1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright 2017 Joyent, Inc. 31 * Copyright (c) 2017 Datto Inc. 32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 33 */ 34 35 /* 36 * SPA: Storage Pool Allocator 37 * 38 * This file contains all the routines used when modifying on-disk SPA state. 39 * This includes opening, importing, destroying, exporting a pool, and syncing a 40 * pool. 41 */ 42 43 #include <sys/zfs_context.h> 44 #include <sys/fm/fs/zfs.h> 45 #include <sys/spa_impl.h> 46 #include <sys/zio.h> 47 #include <sys/zio_checksum.h> 48 #include <sys/dmu.h> 49 #include <sys/dmu_tx.h> 50 #include <sys/zap.h> 51 #include <sys/zil.h> 52 #include <sys/ddt.h> 53 #include <sys/vdev_impl.h> 54 #include <sys/vdev_removal.h> 55 #include <sys/vdev_indirect_mapping.h> 56 #include <sys/vdev_indirect_births.h> 57 #include <sys/vdev_initialize.h> 58 #include <sys/metaslab.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/uberblock_impl.h> 61 #include <sys/txg.h> 62 #include <sys/avl.h> 63 #include <sys/bpobj.h> 64 #include <sys/dmu_traverse.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/unique.h> 67 #include <sys/dsl_pool.h> 68 #include <sys/dsl_dataset.h> 69 #include <sys/dsl_dir.h> 70 #include <sys/dsl_prop.h> 71 #include <sys/dsl_synctask.h> 72 #include <sys/fs/zfs.h> 73 #include <sys/arc.h> 74 #include <sys/callb.h> 75 #include <sys/systeminfo.h> 76 #include <sys/spa_boot.h> 77 #include <sys/zfs_ioctl.h> 78 #include <sys/dsl_scan.h> 79 #include <sys/zfeature.h> 80 #include <sys/dsl_destroy.h> 81 #include <sys/abd.h> 82 83 #ifdef _KERNEL 84 #include <sys/bootprops.h> 85 #include <sys/callb.h> 86 #include <sys/cpupart.h> 87 #include <sys/pool.h> 88 #include <sys/sysdc.h> 89 #include <sys/zone.h> 90 #endif /* _KERNEL */ 91 92 #include "zfs_prop.h" 93 #include "zfs_comutil.h" 94 95 /* 96 * The interval, in seconds, at which failed configuration cache file writes 97 * should be retried. 98 */ 99 int zfs_ccw_retry_interval = 300; 100 101 typedef enum zti_modes { 102 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 103 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 104 ZTI_MODE_NULL, /* don't create a taskq */ 105 ZTI_NMODES 106 } zti_modes_t; 107 108 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 109 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 110 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 111 112 #define ZTI_N(n) ZTI_P(n, 1) 113 #define ZTI_ONE ZTI_N(1) 114 115 typedef struct zio_taskq_info { 116 zti_modes_t zti_mode; 117 uint_t zti_value; 118 uint_t zti_count; 119 } zio_taskq_info_t; 120 121 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 122 "issue", "issue_high", "intr", "intr_high" 123 }; 124 125 /* 126 * This table defines the taskq settings for each ZFS I/O type. When 127 * initializing a pool, we use this table to create an appropriately sized 128 * taskq. Some operations are low volume and therefore have a small, static 129 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 130 * macros. Other operations process a large amount of data; the ZTI_BATCH 131 * macro causes us to create a taskq oriented for throughput. Some operations 132 * are so high frequency and short-lived that the taskq itself can become a a 133 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 134 * additional degree of parallelism specified by the number of threads per- 135 * taskq and the number of taskqs; when dispatching an event in this case, the 136 * particular taskq is chosen at random. 137 * 138 * The different taskq priorities are to handle the different contexts (issue 139 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 140 * need to be handled with minimum delay. 141 */ 142 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 143 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 144 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 145 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 146 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 147 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 148 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 149 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 150 }; 151 152 static void spa_sync_version(void *arg, dmu_tx_t *tx); 153 static void spa_sync_props(void *arg, dmu_tx_t *tx); 154 static boolean_t spa_has_active_shared_spare(spa_t *spa); 155 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); 156 static void spa_vdev_resilver_done(spa_t *spa); 157 158 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 159 id_t zio_taskq_psrset_bind = PS_NONE; 160 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 161 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 162 163 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 164 extern int zfs_sync_pass_deferred_free; 165 166 /* 167 * Report any spa_load_verify errors found, but do not fail spa_load. 168 * This is used by zdb to analyze non-idle pools. 169 */ 170 boolean_t spa_load_verify_dryrun = B_FALSE; 171 172 /* 173 * This (illegal) pool name is used when temporarily importing a spa_t in order 174 * to get the vdev stats associated with the imported devices. 175 */ 176 #define TRYIMPORT_NAME "$import" 177 178 /* 179 * For debugging purposes: print out vdev tree during pool import. 180 */ 181 boolean_t spa_load_print_vdev_tree = B_FALSE; 182 183 /* 184 * A non-zero value for zfs_max_missing_tvds means that we allow importing 185 * pools with missing top-level vdevs. This is strictly intended for advanced 186 * pool recovery cases since missing data is almost inevitable. Pools with 187 * missing devices can only be imported read-only for safety reasons, and their 188 * fail-mode will be automatically set to "continue". 189 * 190 * With 1 missing vdev we should be able to import the pool and mount all 191 * datasets. User data that was not modified after the missing device has been 192 * added should be recoverable. This means that snapshots created prior to the 193 * addition of that device should be completely intact. 194 * 195 * With 2 missing vdevs, some datasets may fail to mount since there are 196 * dataset statistics that are stored as regular metadata. Some data might be 197 * recoverable if those vdevs were added recently. 198 * 199 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 200 * may be missing entirely. Chances of data recovery are very low. Note that 201 * there are also risks of performing an inadvertent rewind as we might be 202 * missing all the vdevs with the latest uberblocks. 203 */ 204 uint64_t zfs_max_missing_tvds = 0; 205 206 /* 207 * The parameters below are similar to zfs_max_missing_tvds but are only 208 * intended for a preliminary open of the pool with an untrusted config which 209 * might be incomplete or out-dated. 210 * 211 * We are more tolerant for pools opened from a cachefile since we could have 212 * an out-dated cachefile where a device removal was not registered. 213 * We could have set the limit arbitrarily high but in the case where devices 214 * are really missing we would want to return the proper error codes; we chose 215 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 216 * and we get a chance to retrieve the trusted config. 217 */ 218 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 219 220 /* 221 * In the case where config was assembled by scanning device paths (/dev/dsks 222 * by default) we are less tolerant since all the existing devices should have 223 * been detected and we want spa_load to return the right error codes. 224 */ 225 uint64_t zfs_max_missing_tvds_scan = 0; 226 227 /* 228 * Debugging aid that pauses spa_sync() towards the end. 229 */ 230 boolean_t zfs_pause_spa_sync = B_FALSE; 231 232 /* 233 * ========================================================================== 234 * SPA properties routines 235 * ========================================================================== 236 */ 237 238 /* 239 * Add a (source=src, propname=propval) list to an nvlist. 240 */ 241 static void 242 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 243 uint64_t intval, zprop_source_t src) 244 { 245 const char *propname = zpool_prop_to_name(prop); 246 nvlist_t *propval; 247 248 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 249 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 250 251 if (strval != NULL) 252 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 253 else 254 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 255 256 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 257 nvlist_free(propval); 258 } 259 260 /* 261 * Get property values from the spa configuration. 262 */ 263 static void 264 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 265 { 266 vdev_t *rvd = spa->spa_root_vdev; 267 dsl_pool_t *pool = spa->spa_dsl_pool; 268 uint64_t size, alloc, cap, version; 269 zprop_source_t src = ZPROP_SRC_NONE; 270 spa_config_dirent_t *dp; 271 metaslab_class_t *mc = spa_normal_class(spa); 272 273 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 274 275 if (rvd != NULL) { 276 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 277 size = metaslab_class_get_space(spa_normal_class(spa)); 278 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 279 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 280 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 281 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 282 size - alloc, src); 283 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 284 spa->spa_checkpoint_info.sci_dspace, src); 285 286 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 287 metaslab_class_fragmentation(mc), src); 288 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 289 metaslab_class_expandable_space(mc), src); 290 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 291 (spa_mode(spa) == FREAD), src); 292 293 cap = (size == 0) ? 0 : (alloc * 100 / size); 294 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 295 296 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 297 ddt_get_pool_dedup_ratio(spa), src); 298 299 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 300 rvd->vdev_state, src); 301 302 version = spa_version(spa); 303 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 304 src = ZPROP_SRC_DEFAULT; 305 else 306 src = ZPROP_SRC_LOCAL; 307 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 308 } 309 310 if (pool != NULL) { 311 /* 312 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 313 * when opening pools before this version freedir will be NULL. 314 */ 315 if (pool->dp_free_dir != NULL) { 316 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 317 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 318 src); 319 } else { 320 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 321 NULL, 0, src); 322 } 323 324 if (pool->dp_leak_dir != NULL) { 325 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 326 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 327 src); 328 } else { 329 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 330 NULL, 0, src); 331 } 332 } 333 334 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 335 336 if (spa->spa_comment != NULL) { 337 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 338 0, ZPROP_SRC_LOCAL); 339 } 340 341 if (spa->spa_root != NULL) 342 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 343 0, ZPROP_SRC_LOCAL); 344 345 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 346 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 347 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 348 } else { 349 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 350 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 351 } 352 353 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 354 if (dp->scd_path == NULL) { 355 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 356 "none", 0, ZPROP_SRC_LOCAL); 357 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 358 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 359 dp->scd_path, 0, ZPROP_SRC_LOCAL); 360 } 361 } 362 } 363 364 /* 365 * Get zpool property values. 366 */ 367 int 368 spa_prop_get(spa_t *spa, nvlist_t **nvp) 369 { 370 objset_t *mos = spa->spa_meta_objset; 371 zap_cursor_t zc; 372 zap_attribute_t za; 373 int err; 374 375 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 376 377 mutex_enter(&spa->spa_props_lock); 378 379 /* 380 * Get properties from the spa config. 381 */ 382 spa_prop_get_config(spa, nvp); 383 384 /* If no pool property object, no more prop to get. */ 385 if (mos == NULL || spa->spa_pool_props_object == 0) { 386 mutex_exit(&spa->spa_props_lock); 387 return (0); 388 } 389 390 /* 391 * Get properties from the MOS pool property object. 392 */ 393 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 394 (err = zap_cursor_retrieve(&zc, &za)) == 0; 395 zap_cursor_advance(&zc)) { 396 uint64_t intval = 0; 397 char *strval = NULL; 398 zprop_source_t src = ZPROP_SRC_DEFAULT; 399 zpool_prop_t prop; 400 401 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 402 continue; 403 404 switch (za.za_integer_length) { 405 case 8: 406 /* integer property */ 407 if (za.za_first_integer != 408 zpool_prop_default_numeric(prop)) 409 src = ZPROP_SRC_LOCAL; 410 411 if (prop == ZPOOL_PROP_BOOTFS) { 412 dsl_pool_t *dp; 413 dsl_dataset_t *ds = NULL; 414 415 dp = spa_get_dsl(spa); 416 dsl_pool_config_enter(dp, FTAG); 417 err = dsl_dataset_hold_obj(dp, 418 za.za_first_integer, FTAG, &ds); 419 if (err != 0) { 420 dsl_pool_config_exit(dp, FTAG); 421 break; 422 } 423 424 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 425 KM_SLEEP); 426 dsl_dataset_name(ds, strval); 427 dsl_dataset_rele(ds, FTAG); 428 dsl_pool_config_exit(dp, FTAG); 429 } else { 430 strval = NULL; 431 intval = za.za_first_integer; 432 } 433 434 spa_prop_add_list(*nvp, prop, strval, intval, src); 435 436 if (strval != NULL) 437 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 438 439 break; 440 441 case 1: 442 /* string property */ 443 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 444 err = zap_lookup(mos, spa->spa_pool_props_object, 445 za.za_name, 1, za.za_num_integers, strval); 446 if (err) { 447 kmem_free(strval, za.za_num_integers); 448 break; 449 } 450 spa_prop_add_list(*nvp, prop, strval, 0, src); 451 kmem_free(strval, za.za_num_integers); 452 break; 453 454 default: 455 break; 456 } 457 } 458 zap_cursor_fini(&zc); 459 mutex_exit(&spa->spa_props_lock); 460 out: 461 if (err && err != ENOENT) { 462 nvlist_free(*nvp); 463 *nvp = NULL; 464 return (err); 465 } 466 467 return (0); 468 } 469 470 /* 471 * Validate the given pool properties nvlist and modify the list 472 * for the property values to be set. 473 */ 474 static int 475 spa_prop_validate(spa_t *spa, nvlist_t *props) 476 { 477 nvpair_t *elem; 478 int error = 0, reset_bootfs = 0; 479 uint64_t objnum = 0; 480 boolean_t has_feature = B_FALSE; 481 482 elem = NULL; 483 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 484 uint64_t intval; 485 char *strval, *slash, *check, *fname; 486 const char *propname = nvpair_name(elem); 487 zpool_prop_t prop = zpool_name_to_prop(propname); 488 489 switch (prop) { 490 case ZPOOL_PROP_INVAL: 491 if (!zpool_prop_feature(propname)) { 492 error = SET_ERROR(EINVAL); 493 break; 494 } 495 496 /* 497 * Sanitize the input. 498 */ 499 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 500 error = SET_ERROR(EINVAL); 501 break; 502 } 503 504 if (nvpair_value_uint64(elem, &intval) != 0) { 505 error = SET_ERROR(EINVAL); 506 break; 507 } 508 509 if (intval != 0) { 510 error = SET_ERROR(EINVAL); 511 break; 512 } 513 514 fname = strchr(propname, '@') + 1; 515 if (zfeature_lookup_name(fname, NULL) != 0) { 516 error = SET_ERROR(EINVAL); 517 break; 518 } 519 520 has_feature = B_TRUE; 521 break; 522 523 case ZPOOL_PROP_VERSION: 524 error = nvpair_value_uint64(elem, &intval); 525 if (!error && 526 (intval < spa_version(spa) || 527 intval > SPA_VERSION_BEFORE_FEATURES || 528 has_feature)) 529 error = SET_ERROR(EINVAL); 530 break; 531 532 case ZPOOL_PROP_DELEGATION: 533 case ZPOOL_PROP_AUTOREPLACE: 534 case ZPOOL_PROP_LISTSNAPS: 535 case ZPOOL_PROP_AUTOEXPAND: 536 error = nvpair_value_uint64(elem, &intval); 537 if (!error && intval > 1) 538 error = SET_ERROR(EINVAL); 539 break; 540 541 case ZPOOL_PROP_BOOTFS: 542 /* 543 * If the pool version is less than SPA_VERSION_BOOTFS, 544 * or the pool is still being created (version == 0), 545 * the bootfs property cannot be set. 546 */ 547 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 548 error = SET_ERROR(ENOTSUP); 549 break; 550 } 551 552 /* 553 * Make sure the vdev config is bootable 554 */ 555 if (!vdev_is_bootable(spa->spa_root_vdev)) { 556 error = SET_ERROR(ENOTSUP); 557 break; 558 } 559 560 reset_bootfs = 1; 561 562 error = nvpair_value_string(elem, &strval); 563 564 if (!error) { 565 objset_t *os; 566 uint64_t propval; 567 568 if (strval == NULL || strval[0] == '\0') { 569 objnum = zpool_prop_default_numeric( 570 ZPOOL_PROP_BOOTFS); 571 break; 572 } 573 574 error = dmu_objset_hold(strval, FTAG, &os); 575 if (error != 0) 576 break; 577 578 /* 579 * Must be ZPL, and its property settings 580 * must be supported by GRUB (compression 581 * is not gzip, and large blocks are not used). 582 */ 583 584 if (dmu_objset_type(os) != DMU_OST_ZFS) { 585 error = SET_ERROR(ENOTSUP); 586 } else if ((error = 587 dsl_prop_get_int_ds(dmu_objset_ds(os), 588 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 589 &propval)) == 0 && 590 !BOOTFS_COMPRESS_VALID(propval)) { 591 error = SET_ERROR(ENOTSUP); 592 } else { 593 objnum = dmu_objset_id(os); 594 } 595 dmu_objset_rele(os, FTAG); 596 } 597 break; 598 599 case ZPOOL_PROP_FAILUREMODE: 600 error = nvpair_value_uint64(elem, &intval); 601 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 602 intval > ZIO_FAILURE_MODE_PANIC)) 603 error = SET_ERROR(EINVAL); 604 605 /* 606 * This is a special case which only occurs when 607 * the pool has completely failed. This allows 608 * the user to change the in-core failmode property 609 * without syncing it out to disk (I/Os might 610 * currently be blocked). We do this by returning 611 * EIO to the caller (spa_prop_set) to trick it 612 * into thinking we encountered a property validation 613 * error. 614 */ 615 if (!error && spa_suspended(spa)) { 616 spa->spa_failmode = intval; 617 error = SET_ERROR(EIO); 618 } 619 break; 620 621 case ZPOOL_PROP_CACHEFILE: 622 if ((error = nvpair_value_string(elem, &strval)) != 0) 623 break; 624 625 if (strval[0] == '\0') 626 break; 627 628 if (strcmp(strval, "none") == 0) 629 break; 630 631 if (strval[0] != '/') { 632 error = SET_ERROR(EINVAL); 633 break; 634 } 635 636 slash = strrchr(strval, '/'); 637 ASSERT(slash != NULL); 638 639 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 640 strcmp(slash, "/..") == 0) 641 error = SET_ERROR(EINVAL); 642 break; 643 644 case ZPOOL_PROP_COMMENT: 645 if ((error = nvpair_value_string(elem, &strval)) != 0) 646 break; 647 for (check = strval; *check != '\0'; check++) { 648 /* 649 * The kernel doesn't have an easy isprint() 650 * check. For this kernel check, we merely 651 * check ASCII apart from DEL. Fix this if 652 * there is an easy-to-use kernel isprint(). 653 */ 654 if (*check >= 0x7f) { 655 error = SET_ERROR(EINVAL); 656 break; 657 } 658 } 659 if (strlen(strval) > ZPROP_MAX_COMMENT) 660 error = E2BIG; 661 break; 662 663 case ZPOOL_PROP_DEDUPDITTO: 664 if (spa_version(spa) < SPA_VERSION_DEDUP) 665 error = SET_ERROR(ENOTSUP); 666 else 667 error = nvpair_value_uint64(elem, &intval); 668 if (error == 0 && 669 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 670 error = SET_ERROR(EINVAL); 671 break; 672 } 673 674 if (error) 675 break; 676 } 677 678 if (!error && reset_bootfs) { 679 error = nvlist_remove(props, 680 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 681 682 if (!error) { 683 error = nvlist_add_uint64(props, 684 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 685 } 686 } 687 688 return (error); 689 } 690 691 void 692 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 693 { 694 char *cachefile; 695 spa_config_dirent_t *dp; 696 697 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 698 &cachefile) != 0) 699 return; 700 701 dp = kmem_alloc(sizeof (spa_config_dirent_t), 702 KM_SLEEP); 703 704 if (cachefile[0] == '\0') 705 dp->scd_path = spa_strdup(spa_config_path); 706 else if (strcmp(cachefile, "none") == 0) 707 dp->scd_path = NULL; 708 else 709 dp->scd_path = spa_strdup(cachefile); 710 711 list_insert_head(&spa->spa_config_list, dp); 712 if (need_sync) 713 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 714 } 715 716 int 717 spa_prop_set(spa_t *spa, nvlist_t *nvp) 718 { 719 int error; 720 nvpair_t *elem = NULL; 721 boolean_t need_sync = B_FALSE; 722 723 if ((error = spa_prop_validate(spa, nvp)) != 0) 724 return (error); 725 726 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 727 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 728 729 if (prop == ZPOOL_PROP_CACHEFILE || 730 prop == ZPOOL_PROP_ALTROOT || 731 prop == ZPOOL_PROP_READONLY) 732 continue; 733 734 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 735 uint64_t ver; 736 737 if (prop == ZPOOL_PROP_VERSION) { 738 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 739 } else { 740 ASSERT(zpool_prop_feature(nvpair_name(elem))); 741 ver = SPA_VERSION_FEATURES; 742 need_sync = B_TRUE; 743 } 744 745 /* Save time if the version is already set. */ 746 if (ver == spa_version(spa)) 747 continue; 748 749 /* 750 * In addition to the pool directory object, we might 751 * create the pool properties object, the features for 752 * read object, the features for write object, or the 753 * feature descriptions object. 754 */ 755 error = dsl_sync_task(spa->spa_name, NULL, 756 spa_sync_version, &ver, 757 6, ZFS_SPACE_CHECK_RESERVED); 758 if (error) 759 return (error); 760 continue; 761 } 762 763 need_sync = B_TRUE; 764 break; 765 } 766 767 if (need_sync) { 768 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 769 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 770 } 771 772 return (0); 773 } 774 775 /* 776 * If the bootfs property value is dsobj, clear it. 777 */ 778 void 779 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 780 { 781 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 782 VERIFY(zap_remove(spa->spa_meta_objset, 783 spa->spa_pool_props_object, 784 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 785 spa->spa_bootfs = 0; 786 } 787 } 788 789 /*ARGSUSED*/ 790 static int 791 spa_change_guid_check(void *arg, dmu_tx_t *tx) 792 { 793 uint64_t *newguid = arg; 794 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 795 vdev_t *rvd = spa->spa_root_vdev; 796 uint64_t vdev_state; 797 798 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 799 int error = (spa_has_checkpoint(spa)) ? 800 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 801 return (SET_ERROR(error)); 802 } 803 804 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 805 vdev_state = rvd->vdev_state; 806 spa_config_exit(spa, SCL_STATE, FTAG); 807 808 if (vdev_state != VDEV_STATE_HEALTHY) 809 return (SET_ERROR(ENXIO)); 810 811 ASSERT3U(spa_guid(spa), !=, *newguid); 812 813 return (0); 814 } 815 816 static void 817 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 818 { 819 uint64_t *newguid = arg; 820 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 821 uint64_t oldguid; 822 vdev_t *rvd = spa->spa_root_vdev; 823 824 oldguid = spa_guid(spa); 825 826 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 827 rvd->vdev_guid = *newguid; 828 rvd->vdev_guid_sum += (*newguid - oldguid); 829 vdev_config_dirty(rvd); 830 spa_config_exit(spa, SCL_STATE, FTAG); 831 832 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 833 oldguid, *newguid); 834 } 835 836 /* 837 * Change the GUID for the pool. This is done so that we can later 838 * re-import a pool built from a clone of our own vdevs. We will modify 839 * the root vdev's guid, our own pool guid, and then mark all of our 840 * vdevs dirty. Note that we must make sure that all our vdevs are 841 * online when we do this, or else any vdevs that weren't present 842 * would be orphaned from our pool. We are also going to issue a 843 * sysevent to update any watchers. 844 */ 845 int 846 spa_change_guid(spa_t *spa) 847 { 848 int error; 849 uint64_t guid; 850 851 mutex_enter(&spa->spa_vdev_top_lock); 852 mutex_enter(&spa_namespace_lock); 853 guid = spa_generate_guid(NULL); 854 855 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 856 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 857 858 if (error == 0) { 859 spa_write_cachefile(spa, B_FALSE, B_TRUE); 860 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 861 } 862 863 mutex_exit(&spa_namespace_lock); 864 mutex_exit(&spa->spa_vdev_top_lock); 865 866 return (error); 867 } 868 869 /* 870 * ========================================================================== 871 * SPA state manipulation (open/create/destroy/import/export) 872 * ========================================================================== 873 */ 874 875 static int 876 spa_error_entry_compare(const void *a, const void *b) 877 { 878 spa_error_entry_t *sa = (spa_error_entry_t *)a; 879 spa_error_entry_t *sb = (spa_error_entry_t *)b; 880 int ret; 881 882 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 883 sizeof (zbookmark_phys_t)); 884 885 if (ret < 0) 886 return (-1); 887 else if (ret > 0) 888 return (1); 889 else 890 return (0); 891 } 892 893 /* 894 * Utility function which retrieves copies of the current logs and 895 * re-initializes them in the process. 896 */ 897 void 898 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 899 { 900 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 901 902 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 903 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 904 905 avl_create(&spa->spa_errlist_scrub, 906 spa_error_entry_compare, sizeof (spa_error_entry_t), 907 offsetof(spa_error_entry_t, se_avl)); 908 avl_create(&spa->spa_errlist_last, 909 spa_error_entry_compare, sizeof (spa_error_entry_t), 910 offsetof(spa_error_entry_t, se_avl)); 911 } 912 913 static void 914 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 915 { 916 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 917 enum zti_modes mode = ztip->zti_mode; 918 uint_t value = ztip->zti_value; 919 uint_t count = ztip->zti_count; 920 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 921 char name[32]; 922 uint_t flags = 0; 923 boolean_t batch = B_FALSE; 924 925 if (mode == ZTI_MODE_NULL) { 926 tqs->stqs_count = 0; 927 tqs->stqs_taskq = NULL; 928 return; 929 } 930 931 ASSERT3U(count, >, 0); 932 933 tqs->stqs_count = count; 934 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 935 936 switch (mode) { 937 case ZTI_MODE_FIXED: 938 ASSERT3U(value, >=, 1); 939 value = MAX(value, 1); 940 break; 941 942 case ZTI_MODE_BATCH: 943 batch = B_TRUE; 944 flags |= TASKQ_THREADS_CPU_PCT; 945 value = zio_taskq_batch_pct; 946 break; 947 948 default: 949 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 950 "spa_activate()", 951 zio_type_name[t], zio_taskq_types[q], mode, value); 952 break; 953 } 954 955 for (uint_t i = 0; i < count; i++) { 956 taskq_t *tq; 957 958 if (count > 1) { 959 (void) snprintf(name, sizeof (name), "%s_%s_%u", 960 zio_type_name[t], zio_taskq_types[q], i); 961 } else { 962 (void) snprintf(name, sizeof (name), "%s_%s", 963 zio_type_name[t], zio_taskq_types[q]); 964 } 965 966 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 967 if (batch) 968 flags |= TASKQ_DC_BATCH; 969 970 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 971 spa->spa_proc, zio_taskq_basedc, flags); 972 } else { 973 pri_t pri = maxclsyspri; 974 /* 975 * The write issue taskq can be extremely CPU 976 * intensive. Run it at slightly lower priority 977 * than the other taskqs. 978 */ 979 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 980 pri--; 981 982 tq = taskq_create_proc(name, value, pri, 50, 983 INT_MAX, spa->spa_proc, flags); 984 } 985 986 tqs->stqs_taskq[i] = tq; 987 } 988 } 989 990 static void 991 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 992 { 993 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 994 995 if (tqs->stqs_taskq == NULL) { 996 ASSERT0(tqs->stqs_count); 997 return; 998 } 999 1000 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1001 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1002 taskq_destroy(tqs->stqs_taskq[i]); 1003 } 1004 1005 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1006 tqs->stqs_taskq = NULL; 1007 } 1008 1009 /* 1010 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1011 * Note that a type may have multiple discrete taskqs to avoid lock contention 1012 * on the taskq itself. In that case we choose which taskq at random by using 1013 * the low bits of gethrtime(). 1014 */ 1015 void 1016 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1017 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1018 { 1019 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1020 taskq_t *tq; 1021 1022 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1023 ASSERT3U(tqs->stqs_count, !=, 0); 1024 1025 if (tqs->stqs_count == 1) { 1026 tq = tqs->stqs_taskq[0]; 1027 } else { 1028 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 1029 } 1030 1031 taskq_dispatch_ent(tq, func, arg, flags, ent); 1032 } 1033 1034 static void 1035 spa_create_zio_taskqs(spa_t *spa) 1036 { 1037 for (int t = 0; t < ZIO_TYPES; t++) { 1038 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1039 spa_taskqs_init(spa, t, q); 1040 } 1041 } 1042 } 1043 1044 #ifdef _KERNEL 1045 static void 1046 spa_thread(void *arg) 1047 { 1048 callb_cpr_t cprinfo; 1049 1050 spa_t *spa = arg; 1051 user_t *pu = PTOU(curproc); 1052 1053 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1054 spa->spa_name); 1055 1056 ASSERT(curproc != &p0); 1057 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1058 "zpool-%s", spa->spa_name); 1059 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1060 1061 /* bind this thread to the requested psrset */ 1062 if (zio_taskq_psrset_bind != PS_NONE) { 1063 pool_lock(); 1064 mutex_enter(&cpu_lock); 1065 mutex_enter(&pidlock); 1066 mutex_enter(&curproc->p_lock); 1067 1068 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1069 0, NULL, NULL) == 0) { 1070 curthread->t_bind_pset = zio_taskq_psrset_bind; 1071 } else { 1072 cmn_err(CE_WARN, 1073 "Couldn't bind process for zfs pool \"%s\" to " 1074 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1075 } 1076 1077 mutex_exit(&curproc->p_lock); 1078 mutex_exit(&pidlock); 1079 mutex_exit(&cpu_lock); 1080 pool_unlock(); 1081 } 1082 1083 if (zio_taskq_sysdc) { 1084 sysdc_thread_enter(curthread, 100, 0); 1085 } 1086 1087 spa->spa_proc = curproc; 1088 spa->spa_did = curthread->t_did; 1089 1090 spa_create_zio_taskqs(spa); 1091 1092 mutex_enter(&spa->spa_proc_lock); 1093 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1094 1095 spa->spa_proc_state = SPA_PROC_ACTIVE; 1096 cv_broadcast(&spa->spa_proc_cv); 1097 1098 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1099 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1100 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1101 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1102 1103 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1104 spa->spa_proc_state = SPA_PROC_GONE; 1105 spa->spa_proc = &p0; 1106 cv_broadcast(&spa->spa_proc_cv); 1107 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1108 1109 mutex_enter(&curproc->p_lock); 1110 lwp_exit(); 1111 } 1112 #endif 1113 1114 /* 1115 * Activate an uninitialized pool. 1116 */ 1117 static void 1118 spa_activate(spa_t *spa, int mode) 1119 { 1120 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1121 1122 spa->spa_state = POOL_STATE_ACTIVE; 1123 spa->spa_mode = mode; 1124 1125 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1126 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1127 1128 /* Try to create a covering process */ 1129 mutex_enter(&spa->spa_proc_lock); 1130 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1131 ASSERT(spa->spa_proc == &p0); 1132 spa->spa_did = 0; 1133 1134 /* Only create a process if we're going to be around a while. */ 1135 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1136 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1137 NULL, 0) == 0) { 1138 spa->spa_proc_state = SPA_PROC_CREATED; 1139 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1140 cv_wait(&spa->spa_proc_cv, 1141 &spa->spa_proc_lock); 1142 } 1143 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1144 ASSERT(spa->spa_proc != &p0); 1145 ASSERT(spa->spa_did != 0); 1146 } else { 1147 #ifdef _KERNEL 1148 cmn_err(CE_WARN, 1149 "Couldn't create process for zfs pool \"%s\"\n", 1150 spa->spa_name); 1151 #endif 1152 } 1153 } 1154 mutex_exit(&spa->spa_proc_lock); 1155 1156 /* If we didn't create a process, we need to create our taskqs. */ 1157 if (spa->spa_proc == &p0) { 1158 spa_create_zio_taskqs(spa); 1159 } 1160 1161 for (size_t i = 0; i < TXG_SIZE; i++) { 1162 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1163 ZIO_FLAG_CANFAIL); 1164 } 1165 1166 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1167 offsetof(vdev_t, vdev_config_dirty_node)); 1168 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1169 offsetof(objset_t, os_evicting_node)); 1170 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1171 offsetof(vdev_t, vdev_state_dirty_node)); 1172 1173 txg_list_create(&spa->spa_vdev_txg_list, spa, 1174 offsetof(struct vdev, vdev_txg_node)); 1175 1176 avl_create(&spa->spa_errlist_scrub, 1177 spa_error_entry_compare, sizeof (spa_error_entry_t), 1178 offsetof(spa_error_entry_t, se_avl)); 1179 avl_create(&spa->spa_errlist_last, 1180 spa_error_entry_compare, sizeof (spa_error_entry_t), 1181 offsetof(spa_error_entry_t, se_avl)); 1182 } 1183 1184 /* 1185 * Opposite of spa_activate(). 1186 */ 1187 static void 1188 spa_deactivate(spa_t *spa) 1189 { 1190 ASSERT(spa->spa_sync_on == B_FALSE); 1191 ASSERT(spa->spa_dsl_pool == NULL); 1192 ASSERT(spa->spa_root_vdev == NULL); 1193 ASSERT(spa->spa_async_zio_root == NULL); 1194 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1195 1196 spa_evicting_os_wait(spa); 1197 1198 txg_list_destroy(&spa->spa_vdev_txg_list); 1199 1200 list_destroy(&spa->spa_config_dirty_list); 1201 list_destroy(&spa->spa_evicting_os_list); 1202 list_destroy(&spa->spa_state_dirty_list); 1203 1204 for (int t = 0; t < ZIO_TYPES; t++) { 1205 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1206 spa_taskqs_fini(spa, t, q); 1207 } 1208 } 1209 1210 for (size_t i = 0; i < TXG_SIZE; i++) { 1211 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1212 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1213 spa->spa_txg_zio[i] = NULL; 1214 } 1215 1216 metaslab_class_destroy(spa->spa_normal_class); 1217 spa->spa_normal_class = NULL; 1218 1219 metaslab_class_destroy(spa->spa_log_class); 1220 spa->spa_log_class = NULL; 1221 1222 /* 1223 * If this was part of an import or the open otherwise failed, we may 1224 * still have errors left in the queues. Empty them just in case. 1225 */ 1226 spa_errlog_drain(spa); 1227 1228 avl_destroy(&spa->spa_errlist_scrub); 1229 avl_destroy(&spa->spa_errlist_last); 1230 1231 spa->spa_state = POOL_STATE_UNINITIALIZED; 1232 1233 mutex_enter(&spa->spa_proc_lock); 1234 if (spa->spa_proc_state != SPA_PROC_NONE) { 1235 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1236 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1237 cv_broadcast(&spa->spa_proc_cv); 1238 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1239 ASSERT(spa->spa_proc != &p0); 1240 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1241 } 1242 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1243 spa->spa_proc_state = SPA_PROC_NONE; 1244 } 1245 ASSERT(spa->spa_proc == &p0); 1246 mutex_exit(&spa->spa_proc_lock); 1247 1248 /* 1249 * We want to make sure spa_thread() has actually exited the ZFS 1250 * module, so that the module can't be unloaded out from underneath 1251 * it. 1252 */ 1253 if (spa->spa_did != 0) { 1254 thread_join(spa->spa_did); 1255 spa->spa_did = 0; 1256 } 1257 } 1258 1259 /* 1260 * Verify a pool configuration, and construct the vdev tree appropriately. This 1261 * will create all the necessary vdevs in the appropriate layout, with each vdev 1262 * in the CLOSED state. This will prep the pool before open/creation/import. 1263 * All vdev validation is done by the vdev_alloc() routine. 1264 */ 1265 static int 1266 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1267 uint_t id, int atype) 1268 { 1269 nvlist_t **child; 1270 uint_t children; 1271 int error; 1272 1273 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1274 return (error); 1275 1276 if ((*vdp)->vdev_ops->vdev_op_leaf) 1277 return (0); 1278 1279 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1280 &child, &children); 1281 1282 if (error == ENOENT) 1283 return (0); 1284 1285 if (error) { 1286 vdev_free(*vdp); 1287 *vdp = NULL; 1288 return (SET_ERROR(EINVAL)); 1289 } 1290 1291 for (int c = 0; c < children; c++) { 1292 vdev_t *vd; 1293 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1294 atype)) != 0) { 1295 vdev_free(*vdp); 1296 *vdp = NULL; 1297 return (error); 1298 } 1299 } 1300 1301 ASSERT(*vdp != NULL); 1302 1303 return (0); 1304 } 1305 1306 /* 1307 * Opposite of spa_load(). 1308 */ 1309 static void 1310 spa_unload(spa_t *spa) 1311 { 1312 int i; 1313 1314 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1315 1316 spa_load_note(spa, "UNLOADING"); 1317 1318 /* 1319 * Stop async tasks. 1320 */ 1321 spa_async_suspend(spa); 1322 1323 if (spa->spa_root_vdev) { 1324 vdev_initialize_stop_all(spa->spa_root_vdev, 1325 VDEV_INITIALIZE_ACTIVE); 1326 } 1327 1328 /* 1329 * Stop syncing. 1330 */ 1331 if (spa->spa_sync_on) { 1332 txg_sync_stop(spa->spa_dsl_pool); 1333 spa->spa_sync_on = B_FALSE; 1334 } 1335 1336 /* 1337 * Even though vdev_free() also calls vdev_metaslab_fini, we need 1338 * to call it earlier, before we wait for async i/o to complete. 1339 * This ensures that there is no async metaslab prefetching, by 1340 * calling taskq_wait(mg_taskq). 1341 */ 1342 if (spa->spa_root_vdev != NULL) { 1343 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1344 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) 1345 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]); 1346 spa_config_exit(spa, SCL_ALL, spa); 1347 } 1348 1349 /* 1350 * Wait for any outstanding async I/O to complete. 1351 */ 1352 if (spa->spa_async_zio_root != NULL) { 1353 for (int i = 0; i < max_ncpus; i++) 1354 (void) zio_wait(spa->spa_async_zio_root[i]); 1355 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1356 spa->spa_async_zio_root = NULL; 1357 } 1358 1359 if (spa->spa_vdev_removal != NULL) { 1360 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1361 spa->spa_vdev_removal = NULL; 1362 } 1363 1364 if (spa->spa_condense_zthr != NULL) { 1365 ASSERT(!zthr_isrunning(spa->spa_condense_zthr)); 1366 zthr_destroy(spa->spa_condense_zthr); 1367 spa->spa_condense_zthr = NULL; 1368 } 1369 1370 if (spa->spa_checkpoint_discard_zthr != NULL) { 1371 ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr)); 1372 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1373 spa->spa_checkpoint_discard_zthr = NULL; 1374 } 1375 1376 spa_condense_fini(spa); 1377 1378 bpobj_close(&spa->spa_deferred_bpobj); 1379 1380 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1381 1382 /* 1383 * Close all vdevs. 1384 */ 1385 if (spa->spa_root_vdev) 1386 vdev_free(spa->spa_root_vdev); 1387 ASSERT(spa->spa_root_vdev == NULL); 1388 1389 /* 1390 * Close the dsl pool. 1391 */ 1392 if (spa->spa_dsl_pool) { 1393 dsl_pool_close(spa->spa_dsl_pool); 1394 spa->spa_dsl_pool = NULL; 1395 spa->spa_meta_objset = NULL; 1396 } 1397 1398 ddt_unload(spa); 1399 1400 /* 1401 * Drop and purge level 2 cache 1402 */ 1403 spa_l2cache_drop(spa); 1404 1405 for (i = 0; i < spa->spa_spares.sav_count; i++) 1406 vdev_free(spa->spa_spares.sav_vdevs[i]); 1407 if (spa->spa_spares.sav_vdevs) { 1408 kmem_free(spa->spa_spares.sav_vdevs, 1409 spa->spa_spares.sav_count * sizeof (void *)); 1410 spa->spa_spares.sav_vdevs = NULL; 1411 } 1412 if (spa->spa_spares.sav_config) { 1413 nvlist_free(spa->spa_spares.sav_config); 1414 spa->spa_spares.sav_config = NULL; 1415 } 1416 spa->spa_spares.sav_count = 0; 1417 1418 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1419 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1420 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1421 } 1422 if (spa->spa_l2cache.sav_vdevs) { 1423 kmem_free(spa->spa_l2cache.sav_vdevs, 1424 spa->spa_l2cache.sav_count * sizeof (void *)); 1425 spa->spa_l2cache.sav_vdevs = NULL; 1426 } 1427 if (spa->spa_l2cache.sav_config) { 1428 nvlist_free(spa->spa_l2cache.sav_config); 1429 spa->spa_l2cache.sav_config = NULL; 1430 } 1431 spa->spa_l2cache.sav_count = 0; 1432 1433 spa->spa_async_suspended = 0; 1434 1435 spa->spa_indirect_vdevs_loaded = B_FALSE; 1436 1437 if (spa->spa_comment != NULL) { 1438 spa_strfree(spa->spa_comment); 1439 spa->spa_comment = NULL; 1440 } 1441 1442 spa_config_exit(spa, SCL_ALL, spa); 1443 } 1444 1445 /* 1446 * Load (or re-load) the current list of vdevs describing the active spares for 1447 * this pool. When this is called, we have some form of basic information in 1448 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1449 * then re-generate a more complete list including status information. 1450 */ 1451 void 1452 spa_load_spares(spa_t *spa) 1453 { 1454 nvlist_t **spares; 1455 uint_t nspares; 1456 int i; 1457 vdev_t *vd, *tvd; 1458 1459 #ifndef _KERNEL 1460 /* 1461 * zdb opens both the current state of the pool and the 1462 * checkpointed state (if present), with a different spa_t. 1463 * 1464 * As spare vdevs are shared among open pools, we skip loading 1465 * them when we load the checkpointed state of the pool. 1466 */ 1467 if (!spa_writeable(spa)) 1468 return; 1469 #endif 1470 1471 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1472 1473 /* 1474 * First, close and free any existing spare vdevs. 1475 */ 1476 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1477 vd = spa->spa_spares.sav_vdevs[i]; 1478 1479 /* Undo the call to spa_activate() below */ 1480 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1481 B_FALSE)) != NULL && tvd->vdev_isspare) 1482 spa_spare_remove(tvd); 1483 vdev_close(vd); 1484 vdev_free(vd); 1485 } 1486 1487 if (spa->spa_spares.sav_vdevs) 1488 kmem_free(spa->spa_spares.sav_vdevs, 1489 spa->spa_spares.sav_count * sizeof (void *)); 1490 1491 if (spa->spa_spares.sav_config == NULL) 1492 nspares = 0; 1493 else 1494 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1495 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1496 1497 spa->spa_spares.sav_count = (int)nspares; 1498 spa->spa_spares.sav_vdevs = NULL; 1499 1500 if (nspares == 0) 1501 return; 1502 1503 /* 1504 * Construct the array of vdevs, opening them to get status in the 1505 * process. For each spare, there is potentially two different vdev_t 1506 * structures associated with it: one in the list of spares (used only 1507 * for basic validation purposes) and one in the active vdev 1508 * configuration (if it's spared in). During this phase we open and 1509 * validate each vdev on the spare list. If the vdev also exists in the 1510 * active configuration, then we also mark this vdev as an active spare. 1511 */ 1512 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1513 KM_SLEEP); 1514 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1515 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1516 VDEV_ALLOC_SPARE) == 0); 1517 ASSERT(vd != NULL); 1518 1519 spa->spa_spares.sav_vdevs[i] = vd; 1520 1521 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1522 B_FALSE)) != NULL) { 1523 if (!tvd->vdev_isspare) 1524 spa_spare_add(tvd); 1525 1526 /* 1527 * We only mark the spare active if we were successfully 1528 * able to load the vdev. Otherwise, importing a pool 1529 * with a bad active spare would result in strange 1530 * behavior, because multiple pool would think the spare 1531 * is actively in use. 1532 * 1533 * There is a vulnerability here to an equally bizarre 1534 * circumstance, where a dead active spare is later 1535 * brought back to life (onlined or otherwise). Given 1536 * the rarity of this scenario, and the extra complexity 1537 * it adds, we ignore the possibility. 1538 */ 1539 if (!vdev_is_dead(tvd)) 1540 spa_spare_activate(tvd); 1541 } 1542 1543 vd->vdev_top = vd; 1544 vd->vdev_aux = &spa->spa_spares; 1545 1546 if (vdev_open(vd) != 0) 1547 continue; 1548 1549 if (vdev_validate_aux(vd) == 0) 1550 spa_spare_add(vd); 1551 } 1552 1553 /* 1554 * Recompute the stashed list of spares, with status information 1555 * this time. 1556 */ 1557 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1558 DATA_TYPE_NVLIST_ARRAY) == 0); 1559 1560 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1561 KM_SLEEP); 1562 for (i = 0; i < spa->spa_spares.sav_count; i++) 1563 spares[i] = vdev_config_generate(spa, 1564 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1565 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1566 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1567 for (i = 0; i < spa->spa_spares.sav_count; i++) 1568 nvlist_free(spares[i]); 1569 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1570 } 1571 1572 /* 1573 * Load (or re-load) the current list of vdevs describing the active l2cache for 1574 * this pool. When this is called, we have some form of basic information in 1575 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1576 * then re-generate a more complete list including status information. 1577 * Devices which are already active have their details maintained, and are 1578 * not re-opened. 1579 */ 1580 void 1581 spa_load_l2cache(spa_t *spa) 1582 { 1583 nvlist_t **l2cache; 1584 uint_t nl2cache; 1585 int i, j, oldnvdevs; 1586 uint64_t guid; 1587 vdev_t *vd, **oldvdevs, **newvdevs; 1588 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1589 1590 #ifndef _KERNEL 1591 /* 1592 * zdb opens both the current state of the pool and the 1593 * checkpointed state (if present), with a different spa_t. 1594 * 1595 * As L2 caches are part of the ARC which is shared among open 1596 * pools, we skip loading them when we load the checkpointed 1597 * state of the pool. 1598 */ 1599 if (!spa_writeable(spa)) 1600 return; 1601 #endif 1602 1603 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1604 1605 if (sav->sav_config != NULL) { 1606 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1607 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1608 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1609 } else { 1610 nl2cache = 0; 1611 newvdevs = NULL; 1612 } 1613 1614 oldvdevs = sav->sav_vdevs; 1615 oldnvdevs = sav->sav_count; 1616 sav->sav_vdevs = NULL; 1617 sav->sav_count = 0; 1618 1619 /* 1620 * Process new nvlist of vdevs. 1621 */ 1622 for (i = 0; i < nl2cache; i++) { 1623 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1624 &guid) == 0); 1625 1626 newvdevs[i] = NULL; 1627 for (j = 0; j < oldnvdevs; j++) { 1628 vd = oldvdevs[j]; 1629 if (vd != NULL && guid == vd->vdev_guid) { 1630 /* 1631 * Retain previous vdev for add/remove ops. 1632 */ 1633 newvdevs[i] = vd; 1634 oldvdevs[j] = NULL; 1635 break; 1636 } 1637 } 1638 1639 if (newvdevs[i] == NULL) { 1640 /* 1641 * Create new vdev 1642 */ 1643 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1644 VDEV_ALLOC_L2CACHE) == 0); 1645 ASSERT(vd != NULL); 1646 newvdevs[i] = vd; 1647 1648 /* 1649 * Commit this vdev as an l2cache device, 1650 * even if it fails to open. 1651 */ 1652 spa_l2cache_add(vd); 1653 1654 vd->vdev_top = vd; 1655 vd->vdev_aux = sav; 1656 1657 spa_l2cache_activate(vd); 1658 1659 if (vdev_open(vd) != 0) 1660 continue; 1661 1662 (void) vdev_validate_aux(vd); 1663 1664 if (!vdev_is_dead(vd)) 1665 l2arc_add_vdev(spa, vd); 1666 } 1667 } 1668 1669 /* 1670 * Purge vdevs that were dropped 1671 */ 1672 for (i = 0; i < oldnvdevs; i++) { 1673 uint64_t pool; 1674 1675 vd = oldvdevs[i]; 1676 if (vd != NULL) { 1677 ASSERT(vd->vdev_isl2cache); 1678 1679 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1680 pool != 0ULL && l2arc_vdev_present(vd)) 1681 l2arc_remove_vdev(vd); 1682 vdev_clear_stats(vd); 1683 vdev_free(vd); 1684 } 1685 } 1686 1687 if (oldvdevs) 1688 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1689 1690 if (sav->sav_config == NULL) 1691 goto out; 1692 1693 sav->sav_vdevs = newvdevs; 1694 sav->sav_count = (int)nl2cache; 1695 1696 /* 1697 * Recompute the stashed list of l2cache devices, with status 1698 * information this time. 1699 */ 1700 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1701 DATA_TYPE_NVLIST_ARRAY) == 0); 1702 1703 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1704 for (i = 0; i < sav->sav_count; i++) 1705 l2cache[i] = vdev_config_generate(spa, 1706 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1707 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1708 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1709 out: 1710 for (i = 0; i < sav->sav_count; i++) 1711 nvlist_free(l2cache[i]); 1712 if (sav->sav_count) 1713 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1714 } 1715 1716 static int 1717 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1718 { 1719 dmu_buf_t *db; 1720 char *packed = NULL; 1721 size_t nvsize = 0; 1722 int error; 1723 *value = NULL; 1724 1725 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1726 if (error != 0) 1727 return (error); 1728 1729 nvsize = *(uint64_t *)db->db_data; 1730 dmu_buf_rele(db, FTAG); 1731 1732 packed = kmem_alloc(nvsize, KM_SLEEP); 1733 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1734 DMU_READ_PREFETCH); 1735 if (error == 0) 1736 error = nvlist_unpack(packed, nvsize, value, 0); 1737 kmem_free(packed, nvsize); 1738 1739 return (error); 1740 } 1741 1742 /* 1743 * Concrete top-level vdevs that are not missing and are not logs. At every 1744 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 1745 */ 1746 static uint64_t 1747 spa_healthy_core_tvds(spa_t *spa) 1748 { 1749 vdev_t *rvd = spa->spa_root_vdev; 1750 uint64_t tvds = 0; 1751 1752 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1753 vdev_t *vd = rvd->vdev_child[i]; 1754 if (vd->vdev_islog) 1755 continue; 1756 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 1757 tvds++; 1758 } 1759 1760 return (tvds); 1761 } 1762 1763 /* 1764 * Checks to see if the given vdev could not be opened, in which case we post a 1765 * sysevent to notify the autoreplace code that the device has been removed. 1766 */ 1767 static void 1768 spa_check_removed(vdev_t *vd) 1769 { 1770 for (uint64_t c = 0; c < vd->vdev_children; c++) 1771 spa_check_removed(vd->vdev_child[c]); 1772 1773 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1774 vdev_is_concrete(vd)) { 1775 zfs_post_autoreplace(vd->vdev_spa, vd); 1776 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 1777 } 1778 } 1779 1780 static int 1781 spa_check_for_missing_logs(spa_t *spa) 1782 { 1783 vdev_t *rvd = spa->spa_root_vdev; 1784 1785 /* 1786 * If we're doing a normal import, then build up any additional 1787 * diagnostic information about missing log devices. 1788 * We'll pass this up to the user for further processing. 1789 */ 1790 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1791 nvlist_t **child, *nv; 1792 uint64_t idx = 0; 1793 1794 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1795 KM_SLEEP); 1796 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1797 1798 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1799 vdev_t *tvd = rvd->vdev_child[c]; 1800 1801 /* 1802 * We consider a device as missing only if it failed 1803 * to open (i.e. offline or faulted is not considered 1804 * as missing). 1805 */ 1806 if (tvd->vdev_islog && 1807 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1808 child[idx++] = vdev_config_generate(spa, tvd, 1809 B_FALSE, VDEV_CONFIG_MISSING); 1810 } 1811 } 1812 1813 if (idx > 0) { 1814 fnvlist_add_nvlist_array(nv, 1815 ZPOOL_CONFIG_CHILDREN, child, idx); 1816 fnvlist_add_nvlist(spa->spa_load_info, 1817 ZPOOL_CONFIG_MISSING_DEVICES, nv); 1818 1819 for (uint64_t i = 0; i < idx; i++) 1820 nvlist_free(child[i]); 1821 } 1822 nvlist_free(nv); 1823 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1824 1825 if (idx > 0) { 1826 spa_load_failed(spa, "some log devices are missing"); 1827 vdev_dbgmsg_print_tree(rvd, 2); 1828 return (SET_ERROR(ENXIO)); 1829 } 1830 } else { 1831 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1832 vdev_t *tvd = rvd->vdev_child[c]; 1833 1834 if (tvd->vdev_islog && 1835 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1836 spa_set_log_state(spa, SPA_LOG_CLEAR); 1837 spa_load_note(spa, "some log devices are " 1838 "missing, ZIL is dropped."); 1839 vdev_dbgmsg_print_tree(rvd, 2); 1840 break; 1841 } 1842 } 1843 } 1844 1845 return (0); 1846 } 1847 1848 /* 1849 * Check for missing log devices 1850 */ 1851 static boolean_t 1852 spa_check_logs(spa_t *spa) 1853 { 1854 boolean_t rv = B_FALSE; 1855 dsl_pool_t *dp = spa_get_dsl(spa); 1856 1857 switch (spa->spa_log_state) { 1858 case SPA_LOG_MISSING: 1859 /* need to recheck in case slog has been restored */ 1860 case SPA_LOG_UNKNOWN: 1861 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1862 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1863 if (rv) 1864 spa_set_log_state(spa, SPA_LOG_MISSING); 1865 break; 1866 } 1867 return (rv); 1868 } 1869 1870 static boolean_t 1871 spa_passivate_log(spa_t *spa) 1872 { 1873 vdev_t *rvd = spa->spa_root_vdev; 1874 boolean_t slog_found = B_FALSE; 1875 1876 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1877 1878 if (!spa_has_slogs(spa)) 1879 return (B_FALSE); 1880 1881 for (int c = 0; c < rvd->vdev_children; c++) { 1882 vdev_t *tvd = rvd->vdev_child[c]; 1883 metaslab_group_t *mg = tvd->vdev_mg; 1884 1885 if (tvd->vdev_islog) { 1886 metaslab_group_passivate(mg); 1887 slog_found = B_TRUE; 1888 } 1889 } 1890 1891 return (slog_found); 1892 } 1893 1894 static void 1895 spa_activate_log(spa_t *spa) 1896 { 1897 vdev_t *rvd = spa->spa_root_vdev; 1898 1899 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1900 1901 for (int c = 0; c < rvd->vdev_children; c++) { 1902 vdev_t *tvd = rvd->vdev_child[c]; 1903 metaslab_group_t *mg = tvd->vdev_mg; 1904 1905 if (tvd->vdev_islog) 1906 metaslab_group_activate(mg); 1907 } 1908 } 1909 1910 int 1911 spa_reset_logs(spa_t *spa) 1912 { 1913 int error; 1914 1915 error = dmu_objset_find(spa_name(spa), zil_reset, 1916 NULL, DS_FIND_CHILDREN); 1917 if (error == 0) { 1918 /* 1919 * We successfully offlined the log device, sync out the 1920 * current txg so that the "stubby" block can be removed 1921 * by zil_sync(). 1922 */ 1923 txg_wait_synced(spa->spa_dsl_pool, 0); 1924 } 1925 return (error); 1926 } 1927 1928 static void 1929 spa_aux_check_removed(spa_aux_vdev_t *sav) 1930 { 1931 for (int i = 0; i < sav->sav_count; i++) 1932 spa_check_removed(sav->sav_vdevs[i]); 1933 } 1934 1935 void 1936 spa_claim_notify(zio_t *zio) 1937 { 1938 spa_t *spa = zio->io_spa; 1939 1940 if (zio->io_error) 1941 return; 1942 1943 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1944 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1945 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1946 mutex_exit(&spa->spa_props_lock); 1947 } 1948 1949 typedef struct spa_load_error { 1950 uint64_t sle_meta_count; 1951 uint64_t sle_data_count; 1952 } spa_load_error_t; 1953 1954 static void 1955 spa_load_verify_done(zio_t *zio) 1956 { 1957 blkptr_t *bp = zio->io_bp; 1958 spa_load_error_t *sle = zio->io_private; 1959 dmu_object_type_t type = BP_GET_TYPE(bp); 1960 int error = zio->io_error; 1961 spa_t *spa = zio->io_spa; 1962 1963 abd_free(zio->io_abd); 1964 if (error) { 1965 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1966 type != DMU_OT_INTENT_LOG) 1967 atomic_inc_64(&sle->sle_meta_count); 1968 else 1969 atomic_inc_64(&sle->sle_data_count); 1970 } 1971 1972 mutex_enter(&spa->spa_scrub_lock); 1973 spa->spa_scrub_inflight--; 1974 cv_broadcast(&spa->spa_scrub_io_cv); 1975 mutex_exit(&spa->spa_scrub_lock); 1976 } 1977 1978 /* 1979 * Maximum number of concurrent scrub i/os to create while verifying 1980 * a pool while importing it. 1981 */ 1982 int spa_load_verify_maxinflight = 10000; 1983 boolean_t spa_load_verify_metadata = B_TRUE; 1984 boolean_t spa_load_verify_data = B_TRUE; 1985 1986 /*ARGSUSED*/ 1987 static int 1988 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1989 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1990 { 1991 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1992 return (0); 1993 /* 1994 * Note: normally this routine will not be called if 1995 * spa_load_verify_metadata is not set. However, it may be useful 1996 * to manually set the flag after the traversal has begun. 1997 */ 1998 if (!spa_load_verify_metadata) 1999 return (0); 2000 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 2001 return (0); 2002 2003 zio_t *rio = arg; 2004 size_t size = BP_GET_PSIZE(bp); 2005 2006 mutex_enter(&spa->spa_scrub_lock); 2007 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 2008 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2009 spa->spa_scrub_inflight++; 2010 mutex_exit(&spa->spa_scrub_lock); 2011 2012 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2013 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2014 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2015 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2016 return (0); 2017 } 2018 2019 /* ARGSUSED */ 2020 int 2021 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2022 { 2023 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2024 return (SET_ERROR(ENAMETOOLONG)); 2025 2026 return (0); 2027 } 2028 2029 static int 2030 spa_load_verify(spa_t *spa) 2031 { 2032 zio_t *rio; 2033 spa_load_error_t sle = { 0 }; 2034 zpool_load_policy_t policy; 2035 boolean_t verify_ok = B_FALSE; 2036 int error = 0; 2037 2038 zpool_get_load_policy(spa->spa_config, &policy); 2039 2040 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) 2041 return (0); 2042 2043 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2044 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2045 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2046 DS_FIND_CHILDREN); 2047 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2048 if (error != 0) 2049 return (error); 2050 2051 rio = zio_root(spa, NULL, &sle, 2052 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2053 2054 if (spa_load_verify_metadata) { 2055 if (spa->spa_extreme_rewind) { 2056 spa_load_note(spa, "performing a complete scan of the " 2057 "pool since extreme rewind is on. This may take " 2058 "a very long time.\n (spa_load_verify_data=%u, " 2059 "spa_load_verify_metadata=%u)", 2060 spa_load_verify_data, spa_load_verify_metadata); 2061 } 2062 error = traverse_pool(spa, spa->spa_verify_min_txg, 2063 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 2064 spa_load_verify_cb, rio); 2065 } 2066 2067 (void) zio_wait(rio); 2068 2069 spa->spa_load_meta_errors = sle.sle_meta_count; 2070 spa->spa_load_data_errors = sle.sle_data_count; 2071 2072 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2073 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2074 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2075 (u_longlong_t)sle.sle_data_count); 2076 } 2077 2078 if (spa_load_verify_dryrun || 2079 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2080 sle.sle_data_count <= policy.zlp_maxdata)) { 2081 int64_t loss = 0; 2082 2083 verify_ok = B_TRUE; 2084 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2085 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2086 2087 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2088 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2089 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2090 VERIFY(nvlist_add_int64(spa->spa_load_info, 2091 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2092 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2093 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2094 } else { 2095 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2096 } 2097 2098 if (spa_load_verify_dryrun) 2099 return (0); 2100 2101 if (error) { 2102 if (error != ENXIO && error != EIO) 2103 error = SET_ERROR(EIO); 2104 return (error); 2105 } 2106 2107 return (verify_ok ? 0 : EIO); 2108 } 2109 2110 /* 2111 * Find a value in the pool props object. 2112 */ 2113 static void 2114 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2115 { 2116 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2117 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2118 } 2119 2120 /* 2121 * Find a value in the pool directory object. 2122 */ 2123 static int 2124 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2125 { 2126 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2127 name, sizeof (uint64_t), 1, val); 2128 2129 if (error != 0 && (error != ENOENT || log_enoent)) { 2130 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2131 "[error=%d]", name, error); 2132 } 2133 2134 return (error); 2135 } 2136 2137 static int 2138 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2139 { 2140 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2141 return (SET_ERROR(err)); 2142 } 2143 2144 static void 2145 spa_spawn_aux_threads(spa_t *spa) 2146 { 2147 ASSERT(spa_writeable(spa)); 2148 2149 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2150 2151 spa_start_indirect_condensing_thread(spa); 2152 2153 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2154 spa->spa_checkpoint_discard_zthr = 2155 zthr_create(spa_checkpoint_discard_thread_check, 2156 spa_checkpoint_discard_thread, spa); 2157 } 2158 2159 /* 2160 * Fix up config after a partly-completed split. This is done with the 2161 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2162 * pool have that entry in their config, but only the splitting one contains 2163 * a list of all the guids of the vdevs that are being split off. 2164 * 2165 * This function determines what to do with that list: either rejoin 2166 * all the disks to the pool, or complete the splitting process. To attempt 2167 * the rejoin, each disk that is offlined is marked online again, and 2168 * we do a reopen() call. If the vdev label for every disk that was 2169 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2170 * then we call vdev_split() on each disk, and complete the split. 2171 * 2172 * Otherwise we leave the config alone, with all the vdevs in place in 2173 * the original pool. 2174 */ 2175 static void 2176 spa_try_repair(spa_t *spa, nvlist_t *config) 2177 { 2178 uint_t extracted; 2179 uint64_t *glist; 2180 uint_t i, gcount; 2181 nvlist_t *nvl; 2182 vdev_t **vd; 2183 boolean_t attempt_reopen; 2184 2185 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2186 return; 2187 2188 /* check that the config is complete */ 2189 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2190 &glist, &gcount) != 0) 2191 return; 2192 2193 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2194 2195 /* attempt to online all the vdevs & validate */ 2196 attempt_reopen = B_TRUE; 2197 for (i = 0; i < gcount; i++) { 2198 if (glist[i] == 0) /* vdev is hole */ 2199 continue; 2200 2201 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2202 if (vd[i] == NULL) { 2203 /* 2204 * Don't bother attempting to reopen the disks; 2205 * just do the split. 2206 */ 2207 attempt_reopen = B_FALSE; 2208 } else { 2209 /* attempt to re-online it */ 2210 vd[i]->vdev_offline = B_FALSE; 2211 } 2212 } 2213 2214 if (attempt_reopen) { 2215 vdev_reopen(spa->spa_root_vdev); 2216 2217 /* check each device to see what state it's in */ 2218 for (extracted = 0, i = 0; i < gcount; i++) { 2219 if (vd[i] != NULL && 2220 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2221 break; 2222 ++extracted; 2223 } 2224 } 2225 2226 /* 2227 * If every disk has been moved to the new pool, or if we never 2228 * even attempted to look at them, then we split them off for 2229 * good. 2230 */ 2231 if (!attempt_reopen || gcount == extracted) { 2232 for (i = 0; i < gcount; i++) 2233 if (vd[i] != NULL) 2234 vdev_split(vd[i]); 2235 vdev_reopen(spa->spa_root_vdev); 2236 } 2237 2238 kmem_free(vd, gcount * sizeof (vdev_t *)); 2239 } 2240 2241 static int 2242 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2243 { 2244 char *ereport = FM_EREPORT_ZFS_POOL; 2245 int error; 2246 2247 spa->spa_load_state = state; 2248 2249 gethrestime(&spa->spa_loaded_ts); 2250 error = spa_load_impl(spa, type, &ereport); 2251 2252 /* 2253 * Don't count references from objsets that are already closed 2254 * and are making their way through the eviction process. 2255 */ 2256 spa_evicting_os_wait(spa); 2257 spa->spa_minref = refcount_count(&spa->spa_refcount); 2258 if (error) { 2259 if (error != EEXIST) { 2260 spa->spa_loaded_ts.tv_sec = 0; 2261 spa->spa_loaded_ts.tv_nsec = 0; 2262 } 2263 if (error != EBADF) { 2264 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2265 } 2266 } 2267 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2268 spa->spa_ena = 0; 2269 2270 return (error); 2271 } 2272 2273 /* 2274 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2275 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2276 * spa's per-vdev ZAP list. 2277 */ 2278 static uint64_t 2279 vdev_count_verify_zaps(vdev_t *vd) 2280 { 2281 spa_t *spa = vd->vdev_spa; 2282 uint64_t total = 0; 2283 if (vd->vdev_top_zap != 0) { 2284 total++; 2285 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2286 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2287 } 2288 if (vd->vdev_leaf_zap != 0) { 2289 total++; 2290 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2291 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2292 } 2293 2294 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2295 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2296 } 2297 2298 return (total); 2299 } 2300 2301 static int 2302 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 2303 { 2304 uint64_t hostid; 2305 char *hostname; 2306 uint64_t myhostid = 0; 2307 2308 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 2309 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2310 hostname = fnvlist_lookup_string(mos_config, 2311 ZPOOL_CONFIG_HOSTNAME); 2312 2313 myhostid = zone_get_hostid(NULL); 2314 2315 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 2316 cmn_err(CE_WARN, "pool '%s' could not be " 2317 "loaded as it was last accessed by " 2318 "another system (host: %s hostid: 0x%llx). " 2319 "See: http://illumos.org/msg/ZFS-8000-EY", 2320 spa_name(spa), hostname, (u_longlong_t)hostid); 2321 spa_load_failed(spa, "hostid verification failed: pool " 2322 "last accessed by host: %s (hostid: 0x%llx)", 2323 hostname, (u_longlong_t)hostid); 2324 return (SET_ERROR(EBADF)); 2325 } 2326 } 2327 2328 return (0); 2329 } 2330 2331 static int 2332 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 2333 { 2334 int error = 0; 2335 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 2336 int parse; 2337 vdev_t *rvd; 2338 uint64_t pool_guid; 2339 char *comment; 2340 2341 /* 2342 * Versioning wasn't explicitly added to the label until later, so if 2343 * it's not present treat it as the initial version. 2344 */ 2345 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2346 &spa->spa_ubsync.ub_version) != 0) 2347 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2348 2349 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 2350 spa_load_failed(spa, "invalid config provided: '%s' missing", 2351 ZPOOL_CONFIG_POOL_GUID); 2352 return (SET_ERROR(EINVAL)); 2353 } 2354 2355 /* 2356 * If we are doing an import, ensure that the pool is not already 2357 * imported by checking if its pool guid already exists in the 2358 * spa namespace. 2359 * 2360 * The only case that we allow an already imported pool to be 2361 * imported again, is when the pool is checkpointed and we want to 2362 * look at its checkpointed state from userland tools like zdb. 2363 */ 2364 #ifdef _KERNEL 2365 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2366 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2367 spa_guid_exists(pool_guid, 0)) { 2368 #else 2369 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2370 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2371 spa_guid_exists(pool_guid, 0) && 2372 !spa_importing_readonly_checkpoint(spa)) { 2373 #endif 2374 spa_load_failed(spa, "a pool with guid %llu is already open", 2375 (u_longlong_t)pool_guid); 2376 return (SET_ERROR(EEXIST)); 2377 } 2378 2379 spa->spa_config_guid = pool_guid; 2380 2381 nvlist_free(spa->spa_load_info); 2382 spa->spa_load_info = fnvlist_alloc(); 2383 2384 ASSERT(spa->spa_comment == NULL); 2385 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2386 spa->spa_comment = spa_strdup(comment); 2387 2388 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2389 &spa->spa_config_txg); 2390 2391 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 2392 spa->spa_config_splitting = fnvlist_dup(nvl); 2393 2394 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 2395 spa_load_failed(spa, "invalid config provided: '%s' missing", 2396 ZPOOL_CONFIG_VDEV_TREE); 2397 return (SET_ERROR(EINVAL)); 2398 } 2399 2400 /* 2401 * Create "The Godfather" zio to hold all async IOs 2402 */ 2403 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2404 KM_SLEEP); 2405 for (int i = 0; i < max_ncpus; i++) { 2406 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2407 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2408 ZIO_FLAG_GODFATHER); 2409 } 2410 2411 /* 2412 * Parse the configuration into a vdev tree. We explicitly set the 2413 * value that will be returned by spa_version() since parsing the 2414 * configuration requires knowing the version number. 2415 */ 2416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2417 parse = (type == SPA_IMPORT_EXISTING ? 2418 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2419 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 2420 spa_config_exit(spa, SCL_ALL, FTAG); 2421 2422 if (error != 0) { 2423 spa_load_failed(spa, "unable to parse config [error=%d]", 2424 error); 2425 return (error); 2426 } 2427 2428 ASSERT(spa->spa_root_vdev == rvd); 2429 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2430 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2431 2432 if (type != SPA_IMPORT_ASSEMBLE) { 2433 ASSERT(spa_guid(spa) == pool_guid); 2434 } 2435 2436 return (0); 2437 } 2438 2439 /* 2440 * Recursively open all vdevs in the vdev tree. This function is called twice: 2441 * first with the untrusted config, then with the trusted config. 2442 */ 2443 static int 2444 spa_ld_open_vdevs(spa_t *spa) 2445 { 2446 int error = 0; 2447 2448 /* 2449 * spa_missing_tvds_allowed defines how many top-level vdevs can be 2450 * missing/unopenable for the root vdev to be still considered openable. 2451 */ 2452 if (spa->spa_trust_config) { 2453 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 2454 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 2455 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 2456 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 2457 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 2458 } else { 2459 spa->spa_missing_tvds_allowed = 0; 2460 } 2461 2462 spa->spa_missing_tvds_allowed = 2463 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 2464 2465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2466 error = vdev_open(spa->spa_root_vdev); 2467 spa_config_exit(spa, SCL_ALL, FTAG); 2468 2469 if (spa->spa_missing_tvds != 0) { 2470 spa_load_note(spa, "vdev tree has %lld missing top-level " 2471 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 2472 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) { 2473 /* 2474 * Although theoretically we could allow users to open 2475 * incomplete pools in RW mode, we'd need to add a lot 2476 * of extra logic (e.g. adjust pool space to account 2477 * for missing vdevs). 2478 * This limitation also prevents users from accidentally 2479 * opening the pool in RW mode during data recovery and 2480 * damaging it further. 2481 */ 2482 spa_load_note(spa, "pools with missing top-level " 2483 "vdevs can only be opened in read-only mode."); 2484 error = SET_ERROR(ENXIO); 2485 } else { 2486 spa_load_note(spa, "current settings allow for maximum " 2487 "%lld missing top-level vdevs at this stage.", 2488 (u_longlong_t)spa->spa_missing_tvds_allowed); 2489 } 2490 } 2491 if (error != 0) { 2492 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 2493 error); 2494 } 2495 if (spa->spa_missing_tvds != 0 || error != 0) 2496 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 2497 2498 return (error); 2499 } 2500 2501 /* 2502 * We need to validate the vdev labels against the configuration that 2503 * we have in hand. This function is called twice: first with an untrusted 2504 * config, then with a trusted config. The validation is more strict when the 2505 * config is trusted. 2506 */ 2507 static int 2508 spa_ld_validate_vdevs(spa_t *spa) 2509 { 2510 int error = 0; 2511 vdev_t *rvd = spa->spa_root_vdev; 2512 2513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2514 error = vdev_validate(rvd); 2515 spa_config_exit(spa, SCL_ALL, FTAG); 2516 2517 if (error != 0) { 2518 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 2519 return (error); 2520 } 2521 2522 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 2523 spa_load_failed(spa, "cannot open vdev tree after invalidating " 2524 "some vdevs"); 2525 vdev_dbgmsg_print_tree(rvd, 2); 2526 return (SET_ERROR(ENXIO)); 2527 } 2528 2529 return (0); 2530 } 2531 2532 static void 2533 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 2534 { 2535 spa->spa_state = POOL_STATE_ACTIVE; 2536 spa->spa_ubsync = spa->spa_uberblock; 2537 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2538 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2539 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2540 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2541 spa->spa_claim_max_txg = spa->spa_first_txg; 2542 spa->spa_prev_software_version = ub->ub_software_version; 2543 } 2544 2545 static int 2546 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 2547 { 2548 vdev_t *rvd = spa->spa_root_vdev; 2549 nvlist_t *label; 2550 uberblock_t *ub = &spa->spa_uberblock; 2551 2552 /* 2553 * If we are opening the checkpointed state of the pool by 2554 * rewinding to it, at this point we will have written the 2555 * checkpointed uberblock to the vdev labels, so searching 2556 * the labels will find the right uberblock. However, if 2557 * we are opening the checkpointed state read-only, we have 2558 * not modified the labels. Therefore, we must ignore the 2559 * labels and continue using the spa_uberblock that was set 2560 * by spa_ld_checkpoint_rewind. 2561 * 2562 * Note that it would be fine to ignore the labels when 2563 * rewinding (opening writeable) as well. However, if we 2564 * crash just after writing the labels, we will end up 2565 * searching the labels. Doing so in the common case means 2566 * that this code path gets exercised normally, rather than 2567 * just in the edge case. 2568 */ 2569 if (ub->ub_checkpoint_txg != 0 && 2570 spa_importing_readonly_checkpoint(spa)) { 2571 spa_ld_select_uberblock_done(spa, ub); 2572 return (0); 2573 } 2574 2575 /* 2576 * Find the best uberblock. 2577 */ 2578 vdev_uberblock_load(rvd, ub, &label); 2579 2580 /* 2581 * If we weren't able to find a single valid uberblock, return failure. 2582 */ 2583 if (ub->ub_txg == 0) { 2584 nvlist_free(label); 2585 spa_load_failed(spa, "no valid uberblock found"); 2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2587 } 2588 2589 spa_load_note(spa, "using uberblock with txg=%llu", 2590 (u_longlong_t)ub->ub_txg); 2591 2592 /* 2593 * If the pool has an unsupported version we can't open it. 2594 */ 2595 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2596 nvlist_free(label); 2597 spa_load_failed(spa, "version %llu is not supported", 2598 (u_longlong_t)ub->ub_version); 2599 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2600 } 2601 2602 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2603 nvlist_t *features; 2604 2605 /* 2606 * If we weren't able to find what's necessary for reading the 2607 * MOS in the label, return failure. 2608 */ 2609 if (label == NULL) { 2610 spa_load_failed(spa, "label config unavailable"); 2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2612 ENXIO)); 2613 } 2614 2615 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 2616 &features) != 0) { 2617 nvlist_free(label); 2618 spa_load_failed(spa, "invalid label: '%s' missing", 2619 ZPOOL_CONFIG_FEATURES_FOR_READ); 2620 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2621 ENXIO)); 2622 } 2623 2624 /* 2625 * Update our in-core representation with the definitive values 2626 * from the label. 2627 */ 2628 nvlist_free(spa->spa_label_features); 2629 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2630 } 2631 2632 nvlist_free(label); 2633 2634 /* 2635 * Look through entries in the label nvlist's features_for_read. If 2636 * there is a feature listed there which we don't understand then we 2637 * cannot open a pool. 2638 */ 2639 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2640 nvlist_t *unsup_feat; 2641 2642 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2643 0); 2644 2645 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2646 NULL); nvp != NULL; 2647 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2648 if (!zfeature_is_supported(nvpair_name(nvp))) { 2649 VERIFY(nvlist_add_string(unsup_feat, 2650 nvpair_name(nvp), "") == 0); 2651 } 2652 } 2653 2654 if (!nvlist_empty(unsup_feat)) { 2655 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2656 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2657 nvlist_free(unsup_feat); 2658 spa_load_failed(spa, "some features are unsupported"); 2659 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2660 ENOTSUP)); 2661 } 2662 2663 nvlist_free(unsup_feat); 2664 } 2665 2666 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2667 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2668 spa_try_repair(spa, spa->spa_config); 2669 spa_config_exit(spa, SCL_ALL, FTAG); 2670 nvlist_free(spa->spa_config_splitting); 2671 spa->spa_config_splitting = NULL; 2672 } 2673 2674 /* 2675 * Initialize internal SPA structures. 2676 */ 2677 spa_ld_select_uberblock_done(spa, ub); 2678 2679 return (0); 2680 } 2681 2682 static int 2683 spa_ld_open_rootbp(spa_t *spa) 2684 { 2685 int error = 0; 2686 vdev_t *rvd = spa->spa_root_vdev; 2687 2688 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2689 if (error != 0) { 2690 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 2691 "[error=%d]", error); 2692 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2693 } 2694 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2695 2696 return (0); 2697 } 2698 2699 static int 2700 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 2701 boolean_t reloading) 2702 { 2703 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 2704 nvlist_t *nv, *mos_config, *policy; 2705 int error = 0, copy_error; 2706 uint64_t healthy_tvds, healthy_tvds_mos; 2707 uint64_t mos_config_txg; 2708 2709 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 2710 != 0) 2711 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2712 2713 /* 2714 * If we're assembling a pool from a split, the config provided is 2715 * already trusted so there is nothing to do. 2716 */ 2717 if (type == SPA_IMPORT_ASSEMBLE) 2718 return (0); 2719 2720 healthy_tvds = spa_healthy_core_tvds(spa); 2721 2722 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 2723 != 0) { 2724 spa_load_failed(spa, "unable to retrieve MOS config"); 2725 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2726 } 2727 2728 /* 2729 * If we are doing an open, pool owner wasn't verified yet, thus do 2730 * the verification here. 2731 */ 2732 if (spa->spa_load_state == SPA_LOAD_OPEN) { 2733 error = spa_verify_host(spa, mos_config); 2734 if (error != 0) { 2735 nvlist_free(mos_config); 2736 return (error); 2737 } 2738 } 2739 2740 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 2741 2742 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2743 2744 /* 2745 * Build a new vdev tree from the trusted config 2746 */ 2747 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 2748 2749 /* 2750 * Vdev paths in the MOS may be obsolete. If the untrusted config was 2751 * obtained by scanning /dev/dsk, then it will have the right vdev 2752 * paths. We update the trusted MOS config with this information. 2753 * We first try to copy the paths with vdev_copy_path_strict, which 2754 * succeeds only when both configs have exactly the same vdev tree. 2755 * If that fails, we fall back to a more flexible method that has a 2756 * best effort policy. 2757 */ 2758 copy_error = vdev_copy_path_strict(rvd, mrvd); 2759 if (copy_error != 0 || spa_load_print_vdev_tree) { 2760 spa_load_note(spa, "provided vdev tree:"); 2761 vdev_dbgmsg_print_tree(rvd, 2); 2762 spa_load_note(spa, "MOS vdev tree:"); 2763 vdev_dbgmsg_print_tree(mrvd, 2); 2764 } 2765 if (copy_error != 0) { 2766 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 2767 "back to vdev_copy_path_relaxed"); 2768 vdev_copy_path_relaxed(rvd, mrvd); 2769 } 2770 2771 vdev_close(rvd); 2772 vdev_free(rvd); 2773 spa->spa_root_vdev = mrvd; 2774 rvd = mrvd; 2775 spa_config_exit(spa, SCL_ALL, FTAG); 2776 2777 /* 2778 * We will use spa_config if we decide to reload the spa or if spa_load 2779 * fails and we rewind. We must thus regenerate the config using the 2780 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 2781 * pass settings on how to load the pool and is not stored in the MOS. 2782 * We copy it over to our new, trusted config. 2783 */ 2784 mos_config_txg = fnvlist_lookup_uint64(mos_config, 2785 ZPOOL_CONFIG_POOL_TXG); 2786 nvlist_free(mos_config); 2787 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 2788 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 2789 &policy) == 0) 2790 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 2791 spa_config_set(spa, mos_config); 2792 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 2793 2794 /* 2795 * Now that we got the config from the MOS, we should be more strict 2796 * in checking blkptrs and can make assumptions about the consistency 2797 * of the vdev tree. spa_trust_config must be set to true before opening 2798 * vdevs in order for them to be writeable. 2799 */ 2800 spa->spa_trust_config = B_TRUE; 2801 2802 /* 2803 * Open and validate the new vdev tree 2804 */ 2805 error = spa_ld_open_vdevs(spa); 2806 if (error != 0) 2807 return (error); 2808 2809 error = spa_ld_validate_vdevs(spa); 2810 if (error != 0) 2811 return (error); 2812 2813 if (copy_error != 0 || spa_load_print_vdev_tree) { 2814 spa_load_note(spa, "final vdev tree:"); 2815 vdev_dbgmsg_print_tree(rvd, 2); 2816 } 2817 2818 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 2819 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 2820 /* 2821 * Sanity check to make sure that we are indeed loading the 2822 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 2823 * in the config provided and they happened to be the only ones 2824 * to have the latest uberblock, we could involuntarily perform 2825 * an extreme rewind. 2826 */ 2827 healthy_tvds_mos = spa_healthy_core_tvds(spa); 2828 if (healthy_tvds_mos - healthy_tvds >= 2829 SPA_SYNC_MIN_VDEVS) { 2830 spa_load_note(spa, "config provided misses too many " 2831 "top-level vdevs compared to MOS (%lld vs %lld). ", 2832 (u_longlong_t)healthy_tvds, 2833 (u_longlong_t)healthy_tvds_mos); 2834 spa_load_note(spa, "vdev tree:"); 2835 vdev_dbgmsg_print_tree(rvd, 2); 2836 if (reloading) { 2837 spa_load_failed(spa, "config was already " 2838 "provided from MOS. Aborting."); 2839 return (spa_vdev_err(rvd, 2840 VDEV_AUX_CORRUPT_DATA, EIO)); 2841 } 2842 spa_load_note(spa, "spa must be reloaded using MOS " 2843 "config"); 2844 return (SET_ERROR(EAGAIN)); 2845 } 2846 } 2847 2848 error = spa_check_for_missing_logs(spa); 2849 if (error != 0) 2850 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2851 2852 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 2853 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 2854 "guid sum (%llu != %llu)", 2855 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 2856 (u_longlong_t)rvd->vdev_guid_sum); 2857 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2858 ENXIO)); 2859 } 2860 2861 return (0); 2862 } 2863 2864 static int 2865 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 2866 { 2867 int error = 0; 2868 vdev_t *rvd = spa->spa_root_vdev; 2869 2870 /* 2871 * Everything that we read before spa_remove_init() must be stored 2872 * on concreted vdevs. Therefore we do this as early as possible. 2873 */ 2874 error = spa_remove_init(spa); 2875 if (error != 0) { 2876 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 2877 error); 2878 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2879 } 2880 2881 /* 2882 * Retrieve information needed to condense indirect vdev mappings. 2883 */ 2884 error = spa_condense_init(spa); 2885 if (error != 0) { 2886 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 2887 error); 2888 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 2889 } 2890 2891 return (0); 2892 } 2893 2894 static int 2895 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 2896 { 2897 int error = 0; 2898 vdev_t *rvd = spa->spa_root_vdev; 2899 2900 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2901 boolean_t missing_feat_read = B_FALSE; 2902 nvlist_t *unsup_feat, *enabled_feat; 2903 2904 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2905 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 2906 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2907 } 2908 2909 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2910 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 2911 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2912 } 2913 2914 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2915 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 2916 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2917 } 2918 2919 enabled_feat = fnvlist_alloc(); 2920 unsup_feat = fnvlist_alloc(); 2921 2922 if (!spa_features_check(spa, B_FALSE, 2923 unsup_feat, enabled_feat)) 2924 missing_feat_read = B_TRUE; 2925 2926 if (spa_writeable(spa) || 2927 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 2928 if (!spa_features_check(spa, B_TRUE, 2929 unsup_feat, enabled_feat)) { 2930 *missing_feat_writep = B_TRUE; 2931 } 2932 } 2933 2934 fnvlist_add_nvlist(spa->spa_load_info, 2935 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2936 2937 if (!nvlist_empty(unsup_feat)) { 2938 fnvlist_add_nvlist(spa->spa_load_info, 2939 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2940 } 2941 2942 fnvlist_free(enabled_feat); 2943 fnvlist_free(unsup_feat); 2944 2945 if (!missing_feat_read) { 2946 fnvlist_add_boolean(spa->spa_load_info, 2947 ZPOOL_CONFIG_CAN_RDONLY); 2948 } 2949 2950 /* 2951 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2952 * twofold: to determine whether the pool is available for 2953 * import in read-write mode and (if it is not) whether the 2954 * pool is available for import in read-only mode. If the pool 2955 * is available for import in read-write mode, it is displayed 2956 * as available in userland; if it is not available for import 2957 * in read-only mode, it is displayed as unavailable in 2958 * userland. If the pool is available for import in read-only 2959 * mode but not read-write mode, it is displayed as unavailable 2960 * in userland with a special note that the pool is actually 2961 * available for open in read-only mode. 2962 * 2963 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2964 * missing a feature for write, we must first determine whether 2965 * the pool can be opened read-only before returning to 2966 * userland in order to know whether to display the 2967 * abovementioned note. 2968 */ 2969 if (missing_feat_read || (*missing_feat_writep && 2970 spa_writeable(spa))) { 2971 spa_load_failed(spa, "pool uses unsupported features"); 2972 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2973 ENOTSUP)); 2974 } 2975 2976 /* 2977 * Load refcounts for ZFS features from disk into an in-memory 2978 * cache during SPA initialization. 2979 */ 2980 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2981 uint64_t refcount; 2982 2983 error = feature_get_refcount_from_disk(spa, 2984 &spa_feature_table[i], &refcount); 2985 if (error == 0) { 2986 spa->spa_feat_refcount_cache[i] = refcount; 2987 } else if (error == ENOTSUP) { 2988 spa->spa_feat_refcount_cache[i] = 2989 SPA_FEATURE_DISABLED; 2990 } else { 2991 spa_load_failed(spa, "error getting refcount " 2992 "for feature %s [error=%d]", 2993 spa_feature_table[i].fi_guid, error); 2994 return (spa_vdev_err(rvd, 2995 VDEV_AUX_CORRUPT_DATA, EIO)); 2996 } 2997 } 2998 } 2999 3000 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 3001 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 3002 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 3003 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3004 } 3005 3006 return (0); 3007 } 3008 3009 static int 3010 spa_ld_load_special_directories(spa_t *spa) 3011 { 3012 int error = 0; 3013 vdev_t *rvd = spa->spa_root_vdev; 3014 3015 spa->spa_is_initializing = B_TRUE; 3016 error = dsl_pool_open(spa->spa_dsl_pool); 3017 spa->spa_is_initializing = B_FALSE; 3018 if (error != 0) { 3019 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 3020 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3021 } 3022 3023 return (0); 3024 } 3025 3026 static int 3027 spa_ld_get_props(spa_t *spa) 3028 { 3029 int error = 0; 3030 uint64_t obj; 3031 vdev_t *rvd = spa->spa_root_vdev; 3032 3033 /* Grab the secret checksum salt from the MOS. */ 3034 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3035 DMU_POOL_CHECKSUM_SALT, 1, 3036 sizeof (spa->spa_cksum_salt.zcs_bytes), 3037 spa->spa_cksum_salt.zcs_bytes); 3038 if (error == ENOENT) { 3039 /* Generate a new salt for subsequent use */ 3040 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3041 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3042 } else if (error != 0) { 3043 spa_load_failed(spa, "unable to retrieve checksum salt from " 3044 "MOS [error=%d]", error); 3045 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3046 } 3047 3048 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 3049 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3050 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 3051 if (error != 0) { 3052 spa_load_failed(spa, "error opening deferred-frees bpobj " 3053 "[error=%d]", error); 3054 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3055 } 3056 3057 /* 3058 * Load the bit that tells us to use the new accounting function 3059 * (raid-z deflation). If we have an older pool, this will not 3060 * be present. 3061 */ 3062 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 3063 if (error != 0 && error != ENOENT) 3064 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3065 3066 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 3067 &spa->spa_creation_version, B_FALSE); 3068 if (error != 0 && error != ENOENT) 3069 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3070 3071 /* 3072 * Load the persistent error log. If we have an older pool, this will 3073 * not be present. 3074 */ 3075 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 3076 B_FALSE); 3077 if (error != 0 && error != ENOENT) 3078 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3079 3080 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 3081 &spa->spa_errlog_scrub, B_FALSE); 3082 if (error != 0 && error != ENOENT) 3083 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3084 3085 /* 3086 * Load the history object. If we have an older pool, this 3087 * will not be present. 3088 */ 3089 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 3090 if (error != 0 && error != ENOENT) 3091 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3092 3093 /* 3094 * Load the per-vdev ZAP map. If we have an older pool, this will not 3095 * be present; in this case, defer its creation to a later time to 3096 * avoid dirtying the MOS this early / out of sync context. See 3097 * spa_sync_config_object. 3098 */ 3099 3100 /* The sentinel is only available in the MOS config. */ 3101 nvlist_t *mos_config; 3102 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 3103 spa_load_failed(spa, "unable to retrieve MOS config"); 3104 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3105 } 3106 3107 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 3108 &spa->spa_all_vdev_zaps, B_FALSE); 3109 3110 if (error == ENOENT) { 3111 VERIFY(!nvlist_exists(mos_config, 3112 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 3113 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 3114 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3115 } else if (error != 0) { 3116 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3117 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 3118 /* 3119 * An older version of ZFS overwrote the sentinel value, so 3120 * we have orphaned per-vdev ZAPs in the MOS. Defer their 3121 * destruction to later; see spa_sync_config_object. 3122 */ 3123 spa->spa_avz_action = AVZ_ACTION_DESTROY; 3124 /* 3125 * We're assuming that no vdevs have had their ZAPs created 3126 * before this. Better be sure of it. 3127 */ 3128 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3129 } 3130 nvlist_free(mos_config); 3131 3132 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3133 3134 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 3135 B_FALSE); 3136 if (error && error != ENOENT) 3137 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3138 3139 if (error == 0) { 3140 uint64_t autoreplace; 3141 3142 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 3143 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 3144 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 3145 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 3146 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 3147 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 3148 &spa->spa_dedup_ditto); 3149 3150 spa->spa_autoreplace = (autoreplace != 0); 3151 } 3152 3153 /* 3154 * If we are importing a pool with missing top-level vdevs, 3155 * we enforce that the pool doesn't panic or get suspended on 3156 * error since the likelihood of missing data is extremely high. 3157 */ 3158 if (spa->spa_missing_tvds > 0 && 3159 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 3160 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3161 spa_load_note(spa, "forcing failmode to 'continue' " 3162 "as some top level vdevs are missing"); 3163 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 3164 } 3165 3166 return (0); 3167 } 3168 3169 static int 3170 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 3171 { 3172 int error = 0; 3173 vdev_t *rvd = spa->spa_root_vdev; 3174 3175 /* 3176 * If we're assembling the pool from the split-off vdevs of 3177 * an existing pool, we don't want to attach the spares & cache 3178 * devices. 3179 */ 3180 3181 /* 3182 * Load any hot spares for this pool. 3183 */ 3184 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 3185 B_FALSE); 3186 if (error != 0 && error != ENOENT) 3187 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3188 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3189 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 3190 if (load_nvlist(spa, spa->spa_spares.sav_object, 3191 &spa->spa_spares.sav_config) != 0) { 3192 spa_load_failed(spa, "error loading spares nvlist"); 3193 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3194 } 3195 3196 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3197 spa_load_spares(spa); 3198 spa_config_exit(spa, SCL_ALL, FTAG); 3199 } else if (error == 0) { 3200 spa->spa_spares.sav_sync = B_TRUE; 3201 } 3202 3203 /* 3204 * Load any level 2 ARC devices for this pool. 3205 */ 3206 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 3207 &spa->spa_l2cache.sav_object, B_FALSE); 3208 if (error != 0 && error != ENOENT) 3209 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3210 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3211 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 3212 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 3213 &spa->spa_l2cache.sav_config) != 0) { 3214 spa_load_failed(spa, "error loading l2cache nvlist"); 3215 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3216 } 3217 3218 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3219 spa_load_l2cache(spa); 3220 spa_config_exit(spa, SCL_ALL, FTAG); 3221 } else if (error == 0) { 3222 spa->spa_l2cache.sav_sync = B_TRUE; 3223 } 3224 3225 return (0); 3226 } 3227 3228 static int 3229 spa_ld_load_vdev_metadata(spa_t *spa) 3230 { 3231 int error = 0; 3232 vdev_t *rvd = spa->spa_root_vdev; 3233 3234 /* 3235 * If the 'autoreplace' property is set, then post a resource notifying 3236 * the ZFS DE that it should not issue any faults for unopenable 3237 * devices. We also iterate over the vdevs, and post a sysevent for any 3238 * unopenable vdevs so that the normal autoreplace handler can take 3239 * over. 3240 */ 3241 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3242 spa_check_removed(spa->spa_root_vdev); 3243 /* 3244 * For the import case, this is done in spa_import(), because 3245 * at this point we're using the spare definitions from 3246 * the MOS config, not necessarily from the userland config. 3247 */ 3248 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 3249 spa_aux_check_removed(&spa->spa_spares); 3250 spa_aux_check_removed(&spa->spa_l2cache); 3251 } 3252 } 3253 3254 /* 3255 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 3256 */ 3257 error = vdev_load(rvd); 3258 if (error != 0) { 3259 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 3260 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3261 } 3262 3263 /* 3264 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 3265 */ 3266 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3267 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 3268 spa_config_exit(spa, SCL_ALL, FTAG); 3269 3270 return (0); 3271 } 3272 3273 static int 3274 spa_ld_load_dedup_tables(spa_t *spa) 3275 { 3276 int error = 0; 3277 vdev_t *rvd = spa->spa_root_vdev; 3278 3279 error = ddt_load(spa); 3280 if (error != 0) { 3281 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 3282 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3283 } 3284 3285 return (0); 3286 } 3287 3288 static int 3289 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 3290 { 3291 vdev_t *rvd = spa->spa_root_vdev; 3292 3293 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 3294 boolean_t missing = spa_check_logs(spa); 3295 if (missing) { 3296 if (spa->spa_missing_tvds != 0) { 3297 spa_load_note(spa, "spa_check_logs failed " 3298 "so dropping the logs"); 3299 } else { 3300 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 3301 spa_load_failed(spa, "spa_check_logs failed"); 3302 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 3303 ENXIO)); 3304 } 3305 } 3306 } 3307 3308 return (0); 3309 } 3310 3311 static int 3312 spa_ld_verify_pool_data(spa_t *spa) 3313 { 3314 int error = 0; 3315 vdev_t *rvd = spa->spa_root_vdev; 3316 3317 /* 3318 * We've successfully opened the pool, verify that we're ready 3319 * to start pushing transactions. 3320 */ 3321 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3322 error = spa_load_verify(spa); 3323 if (error != 0) { 3324 spa_load_failed(spa, "spa_load_verify failed " 3325 "[error=%d]", error); 3326 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3327 error)); 3328 } 3329 } 3330 3331 return (0); 3332 } 3333 3334 static void 3335 spa_ld_claim_log_blocks(spa_t *spa) 3336 { 3337 dmu_tx_t *tx; 3338 dsl_pool_t *dp = spa_get_dsl(spa); 3339 3340 /* 3341 * Claim log blocks that haven't been committed yet. 3342 * This must all happen in a single txg. 3343 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 3344 * invoked from zil_claim_log_block()'s i/o done callback. 3345 * Price of rollback is that we abandon the log. 3346 */ 3347 spa->spa_claiming = B_TRUE; 3348 3349 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 3350 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3351 zil_claim, tx, DS_FIND_CHILDREN); 3352 dmu_tx_commit(tx); 3353 3354 spa->spa_claiming = B_FALSE; 3355 3356 spa_set_log_state(spa, SPA_LOG_GOOD); 3357 } 3358 3359 static void 3360 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 3361 boolean_t update_config_cache) 3362 { 3363 vdev_t *rvd = spa->spa_root_vdev; 3364 int need_update = B_FALSE; 3365 3366 /* 3367 * If the config cache is stale, or we have uninitialized 3368 * metaslabs (see spa_vdev_add()), then update the config. 3369 * 3370 * If this is a verbatim import, trust the current 3371 * in-core spa_config and update the disk labels. 3372 */ 3373 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 3374 spa->spa_load_state == SPA_LOAD_IMPORT || 3375 spa->spa_load_state == SPA_LOAD_RECOVER || 3376 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 3377 need_update = B_TRUE; 3378 3379 for (int c = 0; c < rvd->vdev_children; c++) 3380 if (rvd->vdev_child[c]->vdev_ms_array == 0) 3381 need_update = B_TRUE; 3382 3383 /* 3384 * Update the config cache asychronously in case we're the 3385 * root pool, in which case the config cache isn't writable yet. 3386 */ 3387 if (need_update) 3388 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3389 } 3390 3391 static void 3392 spa_ld_prepare_for_reload(spa_t *spa) 3393 { 3394 int mode = spa->spa_mode; 3395 int async_suspended = spa->spa_async_suspended; 3396 3397 spa_unload(spa); 3398 spa_deactivate(spa); 3399 spa_activate(spa, mode); 3400 3401 /* 3402 * We save the value of spa_async_suspended as it gets reset to 0 by 3403 * spa_unload(). We want to restore it back to the original value before 3404 * returning as we might be calling spa_async_resume() later. 3405 */ 3406 spa->spa_async_suspended = async_suspended; 3407 } 3408 3409 static int 3410 spa_ld_read_checkpoint_txg(spa_t *spa) 3411 { 3412 uberblock_t checkpoint; 3413 int error = 0; 3414 3415 ASSERT0(spa->spa_checkpoint_txg); 3416 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3417 3418 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3419 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 3420 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 3421 3422 if (error == ENOENT) 3423 return (0); 3424 3425 if (error != 0) 3426 return (error); 3427 3428 ASSERT3U(checkpoint.ub_txg, !=, 0); 3429 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 3430 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 3431 spa->spa_checkpoint_txg = checkpoint.ub_txg; 3432 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 3433 3434 return (0); 3435 } 3436 3437 static int 3438 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 3439 { 3440 int error = 0; 3441 3442 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3443 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 3444 3445 /* 3446 * Never trust the config that is provided unless we are assembling 3447 * a pool following a split. 3448 * This means don't trust blkptrs and the vdev tree in general. This 3449 * also effectively puts the spa in read-only mode since 3450 * spa_writeable() checks for spa_trust_config to be true. 3451 * We will later load a trusted config from the MOS. 3452 */ 3453 if (type != SPA_IMPORT_ASSEMBLE) 3454 spa->spa_trust_config = B_FALSE; 3455 3456 /* 3457 * Parse the config provided to create a vdev tree. 3458 */ 3459 error = spa_ld_parse_config(spa, type); 3460 if (error != 0) 3461 return (error); 3462 3463 /* 3464 * Now that we have the vdev tree, try to open each vdev. This involves 3465 * opening the underlying physical device, retrieving its geometry and 3466 * probing the vdev with a dummy I/O. The state of each vdev will be set 3467 * based on the success of those operations. After this we'll be ready 3468 * to read from the vdevs. 3469 */ 3470 error = spa_ld_open_vdevs(spa); 3471 if (error != 0) 3472 return (error); 3473 3474 /* 3475 * Read the label of each vdev and make sure that the GUIDs stored 3476 * there match the GUIDs in the config provided. 3477 * If we're assembling a new pool that's been split off from an 3478 * existing pool, the labels haven't yet been updated so we skip 3479 * validation for now. 3480 */ 3481 if (type != SPA_IMPORT_ASSEMBLE) { 3482 error = spa_ld_validate_vdevs(spa); 3483 if (error != 0) 3484 return (error); 3485 } 3486 3487 /* 3488 * Read all vdev labels to find the best uberblock (i.e. latest, 3489 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 3490 * get the list of features required to read blkptrs in the MOS from 3491 * the vdev label with the best uberblock and verify that our version 3492 * of zfs supports them all. 3493 */ 3494 error = spa_ld_select_uberblock(spa, type); 3495 if (error != 0) 3496 return (error); 3497 3498 /* 3499 * Pass that uberblock to the dsl_pool layer which will open the root 3500 * blkptr. This blkptr points to the latest version of the MOS and will 3501 * allow us to read its contents. 3502 */ 3503 error = spa_ld_open_rootbp(spa); 3504 if (error != 0) 3505 return (error); 3506 3507 return (0); 3508 } 3509 3510 static int 3511 spa_ld_checkpoint_rewind(spa_t *spa) 3512 { 3513 uberblock_t checkpoint; 3514 int error = 0; 3515 3516 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3517 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3518 3519 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3520 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 3521 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 3522 3523 if (error != 0) { 3524 spa_load_failed(spa, "unable to retrieve checkpointed " 3525 "uberblock from the MOS config [error=%d]", error); 3526 3527 if (error == ENOENT) 3528 error = ZFS_ERR_NO_CHECKPOINT; 3529 3530 return (error); 3531 } 3532 3533 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 3534 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 3535 3536 /* 3537 * We need to update the txg and timestamp of the checkpointed 3538 * uberblock to be higher than the latest one. This ensures that 3539 * the checkpointed uberblock is selected if we were to close and 3540 * reopen the pool right after we've written it in the vdev labels. 3541 * (also see block comment in vdev_uberblock_compare) 3542 */ 3543 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 3544 checkpoint.ub_timestamp = gethrestime_sec(); 3545 3546 /* 3547 * Set current uberblock to be the checkpointed uberblock. 3548 */ 3549 spa->spa_uberblock = checkpoint; 3550 3551 /* 3552 * If we are doing a normal rewind, then the pool is open for 3553 * writing and we sync the "updated" checkpointed uberblock to 3554 * disk. Once this is done, we've basically rewound the whole 3555 * pool and there is no way back. 3556 * 3557 * There are cases when we don't want to attempt and sync the 3558 * checkpointed uberblock to disk because we are opening a 3559 * pool as read-only. Specifically, verifying the checkpointed 3560 * state with zdb, and importing the checkpointed state to get 3561 * a "preview" of its content. 3562 */ 3563 if (spa_writeable(spa)) { 3564 vdev_t *rvd = spa->spa_root_vdev; 3565 3566 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3567 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 3568 int svdcount = 0; 3569 int children = rvd->vdev_children; 3570 int c0 = spa_get_random(children); 3571 3572 for (int c = 0; c < children; c++) { 3573 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 3574 3575 /* Stop when revisiting the first vdev */ 3576 if (c > 0 && svd[0] == vd) 3577 break; 3578 3579 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 3580 !vdev_is_concrete(vd)) 3581 continue; 3582 3583 svd[svdcount++] = vd; 3584 if (svdcount == SPA_SYNC_MIN_VDEVS) 3585 break; 3586 } 3587 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 3588 if (error == 0) 3589 spa->spa_last_synced_guid = rvd->vdev_guid; 3590 spa_config_exit(spa, SCL_ALL, FTAG); 3591 3592 if (error != 0) { 3593 spa_load_failed(spa, "failed to write checkpointed " 3594 "uberblock to the vdev labels [error=%d]", error); 3595 return (error); 3596 } 3597 } 3598 3599 return (0); 3600 } 3601 3602 static int 3603 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 3604 boolean_t *update_config_cache) 3605 { 3606 int error; 3607 3608 /* 3609 * Parse the config for pool, open and validate vdevs, 3610 * select an uberblock, and use that uberblock to open 3611 * the MOS. 3612 */ 3613 error = spa_ld_mos_init(spa, type); 3614 if (error != 0) 3615 return (error); 3616 3617 /* 3618 * Retrieve the trusted config stored in the MOS and use it to create 3619 * a new, exact version of the vdev tree, then reopen all vdevs. 3620 */ 3621 error = spa_ld_trusted_config(spa, type, B_FALSE); 3622 if (error == EAGAIN) { 3623 if (update_config_cache != NULL) 3624 *update_config_cache = B_TRUE; 3625 3626 /* 3627 * Redo the loading process with the trusted config if it is 3628 * too different from the untrusted config. 3629 */ 3630 spa_ld_prepare_for_reload(spa); 3631 spa_load_note(spa, "RELOADING"); 3632 error = spa_ld_mos_init(spa, type); 3633 if (error != 0) 3634 return (error); 3635 3636 error = spa_ld_trusted_config(spa, type, B_TRUE); 3637 if (error != 0) 3638 return (error); 3639 3640 } else if (error != 0) { 3641 return (error); 3642 } 3643 3644 return (0); 3645 } 3646 3647 /* 3648 * Load an existing storage pool, using the config provided. This config 3649 * describes which vdevs are part of the pool and is later validated against 3650 * partial configs present in each vdev's label and an entire copy of the 3651 * config stored in the MOS. 3652 */ 3653 static int 3654 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) 3655 { 3656 int error = 0; 3657 boolean_t missing_feat_write = B_FALSE; 3658 boolean_t checkpoint_rewind = 3659 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3660 boolean_t update_config_cache = B_FALSE; 3661 3662 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3663 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 3664 3665 spa_load_note(spa, "LOADING"); 3666 3667 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 3668 if (error != 0) 3669 return (error); 3670 3671 /* 3672 * If we are rewinding to the checkpoint then we need to repeat 3673 * everything we've done so far in this function but this time 3674 * selecting the checkpointed uberblock and using that to open 3675 * the MOS. 3676 */ 3677 if (checkpoint_rewind) { 3678 /* 3679 * If we are rewinding to the checkpoint update config cache 3680 * anyway. 3681 */ 3682 update_config_cache = B_TRUE; 3683 3684 /* 3685 * Extract the checkpointed uberblock from the current MOS 3686 * and use this as the pool's uberblock from now on. If the 3687 * pool is imported as writeable we also write the checkpoint 3688 * uberblock to the labels, making the rewind permanent. 3689 */ 3690 error = spa_ld_checkpoint_rewind(spa); 3691 if (error != 0) 3692 return (error); 3693 3694 /* 3695 * Redo the loading process process again with the 3696 * checkpointed uberblock. 3697 */ 3698 spa_ld_prepare_for_reload(spa); 3699 spa_load_note(spa, "LOADING checkpointed uberblock"); 3700 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 3701 if (error != 0) 3702 return (error); 3703 } 3704 3705 /* 3706 * Retrieve the checkpoint txg if the pool has a checkpoint. 3707 */ 3708 error = spa_ld_read_checkpoint_txg(spa); 3709 if (error != 0) 3710 return (error); 3711 3712 /* 3713 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 3714 * from the pool and their contents were re-mapped to other vdevs. Note 3715 * that everything that we read before this step must have been 3716 * rewritten on concrete vdevs after the last device removal was 3717 * initiated. Otherwise we could be reading from indirect vdevs before 3718 * we have loaded their mappings. 3719 */ 3720 error = spa_ld_open_indirect_vdev_metadata(spa); 3721 if (error != 0) 3722 return (error); 3723 3724 /* 3725 * Retrieve the full list of active features from the MOS and check if 3726 * they are all supported. 3727 */ 3728 error = spa_ld_check_features(spa, &missing_feat_write); 3729 if (error != 0) 3730 return (error); 3731 3732 /* 3733 * Load several special directories from the MOS needed by the dsl_pool 3734 * layer. 3735 */ 3736 error = spa_ld_load_special_directories(spa); 3737 if (error != 0) 3738 return (error); 3739 3740 /* 3741 * Retrieve pool properties from the MOS. 3742 */ 3743 error = spa_ld_get_props(spa); 3744 if (error != 0) 3745 return (error); 3746 3747 /* 3748 * Retrieve the list of auxiliary devices - cache devices and spares - 3749 * and open them. 3750 */ 3751 error = spa_ld_open_aux_vdevs(spa, type); 3752 if (error != 0) 3753 return (error); 3754 3755 /* 3756 * Load the metadata for all vdevs. Also check if unopenable devices 3757 * should be autoreplaced. 3758 */ 3759 error = spa_ld_load_vdev_metadata(spa); 3760 if (error != 0) 3761 return (error); 3762 3763 error = spa_ld_load_dedup_tables(spa); 3764 if (error != 0) 3765 return (error); 3766 3767 /* 3768 * Verify the logs now to make sure we don't have any unexpected errors 3769 * when we claim log blocks later. 3770 */ 3771 error = spa_ld_verify_logs(spa, type, ereport); 3772 if (error != 0) 3773 return (error); 3774 3775 if (missing_feat_write) { 3776 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 3777 3778 /* 3779 * At this point, we know that we can open the pool in 3780 * read-only mode but not read-write mode. We now have enough 3781 * information and can return to userland. 3782 */ 3783 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 3784 ENOTSUP)); 3785 } 3786 3787 /* 3788 * Traverse the last txgs to make sure the pool was left off in a safe 3789 * state. When performing an extreme rewind, we verify the whole pool, 3790 * which can take a very long time. 3791 */ 3792 error = spa_ld_verify_pool_data(spa); 3793 if (error != 0) 3794 return (error); 3795 3796 /* 3797 * Calculate the deflated space for the pool. This must be done before 3798 * we write anything to the pool because we'd need to update the space 3799 * accounting using the deflated sizes. 3800 */ 3801 spa_update_dspace(spa); 3802 3803 /* 3804 * We have now retrieved all the information we needed to open the 3805 * pool. If we are importing the pool in read-write mode, a few 3806 * additional steps must be performed to finish the import. 3807 */ 3808 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 3809 spa->spa_load_max_txg == UINT64_MAX)) { 3810 uint64_t config_cache_txg = spa->spa_config_txg; 3811 3812 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 3813 3814 /* 3815 * In case of a checkpoint rewind, log the original txg 3816 * of the checkpointed uberblock. 3817 */ 3818 if (checkpoint_rewind) { 3819 spa_history_log_internal(spa, "checkpoint rewind", 3820 NULL, "rewound state to txg=%llu", 3821 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 3822 } 3823 3824 /* 3825 * Traverse the ZIL and claim all blocks. 3826 */ 3827 spa_ld_claim_log_blocks(spa); 3828 3829 /* 3830 * Kick-off the syncing thread. 3831 */ 3832 spa->spa_sync_on = B_TRUE; 3833 txg_sync_start(spa->spa_dsl_pool); 3834 3835 /* 3836 * Wait for all claims to sync. We sync up to the highest 3837 * claimed log block birth time so that claimed log blocks 3838 * don't appear to be from the future. spa_claim_max_txg 3839 * will have been set for us by ZIL traversal operations 3840 * performed above. 3841 */ 3842 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 3843 3844 /* 3845 * Check if we need to request an update of the config. On the 3846 * next sync, we would update the config stored in vdev labels 3847 * and the cachefile (by default /etc/zfs/zpool.cache). 3848 */ 3849 spa_ld_check_for_config_update(spa, config_cache_txg, 3850 update_config_cache); 3851 3852 /* 3853 * Check all DTLs to see if anything needs resilvering. 3854 */ 3855 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 3856 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3857 spa_async_request(spa, SPA_ASYNC_RESILVER); 3858 3859 /* 3860 * Log the fact that we booted up (so that we can detect if 3861 * we rebooted in the middle of an operation). 3862 */ 3863 spa_history_log_version(spa, "open"); 3864 3865 /* 3866 * Delete any inconsistent datasets. 3867 */ 3868 (void) dmu_objset_find(spa_name(spa), 3869 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 3870 3871 /* 3872 * Clean up any stale temporary dataset userrefs. 3873 */ 3874 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 3875 3876 spa_restart_removal(spa); 3877 3878 spa_spawn_aux_threads(spa); 3879 3880 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3881 vdev_initialize_restart(spa->spa_root_vdev); 3882 spa_config_exit(spa, SCL_CONFIG, FTAG); 3883 } 3884 3885 spa_load_note(spa, "LOADED"); 3886 3887 return (0); 3888 } 3889 3890 static int 3891 spa_load_retry(spa_t *spa, spa_load_state_t state) 3892 { 3893 int mode = spa->spa_mode; 3894 3895 spa_unload(spa); 3896 spa_deactivate(spa); 3897 3898 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 3899 3900 spa_activate(spa, mode); 3901 spa_async_suspend(spa); 3902 3903 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 3904 (u_longlong_t)spa->spa_load_max_txg); 3905 3906 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 3907 } 3908 3909 /* 3910 * If spa_load() fails this function will try loading prior txg's. If 3911 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 3912 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 3913 * function will not rewind the pool and will return the same error as 3914 * spa_load(). 3915 */ 3916 static int 3917 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 3918 int rewind_flags) 3919 { 3920 nvlist_t *loadinfo = NULL; 3921 nvlist_t *config = NULL; 3922 int load_error, rewind_error; 3923 uint64_t safe_rewind_txg; 3924 uint64_t min_txg; 3925 3926 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 3927 spa->spa_load_max_txg = spa->spa_load_txg; 3928 spa_set_log_state(spa, SPA_LOG_CLEAR); 3929 } else { 3930 spa->spa_load_max_txg = max_request; 3931 if (max_request != UINT64_MAX) 3932 spa->spa_extreme_rewind = B_TRUE; 3933 } 3934 3935 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 3936 if (load_error == 0) 3937 return (0); 3938 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 3939 /* 3940 * When attempting checkpoint-rewind on a pool with no 3941 * checkpoint, we should not attempt to load uberblocks 3942 * from previous txgs when spa_load fails. 3943 */ 3944 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3945 return (load_error); 3946 } 3947 3948 if (spa->spa_root_vdev != NULL) 3949 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3950 3951 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 3952 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 3953 3954 if (rewind_flags & ZPOOL_NEVER_REWIND) { 3955 nvlist_free(config); 3956 return (load_error); 3957 } 3958 3959 if (state == SPA_LOAD_RECOVER) { 3960 /* Price of rolling back is discarding txgs, including log */ 3961 spa_set_log_state(spa, SPA_LOG_CLEAR); 3962 } else { 3963 /* 3964 * If we aren't rolling back save the load info from our first 3965 * import attempt so that we can restore it after attempting 3966 * to rewind. 3967 */ 3968 loadinfo = spa->spa_load_info; 3969 spa->spa_load_info = fnvlist_alloc(); 3970 } 3971 3972 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 3973 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 3974 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 3975 TXG_INITIAL : safe_rewind_txg; 3976 3977 /* 3978 * Continue as long as we're finding errors, we're still within 3979 * the acceptable rewind range, and we're still finding uberblocks 3980 */ 3981 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 3982 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 3983 if (spa->spa_load_max_txg < safe_rewind_txg) 3984 spa->spa_extreme_rewind = B_TRUE; 3985 rewind_error = spa_load_retry(spa, state); 3986 } 3987 3988 spa->spa_extreme_rewind = B_FALSE; 3989 spa->spa_load_max_txg = UINT64_MAX; 3990 3991 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 3992 spa_config_set(spa, config); 3993 else 3994 nvlist_free(config); 3995 3996 if (state == SPA_LOAD_RECOVER) { 3997 ASSERT3P(loadinfo, ==, NULL); 3998 return (rewind_error); 3999 } else { 4000 /* Store the rewind info as part of the initial load info */ 4001 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 4002 spa->spa_load_info); 4003 4004 /* Restore the initial load info */ 4005 fnvlist_free(spa->spa_load_info); 4006 spa->spa_load_info = loadinfo; 4007 4008 return (load_error); 4009 } 4010 } 4011 4012 /* 4013 * Pool Open/Import 4014 * 4015 * The import case is identical to an open except that the configuration is sent 4016 * down from userland, instead of grabbed from the configuration cache. For the 4017 * case of an open, the pool configuration will exist in the 4018 * POOL_STATE_UNINITIALIZED state. 4019 * 4020 * The stats information (gen/count/ustats) is used to gather vdev statistics at 4021 * the same time open the pool, without having to keep around the spa_t in some 4022 * ambiguous state. 4023 */ 4024 static int 4025 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 4026 nvlist_t **config) 4027 { 4028 spa_t *spa; 4029 spa_load_state_t state = SPA_LOAD_OPEN; 4030 int error; 4031 int locked = B_FALSE; 4032 4033 *spapp = NULL; 4034 4035 /* 4036 * As disgusting as this is, we need to support recursive calls to this 4037 * function because dsl_dir_open() is called during spa_load(), and ends 4038 * up calling spa_open() again. The real fix is to figure out how to 4039 * avoid dsl_dir_open() calling this in the first place. 4040 */ 4041 if (mutex_owner(&spa_namespace_lock) != curthread) { 4042 mutex_enter(&spa_namespace_lock); 4043 locked = B_TRUE; 4044 } 4045 4046 if ((spa = spa_lookup(pool)) == NULL) { 4047 if (locked) 4048 mutex_exit(&spa_namespace_lock); 4049 return (SET_ERROR(ENOENT)); 4050 } 4051 4052 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 4053 zpool_load_policy_t policy; 4054 4055 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 4056 &policy); 4057 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 4058 state = SPA_LOAD_RECOVER; 4059 4060 spa_activate(spa, spa_mode_global); 4061 4062 if (state != SPA_LOAD_RECOVER) 4063 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4064 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 4065 4066 zfs_dbgmsg("spa_open_common: opening %s", pool); 4067 error = spa_load_best(spa, state, policy.zlp_txg, 4068 policy.zlp_rewind); 4069 4070 if (error == EBADF) { 4071 /* 4072 * If vdev_validate() returns failure (indicated by 4073 * EBADF), it indicates that one of the vdevs indicates 4074 * that the pool has been exported or destroyed. If 4075 * this is the case, the config cache is out of sync and 4076 * we should remove the pool from the namespace. 4077 */ 4078 spa_unload(spa); 4079 spa_deactivate(spa); 4080 spa_write_cachefile(spa, B_TRUE, B_TRUE); 4081 spa_remove(spa); 4082 if (locked) 4083 mutex_exit(&spa_namespace_lock); 4084 return (SET_ERROR(ENOENT)); 4085 } 4086 4087 if (error) { 4088 /* 4089 * We can't open the pool, but we still have useful 4090 * information: the state of each vdev after the 4091 * attempted vdev_open(). Return this to the user. 4092 */ 4093 if (config != NULL && spa->spa_config) { 4094 VERIFY(nvlist_dup(spa->spa_config, config, 4095 KM_SLEEP) == 0); 4096 VERIFY(nvlist_add_nvlist(*config, 4097 ZPOOL_CONFIG_LOAD_INFO, 4098 spa->spa_load_info) == 0); 4099 } 4100 spa_unload(spa); 4101 spa_deactivate(spa); 4102 spa->spa_last_open_failed = error; 4103 if (locked) 4104 mutex_exit(&spa_namespace_lock); 4105 *spapp = NULL; 4106 return (error); 4107 } 4108 } 4109 4110 spa_open_ref(spa, tag); 4111 4112 if (config != NULL) 4113 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4114 4115 /* 4116 * If we've recovered the pool, pass back any information we 4117 * gathered while doing the load. 4118 */ 4119 if (state == SPA_LOAD_RECOVER) { 4120 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 4121 spa->spa_load_info) == 0); 4122 } 4123 4124 if (locked) { 4125 spa->spa_last_open_failed = 0; 4126 spa->spa_last_ubsync_txg = 0; 4127 spa->spa_load_txg = 0; 4128 mutex_exit(&spa_namespace_lock); 4129 } 4130 4131 *spapp = spa; 4132 4133 return (0); 4134 } 4135 4136 int 4137 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 4138 nvlist_t **config) 4139 { 4140 return (spa_open_common(name, spapp, tag, policy, config)); 4141 } 4142 4143 int 4144 spa_open(const char *name, spa_t **spapp, void *tag) 4145 { 4146 return (spa_open_common(name, spapp, tag, NULL, NULL)); 4147 } 4148 4149 /* 4150 * Lookup the given spa_t, incrementing the inject count in the process, 4151 * preventing it from being exported or destroyed. 4152 */ 4153 spa_t * 4154 spa_inject_addref(char *name) 4155 { 4156 spa_t *spa; 4157 4158 mutex_enter(&spa_namespace_lock); 4159 if ((spa = spa_lookup(name)) == NULL) { 4160 mutex_exit(&spa_namespace_lock); 4161 return (NULL); 4162 } 4163 spa->spa_inject_ref++; 4164 mutex_exit(&spa_namespace_lock); 4165 4166 return (spa); 4167 } 4168 4169 void 4170 spa_inject_delref(spa_t *spa) 4171 { 4172 mutex_enter(&spa_namespace_lock); 4173 spa->spa_inject_ref--; 4174 mutex_exit(&spa_namespace_lock); 4175 } 4176 4177 /* 4178 * Add spares device information to the nvlist. 4179 */ 4180 static void 4181 spa_add_spares(spa_t *spa, nvlist_t *config) 4182 { 4183 nvlist_t **spares; 4184 uint_t i, nspares; 4185 nvlist_t *nvroot; 4186 uint64_t guid; 4187 vdev_stat_t *vs; 4188 uint_t vsc; 4189 uint64_t pool; 4190 4191 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4192 4193 if (spa->spa_spares.sav_count == 0) 4194 return; 4195 4196 VERIFY(nvlist_lookup_nvlist(config, 4197 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4198 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4199 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4200 if (nspares != 0) { 4201 VERIFY(nvlist_add_nvlist_array(nvroot, 4202 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4203 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4204 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4205 4206 /* 4207 * Go through and find any spares which have since been 4208 * repurposed as an active spare. If this is the case, update 4209 * their status appropriately. 4210 */ 4211 for (i = 0; i < nspares; i++) { 4212 VERIFY(nvlist_lookup_uint64(spares[i], 4213 ZPOOL_CONFIG_GUID, &guid) == 0); 4214 if (spa_spare_exists(guid, &pool, NULL) && 4215 pool != 0ULL) { 4216 VERIFY(nvlist_lookup_uint64_array( 4217 spares[i], ZPOOL_CONFIG_VDEV_STATS, 4218 (uint64_t **)&vs, &vsc) == 0); 4219 vs->vs_state = VDEV_STATE_CANT_OPEN; 4220 vs->vs_aux = VDEV_AUX_SPARED; 4221 } 4222 } 4223 } 4224 } 4225 4226 /* 4227 * Add l2cache device information to the nvlist, including vdev stats. 4228 */ 4229 static void 4230 spa_add_l2cache(spa_t *spa, nvlist_t *config) 4231 { 4232 nvlist_t **l2cache; 4233 uint_t i, j, nl2cache; 4234 nvlist_t *nvroot; 4235 uint64_t guid; 4236 vdev_t *vd; 4237 vdev_stat_t *vs; 4238 uint_t vsc; 4239 4240 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4241 4242 if (spa->spa_l2cache.sav_count == 0) 4243 return; 4244 4245 VERIFY(nvlist_lookup_nvlist(config, 4246 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4247 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4248 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4249 if (nl2cache != 0) { 4250 VERIFY(nvlist_add_nvlist_array(nvroot, 4251 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4252 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4253 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4254 4255 /* 4256 * Update level 2 cache device stats. 4257 */ 4258 4259 for (i = 0; i < nl2cache; i++) { 4260 VERIFY(nvlist_lookup_uint64(l2cache[i], 4261 ZPOOL_CONFIG_GUID, &guid) == 0); 4262 4263 vd = NULL; 4264 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 4265 if (guid == 4266 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 4267 vd = spa->spa_l2cache.sav_vdevs[j]; 4268 break; 4269 } 4270 } 4271 ASSERT(vd != NULL); 4272 4273 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 4274 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 4275 == 0); 4276 vdev_get_stats(vd, vs); 4277 } 4278 } 4279 } 4280 4281 static void 4282 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 4283 { 4284 nvlist_t *features; 4285 zap_cursor_t zc; 4286 zap_attribute_t za; 4287 4288 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4289 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4290 4291 if (spa->spa_feat_for_read_obj != 0) { 4292 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4293 spa->spa_feat_for_read_obj); 4294 zap_cursor_retrieve(&zc, &za) == 0; 4295 zap_cursor_advance(&zc)) { 4296 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4297 za.za_num_integers == 1); 4298 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4299 za.za_first_integer)); 4300 } 4301 zap_cursor_fini(&zc); 4302 } 4303 4304 if (spa->spa_feat_for_write_obj != 0) { 4305 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4306 spa->spa_feat_for_write_obj); 4307 zap_cursor_retrieve(&zc, &za) == 0; 4308 zap_cursor_advance(&zc)) { 4309 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4310 za.za_num_integers == 1); 4311 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4312 za.za_first_integer)); 4313 } 4314 zap_cursor_fini(&zc); 4315 } 4316 4317 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 4318 features) == 0); 4319 nvlist_free(features); 4320 } 4321 4322 int 4323 spa_get_stats(const char *name, nvlist_t **config, 4324 char *altroot, size_t buflen) 4325 { 4326 int error; 4327 spa_t *spa; 4328 4329 *config = NULL; 4330 error = spa_open_common(name, &spa, FTAG, NULL, config); 4331 4332 if (spa != NULL) { 4333 /* 4334 * This still leaves a window of inconsistency where the spares 4335 * or l2cache devices could change and the config would be 4336 * self-inconsistent. 4337 */ 4338 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4339 4340 if (*config != NULL) { 4341 uint64_t loadtimes[2]; 4342 4343 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 4344 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 4345 VERIFY(nvlist_add_uint64_array(*config, 4346 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 4347 4348 VERIFY(nvlist_add_uint64(*config, 4349 ZPOOL_CONFIG_ERRCOUNT, 4350 spa_get_errlog_size(spa)) == 0); 4351 4352 if (spa_suspended(spa)) 4353 VERIFY(nvlist_add_uint64(*config, 4354 ZPOOL_CONFIG_SUSPENDED, 4355 spa->spa_failmode) == 0); 4356 4357 spa_add_spares(spa, *config); 4358 spa_add_l2cache(spa, *config); 4359 spa_add_feature_stats(spa, *config); 4360 } 4361 } 4362 4363 /* 4364 * We want to get the alternate root even for faulted pools, so we cheat 4365 * and call spa_lookup() directly. 4366 */ 4367 if (altroot) { 4368 if (spa == NULL) { 4369 mutex_enter(&spa_namespace_lock); 4370 spa = spa_lookup(name); 4371 if (spa) 4372 spa_altroot(spa, altroot, buflen); 4373 else 4374 altroot[0] = '\0'; 4375 spa = NULL; 4376 mutex_exit(&spa_namespace_lock); 4377 } else { 4378 spa_altroot(spa, altroot, buflen); 4379 } 4380 } 4381 4382 if (spa != NULL) { 4383 spa_config_exit(spa, SCL_CONFIG, FTAG); 4384 spa_close(spa, FTAG); 4385 } 4386 4387 return (error); 4388 } 4389 4390 /* 4391 * Validate that the auxiliary device array is well formed. We must have an 4392 * array of nvlists, each which describes a valid leaf vdev. If this is an 4393 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 4394 * specified, as long as they are well-formed. 4395 */ 4396 static int 4397 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 4398 spa_aux_vdev_t *sav, const char *config, uint64_t version, 4399 vdev_labeltype_t label) 4400 { 4401 nvlist_t **dev; 4402 uint_t i, ndev; 4403 vdev_t *vd; 4404 int error; 4405 4406 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4407 4408 /* 4409 * It's acceptable to have no devs specified. 4410 */ 4411 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 4412 return (0); 4413 4414 if (ndev == 0) 4415 return (SET_ERROR(EINVAL)); 4416 4417 /* 4418 * Make sure the pool is formatted with a version that supports this 4419 * device type. 4420 */ 4421 if (spa_version(spa) < version) 4422 return (SET_ERROR(ENOTSUP)); 4423 4424 /* 4425 * Set the pending device list so we correctly handle device in-use 4426 * checking. 4427 */ 4428 sav->sav_pending = dev; 4429 sav->sav_npending = ndev; 4430 4431 for (i = 0; i < ndev; i++) { 4432 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 4433 mode)) != 0) 4434 goto out; 4435 4436 if (!vd->vdev_ops->vdev_op_leaf) { 4437 vdev_free(vd); 4438 error = SET_ERROR(EINVAL); 4439 goto out; 4440 } 4441 4442 /* 4443 * The L2ARC currently only supports disk devices in 4444 * kernel context. For user-level testing, we allow it. 4445 */ 4446 #ifdef _KERNEL 4447 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 4448 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 4449 error = SET_ERROR(ENOTBLK); 4450 vdev_free(vd); 4451 goto out; 4452 } 4453 #endif 4454 vd->vdev_top = vd; 4455 4456 if ((error = vdev_open(vd)) == 0 && 4457 (error = vdev_label_init(vd, crtxg, label)) == 0) { 4458 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 4459 vd->vdev_guid) == 0); 4460 } 4461 4462 vdev_free(vd); 4463 4464 if (error && 4465 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 4466 goto out; 4467 else 4468 error = 0; 4469 } 4470 4471 out: 4472 sav->sav_pending = NULL; 4473 sav->sav_npending = 0; 4474 return (error); 4475 } 4476 4477 static int 4478 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 4479 { 4480 int error; 4481 4482 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4483 4484 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4485 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 4486 VDEV_LABEL_SPARE)) != 0) { 4487 return (error); 4488 } 4489 4490 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4491 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 4492 VDEV_LABEL_L2CACHE)); 4493 } 4494 4495 static void 4496 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 4497 const char *config) 4498 { 4499 int i; 4500 4501 if (sav->sav_config != NULL) { 4502 nvlist_t **olddevs; 4503 uint_t oldndevs; 4504 nvlist_t **newdevs; 4505 4506 /* 4507 * Generate new dev list by concatentating with the 4508 * current dev list. 4509 */ 4510 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 4511 &olddevs, &oldndevs) == 0); 4512 4513 newdevs = kmem_alloc(sizeof (void *) * 4514 (ndevs + oldndevs), KM_SLEEP); 4515 for (i = 0; i < oldndevs; i++) 4516 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 4517 KM_SLEEP) == 0); 4518 for (i = 0; i < ndevs; i++) 4519 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 4520 KM_SLEEP) == 0); 4521 4522 VERIFY(nvlist_remove(sav->sav_config, config, 4523 DATA_TYPE_NVLIST_ARRAY) == 0); 4524 4525 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 4526 config, newdevs, ndevs + oldndevs) == 0); 4527 for (i = 0; i < oldndevs + ndevs; i++) 4528 nvlist_free(newdevs[i]); 4529 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 4530 } else { 4531 /* 4532 * Generate a new dev list. 4533 */ 4534 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 4535 KM_SLEEP) == 0); 4536 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 4537 devs, ndevs) == 0); 4538 } 4539 } 4540 4541 /* 4542 * Stop and drop level 2 ARC devices 4543 */ 4544 void 4545 spa_l2cache_drop(spa_t *spa) 4546 { 4547 vdev_t *vd; 4548 int i; 4549 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4550 4551 for (i = 0; i < sav->sav_count; i++) { 4552 uint64_t pool; 4553 4554 vd = sav->sav_vdevs[i]; 4555 ASSERT(vd != NULL); 4556 4557 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 4558 pool != 0ULL && l2arc_vdev_present(vd)) 4559 l2arc_remove_vdev(vd); 4560 } 4561 } 4562 4563 /* 4564 * Pool Creation 4565 */ 4566 int 4567 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 4568 nvlist_t *zplprops) 4569 { 4570 spa_t *spa; 4571 char *altroot = NULL; 4572 vdev_t *rvd; 4573 dsl_pool_t *dp; 4574 dmu_tx_t *tx; 4575 int error = 0; 4576 uint64_t txg = TXG_INITIAL; 4577 nvlist_t **spares, **l2cache; 4578 uint_t nspares, nl2cache; 4579 uint64_t version, obj; 4580 boolean_t has_features; 4581 4582 /* 4583 * If this pool already exists, return failure. 4584 */ 4585 mutex_enter(&spa_namespace_lock); 4586 if (spa_lookup(pool) != NULL) { 4587 mutex_exit(&spa_namespace_lock); 4588 return (SET_ERROR(EEXIST)); 4589 } 4590 4591 /* 4592 * Allocate a new spa_t structure. 4593 */ 4594 (void) nvlist_lookup_string(props, 4595 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4596 spa = spa_add(pool, NULL, altroot); 4597 spa_activate(spa, spa_mode_global); 4598 4599 if (props && (error = spa_prop_validate(spa, props))) { 4600 spa_deactivate(spa); 4601 spa_remove(spa); 4602 mutex_exit(&spa_namespace_lock); 4603 return (error); 4604 } 4605 4606 has_features = B_FALSE; 4607 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 4608 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 4609 if (zpool_prop_feature(nvpair_name(elem))) 4610 has_features = B_TRUE; 4611 } 4612 4613 if (has_features || nvlist_lookup_uint64(props, 4614 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 4615 version = SPA_VERSION; 4616 } 4617 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 4618 4619 spa->spa_first_txg = txg; 4620 spa->spa_uberblock.ub_txg = txg - 1; 4621 spa->spa_uberblock.ub_version = version; 4622 spa->spa_ubsync = spa->spa_uberblock; 4623 spa->spa_load_state = SPA_LOAD_CREATE; 4624 spa->spa_removing_phys.sr_state = DSS_NONE; 4625 spa->spa_removing_phys.sr_removing_vdev = -1; 4626 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 4627 4628 /* 4629 * Create "The Godfather" zio to hold all async IOs 4630 */ 4631 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 4632 KM_SLEEP); 4633 for (int i = 0; i < max_ncpus; i++) { 4634 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 4635 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 4636 ZIO_FLAG_GODFATHER); 4637 } 4638 4639 /* 4640 * Create the root vdev. 4641 */ 4642 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4643 4644 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 4645 4646 ASSERT(error != 0 || rvd != NULL); 4647 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 4648 4649 if (error == 0 && !zfs_allocatable_devs(nvroot)) 4650 error = SET_ERROR(EINVAL); 4651 4652 if (error == 0 && 4653 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 4654 (error = spa_validate_aux(spa, nvroot, txg, 4655 VDEV_ALLOC_ADD)) == 0) { 4656 for (int c = 0; c < rvd->vdev_children; c++) { 4657 vdev_metaslab_set_size(rvd->vdev_child[c]); 4658 vdev_expand(rvd->vdev_child[c], txg); 4659 } 4660 } 4661 4662 spa_config_exit(spa, SCL_ALL, FTAG); 4663 4664 if (error != 0) { 4665 spa_unload(spa); 4666 spa_deactivate(spa); 4667 spa_remove(spa); 4668 mutex_exit(&spa_namespace_lock); 4669 return (error); 4670 } 4671 4672 /* 4673 * Get the list of spares, if specified. 4674 */ 4675 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4676 &spares, &nspares) == 0) { 4677 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 4678 KM_SLEEP) == 0); 4679 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4680 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4681 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4682 spa_load_spares(spa); 4683 spa_config_exit(spa, SCL_ALL, FTAG); 4684 spa->spa_spares.sav_sync = B_TRUE; 4685 } 4686 4687 /* 4688 * Get the list of level 2 cache devices, if specified. 4689 */ 4690 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4691 &l2cache, &nl2cache) == 0) { 4692 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4693 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4694 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4695 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4696 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4697 spa_load_l2cache(spa); 4698 spa_config_exit(spa, SCL_ALL, FTAG); 4699 spa->spa_l2cache.sav_sync = B_TRUE; 4700 } 4701 4702 spa->spa_is_initializing = B_TRUE; 4703 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 4704 spa->spa_meta_objset = dp->dp_meta_objset; 4705 spa->spa_is_initializing = B_FALSE; 4706 4707 /* 4708 * Create DDTs (dedup tables). 4709 */ 4710 ddt_create(spa); 4711 4712 spa_update_dspace(spa); 4713 4714 tx = dmu_tx_create_assigned(dp, txg); 4715 4716 /* 4717 * Create the pool config object. 4718 */ 4719 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 4720 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 4721 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 4722 4723 if (zap_add(spa->spa_meta_objset, 4724 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 4725 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 4726 cmn_err(CE_PANIC, "failed to add pool config"); 4727 } 4728 4729 if (spa_version(spa) >= SPA_VERSION_FEATURES) 4730 spa_feature_create_zap_objects(spa, tx); 4731 4732 if (zap_add(spa->spa_meta_objset, 4733 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 4734 sizeof (uint64_t), 1, &version, tx) != 0) { 4735 cmn_err(CE_PANIC, "failed to add pool version"); 4736 } 4737 4738 /* Newly created pools with the right version are always deflated. */ 4739 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 4740 spa->spa_deflate = TRUE; 4741 if (zap_add(spa->spa_meta_objset, 4742 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 4743 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 4744 cmn_err(CE_PANIC, "failed to add deflate"); 4745 } 4746 } 4747 4748 /* 4749 * Create the deferred-free bpobj. Turn off compression 4750 * because sync-to-convergence takes longer if the blocksize 4751 * keeps changing. 4752 */ 4753 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 4754 dmu_object_set_compress(spa->spa_meta_objset, obj, 4755 ZIO_COMPRESS_OFF, tx); 4756 if (zap_add(spa->spa_meta_objset, 4757 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 4758 sizeof (uint64_t), 1, &obj, tx) != 0) { 4759 cmn_err(CE_PANIC, "failed to add bpobj"); 4760 } 4761 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 4762 spa->spa_meta_objset, obj)); 4763 4764 /* 4765 * Create the pool's history object. 4766 */ 4767 if (version >= SPA_VERSION_ZPOOL_HISTORY) 4768 spa_history_create_obj(spa, tx); 4769 4770 /* 4771 * Generate some random noise for salted checksums to operate on. 4772 */ 4773 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4774 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4775 4776 /* 4777 * Set pool properties. 4778 */ 4779 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 4780 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4781 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 4782 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 4783 4784 if (props != NULL) { 4785 spa_configfile_set(spa, props, B_FALSE); 4786 spa_sync_props(props, tx); 4787 } 4788 4789 dmu_tx_commit(tx); 4790 4791 spa->spa_sync_on = B_TRUE; 4792 txg_sync_start(spa->spa_dsl_pool); 4793 4794 /* 4795 * We explicitly wait for the first transaction to complete so that our 4796 * bean counters are appropriately updated. 4797 */ 4798 txg_wait_synced(spa->spa_dsl_pool, txg); 4799 4800 spa_spawn_aux_threads(spa); 4801 4802 spa_write_cachefile(spa, B_FALSE, B_TRUE); 4803 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 4804 4805 spa_history_log_version(spa, "create"); 4806 4807 /* 4808 * Don't count references from objsets that are already closed 4809 * and are making their way through the eviction process. 4810 */ 4811 spa_evicting_os_wait(spa); 4812 spa->spa_minref = refcount_count(&spa->spa_refcount); 4813 spa->spa_load_state = SPA_LOAD_NONE; 4814 4815 mutex_exit(&spa_namespace_lock); 4816 4817 return (0); 4818 } 4819 4820 #ifdef _KERNEL 4821 /* 4822 * Get the root pool information from the root disk, then import the root pool 4823 * during the system boot up time. 4824 */ 4825 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 4826 4827 static nvlist_t * 4828 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 4829 { 4830 nvlist_t *config; 4831 nvlist_t *nvtop, *nvroot; 4832 uint64_t pgid; 4833 4834 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 4835 return (NULL); 4836 4837 /* 4838 * Add this top-level vdev to the child array. 4839 */ 4840 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4841 &nvtop) == 0); 4842 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4843 &pgid) == 0); 4844 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 4845 4846 /* 4847 * Put this pool's top-level vdevs into a root vdev. 4848 */ 4849 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4850 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 4851 VDEV_TYPE_ROOT) == 0); 4852 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 4853 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 4854 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 4855 &nvtop, 1) == 0); 4856 4857 /* 4858 * Replace the existing vdev_tree with the new root vdev in 4859 * this pool's configuration (remove the old, add the new). 4860 */ 4861 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 4862 nvlist_free(nvroot); 4863 return (config); 4864 } 4865 4866 /* 4867 * Walk the vdev tree and see if we can find a device with "better" 4868 * configuration. A configuration is "better" if the label on that 4869 * device has a more recent txg. 4870 */ 4871 static void 4872 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 4873 { 4874 for (int c = 0; c < vd->vdev_children; c++) 4875 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 4876 4877 if (vd->vdev_ops->vdev_op_leaf) { 4878 nvlist_t *label; 4879 uint64_t label_txg; 4880 4881 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 4882 &label) != 0) 4883 return; 4884 4885 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 4886 &label_txg) == 0); 4887 4888 /* 4889 * Do we have a better boot device? 4890 */ 4891 if (label_txg > *txg) { 4892 *txg = label_txg; 4893 *avd = vd; 4894 } 4895 nvlist_free(label); 4896 } 4897 } 4898 4899 /* 4900 * Import a root pool. 4901 * 4902 * For x86. devpath_list will consist of devid and/or physpath name of 4903 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 4904 * The GRUB "findroot" command will return the vdev we should boot. 4905 * 4906 * For Sparc, devpath_list consists the physpath name of the booting device 4907 * no matter the rootpool is a single device pool or a mirrored pool. 4908 * e.g. 4909 * "/pci@1f,0/ide@d/disk@0,0:a" 4910 */ 4911 int 4912 spa_import_rootpool(char *devpath, char *devid) 4913 { 4914 spa_t *spa; 4915 vdev_t *rvd, *bvd, *avd = NULL; 4916 nvlist_t *config, *nvtop; 4917 uint64_t guid, txg; 4918 char *pname; 4919 int error; 4920 4921 /* 4922 * Read the label from the boot device and generate a configuration. 4923 */ 4924 config = spa_generate_rootconf(devpath, devid, &guid); 4925 #if defined(_OBP) && defined(_KERNEL) 4926 if (config == NULL) { 4927 if (strstr(devpath, "/iscsi/ssd") != NULL) { 4928 /* iscsi boot */ 4929 get_iscsi_bootpath_phy(devpath); 4930 config = spa_generate_rootconf(devpath, devid, &guid); 4931 } 4932 } 4933 #endif 4934 if (config == NULL) { 4935 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 4936 devpath); 4937 return (SET_ERROR(EIO)); 4938 } 4939 4940 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 4941 &pname) == 0); 4942 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 4943 4944 mutex_enter(&spa_namespace_lock); 4945 if ((spa = spa_lookup(pname)) != NULL) { 4946 /* 4947 * Remove the existing root pool from the namespace so that we 4948 * can replace it with the correct config we just read in. 4949 */ 4950 spa_remove(spa); 4951 } 4952 4953 spa = spa_add(pname, config, NULL); 4954 spa->spa_is_root = B_TRUE; 4955 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 4956 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 4957 &spa->spa_ubsync.ub_version) != 0) 4958 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 4959 4960 /* 4961 * Build up a vdev tree based on the boot device's label config. 4962 */ 4963 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4964 &nvtop) == 0); 4965 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4966 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 4967 VDEV_ALLOC_ROOTPOOL); 4968 spa_config_exit(spa, SCL_ALL, FTAG); 4969 if (error) { 4970 mutex_exit(&spa_namespace_lock); 4971 nvlist_free(config); 4972 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 4973 pname); 4974 return (error); 4975 } 4976 4977 /* 4978 * Get the boot vdev. 4979 */ 4980 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 4981 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 4982 (u_longlong_t)guid); 4983 error = SET_ERROR(ENOENT); 4984 goto out; 4985 } 4986 4987 /* 4988 * Determine if there is a better boot device. 4989 */ 4990 avd = bvd; 4991 spa_alt_rootvdev(rvd, &avd, &txg); 4992 if (avd != bvd) { 4993 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 4994 "try booting from '%s'", avd->vdev_path); 4995 error = SET_ERROR(EINVAL); 4996 goto out; 4997 } 4998 4999 /* 5000 * If the boot device is part of a spare vdev then ensure that 5001 * we're booting off the active spare. 5002 */ 5003 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 5004 !bvd->vdev_isspare) { 5005 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 5006 "try booting from '%s'", 5007 bvd->vdev_parent-> 5008 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 5009 error = SET_ERROR(EINVAL); 5010 goto out; 5011 } 5012 5013 error = 0; 5014 out: 5015 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5016 vdev_free(rvd); 5017 spa_config_exit(spa, SCL_ALL, FTAG); 5018 mutex_exit(&spa_namespace_lock); 5019 5020 nvlist_free(config); 5021 return (error); 5022 } 5023 5024 #endif 5025 5026 /* 5027 * Import a non-root pool into the system. 5028 */ 5029 int 5030 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 5031 { 5032 spa_t *spa; 5033 char *altroot = NULL; 5034 spa_load_state_t state = SPA_LOAD_IMPORT; 5035 zpool_load_policy_t policy; 5036 uint64_t mode = spa_mode_global; 5037 uint64_t readonly = B_FALSE; 5038 int error; 5039 nvlist_t *nvroot; 5040 nvlist_t **spares, **l2cache; 5041 uint_t nspares, nl2cache; 5042 5043 /* 5044 * If a pool with this name exists, return failure. 5045 */ 5046 mutex_enter(&spa_namespace_lock); 5047 if (spa_lookup(pool) != NULL) { 5048 mutex_exit(&spa_namespace_lock); 5049 return (SET_ERROR(EEXIST)); 5050 } 5051 5052 /* 5053 * Create and initialize the spa structure. 5054 */ 5055 (void) nvlist_lookup_string(props, 5056 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5057 (void) nvlist_lookup_uint64(props, 5058 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 5059 if (readonly) 5060 mode = FREAD; 5061 spa = spa_add(pool, config, altroot); 5062 spa->spa_import_flags = flags; 5063 5064 /* 5065 * Verbatim import - Take a pool and insert it into the namespace 5066 * as if it had been loaded at boot. 5067 */ 5068 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 5069 if (props != NULL) 5070 spa_configfile_set(spa, props, B_FALSE); 5071 5072 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5073 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5074 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 5075 mutex_exit(&spa_namespace_lock); 5076 return (0); 5077 } 5078 5079 spa_activate(spa, mode); 5080 5081 /* 5082 * Don't start async tasks until we know everything is healthy. 5083 */ 5084 spa_async_suspend(spa); 5085 5086 zpool_get_load_policy(config, &policy); 5087 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5088 state = SPA_LOAD_RECOVER; 5089 5090 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 5091 5092 if (state != SPA_LOAD_RECOVER) { 5093 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5094 zfs_dbgmsg("spa_import: importing %s", pool); 5095 } else { 5096 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 5097 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 5098 } 5099 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 5100 5101 /* 5102 * Propagate anything learned while loading the pool and pass it 5103 * back to caller (i.e. rewind info, missing devices, etc). 5104 */ 5105 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5106 spa->spa_load_info) == 0); 5107 5108 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5109 /* 5110 * Toss any existing sparelist, as it doesn't have any validity 5111 * anymore, and conflicts with spa_has_spare(). 5112 */ 5113 if (spa->spa_spares.sav_config) { 5114 nvlist_free(spa->spa_spares.sav_config); 5115 spa->spa_spares.sav_config = NULL; 5116 spa_load_spares(spa); 5117 } 5118 if (spa->spa_l2cache.sav_config) { 5119 nvlist_free(spa->spa_l2cache.sav_config); 5120 spa->spa_l2cache.sav_config = NULL; 5121 spa_load_l2cache(spa); 5122 } 5123 5124 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5125 &nvroot) == 0); 5126 if (error == 0) 5127 error = spa_validate_aux(spa, nvroot, -1ULL, 5128 VDEV_ALLOC_SPARE); 5129 if (error == 0) 5130 error = spa_validate_aux(spa, nvroot, -1ULL, 5131 VDEV_ALLOC_L2CACHE); 5132 spa_config_exit(spa, SCL_ALL, FTAG); 5133 5134 if (props != NULL) 5135 spa_configfile_set(spa, props, B_FALSE); 5136 5137 if (error != 0 || (props && spa_writeable(spa) && 5138 (error = spa_prop_set(spa, props)))) { 5139 spa_unload(spa); 5140 spa_deactivate(spa); 5141 spa_remove(spa); 5142 mutex_exit(&spa_namespace_lock); 5143 return (error); 5144 } 5145 5146 spa_async_resume(spa); 5147 5148 /* 5149 * Override any spares and level 2 cache devices as specified by 5150 * the user, as these may have correct device names/devids, etc. 5151 */ 5152 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5153 &spares, &nspares) == 0) { 5154 if (spa->spa_spares.sav_config) 5155 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 5156 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 5157 else 5158 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 5159 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5160 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5161 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5162 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5163 spa_load_spares(spa); 5164 spa_config_exit(spa, SCL_ALL, FTAG); 5165 spa->spa_spares.sav_sync = B_TRUE; 5166 } 5167 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5168 &l2cache, &nl2cache) == 0) { 5169 if (spa->spa_l2cache.sav_config) 5170 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 5171 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 5172 else 5173 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5174 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5175 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5176 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5177 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5178 spa_load_l2cache(spa); 5179 spa_config_exit(spa, SCL_ALL, FTAG); 5180 spa->spa_l2cache.sav_sync = B_TRUE; 5181 } 5182 5183 /* 5184 * Check for any removed devices. 5185 */ 5186 if (spa->spa_autoreplace) { 5187 spa_aux_check_removed(&spa->spa_spares); 5188 spa_aux_check_removed(&spa->spa_l2cache); 5189 } 5190 5191 if (spa_writeable(spa)) { 5192 /* 5193 * Update the config cache to include the newly-imported pool. 5194 */ 5195 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5196 } 5197 5198 /* 5199 * It's possible that the pool was expanded while it was exported. 5200 * We kick off an async task to handle this for us. 5201 */ 5202 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 5203 5204 spa_history_log_version(spa, "import"); 5205 5206 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5207 5208 mutex_exit(&spa_namespace_lock); 5209 5210 return (0); 5211 } 5212 5213 nvlist_t * 5214 spa_tryimport(nvlist_t *tryconfig) 5215 { 5216 nvlist_t *config = NULL; 5217 char *poolname, *cachefile; 5218 spa_t *spa; 5219 uint64_t state; 5220 int error; 5221 zpool_load_policy_t policy; 5222 5223 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 5224 return (NULL); 5225 5226 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 5227 return (NULL); 5228 5229 /* 5230 * Create and initialize the spa structure. 5231 */ 5232 mutex_enter(&spa_namespace_lock); 5233 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 5234 spa_activate(spa, FREAD); 5235 5236 /* 5237 * Rewind pool if a max txg was provided. 5238 */ 5239 zpool_get_load_policy(spa->spa_config, &policy); 5240 if (policy.zlp_txg != UINT64_MAX) { 5241 spa->spa_load_max_txg = policy.zlp_txg; 5242 spa->spa_extreme_rewind = B_TRUE; 5243 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 5244 poolname, (longlong_t)policy.zlp_txg); 5245 } else { 5246 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 5247 } 5248 5249 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 5250 == 0) { 5251 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 5252 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5253 } else { 5254 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 5255 } 5256 5257 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 5258 5259 /* 5260 * If 'tryconfig' was at least parsable, return the current config. 5261 */ 5262 if (spa->spa_root_vdev != NULL) { 5263 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5264 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 5265 poolname) == 0); 5266 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5267 state) == 0); 5268 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 5269 spa->spa_uberblock.ub_timestamp) == 0); 5270 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5271 spa->spa_load_info) == 0); 5272 5273 /* 5274 * If the bootfs property exists on this pool then we 5275 * copy it out so that external consumers can tell which 5276 * pools are bootable. 5277 */ 5278 if ((!error || error == EEXIST) && spa->spa_bootfs) { 5279 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5280 5281 /* 5282 * We have to play games with the name since the 5283 * pool was opened as TRYIMPORT_NAME. 5284 */ 5285 if (dsl_dsobj_to_dsname(spa_name(spa), 5286 spa->spa_bootfs, tmpname) == 0) { 5287 char *cp; 5288 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5289 5290 cp = strchr(tmpname, '/'); 5291 if (cp == NULL) { 5292 (void) strlcpy(dsname, tmpname, 5293 MAXPATHLEN); 5294 } else { 5295 (void) snprintf(dsname, MAXPATHLEN, 5296 "%s/%s", poolname, ++cp); 5297 } 5298 VERIFY(nvlist_add_string(config, 5299 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 5300 kmem_free(dsname, MAXPATHLEN); 5301 } 5302 kmem_free(tmpname, MAXPATHLEN); 5303 } 5304 5305 /* 5306 * Add the list of hot spares and level 2 cache devices. 5307 */ 5308 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5309 spa_add_spares(spa, config); 5310 spa_add_l2cache(spa, config); 5311 spa_config_exit(spa, SCL_CONFIG, FTAG); 5312 } 5313 5314 spa_unload(spa); 5315 spa_deactivate(spa); 5316 spa_remove(spa); 5317 mutex_exit(&spa_namespace_lock); 5318 5319 return (config); 5320 } 5321 5322 /* 5323 * Pool export/destroy 5324 * 5325 * The act of destroying or exporting a pool is very simple. We make sure there 5326 * is no more pending I/O and any references to the pool are gone. Then, we 5327 * update the pool state and sync all the labels to disk, removing the 5328 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 5329 * we don't sync the labels or remove the configuration cache. 5330 */ 5331 static int 5332 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 5333 boolean_t force, boolean_t hardforce) 5334 { 5335 spa_t *spa; 5336 5337 if (oldconfig) 5338 *oldconfig = NULL; 5339 5340 if (!(spa_mode_global & FWRITE)) 5341 return (SET_ERROR(EROFS)); 5342 5343 mutex_enter(&spa_namespace_lock); 5344 if ((spa = spa_lookup(pool)) == NULL) { 5345 mutex_exit(&spa_namespace_lock); 5346 return (SET_ERROR(ENOENT)); 5347 } 5348 5349 /* 5350 * Put a hold on the pool, drop the namespace lock, stop async tasks, 5351 * reacquire the namespace lock, and see if we can export. 5352 */ 5353 spa_open_ref(spa, FTAG); 5354 mutex_exit(&spa_namespace_lock); 5355 spa_async_suspend(spa); 5356 mutex_enter(&spa_namespace_lock); 5357 spa_close(spa, FTAG); 5358 5359 /* 5360 * The pool will be in core if it's openable, 5361 * in which case we can modify its state. 5362 */ 5363 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 5364 5365 /* 5366 * Objsets may be open only because they're dirty, so we 5367 * have to force it to sync before checking spa_refcnt. 5368 */ 5369 txg_wait_synced(spa->spa_dsl_pool, 0); 5370 spa_evicting_os_wait(spa); 5371 5372 /* 5373 * A pool cannot be exported or destroyed if there are active 5374 * references. If we are resetting a pool, allow references by 5375 * fault injection handlers. 5376 */ 5377 if (!spa_refcount_zero(spa) || 5378 (spa->spa_inject_ref != 0 && 5379 new_state != POOL_STATE_UNINITIALIZED)) { 5380 spa_async_resume(spa); 5381 mutex_exit(&spa_namespace_lock); 5382 return (SET_ERROR(EBUSY)); 5383 } 5384 5385 /* 5386 * A pool cannot be exported if it has an active shared spare. 5387 * This is to prevent other pools stealing the active spare 5388 * from an exported pool. At user's own will, such pool can 5389 * be forcedly exported. 5390 */ 5391 if (!force && new_state == POOL_STATE_EXPORTED && 5392 spa_has_active_shared_spare(spa)) { 5393 spa_async_resume(spa); 5394 mutex_exit(&spa_namespace_lock); 5395 return (SET_ERROR(EXDEV)); 5396 } 5397 5398 /* 5399 * We're about to export or destroy this pool. Make sure 5400 * we stop all initializtion activity here before we 5401 * set the spa_final_txg. This will ensure that all 5402 * dirty data resulting from the initialization is 5403 * committed to disk before we unload the pool. 5404 */ 5405 if (spa->spa_root_vdev != NULL) { 5406 vdev_initialize_stop_all(spa->spa_root_vdev, 5407 VDEV_INITIALIZE_ACTIVE); 5408 } 5409 5410 /* 5411 * We want this to be reflected on every label, 5412 * so mark them all dirty. spa_unload() will do the 5413 * final sync that pushes these changes out. 5414 */ 5415 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 5416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5417 spa->spa_state = new_state; 5418 spa->spa_final_txg = spa_last_synced_txg(spa) + 5419 TXG_DEFER_SIZE + 1; 5420 vdev_config_dirty(spa->spa_root_vdev); 5421 spa_config_exit(spa, SCL_ALL, FTAG); 5422 } 5423 } 5424 5425 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 5426 5427 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5428 spa_unload(spa); 5429 spa_deactivate(spa); 5430 } 5431 5432 if (oldconfig && spa->spa_config) 5433 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 5434 5435 if (new_state != POOL_STATE_UNINITIALIZED) { 5436 if (!hardforce) 5437 spa_write_cachefile(spa, B_TRUE, B_TRUE); 5438 spa_remove(spa); 5439 } 5440 mutex_exit(&spa_namespace_lock); 5441 5442 return (0); 5443 } 5444 5445 /* 5446 * Destroy a storage pool. 5447 */ 5448 int 5449 spa_destroy(char *pool) 5450 { 5451 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 5452 B_FALSE, B_FALSE)); 5453 } 5454 5455 /* 5456 * Export a storage pool. 5457 */ 5458 int 5459 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 5460 boolean_t hardforce) 5461 { 5462 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 5463 force, hardforce)); 5464 } 5465 5466 /* 5467 * Similar to spa_export(), this unloads the spa_t without actually removing it 5468 * from the namespace in any way. 5469 */ 5470 int 5471 spa_reset(char *pool) 5472 { 5473 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 5474 B_FALSE, B_FALSE)); 5475 } 5476 5477 /* 5478 * ========================================================================== 5479 * Device manipulation 5480 * ========================================================================== 5481 */ 5482 5483 /* 5484 * Add a device to a storage pool. 5485 */ 5486 int 5487 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 5488 { 5489 uint64_t txg, id; 5490 int error; 5491 vdev_t *rvd = spa->spa_root_vdev; 5492 vdev_t *vd, *tvd; 5493 nvlist_t **spares, **l2cache; 5494 uint_t nspares, nl2cache; 5495 5496 ASSERT(spa_writeable(spa)); 5497 5498 txg = spa_vdev_enter(spa); 5499 5500 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 5501 VDEV_ALLOC_ADD)) != 0) 5502 return (spa_vdev_exit(spa, NULL, txg, error)); 5503 5504 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 5505 5506 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 5507 &nspares) != 0) 5508 nspares = 0; 5509 5510 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 5511 &nl2cache) != 0) 5512 nl2cache = 0; 5513 5514 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 5515 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5516 5517 if (vd->vdev_children != 0 && 5518 (error = vdev_create(vd, txg, B_FALSE)) != 0) 5519 return (spa_vdev_exit(spa, vd, txg, error)); 5520 5521 /* 5522 * We must validate the spares and l2cache devices after checking the 5523 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 5524 */ 5525 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 5526 return (spa_vdev_exit(spa, vd, txg, error)); 5527 5528 /* 5529 * If we are in the middle of a device removal, we can only add 5530 * devices which match the existing devices in the pool. 5531 * If we are in the middle of a removal, or have some indirect 5532 * vdevs, we can not add raidz toplevels. 5533 */ 5534 if (spa->spa_vdev_removal != NULL || 5535 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 5536 for (int c = 0; c < vd->vdev_children; c++) { 5537 tvd = vd->vdev_child[c]; 5538 if (spa->spa_vdev_removal != NULL && 5539 tvd->vdev_ashift != spa->spa_max_ashift) { 5540 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5541 } 5542 /* Fail if top level vdev is raidz */ 5543 if (tvd->vdev_ops == &vdev_raidz_ops) { 5544 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5545 } 5546 /* 5547 * Need the top level mirror to be 5548 * a mirror of leaf vdevs only 5549 */ 5550 if (tvd->vdev_ops == &vdev_mirror_ops) { 5551 for (uint64_t cid = 0; 5552 cid < tvd->vdev_children; cid++) { 5553 vdev_t *cvd = tvd->vdev_child[cid]; 5554 if (!cvd->vdev_ops->vdev_op_leaf) { 5555 return (spa_vdev_exit(spa, vd, 5556 txg, EINVAL)); 5557 } 5558 } 5559 } 5560 } 5561 } 5562 5563 for (int c = 0; c < vd->vdev_children; c++) { 5564 5565 /* 5566 * Set the vdev id to the first hole, if one exists. 5567 */ 5568 for (id = 0; id < rvd->vdev_children; id++) { 5569 if (rvd->vdev_child[id]->vdev_ishole) { 5570 vdev_free(rvd->vdev_child[id]); 5571 break; 5572 } 5573 } 5574 tvd = vd->vdev_child[c]; 5575 vdev_remove_child(vd, tvd); 5576 tvd->vdev_id = id; 5577 vdev_add_child(rvd, tvd); 5578 vdev_config_dirty(tvd); 5579 } 5580 5581 if (nspares != 0) { 5582 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 5583 ZPOOL_CONFIG_SPARES); 5584 spa_load_spares(spa); 5585 spa->spa_spares.sav_sync = B_TRUE; 5586 } 5587 5588 if (nl2cache != 0) { 5589 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 5590 ZPOOL_CONFIG_L2CACHE); 5591 spa_load_l2cache(spa); 5592 spa->spa_l2cache.sav_sync = B_TRUE; 5593 } 5594 5595 /* 5596 * We have to be careful when adding new vdevs to an existing pool. 5597 * If other threads start allocating from these vdevs before we 5598 * sync the config cache, and we lose power, then upon reboot we may 5599 * fail to open the pool because there are DVAs that the config cache 5600 * can't translate. Therefore, we first add the vdevs without 5601 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 5602 * and then let spa_config_update() initialize the new metaslabs. 5603 * 5604 * spa_load() checks for added-but-not-initialized vdevs, so that 5605 * if we lose power at any point in this sequence, the remaining 5606 * steps will be completed the next time we load the pool. 5607 */ 5608 (void) spa_vdev_exit(spa, vd, txg, 0); 5609 5610 mutex_enter(&spa_namespace_lock); 5611 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5612 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 5613 mutex_exit(&spa_namespace_lock); 5614 5615 return (0); 5616 } 5617 5618 /* 5619 * Attach a device to a mirror. The arguments are the path to any device 5620 * in the mirror, and the nvroot for the new device. If the path specifies 5621 * a device that is not mirrored, we automatically insert the mirror vdev. 5622 * 5623 * If 'replacing' is specified, the new device is intended to replace the 5624 * existing device; in this case the two devices are made into their own 5625 * mirror using the 'replacing' vdev, which is functionally identical to 5626 * the mirror vdev (it actually reuses all the same ops) but has a few 5627 * extra rules: you can't attach to it after it's been created, and upon 5628 * completion of resilvering, the first disk (the one being replaced) 5629 * is automatically detached. 5630 */ 5631 int 5632 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 5633 { 5634 uint64_t txg, dtl_max_txg; 5635 vdev_t *rvd = spa->spa_root_vdev; 5636 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 5637 vdev_ops_t *pvops; 5638 char *oldvdpath, *newvdpath; 5639 int newvd_isspare; 5640 int error; 5641 5642 ASSERT(spa_writeable(spa)); 5643 5644 txg = spa_vdev_enter(spa); 5645 5646 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 5647 5648 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5649 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 5650 error = (spa_has_checkpoint(spa)) ? 5651 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 5652 return (spa_vdev_exit(spa, NULL, txg, error)); 5653 } 5654 5655 if (spa->spa_vdev_removal != NULL) 5656 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5657 5658 if (oldvd == NULL) 5659 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 5660 5661 if (!oldvd->vdev_ops->vdev_op_leaf) 5662 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5663 5664 pvd = oldvd->vdev_parent; 5665 5666 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 5667 VDEV_ALLOC_ATTACH)) != 0) 5668 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5669 5670 if (newrootvd->vdev_children != 1) 5671 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 5672 5673 newvd = newrootvd->vdev_child[0]; 5674 5675 if (!newvd->vdev_ops->vdev_op_leaf) 5676 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 5677 5678 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 5679 return (spa_vdev_exit(spa, newrootvd, txg, error)); 5680 5681 /* 5682 * Spares can't replace logs 5683 */ 5684 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 5685 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5686 5687 if (!replacing) { 5688 /* 5689 * For attach, the only allowable parent is a mirror or the root 5690 * vdev. 5691 */ 5692 if (pvd->vdev_ops != &vdev_mirror_ops && 5693 pvd->vdev_ops != &vdev_root_ops) 5694 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5695 5696 pvops = &vdev_mirror_ops; 5697 } else { 5698 /* 5699 * Active hot spares can only be replaced by inactive hot 5700 * spares. 5701 */ 5702 if (pvd->vdev_ops == &vdev_spare_ops && 5703 oldvd->vdev_isspare && 5704 !spa_has_spare(spa, newvd->vdev_guid)) 5705 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5706 5707 /* 5708 * If the source is a hot spare, and the parent isn't already a 5709 * spare, then we want to create a new hot spare. Otherwise, we 5710 * want to create a replacing vdev. The user is not allowed to 5711 * attach to a spared vdev child unless the 'isspare' state is 5712 * the same (spare replaces spare, non-spare replaces 5713 * non-spare). 5714 */ 5715 if (pvd->vdev_ops == &vdev_replacing_ops && 5716 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 5717 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5718 } else if (pvd->vdev_ops == &vdev_spare_ops && 5719 newvd->vdev_isspare != oldvd->vdev_isspare) { 5720 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5721 } 5722 5723 if (newvd->vdev_isspare) 5724 pvops = &vdev_spare_ops; 5725 else 5726 pvops = &vdev_replacing_ops; 5727 } 5728 5729 /* 5730 * Make sure the new device is big enough. 5731 */ 5732 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 5733 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 5734 5735 /* 5736 * The new device cannot have a higher alignment requirement 5737 * than the top-level vdev. 5738 */ 5739 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 5740 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 5741 5742 /* 5743 * If this is an in-place replacement, update oldvd's path and devid 5744 * to make it distinguishable from newvd, and unopenable from now on. 5745 */ 5746 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 5747 spa_strfree(oldvd->vdev_path); 5748 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 5749 KM_SLEEP); 5750 (void) sprintf(oldvd->vdev_path, "%s/%s", 5751 newvd->vdev_path, "old"); 5752 if (oldvd->vdev_devid != NULL) { 5753 spa_strfree(oldvd->vdev_devid); 5754 oldvd->vdev_devid = NULL; 5755 } 5756 } 5757 5758 /* mark the device being resilvered */ 5759 newvd->vdev_resilver_txg = txg; 5760 5761 /* 5762 * If the parent is not a mirror, or if we're replacing, insert the new 5763 * mirror/replacing/spare vdev above oldvd. 5764 */ 5765 if (pvd->vdev_ops != pvops) 5766 pvd = vdev_add_parent(oldvd, pvops); 5767 5768 ASSERT(pvd->vdev_top->vdev_parent == rvd); 5769 ASSERT(pvd->vdev_ops == pvops); 5770 ASSERT(oldvd->vdev_parent == pvd); 5771 5772 /* 5773 * Extract the new device from its root and add it to pvd. 5774 */ 5775 vdev_remove_child(newrootvd, newvd); 5776 newvd->vdev_id = pvd->vdev_children; 5777 newvd->vdev_crtxg = oldvd->vdev_crtxg; 5778 vdev_add_child(pvd, newvd); 5779 5780 tvd = newvd->vdev_top; 5781 ASSERT(pvd->vdev_top == tvd); 5782 ASSERT(tvd->vdev_parent == rvd); 5783 5784 vdev_config_dirty(tvd); 5785 5786 /* 5787 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 5788 * for any dmu_sync-ed blocks. It will propagate upward when 5789 * spa_vdev_exit() calls vdev_dtl_reassess(). 5790 */ 5791 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 5792 5793 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 5794 dtl_max_txg - TXG_INITIAL); 5795 5796 if (newvd->vdev_isspare) { 5797 spa_spare_activate(newvd); 5798 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 5799 } 5800 5801 oldvdpath = spa_strdup(oldvd->vdev_path); 5802 newvdpath = spa_strdup(newvd->vdev_path); 5803 newvd_isspare = newvd->vdev_isspare; 5804 5805 /* 5806 * Mark newvd's DTL dirty in this txg. 5807 */ 5808 vdev_dirty(tvd, VDD_DTL, newvd, txg); 5809 5810 /* 5811 * Schedule the resilver to restart in the future. We do this to 5812 * ensure that dmu_sync-ed blocks have been stitched into the 5813 * respective datasets. 5814 */ 5815 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 5816 5817 if (spa->spa_bootfs) 5818 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 5819 5820 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 5821 5822 /* 5823 * Commit the config 5824 */ 5825 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 5826 5827 spa_history_log_internal(spa, "vdev attach", NULL, 5828 "%s vdev=%s %s vdev=%s", 5829 replacing && newvd_isspare ? "spare in" : 5830 replacing ? "replace" : "attach", newvdpath, 5831 replacing ? "for" : "to", oldvdpath); 5832 5833 spa_strfree(oldvdpath); 5834 spa_strfree(newvdpath); 5835 5836 return (0); 5837 } 5838 5839 /* 5840 * Detach a device from a mirror or replacing vdev. 5841 * 5842 * If 'replace_done' is specified, only detach if the parent 5843 * is a replacing vdev. 5844 */ 5845 int 5846 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 5847 { 5848 uint64_t txg; 5849 int error; 5850 vdev_t *rvd = spa->spa_root_vdev; 5851 vdev_t *vd, *pvd, *cvd, *tvd; 5852 boolean_t unspare = B_FALSE; 5853 uint64_t unspare_guid = 0; 5854 char *vdpath; 5855 5856 ASSERT(spa_writeable(spa)); 5857 5858 txg = spa_vdev_enter(spa); 5859 5860 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5861 5862 /* 5863 * Besides being called directly from the userland through the 5864 * ioctl interface, spa_vdev_detach() can be potentially called 5865 * at the end of spa_vdev_resilver_done(). 5866 * 5867 * In the regular case, when we have a checkpoint this shouldn't 5868 * happen as we never empty the DTLs of a vdev during the scrub 5869 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 5870 * should never get here when we have a checkpoint. 5871 * 5872 * That said, even in a case when we checkpoint the pool exactly 5873 * as spa_vdev_resilver_done() calls this function everything 5874 * should be fine as the resilver will return right away. 5875 */ 5876 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5877 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 5878 error = (spa_has_checkpoint(spa)) ? 5879 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 5880 return (spa_vdev_exit(spa, NULL, txg, error)); 5881 } 5882 5883 if (vd == NULL) 5884 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 5885 5886 if (!vd->vdev_ops->vdev_op_leaf) 5887 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5888 5889 pvd = vd->vdev_parent; 5890 5891 /* 5892 * If the parent/child relationship is not as expected, don't do it. 5893 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 5894 * vdev that's replacing B with C. The user's intent in replacing 5895 * is to go from M(A,B) to M(A,C). If the user decides to cancel 5896 * the replace by detaching C, the expected behavior is to end up 5897 * M(A,B). But suppose that right after deciding to detach C, 5898 * the replacement of B completes. We would have M(A,C), and then 5899 * ask to detach C, which would leave us with just A -- not what 5900 * the user wanted. To prevent this, we make sure that the 5901 * parent/child relationship hasn't changed -- in this example, 5902 * that C's parent is still the replacing vdev R. 5903 */ 5904 if (pvd->vdev_guid != pguid && pguid != 0) 5905 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5906 5907 /* 5908 * Only 'replacing' or 'spare' vdevs can be replaced. 5909 */ 5910 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 5911 pvd->vdev_ops != &vdev_spare_ops) 5912 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5913 5914 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 5915 spa_version(spa) >= SPA_VERSION_SPARES); 5916 5917 /* 5918 * Only mirror, replacing, and spare vdevs support detach. 5919 */ 5920 if (pvd->vdev_ops != &vdev_replacing_ops && 5921 pvd->vdev_ops != &vdev_mirror_ops && 5922 pvd->vdev_ops != &vdev_spare_ops) 5923 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5924 5925 /* 5926 * If this device has the only valid copy of some data, 5927 * we cannot safely detach it. 5928 */ 5929 if (vdev_dtl_required(vd)) 5930 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5931 5932 ASSERT(pvd->vdev_children >= 2); 5933 5934 /* 5935 * If we are detaching the second disk from a replacing vdev, then 5936 * check to see if we changed the original vdev's path to have "/old" 5937 * at the end in spa_vdev_attach(). If so, undo that change now. 5938 */ 5939 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 5940 vd->vdev_path != NULL) { 5941 size_t len = strlen(vd->vdev_path); 5942 5943 for (int c = 0; c < pvd->vdev_children; c++) { 5944 cvd = pvd->vdev_child[c]; 5945 5946 if (cvd == vd || cvd->vdev_path == NULL) 5947 continue; 5948 5949 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 5950 strcmp(cvd->vdev_path + len, "/old") == 0) { 5951 spa_strfree(cvd->vdev_path); 5952 cvd->vdev_path = spa_strdup(vd->vdev_path); 5953 break; 5954 } 5955 } 5956 } 5957 5958 /* 5959 * If we are detaching the original disk from a spare, then it implies 5960 * that the spare should become a real disk, and be removed from the 5961 * active spare list for the pool. 5962 */ 5963 if (pvd->vdev_ops == &vdev_spare_ops && 5964 vd->vdev_id == 0 && 5965 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 5966 unspare = B_TRUE; 5967 5968 /* 5969 * Erase the disk labels so the disk can be used for other things. 5970 * This must be done after all other error cases are handled, 5971 * but before we disembowel vd (so we can still do I/O to it). 5972 * But if we can't do it, don't treat the error as fatal -- 5973 * it may be that the unwritability of the disk is the reason 5974 * it's being detached! 5975 */ 5976 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5977 5978 /* 5979 * Remove vd from its parent and compact the parent's children. 5980 */ 5981 vdev_remove_child(pvd, vd); 5982 vdev_compact_children(pvd); 5983 5984 /* 5985 * Remember one of the remaining children so we can get tvd below. 5986 */ 5987 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 5988 5989 /* 5990 * If we need to remove the remaining child from the list of hot spares, 5991 * do it now, marking the vdev as no longer a spare in the process. 5992 * We must do this before vdev_remove_parent(), because that can 5993 * change the GUID if it creates a new toplevel GUID. For a similar 5994 * reason, we must remove the spare now, in the same txg as the detach; 5995 * otherwise someone could attach a new sibling, change the GUID, and 5996 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 5997 */ 5998 if (unspare) { 5999 ASSERT(cvd->vdev_isspare); 6000 spa_spare_remove(cvd); 6001 unspare_guid = cvd->vdev_guid; 6002 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 6003 cvd->vdev_unspare = B_TRUE; 6004 } 6005 6006 /* 6007 * If the parent mirror/replacing vdev only has one child, 6008 * the parent is no longer needed. Remove it from the tree. 6009 */ 6010 if (pvd->vdev_children == 1) { 6011 if (pvd->vdev_ops == &vdev_spare_ops) 6012 cvd->vdev_unspare = B_FALSE; 6013 vdev_remove_parent(cvd); 6014 } 6015 6016 6017 /* 6018 * We don't set tvd until now because the parent we just removed 6019 * may have been the previous top-level vdev. 6020 */ 6021 tvd = cvd->vdev_top; 6022 ASSERT(tvd->vdev_parent == rvd); 6023 6024 /* 6025 * Reevaluate the parent vdev state. 6026 */ 6027 vdev_propagate_state(cvd); 6028 6029 /* 6030 * If the 'autoexpand' property is set on the pool then automatically 6031 * try to expand the size of the pool. For example if the device we 6032 * just detached was smaller than the others, it may be possible to 6033 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 6034 * first so that we can obtain the updated sizes of the leaf vdevs. 6035 */ 6036 if (spa->spa_autoexpand) { 6037 vdev_reopen(tvd); 6038 vdev_expand(tvd, txg); 6039 } 6040 6041 vdev_config_dirty(tvd); 6042 6043 /* 6044 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 6045 * vd->vdev_detached is set and free vd's DTL object in syncing context. 6046 * But first make sure we're not on any *other* txg's DTL list, to 6047 * prevent vd from being accessed after it's freed. 6048 */ 6049 vdpath = spa_strdup(vd->vdev_path); 6050 for (int t = 0; t < TXG_SIZE; t++) 6051 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 6052 vd->vdev_detached = B_TRUE; 6053 vdev_dirty(tvd, VDD_DTL, vd, txg); 6054 6055 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 6056 6057 /* hang on to the spa before we release the lock */ 6058 spa_open_ref(spa, FTAG); 6059 6060 error = spa_vdev_exit(spa, vd, txg, 0); 6061 6062 spa_history_log_internal(spa, "detach", NULL, 6063 "vdev=%s", vdpath); 6064 spa_strfree(vdpath); 6065 6066 /* 6067 * If this was the removal of the original device in a hot spare vdev, 6068 * then we want to go through and remove the device from the hot spare 6069 * list of every other pool. 6070 */ 6071 if (unspare) { 6072 spa_t *altspa = NULL; 6073 6074 mutex_enter(&spa_namespace_lock); 6075 while ((altspa = spa_next(altspa)) != NULL) { 6076 if (altspa->spa_state != POOL_STATE_ACTIVE || 6077 altspa == spa) 6078 continue; 6079 6080 spa_open_ref(altspa, FTAG); 6081 mutex_exit(&spa_namespace_lock); 6082 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 6083 mutex_enter(&spa_namespace_lock); 6084 spa_close(altspa, FTAG); 6085 } 6086 mutex_exit(&spa_namespace_lock); 6087 6088 /* search the rest of the vdevs for spares to remove */ 6089 spa_vdev_resilver_done(spa); 6090 } 6091 6092 /* all done with the spa; OK to release */ 6093 mutex_enter(&spa_namespace_lock); 6094 spa_close(spa, FTAG); 6095 mutex_exit(&spa_namespace_lock); 6096 6097 return (error); 6098 } 6099 6100 int 6101 spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type) 6102 { 6103 /* 6104 * We hold the namespace lock through the whole function 6105 * to prevent any changes to the pool while we're starting or 6106 * stopping initialization. The config and state locks are held so that 6107 * we can properly assess the vdev state before we commit to 6108 * the initializing operation. 6109 */ 6110 mutex_enter(&spa_namespace_lock); 6111 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6112 6113 /* Look up vdev and ensure it's a leaf. */ 6114 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6115 if (vd == NULL || vd->vdev_detached) { 6116 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6117 mutex_exit(&spa_namespace_lock); 6118 return (SET_ERROR(ENODEV)); 6119 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 6120 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6121 mutex_exit(&spa_namespace_lock); 6122 return (SET_ERROR(EINVAL)); 6123 } else if (!vdev_writeable(vd)) { 6124 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6125 mutex_exit(&spa_namespace_lock); 6126 return (SET_ERROR(EROFS)); 6127 } 6128 mutex_enter(&vd->vdev_initialize_lock); 6129 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6130 6131 /* 6132 * When we activate an initialize action we check to see 6133 * if the vdev_initialize_thread is NULL. We do this instead 6134 * of using the vdev_initialize_state since there might be 6135 * a previous initialization process which has completed but 6136 * the thread is not exited. 6137 */ 6138 if (cmd_type == POOL_INITIALIZE_DO && 6139 (vd->vdev_initialize_thread != NULL || 6140 vd->vdev_top->vdev_removing)) { 6141 mutex_exit(&vd->vdev_initialize_lock); 6142 mutex_exit(&spa_namespace_lock); 6143 return (SET_ERROR(EBUSY)); 6144 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 6145 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 6146 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 6147 mutex_exit(&vd->vdev_initialize_lock); 6148 mutex_exit(&spa_namespace_lock); 6149 return (SET_ERROR(ESRCH)); 6150 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 6151 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 6152 mutex_exit(&vd->vdev_initialize_lock); 6153 mutex_exit(&spa_namespace_lock); 6154 return (SET_ERROR(ESRCH)); 6155 } 6156 6157 switch (cmd_type) { 6158 case POOL_INITIALIZE_DO: 6159 vdev_initialize(vd); 6160 break; 6161 case POOL_INITIALIZE_CANCEL: 6162 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED); 6163 break; 6164 case POOL_INITIALIZE_SUSPEND: 6165 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED); 6166 break; 6167 default: 6168 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 6169 } 6170 mutex_exit(&vd->vdev_initialize_lock); 6171 6172 /* Sync out the initializing state */ 6173 txg_wait_synced(spa->spa_dsl_pool, 0); 6174 mutex_exit(&spa_namespace_lock); 6175 6176 return (0); 6177 } 6178 6179 6180 /* 6181 * Split a set of devices from their mirrors, and create a new pool from them. 6182 */ 6183 int 6184 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 6185 nvlist_t *props, boolean_t exp) 6186 { 6187 int error = 0; 6188 uint64_t txg, *glist; 6189 spa_t *newspa; 6190 uint_t c, children, lastlog; 6191 nvlist_t **child, *nvl, *tmp; 6192 dmu_tx_t *tx; 6193 char *altroot = NULL; 6194 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 6195 boolean_t activate_slog; 6196 6197 ASSERT(spa_writeable(spa)); 6198 6199 txg = spa_vdev_enter(spa); 6200 6201 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6202 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6203 error = (spa_has_checkpoint(spa)) ? 6204 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6205 return (spa_vdev_exit(spa, NULL, txg, error)); 6206 } 6207 6208 /* clear the log and flush everything up to now */ 6209 activate_slog = spa_passivate_log(spa); 6210 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 6211 error = spa_reset_logs(spa); 6212 txg = spa_vdev_config_enter(spa); 6213 6214 if (activate_slog) 6215 spa_activate_log(spa); 6216 6217 if (error != 0) 6218 return (spa_vdev_exit(spa, NULL, txg, error)); 6219 6220 /* check new spa name before going any further */ 6221 if (spa_lookup(newname) != NULL) 6222 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 6223 6224 /* 6225 * scan through all the children to ensure they're all mirrors 6226 */ 6227 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 6228 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 6229 &children) != 0) 6230 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6231 6232 /* first, check to ensure we've got the right child count */ 6233 rvd = spa->spa_root_vdev; 6234 lastlog = 0; 6235 for (c = 0; c < rvd->vdev_children; c++) { 6236 vdev_t *vd = rvd->vdev_child[c]; 6237 6238 /* don't count the holes & logs as children */ 6239 if (vd->vdev_islog || !vdev_is_concrete(vd)) { 6240 if (lastlog == 0) 6241 lastlog = c; 6242 continue; 6243 } 6244 6245 lastlog = 0; 6246 } 6247 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 6248 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6249 6250 /* next, ensure no spare or cache devices are part of the split */ 6251 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 6252 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 6253 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6254 6255 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 6256 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 6257 6258 /* then, loop over each vdev and validate it */ 6259 for (c = 0; c < children; c++) { 6260 uint64_t is_hole = 0; 6261 6262 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 6263 &is_hole); 6264 6265 if (is_hole != 0) { 6266 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 6267 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 6268 continue; 6269 } else { 6270 error = SET_ERROR(EINVAL); 6271 break; 6272 } 6273 } 6274 6275 /* which disk is going to be split? */ 6276 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 6277 &glist[c]) != 0) { 6278 error = SET_ERROR(EINVAL); 6279 break; 6280 } 6281 6282 /* look it up in the spa */ 6283 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 6284 if (vml[c] == NULL) { 6285 error = SET_ERROR(ENODEV); 6286 break; 6287 } 6288 6289 /* make sure there's nothing stopping the split */ 6290 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 6291 vml[c]->vdev_islog || 6292 !vdev_is_concrete(vml[c]) || 6293 vml[c]->vdev_isspare || 6294 vml[c]->vdev_isl2cache || 6295 !vdev_writeable(vml[c]) || 6296 vml[c]->vdev_children != 0 || 6297 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 6298 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 6299 error = SET_ERROR(EINVAL); 6300 break; 6301 } 6302 6303 if (vdev_dtl_required(vml[c])) { 6304 error = SET_ERROR(EBUSY); 6305 break; 6306 } 6307 6308 /* we need certain info from the top level */ 6309 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 6310 vml[c]->vdev_top->vdev_ms_array) == 0); 6311 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 6312 vml[c]->vdev_top->vdev_ms_shift) == 0); 6313 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 6314 vml[c]->vdev_top->vdev_asize) == 0); 6315 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 6316 vml[c]->vdev_top->vdev_ashift) == 0); 6317 6318 /* transfer per-vdev ZAPs */ 6319 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 6320 VERIFY0(nvlist_add_uint64(child[c], 6321 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 6322 6323 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 6324 VERIFY0(nvlist_add_uint64(child[c], 6325 ZPOOL_CONFIG_VDEV_TOP_ZAP, 6326 vml[c]->vdev_parent->vdev_top_zap)); 6327 } 6328 6329 if (error != 0) { 6330 kmem_free(vml, children * sizeof (vdev_t *)); 6331 kmem_free(glist, children * sizeof (uint64_t)); 6332 return (spa_vdev_exit(spa, NULL, txg, error)); 6333 } 6334 6335 /* stop writers from using the disks */ 6336 for (c = 0; c < children; c++) { 6337 if (vml[c] != NULL) 6338 vml[c]->vdev_offline = B_TRUE; 6339 } 6340 vdev_reopen(spa->spa_root_vdev); 6341 6342 /* 6343 * Temporarily record the splitting vdevs in the spa config. This 6344 * will disappear once the config is regenerated. 6345 */ 6346 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6347 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 6348 glist, children) == 0); 6349 kmem_free(glist, children * sizeof (uint64_t)); 6350 6351 mutex_enter(&spa->spa_props_lock); 6352 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 6353 nvl) == 0); 6354 mutex_exit(&spa->spa_props_lock); 6355 spa->spa_config_splitting = nvl; 6356 vdev_config_dirty(spa->spa_root_vdev); 6357 6358 /* configure and create the new pool */ 6359 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 6360 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 6361 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 6362 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6363 spa_version(spa)) == 0); 6364 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 6365 spa->spa_config_txg) == 0); 6366 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 6367 spa_generate_guid(NULL)) == 0); 6368 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 6369 (void) nvlist_lookup_string(props, 6370 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6371 6372 /* add the new pool to the namespace */ 6373 newspa = spa_add(newname, config, altroot); 6374 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 6375 newspa->spa_config_txg = spa->spa_config_txg; 6376 spa_set_log_state(newspa, SPA_LOG_CLEAR); 6377 6378 /* release the spa config lock, retaining the namespace lock */ 6379 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 6380 6381 if (zio_injection_enabled) 6382 zio_handle_panic_injection(spa, FTAG, 1); 6383 6384 spa_activate(newspa, spa_mode_global); 6385 spa_async_suspend(newspa); 6386 6387 for (c = 0; c < children; c++) { 6388 if (vml[c] != NULL) { 6389 /* 6390 * Temporarily stop the initializing activity. We set 6391 * the state to ACTIVE so that we know to resume 6392 * the initializing once the split has completed. 6393 */ 6394 mutex_enter(&vml[c]->vdev_initialize_lock); 6395 vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE); 6396 mutex_exit(&vml[c]->vdev_initialize_lock); 6397 } 6398 } 6399 6400 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 6401 6402 /* create the new pool from the disks of the original pool */ 6403 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 6404 if (error) 6405 goto out; 6406 6407 /* if that worked, generate a real config for the new pool */ 6408 if (newspa->spa_root_vdev != NULL) { 6409 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 6410 NV_UNIQUE_NAME, KM_SLEEP) == 0); 6411 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 6412 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 6413 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 6414 B_TRUE)); 6415 } 6416 6417 /* set the props */ 6418 if (props != NULL) { 6419 spa_configfile_set(newspa, props, B_FALSE); 6420 error = spa_prop_set(newspa, props); 6421 if (error) 6422 goto out; 6423 } 6424 6425 /* flush everything */ 6426 txg = spa_vdev_config_enter(newspa); 6427 vdev_config_dirty(newspa->spa_root_vdev); 6428 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 6429 6430 if (zio_injection_enabled) 6431 zio_handle_panic_injection(spa, FTAG, 2); 6432 6433 spa_async_resume(newspa); 6434 6435 /* finally, update the original pool's config */ 6436 txg = spa_vdev_config_enter(spa); 6437 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 6438 error = dmu_tx_assign(tx, TXG_WAIT); 6439 if (error != 0) 6440 dmu_tx_abort(tx); 6441 for (c = 0; c < children; c++) { 6442 if (vml[c] != NULL) { 6443 vdev_split(vml[c]); 6444 if (error == 0) 6445 spa_history_log_internal(spa, "detach", tx, 6446 "vdev=%s", vml[c]->vdev_path); 6447 6448 vdev_free(vml[c]); 6449 } 6450 } 6451 spa->spa_avz_action = AVZ_ACTION_REBUILD; 6452 vdev_config_dirty(spa->spa_root_vdev); 6453 spa->spa_config_splitting = NULL; 6454 nvlist_free(nvl); 6455 if (error == 0) 6456 dmu_tx_commit(tx); 6457 (void) spa_vdev_exit(spa, NULL, txg, 0); 6458 6459 if (zio_injection_enabled) 6460 zio_handle_panic_injection(spa, FTAG, 3); 6461 6462 /* split is complete; log a history record */ 6463 spa_history_log_internal(newspa, "split", NULL, 6464 "from pool %s", spa_name(spa)); 6465 6466 kmem_free(vml, children * sizeof (vdev_t *)); 6467 6468 /* if we're not going to mount the filesystems in userland, export */ 6469 if (exp) 6470 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 6471 B_FALSE, B_FALSE); 6472 6473 return (error); 6474 6475 out: 6476 spa_unload(newspa); 6477 spa_deactivate(newspa); 6478 spa_remove(newspa); 6479 6480 txg = spa_vdev_config_enter(spa); 6481 6482 /* re-online all offlined disks */ 6483 for (c = 0; c < children; c++) { 6484 if (vml[c] != NULL) 6485 vml[c]->vdev_offline = B_FALSE; 6486 } 6487 6488 /* restart initializing disks as necessary */ 6489 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 6490 6491 vdev_reopen(spa->spa_root_vdev); 6492 6493 nvlist_free(spa->spa_config_splitting); 6494 spa->spa_config_splitting = NULL; 6495 (void) spa_vdev_exit(spa, NULL, txg, error); 6496 6497 kmem_free(vml, children * sizeof (vdev_t *)); 6498 return (error); 6499 } 6500 6501 /* 6502 * Find any device that's done replacing, or a vdev marked 'unspare' that's 6503 * currently spared, so we can detach it. 6504 */ 6505 static vdev_t * 6506 spa_vdev_resilver_done_hunt(vdev_t *vd) 6507 { 6508 vdev_t *newvd, *oldvd; 6509 6510 for (int c = 0; c < vd->vdev_children; c++) { 6511 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 6512 if (oldvd != NULL) 6513 return (oldvd); 6514 } 6515 6516 /* 6517 * Check for a completed replacement. We always consider the first 6518 * vdev in the list to be the oldest vdev, and the last one to be 6519 * the newest (see spa_vdev_attach() for how that works). In 6520 * the case where the newest vdev is faulted, we will not automatically 6521 * remove it after a resilver completes. This is OK as it will require 6522 * user intervention to determine which disk the admin wishes to keep. 6523 */ 6524 if (vd->vdev_ops == &vdev_replacing_ops) { 6525 ASSERT(vd->vdev_children > 1); 6526 6527 newvd = vd->vdev_child[vd->vdev_children - 1]; 6528 oldvd = vd->vdev_child[0]; 6529 6530 if (vdev_dtl_empty(newvd, DTL_MISSING) && 6531 vdev_dtl_empty(newvd, DTL_OUTAGE) && 6532 !vdev_dtl_required(oldvd)) 6533 return (oldvd); 6534 } 6535 6536 /* 6537 * Check for a completed resilver with the 'unspare' flag set. 6538 */ 6539 if (vd->vdev_ops == &vdev_spare_ops) { 6540 vdev_t *first = vd->vdev_child[0]; 6541 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 6542 6543 if (last->vdev_unspare) { 6544 oldvd = first; 6545 newvd = last; 6546 } else if (first->vdev_unspare) { 6547 oldvd = last; 6548 newvd = first; 6549 } else { 6550 oldvd = NULL; 6551 } 6552 6553 if (oldvd != NULL && 6554 vdev_dtl_empty(newvd, DTL_MISSING) && 6555 vdev_dtl_empty(newvd, DTL_OUTAGE) && 6556 !vdev_dtl_required(oldvd)) 6557 return (oldvd); 6558 6559 /* 6560 * If there are more than two spares attached to a disk, 6561 * and those spares are not required, then we want to 6562 * attempt to free them up now so that they can be used 6563 * by other pools. Once we're back down to a single 6564 * disk+spare, we stop removing them. 6565 */ 6566 if (vd->vdev_children > 2) { 6567 newvd = vd->vdev_child[1]; 6568 6569 if (newvd->vdev_isspare && last->vdev_isspare && 6570 vdev_dtl_empty(last, DTL_MISSING) && 6571 vdev_dtl_empty(last, DTL_OUTAGE) && 6572 !vdev_dtl_required(newvd)) 6573 return (newvd); 6574 } 6575 } 6576 6577 return (NULL); 6578 } 6579 6580 static void 6581 spa_vdev_resilver_done(spa_t *spa) 6582 { 6583 vdev_t *vd, *pvd, *ppvd; 6584 uint64_t guid, sguid, pguid, ppguid; 6585 6586 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6587 6588 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 6589 pvd = vd->vdev_parent; 6590 ppvd = pvd->vdev_parent; 6591 guid = vd->vdev_guid; 6592 pguid = pvd->vdev_guid; 6593 ppguid = ppvd->vdev_guid; 6594 sguid = 0; 6595 /* 6596 * If we have just finished replacing a hot spared device, then 6597 * we need to detach the parent's first child (the original hot 6598 * spare) as well. 6599 */ 6600 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 6601 ppvd->vdev_children == 2) { 6602 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 6603 sguid = ppvd->vdev_child[1]->vdev_guid; 6604 } 6605 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 6606 6607 spa_config_exit(spa, SCL_ALL, FTAG); 6608 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 6609 return; 6610 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 6611 return; 6612 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6613 } 6614 6615 spa_config_exit(spa, SCL_ALL, FTAG); 6616 } 6617 6618 /* 6619 * Update the stored path or FRU for this vdev. 6620 */ 6621 int 6622 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 6623 boolean_t ispath) 6624 { 6625 vdev_t *vd; 6626 boolean_t sync = B_FALSE; 6627 6628 ASSERT(spa_writeable(spa)); 6629 6630 spa_vdev_state_enter(spa, SCL_ALL); 6631 6632 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 6633 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 6634 6635 if (!vd->vdev_ops->vdev_op_leaf) 6636 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 6637 6638 if (ispath) { 6639 if (strcmp(value, vd->vdev_path) != 0) { 6640 spa_strfree(vd->vdev_path); 6641 vd->vdev_path = spa_strdup(value); 6642 sync = B_TRUE; 6643 } 6644 } else { 6645 if (vd->vdev_fru == NULL) { 6646 vd->vdev_fru = spa_strdup(value); 6647 sync = B_TRUE; 6648 } else if (strcmp(value, vd->vdev_fru) != 0) { 6649 spa_strfree(vd->vdev_fru); 6650 vd->vdev_fru = spa_strdup(value); 6651 sync = B_TRUE; 6652 } 6653 } 6654 6655 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 6656 } 6657 6658 int 6659 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 6660 { 6661 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 6662 } 6663 6664 int 6665 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 6666 { 6667 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 6668 } 6669 6670 /* 6671 * ========================================================================== 6672 * SPA Scanning 6673 * ========================================================================== 6674 */ 6675 int 6676 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 6677 { 6678 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6679 6680 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 6681 return (SET_ERROR(EBUSY)); 6682 6683 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 6684 } 6685 6686 int 6687 spa_scan_stop(spa_t *spa) 6688 { 6689 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6690 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 6691 return (SET_ERROR(EBUSY)); 6692 return (dsl_scan_cancel(spa->spa_dsl_pool)); 6693 } 6694 6695 int 6696 spa_scan(spa_t *spa, pool_scan_func_t func) 6697 { 6698 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6699 6700 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 6701 return (SET_ERROR(ENOTSUP)); 6702 6703 /* 6704 * If a resilver was requested, but there is no DTL on a 6705 * writeable leaf device, we have nothing to do. 6706 */ 6707 if (func == POOL_SCAN_RESILVER && 6708 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 6709 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 6710 return (0); 6711 } 6712 6713 return (dsl_scan(spa->spa_dsl_pool, func)); 6714 } 6715 6716 /* 6717 * ========================================================================== 6718 * SPA async task processing 6719 * ========================================================================== 6720 */ 6721 6722 static void 6723 spa_async_remove(spa_t *spa, vdev_t *vd) 6724 { 6725 if (vd->vdev_remove_wanted) { 6726 vd->vdev_remove_wanted = B_FALSE; 6727 vd->vdev_delayed_close = B_FALSE; 6728 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 6729 6730 /* 6731 * We want to clear the stats, but we don't want to do a full 6732 * vdev_clear() as that will cause us to throw away 6733 * degraded/faulted state as well as attempt to reopen the 6734 * device, all of which is a waste. 6735 */ 6736 vd->vdev_stat.vs_read_errors = 0; 6737 vd->vdev_stat.vs_write_errors = 0; 6738 vd->vdev_stat.vs_checksum_errors = 0; 6739 6740 vdev_state_dirty(vd->vdev_top); 6741 } 6742 6743 for (int c = 0; c < vd->vdev_children; c++) 6744 spa_async_remove(spa, vd->vdev_child[c]); 6745 } 6746 6747 static void 6748 spa_async_probe(spa_t *spa, vdev_t *vd) 6749 { 6750 if (vd->vdev_probe_wanted) { 6751 vd->vdev_probe_wanted = B_FALSE; 6752 vdev_reopen(vd); /* vdev_open() does the actual probe */ 6753 } 6754 6755 for (int c = 0; c < vd->vdev_children; c++) 6756 spa_async_probe(spa, vd->vdev_child[c]); 6757 } 6758 6759 static void 6760 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 6761 { 6762 sysevent_id_t eid; 6763 nvlist_t *attr; 6764 char *physpath; 6765 6766 if (!spa->spa_autoexpand) 6767 return; 6768 6769 for (int c = 0; c < vd->vdev_children; c++) { 6770 vdev_t *cvd = vd->vdev_child[c]; 6771 spa_async_autoexpand(spa, cvd); 6772 } 6773 6774 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 6775 return; 6776 6777 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 6778 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 6779 6780 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6781 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 6782 6783 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 6784 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 6785 6786 nvlist_free(attr); 6787 kmem_free(physpath, MAXPATHLEN); 6788 } 6789 6790 static void 6791 spa_async_thread(void *arg) 6792 { 6793 spa_t *spa = (spa_t *)arg; 6794 int tasks; 6795 6796 ASSERT(spa->spa_sync_on); 6797 6798 mutex_enter(&spa->spa_async_lock); 6799 tasks = spa->spa_async_tasks; 6800 spa->spa_async_tasks = 0; 6801 mutex_exit(&spa->spa_async_lock); 6802 6803 /* 6804 * See if the config needs to be updated. 6805 */ 6806 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 6807 uint64_t old_space, new_space; 6808 6809 mutex_enter(&spa_namespace_lock); 6810 old_space = metaslab_class_get_space(spa_normal_class(spa)); 6811 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6812 new_space = metaslab_class_get_space(spa_normal_class(spa)); 6813 mutex_exit(&spa_namespace_lock); 6814 6815 /* 6816 * If the pool grew as a result of the config update, 6817 * then log an internal history event. 6818 */ 6819 if (new_space != old_space) { 6820 spa_history_log_internal(spa, "vdev online", NULL, 6821 "pool '%s' size: %llu(+%llu)", 6822 spa_name(spa), new_space, new_space - old_space); 6823 } 6824 } 6825 6826 /* 6827 * See if any devices need to be marked REMOVED. 6828 */ 6829 if (tasks & SPA_ASYNC_REMOVE) { 6830 spa_vdev_state_enter(spa, SCL_NONE); 6831 spa_async_remove(spa, spa->spa_root_vdev); 6832 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 6833 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 6834 for (int i = 0; i < spa->spa_spares.sav_count; i++) 6835 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 6836 (void) spa_vdev_state_exit(spa, NULL, 0); 6837 } 6838 6839 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 6840 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6841 spa_async_autoexpand(spa, spa->spa_root_vdev); 6842 spa_config_exit(spa, SCL_CONFIG, FTAG); 6843 } 6844 6845 /* 6846 * See if any devices need to be probed. 6847 */ 6848 if (tasks & SPA_ASYNC_PROBE) { 6849 spa_vdev_state_enter(spa, SCL_NONE); 6850 spa_async_probe(spa, spa->spa_root_vdev); 6851 (void) spa_vdev_state_exit(spa, NULL, 0); 6852 } 6853 6854 /* 6855 * If any devices are done replacing, detach them. 6856 */ 6857 if (tasks & SPA_ASYNC_RESILVER_DONE) 6858 spa_vdev_resilver_done(spa); 6859 6860 /* 6861 * Kick off a resilver. 6862 */ 6863 if (tasks & SPA_ASYNC_RESILVER) 6864 dsl_resilver_restart(spa->spa_dsl_pool, 0); 6865 6866 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 6867 mutex_enter(&spa_namespace_lock); 6868 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6869 vdev_initialize_restart(spa->spa_root_vdev); 6870 spa_config_exit(spa, SCL_CONFIG, FTAG); 6871 mutex_exit(&spa_namespace_lock); 6872 } 6873 6874 /* 6875 * Let the world know that we're done. 6876 */ 6877 mutex_enter(&spa->spa_async_lock); 6878 spa->spa_async_thread = NULL; 6879 cv_broadcast(&spa->spa_async_cv); 6880 mutex_exit(&spa->spa_async_lock); 6881 thread_exit(); 6882 } 6883 6884 void 6885 spa_async_suspend(spa_t *spa) 6886 { 6887 mutex_enter(&spa->spa_async_lock); 6888 spa->spa_async_suspended++; 6889 while (spa->spa_async_thread != NULL) 6890 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 6891 mutex_exit(&spa->spa_async_lock); 6892 6893 spa_vdev_remove_suspend(spa); 6894 6895 zthr_t *condense_thread = spa->spa_condense_zthr; 6896 if (condense_thread != NULL && zthr_isrunning(condense_thread)) 6897 VERIFY0(zthr_cancel(condense_thread)); 6898 6899 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 6900 if (discard_thread != NULL && zthr_isrunning(discard_thread)) 6901 VERIFY0(zthr_cancel(discard_thread)); 6902 } 6903 6904 void 6905 spa_async_resume(spa_t *spa) 6906 { 6907 mutex_enter(&spa->spa_async_lock); 6908 ASSERT(spa->spa_async_suspended != 0); 6909 spa->spa_async_suspended--; 6910 mutex_exit(&spa->spa_async_lock); 6911 spa_restart_removal(spa); 6912 6913 zthr_t *condense_thread = spa->spa_condense_zthr; 6914 if (condense_thread != NULL && !zthr_isrunning(condense_thread)) 6915 zthr_resume(condense_thread); 6916 6917 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 6918 if (discard_thread != NULL && !zthr_isrunning(discard_thread)) 6919 zthr_resume(discard_thread); 6920 } 6921 6922 static boolean_t 6923 spa_async_tasks_pending(spa_t *spa) 6924 { 6925 uint_t non_config_tasks; 6926 uint_t config_task; 6927 boolean_t config_task_suspended; 6928 6929 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 6930 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 6931 if (spa->spa_ccw_fail_time == 0) { 6932 config_task_suspended = B_FALSE; 6933 } else { 6934 config_task_suspended = 6935 (gethrtime() - spa->spa_ccw_fail_time) < 6936 (zfs_ccw_retry_interval * NANOSEC); 6937 } 6938 6939 return (non_config_tasks || (config_task && !config_task_suspended)); 6940 } 6941 6942 static void 6943 spa_async_dispatch(spa_t *spa) 6944 { 6945 mutex_enter(&spa->spa_async_lock); 6946 if (spa_async_tasks_pending(spa) && 6947 !spa->spa_async_suspended && 6948 spa->spa_async_thread == NULL && 6949 rootdir != NULL) 6950 spa->spa_async_thread = thread_create(NULL, 0, 6951 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 6952 mutex_exit(&spa->spa_async_lock); 6953 } 6954 6955 void 6956 spa_async_request(spa_t *spa, int task) 6957 { 6958 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 6959 mutex_enter(&spa->spa_async_lock); 6960 spa->spa_async_tasks |= task; 6961 mutex_exit(&spa->spa_async_lock); 6962 } 6963 6964 /* 6965 * ========================================================================== 6966 * SPA syncing routines 6967 * ========================================================================== 6968 */ 6969 6970 static int 6971 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6972 { 6973 bpobj_t *bpo = arg; 6974 bpobj_enqueue(bpo, bp, tx); 6975 return (0); 6976 } 6977 6978 static int 6979 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6980 { 6981 zio_t *zio = arg; 6982 6983 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 6984 zio->io_flags)); 6985 return (0); 6986 } 6987 6988 /* 6989 * Note: this simple function is not inlined to make it easier to dtrace the 6990 * amount of time spent syncing frees. 6991 */ 6992 static void 6993 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 6994 { 6995 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6996 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 6997 VERIFY(zio_wait(zio) == 0); 6998 } 6999 7000 /* 7001 * Note: this simple function is not inlined to make it easier to dtrace the 7002 * amount of time spent syncing deferred frees. 7003 */ 7004 static void 7005 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 7006 { 7007 zio_t *zio = zio_root(spa, NULL, NULL, 0); 7008 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 7009 spa_free_sync_cb, zio, tx), ==, 0); 7010 VERIFY0(zio_wait(zio)); 7011 } 7012 7013 7014 static void 7015 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 7016 { 7017 char *packed = NULL; 7018 size_t bufsize; 7019 size_t nvsize = 0; 7020 dmu_buf_t *db; 7021 7022 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 7023 7024 /* 7025 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 7026 * information. This avoids the dmu_buf_will_dirty() path and 7027 * saves us a pre-read to get data we don't actually care about. 7028 */ 7029 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 7030 packed = kmem_alloc(bufsize, KM_SLEEP); 7031 7032 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 7033 KM_SLEEP) == 0); 7034 bzero(packed + nvsize, bufsize - nvsize); 7035 7036 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 7037 7038 kmem_free(packed, bufsize); 7039 7040 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 7041 dmu_buf_will_dirty(db, tx); 7042 *(uint64_t *)db->db_data = nvsize; 7043 dmu_buf_rele(db, FTAG); 7044 } 7045 7046 static void 7047 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 7048 const char *config, const char *entry) 7049 { 7050 nvlist_t *nvroot; 7051 nvlist_t **list; 7052 int i; 7053 7054 if (!sav->sav_sync) 7055 return; 7056 7057 /* 7058 * Update the MOS nvlist describing the list of available devices. 7059 * spa_validate_aux() will have already made sure this nvlist is 7060 * valid and the vdevs are labeled appropriately. 7061 */ 7062 if (sav->sav_object == 0) { 7063 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 7064 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 7065 sizeof (uint64_t), tx); 7066 VERIFY(zap_update(spa->spa_meta_objset, 7067 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 7068 &sav->sav_object, tx) == 0); 7069 } 7070 7071 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7072 if (sav->sav_count == 0) { 7073 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 7074 } else { 7075 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 7076 for (i = 0; i < sav->sav_count; i++) 7077 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 7078 B_FALSE, VDEV_CONFIG_L2CACHE); 7079 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 7080 sav->sav_count) == 0); 7081 for (i = 0; i < sav->sav_count; i++) 7082 nvlist_free(list[i]); 7083 kmem_free(list, sav->sav_count * sizeof (void *)); 7084 } 7085 7086 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 7087 nvlist_free(nvroot); 7088 7089 sav->sav_sync = B_FALSE; 7090 } 7091 7092 /* 7093 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 7094 * The all-vdev ZAP must be empty. 7095 */ 7096 static void 7097 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 7098 { 7099 spa_t *spa = vd->vdev_spa; 7100 if (vd->vdev_top_zap != 0) { 7101 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7102 vd->vdev_top_zap, tx)); 7103 } 7104 if (vd->vdev_leaf_zap != 0) { 7105 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7106 vd->vdev_leaf_zap, tx)); 7107 } 7108 for (uint64_t i = 0; i < vd->vdev_children; i++) { 7109 spa_avz_build(vd->vdev_child[i], avz, tx); 7110 } 7111 } 7112 7113 static void 7114 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 7115 { 7116 nvlist_t *config; 7117 7118 /* 7119 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 7120 * its config may not be dirty but we still need to build per-vdev ZAPs. 7121 * Similarly, if the pool is being assembled (e.g. after a split), we 7122 * need to rebuild the AVZ although the config may not be dirty. 7123 */ 7124 if (list_is_empty(&spa->spa_config_dirty_list) && 7125 spa->spa_avz_action == AVZ_ACTION_NONE) 7126 return; 7127 7128 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7129 7130 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 7131 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 7132 spa->spa_all_vdev_zaps != 0); 7133 7134 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 7135 /* Make and build the new AVZ */ 7136 uint64_t new_avz = zap_create(spa->spa_meta_objset, 7137 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 7138 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 7139 7140 /* Diff old AVZ with new one */ 7141 zap_cursor_t zc; 7142 zap_attribute_t za; 7143 7144 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7145 spa->spa_all_vdev_zaps); 7146 zap_cursor_retrieve(&zc, &za) == 0; 7147 zap_cursor_advance(&zc)) { 7148 uint64_t vdzap = za.za_first_integer; 7149 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 7150 vdzap) == ENOENT) { 7151 /* 7152 * ZAP is listed in old AVZ but not in new one; 7153 * destroy it 7154 */ 7155 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 7156 tx)); 7157 } 7158 } 7159 7160 zap_cursor_fini(&zc); 7161 7162 /* Destroy the old AVZ */ 7163 VERIFY0(zap_destroy(spa->spa_meta_objset, 7164 spa->spa_all_vdev_zaps, tx)); 7165 7166 /* Replace the old AVZ in the dir obj with the new one */ 7167 VERIFY0(zap_update(spa->spa_meta_objset, 7168 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 7169 sizeof (new_avz), 1, &new_avz, tx)); 7170 7171 spa->spa_all_vdev_zaps = new_avz; 7172 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 7173 zap_cursor_t zc; 7174 zap_attribute_t za; 7175 7176 /* Walk through the AVZ and destroy all listed ZAPs */ 7177 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7178 spa->spa_all_vdev_zaps); 7179 zap_cursor_retrieve(&zc, &za) == 0; 7180 zap_cursor_advance(&zc)) { 7181 uint64_t zap = za.za_first_integer; 7182 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 7183 } 7184 7185 zap_cursor_fini(&zc); 7186 7187 /* Destroy and unlink the AVZ itself */ 7188 VERIFY0(zap_destroy(spa->spa_meta_objset, 7189 spa->spa_all_vdev_zaps, tx)); 7190 VERIFY0(zap_remove(spa->spa_meta_objset, 7191 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 7192 spa->spa_all_vdev_zaps = 0; 7193 } 7194 7195 if (spa->spa_all_vdev_zaps == 0) { 7196 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 7197 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 7198 DMU_POOL_VDEV_ZAP_MAP, tx); 7199 } 7200 spa->spa_avz_action = AVZ_ACTION_NONE; 7201 7202 /* Create ZAPs for vdevs that don't have them. */ 7203 vdev_construct_zaps(spa->spa_root_vdev, tx); 7204 7205 config = spa_config_generate(spa, spa->spa_root_vdev, 7206 dmu_tx_get_txg(tx), B_FALSE); 7207 7208 /* 7209 * If we're upgrading the spa version then make sure that 7210 * the config object gets updated with the correct version. 7211 */ 7212 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 7213 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 7214 spa->spa_uberblock.ub_version); 7215 7216 spa_config_exit(spa, SCL_STATE, FTAG); 7217 7218 nvlist_free(spa->spa_config_syncing); 7219 spa->spa_config_syncing = config; 7220 7221 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 7222 } 7223 7224 static void 7225 spa_sync_version(void *arg, dmu_tx_t *tx) 7226 { 7227 uint64_t *versionp = arg; 7228 uint64_t version = *versionp; 7229 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7230 7231 /* 7232 * Setting the version is special cased when first creating the pool. 7233 */ 7234 ASSERT(tx->tx_txg != TXG_INITIAL); 7235 7236 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 7237 ASSERT(version >= spa_version(spa)); 7238 7239 spa->spa_uberblock.ub_version = version; 7240 vdev_config_dirty(spa->spa_root_vdev); 7241 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 7242 } 7243 7244 /* 7245 * Set zpool properties. 7246 */ 7247 static void 7248 spa_sync_props(void *arg, dmu_tx_t *tx) 7249 { 7250 nvlist_t *nvp = arg; 7251 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7252 objset_t *mos = spa->spa_meta_objset; 7253 nvpair_t *elem = NULL; 7254 7255 mutex_enter(&spa->spa_props_lock); 7256 7257 while ((elem = nvlist_next_nvpair(nvp, elem))) { 7258 uint64_t intval; 7259 char *strval, *fname; 7260 zpool_prop_t prop; 7261 const char *propname; 7262 zprop_type_t proptype; 7263 spa_feature_t fid; 7264 7265 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 7266 case ZPOOL_PROP_INVAL: 7267 /* 7268 * We checked this earlier in spa_prop_validate(). 7269 */ 7270 ASSERT(zpool_prop_feature(nvpair_name(elem))); 7271 7272 fname = strchr(nvpair_name(elem), '@') + 1; 7273 VERIFY0(zfeature_lookup_name(fname, &fid)); 7274 7275 spa_feature_enable(spa, fid, tx); 7276 spa_history_log_internal(spa, "set", tx, 7277 "%s=enabled", nvpair_name(elem)); 7278 break; 7279 7280 case ZPOOL_PROP_VERSION: 7281 intval = fnvpair_value_uint64(elem); 7282 /* 7283 * The version is synced seperatly before other 7284 * properties and should be correct by now. 7285 */ 7286 ASSERT3U(spa_version(spa), >=, intval); 7287 break; 7288 7289 case ZPOOL_PROP_ALTROOT: 7290 /* 7291 * 'altroot' is a non-persistent property. It should 7292 * have been set temporarily at creation or import time. 7293 */ 7294 ASSERT(spa->spa_root != NULL); 7295 break; 7296 7297 case ZPOOL_PROP_READONLY: 7298 case ZPOOL_PROP_CACHEFILE: 7299 /* 7300 * 'readonly' and 'cachefile' are also non-persisitent 7301 * properties. 7302 */ 7303 break; 7304 case ZPOOL_PROP_COMMENT: 7305 strval = fnvpair_value_string(elem); 7306 if (spa->spa_comment != NULL) 7307 spa_strfree(spa->spa_comment); 7308 spa->spa_comment = spa_strdup(strval); 7309 /* 7310 * We need to dirty the configuration on all the vdevs 7311 * so that their labels get updated. It's unnecessary 7312 * to do this for pool creation since the vdev's 7313 * configuratoin has already been dirtied. 7314 */ 7315 if (tx->tx_txg != TXG_INITIAL) 7316 vdev_config_dirty(spa->spa_root_vdev); 7317 spa_history_log_internal(spa, "set", tx, 7318 "%s=%s", nvpair_name(elem), strval); 7319 break; 7320 default: 7321 /* 7322 * Set pool property values in the poolprops mos object. 7323 */ 7324 if (spa->spa_pool_props_object == 0) { 7325 spa->spa_pool_props_object = 7326 zap_create_link(mos, DMU_OT_POOL_PROPS, 7327 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 7328 tx); 7329 } 7330 7331 /* normalize the property name */ 7332 propname = zpool_prop_to_name(prop); 7333 proptype = zpool_prop_get_type(prop); 7334 7335 if (nvpair_type(elem) == DATA_TYPE_STRING) { 7336 ASSERT(proptype == PROP_TYPE_STRING); 7337 strval = fnvpair_value_string(elem); 7338 VERIFY0(zap_update(mos, 7339 spa->spa_pool_props_object, propname, 7340 1, strlen(strval) + 1, strval, tx)); 7341 spa_history_log_internal(spa, "set", tx, 7342 "%s=%s", nvpair_name(elem), strval); 7343 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 7344 intval = fnvpair_value_uint64(elem); 7345 7346 if (proptype == PROP_TYPE_INDEX) { 7347 const char *unused; 7348 VERIFY0(zpool_prop_index_to_string( 7349 prop, intval, &unused)); 7350 } 7351 VERIFY0(zap_update(mos, 7352 spa->spa_pool_props_object, propname, 7353 8, 1, &intval, tx)); 7354 spa_history_log_internal(spa, "set", tx, 7355 "%s=%lld", nvpair_name(elem), intval); 7356 } else { 7357 ASSERT(0); /* not allowed */ 7358 } 7359 7360 switch (prop) { 7361 case ZPOOL_PROP_DELEGATION: 7362 spa->spa_delegation = intval; 7363 break; 7364 case ZPOOL_PROP_BOOTFS: 7365 spa->spa_bootfs = intval; 7366 break; 7367 case ZPOOL_PROP_FAILUREMODE: 7368 spa->spa_failmode = intval; 7369 break; 7370 case ZPOOL_PROP_AUTOEXPAND: 7371 spa->spa_autoexpand = intval; 7372 if (tx->tx_txg != TXG_INITIAL) 7373 spa_async_request(spa, 7374 SPA_ASYNC_AUTOEXPAND); 7375 break; 7376 case ZPOOL_PROP_DEDUPDITTO: 7377 spa->spa_dedup_ditto = intval; 7378 break; 7379 default: 7380 break; 7381 } 7382 } 7383 7384 } 7385 7386 mutex_exit(&spa->spa_props_lock); 7387 } 7388 7389 /* 7390 * Perform one-time upgrade on-disk changes. spa_version() does not 7391 * reflect the new version this txg, so there must be no changes this 7392 * txg to anything that the upgrade code depends on after it executes. 7393 * Therefore this must be called after dsl_pool_sync() does the sync 7394 * tasks. 7395 */ 7396 static void 7397 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 7398 { 7399 dsl_pool_t *dp = spa->spa_dsl_pool; 7400 7401 ASSERT(spa->spa_sync_pass == 1); 7402 7403 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 7404 7405 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 7406 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 7407 dsl_pool_create_origin(dp, tx); 7408 7409 /* Keeping the origin open increases spa_minref */ 7410 spa->spa_minref += 3; 7411 } 7412 7413 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 7414 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 7415 dsl_pool_upgrade_clones(dp, tx); 7416 } 7417 7418 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 7419 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 7420 dsl_pool_upgrade_dir_clones(dp, tx); 7421 7422 /* Keeping the freedir open increases spa_minref */ 7423 spa->spa_minref += 3; 7424 } 7425 7426 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 7427 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 7428 spa_feature_create_zap_objects(spa, tx); 7429 } 7430 7431 /* 7432 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 7433 * when possibility to use lz4 compression for metadata was added 7434 * Old pools that have this feature enabled must be upgraded to have 7435 * this feature active 7436 */ 7437 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 7438 boolean_t lz4_en = spa_feature_is_enabled(spa, 7439 SPA_FEATURE_LZ4_COMPRESS); 7440 boolean_t lz4_ac = spa_feature_is_active(spa, 7441 SPA_FEATURE_LZ4_COMPRESS); 7442 7443 if (lz4_en && !lz4_ac) 7444 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 7445 } 7446 7447 /* 7448 * If we haven't written the salt, do so now. Note that the 7449 * feature may not be activated yet, but that's fine since 7450 * the presence of this ZAP entry is backwards compatible. 7451 */ 7452 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7453 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 7454 VERIFY0(zap_add(spa->spa_meta_objset, 7455 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 7456 sizeof (spa->spa_cksum_salt.zcs_bytes), 7457 spa->spa_cksum_salt.zcs_bytes, tx)); 7458 } 7459 7460 rrw_exit(&dp->dp_config_rwlock, FTAG); 7461 } 7462 7463 static void 7464 vdev_indirect_state_sync_verify(vdev_t *vd) 7465 { 7466 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7467 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 7468 7469 if (vd->vdev_ops == &vdev_indirect_ops) { 7470 ASSERT(vim != NULL); 7471 ASSERT(vib != NULL); 7472 } 7473 7474 if (vdev_obsolete_sm_object(vd) != 0) { 7475 ASSERT(vd->vdev_obsolete_sm != NULL); 7476 ASSERT(vd->vdev_removing || 7477 vd->vdev_ops == &vdev_indirect_ops); 7478 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 7479 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 7480 7481 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 7482 space_map_object(vd->vdev_obsolete_sm)); 7483 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 7484 space_map_allocated(vd->vdev_obsolete_sm)); 7485 } 7486 ASSERT(vd->vdev_obsolete_segments != NULL); 7487 7488 /* 7489 * Since frees / remaps to an indirect vdev can only 7490 * happen in syncing context, the obsolete segments 7491 * tree must be empty when we start syncing. 7492 */ 7493 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 7494 } 7495 7496 /* 7497 * Sync the specified transaction group. New blocks may be dirtied as 7498 * part of the process, so we iterate until it converges. 7499 */ 7500 void 7501 spa_sync(spa_t *spa, uint64_t txg) 7502 { 7503 dsl_pool_t *dp = spa->spa_dsl_pool; 7504 objset_t *mos = spa->spa_meta_objset; 7505 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 7506 vdev_t *rvd = spa->spa_root_vdev; 7507 vdev_t *vd; 7508 dmu_tx_t *tx; 7509 int error; 7510 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 7511 zfs_vdev_queue_depth_pct / 100; 7512 7513 VERIFY(spa_writeable(spa)); 7514 7515 /* 7516 * Wait for i/os issued in open context that need to complete 7517 * before this txg syncs. 7518 */ 7519 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 7520 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 7521 ZIO_FLAG_CANFAIL); 7522 7523 /* 7524 * Lock out configuration changes. 7525 */ 7526 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7527 7528 spa->spa_syncing_txg = txg; 7529 spa->spa_sync_pass = 0; 7530 7531 for (int i = 0; i < spa->spa_alloc_count; i++) { 7532 mutex_enter(&spa->spa_alloc_locks[i]); 7533 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 7534 mutex_exit(&spa->spa_alloc_locks[i]); 7535 } 7536 7537 /* 7538 * If there are any pending vdev state changes, convert them 7539 * into config changes that go out with this transaction group. 7540 */ 7541 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7542 while (list_head(&spa->spa_state_dirty_list) != NULL) { 7543 /* 7544 * We need the write lock here because, for aux vdevs, 7545 * calling vdev_config_dirty() modifies sav_config. 7546 * This is ugly and will become unnecessary when we 7547 * eliminate the aux vdev wart by integrating all vdevs 7548 * into the root vdev tree. 7549 */ 7550 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7551 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 7552 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 7553 vdev_state_clean(vd); 7554 vdev_config_dirty(vd); 7555 } 7556 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7557 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7558 } 7559 spa_config_exit(spa, SCL_STATE, FTAG); 7560 7561 tx = dmu_tx_create_assigned(dp, txg); 7562 7563 spa->spa_sync_starttime = gethrtime(); 7564 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 7565 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 7566 7567 /* 7568 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 7569 * set spa_deflate if we have no raid-z vdevs. 7570 */ 7571 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 7572 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 7573 int i; 7574 7575 for (i = 0; i < rvd->vdev_children; i++) { 7576 vd = rvd->vdev_child[i]; 7577 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 7578 break; 7579 } 7580 if (i == rvd->vdev_children) { 7581 spa->spa_deflate = TRUE; 7582 VERIFY(0 == zap_add(spa->spa_meta_objset, 7583 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 7584 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 7585 } 7586 } 7587 7588 /* 7589 * Set the top-level vdev's max queue depth. Evaluate each 7590 * top-level's async write queue depth in case it changed. 7591 * The max queue depth will not change in the middle of syncing 7592 * out this txg. 7593 */ 7594 uint64_t slots_per_allocator = 0; 7595 for (int c = 0; c < rvd->vdev_children; c++) { 7596 vdev_t *tvd = rvd->vdev_child[c]; 7597 metaslab_group_t *mg = tvd->vdev_mg; 7598 7599 if (mg == NULL || mg->mg_class != spa_normal_class(spa) || 7600 !metaslab_group_initialized(mg)) 7601 continue; 7602 7603 /* 7604 * It is safe to do a lock-free check here because only async 7605 * allocations look at mg_max_alloc_queue_depth, and async 7606 * allocations all happen from spa_sync(). 7607 */ 7608 for (int i = 0; i < spa->spa_alloc_count; i++) 7609 ASSERT0(refcount_count(&(mg->mg_alloc_queue_depth[i]))); 7610 mg->mg_max_alloc_queue_depth = max_queue_depth; 7611 7612 for (int i = 0; i < spa->spa_alloc_count; i++) { 7613 mg->mg_cur_max_alloc_queue_depth[i] = 7614 zfs_vdev_def_queue_depth; 7615 } 7616 slots_per_allocator += zfs_vdev_def_queue_depth; 7617 } 7618 metaslab_class_t *mc = spa_normal_class(spa); 7619 for (int i = 0; i < spa->spa_alloc_count; i++) { 7620 ASSERT0(refcount_count(&mc->mc_alloc_slots[i])); 7621 mc->mc_alloc_max_slots[i] = slots_per_allocator; 7622 } 7623 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 7624 7625 for (int c = 0; c < rvd->vdev_children; c++) { 7626 vdev_t *vd = rvd->vdev_child[c]; 7627 vdev_indirect_state_sync_verify(vd); 7628 7629 if (vdev_indirect_should_condense(vd)) { 7630 spa_condense_indirect_start_sync(vd, tx); 7631 break; 7632 } 7633 } 7634 7635 /* 7636 * Iterate to convergence. 7637 */ 7638 do { 7639 int pass = ++spa->spa_sync_pass; 7640 7641 spa_sync_config_object(spa, tx); 7642 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 7643 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 7644 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 7645 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 7646 spa_errlog_sync(spa, txg); 7647 dsl_pool_sync(dp, txg); 7648 7649 if (pass < zfs_sync_pass_deferred_free) { 7650 spa_sync_frees(spa, free_bpl, tx); 7651 } else { 7652 /* 7653 * We can not defer frees in pass 1, because 7654 * we sync the deferred frees later in pass 1. 7655 */ 7656 ASSERT3U(pass, >, 1); 7657 bplist_iterate(free_bpl, bpobj_enqueue_cb, 7658 &spa->spa_deferred_bpobj, tx); 7659 } 7660 7661 ddt_sync(spa, txg); 7662 dsl_scan_sync(dp, tx); 7663 7664 if (spa->spa_vdev_removal != NULL) 7665 svr_sync(spa, tx); 7666 7667 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 7668 != NULL) 7669 vdev_sync(vd, txg); 7670 7671 if (pass == 1) { 7672 spa_sync_upgrades(spa, tx); 7673 ASSERT3U(txg, >=, 7674 spa->spa_uberblock.ub_rootbp.blk_birth); 7675 /* 7676 * Note: We need to check if the MOS is dirty 7677 * because we could have marked the MOS dirty 7678 * without updating the uberblock (e.g. if we 7679 * have sync tasks but no dirty user data). We 7680 * need to check the uberblock's rootbp because 7681 * it is updated if we have synced out dirty 7682 * data (though in this case the MOS will most 7683 * likely also be dirty due to second order 7684 * effects, we don't want to rely on that here). 7685 */ 7686 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 7687 !dmu_objset_is_dirty(mos, txg)) { 7688 /* 7689 * Nothing changed on the first pass, 7690 * therefore this TXG is a no-op. Avoid 7691 * syncing deferred frees, so that we 7692 * can keep this TXG as a no-op. 7693 */ 7694 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 7695 txg)); 7696 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 7697 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 7698 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, 7699 txg)); 7700 break; 7701 } 7702 spa_sync_deferred_frees(spa, tx); 7703 } 7704 7705 } while (dmu_objset_is_dirty(mos, txg)); 7706 7707 if (!list_is_empty(&spa->spa_config_dirty_list)) { 7708 /* 7709 * Make sure that the number of ZAPs for all the vdevs matches 7710 * the number of ZAPs in the per-vdev ZAP list. This only gets 7711 * called if the config is dirty; otherwise there may be 7712 * outstanding AVZ operations that weren't completed in 7713 * spa_sync_config_object. 7714 */ 7715 uint64_t all_vdev_zap_entry_count; 7716 ASSERT0(zap_count(spa->spa_meta_objset, 7717 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 7718 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 7719 all_vdev_zap_entry_count); 7720 } 7721 7722 if (spa->spa_vdev_removal != NULL) { 7723 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 7724 } 7725 7726 /* 7727 * Rewrite the vdev configuration (which includes the uberblock) 7728 * to commit the transaction group. 7729 * 7730 * If there are no dirty vdevs, we sync the uberblock to a few 7731 * random top-level vdevs that are known to be visible in the 7732 * config cache (see spa_vdev_add() for a complete description). 7733 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 7734 */ 7735 for (;;) { 7736 /* 7737 * We hold SCL_STATE to prevent vdev open/close/etc. 7738 * while we're attempting to write the vdev labels. 7739 */ 7740 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7741 7742 if (list_is_empty(&spa->spa_config_dirty_list)) { 7743 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 7744 int svdcount = 0; 7745 int children = rvd->vdev_children; 7746 int c0 = spa_get_random(children); 7747 7748 for (int c = 0; c < children; c++) { 7749 vd = rvd->vdev_child[(c0 + c) % children]; 7750 7751 /* Stop when revisiting the first vdev */ 7752 if (c > 0 && svd[0] == vd) 7753 break; 7754 7755 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 7756 !vdev_is_concrete(vd)) 7757 continue; 7758 7759 svd[svdcount++] = vd; 7760 if (svdcount == SPA_SYNC_MIN_VDEVS) 7761 break; 7762 } 7763 error = vdev_config_sync(svd, svdcount, txg); 7764 } else { 7765 error = vdev_config_sync(rvd->vdev_child, 7766 rvd->vdev_children, txg); 7767 } 7768 7769 if (error == 0) 7770 spa->spa_last_synced_guid = rvd->vdev_guid; 7771 7772 spa_config_exit(spa, SCL_STATE, FTAG); 7773 7774 if (error == 0) 7775 break; 7776 zio_suspend(spa, NULL); 7777 zio_resume_wait(spa); 7778 } 7779 dmu_tx_commit(tx); 7780 7781 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 7782 7783 /* 7784 * Clear the dirty config list. 7785 */ 7786 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 7787 vdev_config_clean(vd); 7788 7789 /* 7790 * Now that the new config has synced transactionally, 7791 * let it become visible to the config cache. 7792 */ 7793 if (spa->spa_config_syncing != NULL) { 7794 spa_config_set(spa, spa->spa_config_syncing); 7795 spa->spa_config_txg = txg; 7796 spa->spa_config_syncing = NULL; 7797 } 7798 7799 dsl_pool_sync_done(dp, txg); 7800 7801 for (int i = 0; i < spa->spa_alloc_count; i++) { 7802 mutex_enter(&spa->spa_alloc_locks[i]); 7803 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 7804 mutex_exit(&spa->spa_alloc_locks[i]); 7805 } 7806 7807 /* 7808 * Update usable space statistics. 7809 */ 7810 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 7811 != NULL) 7812 vdev_sync_done(vd, txg); 7813 7814 spa_update_dspace(spa); 7815 7816 /* 7817 * It had better be the case that we didn't dirty anything 7818 * since vdev_config_sync(). 7819 */ 7820 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 7821 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 7822 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 7823 7824 while (zfs_pause_spa_sync) 7825 delay(1); 7826 7827 spa->spa_sync_pass = 0; 7828 7829 /* 7830 * Update the last synced uberblock here. We want to do this at 7831 * the end of spa_sync() so that consumers of spa_last_synced_txg() 7832 * will be guaranteed that all the processing associated with 7833 * that txg has been completed. 7834 */ 7835 spa->spa_ubsync = spa->spa_uberblock; 7836 spa_config_exit(spa, SCL_CONFIG, FTAG); 7837 7838 spa_handle_ignored_writes(spa); 7839 7840 /* 7841 * If any async tasks have been requested, kick them off. 7842 */ 7843 spa_async_dispatch(spa); 7844 } 7845 7846 /* 7847 * Sync all pools. We don't want to hold the namespace lock across these 7848 * operations, so we take a reference on the spa_t and drop the lock during the 7849 * sync. 7850 */ 7851 void 7852 spa_sync_allpools(void) 7853 { 7854 spa_t *spa = NULL; 7855 mutex_enter(&spa_namespace_lock); 7856 while ((spa = spa_next(spa)) != NULL) { 7857 if (spa_state(spa) != POOL_STATE_ACTIVE || 7858 !spa_writeable(spa) || spa_suspended(spa)) 7859 continue; 7860 spa_open_ref(spa, FTAG); 7861 mutex_exit(&spa_namespace_lock); 7862 txg_wait_synced(spa_get_dsl(spa), 0); 7863 mutex_enter(&spa_namespace_lock); 7864 spa_close(spa, FTAG); 7865 } 7866 mutex_exit(&spa_namespace_lock); 7867 } 7868 7869 /* 7870 * ========================================================================== 7871 * Miscellaneous routines 7872 * ========================================================================== 7873 */ 7874 7875 /* 7876 * Remove all pools in the system. 7877 */ 7878 void 7879 spa_evict_all(void) 7880 { 7881 spa_t *spa; 7882 7883 /* 7884 * Remove all cached state. All pools should be closed now, 7885 * so every spa in the AVL tree should be unreferenced. 7886 */ 7887 mutex_enter(&spa_namespace_lock); 7888 while ((spa = spa_next(NULL)) != NULL) { 7889 /* 7890 * Stop async tasks. The async thread may need to detach 7891 * a device that's been replaced, which requires grabbing 7892 * spa_namespace_lock, so we must drop it here. 7893 */ 7894 spa_open_ref(spa, FTAG); 7895 mutex_exit(&spa_namespace_lock); 7896 spa_async_suspend(spa); 7897 mutex_enter(&spa_namespace_lock); 7898 spa_close(spa, FTAG); 7899 7900 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 7901 spa_unload(spa); 7902 spa_deactivate(spa); 7903 } 7904 spa_remove(spa); 7905 } 7906 mutex_exit(&spa_namespace_lock); 7907 } 7908 7909 vdev_t * 7910 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 7911 { 7912 vdev_t *vd; 7913 int i; 7914 7915 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 7916 return (vd); 7917 7918 if (aux) { 7919 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 7920 vd = spa->spa_l2cache.sav_vdevs[i]; 7921 if (vd->vdev_guid == guid) 7922 return (vd); 7923 } 7924 7925 for (i = 0; i < spa->spa_spares.sav_count; i++) { 7926 vd = spa->spa_spares.sav_vdevs[i]; 7927 if (vd->vdev_guid == guid) 7928 return (vd); 7929 } 7930 } 7931 7932 return (NULL); 7933 } 7934 7935 void 7936 spa_upgrade(spa_t *spa, uint64_t version) 7937 { 7938 ASSERT(spa_writeable(spa)); 7939 7940 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7941 7942 /* 7943 * This should only be called for a non-faulted pool, and since a 7944 * future version would result in an unopenable pool, this shouldn't be 7945 * possible. 7946 */ 7947 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 7948 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 7949 7950 spa->spa_uberblock.ub_version = version; 7951 vdev_config_dirty(spa->spa_root_vdev); 7952 7953 spa_config_exit(spa, SCL_ALL, FTAG); 7954 7955 txg_wait_synced(spa_get_dsl(spa), 0); 7956 } 7957 7958 boolean_t 7959 spa_has_spare(spa_t *spa, uint64_t guid) 7960 { 7961 int i; 7962 uint64_t spareguid; 7963 spa_aux_vdev_t *sav = &spa->spa_spares; 7964 7965 for (i = 0; i < sav->sav_count; i++) 7966 if (sav->sav_vdevs[i]->vdev_guid == guid) 7967 return (B_TRUE); 7968 7969 for (i = 0; i < sav->sav_npending; i++) { 7970 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 7971 &spareguid) == 0 && spareguid == guid) 7972 return (B_TRUE); 7973 } 7974 7975 return (B_FALSE); 7976 } 7977 7978 /* 7979 * Check if a pool has an active shared spare device. 7980 * Note: reference count of an active spare is 2, as a spare and as a replace 7981 */ 7982 static boolean_t 7983 spa_has_active_shared_spare(spa_t *spa) 7984 { 7985 int i, refcnt; 7986 uint64_t pool; 7987 spa_aux_vdev_t *sav = &spa->spa_spares; 7988 7989 for (i = 0; i < sav->sav_count; i++) { 7990 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 7991 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 7992 refcnt > 2) 7993 return (B_TRUE); 7994 } 7995 7996 return (B_FALSE); 7997 } 7998 7999 sysevent_t * 8000 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8001 { 8002 sysevent_t *ev = NULL; 8003 #ifdef _KERNEL 8004 sysevent_attr_list_t *attr = NULL; 8005 sysevent_value_t value; 8006 8007 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 8008 SE_SLEEP); 8009 ASSERT(ev != NULL); 8010 8011 value.value_type = SE_DATA_TYPE_STRING; 8012 value.value.sv_string = spa_name(spa); 8013 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 8014 goto done; 8015 8016 value.value_type = SE_DATA_TYPE_UINT64; 8017 value.value.sv_uint64 = spa_guid(spa); 8018 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 8019 goto done; 8020 8021 if (vd) { 8022 value.value_type = SE_DATA_TYPE_UINT64; 8023 value.value.sv_uint64 = vd->vdev_guid; 8024 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 8025 SE_SLEEP) != 0) 8026 goto done; 8027 8028 if (vd->vdev_path) { 8029 value.value_type = SE_DATA_TYPE_STRING; 8030 value.value.sv_string = vd->vdev_path; 8031 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 8032 &value, SE_SLEEP) != 0) 8033 goto done; 8034 } 8035 } 8036 8037 if (hist_nvl != NULL) { 8038 fnvlist_merge((nvlist_t *)attr, hist_nvl); 8039 } 8040 8041 if (sysevent_attach_attributes(ev, attr) != 0) 8042 goto done; 8043 attr = NULL; 8044 8045 done: 8046 if (attr) 8047 sysevent_free_attr(attr); 8048 8049 #endif 8050 return (ev); 8051 } 8052 8053 void 8054 spa_event_post(sysevent_t *ev) 8055 { 8056 #ifdef _KERNEL 8057 sysevent_id_t eid; 8058 8059 (void) log_sysevent(ev, SE_SLEEP, &eid); 8060 sysevent_free(ev); 8061 #endif 8062 } 8063 8064 void 8065 spa_event_discard(sysevent_t *ev) 8066 { 8067 #ifdef _KERNEL 8068 sysevent_free(ev); 8069 #endif 8070 } 8071 8072 /* 8073 * Post a sysevent corresponding to the given event. The 'name' must be one of 8074 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 8075 * filled in from the spa and (optionally) the vdev and history nvl. This 8076 * doesn't do anything in the userland libzpool, as we don't want consumers to 8077 * misinterpret ztest or zdb as real changes. 8078 */ 8079 void 8080 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8081 { 8082 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 8083 } 8084