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2378 	if (error) {
2379 		if (error != EEXIST) {
2380 			spa->spa_loaded_ts.tv_sec = 0;
2381 			spa->spa_loaded_ts.tv_nsec = 0;
2382 		}
2383 		if (error != EBADF) {
2384 			zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2385 		}
2386 	}
2387 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2388 	spa->spa_ena = 0;
2389 
2390 	return (error);
2391 }
2392 
2393 /*
2394  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2395  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2396  * spa's per-vdev ZAP list.
2397  */
2398 static uint64_t
2399 vdev_count_verify_zaps(vdev_t *vd)
2400 {
2401 	spa_t *spa = vd->vdev_spa;
2402 	uint64_t total = 0;
2403 	if (vd->vdev_top_zap != 0) {
2404 		total++;
2405 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2406 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2407 	}
2408 	if (vd->vdev_leaf_zap != 0) {
2409 		total++;
2410 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2411 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2412 	}
2413 
2414 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2415 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2416 	}
2417 
2418 	return (total);
2419 }
2420 
2421 /*
2422  * Determine whether the activity check is required.
2423  */
2424 static boolean_t
2425 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2426     nvlist_t *config)
2427 {
2428 	uint64_t state = 0;
2429 	uint64_t hostid = 0;
2430 	uint64_t tryconfig_txg = 0;
2431 	uint64_t tryconfig_timestamp = 0;
2432 	uint16_t tryconfig_mmp_seq = 0;
2433 	nvlist_t *nvinfo;
2434 
2435 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2436 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2437 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2438 		    &tryconfig_txg);
2439 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2440 		    &tryconfig_timestamp);
2441 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2442 		    &tryconfig_mmp_seq);
2443 	}
2444 
2445 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2446 
2447 	/*
2448 	 * Disable the MMP activity check - This is used by zdb which
2449 	 * is intended to be used on potentially active pools.
2450 	 */
2451 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2452 		return (B_FALSE);
2453 
2454 	/*
2455 	 * Skip the activity check when the MMP feature is disabled.
2456 	 */
2457 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2458 		return (B_FALSE);
2459 
2460 	/*
2461 	 * If the tryconfig_ values are nonzero, they are the results of an
2462 	 * earlier tryimport.  If they all match the uberblock we just found,
2463 	 * then the pool has not changed and we return false so we do not test
2464 	 * a second time.
2465 	 */
2466 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2467 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2468 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
2469 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2470 		return (B_FALSE);
2471 
2472 	/*
2473 	 * Allow the activity check to be skipped when importing the pool
2474 	 * on the same host which last imported it.  Since the hostid from
2475 	 * configuration may be stale use the one read from the label.
2476 	 */
2477 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2478 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2479 
2480 	if (hostid == spa_get_hostid())
2481 		return (B_FALSE);
2482 
2483 	/*
2484 	 * Skip the activity test when the pool was cleanly exported.
2485 	 */
2486 	if (state != POOL_STATE_ACTIVE)
2487 		return (B_FALSE);
2488 
2489 	return (B_TRUE);
2490 }
2491 
2492 /*
2493  * Nanoseconds the activity check must watch for changes on-disk.
2494  */
2495 static uint64_t
2496 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2497 {
2498 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2499 	uint64_t multihost_interval = MSEC2NSEC(
2500 	    MMP_INTERVAL_OK(zfs_multihost_interval));
2501 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
2502 	    multihost_interval);
2503 
2504 	/*
2505 	 * Local tunables determine a minimum duration except for the case
2506 	 * where we know when the remote host will suspend the pool if MMP
2507 	 * writes do not land.
2508 	 *
2509 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
2510 	 * these cases and times.
2511 	 */
2512 
2513 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
2514 
2515 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2516 	    MMP_FAIL_INT(ub) > 0) {
2517 
2518 		/* MMP on remote host will suspend pool after failed writes */
2519 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
2520 		    MMP_IMPORT_SAFETY_FACTOR / 100;
2521 
2522 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
2523 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
2524 		    "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
2525 		    MMP_INTERVAL(ub), import_intervals);
2526 
2527 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2528 	    MMP_FAIL_INT(ub) == 0) {
2529 
2530 		/* MMP on remote host will never suspend pool */
2531 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
2532 		    ub->ub_mmp_delay) * import_intervals);
2533 
2534 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
2535 		    "mmp_interval=%llu ub_mmp_delay=%llu "
2536 		    "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
2537 		    ub->ub_mmp_delay, import_intervals);
2538 
2539 	} else if (MMP_VALID(ub)) {
2540 		/*
2541 		 * zfs-0.7 compatability case
2542 		 */
2543 
2544 		import_delay = MAX(import_delay, (multihost_interval +
2545 		    ub->ub_mmp_delay) * import_intervals);
2546 
2547 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
2548 		    "import_intervals=%u leaves=%u", import_delay,
2549 		    ub->ub_mmp_delay, import_intervals,
2550 		    vdev_count_leaves(spa));
2551 	} else {
2552 		/* Using local tunings is the only reasonable option */
2553 		zfs_dbgmsg("pool last imported on non-MMP aware "
2554 		    "host using import_delay=%llu multihost_interval=%llu "
2555 		    "import_intervals=%u", import_delay, multihost_interval,
2556 		    import_intervals);
2557 	}
2558 
2559 	return (import_delay);
2560 }
2561 
2562 /*
2563  * Perform the import activity check.  If the user canceled the import or
2564  * we detected activity then fail.
2565  */
2566 static int
2567 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2568 {
2569 	uint64_t txg = ub->ub_txg;
2570 	uint64_t timestamp = ub->ub_timestamp;
2571 	uint64_t mmp_config = ub->ub_mmp_config;
2572 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
2573 	uint64_t import_delay;
2574 	hrtime_t import_expire;
2575 	nvlist_t *mmp_label = NULL;
2576 	vdev_t *rvd = spa->spa_root_vdev;
2577 	kcondvar_t cv;
2578 	kmutex_t mtx;
2579 	int error = 0;
2580 
2581 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
2582 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2583 	mutex_enter(&mtx);
2584 
2585 	/*
2586 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2587 	 * during the earlier tryimport.  If the txg recorded there is 0 then
2588 	 * the pool is known to be active on another host.
2589 	 *
2590 	 * Otherwise, the pool might be in use on another host.  Check for
2591 	 * changes in the uberblocks on disk if necessary.
2592 	 */
2593 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2594 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2595 		    ZPOOL_CONFIG_LOAD_INFO);
2596 
2597 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2598 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2599 			vdev_uberblock_load(rvd, ub, &mmp_label);
2600 			error = SET_ERROR(EREMOTEIO);
2601 			goto out;
2602 		}
2603 	}
2604 
2605 	import_delay = spa_activity_check_duration(spa, ub);
2606 
2607 	/* Add a small random factor in case of simultaneous imports (0-25%) */
2608 	import_delay += import_delay * spa_get_random(250) / 1000;
2609 
2610 	import_expire = gethrtime() + import_delay;
2611 
2612 	while (gethrtime() < import_expire) {
2613 		vdev_uberblock_load(rvd, ub, &mmp_label);
2614 
2615 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
2616 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
2617 			zfs_dbgmsg("multihost activity detected "
2618 			    "txg %llu ub_txg  %llu "
2619 			    "timestamp %llu ub_timestamp  %llu "
2620 			    "mmp_config %#llx ub_mmp_config %#llx",
2621 			    txg, ub->ub_txg, timestamp, ub->ub_timestamp,
2622 			    mmp_config, ub->ub_mmp_config);
2623 
2624 			error = SET_ERROR(EREMOTEIO);
2625 			break;
2626 		}
2627 
2628 		if (mmp_label) {
2629 			nvlist_free(mmp_label);
2630 			mmp_label = NULL;
2631 		}
2632 
2633 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2634 		if (error != -1) {
2635 			error = SET_ERROR(EINTR);
2636 			break;
2637 		}
2638 		error = 0;
2639 	}
2640 
2641 out:
2642 	mutex_exit(&mtx);
2643 	mutex_destroy(&mtx);
2644 	cv_destroy(&cv);
2645 
2646 	/*
2647 	 * If the pool is determined to be active store the status in the
2648 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
2649 	 * available from configuration read from disk store them as well.
2650 	 * This allows 'zpool import' to generate a more useful message.
2651 	 *
2652 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
2653 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2654 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
2655 	 */
2656 	if (error == EREMOTEIO) {
2657 		char *hostname = "<unknown>";
2658 		uint64_t hostid = 0;
2659 
2660 		if (mmp_label) {
2661 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2662 				hostname = fnvlist_lookup_string(mmp_label,
2663 				    ZPOOL_CONFIG_HOSTNAME);
2664 				fnvlist_add_string(spa->spa_load_info,
2665 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2666 			}
2667 
2668 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2669 				hostid = fnvlist_lookup_uint64(mmp_label,
2670 				    ZPOOL_CONFIG_HOSTID);
2671 				fnvlist_add_uint64(spa->spa_load_info,
2672 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
2673 			}
2674 		}
2675 
2676 		fnvlist_add_uint64(spa->spa_load_info,
2677 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2678 		fnvlist_add_uint64(spa->spa_load_info,
2679 		    ZPOOL_CONFIG_MMP_TXG, 0);
2680 
2681 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2682 	}
2683 
2684 	if (mmp_label)
2685 		nvlist_free(mmp_label);
2686 
2687 	return (error);
2688 }
2689 
2690 static int
2691 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2692 {
2693 	uint64_t hostid;
2694 	char *hostname;
2695 	uint64_t myhostid = 0;
2696 
2697 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2698 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2699 		hostname = fnvlist_lookup_string(mos_config,
2700 		    ZPOOL_CONFIG_HOSTNAME);
2701 
2702 		myhostid = zone_get_hostid(NULL);
2703 
2704 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2705 			cmn_err(CE_WARN, "pool '%s' could not be "
2706 			    "loaded as it was last accessed by "
2707 			    "another system (host: %s hostid: 0x%llx). "
2708 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2709 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2710 			spa_load_failed(spa, "hostid verification failed: pool "
2711 			    "last accessed by host: %s (hostid: 0x%llx)",
2712 			    hostname, (u_longlong_t)hostid);
2713 			return (SET_ERROR(EBADF));
2714 		}
2715 	}
2716 
2717 	return (0);
2718 }
2719 
2720 static int
2721 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2722 {
2723 	int error = 0;
2724 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2725 	int parse;
2726 	vdev_t *rvd;
2727 	uint64_t pool_guid;
2728 	char *comment;
2729 
2730 	/*
2731 	 * Versioning wasn't explicitly added to the label until later, so if
2732 	 * it's not present treat it as the initial version.
2733 	 */
2734 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2735 	    &spa->spa_ubsync.ub_version) != 0)
2736 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2737 
2738 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2739 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2740 		    ZPOOL_CONFIG_POOL_GUID);
2741 		return (SET_ERROR(EINVAL));
2742 	}
2743 
2744 	/*
2745 	 * If we are doing an import, ensure that the pool is not already
2746 	 * imported by checking if its pool guid already exists in the
2747 	 * spa namespace.
2748 	 *
2749 	 * The only case that we allow an already imported pool to be
2750 	 * imported again, is when the pool is checkpointed and we want to
2751 	 * look at its checkpointed state from userland tools like zdb.
2752 	 */
2753 #ifdef _KERNEL
2754 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2755 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2756 	    spa_guid_exists(pool_guid, 0)) {
2757 #else
2758 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2759 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2760 	    spa_guid_exists(pool_guid, 0) &&
2761 	    !spa_importing_readonly_checkpoint(spa)) {
2762 #endif
2763 		spa_load_failed(spa, "a pool with guid %llu is already open",
2764 		    (u_longlong_t)pool_guid);
2765 		return (SET_ERROR(EEXIST));
2766 	}
2767 
2768 	spa->spa_config_guid = pool_guid;
2769 
2770 	nvlist_free(spa->spa_load_info);
2771 	spa->spa_load_info = fnvlist_alloc();
2772 
2773 	ASSERT(spa->spa_comment == NULL);
2774 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2775 		spa->spa_comment = spa_strdup(comment);
2776 
2777 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2778 	    &spa->spa_config_txg);
2779 
2780 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2781 		spa->spa_config_splitting = fnvlist_dup(nvl);
2782 
2783 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2784 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2785 		    ZPOOL_CONFIG_VDEV_TREE);
2786 		return (SET_ERROR(EINVAL));
2787 	}
2788 
2789 	/*
2790 	 * Create "The Godfather" zio to hold all async IOs
2791 	 */
2792 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2793 	    KM_SLEEP);
2794 	for (int i = 0; i < max_ncpus; i++) {
2795 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2796 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2797 		    ZIO_FLAG_GODFATHER);
2798 	}
2799 
2800 	/*
2801 	 * Parse the configuration into a vdev tree.  We explicitly set the
2802 	 * value that will be returned by spa_version() since parsing the
2803 	 * configuration requires knowing the version number.
2804 	 */
2805 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2806 	parse = (type == SPA_IMPORT_EXISTING ?
2807 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2808 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2809 	spa_config_exit(spa, SCL_ALL, FTAG);
2810 
2811 	if (error != 0) {
2812 		spa_load_failed(spa, "unable to parse config [error=%d]",
2813 		    error);
2814 		return (error);
2815 	}
2816 
2817 	ASSERT(spa->spa_root_vdev == rvd);
2818 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2819 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2820 
2821 	if (type != SPA_IMPORT_ASSEMBLE) {
2822 		ASSERT(spa_guid(spa) == pool_guid);
2823 	}
2824 
2825 	return (0);
2826 }
2827 
2828 /*
2829  * Recursively open all vdevs in the vdev tree. This function is called twice:
2830  * first with the untrusted config, then with the trusted config.
2831  */
2832 static int
2833 spa_ld_open_vdevs(spa_t *spa)
2834 {
2835 	int error = 0;
2836 
2837 	/*
2838 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2839 	 * missing/unopenable for the root vdev to be still considered openable.
2840 	 */
2841 	if (spa->spa_trust_config) {
2842 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2843 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2844 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2845 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2846 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2847 	} else {
2848 		spa->spa_missing_tvds_allowed = 0;
2849 	}
2850 
2851 	spa->spa_missing_tvds_allowed =
2852 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2853 
2854 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2855 	error = vdev_open(spa->spa_root_vdev);
2856 	spa_config_exit(spa, SCL_ALL, FTAG);
2857 
2858 	if (spa->spa_missing_tvds != 0) {
2859 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2860 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2861 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2862 			/*
2863 			 * Although theoretically we could allow users to open
2864 			 * incomplete pools in RW mode, we'd need to add a lot
2865 			 * of extra logic (e.g. adjust pool space to account
2866 			 * for missing vdevs).
2867 			 * This limitation also prevents users from accidentally
2868 			 * opening the pool in RW mode during data recovery and
2869 			 * damaging it further.
2870 			 */
2871 			spa_load_note(spa, "pools with missing top-level "
2872 			    "vdevs can only be opened in read-only mode.");
2873 			error = SET_ERROR(ENXIO);
2874 		} else {
2875 			spa_load_note(spa, "current settings allow for maximum "
2876 			    "%lld missing top-level vdevs at this stage.",
2877 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2878 		}
2879 	}
2880 	if (error != 0) {
2881 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2882 		    error);
2883 	}
2884 	if (spa->spa_missing_tvds != 0 || error != 0)
2885 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2886 
2887 	return (error);
2888 }
2889 
2890 /*
2891  * We need to validate the vdev labels against the configuration that
2892  * we have in hand. This function is called twice: first with an untrusted
2893  * config, then with a trusted config. The validation is more strict when the
2894  * config is trusted.
2895  */
2896 static int
2897 spa_ld_validate_vdevs(spa_t *spa)
2898 {
2899 	int error = 0;
2900 	vdev_t *rvd = spa->spa_root_vdev;
2901 
2902 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2903 	error = vdev_validate(rvd);
2904 	spa_config_exit(spa, SCL_ALL, FTAG);
2905 
2906 	if (error != 0) {
2907 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2908 		return (error);
2909 	}
2910 
2911 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2912 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2913 		    "some vdevs");
2914 		vdev_dbgmsg_print_tree(rvd, 2);
2915 		return (SET_ERROR(ENXIO));
2916 	}
2917 
2918 	return (0);
2919 }
2920 
2921 static void
2922 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2923 {
2924 	spa->spa_state = POOL_STATE_ACTIVE;
2925 	spa->spa_ubsync = spa->spa_uberblock;
2926 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2927 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2928 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2929 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2930 	spa->spa_claim_max_txg = spa->spa_first_txg;
2931 	spa->spa_prev_software_version = ub->ub_software_version;
2932 }
2933 
2934 static int
2935 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2936 {
2937 	vdev_t *rvd = spa->spa_root_vdev;
2938 	nvlist_t *label;
2939 	uberblock_t *ub = &spa->spa_uberblock;
2940 	boolean_t activity_check = B_FALSE;
2941 
2942 	/*
2943 	 * If we are opening the checkpointed state of the pool by
2944 	 * rewinding to it, at this point we will have written the
2945 	 * checkpointed uberblock to the vdev labels, so searching
2946 	 * the labels will find the right uberblock.  However, if
2947 	 * we are opening the checkpointed state read-only, we have
2948 	 * not modified the labels. Therefore, we must ignore the
2949 	 * labels and continue using the spa_uberblock that was set
2950 	 * by spa_ld_checkpoint_rewind.
2951 	 *
2952 	 * Note that it would be fine to ignore the labels when
2953 	 * rewinding (opening writeable) as well. However, if we
2954 	 * crash just after writing the labels, we will end up
2955 	 * searching the labels. Doing so in the common case means
2956 	 * that this code path gets exercised normally, rather than
2957 	 * just in the edge case.
2958 	 */
2959 	if (ub->ub_checkpoint_txg != 0 &&
2960 	    spa_importing_readonly_checkpoint(spa)) {
2961 		spa_ld_select_uberblock_done(spa, ub);
2962 		return (0);
2963 	}
2964 
2965 	/*
2966 	 * Find the best uberblock.
2967 	 */
2968 	vdev_uberblock_load(rvd, ub, &label);
2969 
2970 	/*
2971 	 * If we weren't able to find a single valid uberblock, return failure.
2972 	 */
2973 	if (ub->ub_txg == 0) {
2974 		nvlist_free(label);
2975 		spa_load_failed(spa, "no valid uberblock found");
2976 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2977 	}
2978 
2979 	spa_load_note(spa, "using uberblock with txg=%llu",
2980 	    (u_longlong_t)ub->ub_txg);
2981 
2982 	/*
2983 	 * For pools which have the multihost property on determine if the
2984 	 * pool is truly inactive and can be safely imported.  Prevent
2985 	 * hosts which don't have a hostid set from importing the pool.
2986 	 */
2987 	activity_check = spa_activity_check_required(spa, ub, label,
2988 	    spa->spa_config);
2989 	if (activity_check) {
2990 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2991 		    spa_get_hostid() == 0) {
2992 			nvlist_free(label);
2993 			fnvlist_add_uint64(spa->spa_load_info,
2994 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2995 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2996 		}
2997 
2998 		int error = spa_activity_check(spa, ub, spa->spa_config);
2999 		if (error) {
3000 			nvlist_free(label);
3001 			return (error);
3002 		}
3003 
3004 		fnvlist_add_uint64(spa->spa_load_info,
3005 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3006 		fnvlist_add_uint64(spa->spa_load_info,
3007 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3008 		fnvlist_add_uint16(spa->spa_load_info,
3009 		    ZPOOL_CONFIG_MMP_SEQ,
3010 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3011 	}
3012 
3013 	/*
3014 	 * If the pool has an unsupported version we can't open it.
3015 	 */
3016 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3017 		nvlist_free(label);
3018 		spa_load_failed(spa, "version %llu is not supported",
3019 		    (u_longlong_t)ub->ub_version);
3020 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3021 	}
3022 
3023 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3024 		nvlist_t *features;
3025 
3026 		/*
3027 		 * If we weren't able to find what's necessary for reading the
3028 		 * MOS in the label, return failure.
3029 		 */
3030 		if (label == NULL) {
3031 			spa_load_failed(spa, "label config unavailable");
3032 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3033 			    ENXIO));
3034 		}
3035 
3036 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3037 		    &features) != 0) {
3038 			nvlist_free(label);
3039 			spa_load_failed(spa, "invalid label: '%s' missing",
3040 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3041 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3042 			    ENXIO));
3043 		}
3044 
3045 		/*
3046 		 * Update our in-core representation with the definitive values
3047 		 * from the label.
3048 		 */
3049 		nvlist_free(spa->spa_label_features);
3050 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3051 	}
3052 
3053 	nvlist_free(label);
3054 
3055 	/*
3056 	 * Look through entries in the label nvlist's features_for_read. If
3057 	 * there is a feature listed there which we don't understand then we
3058 	 * cannot open a pool.
3059 	 */
3060 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3061 		nvlist_t *unsup_feat;
3062 
3063 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3064 		    0);
3065 
3066 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3067 		    NULL); nvp != NULL;
3068 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3069 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3070 				VERIFY(nvlist_add_string(unsup_feat,
3071 				    nvpair_name(nvp), "") == 0);
3072 			}
3073 		}
3074 
3075 		if (!nvlist_empty(unsup_feat)) {
3076 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3077 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3078 			nvlist_free(unsup_feat);
3079 			spa_load_failed(spa, "some features are unsupported");
3080 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3081 			    ENOTSUP));
3082 		}
3083 
3084 		nvlist_free(unsup_feat);
3085 	}
3086 
3087 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3088 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3089 		spa_try_repair(spa, spa->spa_config);
3090 		spa_config_exit(spa, SCL_ALL, FTAG);
3091 		nvlist_free(spa->spa_config_splitting);
3092 		spa->spa_config_splitting = NULL;
3093 	}
3094 
3095 	/*
3096 	 * Initialize internal SPA structures.
3097 	 */
3098 	spa_ld_select_uberblock_done(spa, ub);
3099 
3100 	return (0);
3101 }
3102 
3103 static int
3104 spa_ld_open_rootbp(spa_t *spa)
3105 {
3106 	int error = 0;
3107 	vdev_t *rvd = spa->spa_root_vdev;
3108 
3109 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3110 	if (error != 0) {
3111 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3112 		    "[error=%d]", error);
3113 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3114 	}
3115 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3116 
3117 	return (0);
3118 }
3119 
3120 static int
3121 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3122     boolean_t reloading)
3123 {
3124 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3125 	nvlist_t *nv, *mos_config, *policy;
3126 	int error = 0, copy_error;
3127 	uint64_t healthy_tvds, healthy_tvds_mos;
3128 	uint64_t mos_config_txg;
3129 
3130 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3131 	    != 0)
3132 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3133 
3134 	/*
3135 	 * If we're assembling a pool from a split, the config provided is
3136 	 * already trusted so there is nothing to do.
3137 	 */
3138 	if (type == SPA_IMPORT_ASSEMBLE)
3139 		return (0);
3140 
3141 	healthy_tvds = spa_healthy_core_tvds(spa);
3142 
3143 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3144 	    != 0) {
3145 		spa_load_failed(spa, "unable to retrieve MOS config");
3146 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3147 	}
3148 
3149 	/*
3150 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3151 	 * the verification here.
3152 	 */
3153 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3154 		error = spa_verify_host(spa, mos_config);
3155 		if (error != 0) {
3156 			nvlist_free(mos_config);
3157 			return (error);
3158 		}
3159 	}
3160 
3161 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3162 
3163 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3164 
3165 	/*
3166 	 * Build a new vdev tree from the trusted config
3167 	 */
3168 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3169 
3170 	/*
3171 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3172 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3173 	 * paths. We update the trusted MOS config with this information.
3174 	 * We first try to copy the paths with vdev_copy_path_strict, which
3175 	 * succeeds only when both configs have exactly the same vdev tree.
3176 	 * If that fails, we fall back to a more flexible method that has a
3177 	 * best effort policy.
3178 	 */
3179 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3180 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3181 		spa_load_note(spa, "provided vdev tree:");
3182 		vdev_dbgmsg_print_tree(rvd, 2);
3183 		spa_load_note(spa, "MOS vdev tree:");
3184 		vdev_dbgmsg_print_tree(mrvd, 2);
3185 	}
3186 	if (copy_error != 0) {
3187 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3188 		    "back to vdev_copy_path_relaxed");
3189 		vdev_copy_path_relaxed(rvd, mrvd);
3190 	}
3191 
3192 	vdev_close(rvd);
3193 	vdev_free(rvd);
3194 	spa->spa_root_vdev = mrvd;
3195 	rvd = mrvd;
3196 	spa_config_exit(spa, SCL_ALL, FTAG);
3197 
3198 	/*
3199 	 * We will use spa_config if we decide to reload the spa or if spa_load
3200 	 * fails and we rewind. We must thus regenerate the config using the
3201 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3202 	 * pass settings on how to load the pool and is not stored in the MOS.
3203 	 * We copy it over to our new, trusted config.
3204 	 */
3205 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3206 	    ZPOOL_CONFIG_POOL_TXG);
3207 	nvlist_free(mos_config);
3208 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3209 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3210 	    &policy) == 0)
3211 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3212 	spa_config_set(spa, mos_config);
3213 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3214 
3215 	/*
3216 	 * Now that we got the config from the MOS, we should be more strict
3217 	 * in checking blkptrs and can make assumptions about the consistency
3218 	 * of the vdev tree. spa_trust_config must be set to true before opening
3219 	 * vdevs in order for them to be writeable.
3220 	 */
3221 	spa->spa_trust_config = B_TRUE;
3222 
3223 	/*
3224 	 * Open and validate the new vdev tree
3225 	 */
3226 	error = spa_ld_open_vdevs(spa);
3227 	if (error != 0)
3228 		return (error);
3229 
3230 	error = spa_ld_validate_vdevs(spa);
3231 	if (error != 0)
3232 		return (error);
3233 
3234 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3235 		spa_load_note(spa, "final vdev tree:");
3236 		vdev_dbgmsg_print_tree(rvd, 2);
3237 	}
3238 
3239 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3240 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3241 		/*
3242 		 * Sanity check to make sure that we are indeed loading the
3243 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3244 		 * in the config provided and they happened to be the only ones
3245 		 * to have the latest uberblock, we could involuntarily perform
3246 		 * an extreme rewind.
3247 		 */
3248 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3249 		if (healthy_tvds_mos - healthy_tvds >=
3250 		    SPA_SYNC_MIN_VDEVS) {
3251 			spa_load_note(spa, "config provided misses too many "
3252 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3253 			    (u_longlong_t)healthy_tvds,
3254 			    (u_longlong_t)healthy_tvds_mos);
3255 			spa_load_note(spa, "vdev tree:");
3256 			vdev_dbgmsg_print_tree(rvd, 2);
3257 			if (reloading) {
3258 				spa_load_failed(spa, "config was already "
3259 				    "provided from MOS. Aborting.");
3260 				return (spa_vdev_err(rvd,
3261 				    VDEV_AUX_CORRUPT_DATA, EIO));
3262 			}
3263 			spa_load_note(spa, "spa must be reloaded using MOS "
3264 			    "config");
3265 			return (SET_ERROR(EAGAIN));
3266 		}
3267 	}
3268 
3269 	error = spa_check_for_missing_logs(spa);
3270 	if (error != 0)
3271 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3272 
3273 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3274 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3275 		    "guid sum (%llu != %llu)",
3276 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3277 		    (u_longlong_t)rvd->vdev_guid_sum);
3278 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3279 		    ENXIO));
3280 	}
3281 
3282 	return (0);
3283 }
3284 
3285 static int
3286 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3287 {
3288 	int error = 0;
3289 	vdev_t *rvd = spa->spa_root_vdev;
3290 
3291 	/*
3292 	 * Everything that we read before spa_remove_init() must be stored
3293 	 * on concreted vdevs.  Therefore we do this as early as possible.
3294 	 */
3295 	error = spa_remove_init(spa);
3296 	if (error != 0) {
3297 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3298 		    error);
3299 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3300 	}
3301 
3302 	/*
3303 	 * Retrieve information needed to condense indirect vdev mappings.
3304 	 */
3305 	error = spa_condense_init(spa);
3306 	if (error != 0) {
3307 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3308 		    error);
3309 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3310 	}
3311 
3312 	return (0);
3313 }
3314 
3315 static int
3316 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3317 {
3318 	int error = 0;
3319 	vdev_t *rvd = spa->spa_root_vdev;
3320 
3321 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3322 		boolean_t missing_feat_read = B_FALSE;
3323 		nvlist_t *unsup_feat, *enabled_feat;
3324 
3325 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3326 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3327 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3328 		}
3329 
3330 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3331 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3332 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3333 		}
3334 
3335 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3336 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3337 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3338 		}
3339 
3340 		enabled_feat = fnvlist_alloc();
3341 		unsup_feat = fnvlist_alloc();
3342 
3343 		if (!spa_features_check(spa, B_FALSE,
3344 		    unsup_feat, enabled_feat))
3345 			missing_feat_read = B_TRUE;
3346 
3347 		if (spa_writeable(spa) ||
3348 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3349 			if (!spa_features_check(spa, B_TRUE,
3350 			    unsup_feat, enabled_feat)) {
3351 				*missing_feat_writep = B_TRUE;
3352 			}
3353 		}
3354 
3355 		fnvlist_add_nvlist(spa->spa_load_info,
3356 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3357 
3358 		if (!nvlist_empty(unsup_feat)) {
3359 			fnvlist_add_nvlist(spa->spa_load_info,
3360 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3361 		}
3362 
3363 		fnvlist_free(enabled_feat);
3364 		fnvlist_free(unsup_feat);
3365 
3366 		if (!missing_feat_read) {
3367 			fnvlist_add_boolean(spa->spa_load_info,
3368 			    ZPOOL_CONFIG_CAN_RDONLY);
3369 		}
3370 
3371 		/*
3372 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3373 		 * twofold: to determine whether the pool is available for
3374 		 * import in read-write mode and (if it is not) whether the
3375 		 * pool is available for import in read-only mode. If the pool
3376 		 * is available for import in read-write mode, it is displayed
3377 		 * as available in userland; if it is not available for import
3378 		 * in read-only mode, it is displayed as unavailable in
3379 		 * userland. If the pool is available for import in read-only
3380 		 * mode but not read-write mode, it is displayed as unavailable
3381 		 * in userland with a special note that the pool is actually
3382 		 * available for open in read-only mode.
3383 		 *
3384 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3385 		 * missing a feature for write, we must first determine whether
3386 		 * the pool can be opened read-only before returning to
3387 		 * userland in order to know whether to display the
3388 		 * abovementioned note.
3389 		 */
3390 		if (missing_feat_read || (*missing_feat_writep &&
3391 		    spa_writeable(spa))) {
3392 			spa_load_failed(spa, "pool uses unsupported features");
3393 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3394 			    ENOTSUP));
3395 		}
3396 
3397 		/*
3398 		 * Load refcounts for ZFS features from disk into an in-memory
3399 		 * cache during SPA initialization.
3400 		 */
3401 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3402 			uint64_t refcount;
3403 
3404 			error = feature_get_refcount_from_disk(spa,
3405 			    &spa_feature_table[i], &refcount);
3406 			if (error == 0) {
3407 				spa->spa_feat_refcount_cache[i] = refcount;
3408 			} else if (error == ENOTSUP) {
3409 				spa->spa_feat_refcount_cache[i] =
3410 				    SPA_FEATURE_DISABLED;
3411 			} else {
3412 				spa_load_failed(spa, "error getting refcount "
3413 				    "for feature %s [error=%d]",
3414 				    spa_feature_table[i].fi_guid, error);
3415 				return (spa_vdev_err(rvd,
3416 				    VDEV_AUX_CORRUPT_DATA, EIO));
3417 			}
3418 		}
3419 	}
3420 
3421 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3422 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3423 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3424 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3425 	}
3426 
3427 	/*
3428 	 * Encryption was added before bookmark_v2, even though bookmark_v2
3429 	 * is now a dependency. If this pool has encryption enabled without
3430 	 * bookmark_v2, trigger an errata message.
3431 	 */
3432 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3433 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3434 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3435 	}
3436 
3437 	return (0);
3438 }
3439 
3440 static int
3441 spa_ld_load_special_directories(spa_t *spa)
3442 {
3443 	int error = 0;
3444 	vdev_t *rvd = spa->spa_root_vdev;
3445 
3446 	spa->spa_is_initializing = B_TRUE;
3447 	error = dsl_pool_open(spa->spa_dsl_pool);
3448 	spa->spa_is_initializing = B_FALSE;
3449 	if (error != 0) {
3450 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3451 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3452 	}
3453 
3454 	return (0);
3455 }
3456 
3457 static int
3458 spa_ld_get_props(spa_t *spa)
3459 {
3460 	int error = 0;
3461 	uint64_t obj;
3462 	vdev_t *rvd = spa->spa_root_vdev;
3463 
3464 	/* Grab the secret checksum salt from the MOS. */
3465 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3466 	    DMU_POOL_CHECKSUM_SALT, 1,
3467 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3468 	    spa->spa_cksum_salt.zcs_bytes);
3469 	if (error == ENOENT) {
3470 		/* Generate a new salt for subsequent use */
3471 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3472 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3473 	} else if (error != 0) {
3474 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3475 		    "MOS [error=%d]", error);
3476 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3477 	}
3478 
3479 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3480 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3481 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3482 	if (error != 0) {
3483 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3484 		    "[error=%d]", error);
3485 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3486 	}
3487 
3488 	/*
3489 	 * Load the bit that tells us to use the new accounting function
3490 	 * (raid-z deflation).  If we have an older pool, this will not
3491 	 * be present.
3492 	 */
3493 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3494 	if (error != 0 && error != ENOENT)
3495 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3496 
3497 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3498 	    &spa->spa_creation_version, B_FALSE);
3499 	if (error != 0 && error != ENOENT)
3500 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3501 
3502 	/*
3503 	 * Load the persistent error log.  If we have an older pool, this will
3504 	 * not be present.
3505 	 */
3506 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3507 	    B_FALSE);
3508 	if (error != 0 && error != ENOENT)
3509 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3510 
3511 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3512 	    &spa->spa_errlog_scrub, B_FALSE);
3513 	if (error != 0 && error != ENOENT)
3514 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3515 
3516 	/*
3517 	 * Load the history object.  If we have an older pool, this
3518 	 * will not be present.
3519 	 */
3520 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3521 	if (error != 0 && error != ENOENT)
3522 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3523 
3524 	/*
3525 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3526 	 * be present; in this case, defer its creation to a later time to
3527 	 * avoid dirtying the MOS this early / out of sync context. See
3528 	 * spa_sync_config_object.
3529 	 */
3530 
3531 	/* The sentinel is only available in the MOS config. */
3532 	nvlist_t *mos_config;
3533 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3534 		spa_load_failed(spa, "unable to retrieve MOS config");
3535 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3536 	}
3537 
3538 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3539 	    &spa->spa_all_vdev_zaps, B_FALSE);
3540 
3541 	if (error == ENOENT) {
3542 		VERIFY(!nvlist_exists(mos_config,
3543 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3544 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3545 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3546 	} else if (error != 0) {
3547 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3548 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3549 		/*
3550 		 * An older version of ZFS overwrote the sentinel value, so
3551 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3552 		 * destruction to later; see spa_sync_config_object.
3553 		 */
3554 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3555 		/*
3556 		 * We're assuming that no vdevs have had their ZAPs created
3557 		 * before this. Better be sure of it.
3558 		 */
3559 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3560 	}
3561 	nvlist_free(mos_config);
3562 
3563 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3564 
3565 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3566 	    B_FALSE);
3567 	if (error && error != ENOENT)
3568 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3569 
3570 	if (error == 0) {
3571 		uint64_t autoreplace;
3572 
3573 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3574 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3575 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3576 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3577 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3578 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3579 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3580 		    &spa->spa_dedup_ditto);
3581 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
3582 		spa->spa_autoreplace = (autoreplace != 0);
3583 	}
3584 
3585 	/*
3586 	 * If we are importing a pool with missing top-level vdevs,
3587 	 * we enforce that the pool doesn't panic or get suspended on
3588 	 * error since the likelihood of missing data is extremely high.
3589 	 */
3590 	if (spa->spa_missing_tvds > 0 &&
3591 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3592 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3593 		spa_load_note(spa, "forcing failmode to 'continue' "
3594 		    "as some top level vdevs are missing");
3595 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3596 	}
3597 
3598 	return (0);
3599 }
3600 
3601 static int
3602 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3603 {
3604 	int error = 0;
3605 	vdev_t *rvd = spa->spa_root_vdev;
3606 
3607 	/*
3608 	 * If we're assembling the pool from the split-off vdevs of
3609 	 * an existing pool, we don't want to attach the spares & cache
3610 	 * devices.
3611 	 */
3612 
3613 	/*
3614 	 * Load any hot spares for this pool.
3615 	 */
3616 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3617 	    B_FALSE);
3618 	if (error != 0 && error != ENOENT)
3619 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3620 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3621 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3622 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3623 		    &spa->spa_spares.sav_config) != 0) {
3624 			spa_load_failed(spa, "error loading spares nvlist");
3625 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3626 		}
3627 
3628 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3629 		spa_load_spares(spa);
3630 		spa_config_exit(spa, SCL_ALL, FTAG);
3631 	} else if (error == 0) {
3632 		spa->spa_spares.sav_sync = B_TRUE;
3633 	}
3634 
3635 	/*
3636 	 * Load any level 2 ARC devices for this pool.
3637 	 */
3638 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3639 	    &spa->spa_l2cache.sav_object, B_FALSE);
3640 	if (error != 0 && error != ENOENT)
3641 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3642 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3643 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3644 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3645 		    &spa->spa_l2cache.sav_config) != 0) {
3646 			spa_load_failed(spa, "error loading l2cache nvlist");
3647 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3648 		}
3649 
3650 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3651 		spa_load_l2cache(spa);
3652 		spa_config_exit(spa, SCL_ALL, FTAG);
3653 	} else if (error == 0) {
3654 		spa->spa_l2cache.sav_sync = B_TRUE;
3655 	}
3656 
3657 	return (0);
3658 }
3659 
3660 static int
3661 spa_ld_load_vdev_metadata(spa_t *spa)
3662 {
3663 	int error = 0;
3664 	vdev_t *rvd = spa->spa_root_vdev;
3665 
3666 	/*
3667 	 * If the 'multihost' property is set, then never allow a pool to
3668 	 * be imported when the system hostid is zero.  The exception to
3669 	 * this rule is zdb which is always allowed to access pools.
3670 	 */
3671 	if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3672 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3673 		fnvlist_add_uint64(spa->spa_load_info,
3674 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3675 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3676 	}
3677 
3678 	/*
3679 	 * If the 'autoreplace' property is set, then post a resource notifying
3680 	 * the ZFS DE that it should not issue any faults for unopenable
3681 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3682 	 * unopenable vdevs so that the normal autoreplace handler can take
3683 	 * over.
3684 	 */
3685 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3686 		spa_check_removed(spa->spa_root_vdev);
3687 		/*
3688 		 * For the import case, this is done in spa_import(), because
3689 		 * at this point we're using the spare definitions from
3690 		 * the MOS config, not necessarily from the userland config.
3691 		 */
3692 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3693 			spa_aux_check_removed(&spa->spa_spares);
3694 			spa_aux_check_removed(&spa->spa_l2cache);
3695 		}
3696 	}
3697 
3698 	/*
3699 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3700 	 */
3701 	error = vdev_load(rvd);
3702 	if (error != 0) {
3703 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3704 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3705 	}
3706 
3707 	error = spa_ld_log_spacemaps(spa);
3708 	if (error != 0) {
3709 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
3710 		    error);
3711 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3712 	}
3713 
3714 	/*
3715 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3716 	 */
3717 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3718 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3719 	spa_config_exit(spa, SCL_ALL, FTAG);
3720 
3721 	return (0);
3722 }
3723 
3724 static int
3725 spa_ld_load_dedup_tables(spa_t *spa)
3726 {
3727 	int error = 0;
3728 	vdev_t *rvd = spa->spa_root_vdev;
3729 
3730 	error = ddt_load(spa);
3731 	if (error != 0) {
3732 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3733 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3734 	}
3735 
3736 	return (0);
3737 }
3738 
3739 static int
3740 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3741 {
3742 	vdev_t *rvd = spa->spa_root_vdev;
3743 
3744 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3745 		boolean_t missing = spa_check_logs(spa);
3746 		if (missing) {
3747 			if (spa->spa_missing_tvds != 0) {
3748 				spa_load_note(spa, "spa_check_logs failed "
3749 				    "so dropping the logs");
3750 			} else {
3751 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3752 				spa_load_failed(spa, "spa_check_logs failed");
3753 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3754 				    ENXIO));
3755 			}
3756 		}
3757 	}
3758 
3759 	return (0);
3760 }
3761 
3762 static int
3763 spa_ld_verify_pool_data(spa_t *spa)
3764 {
3765 	int error = 0;
3766 	vdev_t *rvd = spa->spa_root_vdev;
3767 
3768 	/*
3769 	 * We've successfully opened the pool, verify that we're ready
3770 	 * to start pushing transactions.
3771 	 */
3772 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3773 		error = spa_load_verify(spa);
3774 		if (error != 0) {
3775 			spa_load_failed(spa, "spa_load_verify failed "
3776 			    "[error=%d]", error);
3777 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3778 			    error));
3779 		}
3780 	}
3781 
3782 	return (0);
3783 }
3784 
3785 static void
3786 spa_ld_claim_log_blocks(spa_t *spa)
3787 {
3788 	dmu_tx_t *tx;
3789 	dsl_pool_t *dp = spa_get_dsl(spa);
3790 
3791 	/*
3792 	 * Claim log blocks that haven't been committed yet.
3793 	 * This must all happen in a single txg.
3794 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3795 	 * invoked from zil_claim_log_block()'s i/o done callback.
3796 	 * Price of rollback is that we abandon the log.
3797 	 */
3798 	spa->spa_claiming = B_TRUE;
3799 
3800 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3801 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3802 	    zil_claim, tx, DS_FIND_CHILDREN);
3803 	dmu_tx_commit(tx);
3804 
3805 	spa->spa_claiming = B_FALSE;
3806 
3807 	spa_set_log_state(spa, SPA_LOG_GOOD);
3808 }
3809 
3810 static void
3811 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3812     boolean_t update_config_cache)
3813 {
3814 	vdev_t *rvd = spa->spa_root_vdev;
3815 	int need_update = B_FALSE;
3816 
3817 	/*
3818 	 * If the config cache is stale, or we have uninitialized
3819 	 * metaslabs (see spa_vdev_add()), then update the config.
3820 	 *
3821 	 * If this is a verbatim import, trust the current
3822 	 * in-core spa_config and update the disk labels.
3823 	 */
3824 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3825 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3826 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3827 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3828 		need_update = B_TRUE;
3829 
3830 	for (int c = 0; c < rvd->vdev_children; c++)
3831 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3832 			need_update = B_TRUE;
3833 
3834 	/*
3835 	 * Update the config cache asychronously in case we're the
3836 	 * root pool, in which case the config cache isn't writable yet.
3837 	 */
3838 	if (need_update)
3839 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3840 }
3841 
3842 static void
3843 spa_ld_prepare_for_reload(spa_t *spa)
3844 {
3845 	int mode = spa->spa_mode;
3846 	int async_suspended = spa->spa_async_suspended;
3847 
3848 	spa_unload(spa);
3849 	spa_deactivate(spa);
3850 	spa_activate(spa, mode);
3851 
3852 	/*
3853 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3854 	 * spa_unload(). We want to restore it back to the original value before
3855 	 * returning as we might be calling spa_async_resume() later.
3856 	 */
3857 	spa->spa_async_suspended = async_suspended;
3858 }
3859 
3860 static int
3861 spa_ld_read_checkpoint_txg(spa_t *spa)
3862 {
3863 	uberblock_t checkpoint;
3864 	int error = 0;
3865 
3866 	ASSERT0(spa->spa_checkpoint_txg);
3867 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3868 
3869 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3870 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3871 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3872 
3873 	if (error == ENOENT)
3874 		return (0);
3875 
3876 	if (error != 0)
3877 		return (error);
3878 
3879 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3880 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3881 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3882 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3883 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3884 
3885 	return (0);
3886 }
3887 
3888 static int
3889 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3890 {
3891 	int error = 0;
3892 
3893 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3894 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3895 
3896 	/*
3897 	 * Never trust the config that is provided unless we are assembling
3898 	 * a pool following a split.
3899 	 * This means don't trust blkptrs and the vdev tree in general. This
3900 	 * also effectively puts the spa in read-only mode since
3901 	 * spa_writeable() checks for spa_trust_config to be true.
3902 	 * We will later load a trusted config from the MOS.
3903 	 */
3904 	if (type != SPA_IMPORT_ASSEMBLE)
3905 		spa->spa_trust_config = B_FALSE;
3906 
3907 	/*
3908 	 * Parse the config provided to create a vdev tree.
3909 	 */
3910 	error = spa_ld_parse_config(spa, type);
3911 	if (error != 0)
3912 		return (error);
3913 
3914 	/*
3915 	 * Now that we have the vdev tree, try to open each vdev. This involves
3916 	 * opening the underlying physical device, retrieving its geometry and
3917 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3918 	 * based on the success of those operations. After this we'll be ready
3919 	 * to read from the vdevs.
3920 	 */
3921 	error = spa_ld_open_vdevs(spa);
3922 	if (error != 0)
3923 		return (error);
3924 
3925 	/*
3926 	 * Read the label of each vdev and make sure that the GUIDs stored
3927 	 * there match the GUIDs in the config provided.
3928 	 * If we're assembling a new pool that's been split off from an
3929 	 * existing pool, the labels haven't yet been updated so we skip
3930 	 * validation for now.
3931 	 */
3932 	if (type != SPA_IMPORT_ASSEMBLE) {
3933 		error = spa_ld_validate_vdevs(spa);
3934 		if (error != 0)
3935 			return (error);
3936 	}
3937 
3938 	/*
3939 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3940 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3941 	 * get the list of features required to read blkptrs in the MOS from
3942 	 * the vdev label with the best uberblock and verify that our version
3943 	 * of zfs supports them all.
3944 	 */
3945 	error = spa_ld_select_uberblock(spa, type);
3946 	if (error != 0)
3947 		return (error);
3948 
3949 	/*
3950 	 * Pass that uberblock to the dsl_pool layer which will open the root
3951 	 * blkptr. This blkptr points to the latest version of the MOS and will
3952 	 * allow us to read its contents.
3953 	 */
3954 	error = spa_ld_open_rootbp(spa);
3955 	if (error != 0)
3956 		return (error);
3957 
3958 	return (0);
3959 }
3960 
3961 static int
3962 spa_ld_checkpoint_rewind(spa_t *spa)
3963 {
3964 	uberblock_t checkpoint;
3965 	int error = 0;
3966 
3967 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3968 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3969 
3970 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3971 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3972 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3973 
3974 	if (error != 0) {
3975 		spa_load_failed(spa, "unable to retrieve checkpointed "
3976 		    "uberblock from the MOS config [error=%d]", error);
3977 
3978 		if (error == ENOENT)
3979 			error = ZFS_ERR_NO_CHECKPOINT;
3980 
3981 		return (error);
3982 	}
3983 
3984 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3985 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3986 
3987 	/*
3988 	 * We need to update the txg and timestamp of the checkpointed
3989 	 * uberblock to be higher than the latest one. This ensures that
3990 	 * the checkpointed uberblock is selected if we were to close and
3991 	 * reopen the pool right after we've written it in the vdev labels.
3992 	 * (also see block comment in vdev_uberblock_compare)
3993 	 */
3994 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3995 	checkpoint.ub_timestamp = gethrestime_sec();
3996 
3997 	/*
3998 	 * Set current uberblock to be the checkpointed uberblock.
3999 	 */
4000 	spa->spa_uberblock = checkpoint;
4001 
4002 	/*
4003 	 * If we are doing a normal rewind, then the pool is open for
4004 	 * writing and we sync the "updated" checkpointed uberblock to
4005 	 * disk. Once this is done, we've basically rewound the whole
4006 	 * pool and there is no way back.
4007 	 *
4008 	 * There are cases when we don't want to attempt and sync the
4009 	 * checkpointed uberblock to disk because we are opening a
4010 	 * pool as read-only. Specifically, verifying the checkpointed
4011 	 * state with zdb, and importing the checkpointed state to get
4012 	 * a "preview" of its content.
4013 	 */
4014 	if (spa_writeable(spa)) {
4015 		vdev_t *rvd = spa->spa_root_vdev;
4016 
4017 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4018 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4019 		int svdcount = 0;
4020 		int children = rvd->vdev_children;
4021 		int c0 = spa_get_random(children);
4022 
4023 		for (int c = 0; c < children; c++) {
4024 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4025 
4026 			/* Stop when revisiting the first vdev */
4027 			if (c > 0 && svd[0] == vd)
4028 				break;
4029 
4030 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4031 			    !vdev_is_concrete(vd))
4032 				continue;
4033 
4034 			svd[svdcount++] = vd;
4035 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4036 				break;
4037 		}
4038 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4039 		if (error == 0)
4040 			spa->spa_last_synced_guid = rvd->vdev_guid;
4041 		spa_config_exit(spa, SCL_ALL, FTAG);
4042 
4043 		if (error != 0) {
4044 			spa_load_failed(spa, "failed to write checkpointed "
4045 			    "uberblock to the vdev labels [error=%d]", error);
4046 			return (error);
4047 		}
4048 	}
4049 
4050 	return (0);
4051 }
4052 
4053 static int
4054 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4055     boolean_t *update_config_cache)
4056 {
4057 	int error;
4058 
4059 	/*
4060 	 * Parse the config for pool, open and validate vdevs,
4061 	 * select an uberblock, and use that uberblock to open
4062 	 * the MOS.
4063 	 */
4064 	error = spa_ld_mos_init(spa, type);
4065 	if (error != 0)
4066 		return (error);
4067 
4068 	/*
4069 	 * Retrieve the trusted config stored in the MOS and use it to create
4070 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4071 	 */
4072 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4073 	if (error == EAGAIN) {
4074 		if (update_config_cache != NULL)
4075 			*update_config_cache = B_TRUE;
4076 
4077 		/*
4078 		 * Redo the loading process with the trusted config if it is
4079 		 * too different from the untrusted config.
4080 		 */
4081 		spa_ld_prepare_for_reload(spa);
4082 		spa_load_note(spa, "RELOADING");
4083 		error = spa_ld_mos_init(spa, type);
4084 		if (error != 0)
4085 			return (error);
4086 
4087 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4088 		if (error != 0)
4089 			return (error);
4090 
4091 	} else if (error != 0) {
4092 		return (error);
4093 	}
4094 
4095 	return (0);
4096 }
4097 
4098 /*
4099  * Load an existing storage pool, using the config provided. This config
4100  * describes which vdevs are part of the pool and is later validated against
4101  * partial configs present in each vdev's label and an entire copy of the
4102  * config stored in the MOS.
4103  */
4104 static int
4105 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4106 {
4107 	int error = 0;
4108 	boolean_t missing_feat_write = B_FALSE;
4109 	boolean_t checkpoint_rewind =
4110 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4111 	boolean_t update_config_cache = B_FALSE;
4112 
4113 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4114 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4115 
4116 	spa_load_note(spa, "LOADING");
4117 
4118 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4119 	if (error != 0)
4120 		return (error);
4121 
4122 	/*
4123 	 * If we are rewinding to the checkpoint then we need to repeat
4124 	 * everything we've done so far in this function but this time
4125 	 * selecting the checkpointed uberblock and using that to open
4126 	 * the MOS.
4127 	 */
4128 	if (checkpoint_rewind) {
4129 		/*
4130 		 * If we are rewinding to the checkpoint update config cache
4131 		 * anyway.
4132 		 */
4133 		update_config_cache = B_TRUE;
4134 
4135 		/*
4136 		 * Extract the checkpointed uberblock from the current MOS
4137 		 * and use this as the pool's uberblock from now on. If the
4138 		 * pool is imported as writeable we also write the checkpoint
4139 		 * uberblock to the labels, making the rewind permanent.
4140 		 */
4141 		error = spa_ld_checkpoint_rewind(spa);
4142 		if (error != 0)
4143 			return (error);
4144 
4145 		/*
4146 		 * Redo the loading process process again with the
4147 		 * checkpointed uberblock.
4148 		 */
4149 		spa_ld_prepare_for_reload(spa);
4150 		spa_load_note(spa, "LOADING checkpointed uberblock");
4151 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4152 		if (error != 0)
4153 			return (error);
4154 	}
4155 
4156 	/*
4157 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4158 	 */
4159 	error = spa_ld_read_checkpoint_txg(spa);
4160 	if (error != 0)
4161 		return (error);
4162 
4163 	/*
4164 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4165 	 * from the pool and their contents were re-mapped to other vdevs. Note
4166 	 * that everything that we read before this step must have been
4167 	 * rewritten on concrete vdevs after the last device removal was
4168 	 * initiated. Otherwise we could be reading from indirect vdevs before
4169 	 * we have loaded their mappings.
4170 	 */
4171 	error = spa_ld_open_indirect_vdev_metadata(spa);
4172 	if (error != 0)
4173 		return (error);
4174 
4175 	/*
4176 	 * Retrieve the full list of active features from the MOS and check if
4177 	 * they are all supported.
4178 	 */
4179 	error = spa_ld_check_features(spa, &missing_feat_write);
4180 	if (error != 0)
4181 		return (error);
4182 
4183 	/*
4184 	 * Load several special directories from the MOS needed by the dsl_pool
4185 	 * layer.
4186 	 */
4187 	error = spa_ld_load_special_directories(spa);
4188 	if (error != 0)
4189 		return (error);
4190 
4191 	/*
4192 	 * Retrieve pool properties from the MOS.
4193 	 */
4194 	error = spa_ld_get_props(spa);
4195 	if (error != 0)
4196 		return (error);
4197 
4198 	/*
4199 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4200 	 * and open them.
4201 	 */
4202 	error = spa_ld_open_aux_vdevs(spa, type);
4203 	if (error != 0)
4204 		return (error);
4205 
4206 	/*
4207 	 * Load the metadata for all vdevs. Also check if unopenable devices
4208 	 * should be autoreplaced.
4209 	 */
4210 	error = spa_ld_load_vdev_metadata(spa);
4211 	if (error != 0)
4212 		return (error);
4213 
4214 	error = spa_ld_load_dedup_tables(spa);
4215 	if (error != 0)
4216 		return (error);
4217 
4218 	/*
4219 	 * Verify the logs now to make sure we don't have any unexpected errors
4220 	 * when we claim log blocks later.
4221 	 */
4222 	error = spa_ld_verify_logs(spa, type, ereport);
4223 	if (error != 0)
4224 		return (error);
4225 
4226 	if (missing_feat_write) {
4227 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4228 
4229 		/*
4230 		 * At this point, we know that we can open the pool in
4231 		 * read-only mode but not read-write mode. We now have enough
4232 		 * information and can return to userland.
4233 		 */
4234 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4235 		    ENOTSUP));
4236 	}
4237 
4238 	/*
4239 	 * Traverse the last txgs to make sure the pool was left off in a safe
4240 	 * state. When performing an extreme rewind, we verify the whole pool,
4241 	 * which can take a very long time.
4242 	 */
4243 	error = spa_ld_verify_pool_data(spa);
4244 	if (error != 0)
4245 		return (error);
4246 
4247 	/*
4248 	 * Calculate the deflated space for the pool. This must be done before
4249 	 * we write anything to the pool because we'd need to update the space
4250 	 * accounting using the deflated sizes.
4251 	 */
4252 	spa_update_dspace(spa);
4253 
4254 	/*
4255 	 * We have now retrieved all the information we needed to open the
4256 	 * pool. If we are importing the pool in read-write mode, a few
4257 	 * additional steps must be performed to finish the import.
4258 	 */
4259 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4260 	    spa->spa_load_max_txg == UINT64_MAX)) {
4261 		uint64_t config_cache_txg = spa->spa_config_txg;
4262 
4263 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4264 
4265 		/*
4266 		 * In case of a checkpoint rewind, log the original txg
4267 		 * of the checkpointed uberblock.
4268 		 */
4269 		if (checkpoint_rewind) {
4270 			spa_history_log_internal(spa, "checkpoint rewind",
4271 			    NULL, "rewound state to txg=%llu",
4272 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4273 		}
4274 
4275 		/*
4276 		 * Traverse the ZIL and claim all blocks.
4277 		 */
4278 		spa_ld_claim_log_blocks(spa);
4279 
4280 		/*
4281 		 * Kick-off the syncing thread.
4282 		 */
4283 		spa->spa_sync_on = B_TRUE;
4284 		txg_sync_start(spa->spa_dsl_pool);
4285 		mmp_thread_start(spa);
4286 
4287 		/*
4288 		 * Wait for all claims to sync.  We sync up to the highest
4289 		 * claimed log block birth time so that claimed log blocks
4290 		 * don't appear to be from the future.  spa_claim_max_txg
4291 		 * will have been set for us by ZIL traversal operations
4292 		 * performed above.
4293 		 */
4294 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4295 
4296 		/*
4297 		 * Check if we need to request an update of the config. On the
4298 		 * next sync, we would update the config stored in vdev labels
4299 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4300 		 */
4301 		spa_ld_check_for_config_update(spa, config_cache_txg,
4302 		    update_config_cache);
4303 
4304 		/*
4305 		 * Check all DTLs to see if anything needs resilvering.
4306 		 */
4307 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4308 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4309 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4310 
4311 		/*
4312 		 * Log the fact that we booted up (so that we can detect if
4313 		 * we rebooted in the middle of an operation).
4314 		 */
4315 		spa_history_log_version(spa, "open");
4316 
4317 		spa_restart_removal(spa);
4318 		spa_spawn_aux_threads(spa);
4319 
4320 		/*
4321 		 * Delete any inconsistent datasets.
4322 		 *
4323 		 * Note:
4324 		 * Since we may be issuing deletes for clones here,
4325 		 * we make sure to do so after we've spawned all the
4326 		 * auxiliary threads above (from which the livelist
4327 		 * deletion zthr is part of).
4328 		 */
4329 		(void) dmu_objset_find(spa_name(spa),
4330 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4331 
4332 		/*
4333 		 * Clean up any stale temporary dataset userrefs.
4334 		 */
4335 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4336 
4337 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4338 		vdev_initialize_restart(spa->spa_root_vdev);
4339 		vdev_trim_restart(spa->spa_root_vdev);
4340 		vdev_autotrim_restart(spa);
4341 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4342 	}
4343 
4344 	spa_load_note(spa, "LOADED");
4345 
4346 	return (0);
4347 }
4348 
4349 static int
4350 spa_load_retry(spa_t *spa, spa_load_state_t state)
4351 {
4352 	int mode = spa->spa_mode;
4353 
4354 	spa_unload(spa);
4355 	spa_deactivate(spa);
4356 
4357 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4358 
4359 	spa_activate(spa, mode);
4360 	spa_async_suspend(spa);
4361 
4362 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4363 	    (u_longlong_t)spa->spa_load_max_txg);
4364 
4365 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4366 }
4367 
4368 /*
4369  * If spa_load() fails this function will try loading prior txg's. If
4370  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4371  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4372  * function will not rewind the pool and will return the same error as
4373  * spa_load().
4374  */
4375 static int
4376 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4377     int rewind_flags)
4378 {
4379 	nvlist_t *loadinfo = NULL;
4380 	nvlist_t *config = NULL;
4381 	int load_error, rewind_error;
4382 	uint64_t safe_rewind_txg;
4383 	uint64_t min_txg;
4384 
4385 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4386 		spa->spa_load_max_txg = spa->spa_load_txg;
4387 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4388 	} else {
4389 		spa->spa_load_max_txg = max_request;
4390 		if (max_request != UINT64_MAX)
4391 			spa->spa_extreme_rewind = B_TRUE;
4392 	}
4393 
4394 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4395 	if (load_error == 0)
4396 		return (0);
4397 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4398 		/*
4399 		 * When attempting checkpoint-rewind on a pool with no
4400 		 * checkpoint, we should not attempt to load uberblocks
4401 		 * from previous txgs when spa_load fails.
4402 		 */
4403 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4404 		return (load_error);
4405 	}
4406 
4407 	if (spa->spa_root_vdev != NULL)
4408 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4409 
4410 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4411 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4412 
4413 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4414 		nvlist_free(config);
4415 		return (load_error);
4416 	}
4417 
4418 	if (state == SPA_LOAD_RECOVER) {
4419 		/* Price of rolling back is discarding txgs, including log */
4420 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4421 	} else {
4422 		/*
4423 		 * If we aren't rolling back save the load info from our first
4424 		 * import attempt so that we can restore it after attempting
4425 		 * to rewind.
4426 		 */
4427 		loadinfo = spa->spa_load_info;
4428 		spa->spa_load_info = fnvlist_alloc();
4429 	}
4430 
4431 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4432 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4433 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4434 	    TXG_INITIAL : safe_rewind_txg;
4435 
4436 	/*
4437 	 * Continue as long as we're finding errors, we're still within
4438 	 * the acceptable rewind range, and we're still finding uberblocks
4439 	 */
4440 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4441 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4442 		if (spa->spa_load_max_txg < safe_rewind_txg)
4443 			spa->spa_extreme_rewind = B_TRUE;
4444 		rewind_error = spa_load_retry(spa, state);
4445 	}
4446 
4447 	spa->spa_extreme_rewind = B_FALSE;
4448 	spa->spa_load_max_txg = UINT64_MAX;
4449 
4450 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4451 		spa_config_set(spa, config);
4452 	else
4453 		nvlist_free(config);
4454 
4455 	if (state == SPA_LOAD_RECOVER) {
4456 		ASSERT3P(loadinfo, ==, NULL);
4457 		return (rewind_error);
4458 	} else {
4459 		/* Store the rewind info as part of the initial load info */
4460 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4461 		    spa->spa_load_info);
4462 
4463 		/* Restore the initial load info */
4464 		fnvlist_free(spa->spa_load_info);
4465 		spa->spa_load_info = loadinfo;
4466 
4467 		return (load_error);
4468 	}
4469 }
4470 
4471 /*
4472  * Pool Open/Import
4473  *
4474  * The import case is identical to an open except that the configuration is sent
4475  * down from userland, instead of grabbed from the configuration cache.  For the
4476  * case of an open, the pool configuration will exist in the
4477  * POOL_STATE_UNINITIALIZED state.
4478  *
4479  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4480  * the same time open the pool, without having to keep around the spa_t in some
4481  * ambiguous state.
4482  */
4483 static int
4484 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4485     nvlist_t **config)
4486 {
4487 	spa_t *spa;
4488 	spa_load_state_t state = SPA_LOAD_OPEN;
4489 	int error;
4490 	int locked = B_FALSE;
4491 
4492 	*spapp = NULL;
4493 
4494 	/*
4495 	 * As disgusting as this is, we need to support recursive calls to this
4496 	 * function because dsl_dir_open() is called during spa_load(), and ends
4497 	 * up calling spa_open() again.  The real fix is to figure out how to
4498 	 * avoid dsl_dir_open() calling this in the first place.
4499 	 */
4500 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4501 		mutex_enter(&spa_namespace_lock);
4502 		locked = B_TRUE;
4503 	}
4504 
4505 	if ((spa = spa_lookup(pool)) == NULL) {
4506 		if (locked)
4507 			mutex_exit(&spa_namespace_lock);
4508 		return (SET_ERROR(ENOENT));
4509 	}
4510 
4511 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4512 		zpool_load_policy_t policy;
4513 
4514 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4515 		    &policy);
4516 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4517 			state = SPA_LOAD_RECOVER;
4518 
4519 		spa_activate(spa, spa_mode_global);
4520 
4521 		if (state != SPA_LOAD_RECOVER)
4522 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4523 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4524 
4525 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4526 		error = spa_load_best(spa, state, policy.zlp_txg,
4527 		    policy.zlp_rewind);
4528 
4529 		if (error == EBADF) {
4530 			/*
4531 			 * If vdev_validate() returns failure (indicated by
4532 			 * EBADF), it indicates that one of the vdevs indicates
4533 			 * that the pool has been exported or destroyed.  If
4534 			 * this is the case, the config cache is out of sync and
4535 			 * we should remove the pool from the namespace.
4536 			 */
4537 			spa_unload(spa);
4538 			spa_deactivate(spa);
4539 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4540 			spa_remove(spa);
4541 			if (locked)
4542 				mutex_exit(&spa_namespace_lock);
4543 			return (SET_ERROR(ENOENT));
4544 		}
4545 
4546 		if (error) {
4547 			/*
4548 			 * We can't open the pool, but we still have useful
4549 			 * information: the state of each vdev after the
4550 			 * attempted vdev_open().  Return this to the user.
4551 			 */
4552 			if (config != NULL && spa->spa_config) {
4553 				VERIFY(nvlist_dup(spa->spa_config, config,
4554 				    KM_SLEEP) == 0);
4555 				VERIFY(nvlist_add_nvlist(*config,
4556 				    ZPOOL_CONFIG_LOAD_INFO,
4557 				    spa->spa_load_info) == 0);
4558 			}
4559 			spa_unload(spa);
4560 			spa_deactivate(spa);
4561 			spa->spa_last_open_failed = error;
4562 			if (locked)
4563 				mutex_exit(&spa_namespace_lock);
4564 			*spapp = NULL;
4565 			return (error);
4566 		}
4567 	}
4568 
4569 	spa_open_ref(spa, tag);
4570 
4571 	if (config != NULL)
4572 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4573 
4574 	/*
4575 	 * If we've recovered the pool, pass back any information we
4576 	 * gathered while doing the load.
4577 	 */
4578 	if (state == SPA_LOAD_RECOVER) {
4579 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4580 		    spa->spa_load_info) == 0);
4581 	}
4582 
4583 	if (locked) {
4584 		spa->spa_last_open_failed = 0;
4585 		spa->spa_last_ubsync_txg = 0;
4586 		spa->spa_load_txg = 0;
4587 		mutex_exit(&spa_namespace_lock);
4588 	}
4589 
4590 	*spapp = spa;
4591 
4592 	return (0);
4593 }
4594 
4595 int
4596 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4597     nvlist_t **config)
4598 {
4599 	return (spa_open_common(name, spapp, tag, policy, config));
4600 }
4601 
4602 int
4603 spa_open(const char *name, spa_t **spapp, void *tag)
4604 {
4605 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4606 }
4607 
4608 /*
4609  * Lookup the given spa_t, incrementing the inject count in the process,
4610  * preventing it from being exported or destroyed.
4611  */
4612 spa_t *
4613 spa_inject_addref(char *name)
4614 {
4615 	spa_t *spa;
4616 
4617 	mutex_enter(&spa_namespace_lock);
4618 	if ((spa = spa_lookup(name)) == NULL) {
4619 		mutex_exit(&spa_namespace_lock);
4620 		return (NULL);
4621 	}
4622 	spa->spa_inject_ref++;
4623 	mutex_exit(&spa_namespace_lock);
4624 
4625 	return (spa);
4626 }
4627 
4628 void
4629 spa_inject_delref(spa_t *spa)
4630 {
4631 	mutex_enter(&spa_namespace_lock);
4632 	spa->spa_inject_ref--;
4633 	mutex_exit(&spa_namespace_lock);
4634 }
4635 
4636 /*
4637  * Add spares device information to the nvlist.
4638  */
4639 static void
4640 spa_add_spares(spa_t *spa, nvlist_t *config)
4641 {
4642 	nvlist_t **spares;
4643 	uint_t i, nspares;
4644 	nvlist_t *nvroot;
4645 	uint64_t guid;
4646 	vdev_stat_t *vs;
4647 	uint_t vsc;
4648 	uint64_t pool;
4649 
4650 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4651 
4652 	if (spa->spa_spares.sav_count == 0)
4653 		return;
4654 
4655 	VERIFY(nvlist_lookup_nvlist(config,
4656 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4657 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4658 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4659 	if (nspares != 0) {
4660 		VERIFY(nvlist_add_nvlist_array(nvroot,
4661 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4662 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4663 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4664 
4665 		/*
4666 		 * Go through and find any spares which have since been
4667 		 * repurposed as an active spare.  If this is the case, update
4668 		 * their status appropriately.
4669 		 */
4670 		for (i = 0; i < nspares; i++) {
4671 			VERIFY(nvlist_lookup_uint64(spares[i],
4672 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4673 			if (spa_spare_exists(guid, &pool, NULL) &&
4674 			    pool != 0ULL) {
4675 				VERIFY(nvlist_lookup_uint64_array(
4676 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4677 				    (uint64_t **)&vs, &vsc) == 0);
4678 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4679 				vs->vs_aux = VDEV_AUX_SPARED;
4680 			}
4681 		}
4682 	}
4683 }
4684 
4685 /*
4686  * Add l2cache device information to the nvlist, including vdev stats.
4687  */
4688 static void
4689 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4690 {
4691 	nvlist_t **l2cache;
4692 	uint_t i, j, nl2cache;
4693 	nvlist_t *nvroot;
4694 	uint64_t guid;
4695 	vdev_t *vd;
4696 	vdev_stat_t *vs;
4697 	uint_t vsc;
4698 
4699 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4700 
4701 	if (spa->spa_l2cache.sav_count == 0)
4702 		return;
4703 
4704 	VERIFY(nvlist_lookup_nvlist(config,
4705 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4706 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4707 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4708 	if (nl2cache != 0) {
4709 		VERIFY(nvlist_add_nvlist_array(nvroot,
4710 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4711 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4712 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4713 
4714 		/*
4715 		 * Update level 2 cache device stats.
4716 		 */
4717 
4718 		for (i = 0; i < nl2cache; i++) {
4719 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4720 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4721 
4722 			vd = NULL;
4723 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4724 				if (guid ==
4725 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4726 					vd = spa->spa_l2cache.sav_vdevs[j];
4727 					break;
4728 				}
4729 			}
4730 			ASSERT(vd != NULL);
4731 
4732 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4733 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4734 			    == 0);
4735 			vdev_get_stats(vd, vs);
4736 		}
4737 	}
4738 }
4739 
4740 static void
4741 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4742 {
4743 	nvlist_t *features;
4744 	zap_cursor_t zc;
4745 	zap_attribute_t za;
4746 
4747 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4748 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4749 
4750 	if (spa->spa_feat_for_read_obj != 0) {
4751 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4752 		    spa->spa_feat_for_read_obj);
4753 		    zap_cursor_retrieve(&zc, &za) == 0;
4754 		    zap_cursor_advance(&zc)) {
4755 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4756 			    za.za_num_integers == 1);
4757 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4758 			    za.za_first_integer));
4759 		}
4760 		zap_cursor_fini(&zc);
4761 	}
4762 
4763 	if (spa->spa_feat_for_write_obj != 0) {
4764 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4765 		    spa->spa_feat_for_write_obj);
4766 		    zap_cursor_retrieve(&zc, &za) == 0;
4767 		    zap_cursor_advance(&zc)) {
4768 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4769 			    za.za_num_integers == 1);
4770 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4771 			    za.za_first_integer));
4772 		}
4773 		zap_cursor_fini(&zc);
4774 	}
4775 
4776 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4777 	    features) == 0);
4778 	nvlist_free(features);
4779 }
4780 
4781 int
4782 spa_get_stats(const char *name, nvlist_t **config,
4783     char *altroot, size_t buflen)
4784 {
4785 	int error;
4786 	spa_t *spa;
4787 
4788 	*config = NULL;
4789 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4790 
4791 	if (spa != NULL) {
4792 		/*
4793 		 * This still leaves a window of inconsistency where the spares
4794 		 * or l2cache devices could change and the config would be
4795 		 * self-inconsistent.
4796 		 */
4797 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4798 
4799 		if (*config != NULL) {
4800 			uint64_t loadtimes[2];
4801 
4802 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4803 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4804 			VERIFY(nvlist_add_uint64_array(*config,
4805 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4806 
4807 			VERIFY(nvlist_add_uint64(*config,
4808 			    ZPOOL_CONFIG_ERRCOUNT,
4809 			    spa_get_errlog_size(spa)) == 0);
4810 
4811 			if (spa_suspended(spa)) {
4812 				VERIFY(nvlist_add_uint64(*config,
4813 				    ZPOOL_CONFIG_SUSPENDED,
4814 				    spa->spa_failmode) == 0);
4815 				VERIFY(nvlist_add_uint64(*config,
4816 				    ZPOOL_CONFIG_SUSPENDED_REASON,
4817 				    spa->spa_suspended) == 0);
4818 			}
4819 
4820 			spa_add_spares(spa, *config);
4821 			spa_add_l2cache(spa, *config);
4822 			spa_add_feature_stats(spa, *config);
4823 		}
4824 	}
4825 
4826 	/*
4827 	 * We want to get the alternate root even for faulted pools, so we cheat
4828 	 * and call spa_lookup() directly.
4829 	 */
4830 	if (altroot) {
4831 		if (spa == NULL) {
4832 			mutex_enter(&spa_namespace_lock);
4833 			spa = spa_lookup(name);
4834 			if (spa)
4835 				spa_altroot(spa, altroot, buflen);
4836 			else
4837 				altroot[0] = '\0';
4838 			spa = NULL;
4839 			mutex_exit(&spa_namespace_lock);
4840 		} else {
4841 			spa_altroot(spa, altroot, buflen);
4842 		}
4843 	}
4844 
4845 	if (spa != NULL) {
4846 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4847 		spa_close(spa, FTAG);
4848 	}
4849 
4850 	return (error);
4851 }
4852 
4853 /*
4854  * Validate that the auxiliary device array is well formed.  We must have an
4855  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4856  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4857  * specified, as long as they are well-formed.
4858  */
4859 static int
4860 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4861     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4862     vdev_labeltype_t label)
4863 {
4864 	nvlist_t **dev;
4865 	uint_t i, ndev;
4866 	vdev_t *vd;
4867 	int error;
4868 
4869 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4870 
4871 	/*
4872 	 * It's acceptable to have no devs specified.
4873 	 */
4874 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4875 		return (0);
4876 
4877 	if (ndev == 0)
4878 		return (SET_ERROR(EINVAL));
4879 
4880 	/*
4881 	 * Make sure the pool is formatted with a version that supports this
4882 	 * device type.
4883 	 */
4884 	if (spa_version(spa) < version)
4885 		return (SET_ERROR(ENOTSUP));
4886 
4887 	/*
4888 	 * Set the pending device list so we correctly handle device in-use
4889 	 * checking.
4890 	 */
4891 	sav->sav_pending = dev;
4892 	sav->sav_npending = ndev;
4893 
4894 	for (i = 0; i < ndev; i++) {
4895 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4896 		    mode)) != 0)
4897 			goto out;
4898 
4899 		if (!vd->vdev_ops->vdev_op_leaf) {
4900 			vdev_free(vd);
4901 			error = SET_ERROR(EINVAL);
4902 			goto out;
4903 		}
4904 
4905 		vd->vdev_top = vd;
4906 
4907 		if ((error = vdev_open(vd)) == 0 &&
4908 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4909 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4910 			    vd->vdev_guid) == 0);
4911 		}
4912 
4913 		vdev_free(vd);
4914 
4915 		if (error &&
4916 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4917 			goto out;
4918 		else
4919 			error = 0;
4920 	}
4921 
4922 out:
4923 	sav->sav_pending = NULL;
4924 	sav->sav_npending = 0;
4925 	return (error);
4926 }
4927 
4928 static int
4929 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4930 {
4931 	int error;
4932 
4933 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4934 
4935 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4936 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4937 	    VDEV_LABEL_SPARE)) != 0) {
4938 		return (error);
4939 	}
4940 
4941 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4942 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4943 	    VDEV_LABEL_L2CACHE));
4944 }
4945 
4946 static void
4947 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4948     const char *config)
4949 {
4950 	int i;
4951 
4952 	if (sav->sav_config != NULL) {
4953 		nvlist_t **olddevs;
4954 		uint_t oldndevs;
4955 		nvlist_t **newdevs;
4956 
4957 		/*
4958 		 * Generate new dev list by concatentating with the
4959 		 * current dev list.
4960 		 */
4961 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4962 		    &olddevs, &oldndevs) == 0);
4963 
4964 		newdevs = kmem_alloc(sizeof (void *) *
4965 		    (ndevs + oldndevs), KM_SLEEP);
4966 		for (i = 0; i < oldndevs; i++)
4967 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4968 			    KM_SLEEP) == 0);
4969 		for (i = 0; i < ndevs; i++)
4970 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4971 			    KM_SLEEP) == 0);
4972 
4973 		VERIFY(nvlist_remove(sav->sav_config, config,
4974 		    DATA_TYPE_NVLIST_ARRAY) == 0);
4975 
4976 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4977 		    config, newdevs, ndevs + oldndevs) == 0);
4978 		for (i = 0; i < oldndevs + ndevs; i++)
4979 			nvlist_free(newdevs[i]);
4980 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4981 	} else {
4982 		/*
4983 		 * Generate a new dev list.
4984 		 */
4985 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4986 		    KM_SLEEP) == 0);
4987 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4988 		    devs, ndevs) == 0);
4989 	}
4990 }
4991 
4992 /*
4993  * Stop and drop level 2 ARC devices
4994  */
4995 void
4996 spa_l2cache_drop(spa_t *spa)
4997 {
4998 	vdev_t *vd;
4999 	int i;
5000 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5001 
5002 	for (i = 0; i < sav->sav_count; i++) {
5003 		uint64_t pool;
5004 
5005 		vd = sav->sav_vdevs[i];
5006 		ASSERT(vd != NULL);
5007 
5008 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5009 		    pool != 0ULL && l2arc_vdev_present(vd))
5010 			l2arc_remove_vdev(vd);
5011 	}
5012 }
5013 
5014 /*
5015  * Verify encryption parameters for spa creation. If we are encrypting, we must
5016  * have the encryption feature flag enabled.
5017  */
5018 static int
5019 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5020     boolean_t has_encryption)
5021 {
5022 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5023 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5024 	    !has_encryption)
5025 		return (SET_ERROR(ENOTSUP));
5026 
5027 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5028 }
5029 
5030 /*
5031  * Pool Creation
5032  */
5033 int
5034 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5035     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5036 {
5037 	spa_t *spa;
5038 	char *altroot = NULL;
5039 	vdev_t *rvd;
5040 	dsl_pool_t *dp;
5041 	dmu_tx_t *tx;
5042 	int error = 0;
5043 	uint64_t txg = TXG_INITIAL;
5044 	nvlist_t **spares, **l2cache;
5045 	uint_t nspares, nl2cache;
5046 	uint64_t version, obj;
5047 	boolean_t has_features;
5048 	char *poolname;
5049 	nvlist_t *nvl;
5050 	boolean_t has_encryption;
5051 	spa_feature_t feat;
5052 	char *feat_name;
5053 
5054 	if (props == NULL ||
5055 	    nvlist_lookup_string(props,
5056 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
5057 		poolname = (char *)pool;
5058 
5059 	/*
5060 	 * If this pool already exists, return failure.
5061 	 */
5062 	mutex_enter(&spa_namespace_lock);
5063 	if (spa_lookup(poolname) != NULL) {
5064 		mutex_exit(&spa_namespace_lock);
5065 		return (SET_ERROR(EEXIST));
5066 	}
5067 
5068 	/*
5069 	 * Allocate a new spa_t structure.
5070 	 */
5071 	nvl = fnvlist_alloc();
5072 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5073 	(void) nvlist_lookup_string(props,
5074 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5075 	spa = spa_add(poolname, nvl, altroot);
5076 	fnvlist_free(nvl);
5077 	spa_activate(spa, spa_mode_global);
5078 
5079 	if (props && (error = spa_prop_validate(spa, props))) {
5080 		spa_deactivate(spa);
5081 		spa_remove(spa);
5082 		mutex_exit(&spa_namespace_lock);
5083 		return (error);
5084 	}
5085 
5086 	/*
5087 	 * Temporary pool names should never be written to disk.
5088 	 */
5089 	if (poolname != pool)
5090 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5091 
5092 	has_features = B_FALSE;
5093 	has_encryption = B_FALSE;
5094 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5095 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5096 		if (zpool_prop_feature(nvpair_name(elem))) {
5097 			has_features = B_TRUE;
5098 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5099 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5100 			if (feat == SPA_FEATURE_ENCRYPTION)
5101 				has_encryption = B_TRUE;
5102 		}
5103 	}
5104 
5105 	/* verify encryption params, if they were provided */
5106 	if (dcp != NULL) {
5107 		error = spa_create_check_encryption_params(dcp, has_encryption);
5108 		if (error != 0) {
5109 			spa_deactivate(spa);
5110 			spa_remove(spa);
5111 			mutex_exit(&spa_namespace_lock);
5112 			return (error);
5113 		}
5114 	}
5115 
5116 	if (has_features || nvlist_lookup_uint64(props,
5117 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5118 		version = SPA_VERSION;
5119 	}
5120 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5121 
5122 	spa->spa_first_txg = txg;
5123 	spa->spa_uberblock.ub_txg = txg - 1;
5124 	spa->spa_uberblock.ub_version = version;
5125 	spa->spa_ubsync = spa->spa_uberblock;
5126 	spa->spa_load_state = SPA_LOAD_CREATE;
5127 	spa->spa_removing_phys.sr_state = DSS_NONE;
5128 	spa->spa_removing_phys.sr_removing_vdev = -1;
5129 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5130 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5131 
5132 	/*
5133 	 * Create "The Godfather" zio to hold all async IOs
5134 	 */
5135 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5136 	    KM_SLEEP);
5137 	for (int i = 0; i < max_ncpus; i++) {
5138 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5139 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5140 		    ZIO_FLAG_GODFATHER);
5141 	}
5142 
5143 	/*
5144 	 * Create the root vdev.
5145 	 */
5146 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5147 
5148 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5149 
5150 	ASSERT(error != 0 || rvd != NULL);
5151 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5152 
5153 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5154 		error = SET_ERROR(EINVAL);
5155 
5156 	if (error == 0 &&
5157 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5158 	    (error = spa_validate_aux(spa, nvroot, txg,
5159 	    VDEV_ALLOC_ADD)) == 0) {
5160 		/*
5161 		 * instantiate the metaslab groups (this will dirty the vdevs)
5162 		 * we can no longer error exit past this point
5163 		 */
5164 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5165 			vdev_t *vd = rvd->vdev_child[c];
5166 
5167 			vdev_metaslab_set_size(vd);
5168 			vdev_expand(vd, txg);
5169 		}
5170 	}
5171 
5172 	spa_config_exit(spa, SCL_ALL, FTAG);
5173 
5174 	if (error != 0) {
5175 		spa_unload(spa);
5176 		spa_deactivate(spa);
5177 		spa_remove(spa);
5178 		mutex_exit(&spa_namespace_lock);
5179 		return (error);
5180 	}
5181 
5182 	/*
5183 	 * Get the list of spares, if specified.
5184 	 */
5185 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5186 	    &spares, &nspares) == 0) {
5187 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5188 		    KM_SLEEP) == 0);
5189 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5190 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5191 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5192 		spa_load_spares(spa);
5193 		spa_config_exit(spa, SCL_ALL, FTAG);
5194 		spa->spa_spares.sav_sync = B_TRUE;
5195 	}
5196 
5197 	/*
5198 	 * Get the list of level 2 cache devices, if specified.
5199 	 */
5200 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5201 	    &l2cache, &nl2cache) == 0) {
5202 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5203 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5204 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5205 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5206 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5207 		spa_load_l2cache(spa);
5208 		spa_config_exit(spa, SCL_ALL, FTAG);
5209 		spa->spa_l2cache.sav_sync = B_TRUE;
5210 	}
5211 
5212 	spa->spa_is_initializing = B_TRUE;
5213 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5214 	spa->spa_is_initializing = B_FALSE;
5215 
5216 	/*
5217 	 * Create DDTs (dedup tables).
5218 	 */
5219 	ddt_create(spa);
5220 
5221 	spa_update_dspace(spa);
5222 
5223 	tx = dmu_tx_create_assigned(dp, txg);
5224 
5225 	/*
5226 	 * Create the pool config object.
5227 	 */
5228 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5229 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5230 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5231 
5232 	if (zap_add(spa->spa_meta_objset,
5233 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5234 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5235 		cmn_err(CE_PANIC, "failed to add pool config");
5236 	}
5237 
5238 	if (zap_add(spa->spa_meta_objset,
5239 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5240 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5241 		cmn_err(CE_PANIC, "failed to add pool version");
5242 	}
5243 
5244 	/* Newly created pools with the right version are always deflated. */
5245 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5246 		spa->spa_deflate = TRUE;
5247 		if (zap_add(spa->spa_meta_objset,
5248 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5249 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5250 			cmn_err(CE_PANIC, "failed to add deflate");
5251 		}
5252 	}
5253 
5254 	/*
5255 	 * Create the deferred-free bpobj.  Turn off compression
5256 	 * because sync-to-convergence takes longer if the blocksize
5257 	 * keeps changing.
5258 	 */
5259 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5260 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5261 	    ZIO_COMPRESS_OFF, tx);
5262 	if (zap_add(spa->spa_meta_objset,
5263 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5264 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5265 		cmn_err(CE_PANIC, "failed to add bpobj");
5266 	}
5267 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5268 	    spa->spa_meta_objset, obj));
5269 
5270 	/*
5271 	 * Create the pool's history object.
5272 	 */
5273 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
5274 		spa_history_create_obj(spa, tx);
5275 
5276 	/*
5277 	 * Generate some random noise for salted checksums to operate on.
5278 	 */
5279 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5280 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5281 
5282 	/*
5283 	 * Set pool properties.
5284 	 */
5285 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5286 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5287 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5288 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5289 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5290 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5291 
5292 	if (props != NULL) {
5293 		spa_configfile_set(spa, props, B_FALSE);
5294 		spa_sync_props(props, tx);
5295 	}
5296 
5297 	dmu_tx_commit(tx);
5298 
5299 	spa->spa_sync_on = B_TRUE;
5300 	txg_sync_start(spa->spa_dsl_pool);
5301 	mmp_thread_start(spa);
5302 
5303 	/*
5304 	 * We explicitly wait for the first transaction to complete so that our
5305 	 * bean counters are appropriately updated.
5306 	 */
5307 	txg_wait_synced(spa->spa_dsl_pool, txg);
5308 
5309 	spa_spawn_aux_threads(spa);
5310 
5311 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5312 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5313 
5314 	spa_history_log_version(spa, "create");
5315 
5316 	/*
5317 	 * Don't count references from objsets that are already closed
5318 	 * and are making their way through the eviction process.
5319 	 */
5320 	spa_evicting_os_wait(spa);
5321 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5322 	spa->spa_load_state = SPA_LOAD_NONE;
5323 
5324 	mutex_exit(&spa_namespace_lock);
5325 
5326 	return (0);
5327 }
5328 
5329 #ifdef _KERNEL
5330 /*
5331  * Get the root pool information from the root disk, then import the root pool
5332  * during the system boot up time.
5333  */
5334 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
5335 
5336 static nvlist_t *
5337 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
5338 {
5339 	nvlist_t *config;
5340 	nvlist_t *nvtop, *nvroot;
5341 	uint64_t pgid;
5342 
5343 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5344 		return (NULL);
5345 
5346 	/*
5347 	 * Add this top-level vdev to the child array.
5348 	 */
5349 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5350 	    &nvtop) == 0);
5351 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5352 	    &pgid) == 0);
5353 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5354 
5355 	/*
5356 	 * Put this pool's top-level vdevs into a root vdev.
5357 	 */
5358 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5359 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5360 	    VDEV_TYPE_ROOT) == 0);
5361 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5362 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5363 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5364 	    &nvtop, 1) == 0);
5365 
5366 	/*
5367 	 * Replace the existing vdev_tree with the new root vdev in
5368 	 * this pool's configuration (remove the old, add the new).
5369 	 */
5370 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5371 	nvlist_free(nvroot);
5372 	return (config);
5373 }
5374 
5375 /*
5376  * Walk the vdev tree and see if we can find a device with "better"
5377  * configuration. A configuration is "better" if the label on that
5378  * device has a more recent txg.
5379  */
5380 static void
5381 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5382 {
5383 	for (int c = 0; c < vd->vdev_children; c++)
5384 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5385 
5386 	if (vd->vdev_ops->vdev_op_leaf) {
5387 		nvlist_t *label;
5388 		uint64_t label_txg;
5389 
5390 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5391 		    &label) != 0)
5392 			return;
5393 
5394 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5395 		    &label_txg) == 0);
5396 
5397 		/*
5398 		 * Do we have a better boot device?
5399 		 */
5400 		if (label_txg > *txg) {
5401 			*txg = label_txg;
5402 			*avd = vd;
5403 		}
5404 		nvlist_free(label);
5405 	}
5406 }
5407 
5408 /*
5409  * Import a root pool.
5410  *
5411  * For x86. devpath_list will consist of devid and/or physpath name of
5412  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5413  * The GRUB "findroot" command will return the vdev we should boot.
5414  *
5415  * For Sparc, devpath_list consists the physpath name of the booting device
5416  * no matter the rootpool is a single device pool or a mirrored pool.
5417  * e.g.
5418  *	"/pci@1f,0/ide@d/disk@0,0:a"
5419  */
5420 int
5421 spa_import_rootpool(char *devpath, char *devid)
5422 {
5423 	spa_t *spa;
5424 	vdev_t *rvd, *bvd, *avd = NULL;
5425 	nvlist_t *config, *nvtop;
5426 	uint64_t guid, txg;
5427 	char *pname;
5428 	int error;
5429 
5430 	/*
5431 	 * Read the label from the boot device and generate a configuration.
5432 	 */
5433 	config = spa_generate_rootconf(devpath, devid, &guid);
5434 #if defined(_OBP) && defined(_KERNEL)
5435 	if (config == NULL) {
5436 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5437 			/* iscsi boot */
5438 			get_iscsi_bootpath_phy(devpath);
5439 			config = spa_generate_rootconf(devpath, devid, &guid);
5440 		}
5441 	}
5442 #endif
5443 	if (config == NULL) {
5444 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5445 		    devpath);
5446 		return (SET_ERROR(EIO));
5447 	}
5448 
5449 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5450 	    &pname) == 0);
5451 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5452 
5453 	mutex_enter(&spa_namespace_lock);
5454 	if ((spa = spa_lookup(pname)) != NULL) {
5455 		/*
5456 		 * Remove the existing root pool from the namespace so that we
5457 		 * can replace it with the correct config we just read in.
5458 		 */
5459 		spa_remove(spa);
5460 	}
5461 
5462 	spa = spa_add(pname, config, NULL);
5463 	spa->spa_is_root = B_TRUE;
5464 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5465 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5466 	    &spa->spa_ubsync.ub_version) != 0)
5467 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5468 
5469 	/*
5470 	 * Build up a vdev tree based on the boot device's label config.
5471 	 */
5472 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5473 	    &nvtop) == 0);
5474 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5475 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5476 	    VDEV_ALLOC_ROOTPOOL);
5477 	spa_config_exit(spa, SCL_ALL, FTAG);
5478 	if (error) {
5479 		mutex_exit(&spa_namespace_lock);
5480 		nvlist_free(config);
5481 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5482 		    pname);
5483 		return (error);
5484 	}
5485 
5486 	/*
5487 	 * Get the boot vdev.
5488 	 */
5489 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5490 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5491 		    (u_longlong_t)guid);
5492 		error = SET_ERROR(ENOENT);
5493 		goto out;
5494 	}
5495 
5496 	/*
5497 	 * Determine if there is a better boot device.
5498 	 */
5499 	avd = bvd;
5500 	spa_alt_rootvdev(rvd, &avd, &txg);
5501 	if (avd != bvd) {
5502 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5503 		    "try booting from '%s'", avd->vdev_path);
5504 		error = SET_ERROR(EINVAL);
5505 		goto out;
5506 	}
5507 
5508 	/*
5509 	 * If the boot device is part of a spare vdev then ensure that
5510 	 * we're booting off the active spare.
5511 	 */
5512 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5513 	    !bvd->vdev_isspare) {
5514 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5515 		    "try booting from '%s'",
5516 		    bvd->vdev_parent->
5517 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5518 		error = SET_ERROR(EINVAL);
5519 		goto out;
5520 	}
5521 
5522 	error = 0;
5523 out:
5524 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5525 	vdev_free(rvd);
5526 	spa_config_exit(spa, SCL_ALL, FTAG);
5527 	mutex_exit(&spa_namespace_lock);
5528 
5529 	nvlist_free(config);
5530 	return (error);
5531 }
5532 
5533 #endif
5534 
5535 /*
5536  * Import a non-root pool into the system.
5537  */
5538 int
5539 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5540 {
5541 	spa_t *spa;
5542 	char *altroot = NULL;
5543 	spa_load_state_t state = SPA_LOAD_IMPORT;
5544 	zpool_load_policy_t policy;
5545 	uint64_t mode = spa_mode_global;
5546 	uint64_t readonly = B_FALSE;
5547 	int error;
5548 	nvlist_t *nvroot;
5549 	nvlist_t **spares, **l2cache;
5550 	uint_t nspares, nl2cache;
5551 
5552 	/*
5553 	 * If a pool with this name exists, return failure.
5554 	 */
5555 	mutex_enter(&spa_namespace_lock);
5556 	if (spa_lookup(pool) != NULL) {
5557 		mutex_exit(&spa_namespace_lock);
5558 		return (SET_ERROR(EEXIST));
5559 	}
5560 
5561 	/*
5562 	 * Create and initialize the spa structure.
5563 	 */
5564 	(void) nvlist_lookup_string(props,
5565 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5566 	(void) nvlist_lookup_uint64(props,
5567 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5568 	if (readonly)
5569 		mode = FREAD;
5570 	spa = spa_add(pool, config, altroot);
5571 	spa->spa_import_flags = flags;
5572 
5573 	/*
5574 	 * Verbatim import - Take a pool and insert it into the namespace
5575 	 * as if it had been loaded at boot.
5576 	 */
5577 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5578 		if (props != NULL)
5579 			spa_configfile_set(spa, props, B_FALSE);
5580 
5581 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5582 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5583 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5584 		mutex_exit(&spa_namespace_lock);
5585 		return (0);
5586 	}
5587 
5588 	spa_activate(spa, mode);
5589 
5590 	/*
5591 	 * Don't start async tasks until we know everything is healthy.
5592 	 */
5593 	spa_async_suspend(spa);
5594 
5595 	zpool_get_load_policy(config, &policy);
5596 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5597 		state = SPA_LOAD_RECOVER;
5598 
5599 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5600 
5601 	if (state != SPA_LOAD_RECOVER) {
5602 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5603 		zfs_dbgmsg("spa_import: importing %s", pool);
5604 	} else {
5605 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5606 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5607 	}
5608 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5609 
5610 	/*
5611 	 * Propagate anything learned while loading the pool and pass it
5612 	 * back to caller (i.e. rewind info, missing devices, etc).
5613 	 */
5614 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5615 	    spa->spa_load_info) == 0);
5616 
5617 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5618 	/*
5619 	 * Toss any existing sparelist, as it doesn't have any validity
5620 	 * anymore, and conflicts with spa_has_spare().
5621 	 */
5622 	if (spa->spa_spares.sav_config) {
5623 		nvlist_free(spa->spa_spares.sav_config);
5624 		spa->spa_spares.sav_config = NULL;
5625 		spa_load_spares(spa);
5626 	}
5627 	if (spa->spa_l2cache.sav_config) {
5628 		nvlist_free(spa->spa_l2cache.sav_config);
5629 		spa->spa_l2cache.sav_config = NULL;
5630 		spa_load_l2cache(spa);
5631 	}
5632 
5633 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5634 	    &nvroot) == 0);
5635 	if (error == 0)
5636 		error = spa_validate_aux(spa, nvroot, -1ULL,
5637 		    VDEV_ALLOC_SPARE);
5638 	if (error == 0)
5639 		error = spa_validate_aux(spa, nvroot, -1ULL,
5640 		    VDEV_ALLOC_L2CACHE);
5641 	spa_config_exit(spa, SCL_ALL, FTAG);
5642 
5643 	if (props != NULL)
5644 		spa_configfile_set(spa, props, B_FALSE);
5645 
5646 	if (error != 0 || (props && spa_writeable(spa) &&
5647 	    (error = spa_prop_set(spa, props)))) {
5648 		spa_unload(spa);
5649 		spa_deactivate(spa);
5650 		spa_remove(spa);
5651 		mutex_exit(&spa_namespace_lock);
5652 		return (error);
5653 	}
5654 
5655 	spa_async_resume(spa);
5656 
5657 	/*
5658 	 * Override any spares and level 2 cache devices as specified by
5659 	 * the user, as these may have correct device names/devids, etc.
5660 	 */
5661 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5662 	    &spares, &nspares) == 0) {
5663 		if (spa->spa_spares.sav_config)
5664 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5665 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5666 		else
5667 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5668 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5669 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5670 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5671 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5672 		spa_load_spares(spa);
5673 		spa_config_exit(spa, SCL_ALL, FTAG);
5674 		spa->spa_spares.sav_sync = B_TRUE;
5675 	}
5676 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5677 	    &l2cache, &nl2cache) == 0) {
5678 		if (spa->spa_l2cache.sav_config)
5679 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5680 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5681 		else
5682 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5683 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5684 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5685 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5686 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5687 		spa_load_l2cache(spa);
5688 		spa_config_exit(spa, SCL_ALL, FTAG);
5689 		spa->spa_l2cache.sav_sync = B_TRUE;
5690 	}
5691 
5692 	/*
5693 	 * Check for any removed devices.
5694 	 */
5695 	if (spa->spa_autoreplace) {
5696 		spa_aux_check_removed(&spa->spa_spares);
5697 		spa_aux_check_removed(&spa->spa_l2cache);
5698 	}
5699 
5700 	if (spa_writeable(spa)) {
5701 		/*
5702 		 * Update the config cache to include the newly-imported pool.
5703 		 */
5704 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5705 	}
5706 
5707 	/*
5708 	 * It's possible that the pool was expanded while it was exported.
5709 	 * We kick off an async task to handle this for us.
5710 	 */
5711 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5712 
5713 	spa_history_log_version(spa, "import");
5714 
5715 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5716 
5717 	mutex_exit(&spa_namespace_lock);
5718 
5719 	return (0);
5720 }
5721 
5722 nvlist_t *
5723 spa_tryimport(nvlist_t *tryconfig)
5724 {
5725 	nvlist_t *config = NULL;
5726 	char *poolname, *cachefile;
5727 	spa_t *spa;
5728 	uint64_t state;
5729 	int error;
5730 	zpool_load_policy_t policy;
5731 
5732 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5733 		return (NULL);
5734 
5735 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5736 		return (NULL);
5737 
5738 	/*
5739 	 * Create and initialize the spa structure.
5740 	 */
5741 	mutex_enter(&spa_namespace_lock);
5742 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5743 	spa_activate(spa, FREAD);
5744 
5745 	/*
5746 	 * Rewind pool if a max txg was provided.
5747 	 */
5748 	zpool_get_load_policy(spa->spa_config, &policy);
5749 	if (policy.zlp_txg != UINT64_MAX) {
5750 		spa->spa_load_max_txg = policy.zlp_txg;
5751 		spa->spa_extreme_rewind = B_TRUE;
5752 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5753 		    poolname, (longlong_t)policy.zlp_txg);
5754 	} else {
5755 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5756 	}
5757 
5758 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5759 	    == 0) {
5760 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5761 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5762 	} else {
5763 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5764 	}
5765 
5766 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5767 
5768 	/*
5769 	 * If 'tryconfig' was at least parsable, return the current config.
5770 	 */
5771 	if (spa->spa_root_vdev != NULL) {
5772 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5773 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5774 		    poolname) == 0);
5775 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5776 		    state) == 0);
5777 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5778 		    spa->spa_uberblock.ub_timestamp) == 0);
5779 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5780 		    spa->spa_load_info) == 0);
5781 
5782 		/*
5783 		 * If the bootfs property exists on this pool then we
5784 		 * copy it out so that external consumers can tell which
5785 		 * pools are bootable.
5786 		 */
5787 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5788 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5789 
5790 			/*
5791 			 * We have to play games with the name since the
5792 			 * pool was opened as TRYIMPORT_NAME.
5793 			 */
5794 			if (dsl_dsobj_to_dsname(spa_name(spa),
5795 			    spa->spa_bootfs, tmpname) == 0) {
5796 				char *cp;
5797 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5798 
5799 				cp = strchr(tmpname, '/');
5800 				if (cp == NULL) {
5801 					(void) strlcpy(dsname, tmpname,
5802 					    MAXPATHLEN);
5803 				} else {
5804 					(void) snprintf(dsname, MAXPATHLEN,
5805 					    "%s/%s", poolname, ++cp);
5806 				}
5807 				VERIFY(nvlist_add_string(config,
5808 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5809 				kmem_free(dsname, MAXPATHLEN);
5810 			}
5811 			kmem_free(tmpname, MAXPATHLEN);
5812 		}
5813 
5814 		/*
5815 		 * Add the list of hot spares and level 2 cache devices.
5816 		 */
5817 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5818 		spa_add_spares(spa, config);
5819 		spa_add_l2cache(spa, config);
5820 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5821 	}
5822 
5823 	spa_unload(spa);
5824 	spa_deactivate(spa);
5825 	spa_remove(spa);
5826 	mutex_exit(&spa_namespace_lock);
5827 
5828 	return (config);
5829 }
5830 
5831 /*
5832  * Pool export/destroy
5833  *
5834  * The act of destroying or exporting a pool is very simple.  We make sure there
5835  * is no more pending I/O and any references to the pool are gone.  Then, we
5836  * update the pool state and sync all the labels to disk, removing the
5837  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5838  * we don't sync the labels or remove the configuration cache.
5839  */
5840 static int
5841 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5842     boolean_t force, boolean_t hardforce)
5843 {
5844 	spa_t *spa;
5845 
5846 	if (oldconfig)
5847 		*oldconfig = NULL;
5848 
5849 	if (!(spa_mode_global & FWRITE))
5850 		return (SET_ERROR(EROFS));
5851 
5852 	mutex_enter(&spa_namespace_lock);
5853 	if ((spa = spa_lookup(pool)) == NULL) {
5854 		mutex_exit(&spa_namespace_lock);
5855 		return (SET_ERROR(ENOENT));
5856 	}
5857 
5858 	/*
5859 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5860 	 * reacquire the namespace lock, and see if we can export.
5861 	 */
5862 	spa_open_ref(spa, FTAG);
5863 	mutex_exit(&spa_namespace_lock);
5864 	spa_async_suspend(spa);
5865 	mutex_enter(&spa_namespace_lock);
5866 	spa_close(spa, FTAG);
5867 
5868 	/*
5869 	 * The pool will be in core if it's openable,
5870 	 * in which case we can modify its state.
5871 	 */
5872 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5873 
5874 		/*
5875 		 * Objsets may be open only because they're dirty, so we
5876 		 * have to force it to sync before checking spa_refcnt.
5877 		 */
5878 		txg_wait_synced(spa->spa_dsl_pool, 0);
5879 		spa_evicting_os_wait(spa);
5880 
5881 		/*
5882 		 * A pool cannot be exported or destroyed if there are active
5883 		 * references.  If we are resetting a pool, allow references by
5884 		 * fault injection handlers.
5885 		 */
5886 		if (!spa_refcount_zero(spa) ||
5887 		    (spa->spa_inject_ref != 0 &&
5888 		    new_state != POOL_STATE_UNINITIALIZED)) {
5889 			spa_async_resume(spa);
5890 			mutex_exit(&spa_namespace_lock);
5891 			return (SET_ERROR(EBUSY));
5892 		}
5893 
5894 		/*
5895 		 * A pool cannot be exported if it has an active shared spare.
5896 		 * This is to prevent other pools stealing the active spare
5897 		 * from an exported pool. At user's own will, such pool can
5898 		 * be forcedly exported.
5899 		 */
5900 		if (!force && new_state == POOL_STATE_EXPORTED &&
5901 		    spa_has_active_shared_spare(spa)) {
5902 			spa_async_resume(spa);
5903 			mutex_exit(&spa_namespace_lock);
5904 			return (SET_ERROR(EXDEV));
5905 		}
5906 
5907 		/*
5908 		 * We're about to export or destroy this pool. Make sure
5909 		 * we stop all initialization and trim activity here before
5910 		 * we set the spa_final_txg. This will ensure that all
5911 		 * dirty data resulting from the initialization is
5912 		 * committed to disk before we unload the pool.
5913 		 */
5914 		if (spa->spa_root_vdev != NULL) {
5915 			vdev_t *rvd = spa->spa_root_vdev;
5916 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
5917 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
5918 			vdev_autotrim_stop_all(spa);
5919 		}
5920 
5921 		/*
5922 		 * We want this to be reflected on every label,
5923 		 * so mark them all dirty.  spa_unload() will do the
5924 		 * final sync that pushes these changes out.
5925 		 */
5926 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5927 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5928 			spa->spa_state = new_state;
5929 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5930 			    TXG_DEFER_SIZE + 1;
5931 			vdev_config_dirty(spa->spa_root_vdev);
5932 			spa_config_exit(spa, SCL_ALL, FTAG);
5933 		}
5934 	}
5935 
5936 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5937 
5938 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5939 		spa_unload(spa);
5940 		spa_deactivate(spa);
5941 	}
5942 
5943 	if (oldconfig && spa->spa_config)
5944 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5945 
5946 	if (new_state != POOL_STATE_UNINITIALIZED) {
5947 		if (!hardforce)
5948 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5949 		spa_remove(spa);
5950 	}
5951 	mutex_exit(&spa_namespace_lock);
5952 
5953 	return (0);
5954 }
5955 
5956 /*
5957  * Destroy a storage pool.
5958  */
5959 int
5960 spa_destroy(char *pool)
5961 {
5962 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5963 	    B_FALSE, B_FALSE));
5964 }
5965 
5966 /*
5967  * Export a storage pool.
5968  */
5969 int
5970 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5971     boolean_t hardforce)
5972 {
5973 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5974 	    force, hardforce));
5975 }
5976 
5977 /*
5978  * Similar to spa_export(), this unloads the spa_t without actually removing it
5979  * from the namespace in any way.
5980  */
5981 int
5982 spa_reset(char *pool)
5983 {
5984 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5985 	    B_FALSE, B_FALSE));
5986 }
5987 
5988 /*
5989  * ==========================================================================
5990  * Device manipulation
5991  * ==========================================================================
5992  */
5993 
5994 /*
5995  * Add a device to a storage pool.
5996  */
5997 int
5998 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5999 {
6000 	uint64_t txg;
6001 	int error;
6002 	vdev_t *rvd = spa->spa_root_vdev;
6003 	vdev_t *vd, *tvd;
6004 	nvlist_t **spares, **l2cache;
6005 	uint_t nspares, nl2cache;
6006 
6007 	ASSERT(spa_writeable(spa));
6008 
6009 	txg = spa_vdev_enter(spa);
6010 
6011 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6012 	    VDEV_ALLOC_ADD)) != 0)
6013 		return (spa_vdev_exit(spa, NULL, txg, error));
6014 
6015 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6016 
6017 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6018 	    &nspares) != 0)
6019 		nspares = 0;
6020 
6021 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6022 	    &nl2cache) != 0)
6023 		nl2cache = 0;
6024 
6025 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6026 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6027 
6028 	if (vd->vdev_children != 0 &&
6029 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
6030 		return (spa_vdev_exit(spa, vd, txg, error));
6031 
6032 	/*
6033 	 * We must validate the spares and l2cache devices after checking the
6034 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6035 	 */
6036 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6037 		return (spa_vdev_exit(spa, vd, txg, error));
6038 
6039 	/*
6040 	 * If we are in the middle of a device removal, we can only add
6041 	 * devices which match the existing devices in the pool.
6042 	 * If we are in the middle of a removal, or have some indirect
6043 	 * vdevs, we can not add raidz toplevels.
6044 	 */
6045 	if (spa->spa_vdev_removal != NULL ||
6046 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6047 		for (int c = 0; c < vd->vdev_children; c++) {
6048 			tvd = vd->vdev_child[c];
6049 			if (spa->spa_vdev_removal != NULL &&
6050 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6051 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6052 			}
6053 			/* Fail if top level vdev is raidz */
6054 			if (tvd->vdev_ops == &vdev_raidz_ops) {
6055 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6056 			}
6057 			/*
6058 			 * Need the top level mirror to be
6059 			 * a mirror of leaf vdevs only
6060 			 */
6061 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6062 				for (uint64_t cid = 0;
6063 				    cid < tvd->vdev_children; cid++) {
6064 					vdev_t *cvd = tvd->vdev_child[cid];
6065 					if (!cvd->vdev_ops->vdev_op_leaf) {
6066 						return (spa_vdev_exit(spa, vd,
6067 						    txg, EINVAL));
6068 					}
6069 				}
6070 			}
6071 		}
6072 	}
6073 
6074 	for (int c = 0; c < vd->vdev_children; c++) {
6075 		tvd = vd->vdev_child[c];
6076 		vdev_remove_child(vd, tvd);
6077 		tvd->vdev_id = rvd->vdev_children;
6078 		vdev_add_child(rvd, tvd);
6079 		vdev_config_dirty(tvd);
6080 	}
6081 
6082 	if (nspares != 0) {
6083 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6084 		    ZPOOL_CONFIG_SPARES);
6085 		spa_load_spares(spa);
6086 		spa->spa_spares.sav_sync = B_TRUE;
6087 	}
6088 
6089 	if (nl2cache != 0) {
6090 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6091 		    ZPOOL_CONFIG_L2CACHE);
6092 		spa_load_l2cache(spa);
6093 		spa->spa_l2cache.sav_sync = B_TRUE;
6094 	}
6095 
6096 	/*
6097 	 * We have to be careful when adding new vdevs to an existing pool.
6098 	 * If other threads start allocating from these vdevs before we
6099 	 * sync the config cache, and we lose power, then upon reboot we may
6100 	 * fail to open the pool because there are DVAs that the config cache
6101 	 * can't translate.  Therefore, we first add the vdevs without
6102 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6103 	 * and then let spa_config_update() initialize the new metaslabs.
6104 	 *
6105 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6106 	 * if we lose power at any point in this sequence, the remaining
6107 	 * steps will be completed the next time we load the pool.
6108 	 */
6109 	(void) spa_vdev_exit(spa, vd, txg, 0);
6110 
6111 	mutex_enter(&spa_namespace_lock);
6112 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6113 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6114 	mutex_exit(&spa_namespace_lock);
6115 
6116 	return (0);
6117 }
6118 
6119 /*
6120  * Attach a device to a mirror.  The arguments are the path to any device
6121  * in the mirror, and the nvroot for the new device.  If the path specifies
6122  * a device that is not mirrored, we automatically insert the mirror vdev.
6123  *
6124  * If 'replacing' is specified, the new device is intended to replace the
6125  * existing device; in this case the two devices are made into their own
6126  * mirror using the 'replacing' vdev, which is functionally identical to
6127  * the mirror vdev (it actually reuses all the same ops) but has a few
6128  * extra rules: you can't attach to it after it's been created, and upon
6129  * completion of resilvering, the first disk (the one being replaced)
6130  * is automatically detached.
6131  */
6132 int
6133 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6134 {
6135 	uint64_t txg, dtl_max_txg;
6136 	vdev_t *rvd = spa->spa_root_vdev;
6137 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6138 	vdev_ops_t *pvops;
6139 	char *oldvdpath, *newvdpath;
6140 	int newvd_isspare;
6141 	int error;
6142 
6143 	ASSERT(spa_writeable(spa));
6144 
6145 	txg = spa_vdev_enter(spa);
6146 
6147 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6148 
6149 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6150 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6151 		error = (spa_has_checkpoint(spa)) ?
6152 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6153 		return (spa_vdev_exit(spa, NULL, txg, error));
6154 	}
6155 
6156 	if (spa->spa_vdev_removal != NULL)
6157 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6158 
6159 	if (oldvd == NULL)
6160 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6161 
6162 	if (!oldvd->vdev_ops->vdev_op_leaf)
6163 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6164 
6165 	pvd = oldvd->vdev_parent;
6166 
6167 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6168 	    VDEV_ALLOC_ATTACH)) != 0)
6169 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6170 
6171 	if (newrootvd->vdev_children != 1)
6172 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6173 
6174 	newvd = newrootvd->vdev_child[0];
6175 
6176 	if (!newvd->vdev_ops->vdev_op_leaf)
6177 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6178 
6179 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6180 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6181 
6182 	/*
6183 	 * Spares can't replace logs
6184 	 */
6185 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6186 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6187 
6188 	if (!replacing) {
6189 		/*
6190 		 * For attach, the only allowable parent is a mirror or the root
6191 		 * vdev.
6192 		 */
6193 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6194 		    pvd->vdev_ops != &vdev_root_ops)
6195 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6196 
6197 		pvops = &vdev_mirror_ops;
6198 	} else {
6199 		/*
6200 		 * Active hot spares can only be replaced by inactive hot
6201 		 * spares.
6202 		 */
6203 		if (pvd->vdev_ops == &vdev_spare_ops &&
6204 		    oldvd->vdev_isspare &&
6205 		    !spa_has_spare(spa, newvd->vdev_guid))
6206 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6207 
6208 		/*
6209 		 * If the source is a hot spare, and the parent isn't already a
6210 		 * spare, then we want to create a new hot spare.  Otherwise, we
6211 		 * want to create a replacing vdev.  The user is not allowed to
6212 		 * attach to a spared vdev child unless the 'isspare' state is
6213 		 * the same (spare replaces spare, non-spare replaces
6214 		 * non-spare).
6215 		 */
6216 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6217 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6218 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6219 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6220 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6221 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6222 		}
6223 
6224 		if (newvd->vdev_isspare)
6225 			pvops = &vdev_spare_ops;
6226 		else
6227 			pvops = &vdev_replacing_ops;
6228 	}
6229 
6230 	/*
6231 	 * Make sure the new device is big enough.
6232 	 */
6233 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6234 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6235 
6236 	/*
6237 	 * The new device cannot have a higher alignment requirement
6238 	 * than the top-level vdev.
6239 	 */
6240 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6241 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6242 
6243 	/*
6244 	 * If this is an in-place replacement, update oldvd's path and devid
6245 	 * to make it distinguishable from newvd, and unopenable from now on.
6246 	 */
6247 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6248 		spa_strfree(oldvd->vdev_path);
6249 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6250 		    KM_SLEEP);
6251 		(void) sprintf(oldvd->vdev_path, "%s/%s",
6252 		    newvd->vdev_path, "old");
6253 		if (oldvd->vdev_devid != NULL) {
6254 			spa_strfree(oldvd->vdev_devid);
6255 			oldvd->vdev_devid = NULL;
6256 		}
6257 	}
6258 
6259 	/* mark the device being resilvered */
6260 	newvd->vdev_resilver_txg = txg;
6261 
6262 	/*
6263 	 * If the parent is not a mirror, or if we're replacing, insert the new
6264 	 * mirror/replacing/spare vdev above oldvd.
6265 	 */
6266 	if (pvd->vdev_ops != pvops)
6267 		pvd = vdev_add_parent(oldvd, pvops);
6268 
6269 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6270 	ASSERT(pvd->vdev_ops == pvops);
6271 	ASSERT(oldvd->vdev_parent == pvd);
6272 
6273 	/*
6274 	 * Extract the new device from its root and add it to pvd.
6275 	 */
6276 	vdev_remove_child(newrootvd, newvd);
6277 	newvd->vdev_id = pvd->vdev_children;
6278 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6279 	vdev_add_child(pvd, newvd);
6280 
6281 	tvd = newvd->vdev_top;
6282 	ASSERT(pvd->vdev_top == tvd);
6283 	ASSERT(tvd->vdev_parent == rvd);
6284 
6285 	vdev_config_dirty(tvd);
6286 
6287 	/*
6288 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6289 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6290 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6291 	 */
6292 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6293 
6294 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6295 	    dtl_max_txg - TXG_INITIAL);
6296 
6297 	if (newvd->vdev_isspare) {
6298 		spa_spare_activate(newvd);
6299 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6300 	}
6301 
6302 	oldvdpath = spa_strdup(oldvd->vdev_path);
6303 	newvdpath = spa_strdup(newvd->vdev_path);
6304 	newvd_isspare = newvd->vdev_isspare;
6305 
6306 	/*
6307 	 * Mark newvd's DTL dirty in this txg.
6308 	 */
6309 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6310 
6311 	/*
6312 	 * Schedule the resilver to restart in the future. We do this to
6313 	 * ensure that dmu_sync-ed blocks have been stitched into the
6314 	 * respective datasets. We do not do this if resilvers have been
6315 	 * deferred.
6316 	 */
6317 	if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6318 	    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6319 		vdev_set_deferred_resilver(spa, newvd);
6320 	else
6321 		dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
6322 
6323 	if (spa->spa_bootfs)
6324 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6325 
6326 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6327 
6328 	/*
6329 	 * Commit the config
6330 	 */
6331 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6332 
6333 	spa_history_log_internal(spa, "vdev attach", NULL,
6334 	    "%s vdev=%s %s vdev=%s",
6335 	    replacing && newvd_isspare ? "spare in" :
6336 	    replacing ? "replace" : "attach", newvdpath,
6337 	    replacing ? "for" : "to", oldvdpath);
6338 
6339 	spa_strfree(oldvdpath);
6340 	spa_strfree(newvdpath);
6341 
6342 	return (0);
6343 }
6344 
6345 /*
6346  * Detach a device from a mirror or replacing vdev.
6347  *
6348  * If 'replace_done' is specified, only detach if the parent
6349  * is a replacing vdev.
6350  */
6351 int
6352 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6353 {
6354 	uint64_t txg;
6355 	int error;
6356 	vdev_t *rvd = spa->spa_root_vdev;
6357 	vdev_t *vd, *pvd, *cvd, *tvd;
6358 	boolean_t unspare = B_FALSE;
6359 	uint64_t unspare_guid = 0;
6360 	char *vdpath;
6361 
6362 	ASSERT(spa_writeable(spa));
6363 
6364 	txg = spa_vdev_enter(spa);
6365 
6366 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6367 
6368 	/*
6369 	 * Besides being called directly from the userland through the
6370 	 * ioctl interface, spa_vdev_detach() can be potentially called
6371 	 * at the end of spa_vdev_resilver_done().
6372 	 *
6373 	 * In the regular case, when we have a checkpoint this shouldn't
6374 	 * happen as we never empty the DTLs of a vdev during the scrub
6375 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6376 	 * should never get here when we have a checkpoint.
6377 	 *
6378 	 * That said, even in a case when we checkpoint the pool exactly
6379 	 * as spa_vdev_resilver_done() calls this function everything
6380 	 * should be fine as the resilver will return right away.
6381 	 */
6382 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6383 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6384 		error = (spa_has_checkpoint(spa)) ?
6385 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6386 		return (spa_vdev_exit(spa, NULL, txg, error));
6387 	}
6388 
6389 	if (vd == NULL)
6390 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6391 
6392 	if (!vd->vdev_ops->vdev_op_leaf)
6393 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6394 
6395 	pvd = vd->vdev_parent;
6396 
6397 	/*
6398 	 * If the parent/child relationship is not as expected, don't do it.
6399 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6400 	 * vdev that's replacing B with C.  The user's intent in replacing
6401 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6402 	 * the replace by detaching C, the expected behavior is to end up
6403 	 * M(A,B).  But suppose that right after deciding to detach C,
6404 	 * the replacement of B completes.  We would have M(A,C), and then
6405 	 * ask to detach C, which would leave us with just A -- not what
6406 	 * the user wanted.  To prevent this, we make sure that the
6407 	 * parent/child relationship hasn't changed -- in this example,
6408 	 * that C's parent is still the replacing vdev R.
6409 	 */
6410 	if (pvd->vdev_guid != pguid && pguid != 0)
6411 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6412 
6413 	/*
6414 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6415 	 */
6416 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6417 	    pvd->vdev_ops != &vdev_spare_ops)
6418 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6419 
6420 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6421 	    spa_version(spa) >= SPA_VERSION_SPARES);
6422 
6423 	/*
6424 	 * Only mirror, replacing, and spare vdevs support detach.
6425 	 */
6426 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6427 	    pvd->vdev_ops != &vdev_mirror_ops &&
6428 	    pvd->vdev_ops != &vdev_spare_ops)
6429 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6430 
6431 	/*
6432 	 * If this device has the only valid copy of some data,
6433 	 * we cannot safely detach it.
6434 	 */
6435 	if (vdev_dtl_required(vd))
6436 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6437 
6438 	ASSERT(pvd->vdev_children >= 2);
6439 
6440 	/*
6441 	 * If we are detaching the second disk from a replacing vdev, then
6442 	 * check to see if we changed the original vdev's path to have "/old"
6443 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6444 	 */
6445 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6446 	    vd->vdev_path != NULL) {
6447 		size_t len = strlen(vd->vdev_path);
6448 
6449 		for (int c = 0; c < pvd->vdev_children; c++) {
6450 			cvd = pvd->vdev_child[c];
6451 
6452 			if (cvd == vd || cvd->vdev_path == NULL)
6453 				continue;
6454 
6455 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6456 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6457 				spa_strfree(cvd->vdev_path);
6458 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6459 				break;
6460 			}
6461 		}
6462 	}
6463 
6464 	/*
6465 	 * If we are detaching the original disk from a spare, then it implies
6466 	 * that the spare should become a real disk, and be removed from the
6467 	 * active spare list for the pool.
6468 	 */
6469 	if (pvd->vdev_ops == &vdev_spare_ops &&
6470 	    vd->vdev_id == 0 &&
6471 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6472 		unspare = B_TRUE;
6473 
6474 	/*
6475 	 * Erase the disk labels so the disk can be used for other things.
6476 	 * This must be done after all other error cases are handled,
6477 	 * but before we disembowel vd (so we can still do I/O to it).
6478 	 * But if we can't do it, don't treat the error as fatal --
6479 	 * it may be that the unwritability of the disk is the reason
6480 	 * it's being detached!
6481 	 */
6482 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6483 
6484 	/*
6485 	 * Remove vd from its parent and compact the parent's children.
6486 	 */
6487 	vdev_remove_child(pvd, vd);
6488 	vdev_compact_children(pvd);
6489 
6490 	/*
6491 	 * Remember one of the remaining children so we can get tvd below.
6492 	 */
6493 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6494 
6495 	/*
6496 	 * If we need to remove the remaining child from the list of hot spares,
6497 	 * do it now, marking the vdev as no longer a spare in the process.
6498 	 * We must do this before vdev_remove_parent(), because that can
6499 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6500 	 * reason, we must remove the spare now, in the same txg as the detach;
6501 	 * otherwise someone could attach a new sibling, change the GUID, and
6502 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6503 	 */
6504 	if (unspare) {
6505 		ASSERT(cvd->vdev_isspare);
6506 		spa_spare_remove(cvd);
6507 		unspare_guid = cvd->vdev_guid;
6508 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6509 		cvd->vdev_unspare = B_TRUE;
6510 	}
6511 
6512 	/*
6513 	 * If the parent mirror/replacing vdev only has one child,
6514 	 * the parent is no longer needed.  Remove it from the tree.
6515 	 */
6516 	if (pvd->vdev_children == 1) {
6517 		if (pvd->vdev_ops == &vdev_spare_ops)
6518 			cvd->vdev_unspare = B_FALSE;
6519 		vdev_remove_parent(cvd);
6520 	}
6521 
6522 	/*
6523 	 * We don't set tvd until now because the parent we just removed
6524 	 * may have been the previous top-level vdev.
6525 	 */
6526 	tvd = cvd->vdev_top;
6527 	ASSERT(tvd->vdev_parent == rvd);
6528 
6529 	/*
6530 	 * Reevaluate the parent vdev state.
6531 	 */
6532 	vdev_propagate_state(cvd);
6533 
6534 	/*
6535 	 * If the 'autoexpand' property is set on the pool then automatically
6536 	 * try to expand the size of the pool. For example if the device we
6537 	 * just detached was smaller than the others, it may be possible to
6538 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6539 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6540 	 */
6541 	if (spa->spa_autoexpand) {
6542 		vdev_reopen(tvd);
6543 		vdev_expand(tvd, txg);
6544 	}
6545 
6546 	vdev_config_dirty(tvd);
6547 
6548 	/*
6549 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6550 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6551 	 * But first make sure we're not on any *other* txg's DTL list, to
6552 	 * prevent vd from being accessed after it's freed.
6553 	 */
6554 	vdpath = spa_strdup(vd->vdev_path);
6555 	for (int t = 0; t < TXG_SIZE; t++)
6556 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6557 	vd->vdev_detached = B_TRUE;
6558 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6559 
6560 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6561 
6562 	/* hang on to the spa before we release the lock */
6563 	spa_open_ref(spa, FTAG);
6564 
6565 	error = spa_vdev_exit(spa, vd, txg, 0);
6566 
6567 	spa_history_log_internal(spa, "detach", NULL,
6568 	    "vdev=%s", vdpath);
6569 	spa_strfree(vdpath);
6570 
6571 	/*
6572 	 * If this was the removal of the original device in a hot spare vdev,
6573 	 * then we want to go through and remove the device from the hot spare
6574 	 * list of every other pool.
6575 	 */
6576 	if (unspare) {
6577 		spa_t *altspa = NULL;
6578 
6579 		mutex_enter(&spa_namespace_lock);
6580 		while ((altspa = spa_next(altspa)) != NULL) {
6581 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6582 			    altspa == spa)
6583 				continue;
6584 
6585 			spa_open_ref(altspa, FTAG);
6586 			mutex_exit(&spa_namespace_lock);
6587 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6588 			mutex_enter(&spa_namespace_lock);
6589 			spa_close(altspa, FTAG);
6590 		}
6591 		mutex_exit(&spa_namespace_lock);
6592 
6593 		/* search the rest of the vdevs for spares to remove */
6594 		spa_vdev_resilver_done(spa);
6595 	}
6596 
6597 	/* all done with the spa; OK to release */
6598 	mutex_enter(&spa_namespace_lock);
6599 	spa_close(spa, FTAG);
6600 	mutex_exit(&spa_namespace_lock);
6601 
6602 	return (error);
6603 }
6604 
6605 static int
6606 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6607     list_t *vd_list)
6608 {
6609 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6610 
6611 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6612 
6613 	/* Look up vdev and ensure it's a leaf. */
6614 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6615 	if (vd == NULL || vd->vdev_detached) {
6616 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6617 		return (SET_ERROR(ENODEV));
6618 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6619 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6620 		return (SET_ERROR(EINVAL));
6621 	} else if (!vdev_writeable(vd)) {
6622 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6623 		return (SET_ERROR(EROFS));
6624 	}
6625 	mutex_enter(&vd->vdev_initialize_lock);
6626 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6627 
6628 	/*
6629 	 * When we activate an initialize action we check to see
6630 	 * if the vdev_initialize_thread is NULL. We do this instead
6631 	 * of using the vdev_initialize_state since there might be
6632 	 * a previous initialization process which has completed but
6633 	 * the thread is not exited.
6634 	 */
6635 	if (cmd_type == POOL_INITIALIZE_START &&
6636 	    (vd->vdev_initialize_thread != NULL ||
6637 	    vd->vdev_top->vdev_removing)) {
6638 		mutex_exit(&vd->vdev_initialize_lock);
6639 		return (SET_ERROR(EBUSY));
6640 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6641 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6642 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6643 		mutex_exit(&vd->vdev_initialize_lock);
6644 		return (SET_ERROR(ESRCH));
6645 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6646 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6647 		mutex_exit(&vd->vdev_initialize_lock);
6648 		return (SET_ERROR(ESRCH));
6649 	}
6650 
6651 	switch (cmd_type) {
6652 	case POOL_INITIALIZE_START:
6653 		vdev_initialize(vd);
6654 		break;
6655 	case POOL_INITIALIZE_CANCEL:
6656 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6657 		break;
6658 	case POOL_INITIALIZE_SUSPEND:
6659 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6660 		break;
6661 	default:
6662 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6663 	}
6664 	mutex_exit(&vd->vdev_initialize_lock);
6665 
6666 	return (0);
6667 }
6668 
6669 int
6670 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6671     nvlist_t *vdev_errlist)
6672 {
6673 	int total_errors = 0;
6674 	list_t vd_list;
6675 
6676 	list_create(&vd_list, sizeof (vdev_t),
6677 	    offsetof(vdev_t, vdev_initialize_node));
6678 
6679 	/*
6680 	 * We hold the namespace lock through the whole function
6681 	 * to prevent any changes to the pool while we're starting or
6682 	 * stopping initialization. The config and state locks are held so that
6683 	 * we can properly assess the vdev state before we commit to
6684 	 * the initializing operation.
6685 	 */
6686 	mutex_enter(&spa_namespace_lock);
6687 
6688 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6689 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6690 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6691 
6692 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6693 		    &vd_list);
6694 		if (error != 0) {
6695 			char guid_as_str[MAXNAMELEN];
6696 
6697 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6698 			    "%llu", (unsigned long long)vdev_guid);
6699 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6700 			total_errors++;
6701 		}
6702 	}
6703 
6704 	/* Wait for all initialize threads to stop. */
6705 	vdev_initialize_stop_wait(spa, &vd_list);
6706 
6707 	/* Sync out the initializing state */
6708 	txg_wait_synced(spa->spa_dsl_pool, 0);
6709 	mutex_exit(&spa_namespace_lock);
6710 
6711 	list_destroy(&vd_list);
6712 
6713 	return (total_errors);
6714 }
6715 
6716 static int
6717 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6718     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
6719 {
6720 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6721 
6722 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6723 
6724 	/* Look up vdev and ensure it's a leaf. */
6725 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6726 	if (vd == NULL || vd->vdev_detached) {
6727 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6728 		return (SET_ERROR(ENODEV));
6729 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6730 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6731 		return (SET_ERROR(EINVAL));
6732 	} else if (!vdev_writeable(vd)) {
6733 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6734 		return (SET_ERROR(EROFS));
6735 	} else if (!vd->vdev_has_trim) {
6736 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6737 		return (SET_ERROR(EOPNOTSUPP));
6738 	} else if (secure && !vd->vdev_has_securetrim) {
6739 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6740 		return (SET_ERROR(EOPNOTSUPP));
6741 	}
6742 	mutex_enter(&vd->vdev_trim_lock);
6743 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6744 
6745 	/*
6746 	 * When we activate a TRIM action we check to see if the
6747 	 * vdev_trim_thread is NULL. We do this instead of using the
6748 	 * vdev_trim_state since there might be a previous TRIM process
6749 	 * which has completed but the thread is not exited.
6750 	 */
6751 	if (cmd_type == POOL_TRIM_START &&
6752 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
6753 		mutex_exit(&vd->vdev_trim_lock);
6754 		return (SET_ERROR(EBUSY));
6755 	} else if (cmd_type == POOL_TRIM_CANCEL &&
6756 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
6757 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
6758 		mutex_exit(&vd->vdev_trim_lock);
6759 		return (SET_ERROR(ESRCH));
6760 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
6761 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
6762 		mutex_exit(&vd->vdev_trim_lock);
6763 		return (SET_ERROR(ESRCH));
6764 	}
6765 
6766 	switch (cmd_type) {
6767 	case POOL_TRIM_START:
6768 		vdev_trim(vd, rate, partial, secure);
6769 		break;
6770 	case POOL_TRIM_CANCEL:
6771 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
6772 		break;
6773 	case POOL_TRIM_SUSPEND:
6774 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
6775 		break;
6776 	default:
6777 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6778 	}
6779 	mutex_exit(&vd->vdev_trim_lock);
6780 
6781 	return (0);
6782 }
6783 
6784 /*
6785  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
6786  * TRIM threads for each child vdev.  These threads pass over all of the free
6787  * space in the vdev's metaslabs and issues TRIM commands for that space.
6788  */
6789 int
6790 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
6791     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
6792 {
6793 	int total_errors = 0;
6794 	list_t vd_list;
6795 
6796 	list_create(&vd_list, sizeof (vdev_t),
6797 	    offsetof(vdev_t, vdev_trim_node));
6798 
6799 	/*
6800 	 * We hold the namespace lock through the whole function
6801 	 * to prevent any changes to the pool while we're starting or
6802 	 * stopping TRIM. The config and state locks are held so that
6803 	 * we can properly assess the vdev state before we commit to
6804 	 * the TRIM operation.
6805 	 */
6806 	mutex_enter(&spa_namespace_lock);
6807 
6808 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6809 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6810 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6811 
6812 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
6813 		    rate, partial, secure, &vd_list);
6814 		if (error != 0) {
6815 			char guid_as_str[MAXNAMELEN];
6816 
6817 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6818 			    "%llu", (unsigned long long)vdev_guid);
6819 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6820 			total_errors++;
6821 		}
6822 	}
6823 
6824 	/* Wait for all TRIM threads to stop. */
6825 	vdev_trim_stop_wait(spa, &vd_list);
6826 
6827 	/* Sync out the TRIM state */
6828 	txg_wait_synced(spa->spa_dsl_pool, 0);
6829 	mutex_exit(&spa_namespace_lock);
6830 
6831 	list_destroy(&vd_list);
6832 
6833 	return (total_errors);
6834 }
6835 
6836 /*
6837  * Split a set of devices from their mirrors, and create a new pool from them.
6838  */
6839 int
6840 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6841     nvlist_t *props, boolean_t exp)
6842 {
6843 	int error = 0;
6844 	uint64_t txg, *glist;
6845 	spa_t *newspa;
6846 	uint_t c, children, lastlog;
6847 	nvlist_t **child, *nvl, *tmp;
6848 	dmu_tx_t *tx;
6849 	char *altroot = NULL;
6850 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6851 	boolean_t activate_slog;
6852 
6853 	ASSERT(spa_writeable(spa));
6854 
6855 	txg = spa_vdev_enter(spa);
6856 
6857 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6858 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6859 		error = (spa_has_checkpoint(spa)) ?
6860 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6861 		return (spa_vdev_exit(spa, NULL, txg, error));
6862 	}
6863 
6864 	/* clear the log and flush everything up to now */
6865 	activate_slog = spa_passivate_log(spa);
6866 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6867 	error = spa_reset_logs(spa);
6868 	txg = spa_vdev_config_enter(spa);
6869 
6870 	if (activate_slog)
6871 		spa_activate_log(spa);
6872 
6873 	if (error != 0)
6874 		return (spa_vdev_exit(spa, NULL, txg, error));
6875 
6876 	/* check new spa name before going any further */
6877 	if (spa_lookup(newname) != NULL)
6878 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6879 
6880 	/*
6881 	 * scan through all the children to ensure they're all mirrors
6882 	 */
6883 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6884 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6885 	    &children) != 0)
6886 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6887 
6888 	/* first, check to ensure we've got the right child count */
6889 	rvd = spa->spa_root_vdev;
6890 	lastlog = 0;
6891 	for (c = 0; c < rvd->vdev_children; c++) {
6892 		vdev_t *vd = rvd->vdev_child[c];
6893 
6894 		/* don't count the holes & logs as children */
6895 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6896 			if (lastlog == 0)
6897 				lastlog = c;
6898 			continue;
6899 		}
6900 
6901 		lastlog = 0;
6902 	}
6903 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6904 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6905 
6906 	/* next, ensure no spare or cache devices are part of the split */
6907 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6908 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6909 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6910 
6911 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6912 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6913 
6914 	/* then, loop over each vdev and validate it */
6915 	for (c = 0; c < children; c++) {
6916 		uint64_t is_hole = 0;
6917 
6918 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6919 		    &is_hole);
6920 
6921 		if (is_hole != 0) {
6922 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6923 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6924 				continue;
6925 			} else {
6926 				error = SET_ERROR(EINVAL);
6927 				break;
6928 			}
6929 		}
6930 
6931 		/* which disk is going to be split? */
6932 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6933 		    &glist[c]) != 0) {
6934 			error = SET_ERROR(EINVAL);
6935 			break;
6936 		}
6937 
6938 		/* look it up in the spa */
6939 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6940 		if (vml[c] == NULL) {
6941 			error = SET_ERROR(ENODEV);
6942 			break;
6943 		}
6944 
6945 		/* make sure there's nothing stopping the split */
6946 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6947 		    vml[c]->vdev_islog ||
6948 		    !vdev_is_concrete(vml[c]) ||
6949 		    vml[c]->vdev_isspare ||
6950 		    vml[c]->vdev_isl2cache ||
6951 		    !vdev_writeable(vml[c]) ||
6952 		    vml[c]->vdev_children != 0 ||
6953 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6954 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6955 			error = SET_ERROR(EINVAL);
6956 			break;
6957 		}
6958 
6959 		if (vdev_dtl_required(vml[c])) {
6960 			error = SET_ERROR(EBUSY);
6961 			break;
6962 		}
6963 
6964 		/* we need certain info from the top level */
6965 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6966 		    vml[c]->vdev_top->vdev_ms_array) == 0);
6967 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6968 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6969 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6970 		    vml[c]->vdev_top->vdev_asize) == 0);
6971 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6972 		    vml[c]->vdev_top->vdev_ashift) == 0);
6973 
6974 		/* transfer per-vdev ZAPs */
6975 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6976 		VERIFY0(nvlist_add_uint64(child[c],
6977 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6978 
6979 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6980 		VERIFY0(nvlist_add_uint64(child[c],
6981 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
6982 		    vml[c]->vdev_parent->vdev_top_zap));
6983 	}
6984 
6985 	if (error != 0) {
6986 		kmem_free(vml, children * sizeof (vdev_t *));
6987 		kmem_free(glist, children * sizeof (uint64_t));
6988 		return (spa_vdev_exit(spa, NULL, txg, error));
6989 	}
6990 
6991 	/* stop writers from using the disks */
6992 	for (c = 0; c < children; c++) {
6993 		if (vml[c] != NULL)
6994 			vml[c]->vdev_offline = B_TRUE;
6995 	}
6996 	vdev_reopen(spa->spa_root_vdev);
6997 
6998 	/*
6999 	 * Temporarily record the splitting vdevs in the spa config.  This
7000 	 * will disappear once the config is regenerated.
7001 	 */
7002 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7003 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7004 	    glist, children) == 0);
7005 	kmem_free(glist, children * sizeof (uint64_t));
7006 
7007 	mutex_enter(&spa->spa_props_lock);
7008 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7009 	    nvl) == 0);
7010 	mutex_exit(&spa->spa_props_lock);
7011 	spa->spa_config_splitting = nvl;
7012 	vdev_config_dirty(spa->spa_root_vdev);
7013 
7014 	/* configure and create the new pool */
7015 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7016 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7017 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7018 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7019 	    spa_version(spa)) == 0);
7020 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7021 	    spa->spa_config_txg) == 0);
7022 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7023 	    spa_generate_guid(NULL)) == 0);
7024 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7025 	(void) nvlist_lookup_string(props,
7026 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7027 
7028 	/* add the new pool to the namespace */
7029 	newspa = spa_add(newname, config, altroot);
7030 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7031 	newspa->spa_config_txg = spa->spa_config_txg;
7032 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7033 
7034 	/* release the spa config lock, retaining the namespace lock */
7035 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7036 
7037 	if (zio_injection_enabled)
7038 		zio_handle_panic_injection(spa, FTAG, 1);
7039 
7040 	spa_activate(newspa, spa_mode_global);
7041 	spa_async_suspend(newspa);
7042 
7043 	/*
7044 	 * Temporarily stop the initializing and TRIM activity.  We set the
7045 	 * state to ACTIVE so that we know to resume initializing or TRIM
7046 	 * once the split has completed.
7047 	 */
7048 	list_t vd_initialize_list;
7049 	list_create(&vd_initialize_list, sizeof (vdev_t),
7050 	    offsetof(vdev_t, vdev_initialize_node));
7051 
7052 	list_t vd_trim_list;
7053 	list_create(&vd_trim_list, sizeof (vdev_t),
7054 	    offsetof(vdev_t, vdev_trim_node));
7055 
7056 	for (c = 0; c < children; c++) {
7057 		if (vml[c] != NULL) {
7058 			mutex_enter(&vml[c]->vdev_initialize_lock);
7059 			vdev_initialize_stop(vml[c],
7060 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7061 			mutex_exit(&vml[c]->vdev_initialize_lock);
7062 
7063 			mutex_enter(&vml[c]->vdev_trim_lock);
7064 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7065 			mutex_exit(&vml[c]->vdev_trim_lock);
7066 		}
7067 	}
7068 
7069 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7070 	vdev_trim_stop_wait(spa, &vd_trim_list);
7071 
7072 	list_destroy(&vd_initialize_list);
7073 	list_destroy(&vd_trim_list);
7074 
7075 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7076 
7077 	/* create the new pool from the disks of the original pool */
7078 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7079 	if (error)
7080 		goto out;
7081 
7082 	/* if that worked, generate a real config for the new pool */
7083 	if (newspa->spa_root_vdev != NULL) {
7084 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7085 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7086 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7087 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7088 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7089 		    B_TRUE));
7090 	}
7091 
7092 	/* set the props */
7093 	if (props != NULL) {
7094 		spa_configfile_set(newspa, props, B_FALSE);
7095 		error = spa_prop_set(newspa, props);
7096 		if (error)
7097 			goto out;
7098 	}
7099 
7100 	/* flush everything */
7101 	txg = spa_vdev_config_enter(newspa);
7102 	vdev_config_dirty(newspa->spa_root_vdev);
7103 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7104 
7105 	if (zio_injection_enabled)
7106 		zio_handle_panic_injection(spa, FTAG, 2);
7107 
7108 	spa_async_resume(newspa);
7109 
7110 	/* finally, update the original pool's config */
7111 	txg = spa_vdev_config_enter(spa);
7112 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7113 	error = dmu_tx_assign(tx, TXG_WAIT);
7114 	if (error != 0)
7115 		dmu_tx_abort(tx);
7116 	for (c = 0; c < children; c++) {
7117 		if (vml[c] != NULL) {
7118 			vdev_split(vml[c]);
7119 			if (error == 0)
7120 				spa_history_log_internal(spa, "detach", tx,
7121 				    "vdev=%s", vml[c]->vdev_path);
7122 
7123 			vdev_free(vml[c]);
7124 		}
7125 	}
7126 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7127 	vdev_config_dirty(spa->spa_root_vdev);
7128 	spa->spa_config_splitting = NULL;
7129 	nvlist_free(nvl);
7130 	if (error == 0)
7131 		dmu_tx_commit(tx);
7132 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7133 
7134 	if (zio_injection_enabled)
7135 		zio_handle_panic_injection(spa, FTAG, 3);
7136 
7137 	/* split is complete; log a history record */
7138 	spa_history_log_internal(newspa, "split", NULL,
7139 	    "from pool %s", spa_name(spa));
7140 
7141 	kmem_free(vml, children * sizeof (vdev_t *));
7142 
7143 	/* if we're not going to mount the filesystems in userland, export */
7144 	if (exp)
7145 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7146 		    B_FALSE, B_FALSE);
7147 
7148 	return (error);
7149 
7150 out:
7151 	spa_unload(newspa);
7152 	spa_deactivate(newspa);
7153 	spa_remove(newspa);
7154 
7155 	txg = spa_vdev_config_enter(spa);
7156 
7157 	/* re-online all offlined disks */
7158 	for (c = 0; c < children; c++) {
7159 		if (vml[c] != NULL)
7160 			vml[c]->vdev_offline = B_FALSE;
7161 	}
7162 
7163 	/* restart initializing or trimming disks as necessary */
7164 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7165 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7166 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7167 
7168 	vdev_reopen(spa->spa_root_vdev);
7169 
7170 	nvlist_free(spa->spa_config_splitting);
7171 	spa->spa_config_splitting = NULL;
7172 	(void) spa_vdev_exit(spa, NULL, txg, error);
7173 
7174 	kmem_free(vml, children * sizeof (vdev_t *));
7175 	return (error);
7176 }
7177 
7178 /*
7179  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7180  * currently spared, so we can detach it.
7181  */
7182 static vdev_t *
7183 spa_vdev_resilver_done_hunt(vdev_t *vd)
7184 {
7185 	vdev_t *newvd, *oldvd;
7186 
7187 	for (int c = 0; c < vd->vdev_children; c++) {
7188 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7189 		if (oldvd != NULL)
7190 			return (oldvd);
7191 	}
7192 
7193 	/*
7194 	 * Check for a completed replacement.  We always consider the first
7195 	 * vdev in the list to be the oldest vdev, and the last one to be
7196 	 * the newest (see spa_vdev_attach() for how that works).  In
7197 	 * the case where the newest vdev is faulted, we will not automatically
7198 	 * remove it after a resilver completes.  This is OK as it will require
7199 	 * user intervention to determine which disk the admin wishes to keep.
7200 	 */
7201 	if (vd->vdev_ops == &vdev_replacing_ops) {
7202 		ASSERT(vd->vdev_children > 1);
7203 
7204 		newvd = vd->vdev_child[vd->vdev_children - 1];
7205 		oldvd = vd->vdev_child[0];
7206 
7207 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7208 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7209 		    !vdev_dtl_required(oldvd))
7210 			return (oldvd);
7211 	}
7212 
7213 	/*
7214 	 * Check for a completed resilver with the 'unspare' flag set.
7215 	 * Also potentially update faulted state.
7216 	 */
7217 	if (vd->vdev_ops == &vdev_spare_ops) {
7218 		vdev_t *first = vd->vdev_child[0];
7219 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7220 
7221 		if (last->vdev_unspare) {
7222 			oldvd = first;
7223 			newvd = last;
7224 		} else if (first->vdev_unspare) {
7225 			oldvd = last;
7226 			newvd = first;
7227 		} else {
7228 			oldvd = NULL;
7229 		}
7230 
7231 		if (oldvd != NULL &&
7232 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7233 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7234 		    !vdev_dtl_required(oldvd))
7235 			return (oldvd);
7236 
7237 		vdev_propagate_state(vd);
7238 
7239 		/*
7240 		 * If there are more than two spares attached to a disk,
7241 		 * and those spares are not required, then we want to
7242 		 * attempt to free them up now so that they can be used
7243 		 * by other pools.  Once we're back down to a single
7244 		 * disk+spare, we stop removing them.
7245 		 */
7246 		if (vd->vdev_children > 2) {
7247 			newvd = vd->vdev_child[1];
7248 
7249 			if (newvd->vdev_isspare && last->vdev_isspare &&
7250 			    vdev_dtl_empty(last, DTL_MISSING) &&
7251 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7252 			    !vdev_dtl_required(newvd))
7253 				return (newvd);
7254 		}
7255 	}
7256 
7257 	return (NULL);
7258 }
7259 
7260 static void
7261 spa_vdev_resilver_done(spa_t *spa)
7262 {
7263 	vdev_t *vd, *pvd, *ppvd;
7264 	uint64_t guid, sguid, pguid, ppguid;
7265 
7266 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7267 
7268 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7269 		pvd = vd->vdev_parent;
7270 		ppvd = pvd->vdev_parent;
7271 		guid = vd->vdev_guid;
7272 		pguid = pvd->vdev_guid;
7273 		ppguid = ppvd->vdev_guid;
7274 		sguid = 0;
7275 		/*
7276 		 * If we have just finished replacing a hot spared device, then
7277 		 * we need to detach the parent's first child (the original hot
7278 		 * spare) as well.
7279 		 */
7280 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7281 		    ppvd->vdev_children == 2) {
7282 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7283 			sguid = ppvd->vdev_child[1]->vdev_guid;
7284 		}
7285 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7286 
7287 		spa_config_exit(spa, SCL_ALL, FTAG);
7288 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7289 			return;
7290 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7291 			return;
7292 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7293 	}
7294 
7295 	spa_config_exit(spa, SCL_ALL, FTAG);
7296 }
7297 
7298 /*
7299  * Update the stored path or FRU for this vdev.
7300  */
7301 int
7302 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7303     boolean_t ispath)
7304 {
7305 	vdev_t *vd;
7306 	boolean_t sync = B_FALSE;
7307 
7308 	ASSERT(spa_writeable(spa));
7309 
7310 	spa_vdev_state_enter(spa, SCL_ALL);
7311 
7312 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7313 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7314 
7315 	if (!vd->vdev_ops->vdev_op_leaf)
7316 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7317 
7318 	if (ispath) {
7319 		if (strcmp(value, vd->vdev_path) != 0) {
7320 			spa_strfree(vd->vdev_path);
7321 			vd->vdev_path = spa_strdup(value);
7322 			sync = B_TRUE;
7323 		}
7324 	} else {
7325 		if (vd->vdev_fru == NULL) {
7326 			vd->vdev_fru = spa_strdup(value);
7327 			sync = B_TRUE;
7328 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7329 			spa_strfree(vd->vdev_fru);
7330 			vd->vdev_fru = spa_strdup(value);
7331 			sync = B_TRUE;
7332 		}
7333 	}
7334 
7335 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7336 }
7337 
7338 int
7339 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7340 {
7341 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7342 }
7343 
7344 int
7345 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7346 {
7347 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7348 }
7349 
7350 /*
7351  * ==========================================================================
7352  * SPA Scanning
7353  * ==========================================================================
7354  */
7355 int
7356 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7357 {
7358 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7359 
7360 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7361 		return (SET_ERROR(EBUSY));
7362 
7363 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7364 }
7365 
7366 int
7367 spa_scan_stop(spa_t *spa)
7368 {
7369 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7370 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7371 		return (SET_ERROR(EBUSY));
7372 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7373 }
7374 
7375 int
7376 spa_scan(spa_t *spa, pool_scan_func_t func)
7377 {
7378 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7379 
7380 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7381 		return (SET_ERROR(ENOTSUP));
7382 
7383 	if (func == POOL_SCAN_RESILVER &&
7384 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7385 		return (SET_ERROR(ENOTSUP));
7386 
7387 	/*
7388 	 * If a resilver was requested, but there is no DTL on a
7389 	 * writeable leaf device, we have nothing to do.
7390 	 */
7391 	if (func == POOL_SCAN_RESILVER &&
7392 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7393 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7394 		return (0);
7395 	}
7396 
7397 	return (dsl_scan(spa->spa_dsl_pool, func));
7398 }
7399 
7400 /*
7401  * ==========================================================================
7402  * SPA async task processing
7403  * ==========================================================================
7404  */
7405 
7406 static void
7407 spa_async_remove(spa_t *spa, vdev_t *vd)
7408 {
7409 	if (vd->vdev_remove_wanted) {
7410 		vd->vdev_remove_wanted = B_FALSE;
7411 		vd->vdev_delayed_close = B_FALSE;
7412 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7413 
7414 		/*
7415 		 * We want to clear the stats, but we don't want to do a full
7416 		 * vdev_clear() as that will cause us to throw away
7417 		 * degraded/faulted state as well as attempt to reopen the
7418 		 * device, all of which is a waste.
7419 		 */
7420 		vd->vdev_stat.vs_read_errors = 0;
7421 		vd->vdev_stat.vs_write_errors = 0;
7422 		vd->vdev_stat.vs_checksum_errors = 0;
7423 
7424 		vdev_state_dirty(vd->vdev_top);
7425 	}
7426 
7427 	for (int c = 0; c < vd->vdev_children; c++)
7428 		spa_async_remove(spa, vd->vdev_child[c]);
7429 }
7430 
7431 static void
7432 spa_async_probe(spa_t *spa, vdev_t *vd)
7433 {
7434 	if (vd->vdev_probe_wanted) {
7435 		vd->vdev_probe_wanted = B_FALSE;
7436 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7437 	}
7438 
7439 	for (int c = 0; c < vd->vdev_children; c++)
7440 		spa_async_probe(spa, vd->vdev_child[c]);
7441 }
7442 
7443 static void
7444 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7445 {
7446 	sysevent_id_t eid;
7447 	nvlist_t *attr;
7448 	char *physpath;
7449 
7450 	if (!spa->spa_autoexpand)
7451 		return;
7452 
7453 	for (int c = 0; c < vd->vdev_children; c++) {
7454 		vdev_t *cvd = vd->vdev_child[c];
7455 		spa_async_autoexpand(spa, cvd);
7456 	}
7457 
7458 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7459 		return;
7460 
7461 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7462 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7463 
7464 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7465 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
7466 
7467 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7468 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
7469 
7470 	nvlist_free(attr);
7471 	kmem_free(physpath, MAXPATHLEN);
7472 }
7473 
7474 static void
7475 spa_async_thread(void *arg)
7476 {
7477 	spa_t *spa = (spa_t *)arg;
7478 	dsl_pool_t *dp = spa->spa_dsl_pool;
7479 	int tasks;
7480 
7481 	ASSERT(spa->spa_sync_on);
7482 
7483 	mutex_enter(&spa->spa_async_lock);
7484 	tasks = spa->spa_async_tasks;
7485 	spa->spa_async_tasks = 0;
7486 	mutex_exit(&spa->spa_async_lock);
7487 
7488 	/*
7489 	 * See if the config needs to be updated.
7490 	 */
7491 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7492 		uint64_t old_space, new_space;
7493 
7494 		mutex_enter(&spa_namespace_lock);
7495 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7496 		old_space += metaslab_class_get_space(spa_special_class(spa));
7497 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
7498 
7499 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7500 
7501 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7502 		new_space += metaslab_class_get_space(spa_special_class(spa));
7503 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
7504 		mutex_exit(&spa_namespace_lock);
7505 
7506 		/*
7507 		 * If the pool grew as a result of the config update,
7508 		 * then log an internal history event.
7509 		 */
7510 		if (new_space != old_space) {
7511 			spa_history_log_internal(spa, "vdev online", NULL,
7512 			    "pool '%s' size: %llu(+%llu)",
7513 			    spa_name(spa), new_space, new_space - old_space);
7514 		}
7515 	}
7516 
7517 	/*
7518 	 * See if any devices need to be marked REMOVED.
7519 	 */
7520 	if (tasks & SPA_ASYNC_REMOVE) {
7521 		spa_vdev_state_enter(spa, SCL_NONE);
7522 		spa_async_remove(spa, spa->spa_root_vdev);
7523 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7524 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7525 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7526 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7527 		(void) spa_vdev_state_exit(spa, NULL, 0);
7528 	}
7529 
7530 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7531 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7532 		spa_async_autoexpand(spa, spa->spa_root_vdev);
7533 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7534 	}
7535 
7536 	/*
7537 	 * See if any devices need to be probed.
7538 	 */
7539 	if (tasks & SPA_ASYNC_PROBE) {
7540 		spa_vdev_state_enter(spa, SCL_NONE);
7541 		spa_async_probe(spa, spa->spa_root_vdev);
7542 		(void) spa_vdev_state_exit(spa, NULL, 0);
7543 	}
7544 
7545 	/*
7546 	 * If any devices are done replacing, detach them.
7547 	 */
7548 	if (tasks & SPA_ASYNC_RESILVER_DONE)
7549 		spa_vdev_resilver_done(spa);
7550 
7551 	/*
7552 	 * Kick off a resilver.
7553 	 */
7554 	if (tasks & SPA_ASYNC_RESILVER &&
7555 	    (!dsl_scan_resilvering(dp) ||
7556 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7557 		dsl_resilver_restart(dp, 0);
7558 
7559 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7560 		mutex_enter(&spa_namespace_lock);
7561 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7562 		vdev_initialize_restart(spa->spa_root_vdev);
7563 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7564 		mutex_exit(&spa_namespace_lock);
7565 	}
7566 
7567 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
7568 		mutex_enter(&spa_namespace_lock);
7569 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7570 		vdev_trim_restart(spa->spa_root_vdev);
7571 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7572 		mutex_exit(&spa_namespace_lock);
7573 	}
7574 
7575 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7576 		mutex_enter(&spa_namespace_lock);
7577 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7578 		vdev_autotrim_restart(spa);
7579 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7580 		mutex_exit(&spa_namespace_lock);
7581 	}
7582 
7583 	/*
7584 	 * Let the world know that we're done.
7585 	 */
7586 	mutex_enter(&spa->spa_async_lock);
7587 	spa->spa_async_thread = NULL;
7588 	cv_broadcast(&spa->spa_async_cv);
7589 	mutex_exit(&spa->spa_async_lock);
7590 	thread_exit();
7591 }
7592 
7593 void
7594 spa_async_suspend(spa_t *spa)
7595 {
7596 	mutex_enter(&spa->spa_async_lock);
7597 	spa->spa_async_suspended++;
7598 	while (spa->spa_async_thread != NULL)
7599 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7600 	mutex_exit(&spa->spa_async_lock);
7601 
7602 	spa_vdev_remove_suspend(spa);
7603 
7604 	zthr_t *condense_thread = spa->spa_condense_zthr;
7605 	if (condense_thread != NULL)
7606 		zthr_cancel(condense_thread);
7607 
7608 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7609 	if (discard_thread != NULL)
7610 		zthr_cancel(discard_thread);
7611 }
7612 
7613 void
7614 spa_async_resume(spa_t *spa)
7615 {
7616 	mutex_enter(&spa->spa_async_lock);
7617 	ASSERT(spa->spa_async_suspended != 0);
7618 	spa->spa_async_suspended--;
7619 	mutex_exit(&spa->spa_async_lock);
7620 	spa_restart_removal(spa);
7621 
7622 	zthr_t *condense_thread = spa->spa_condense_zthr;
7623 	if (condense_thread != NULL)
7624 		zthr_resume(condense_thread);
7625 
7626 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7627 	if (discard_thread != NULL)
7628 		zthr_resume(discard_thread);
7629 }
7630 
7631 static boolean_t
7632 spa_async_tasks_pending(spa_t *spa)
7633 {
7634 	uint_t non_config_tasks;
7635 	uint_t config_task;
7636 	boolean_t config_task_suspended;
7637 
7638 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7639 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7640 	if (spa->spa_ccw_fail_time == 0) {
7641 		config_task_suspended = B_FALSE;
7642 	} else {
7643 		config_task_suspended =
7644 		    (gethrtime() - spa->spa_ccw_fail_time) <
7645 		    (zfs_ccw_retry_interval * NANOSEC);
7646 	}
7647 
7648 	return (non_config_tasks || (config_task && !config_task_suspended));
7649 }
7650 
7651 static void
7652 spa_async_dispatch(spa_t *spa)
7653 {
7654 	mutex_enter(&spa->spa_async_lock);
7655 	if (spa_async_tasks_pending(spa) &&
7656 	    !spa->spa_async_suspended &&
7657 	    spa->spa_async_thread == NULL &&
7658 	    rootdir != NULL)
7659 		spa->spa_async_thread = thread_create(NULL, 0,
7660 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7661 	mutex_exit(&spa->spa_async_lock);
7662 }
7663 
7664 void
7665 spa_async_request(spa_t *spa, int task)
7666 {
7667 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7668 	mutex_enter(&spa->spa_async_lock);
7669 	spa->spa_async_tasks |= task;
7670 	mutex_exit(&spa->spa_async_lock);
7671 }
7672 
7673 /*
7674  * ==========================================================================
7675  * SPA syncing routines
7676  * ==========================================================================
7677  */
7678 
7679 static int
7680 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7681 {
7682 	bpobj_t *bpo = arg;
7683 	bpobj_enqueue(bpo, bp, tx);
7684 	return (0);
7685 }
7686 
7687 static int
7688 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7689 {
7690 	zio_t *zio = arg;
7691 
7692 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7693 	    zio->io_flags));
7694 	return (0);
7695 }
7696 
7697 /*
7698  * Note: this simple function is not inlined to make it easier to dtrace the
7699  * amount of time spent syncing frees.
7700  */
7701 static void
7702 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7703 {
7704 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7705 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7706 	VERIFY(zio_wait(zio) == 0);
7707 }
7708 
7709 /*
7710  * Note: this simple function is not inlined to make it easier to dtrace the
7711  * amount of time spent syncing deferred frees.
7712  */
7713 static void
7714 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7715 {
7716 	if (spa_sync_pass(spa) != 1)
7717 		return;
7718 
7719 	/*
7720 	 * Note:
7721 	 * If the log space map feature is active, we stop deferring
7722 	 * frees to the next TXG and therefore running this function
7723 	 * would be considered a no-op as spa_deferred_bpobj should
7724 	 * not have any entries.
7725 	 *
7726 	 * That said we run this function anyway (instead of returning
7727 	 * immediately) for the edge-case scenario where we just
7728 	 * activated the log space map feature in this TXG but we have
7729 	 * deferred frees from the previous TXG.
7730 	 */
7731 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7732 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7733 	    spa_free_sync_cb, zio, tx), ==, 0);
7734 	VERIFY0(zio_wait(zio));
7735 }
7736 
7737 
7738 static void
7739 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7740 {
7741 	char *packed = NULL;
7742 	size_t bufsize;
7743 	size_t nvsize = 0;
7744 	dmu_buf_t *db;
7745 
7746 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7747 
7748 	/*
7749 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7750 	 * information.  This avoids the dmu_buf_will_dirty() path and
7751 	 * saves us a pre-read to get data we don't actually care about.
7752 	 */
7753 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7754 	packed = kmem_alloc(bufsize, KM_SLEEP);
7755 
7756 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7757 	    KM_SLEEP) == 0);
7758 	bzero(packed + nvsize, bufsize - nvsize);
7759 
7760 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7761 
7762 	kmem_free(packed, bufsize);
7763 
7764 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7765 	dmu_buf_will_dirty(db, tx);
7766 	*(uint64_t *)db->db_data = nvsize;
7767 	dmu_buf_rele(db, FTAG);
7768 }
7769 
7770 static void
7771 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7772     const char *config, const char *entry)
7773 {
7774 	nvlist_t *nvroot;
7775 	nvlist_t **list;
7776 	int i;
7777 
7778 	if (!sav->sav_sync)
7779 		return;
7780 
7781 	/*
7782 	 * Update the MOS nvlist describing the list of available devices.
7783 	 * spa_validate_aux() will have already made sure this nvlist is
7784 	 * valid and the vdevs are labeled appropriately.
7785 	 */
7786 	if (sav->sav_object == 0) {
7787 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7788 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7789 		    sizeof (uint64_t), tx);
7790 		VERIFY(zap_update(spa->spa_meta_objset,
7791 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7792 		    &sav->sav_object, tx) == 0);
7793 	}
7794 
7795 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7796 	if (sav->sav_count == 0) {
7797 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7798 	} else {
7799 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7800 		for (i = 0; i < sav->sav_count; i++)
7801 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7802 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7803 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7804 		    sav->sav_count) == 0);
7805 		for (i = 0; i < sav->sav_count; i++)
7806 			nvlist_free(list[i]);
7807 		kmem_free(list, sav->sav_count * sizeof (void *));
7808 	}
7809 
7810 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7811 	nvlist_free(nvroot);
7812 
7813 	sav->sav_sync = B_FALSE;
7814 }
7815 
7816 /*
7817  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7818  * The all-vdev ZAP must be empty.
7819  */
7820 static void
7821 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7822 {
7823 	spa_t *spa = vd->vdev_spa;
7824 	if (vd->vdev_top_zap != 0) {
7825 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7826 		    vd->vdev_top_zap, tx));
7827 	}
7828 	if (vd->vdev_leaf_zap != 0) {
7829 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7830 		    vd->vdev_leaf_zap, tx));
7831 	}
7832 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7833 		spa_avz_build(vd->vdev_child[i], avz, tx);
7834 	}
7835 }
7836 
7837 static void
7838 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7839 {
7840 	nvlist_t *config;
7841 
7842 	/*
7843 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7844 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7845 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7846 	 * need to rebuild the AVZ although the config may not be dirty.
7847 	 */
7848 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7849 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7850 		return;
7851 
7852 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7853 
7854 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7855 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7856 	    spa->spa_all_vdev_zaps != 0);
7857 
7858 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7859 		/* Make and build the new AVZ */
7860 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7861 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7862 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7863 
7864 		/* Diff old AVZ with new one */
7865 		zap_cursor_t zc;
7866 		zap_attribute_t za;
7867 
7868 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7869 		    spa->spa_all_vdev_zaps);
7870 		    zap_cursor_retrieve(&zc, &za) == 0;
7871 		    zap_cursor_advance(&zc)) {
7872 			uint64_t vdzap = za.za_first_integer;
7873 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7874 			    vdzap) == ENOENT) {
7875 				/*
7876 				 * ZAP is listed in old AVZ but not in new one;
7877 				 * destroy it
7878 				 */
7879 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7880 				    tx));
7881 			}
7882 		}
7883 
7884 		zap_cursor_fini(&zc);
7885 
7886 		/* Destroy the old AVZ */
7887 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7888 		    spa->spa_all_vdev_zaps, tx));
7889 
7890 		/* Replace the old AVZ in the dir obj with the new one */
7891 		VERIFY0(zap_update(spa->spa_meta_objset,
7892 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7893 		    sizeof (new_avz), 1, &new_avz, tx));
7894 
7895 		spa->spa_all_vdev_zaps = new_avz;
7896 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7897 		zap_cursor_t zc;
7898 		zap_attribute_t za;
7899 
7900 		/* Walk through the AVZ and destroy all listed ZAPs */
7901 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7902 		    spa->spa_all_vdev_zaps);
7903 		    zap_cursor_retrieve(&zc, &za) == 0;
7904 		    zap_cursor_advance(&zc)) {
7905 			uint64_t zap = za.za_first_integer;
7906 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7907 		}
7908 
7909 		zap_cursor_fini(&zc);
7910 
7911 		/* Destroy and unlink the AVZ itself */
7912 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7913 		    spa->spa_all_vdev_zaps, tx));
7914 		VERIFY0(zap_remove(spa->spa_meta_objset,
7915 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7916 		spa->spa_all_vdev_zaps = 0;
7917 	}
7918 
7919 	if (spa->spa_all_vdev_zaps == 0) {
7920 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7921 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7922 		    DMU_POOL_VDEV_ZAP_MAP, tx);
7923 	}
7924 	spa->spa_avz_action = AVZ_ACTION_NONE;
7925 
7926 	/* Create ZAPs for vdevs that don't have them. */
7927 	vdev_construct_zaps(spa->spa_root_vdev, tx);
7928 
7929 	config = spa_config_generate(spa, spa->spa_root_vdev,
7930 	    dmu_tx_get_txg(tx), B_FALSE);
7931 
7932 	/*
7933 	 * If we're upgrading the spa version then make sure that
7934 	 * the config object gets updated with the correct version.
7935 	 */
7936 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7937 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7938 		    spa->spa_uberblock.ub_version);
7939 
7940 	spa_config_exit(spa, SCL_STATE, FTAG);
7941 
7942 	nvlist_free(spa->spa_config_syncing);
7943 	spa->spa_config_syncing = config;
7944 
7945 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7946 }
7947 
7948 static void
7949 spa_sync_version(void *arg, dmu_tx_t *tx)
7950 {
7951 	uint64_t *versionp = arg;
7952 	uint64_t version = *versionp;
7953 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7954 
7955 	/*
7956 	 * Setting the version is special cased when first creating the pool.
7957 	 */
7958 	ASSERT(tx->tx_txg != TXG_INITIAL);
7959 
7960 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7961 	ASSERT(version >= spa_version(spa));
7962 
7963 	spa->spa_uberblock.ub_version = version;
7964 	vdev_config_dirty(spa->spa_root_vdev);
7965 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7966 }
7967 
7968 /*
7969  * Set zpool properties.
7970  */
7971 static void
7972 spa_sync_props(void *arg, dmu_tx_t *tx)
7973 {
7974 	nvlist_t *nvp = arg;
7975 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7976 	objset_t *mos = spa->spa_meta_objset;
7977 	nvpair_t *elem = NULL;
7978 
7979 	mutex_enter(&spa->spa_props_lock);
7980 
7981 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
7982 		uint64_t intval;
7983 		char *strval, *fname;
7984 		zpool_prop_t prop;
7985 		const char *propname;
7986 		zprop_type_t proptype;
7987 		spa_feature_t fid;
7988 
7989 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7990 		case ZPOOL_PROP_INVAL:
7991 			/*
7992 			 * We checked this earlier in spa_prop_validate().
7993 			 */
7994 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
7995 
7996 			fname = strchr(nvpair_name(elem), '@') + 1;
7997 			VERIFY0(zfeature_lookup_name(fname, &fid));
7998 
7999 			spa_feature_enable(spa, fid, tx);
8000 			spa_history_log_internal(spa, "set", tx,
8001 			    "%s=enabled", nvpair_name(elem));
8002 			break;
8003 
8004 		case ZPOOL_PROP_VERSION:
8005 			intval = fnvpair_value_uint64(elem);
8006 			/*
8007 			 * The version is synced seperatly before other
8008 			 * properties and should be correct by now.
8009 			 */
8010 			ASSERT3U(spa_version(spa), >=, intval);
8011 			break;
8012 
8013 		case ZPOOL_PROP_ALTROOT:
8014 			/*
8015 			 * 'altroot' is a non-persistent property. It should
8016 			 * have been set temporarily at creation or import time.
8017 			 */
8018 			ASSERT(spa->spa_root != NULL);
8019 			break;
8020 
8021 		case ZPOOL_PROP_READONLY:
8022 		case ZPOOL_PROP_CACHEFILE:
8023 			/*
8024 			 * 'readonly' and 'cachefile' are also non-persisitent
8025 			 * properties.
8026 			 */
8027 			break;
8028 		case ZPOOL_PROP_COMMENT:
8029 			strval = fnvpair_value_string(elem);
8030 			if (spa->spa_comment != NULL)
8031 				spa_strfree(spa->spa_comment);
8032 			spa->spa_comment = spa_strdup(strval);
8033 			/*
8034 			 * We need to dirty the configuration on all the vdevs
8035 			 * so that their labels get updated.  It's unnecessary
8036 			 * to do this for pool creation since the vdev's
8037 			 * configuratoin has already been dirtied.
8038 			 */
8039 			if (tx->tx_txg != TXG_INITIAL)
8040 				vdev_config_dirty(spa->spa_root_vdev);
8041 			spa_history_log_internal(spa, "set", tx,
8042 			    "%s=%s", nvpair_name(elem), strval);
8043 			break;
8044 		default:
8045 			/*
8046 			 * Set pool property values in the poolprops mos object.
8047 			 */
8048 			if (spa->spa_pool_props_object == 0) {
8049 				spa->spa_pool_props_object =
8050 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8051 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8052 				    tx);
8053 			}
8054 
8055 			/* normalize the property name */
8056 			propname = zpool_prop_to_name(prop);
8057 			proptype = zpool_prop_get_type(prop);
8058 
8059 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8060 				ASSERT(proptype == PROP_TYPE_STRING);
8061 				strval = fnvpair_value_string(elem);
8062 				VERIFY0(zap_update(mos,
8063 				    spa->spa_pool_props_object, propname,
8064 				    1, strlen(strval) + 1, strval, tx));
8065 				spa_history_log_internal(spa, "set", tx,
8066 				    "%s=%s", nvpair_name(elem), strval);
8067 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8068 				intval = fnvpair_value_uint64(elem);
8069 
8070 				if (proptype == PROP_TYPE_INDEX) {
8071 					const char *unused;
8072 					VERIFY0(zpool_prop_index_to_string(
8073 					    prop, intval, &unused));
8074 				}
8075 				VERIFY0(zap_update(mos,
8076 				    spa->spa_pool_props_object, propname,
8077 				    8, 1, &intval, tx));
8078 				spa_history_log_internal(spa, "set", tx,
8079 				    "%s=%lld", nvpair_name(elem), intval);
8080 			} else {
8081 				ASSERT(0); /* not allowed */
8082 			}
8083 
8084 			switch (prop) {
8085 			case ZPOOL_PROP_DELEGATION:
8086 				spa->spa_delegation = intval;
8087 				break;
8088 			case ZPOOL_PROP_BOOTFS:
8089 				spa->spa_bootfs = intval;
8090 				break;
8091 			case ZPOOL_PROP_FAILUREMODE:
8092 				spa->spa_failmode = intval;
8093 				break;
8094 			case ZPOOL_PROP_AUTOTRIM:
8095 				spa->spa_autotrim = intval;
8096 				spa_async_request(spa,
8097 				    SPA_ASYNC_AUTOTRIM_RESTART);
8098 				break;
8099 			case ZPOOL_PROP_AUTOEXPAND:
8100 				spa->spa_autoexpand = intval;
8101 				if (tx->tx_txg != TXG_INITIAL)
8102 					spa_async_request(spa,
8103 					    SPA_ASYNC_AUTOEXPAND);
8104 				break;
8105 			case ZPOOL_PROP_MULTIHOST:
8106 				spa->spa_multihost = intval;
8107 				break;
8108 			case ZPOOL_PROP_DEDUPDITTO:
8109 				spa->spa_dedup_ditto = intval;
8110 				break;
8111 			default:
8112 				break;
8113 			}
8114 		}
8115 
8116 	}
8117 
8118 	mutex_exit(&spa->spa_props_lock);
8119 }
8120 
8121 /*
8122  * Perform one-time upgrade on-disk changes.  spa_version() does not
8123  * reflect the new version this txg, so there must be no changes this
8124  * txg to anything that the upgrade code depends on after it executes.
8125  * Therefore this must be called after dsl_pool_sync() does the sync
8126  * tasks.
8127  */
8128 static void
8129 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8130 {
8131 	if (spa_sync_pass(spa) != 1)
8132 		return;
8133 
8134 	dsl_pool_t *dp = spa->spa_dsl_pool;
8135 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8136 
8137 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8138 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8139 		dsl_pool_create_origin(dp, tx);
8140 
8141 		/* Keeping the origin open increases spa_minref */
8142 		spa->spa_minref += 3;
8143 	}
8144 
8145 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8146 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8147 		dsl_pool_upgrade_clones(dp, tx);
8148 	}
8149 
8150 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8151 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8152 		dsl_pool_upgrade_dir_clones(dp, tx);
8153 
8154 		/* Keeping the freedir open increases spa_minref */
8155 		spa->spa_minref += 3;
8156 	}
8157 
8158 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8159 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8160 		spa_feature_create_zap_objects(spa, tx);
8161 	}
8162 
8163 	/*
8164 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8165 	 * when possibility to use lz4 compression for metadata was added
8166 	 * Old pools that have this feature enabled must be upgraded to have
8167 	 * this feature active
8168 	 */
8169 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8170 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8171 		    SPA_FEATURE_LZ4_COMPRESS);
8172 		boolean_t lz4_ac = spa_feature_is_active(spa,
8173 		    SPA_FEATURE_LZ4_COMPRESS);
8174 
8175 		if (lz4_en && !lz4_ac)
8176 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8177 	}
8178 
8179 	/*
8180 	 * If we haven't written the salt, do so now.  Note that the
8181 	 * feature may not be activated yet, but that's fine since
8182 	 * the presence of this ZAP entry is backwards compatible.
8183 	 */
8184 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8185 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8186 		VERIFY0(zap_add(spa->spa_meta_objset,
8187 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8188 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8189 		    spa->spa_cksum_salt.zcs_bytes, tx));
8190 	}
8191 
8192 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8193 }
8194 
8195 static void
8196 vdev_indirect_state_sync_verify(vdev_t *vd)
8197 {
8198 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
8199 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
8200 
8201 	if (vd->vdev_ops == &vdev_indirect_ops) {
8202 		ASSERT(vim != NULL);
8203 		ASSERT(vib != NULL);
8204 	}
8205 
8206 	if (vdev_obsolete_sm_object(vd) != 0) {
8207 		ASSERT(vd->vdev_obsolete_sm != NULL);
8208 		ASSERT(vd->vdev_removing ||
8209 		    vd->vdev_ops == &vdev_indirect_ops);
8210 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8211 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8212 
8213 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
8214 		    space_map_object(vd->vdev_obsolete_sm));
8215 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8216 		    space_map_allocated(vd->vdev_obsolete_sm));
8217 	}
8218 	ASSERT(vd->vdev_obsolete_segments != NULL);
8219 
8220 	/*
8221 	 * Since frees / remaps to an indirect vdev can only
8222 	 * happen in syncing context, the obsolete segments
8223 	 * tree must be empty when we start syncing.
8224 	 */
8225 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8226 }
8227 
8228 /*
8229  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8230  * async write queue depth in case it changed. The max queue depth will
8231  * not change in the middle of syncing out this txg.
8232  */
8233 static void
8234 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8235 {
8236 	ASSERT(spa_writeable(spa));
8237 
8238 	vdev_t *rvd = spa->spa_root_vdev;
8239 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8240 	    zfs_vdev_queue_depth_pct / 100;
8241 	metaslab_class_t *normal = spa_normal_class(spa);
8242 	metaslab_class_t *special = spa_special_class(spa);
8243 	metaslab_class_t *dedup = spa_dedup_class(spa);
8244 
8245 	uint64_t slots_per_allocator = 0;
8246 	for (int c = 0; c < rvd->vdev_children; c++) {
8247 		vdev_t *tvd = rvd->vdev_child[c];
8248 
8249 		metaslab_group_t *mg = tvd->vdev_mg;
8250 		if (mg == NULL || !metaslab_group_initialized(mg))
8251 			continue;
8252 
8253 		metaslab_class_t *mc = mg->mg_class;
8254 		if (mc != normal && mc != special && mc != dedup)
8255 			continue;
8256 
8257 		/*
8258 		 * It is safe to do a lock-free check here because only async
8259 		 * allocations look at mg_max_alloc_queue_depth, and async
8260 		 * allocations all happen from spa_sync().
8261 		 */
8262 		for (int i = 0; i < spa->spa_alloc_count; i++)
8263 			ASSERT0(zfs_refcount_count(
8264 			    &(mg->mg_alloc_queue_depth[i])));
8265 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8266 
8267 		for (int i = 0; i < spa->spa_alloc_count; i++) {
8268 			mg->mg_cur_max_alloc_queue_depth[i] =
8269 			    zfs_vdev_def_queue_depth;
8270 		}
8271 		slots_per_allocator += zfs_vdev_def_queue_depth;
8272 	}
8273 
8274 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8275 		ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8276 		ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8277 		ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8278 		normal->mc_alloc_max_slots[i] = slots_per_allocator;
8279 		special->mc_alloc_max_slots[i] = slots_per_allocator;
8280 		dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8281 	}
8282 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8283 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8284 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8285 }
8286 
8287 static void
8288 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8289 {
8290 	ASSERT(spa_writeable(spa));
8291 
8292 	vdev_t *rvd = spa->spa_root_vdev;
8293 	for (int c = 0; c < rvd->vdev_children; c++) {
8294 		vdev_t *vd = rvd->vdev_child[c];
8295 		vdev_indirect_state_sync_verify(vd);
8296 
8297 		if (vdev_indirect_should_condense(vd)) {
8298 			spa_condense_indirect_start_sync(vd, tx);
8299 			break;
8300 		}
8301 	}
8302 }
8303 
8304 static void
8305 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8306 {
8307 	objset_t *mos = spa->spa_meta_objset;
8308 	dsl_pool_t *dp = spa->spa_dsl_pool;
8309 	uint64_t txg = tx->tx_txg;
8310 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8311 
8312 	do {
8313 		int pass = ++spa->spa_sync_pass;
8314 
8315 		spa_sync_config_object(spa, tx);
8316 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8317 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8318 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8319 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8320 		spa_errlog_sync(spa, txg);
8321 		dsl_pool_sync(dp, txg);
8322 
8323 		if (pass < zfs_sync_pass_deferred_free ||
8324 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8325 			/*
8326 			 * If the log space map feature is active we don't
8327 			 * care about deferred frees and the deferred bpobj
8328 			 * as the log space map should effectively have the
8329 			 * same results (i.e. appending only to one object).
8330 			 */
8331 			spa_sync_frees(spa, free_bpl, tx);
8332 		} else {
8333 			/*
8334 			 * We can not defer frees in pass 1, because
8335 			 * we sync the deferred frees later in pass 1.
8336 			 */
8337 			ASSERT3U(pass, >, 1);
8338 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
8339 			    &spa->spa_deferred_bpobj, tx);
8340 		}
8341 
8342 		ddt_sync(spa, txg);
8343 		dsl_scan_sync(dp, tx);
8344 		svr_sync(spa, tx);
8345 		spa_sync_upgrades(spa, tx);
8346 
8347 		spa_flush_metaslabs(spa, tx);
8348 
8349 		vdev_t *vd = NULL;
8350 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8351 		    != NULL)
8352 			vdev_sync(vd, txg);
8353 
8354 		/*
8355 		 * Note: We need to check if the MOS is dirty because we could
8356 		 * have marked the MOS dirty without updating the uberblock
8357 		 * (e.g. if we have sync tasks but no dirty user data). We need
8358 		 * to check the uberblock's rootbp because it is updated if we
8359 		 * have synced out dirty data (though in this case the MOS will
8360 		 * most likely also be dirty due to second order effects, we
8361 		 * don't want to rely on that here).
8362 		 */
8363 		if (pass == 1 &&
8364 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8365 		    !dmu_objset_is_dirty(mos, txg)) {
8366 			/*
8367 			 * Nothing changed on the first pass, therefore this
8368 			 * TXG is a no-op. Avoid syncing deferred frees, so
8369 			 * that we can keep this TXG as a no-op.
8370 			 */
8371 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8372 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8373 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8374 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8375 			break;
8376 		}
8377 
8378 		spa_sync_deferred_frees(spa, tx);
8379 	} while (dmu_objset_is_dirty(mos, txg));
8380 }
8381 
8382 /*
8383  * Rewrite the vdev configuration (which includes the uberblock) to
8384  * commit the transaction group.
8385  *
8386  * If there are no dirty vdevs, we sync the uberblock to a few random
8387  * top-level vdevs that are known to be visible in the config cache
8388  * (see spa_vdev_add() for a complete description). If there *are* dirty
8389  * vdevs, sync the uberblock to all vdevs.
8390  */
8391 static void
8392 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8393 {
8394 	vdev_t *rvd = spa->spa_root_vdev;
8395 	uint64_t txg = tx->tx_txg;
8396 
8397 	for (;;) {
8398 		int error = 0;
8399 
8400 		/*
8401 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8402 		 * while we're attempting to write the vdev labels.
8403 		 */
8404 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8405 
8406 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8407 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8408 			int svdcount = 0;
8409 			int children = rvd->vdev_children;
8410 			int c0 = spa_get_random(children);
8411 
8412 			for (int c = 0; c < children; c++) {
8413 				vdev_t *vd =
8414 				    rvd->vdev_child[(c0 + c) % children];
8415 
8416 				/* Stop when revisiting the first vdev */
8417 				if (c > 0 && svd[0] == vd)
8418 					break;
8419 
8420 				if (vd->vdev_ms_array == 0 ||
8421 				    vd->vdev_islog ||
8422 				    !vdev_is_concrete(vd))
8423 					continue;
8424 
8425 				svd[svdcount++] = vd;
8426 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8427 					break;
8428 			}
8429 			error = vdev_config_sync(svd, svdcount, txg);
8430 		} else {
8431 			error = vdev_config_sync(rvd->vdev_child,
8432 			    rvd->vdev_children, txg);
8433 		}
8434 
8435 		if (error == 0)
8436 			spa->spa_last_synced_guid = rvd->vdev_guid;
8437 
8438 		spa_config_exit(spa, SCL_STATE, FTAG);
8439 
8440 		if (error == 0)
8441 			break;
8442 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8443 		zio_resume_wait(spa);
8444 	}
8445 }
8446 
8447 /*
8448  * Sync the specified transaction group.  New blocks may be dirtied as
8449  * part of the process, so we iterate until it converges.
8450  */
8451 void
8452 spa_sync(spa_t *spa, uint64_t txg)
8453 {
8454 	vdev_t *vd = NULL;
8455 
8456 	VERIFY(spa_writeable(spa));
8457 
8458 	/*
8459 	 * Wait for i/os issued in open context that need to complete
8460 	 * before this txg syncs.
8461 	 */
8462 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8463 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8464 	    ZIO_FLAG_CANFAIL);
8465 
8466 	/*
8467 	 * Lock out configuration changes.
8468 	 */
8469 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8470 
8471 	spa->spa_syncing_txg = txg;
8472 	spa->spa_sync_pass = 0;
8473 
8474 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8475 		mutex_enter(&spa->spa_alloc_locks[i]);
8476 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8477 		mutex_exit(&spa->spa_alloc_locks[i]);
8478 	}
8479 
8480 	/*
8481 	 * If there are any pending vdev state changes, convert them
8482 	 * into config changes that go out with this transaction group.
8483 	 */
8484 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8485 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
8486 		/*
8487 		 * We need the write lock here because, for aux vdevs,
8488 		 * calling vdev_config_dirty() modifies sav_config.
8489 		 * This is ugly and will become unnecessary when we
8490 		 * eliminate the aux vdev wart by integrating all vdevs
8491 		 * into the root vdev tree.
8492 		 */
8493 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8494 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8495 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8496 			vdev_state_clean(vd);
8497 			vdev_config_dirty(vd);
8498 		}
8499 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8500 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8501 	}
8502 	spa_config_exit(spa, SCL_STATE, FTAG);
8503 
8504 	dsl_pool_t *dp = spa->spa_dsl_pool;
8505 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8506 
8507 	spa->spa_sync_starttime = gethrtime();
8508 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
8509 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
8510 
8511 	/*
8512 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8513 	 * set spa_deflate if we have no raid-z vdevs.
8514 	 */
8515 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8516 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8517 		vdev_t *rvd = spa->spa_root_vdev;
8518 
8519 		int i;
8520 		for (i = 0; i < rvd->vdev_children; i++) {
8521 			vd = rvd->vdev_child[i];
8522 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8523 				break;
8524 		}
8525 		if (i == rvd->vdev_children) {
8526 			spa->spa_deflate = TRUE;
8527 			VERIFY0(zap_add(spa->spa_meta_objset,
8528 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8529 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8530 		}
8531 	}
8532 
8533 	spa_sync_adjust_vdev_max_queue_depth(spa);
8534 
8535 	spa_sync_condense_indirect(spa, tx);
8536 
8537 	spa_sync_iterate_to_convergence(spa, tx);
8538 
8539 #ifdef ZFS_DEBUG
8540 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
8541 		/*
8542 		 * Make sure that the number of ZAPs for all the vdevs matches
8543 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
8544 		 * called if the config is dirty; otherwise there may be
8545 		 * outstanding AVZ operations that weren't completed in
8546 		 * spa_sync_config_object.
8547 		 */
8548 		uint64_t all_vdev_zap_entry_count;
8549 		ASSERT0(zap_count(spa->spa_meta_objset,
8550 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8551 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8552 		    all_vdev_zap_entry_count);
8553 	}
8554 #endif
8555 
8556 	if (spa->spa_vdev_removal != NULL) {
8557 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8558 	}
8559 
8560 	spa_sync_rewrite_vdev_config(spa, tx);
8561 	dmu_tx_commit(tx);
8562 
8563 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8564 
8565 	/*
8566 	 * Clear the dirty config list.
8567 	 */
8568 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8569 		vdev_config_clean(vd);
8570 
8571 	/*
8572 	 * Now that the new config has synced transactionally,
8573 	 * let it become visible to the config cache.
8574 	 */
8575 	if (spa->spa_config_syncing != NULL) {
8576 		spa_config_set(spa, spa->spa_config_syncing);
8577 		spa->spa_config_txg = txg;
8578 		spa->spa_config_syncing = NULL;
8579 	}
8580 
8581 	dsl_pool_sync_done(dp, txg);
8582 
8583 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8584 		mutex_enter(&spa->spa_alloc_locks[i]);
8585 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8586 		mutex_exit(&spa->spa_alloc_locks[i]);
8587 	}
8588 
8589 	/*
8590 	 * Update usable space statistics.
8591 	 */
8592 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8593 	    != NULL)
8594 		vdev_sync_done(vd, txg);
8595 
8596 	metaslab_class_evict_old(spa->spa_normal_class, txg);
8597 	metaslab_class_evict_old(spa->spa_log_class, txg);
8598 
8599 	spa_sync_close_syncing_log_sm(spa);
8600 
8601 	spa_update_dspace(spa);
8602 
8603 	/*
8604 	 * It had better be the case that we didn't dirty anything
8605 	 * since vdev_config_sync().
8606 	 */
8607 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8608 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8609 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8610 
8611 	while (zfs_pause_spa_sync)
8612 		delay(1);
8613 
8614 	spa->spa_sync_pass = 0;
8615 
8616 	/*
8617 	 * Update the last synced uberblock here. We want to do this at
8618 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8619 	 * will be guaranteed that all the processing associated with
8620 	 * that txg has been completed.
8621 	 */
8622 	spa->spa_ubsync = spa->spa_uberblock;
8623 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8624 
8625 	spa_handle_ignored_writes(spa);
8626 
8627 	/*
8628 	 * If any async tasks have been requested, kick them off.
8629 	 */
8630 	spa_async_dispatch(spa);
8631 }
8632 
8633 /*
8634  * Sync all pools.  We don't want to hold the namespace lock across these
8635  * operations, so we take a reference on the spa_t and drop the lock during the
8636  * sync.
8637  */
8638 void
8639 spa_sync_allpools(void)
8640 {
8641 	spa_t *spa = NULL;
8642 	mutex_enter(&spa_namespace_lock);
8643 	while ((spa = spa_next(spa)) != NULL) {
8644 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8645 		    !spa_writeable(spa) || spa_suspended(spa))
8646 			continue;
8647 		spa_open_ref(spa, FTAG);
8648 		mutex_exit(&spa_namespace_lock);
8649 		txg_wait_synced(spa_get_dsl(spa), 0);
8650 		mutex_enter(&spa_namespace_lock);
8651 		spa_close(spa, FTAG);
8652 	}
8653 	mutex_exit(&spa_namespace_lock);
8654 }
8655 
8656 /*
8657  * ==========================================================================
8658  * Miscellaneous routines
8659  * ==========================================================================
8660  */
8661 
8662 /*
8663  * Remove all pools in the system.
8664  */
8665 void
8666 spa_evict_all(void)
8667 {
8668 	spa_t *spa;
8669 
8670 	/*
8671 	 * Remove all cached state.  All pools should be closed now,
8672 	 * so every spa in the AVL tree should be unreferenced.
8673 	 */
8674 	mutex_enter(&spa_namespace_lock);
8675 	while ((spa = spa_next(NULL)) != NULL) {
8676 		/*
8677 		 * Stop async tasks.  The async thread may need to detach
8678 		 * a device that's been replaced, which requires grabbing
8679 		 * spa_namespace_lock, so we must drop it here.
8680 		 */
8681 		spa_open_ref(spa, FTAG);
8682 		mutex_exit(&spa_namespace_lock);
8683 		spa_async_suspend(spa);
8684 		mutex_enter(&spa_namespace_lock);
8685 		spa_close(spa, FTAG);
8686 
8687 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8688 			spa_unload(spa);
8689 			spa_deactivate(spa);
8690 		}
8691 		spa_remove(spa);
8692 	}
8693 	mutex_exit(&spa_namespace_lock);
8694 }
8695 
8696 vdev_t *
8697 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8698 {
8699 	vdev_t *vd;
8700 	int i;
8701 
8702 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8703 		return (vd);
8704 
8705 	if (aux) {
8706 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8707 			vd = spa->spa_l2cache.sav_vdevs[i];
8708 			if (vd->vdev_guid == guid)
8709 				return (vd);
8710 		}
8711 
8712 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8713 			vd = spa->spa_spares.sav_vdevs[i];
8714 			if (vd->vdev_guid == guid)
8715 				return (vd);
8716 		}
8717 	}
8718 
8719 	return (NULL);
8720 }
8721 
8722 void
8723 spa_upgrade(spa_t *spa, uint64_t version)
8724 {
8725 	ASSERT(spa_writeable(spa));
8726 
8727 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8728 
8729 	/*
8730 	 * This should only be called for a non-faulted pool, and since a
8731 	 * future version would result in an unopenable pool, this shouldn't be
8732 	 * possible.
8733 	 */
8734 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8735 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8736 
8737 	spa->spa_uberblock.ub_version = version;
8738 	vdev_config_dirty(spa->spa_root_vdev);
8739 
8740 	spa_config_exit(spa, SCL_ALL, FTAG);
8741 
8742 	txg_wait_synced(spa_get_dsl(spa), 0);
8743 }
8744 
8745 boolean_t
8746 spa_has_spare(spa_t *spa, uint64_t guid)
8747 {
8748 	int i;
8749 	uint64_t spareguid;
8750 	spa_aux_vdev_t *sav = &spa->spa_spares;
8751 
8752 	for (i = 0; i < sav->sav_count; i++)
8753 		if (sav->sav_vdevs[i]->vdev_guid == guid)
8754 			return (B_TRUE);
8755 
8756 	for (i = 0; i < sav->sav_npending; i++) {
8757 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8758 		    &spareguid) == 0 && spareguid == guid)
8759 			return (B_TRUE);
8760 	}
8761 
8762 	return (B_FALSE);
8763 }
8764 
8765 /*
8766  * Check if a pool has an active shared spare device.
8767  * Note: reference count of an active spare is 2, as a spare and as a replace
8768  */
8769 static boolean_t
8770 spa_has_active_shared_spare(spa_t *spa)
8771 {
8772 	int i, refcnt;
8773 	uint64_t pool;
8774 	spa_aux_vdev_t *sav = &spa->spa_spares;
8775 
8776 	for (i = 0; i < sav->sav_count; i++) {
8777 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8778 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8779 		    refcnt > 2)
8780 			return (B_TRUE);
8781 	}
8782 
8783 	return (B_FALSE);
8784 }
8785 
8786 uint64_t
8787 spa_total_metaslabs(spa_t *spa)
8788 {
8789 	vdev_t *rvd = spa->spa_root_vdev;
8790 	uint64_t m = 0;
8791 
8792 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
8793 		vdev_t *vd = rvd->vdev_child[c];
8794 		if (!vdev_is_concrete(vd))
8795 			continue;
8796 		m += vd->vdev_ms_count;
8797 	}
8798 	return (m);
8799 }
8800 
8801 sysevent_t *
8802 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8803 {
8804 	sysevent_t		*ev = NULL;
8805 #ifdef _KERNEL
8806 	sysevent_attr_list_t	*attr = NULL;
8807 	sysevent_value_t	value;
8808 
8809 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8810 	    SE_SLEEP);
8811 	ASSERT(ev != NULL);
8812 
8813 	value.value_type = SE_DATA_TYPE_STRING;
8814 	value.value.sv_string = spa_name(spa);
8815 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8816 		goto done;
8817 
8818 	value.value_type = SE_DATA_TYPE_UINT64;
8819 	value.value.sv_uint64 = spa_guid(spa);
8820 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8821 		goto done;
8822 
8823 	if (vd) {
8824 		value.value_type = SE_DATA_TYPE_UINT64;
8825 		value.value.sv_uint64 = vd->vdev_guid;
8826 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8827 		    SE_SLEEP) != 0)
8828 			goto done;
8829 
8830 		if (vd->vdev_path) {
8831 			value.value_type = SE_DATA_TYPE_STRING;
8832 			value.value.sv_string = vd->vdev_path;
8833 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8834 			    &value, SE_SLEEP) != 0)
8835 				goto done;
8836 		}
8837 	}
8838 
8839 	if (hist_nvl != NULL) {
8840 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8841 	}
8842 
8843 	if (sysevent_attach_attributes(ev, attr) != 0)
8844 		goto done;
8845 	attr = NULL;
8846 
8847 done:
8848 	if (attr)
8849 		sysevent_free_attr(attr);
8850 
8851 #endif
8852 	return (ev);
8853 }
8854 
8855 void
8856 spa_event_post(sysevent_t *ev)
8857 {
8858 #ifdef _KERNEL
8859 	sysevent_id_t		eid;
8860 
8861 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8862 	sysevent_free(ev);
8863 #endif
8864 }
8865 
8866 void
8867 spa_event_discard(sysevent_t *ev)
8868 {
8869 #ifdef _KERNEL
8870 	sysevent_free(ev);
8871 #endif
8872 }
8873 
8874 /*
8875  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8876  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8877  * filled in from the spa and (optionally) the vdev and history nvl.  This
8878  * doesn't do anything in the userland libzpool, as we don't want consumers to
8879  * misinterpret ztest or zdb as real changes.
8880  */
8881 void
8882 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8883 {
8884 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8885 }
8886