xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 2f0fcb93196badcdd803715656c809058d9f3114)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 
63 #include "zfs_prop.h"
64 #include "zfs_comutil.h"
65 
66 int zio_taskq_threads = 8;
67 
68 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
69 static boolean_t spa_has_active_shared_spare(spa_t *spa);
70 
71 /*
72  * ==========================================================================
73  * SPA properties routines
74  * ==========================================================================
75  */
76 
77 /*
78  * Add a (source=src, propname=propval) list to an nvlist.
79  */
80 static void
81 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
82     uint64_t intval, zprop_source_t src)
83 {
84 	const char *propname = zpool_prop_to_name(prop);
85 	nvlist_t *propval;
86 
87 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
88 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
89 
90 	if (strval != NULL)
91 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
92 	else
93 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
94 
95 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
96 	nvlist_free(propval);
97 }
98 
99 /*
100  * Get property values from the spa configuration.
101  */
102 static void
103 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
104 {
105 	uint64_t size = spa_get_space(spa);
106 	uint64_t used = spa_get_alloc(spa);
107 	uint64_t cap, version;
108 	zprop_source_t src = ZPROP_SRC_NONE;
109 	spa_config_dirent_t *dp;
110 
111 	/*
112 	 * readonly properties
113 	 */
114 	spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src);
115 	spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
116 	spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
117 	spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src);
118 
119 	cap = (size == 0) ? 0 : (used * 100 / size);
120 	spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
121 
122 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
123 	spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
124 	    spa->spa_root_vdev->vdev_state, src);
125 
126 	/*
127 	 * settable properties that are not stored in the pool property object.
128 	 */
129 	version = spa_version(spa);
130 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
131 		src = ZPROP_SRC_DEFAULT;
132 	else
133 		src = ZPROP_SRC_LOCAL;
134 	spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
135 
136 	if (spa->spa_root != NULL)
137 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
138 		    0, ZPROP_SRC_LOCAL);
139 
140 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
141 		if (dp->scd_path == NULL) {
142 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
143 			    "none", 0, ZPROP_SRC_LOCAL);
144 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
145 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
146 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
147 		}
148 	}
149 }
150 
151 /*
152  * Get zpool property values.
153  */
154 int
155 spa_prop_get(spa_t *spa, nvlist_t **nvp)
156 {
157 	zap_cursor_t zc;
158 	zap_attribute_t za;
159 	objset_t *mos = spa->spa_meta_objset;
160 	int err;
161 
162 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
163 
164 	/*
165 	 * Get properties from the spa config.
166 	 */
167 	spa_prop_get_config(spa, nvp);
168 
169 	mutex_enter(&spa->spa_props_lock);
170 	/* If no pool property object, no more prop to get. */
171 	if (spa->spa_pool_props_object == 0) {
172 		mutex_exit(&spa->spa_props_lock);
173 		return (0);
174 	}
175 
176 	/*
177 	 * Get properties from the MOS pool property object.
178 	 */
179 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
180 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
181 	    zap_cursor_advance(&zc)) {
182 		uint64_t intval = 0;
183 		char *strval = NULL;
184 		zprop_source_t src = ZPROP_SRC_DEFAULT;
185 		zpool_prop_t prop;
186 
187 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
188 			continue;
189 
190 		switch (za.za_integer_length) {
191 		case 8:
192 			/* integer property */
193 			if (za.za_first_integer !=
194 			    zpool_prop_default_numeric(prop))
195 				src = ZPROP_SRC_LOCAL;
196 
197 			if (prop == ZPOOL_PROP_BOOTFS) {
198 				dsl_pool_t *dp;
199 				dsl_dataset_t *ds = NULL;
200 
201 				dp = spa_get_dsl(spa);
202 				rw_enter(&dp->dp_config_rwlock, RW_READER);
203 				if (err = dsl_dataset_hold_obj(dp,
204 				    za.za_first_integer, FTAG, &ds)) {
205 					rw_exit(&dp->dp_config_rwlock);
206 					break;
207 				}
208 
209 				strval = kmem_alloc(
210 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
211 				    KM_SLEEP);
212 				dsl_dataset_name(ds, strval);
213 				dsl_dataset_rele(ds, FTAG);
214 				rw_exit(&dp->dp_config_rwlock);
215 			} else {
216 				strval = NULL;
217 				intval = za.za_first_integer;
218 			}
219 
220 			spa_prop_add_list(*nvp, prop, strval, intval, src);
221 
222 			if (strval != NULL)
223 				kmem_free(strval,
224 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
225 
226 			break;
227 
228 		case 1:
229 			/* string property */
230 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
231 			err = zap_lookup(mos, spa->spa_pool_props_object,
232 			    za.za_name, 1, za.za_num_integers, strval);
233 			if (err) {
234 				kmem_free(strval, za.za_num_integers);
235 				break;
236 			}
237 			spa_prop_add_list(*nvp, prop, strval, 0, src);
238 			kmem_free(strval, za.za_num_integers);
239 			break;
240 
241 		default:
242 			break;
243 		}
244 	}
245 	zap_cursor_fini(&zc);
246 	mutex_exit(&spa->spa_props_lock);
247 out:
248 	if (err && err != ENOENT) {
249 		nvlist_free(*nvp);
250 		*nvp = NULL;
251 		return (err);
252 	}
253 
254 	return (0);
255 }
256 
257 /*
258  * Validate the given pool properties nvlist and modify the list
259  * for the property values to be set.
260  */
261 static int
262 spa_prop_validate(spa_t *spa, nvlist_t *props)
263 {
264 	nvpair_t *elem;
265 	int error = 0, reset_bootfs = 0;
266 	uint64_t objnum;
267 
268 	elem = NULL;
269 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
270 		zpool_prop_t prop;
271 		char *propname, *strval;
272 		uint64_t intval;
273 		objset_t *os;
274 		char *slash;
275 
276 		propname = nvpair_name(elem);
277 
278 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
279 			return (EINVAL);
280 
281 		switch (prop) {
282 		case ZPOOL_PROP_VERSION:
283 			error = nvpair_value_uint64(elem, &intval);
284 			if (!error &&
285 			    (intval < spa_version(spa) || intval > SPA_VERSION))
286 				error = EINVAL;
287 			break;
288 
289 		case ZPOOL_PROP_DELEGATION:
290 		case ZPOOL_PROP_AUTOREPLACE:
291 		case ZPOOL_PROP_LISTSNAPS:
292 			error = nvpair_value_uint64(elem, &intval);
293 			if (!error && intval > 1)
294 				error = EINVAL;
295 			break;
296 
297 		case ZPOOL_PROP_BOOTFS:
298 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
299 				error = ENOTSUP;
300 				break;
301 			}
302 
303 			/*
304 			 * Make sure the vdev config is bootable
305 			 */
306 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
307 				error = ENOTSUP;
308 				break;
309 			}
310 
311 			reset_bootfs = 1;
312 
313 			error = nvpair_value_string(elem, &strval);
314 
315 			if (!error) {
316 				uint64_t compress;
317 
318 				if (strval == NULL || strval[0] == '\0') {
319 					objnum = zpool_prop_default_numeric(
320 					    ZPOOL_PROP_BOOTFS);
321 					break;
322 				}
323 
324 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
325 				    DS_MODE_USER | DS_MODE_READONLY, &os))
326 					break;
327 
328 				/* We don't support gzip bootable datasets */
329 				if ((error = dsl_prop_get_integer(strval,
330 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
331 				    &compress, NULL)) == 0 &&
332 				    !BOOTFS_COMPRESS_VALID(compress)) {
333 					error = ENOTSUP;
334 				} else {
335 					objnum = dmu_objset_id(os);
336 				}
337 				dmu_objset_close(os);
338 			}
339 			break;
340 		case ZPOOL_PROP_FAILUREMODE:
341 			error = nvpair_value_uint64(elem, &intval);
342 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
343 			    intval > ZIO_FAILURE_MODE_PANIC))
344 				error = EINVAL;
345 
346 			/*
347 			 * This is a special case which only occurs when
348 			 * the pool has completely failed. This allows
349 			 * the user to change the in-core failmode property
350 			 * without syncing it out to disk (I/Os might
351 			 * currently be blocked). We do this by returning
352 			 * EIO to the caller (spa_prop_set) to trick it
353 			 * into thinking we encountered a property validation
354 			 * error.
355 			 */
356 			if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) {
357 				spa->spa_failmode = intval;
358 				error = EIO;
359 			}
360 			break;
361 
362 		case ZPOOL_PROP_CACHEFILE:
363 			if ((error = nvpair_value_string(elem, &strval)) != 0)
364 				break;
365 
366 			if (strval[0] == '\0')
367 				break;
368 
369 			if (strcmp(strval, "none") == 0)
370 				break;
371 
372 			if (strval[0] != '/') {
373 				error = EINVAL;
374 				break;
375 			}
376 
377 			slash = strrchr(strval, '/');
378 			ASSERT(slash != NULL);
379 
380 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
381 			    strcmp(slash, "/..") == 0)
382 				error = EINVAL;
383 			break;
384 		}
385 
386 		if (error)
387 			break;
388 	}
389 
390 	if (!error && reset_bootfs) {
391 		error = nvlist_remove(props,
392 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
393 
394 		if (!error) {
395 			error = nvlist_add_uint64(props,
396 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
397 		}
398 	}
399 
400 	return (error);
401 }
402 
403 int
404 spa_prop_set(spa_t *spa, nvlist_t *nvp)
405 {
406 	int error;
407 
408 	if ((error = spa_prop_validate(spa, nvp)) != 0)
409 		return (error);
410 
411 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
412 	    spa, nvp, 3));
413 }
414 
415 /*
416  * If the bootfs property value is dsobj, clear it.
417  */
418 void
419 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
420 {
421 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
422 		VERIFY(zap_remove(spa->spa_meta_objset,
423 		    spa->spa_pool_props_object,
424 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
425 		spa->spa_bootfs = 0;
426 	}
427 }
428 
429 /*
430  * ==========================================================================
431  * SPA state manipulation (open/create/destroy/import/export)
432  * ==========================================================================
433  */
434 
435 static int
436 spa_error_entry_compare(const void *a, const void *b)
437 {
438 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
439 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
440 	int ret;
441 
442 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
443 	    sizeof (zbookmark_t));
444 
445 	if (ret < 0)
446 		return (-1);
447 	else if (ret > 0)
448 		return (1);
449 	else
450 		return (0);
451 }
452 
453 /*
454  * Utility function which retrieves copies of the current logs and
455  * re-initializes them in the process.
456  */
457 void
458 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
459 {
460 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
461 
462 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
463 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
464 
465 	avl_create(&spa->spa_errlist_scrub,
466 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
467 	    offsetof(spa_error_entry_t, se_avl));
468 	avl_create(&spa->spa_errlist_last,
469 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
470 	    offsetof(spa_error_entry_t, se_avl));
471 }
472 
473 /*
474  * Activate an uninitialized pool.
475  */
476 static void
477 spa_activate(spa_t *spa)
478 {
479 	int t;
480 
481 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
482 
483 	spa->spa_state = POOL_STATE_ACTIVE;
484 
485 	spa->spa_normal_class = metaslab_class_create();
486 	spa->spa_log_class = metaslab_class_create();
487 
488 	for (t = 0; t < ZIO_TYPES; t++) {
489 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
490 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
491 		    TASKQ_PREPOPULATE);
492 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
493 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
494 		    TASKQ_PREPOPULATE);
495 	}
496 
497 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
498 	    offsetof(vdev_t, vdev_dirty_node));
499 	list_create(&spa->spa_zio_list, sizeof (zio_t),
500 	    offsetof(zio_t, zio_link_node));
501 
502 	txg_list_create(&spa->spa_vdev_txg_list,
503 	    offsetof(struct vdev, vdev_txg_node));
504 
505 	avl_create(&spa->spa_errlist_scrub,
506 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
507 	    offsetof(spa_error_entry_t, se_avl));
508 	avl_create(&spa->spa_errlist_last,
509 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
510 	    offsetof(spa_error_entry_t, se_avl));
511 }
512 
513 /*
514  * Opposite of spa_activate().
515  */
516 static void
517 spa_deactivate(spa_t *spa)
518 {
519 	int t;
520 
521 	ASSERT(spa->spa_sync_on == B_FALSE);
522 	ASSERT(spa->spa_dsl_pool == NULL);
523 	ASSERT(spa->spa_root_vdev == NULL);
524 
525 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
526 
527 	txg_list_destroy(&spa->spa_vdev_txg_list);
528 
529 	list_destroy(&spa->spa_dirty_list);
530 	list_destroy(&spa->spa_zio_list);
531 
532 	for (t = 0; t < ZIO_TYPES; t++) {
533 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
534 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
535 		spa->spa_zio_issue_taskq[t] = NULL;
536 		spa->spa_zio_intr_taskq[t] = NULL;
537 	}
538 
539 	metaslab_class_destroy(spa->spa_normal_class);
540 	spa->spa_normal_class = NULL;
541 
542 	metaslab_class_destroy(spa->spa_log_class);
543 	spa->spa_log_class = NULL;
544 
545 	/*
546 	 * If this was part of an import or the open otherwise failed, we may
547 	 * still have errors left in the queues.  Empty them just in case.
548 	 */
549 	spa_errlog_drain(spa);
550 
551 	avl_destroy(&spa->spa_errlist_scrub);
552 	avl_destroy(&spa->spa_errlist_last);
553 
554 	spa->spa_state = POOL_STATE_UNINITIALIZED;
555 }
556 
557 /*
558  * Verify a pool configuration, and construct the vdev tree appropriately.  This
559  * will create all the necessary vdevs in the appropriate layout, with each vdev
560  * in the CLOSED state.  This will prep the pool before open/creation/import.
561  * All vdev validation is done by the vdev_alloc() routine.
562  */
563 static int
564 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
565     uint_t id, int atype)
566 {
567 	nvlist_t **child;
568 	uint_t c, children;
569 	int error;
570 
571 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
572 		return (error);
573 
574 	if ((*vdp)->vdev_ops->vdev_op_leaf)
575 		return (0);
576 
577 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
578 	    &child, &children) != 0) {
579 		vdev_free(*vdp);
580 		*vdp = NULL;
581 		return (EINVAL);
582 	}
583 
584 	for (c = 0; c < children; c++) {
585 		vdev_t *vd;
586 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
587 		    atype)) != 0) {
588 			vdev_free(*vdp);
589 			*vdp = NULL;
590 			return (error);
591 		}
592 	}
593 
594 	ASSERT(*vdp != NULL);
595 
596 	return (0);
597 }
598 
599 /*
600  * Opposite of spa_load().
601  */
602 static void
603 spa_unload(spa_t *spa)
604 {
605 	int i;
606 
607 	/*
608 	 * Stop async tasks.
609 	 */
610 	spa_async_suspend(spa);
611 
612 	/*
613 	 * Stop syncing.
614 	 */
615 	if (spa->spa_sync_on) {
616 		txg_sync_stop(spa->spa_dsl_pool);
617 		spa->spa_sync_on = B_FALSE;
618 	}
619 
620 	/*
621 	 * Wait for any outstanding prefetch I/O to complete.
622 	 */
623 	spa_config_enter(spa, RW_WRITER, FTAG);
624 	spa_config_exit(spa, FTAG);
625 
626 	/*
627 	 * Drop and purge level 2 cache
628 	 */
629 	spa_l2cache_drop(spa);
630 
631 	/*
632 	 * Close the dsl pool.
633 	 */
634 	if (spa->spa_dsl_pool) {
635 		dsl_pool_close(spa->spa_dsl_pool);
636 		spa->spa_dsl_pool = NULL;
637 	}
638 
639 	/*
640 	 * Close all vdevs.
641 	 */
642 	if (spa->spa_root_vdev)
643 		vdev_free(spa->spa_root_vdev);
644 	ASSERT(spa->spa_root_vdev == NULL);
645 
646 	for (i = 0; i < spa->spa_spares.sav_count; i++)
647 		vdev_free(spa->spa_spares.sav_vdevs[i]);
648 	if (spa->spa_spares.sav_vdevs) {
649 		kmem_free(spa->spa_spares.sav_vdevs,
650 		    spa->spa_spares.sav_count * sizeof (void *));
651 		spa->spa_spares.sav_vdevs = NULL;
652 	}
653 	if (spa->spa_spares.sav_config) {
654 		nvlist_free(spa->spa_spares.sav_config);
655 		spa->spa_spares.sav_config = NULL;
656 	}
657 	spa->spa_spares.sav_count = 0;
658 
659 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
660 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
661 	if (spa->spa_l2cache.sav_vdevs) {
662 		kmem_free(spa->spa_l2cache.sav_vdevs,
663 		    spa->spa_l2cache.sav_count * sizeof (void *));
664 		spa->spa_l2cache.sav_vdevs = NULL;
665 	}
666 	if (spa->spa_l2cache.sav_config) {
667 		nvlist_free(spa->spa_l2cache.sav_config);
668 		spa->spa_l2cache.sav_config = NULL;
669 	}
670 	spa->spa_l2cache.sav_count = 0;
671 
672 	spa->spa_async_suspended = 0;
673 }
674 
675 /*
676  * Load (or re-load) the current list of vdevs describing the active spares for
677  * this pool.  When this is called, we have some form of basic information in
678  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
679  * then re-generate a more complete list including status information.
680  */
681 static void
682 spa_load_spares(spa_t *spa)
683 {
684 	nvlist_t **spares;
685 	uint_t nspares;
686 	int i;
687 	vdev_t *vd, *tvd;
688 
689 	/*
690 	 * First, close and free any existing spare vdevs.
691 	 */
692 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
693 		vd = spa->spa_spares.sav_vdevs[i];
694 
695 		/* Undo the call to spa_activate() below */
696 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
697 		    B_FALSE)) != NULL && tvd->vdev_isspare)
698 			spa_spare_remove(tvd);
699 		vdev_close(vd);
700 		vdev_free(vd);
701 	}
702 
703 	if (spa->spa_spares.sav_vdevs)
704 		kmem_free(spa->spa_spares.sav_vdevs,
705 		    spa->spa_spares.sav_count * sizeof (void *));
706 
707 	if (spa->spa_spares.sav_config == NULL)
708 		nspares = 0;
709 	else
710 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
711 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
712 
713 	spa->spa_spares.sav_count = (int)nspares;
714 	spa->spa_spares.sav_vdevs = NULL;
715 
716 	if (nspares == 0)
717 		return;
718 
719 	/*
720 	 * Construct the array of vdevs, opening them to get status in the
721 	 * process.   For each spare, there is potentially two different vdev_t
722 	 * structures associated with it: one in the list of spares (used only
723 	 * for basic validation purposes) and one in the active vdev
724 	 * configuration (if it's spared in).  During this phase we open and
725 	 * validate each vdev on the spare list.  If the vdev also exists in the
726 	 * active configuration, then we also mark this vdev as an active spare.
727 	 */
728 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
729 	    KM_SLEEP);
730 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
731 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
732 		    VDEV_ALLOC_SPARE) == 0);
733 		ASSERT(vd != NULL);
734 
735 		spa->spa_spares.sav_vdevs[i] = vd;
736 
737 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
738 		    B_FALSE)) != NULL) {
739 			if (!tvd->vdev_isspare)
740 				spa_spare_add(tvd);
741 
742 			/*
743 			 * We only mark the spare active if we were successfully
744 			 * able to load the vdev.  Otherwise, importing a pool
745 			 * with a bad active spare would result in strange
746 			 * behavior, because multiple pool would think the spare
747 			 * is actively in use.
748 			 *
749 			 * There is a vulnerability here to an equally bizarre
750 			 * circumstance, where a dead active spare is later
751 			 * brought back to life (onlined or otherwise).  Given
752 			 * the rarity of this scenario, and the extra complexity
753 			 * it adds, we ignore the possibility.
754 			 */
755 			if (!vdev_is_dead(tvd))
756 				spa_spare_activate(tvd);
757 		}
758 
759 		if (vdev_open(vd) != 0)
760 			continue;
761 
762 		vd->vdev_top = vd;
763 		if (vdev_validate_aux(vd) == 0)
764 			spa_spare_add(vd);
765 	}
766 
767 	/*
768 	 * Recompute the stashed list of spares, with status information
769 	 * this time.
770 	 */
771 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
772 	    DATA_TYPE_NVLIST_ARRAY) == 0);
773 
774 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
775 	    KM_SLEEP);
776 	for (i = 0; i < spa->spa_spares.sav_count; i++)
777 		spares[i] = vdev_config_generate(spa,
778 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
779 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
780 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
781 	for (i = 0; i < spa->spa_spares.sav_count; i++)
782 		nvlist_free(spares[i]);
783 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
784 }
785 
786 /*
787  * Load (or re-load) the current list of vdevs describing the active l2cache for
788  * this pool.  When this is called, we have some form of basic information in
789  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
790  * then re-generate a more complete list including status information.
791  * Devices which are already active have their details maintained, and are
792  * not re-opened.
793  */
794 static void
795 spa_load_l2cache(spa_t *spa)
796 {
797 	nvlist_t **l2cache;
798 	uint_t nl2cache;
799 	int i, j, oldnvdevs;
800 	uint64_t guid, size;
801 	vdev_t *vd, **oldvdevs, **newvdevs;
802 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
803 
804 	if (sav->sav_config != NULL) {
805 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
806 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
807 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
808 	} else {
809 		nl2cache = 0;
810 	}
811 
812 	oldvdevs = sav->sav_vdevs;
813 	oldnvdevs = sav->sav_count;
814 	sav->sav_vdevs = NULL;
815 	sav->sav_count = 0;
816 
817 	/*
818 	 * Process new nvlist of vdevs.
819 	 */
820 	for (i = 0; i < nl2cache; i++) {
821 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
822 		    &guid) == 0);
823 
824 		newvdevs[i] = NULL;
825 		for (j = 0; j < oldnvdevs; j++) {
826 			vd = oldvdevs[j];
827 			if (vd != NULL && guid == vd->vdev_guid) {
828 				/*
829 				 * Retain previous vdev for add/remove ops.
830 				 */
831 				newvdevs[i] = vd;
832 				oldvdevs[j] = NULL;
833 				break;
834 			}
835 		}
836 
837 		if (newvdevs[i] == NULL) {
838 			/*
839 			 * Create new vdev
840 			 */
841 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
842 			    VDEV_ALLOC_L2CACHE) == 0);
843 			ASSERT(vd != NULL);
844 			newvdevs[i] = vd;
845 
846 			/*
847 			 * Commit this vdev as an l2cache device,
848 			 * even if it fails to open.
849 			 */
850 			spa_l2cache_add(vd);
851 
852 			vd->vdev_top = vd;
853 			vd->vdev_aux = sav;
854 
855 			spa_l2cache_activate(vd);
856 
857 			if (vdev_open(vd) != 0)
858 				continue;
859 
860 			(void) vdev_validate_aux(vd);
861 
862 			if (!vdev_is_dead(vd)) {
863 				size = vdev_get_rsize(vd);
864 				l2arc_add_vdev(spa, vd,
865 				    VDEV_LABEL_START_SIZE,
866 				    size - VDEV_LABEL_START_SIZE);
867 			}
868 		}
869 	}
870 
871 	/*
872 	 * Purge vdevs that were dropped
873 	 */
874 	for (i = 0; i < oldnvdevs; i++) {
875 		uint64_t pool;
876 
877 		vd = oldvdevs[i];
878 		if (vd != NULL) {
879 			if (spa_mode & FWRITE &&
880 			    spa_l2cache_exists(vd->vdev_guid, &pool) &&
881 			    pool != 0ULL &&
882 			    l2arc_vdev_present(vd)) {
883 				l2arc_remove_vdev(vd);
884 			}
885 			(void) vdev_close(vd);
886 			spa_l2cache_remove(vd);
887 		}
888 	}
889 
890 	if (oldvdevs)
891 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
892 
893 	if (sav->sav_config == NULL)
894 		goto out;
895 
896 	sav->sav_vdevs = newvdevs;
897 	sav->sav_count = (int)nl2cache;
898 
899 	/*
900 	 * Recompute the stashed list of l2cache devices, with status
901 	 * information this time.
902 	 */
903 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
904 	    DATA_TYPE_NVLIST_ARRAY) == 0);
905 
906 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
907 	for (i = 0; i < sav->sav_count; i++)
908 		l2cache[i] = vdev_config_generate(spa,
909 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
910 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
911 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
912 out:
913 	for (i = 0; i < sav->sav_count; i++)
914 		nvlist_free(l2cache[i]);
915 	if (sav->sav_count)
916 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
917 }
918 
919 static int
920 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
921 {
922 	dmu_buf_t *db;
923 	char *packed = NULL;
924 	size_t nvsize = 0;
925 	int error;
926 	*value = NULL;
927 
928 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
929 	nvsize = *(uint64_t *)db->db_data;
930 	dmu_buf_rele(db, FTAG);
931 
932 	packed = kmem_alloc(nvsize, KM_SLEEP);
933 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
934 	if (error == 0)
935 		error = nvlist_unpack(packed, nvsize, value, 0);
936 	kmem_free(packed, nvsize);
937 
938 	return (error);
939 }
940 
941 /*
942  * Checks to see if the given vdev could not be opened, in which case we post a
943  * sysevent to notify the autoreplace code that the device has been removed.
944  */
945 static void
946 spa_check_removed(vdev_t *vd)
947 {
948 	int c;
949 
950 	for (c = 0; c < vd->vdev_children; c++)
951 		spa_check_removed(vd->vdev_child[c]);
952 
953 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
954 		zfs_post_autoreplace(vd->vdev_spa, vd);
955 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
956 	}
957 }
958 
959 /*
960  * Check for missing log devices
961  */
962 int
963 spa_check_logs(spa_t *spa)
964 {
965 	switch (spa->spa_log_state) {
966 	case SPA_LOG_MISSING:
967 		/* need to recheck in case slog has been restored */
968 	case SPA_LOG_UNKNOWN:
969 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
970 		    DS_FIND_CHILDREN)) {
971 			spa->spa_log_state = SPA_LOG_MISSING;
972 			return (1);
973 		}
974 		break;
975 
976 	case SPA_LOG_CLEAR:
977 		(void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL,
978 		    DS_FIND_CHILDREN);
979 		break;
980 	}
981 	spa->spa_log_state = SPA_LOG_GOOD;
982 	return (0);
983 }
984 
985 /*
986  * Load an existing storage pool, using the pool's builtin spa_config as a
987  * source of configuration information.
988  */
989 static int
990 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
991 {
992 	int error = 0;
993 	nvlist_t *nvroot = NULL;
994 	vdev_t *rvd;
995 	uberblock_t *ub = &spa->spa_uberblock;
996 	uint64_t config_cache_txg = spa->spa_config_txg;
997 	uint64_t pool_guid;
998 	uint64_t version;
999 	zio_t *zio;
1000 	uint64_t autoreplace = 0;
1001 	char *ereport = FM_EREPORT_ZFS_POOL;
1002 
1003 	spa->spa_load_state = state;
1004 
1005 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1006 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1007 		error = EINVAL;
1008 		goto out;
1009 	}
1010 
1011 	/*
1012 	 * Versioning wasn't explicitly added to the label until later, so if
1013 	 * it's not present treat it as the initial version.
1014 	 */
1015 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1016 		version = SPA_VERSION_INITIAL;
1017 
1018 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1019 	    &spa->spa_config_txg);
1020 
1021 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1022 	    spa_guid_exists(pool_guid, 0)) {
1023 		error = EEXIST;
1024 		goto out;
1025 	}
1026 
1027 	spa->spa_load_guid = pool_guid;
1028 
1029 	/*
1030 	 * Parse the configuration into a vdev tree.  We explicitly set the
1031 	 * value that will be returned by spa_version() since parsing the
1032 	 * configuration requires knowing the version number.
1033 	 */
1034 	spa_config_enter(spa, RW_WRITER, FTAG);
1035 	spa->spa_ubsync.ub_version = version;
1036 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1037 	spa_config_exit(spa, FTAG);
1038 
1039 	if (error != 0)
1040 		goto out;
1041 
1042 	ASSERT(spa->spa_root_vdev == rvd);
1043 	ASSERT(spa_guid(spa) == pool_guid);
1044 
1045 	/*
1046 	 * Try to open all vdevs, loading each label in the process.
1047 	 */
1048 	error = vdev_open(rvd);
1049 	if (error != 0)
1050 		goto out;
1051 
1052 	/*
1053 	 * Validate the labels for all leaf vdevs.  We need to grab the config
1054 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
1055 	 * flag.
1056 	 */
1057 	spa_config_enter(spa, RW_READER, FTAG);
1058 	error = vdev_validate(rvd);
1059 	spa_config_exit(spa, FTAG);
1060 
1061 	if (error != 0)
1062 		goto out;
1063 
1064 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1065 		error = ENXIO;
1066 		goto out;
1067 	}
1068 
1069 	/*
1070 	 * Find the best uberblock.
1071 	 */
1072 	bzero(ub, sizeof (uberblock_t));
1073 
1074 	zio = zio_root(spa, NULL, NULL,
1075 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1076 	vdev_uberblock_load(zio, rvd, ub);
1077 	error = zio_wait(zio);
1078 
1079 	/*
1080 	 * If we weren't able to find a single valid uberblock, return failure.
1081 	 */
1082 	if (ub->ub_txg == 0) {
1083 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1084 		    VDEV_AUX_CORRUPT_DATA);
1085 		error = ENXIO;
1086 		goto out;
1087 	}
1088 
1089 	/*
1090 	 * If the pool is newer than the code, we can't open it.
1091 	 */
1092 	if (ub->ub_version > SPA_VERSION) {
1093 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1094 		    VDEV_AUX_VERSION_NEWER);
1095 		error = ENOTSUP;
1096 		goto out;
1097 	}
1098 
1099 	/*
1100 	 * If the vdev guid sum doesn't match the uberblock, we have an
1101 	 * incomplete configuration.
1102 	 */
1103 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1104 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1105 		    VDEV_AUX_BAD_GUID_SUM);
1106 		error = ENXIO;
1107 		goto out;
1108 	}
1109 
1110 	/*
1111 	 * Initialize internal SPA structures.
1112 	 */
1113 	spa->spa_state = POOL_STATE_ACTIVE;
1114 	spa->spa_ubsync = spa->spa_uberblock;
1115 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1116 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1117 	if (error) {
1118 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1119 		    VDEV_AUX_CORRUPT_DATA);
1120 		goto out;
1121 	}
1122 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1123 
1124 	if (zap_lookup(spa->spa_meta_objset,
1125 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1126 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1127 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1128 		    VDEV_AUX_CORRUPT_DATA);
1129 		error = EIO;
1130 		goto out;
1131 	}
1132 
1133 	if (!mosconfig) {
1134 		nvlist_t *newconfig;
1135 		uint64_t hostid;
1136 
1137 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1138 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1139 			    VDEV_AUX_CORRUPT_DATA);
1140 			error = EIO;
1141 			goto out;
1142 		}
1143 
1144 		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1145 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1146 			char *hostname;
1147 			unsigned long myhostid = 0;
1148 
1149 			VERIFY(nvlist_lookup_string(newconfig,
1150 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1151 
1152 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1153 			if (hostid != 0 && myhostid != 0 &&
1154 			    (unsigned long)hostid != myhostid) {
1155 				cmn_err(CE_WARN, "pool '%s' could not be "
1156 				    "loaded as it was last accessed by "
1157 				    "another system (host: %s hostid: 0x%lx). "
1158 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1159 				    spa->spa_name, hostname,
1160 				    (unsigned long)hostid);
1161 				error = EBADF;
1162 				goto out;
1163 			}
1164 		}
1165 
1166 		spa_config_set(spa, newconfig);
1167 		spa_unload(spa);
1168 		spa_deactivate(spa);
1169 		spa_activate(spa);
1170 
1171 		return (spa_load(spa, newconfig, state, B_TRUE));
1172 	}
1173 
1174 	if (zap_lookup(spa->spa_meta_objset,
1175 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1176 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1177 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178 		    VDEV_AUX_CORRUPT_DATA);
1179 		error = EIO;
1180 		goto out;
1181 	}
1182 
1183 	/*
1184 	 * Load the bit that tells us to use the new accounting function
1185 	 * (raid-z deflation).  If we have an older pool, this will not
1186 	 * be present.
1187 	 */
1188 	error = zap_lookup(spa->spa_meta_objset,
1189 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1190 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1191 	if (error != 0 && error != ENOENT) {
1192 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1193 		    VDEV_AUX_CORRUPT_DATA);
1194 		error = EIO;
1195 		goto out;
1196 	}
1197 
1198 	/*
1199 	 * Load the persistent error log.  If we have an older pool, this will
1200 	 * not be present.
1201 	 */
1202 	error = zap_lookup(spa->spa_meta_objset,
1203 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1204 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1205 	if (error != 0 && error != ENOENT) {
1206 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 		    VDEV_AUX_CORRUPT_DATA);
1208 		error = EIO;
1209 		goto out;
1210 	}
1211 
1212 	error = zap_lookup(spa->spa_meta_objset,
1213 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1214 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1215 	if (error != 0 && error != ENOENT) {
1216 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1217 		    VDEV_AUX_CORRUPT_DATA);
1218 		error = EIO;
1219 		goto out;
1220 	}
1221 
1222 	/*
1223 	 * Load the history object.  If we have an older pool, this
1224 	 * will not be present.
1225 	 */
1226 	error = zap_lookup(spa->spa_meta_objset,
1227 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1228 	    sizeof (uint64_t), 1, &spa->spa_history);
1229 	if (error != 0 && error != ENOENT) {
1230 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1231 		    VDEV_AUX_CORRUPT_DATA);
1232 		error = EIO;
1233 		goto out;
1234 	}
1235 
1236 	/*
1237 	 * Load any hot spares for this pool.
1238 	 */
1239 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1240 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1241 	if (error != 0 && error != ENOENT) {
1242 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1243 		    VDEV_AUX_CORRUPT_DATA);
1244 		error = EIO;
1245 		goto out;
1246 	}
1247 	if (error == 0) {
1248 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1249 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1250 		    &spa->spa_spares.sav_config) != 0) {
1251 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1252 			    VDEV_AUX_CORRUPT_DATA);
1253 			error = EIO;
1254 			goto out;
1255 		}
1256 
1257 		spa_config_enter(spa, RW_WRITER, FTAG);
1258 		spa_load_spares(spa);
1259 		spa_config_exit(spa, FTAG);
1260 	}
1261 
1262 	/*
1263 	 * Load any level 2 ARC devices for this pool.
1264 	 */
1265 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1266 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1267 	    &spa->spa_l2cache.sav_object);
1268 	if (error != 0 && error != ENOENT) {
1269 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1270 		    VDEV_AUX_CORRUPT_DATA);
1271 		error = EIO;
1272 		goto out;
1273 	}
1274 	if (error == 0) {
1275 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1276 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1277 		    &spa->spa_l2cache.sav_config) != 0) {
1278 			vdev_set_state(rvd, B_TRUE,
1279 			    VDEV_STATE_CANT_OPEN,
1280 			    VDEV_AUX_CORRUPT_DATA);
1281 			error = EIO;
1282 			goto out;
1283 		}
1284 
1285 		spa_config_enter(spa, RW_WRITER, FTAG);
1286 		spa_load_l2cache(spa);
1287 		spa_config_exit(spa, FTAG);
1288 	}
1289 
1290 	if (spa_check_logs(spa)) {
1291 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1292 		    VDEV_AUX_BAD_LOG);
1293 		error = ENXIO;
1294 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1295 		goto out;
1296 	}
1297 
1298 
1299 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1300 
1301 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1302 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1303 
1304 	if (error && error != ENOENT) {
1305 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1306 		    VDEV_AUX_CORRUPT_DATA);
1307 		error = EIO;
1308 		goto out;
1309 	}
1310 
1311 	if (error == 0) {
1312 		(void) zap_lookup(spa->spa_meta_objset,
1313 		    spa->spa_pool_props_object,
1314 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1315 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1316 		(void) zap_lookup(spa->spa_meta_objset,
1317 		    spa->spa_pool_props_object,
1318 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1319 		    sizeof (uint64_t), 1, &autoreplace);
1320 		(void) zap_lookup(spa->spa_meta_objset,
1321 		    spa->spa_pool_props_object,
1322 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1323 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1324 		(void) zap_lookup(spa->spa_meta_objset,
1325 		    spa->spa_pool_props_object,
1326 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1327 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1328 	}
1329 
1330 	/*
1331 	 * If the 'autoreplace' property is set, then post a resource notifying
1332 	 * the ZFS DE that it should not issue any faults for unopenable
1333 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1334 	 * unopenable vdevs so that the normal autoreplace handler can take
1335 	 * over.
1336 	 */
1337 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1338 		spa_check_removed(spa->spa_root_vdev);
1339 
1340 	/*
1341 	 * Load the vdev state for all toplevel vdevs.
1342 	 */
1343 	vdev_load(rvd);
1344 
1345 	/*
1346 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1347 	 */
1348 	spa_config_enter(spa, RW_WRITER, FTAG);
1349 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1350 	spa_config_exit(spa, FTAG);
1351 
1352 	/*
1353 	 * Check the state of the root vdev.  If it can't be opened, it
1354 	 * indicates one or more toplevel vdevs are faulted.
1355 	 */
1356 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1357 		error = ENXIO;
1358 		goto out;
1359 	}
1360 
1361 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1362 		dmu_tx_t *tx;
1363 		int need_update = B_FALSE;
1364 		int c;
1365 
1366 		/*
1367 		 * Claim log blocks that haven't been committed yet.
1368 		 * This must all happen in a single txg.
1369 		 */
1370 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1371 		    spa_first_txg(spa));
1372 		(void) dmu_objset_find(spa->spa_name,
1373 		    zil_claim, tx, DS_FIND_CHILDREN);
1374 		dmu_tx_commit(tx);
1375 
1376 		spa->spa_sync_on = B_TRUE;
1377 		txg_sync_start(spa->spa_dsl_pool);
1378 
1379 		/*
1380 		 * Wait for all claims to sync.
1381 		 */
1382 		txg_wait_synced(spa->spa_dsl_pool, 0);
1383 
1384 		/*
1385 		 * If the config cache is stale, or we have uninitialized
1386 		 * metaslabs (see spa_vdev_add()), then update the config.
1387 		 */
1388 		if (config_cache_txg != spa->spa_config_txg ||
1389 		    state == SPA_LOAD_IMPORT)
1390 			need_update = B_TRUE;
1391 
1392 		for (c = 0; c < rvd->vdev_children; c++)
1393 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1394 				need_update = B_TRUE;
1395 
1396 		/*
1397 		 * Update the config cache asychronously in case we're the
1398 		 * root pool, in which case the config cache isn't writable yet.
1399 		 */
1400 		if (need_update)
1401 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1402 	}
1403 
1404 	error = 0;
1405 out:
1406 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1407 	if (error && error != EBADF)
1408 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1409 	spa->spa_load_state = SPA_LOAD_NONE;
1410 	spa->spa_ena = 0;
1411 
1412 	return (error);
1413 }
1414 
1415 /*
1416  * Pool Open/Import
1417  *
1418  * The import case is identical to an open except that the configuration is sent
1419  * down from userland, instead of grabbed from the configuration cache.  For the
1420  * case of an open, the pool configuration will exist in the
1421  * POOL_STATE_UNINITIALIZED state.
1422  *
1423  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1424  * the same time open the pool, without having to keep around the spa_t in some
1425  * ambiguous state.
1426  */
1427 static int
1428 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1429 {
1430 	spa_t *spa;
1431 	int error;
1432 	int locked = B_FALSE;
1433 
1434 	*spapp = NULL;
1435 
1436 	/*
1437 	 * As disgusting as this is, we need to support recursive calls to this
1438 	 * function because dsl_dir_open() is called during spa_load(), and ends
1439 	 * up calling spa_open() again.  The real fix is to figure out how to
1440 	 * avoid dsl_dir_open() calling this in the first place.
1441 	 */
1442 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1443 		mutex_enter(&spa_namespace_lock);
1444 		locked = B_TRUE;
1445 	}
1446 
1447 	if ((spa = spa_lookup(pool)) == NULL) {
1448 		if (locked)
1449 			mutex_exit(&spa_namespace_lock);
1450 		return (ENOENT);
1451 	}
1452 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1453 
1454 		spa_activate(spa);
1455 
1456 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1457 
1458 		if (error == EBADF) {
1459 			/*
1460 			 * If vdev_validate() returns failure (indicated by
1461 			 * EBADF), it indicates that one of the vdevs indicates
1462 			 * that the pool has been exported or destroyed.  If
1463 			 * this is the case, the config cache is out of sync and
1464 			 * we should remove the pool from the namespace.
1465 			 */
1466 			spa_unload(spa);
1467 			spa_deactivate(spa);
1468 			spa_config_sync(spa, B_TRUE, B_TRUE);
1469 			spa_remove(spa);
1470 			if (locked)
1471 				mutex_exit(&spa_namespace_lock);
1472 			return (ENOENT);
1473 		}
1474 
1475 		if (error) {
1476 			/*
1477 			 * We can't open the pool, but we still have useful
1478 			 * information: the state of each vdev after the
1479 			 * attempted vdev_open().  Return this to the user.
1480 			 */
1481 			if (config != NULL && spa->spa_root_vdev != NULL) {
1482 				spa_config_enter(spa, RW_READER, FTAG);
1483 				*config = spa_config_generate(spa, NULL, -1ULL,
1484 				    B_TRUE);
1485 				spa_config_exit(spa, FTAG);
1486 			}
1487 			spa_unload(spa);
1488 			spa_deactivate(spa);
1489 			spa->spa_last_open_failed = B_TRUE;
1490 			if (locked)
1491 				mutex_exit(&spa_namespace_lock);
1492 			*spapp = NULL;
1493 			return (error);
1494 		} else {
1495 			spa->spa_last_open_failed = B_FALSE;
1496 		}
1497 	}
1498 
1499 	spa_open_ref(spa, tag);
1500 
1501 	if (locked)
1502 		mutex_exit(&spa_namespace_lock);
1503 
1504 	*spapp = spa;
1505 
1506 	if (config != NULL) {
1507 		spa_config_enter(spa, RW_READER, FTAG);
1508 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1509 		spa_config_exit(spa, FTAG);
1510 	}
1511 
1512 	return (0);
1513 }
1514 
1515 int
1516 spa_open(const char *name, spa_t **spapp, void *tag)
1517 {
1518 	return (spa_open_common(name, spapp, tag, NULL));
1519 }
1520 
1521 /*
1522  * Lookup the given spa_t, incrementing the inject count in the process,
1523  * preventing it from being exported or destroyed.
1524  */
1525 spa_t *
1526 spa_inject_addref(char *name)
1527 {
1528 	spa_t *spa;
1529 
1530 	mutex_enter(&spa_namespace_lock);
1531 	if ((spa = spa_lookup(name)) == NULL) {
1532 		mutex_exit(&spa_namespace_lock);
1533 		return (NULL);
1534 	}
1535 	spa->spa_inject_ref++;
1536 	mutex_exit(&spa_namespace_lock);
1537 
1538 	return (spa);
1539 }
1540 
1541 void
1542 spa_inject_delref(spa_t *spa)
1543 {
1544 	mutex_enter(&spa_namespace_lock);
1545 	spa->spa_inject_ref--;
1546 	mutex_exit(&spa_namespace_lock);
1547 }
1548 
1549 /*
1550  * Add spares device information to the nvlist.
1551  */
1552 static void
1553 spa_add_spares(spa_t *spa, nvlist_t *config)
1554 {
1555 	nvlist_t **spares;
1556 	uint_t i, nspares;
1557 	nvlist_t *nvroot;
1558 	uint64_t guid;
1559 	vdev_stat_t *vs;
1560 	uint_t vsc;
1561 	uint64_t pool;
1562 
1563 	if (spa->spa_spares.sav_count == 0)
1564 		return;
1565 
1566 	VERIFY(nvlist_lookup_nvlist(config,
1567 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1568 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1569 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1570 	if (nspares != 0) {
1571 		VERIFY(nvlist_add_nvlist_array(nvroot,
1572 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1573 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1574 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1575 
1576 		/*
1577 		 * Go through and find any spares which have since been
1578 		 * repurposed as an active spare.  If this is the case, update
1579 		 * their status appropriately.
1580 		 */
1581 		for (i = 0; i < nspares; i++) {
1582 			VERIFY(nvlist_lookup_uint64(spares[i],
1583 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1584 			if (spa_spare_exists(guid, &pool, NULL) &&
1585 			    pool != 0ULL) {
1586 				VERIFY(nvlist_lookup_uint64_array(
1587 				    spares[i], ZPOOL_CONFIG_STATS,
1588 				    (uint64_t **)&vs, &vsc) == 0);
1589 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1590 				vs->vs_aux = VDEV_AUX_SPARED;
1591 			}
1592 		}
1593 	}
1594 }
1595 
1596 /*
1597  * Add l2cache device information to the nvlist, including vdev stats.
1598  */
1599 static void
1600 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1601 {
1602 	nvlist_t **l2cache;
1603 	uint_t i, j, nl2cache;
1604 	nvlist_t *nvroot;
1605 	uint64_t guid;
1606 	vdev_t *vd;
1607 	vdev_stat_t *vs;
1608 	uint_t vsc;
1609 
1610 	if (spa->spa_l2cache.sav_count == 0)
1611 		return;
1612 
1613 	spa_config_enter(spa, RW_READER, FTAG);
1614 
1615 	VERIFY(nvlist_lookup_nvlist(config,
1616 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1617 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1618 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1619 	if (nl2cache != 0) {
1620 		VERIFY(nvlist_add_nvlist_array(nvroot,
1621 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1622 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1623 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1624 
1625 		/*
1626 		 * Update level 2 cache device stats.
1627 		 */
1628 
1629 		for (i = 0; i < nl2cache; i++) {
1630 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1631 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1632 
1633 			vd = NULL;
1634 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1635 				if (guid ==
1636 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1637 					vd = spa->spa_l2cache.sav_vdevs[j];
1638 					break;
1639 				}
1640 			}
1641 			ASSERT(vd != NULL);
1642 
1643 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1644 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1645 			vdev_get_stats(vd, vs);
1646 		}
1647 	}
1648 
1649 	spa_config_exit(spa, FTAG);
1650 }
1651 
1652 int
1653 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1654 {
1655 	int error;
1656 	spa_t *spa;
1657 
1658 	*config = NULL;
1659 	error = spa_open_common(name, &spa, FTAG, config);
1660 
1661 	if (spa && *config != NULL) {
1662 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1663 		    spa_get_errlog_size(spa)) == 0);
1664 
1665 		spa_add_spares(spa, *config);
1666 		spa_add_l2cache(spa, *config);
1667 	}
1668 
1669 	/*
1670 	 * We want to get the alternate root even for faulted pools, so we cheat
1671 	 * and call spa_lookup() directly.
1672 	 */
1673 	if (altroot) {
1674 		if (spa == NULL) {
1675 			mutex_enter(&spa_namespace_lock);
1676 			spa = spa_lookup(name);
1677 			if (spa)
1678 				spa_altroot(spa, altroot, buflen);
1679 			else
1680 				altroot[0] = '\0';
1681 			spa = NULL;
1682 			mutex_exit(&spa_namespace_lock);
1683 		} else {
1684 			spa_altroot(spa, altroot, buflen);
1685 		}
1686 	}
1687 
1688 	if (spa != NULL)
1689 		spa_close(spa, FTAG);
1690 
1691 	return (error);
1692 }
1693 
1694 /*
1695  * Validate that the auxiliary device array is well formed.  We must have an
1696  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1697  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1698  * specified, as long as they are well-formed.
1699  */
1700 static int
1701 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1702     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1703     vdev_labeltype_t label)
1704 {
1705 	nvlist_t **dev;
1706 	uint_t i, ndev;
1707 	vdev_t *vd;
1708 	int error;
1709 
1710 	/*
1711 	 * It's acceptable to have no devs specified.
1712 	 */
1713 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1714 		return (0);
1715 
1716 	if (ndev == 0)
1717 		return (EINVAL);
1718 
1719 	/*
1720 	 * Make sure the pool is formatted with a version that supports this
1721 	 * device type.
1722 	 */
1723 	if (spa_version(spa) < version)
1724 		return (ENOTSUP);
1725 
1726 	/*
1727 	 * Set the pending device list so we correctly handle device in-use
1728 	 * checking.
1729 	 */
1730 	sav->sav_pending = dev;
1731 	sav->sav_npending = ndev;
1732 
1733 	for (i = 0; i < ndev; i++) {
1734 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1735 		    mode)) != 0)
1736 			goto out;
1737 
1738 		if (!vd->vdev_ops->vdev_op_leaf) {
1739 			vdev_free(vd);
1740 			error = EINVAL;
1741 			goto out;
1742 		}
1743 
1744 		/*
1745 		 * The L2ARC currently only supports disk devices.
1746 		 */
1747 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1748 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1749 			error = ENOTBLK;
1750 			goto out;
1751 		}
1752 
1753 		vd->vdev_top = vd;
1754 
1755 		if ((error = vdev_open(vd)) == 0 &&
1756 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1757 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1758 			    vd->vdev_guid) == 0);
1759 		}
1760 
1761 		vdev_free(vd);
1762 
1763 		if (error &&
1764 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1765 			goto out;
1766 		else
1767 			error = 0;
1768 	}
1769 
1770 out:
1771 	sav->sav_pending = NULL;
1772 	sav->sav_npending = 0;
1773 	return (error);
1774 }
1775 
1776 static int
1777 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1778 {
1779 	int error;
1780 
1781 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1782 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1783 	    VDEV_LABEL_SPARE)) != 0) {
1784 		return (error);
1785 	}
1786 
1787 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1788 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1789 	    VDEV_LABEL_L2CACHE));
1790 }
1791 
1792 static void
1793 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1794     const char *config)
1795 {
1796 	int i;
1797 
1798 	if (sav->sav_config != NULL) {
1799 		nvlist_t **olddevs;
1800 		uint_t oldndevs;
1801 		nvlist_t **newdevs;
1802 
1803 		/*
1804 		 * Generate new dev list by concatentating with the
1805 		 * current dev list.
1806 		 */
1807 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1808 		    &olddevs, &oldndevs) == 0);
1809 
1810 		newdevs = kmem_alloc(sizeof (void *) *
1811 		    (ndevs + oldndevs), KM_SLEEP);
1812 		for (i = 0; i < oldndevs; i++)
1813 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1814 			    KM_SLEEP) == 0);
1815 		for (i = 0; i < ndevs; i++)
1816 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1817 			    KM_SLEEP) == 0);
1818 
1819 		VERIFY(nvlist_remove(sav->sav_config, config,
1820 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1821 
1822 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1823 		    config, newdevs, ndevs + oldndevs) == 0);
1824 		for (i = 0; i < oldndevs + ndevs; i++)
1825 			nvlist_free(newdevs[i]);
1826 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1827 	} else {
1828 		/*
1829 		 * Generate a new dev list.
1830 		 */
1831 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1832 		    KM_SLEEP) == 0);
1833 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1834 		    devs, ndevs) == 0);
1835 	}
1836 }
1837 
1838 /*
1839  * Stop and drop level 2 ARC devices
1840  */
1841 void
1842 spa_l2cache_drop(spa_t *spa)
1843 {
1844 	vdev_t *vd;
1845 	int i;
1846 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1847 
1848 	for (i = 0; i < sav->sav_count; i++) {
1849 		uint64_t pool;
1850 
1851 		vd = sav->sav_vdevs[i];
1852 		ASSERT(vd != NULL);
1853 
1854 		if (spa_mode & FWRITE &&
1855 		    spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL &&
1856 		    l2arc_vdev_present(vd)) {
1857 			l2arc_remove_vdev(vd);
1858 		}
1859 		if (vd->vdev_isl2cache)
1860 			spa_l2cache_remove(vd);
1861 		vdev_clear_stats(vd);
1862 		(void) vdev_close(vd);
1863 	}
1864 }
1865 
1866 /*
1867  * Pool Creation
1868  */
1869 int
1870 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1871     const char *history_str, nvlist_t *zplprops)
1872 {
1873 	spa_t *spa;
1874 	char *altroot = NULL;
1875 	vdev_t *rvd;
1876 	dsl_pool_t *dp;
1877 	dmu_tx_t *tx;
1878 	int c, error = 0;
1879 	uint64_t txg = TXG_INITIAL;
1880 	nvlist_t **spares, **l2cache;
1881 	uint_t nspares, nl2cache;
1882 	uint64_t version;
1883 
1884 	/*
1885 	 * If this pool already exists, return failure.
1886 	 */
1887 	mutex_enter(&spa_namespace_lock);
1888 	if (spa_lookup(pool) != NULL) {
1889 		mutex_exit(&spa_namespace_lock);
1890 		return (EEXIST);
1891 	}
1892 
1893 	/*
1894 	 * Allocate a new spa_t structure.
1895 	 */
1896 	(void) nvlist_lookup_string(props,
1897 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1898 	spa = spa_add(pool, altroot);
1899 	spa_activate(spa);
1900 
1901 	spa->spa_uberblock.ub_txg = txg - 1;
1902 
1903 	if (props && (error = spa_prop_validate(spa, props))) {
1904 		spa_unload(spa);
1905 		spa_deactivate(spa);
1906 		spa_remove(spa);
1907 		mutex_exit(&spa_namespace_lock);
1908 		return (error);
1909 	}
1910 
1911 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1912 	    &version) != 0)
1913 		version = SPA_VERSION;
1914 	ASSERT(version <= SPA_VERSION);
1915 	spa->spa_uberblock.ub_version = version;
1916 	spa->spa_ubsync = spa->spa_uberblock;
1917 
1918 	/*
1919 	 * Create the root vdev.
1920 	 */
1921 	spa_config_enter(spa, RW_WRITER, FTAG);
1922 
1923 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1924 
1925 	ASSERT(error != 0 || rvd != NULL);
1926 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1927 
1928 	if (error == 0 && !zfs_allocatable_devs(nvroot))
1929 		error = EINVAL;
1930 
1931 	if (error == 0 &&
1932 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1933 	    (error = spa_validate_aux(spa, nvroot, txg,
1934 	    VDEV_ALLOC_ADD)) == 0) {
1935 		for (c = 0; c < rvd->vdev_children; c++)
1936 			vdev_init(rvd->vdev_child[c], txg);
1937 		vdev_config_dirty(rvd);
1938 	}
1939 
1940 	spa_config_exit(spa, FTAG);
1941 
1942 	if (error != 0) {
1943 		spa_unload(spa);
1944 		spa_deactivate(spa);
1945 		spa_remove(spa);
1946 		mutex_exit(&spa_namespace_lock);
1947 		return (error);
1948 	}
1949 
1950 	/*
1951 	 * Get the list of spares, if specified.
1952 	 */
1953 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1954 	    &spares, &nspares) == 0) {
1955 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
1956 		    KM_SLEEP) == 0);
1957 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1958 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1959 		spa_config_enter(spa, RW_WRITER, FTAG);
1960 		spa_load_spares(spa);
1961 		spa_config_exit(spa, FTAG);
1962 		spa->spa_spares.sav_sync = B_TRUE;
1963 	}
1964 
1965 	/*
1966 	 * Get the list of level 2 cache devices, if specified.
1967 	 */
1968 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1969 	    &l2cache, &nl2cache) == 0) {
1970 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
1971 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1972 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
1973 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1974 		spa_config_enter(spa, RW_WRITER, FTAG);
1975 		spa_load_l2cache(spa);
1976 		spa_config_exit(spa, FTAG);
1977 		spa->spa_l2cache.sav_sync = B_TRUE;
1978 	}
1979 
1980 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
1981 	spa->spa_meta_objset = dp->dp_meta_objset;
1982 
1983 	tx = dmu_tx_create_assigned(dp, txg);
1984 
1985 	/*
1986 	 * Create the pool config object.
1987 	 */
1988 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1989 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
1990 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1991 
1992 	if (zap_add(spa->spa_meta_objset,
1993 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1994 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1995 		cmn_err(CE_PANIC, "failed to add pool config");
1996 	}
1997 
1998 	/* Newly created pools with the right version are always deflated. */
1999 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2000 		spa->spa_deflate = TRUE;
2001 		if (zap_add(spa->spa_meta_objset,
2002 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2003 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2004 			cmn_err(CE_PANIC, "failed to add deflate");
2005 		}
2006 	}
2007 
2008 	/*
2009 	 * Create the deferred-free bplist object.  Turn off compression
2010 	 * because sync-to-convergence takes longer if the blocksize
2011 	 * keeps changing.
2012 	 */
2013 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2014 	    1 << 14, tx);
2015 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2016 	    ZIO_COMPRESS_OFF, tx);
2017 
2018 	if (zap_add(spa->spa_meta_objset,
2019 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2020 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2021 		cmn_err(CE_PANIC, "failed to add bplist");
2022 	}
2023 
2024 	/*
2025 	 * Create the pool's history object.
2026 	 */
2027 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2028 		spa_history_create_obj(spa, tx);
2029 
2030 	/*
2031 	 * Set pool properties.
2032 	 */
2033 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2034 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2035 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2036 	if (props)
2037 		spa_sync_props(spa, props, CRED(), tx);
2038 
2039 	dmu_tx_commit(tx);
2040 
2041 	spa->spa_sync_on = B_TRUE;
2042 	txg_sync_start(spa->spa_dsl_pool);
2043 
2044 	/*
2045 	 * We explicitly wait for the first transaction to complete so that our
2046 	 * bean counters are appropriately updated.
2047 	 */
2048 	txg_wait_synced(spa->spa_dsl_pool, txg);
2049 
2050 	spa_config_sync(spa, B_FALSE, B_TRUE);
2051 
2052 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2053 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2054 
2055 	mutex_exit(&spa_namespace_lock);
2056 
2057 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2058 
2059 	return (0);
2060 }
2061 
2062 /*
2063  * Import the given pool into the system.  We set up the necessary spa_t and
2064  * then call spa_load() to do the dirty work.
2065  */
2066 static int
2067 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2068     boolean_t isroot, boolean_t allowfaulted)
2069 {
2070 	spa_t *spa;
2071 	char *altroot = NULL;
2072 	int error, loaderr;
2073 	nvlist_t *nvroot;
2074 	nvlist_t **spares, **l2cache;
2075 	uint_t nspares, nl2cache;
2076 
2077 	/*
2078 	 * If a pool with this name exists, return failure.
2079 	 */
2080 	mutex_enter(&spa_namespace_lock);
2081 	if (spa_lookup(pool) != NULL) {
2082 		mutex_exit(&spa_namespace_lock);
2083 		return (EEXIST);
2084 	}
2085 
2086 	/*
2087 	 * Create and initialize the spa structure.
2088 	 */
2089 	(void) nvlist_lookup_string(props,
2090 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2091 	spa = spa_add(pool, altroot);
2092 	spa_activate(spa);
2093 
2094 	if (allowfaulted)
2095 		spa->spa_import_faulted = B_TRUE;
2096 	spa->spa_is_root = isroot;
2097 
2098 	/*
2099 	 * Pass off the heavy lifting to spa_load().
2100 	 * Pass TRUE for mosconfig (unless this is a root pool) because
2101 	 * the user-supplied config is actually the one to trust when
2102 	 * doing an import.
2103 	 */
2104 	loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot);
2105 
2106 	spa_config_enter(spa, RW_WRITER, FTAG);
2107 	/*
2108 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2109 	 * and conflicts with spa_has_spare().
2110 	 */
2111 	if (!isroot && spa->spa_spares.sav_config) {
2112 		nvlist_free(spa->spa_spares.sav_config);
2113 		spa->spa_spares.sav_config = NULL;
2114 		spa_load_spares(spa);
2115 	}
2116 	if (!isroot && spa->spa_l2cache.sav_config) {
2117 		nvlist_free(spa->spa_l2cache.sav_config);
2118 		spa->spa_l2cache.sav_config = NULL;
2119 		spa_load_l2cache(spa);
2120 	}
2121 
2122 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2123 	    &nvroot) == 0);
2124 	if (error == 0)
2125 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2126 	if (error == 0)
2127 		error = spa_validate_aux(spa, nvroot, -1ULL,
2128 		    VDEV_ALLOC_L2CACHE);
2129 	spa_config_exit(spa, FTAG);
2130 
2131 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
2132 		if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2133 			/*
2134 			 * If we failed to load the pool, but 'allowfaulted' is
2135 			 * set, then manually set the config as if the config
2136 			 * passed in was specified in the cache file.
2137 			 */
2138 			error = 0;
2139 			spa->spa_import_faulted = B_FALSE;
2140 			if (spa->spa_config == NULL) {
2141 				spa_config_enter(spa, RW_READER, FTAG);
2142 				spa->spa_config = spa_config_generate(spa,
2143 				    NULL, -1ULL, B_TRUE);
2144 				spa_config_exit(spa, FTAG);
2145 			}
2146 			spa_unload(spa);
2147 			spa_deactivate(spa);
2148 			spa_config_sync(spa, B_FALSE, B_TRUE);
2149 		} else {
2150 			spa_unload(spa);
2151 			spa_deactivate(spa);
2152 			spa_remove(spa);
2153 		}
2154 		mutex_exit(&spa_namespace_lock);
2155 		return (error);
2156 	}
2157 
2158 	/*
2159 	 * Override any spares and level 2 cache devices as specified by
2160 	 * the user, as these may have correct device names/devids, etc.
2161 	 */
2162 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2163 	    &spares, &nspares) == 0) {
2164 		if (spa->spa_spares.sav_config)
2165 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2166 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2167 		else
2168 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2169 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2170 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2171 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2172 		spa_config_enter(spa, RW_WRITER, FTAG);
2173 		spa_load_spares(spa);
2174 		spa_config_exit(spa, FTAG);
2175 		spa->spa_spares.sav_sync = B_TRUE;
2176 	}
2177 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2178 	    &l2cache, &nl2cache) == 0) {
2179 		if (spa->spa_l2cache.sav_config)
2180 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2181 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2182 		else
2183 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2184 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2185 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2186 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2187 		spa_config_enter(spa, RW_WRITER, FTAG);
2188 		spa_load_l2cache(spa);
2189 		spa_config_exit(spa, FTAG);
2190 		spa->spa_l2cache.sav_sync = B_TRUE;
2191 	}
2192 
2193 	if (spa_mode & FWRITE) {
2194 		/*
2195 		 * Update the config cache to include the newly-imported pool.
2196 		 */
2197 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2198 	}
2199 
2200 	spa->spa_import_faulted = B_FALSE;
2201 	mutex_exit(&spa_namespace_lock);
2202 
2203 	return (0);
2204 }
2205 
2206 #ifdef _KERNEL
2207 /*
2208  * Build a "root" vdev for a top level vdev read in from a rootpool
2209  * device label.
2210  */
2211 static void
2212 spa_build_rootpool_config(nvlist_t *config)
2213 {
2214 	nvlist_t *nvtop, *nvroot;
2215 	uint64_t pgid;
2216 
2217 	/*
2218 	 * Add this top-level vdev to the child array.
2219 	 */
2220 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2221 	    == 0);
2222 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2223 	    == 0);
2224 
2225 	/*
2226 	 * Put this pool's top-level vdevs into a root vdev.
2227 	 */
2228 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2229 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2230 	    == 0);
2231 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2232 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2233 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2234 	    &nvtop, 1) == 0);
2235 
2236 	/*
2237 	 * Replace the existing vdev_tree with the new root vdev in
2238 	 * this pool's configuration (remove the old, add the new).
2239 	 */
2240 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2241 	nvlist_free(nvroot);
2242 }
2243 
2244 /*
2245  * Get the root pool information from the root disk, then import the root pool
2246  * during the system boot up time.
2247  */
2248 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2249 
2250 int
2251 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2252     uint64_t *besttxg)
2253 {
2254 	nvlist_t *config;
2255 	uint64_t txg;
2256 	int error;
2257 
2258 	if (error = vdev_disk_read_rootlabel(devpath, devid, &config))
2259 		return (error);
2260 
2261 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2262 
2263 	if (bestconf != NULL)
2264 		*bestconf = config;
2265 	else
2266 		nvlist_free(config);
2267 	*besttxg = txg;
2268 	return (0);
2269 }
2270 
2271 boolean_t
2272 spa_rootdev_validate(nvlist_t *nv)
2273 {
2274 	uint64_t ival;
2275 
2276 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2277 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2278 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2279 		return (B_FALSE);
2280 
2281 	return (B_TRUE);
2282 }
2283 
2284 
2285 /*
2286  * Given the boot device's physical path or devid, check if the device
2287  * is in a valid state.  If so, return the configuration from the vdev
2288  * label.
2289  */
2290 int
2291 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2292 {
2293 	nvlist_t *conf = NULL;
2294 	uint64_t txg = 0;
2295 	nvlist_t *nvtop, **child;
2296 	char *type;
2297 	char *bootpath = NULL;
2298 	uint_t children, c;
2299 	char *tmp;
2300 	int error;
2301 
2302 	if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2303 		*tmp = '\0';
2304 	if (error = spa_check_rootconf(devpath, devid, &conf, &txg)) {
2305 		cmn_err(CE_NOTE, "error reading device label");
2306 		return (error);
2307 	}
2308 	if (txg == 0) {
2309 		cmn_err(CE_NOTE, "this device is detached");
2310 		nvlist_free(conf);
2311 		return (EINVAL);
2312 	}
2313 
2314 	VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2315 	    &nvtop) == 0);
2316 	VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2317 
2318 	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2319 		if (spa_rootdev_validate(nvtop)) {
2320 			goto out;
2321 		} else {
2322 			nvlist_free(conf);
2323 			return (EINVAL);
2324 		}
2325 	}
2326 
2327 	ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2328 
2329 	VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2330 	    &child, &children) == 0);
2331 
2332 	/*
2333 	 * Go thru vdevs in the mirror to see if the given device
2334 	 * has the most recent txg. Only the device with the most
2335 	 * recent txg has valid information and should be booted.
2336 	 */
2337 	for (c = 0; c < children; c++) {
2338 		char *cdevid, *cpath;
2339 		uint64_t tmptxg;
2340 
2341 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2342 		    &cpath) != 0)
2343 			return (EINVAL);
2344 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_DEVID,
2345 		    &cdevid) != 0)
2346 			return (EINVAL);
2347 		if ((spa_check_rootconf(cpath, cdevid, NULL,
2348 		    &tmptxg) == 0) && (tmptxg > txg)) {
2349 			txg = tmptxg;
2350 			VERIFY(nvlist_lookup_string(child[c],
2351 			    ZPOOL_CONFIG_PATH, &bootpath) == 0);
2352 		}
2353 	}
2354 
2355 	/* Does the best device match the one we've booted from? */
2356 	if (bootpath) {
2357 		cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2358 		return (EINVAL);
2359 	}
2360 out:
2361 	*bestconf = conf;
2362 	return (0);
2363 }
2364 
2365 /*
2366  * Import a root pool.
2367  *
2368  * For x86. devpath_list will consist of devid and/or physpath name of
2369  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2370  * The GRUB "findroot" command will return the vdev we should boot.
2371  *
2372  * For Sparc, devpath_list consists the physpath name of the booting device
2373  * no matter the rootpool is a single device pool or a mirrored pool.
2374  * e.g.
2375  *	"/pci@1f,0/ide@d/disk@0,0:a"
2376  */
2377 int
2378 spa_import_rootpool(char *devpath, char *devid)
2379 {
2380 	nvlist_t *conf = NULL;
2381 	char *pname;
2382 	int error;
2383 
2384 	/*
2385 	 * Get the vdev pathname and configuation from the most
2386 	 * recently updated vdev (highest txg).
2387 	 */
2388 	if (error = spa_get_rootconf(devpath, devid, &conf))
2389 		goto msg_out;
2390 
2391 	/*
2392 	 * Add type "root" vdev to the config.
2393 	 */
2394 	spa_build_rootpool_config(conf);
2395 
2396 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2397 
2398 	/*
2399 	 * We specify 'allowfaulted' for this to be treated like spa_open()
2400 	 * instead of spa_import().  This prevents us from marking vdevs as
2401 	 * persistently unavailable, and generates FMA ereports as if it were a
2402 	 * pool open, not import.
2403 	 */
2404 	error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE);
2405 	if (error == EEXIST)
2406 		error = 0;
2407 
2408 	nvlist_free(conf);
2409 	return (error);
2410 
2411 msg_out:
2412 	cmn_err(CE_NOTE, "\n"
2413 	    "  ***************************************************  \n"
2414 	    "  *  This device is not bootable!                   *  \n"
2415 	    "  *  It is either offlined or detached or faulted.  *  \n"
2416 	    "  *  Please try to boot from a different device.    *  \n"
2417 	    "  ***************************************************  ");
2418 
2419 	return (error);
2420 }
2421 #endif
2422 
2423 /*
2424  * Import a non-root pool into the system.
2425  */
2426 int
2427 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2428 {
2429 	return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2430 }
2431 
2432 int
2433 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2434 {
2435 	return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2436 }
2437 
2438 
2439 /*
2440  * This (illegal) pool name is used when temporarily importing a spa_t in order
2441  * to get the vdev stats associated with the imported devices.
2442  */
2443 #define	TRYIMPORT_NAME	"$import"
2444 
2445 nvlist_t *
2446 spa_tryimport(nvlist_t *tryconfig)
2447 {
2448 	nvlist_t *config = NULL;
2449 	char *poolname;
2450 	spa_t *spa;
2451 	uint64_t state;
2452 
2453 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2454 		return (NULL);
2455 
2456 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2457 		return (NULL);
2458 
2459 	/*
2460 	 * Create and initialize the spa structure.
2461 	 */
2462 	mutex_enter(&spa_namespace_lock);
2463 	spa = spa_add(TRYIMPORT_NAME, NULL);
2464 	spa_activate(spa);
2465 
2466 	/*
2467 	 * Pass off the heavy lifting to spa_load().
2468 	 * Pass TRUE for mosconfig because the user-supplied config
2469 	 * is actually the one to trust when doing an import.
2470 	 */
2471 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2472 
2473 	/*
2474 	 * If 'tryconfig' was at least parsable, return the current config.
2475 	 */
2476 	if (spa->spa_root_vdev != NULL) {
2477 		spa_config_enter(spa, RW_READER, FTAG);
2478 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2479 		spa_config_exit(spa, FTAG);
2480 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2481 		    poolname) == 0);
2482 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2483 		    state) == 0);
2484 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2485 		    spa->spa_uberblock.ub_timestamp) == 0);
2486 
2487 		/*
2488 		 * If the bootfs property exists on this pool then we
2489 		 * copy it out so that external consumers can tell which
2490 		 * pools are bootable.
2491 		 */
2492 		if (spa->spa_bootfs) {
2493 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2494 
2495 			/*
2496 			 * We have to play games with the name since the
2497 			 * pool was opened as TRYIMPORT_NAME.
2498 			 */
2499 			if (dsl_dsobj_to_dsname(spa->spa_name,
2500 			    spa->spa_bootfs, tmpname) == 0) {
2501 				char *cp;
2502 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2503 
2504 				cp = strchr(tmpname, '/');
2505 				if (cp == NULL) {
2506 					(void) strlcpy(dsname, tmpname,
2507 					    MAXPATHLEN);
2508 				} else {
2509 					(void) snprintf(dsname, MAXPATHLEN,
2510 					    "%s/%s", poolname, ++cp);
2511 				}
2512 				VERIFY(nvlist_add_string(config,
2513 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2514 				kmem_free(dsname, MAXPATHLEN);
2515 			}
2516 			kmem_free(tmpname, MAXPATHLEN);
2517 		}
2518 
2519 		/*
2520 		 * Add the list of hot spares and level 2 cache devices.
2521 		 */
2522 		spa_add_spares(spa, config);
2523 		spa_add_l2cache(spa, config);
2524 	}
2525 
2526 	spa_unload(spa);
2527 	spa_deactivate(spa);
2528 	spa_remove(spa);
2529 	mutex_exit(&spa_namespace_lock);
2530 
2531 	return (config);
2532 }
2533 
2534 /*
2535  * Pool export/destroy
2536  *
2537  * The act of destroying or exporting a pool is very simple.  We make sure there
2538  * is no more pending I/O and any references to the pool are gone.  Then, we
2539  * update the pool state and sync all the labels to disk, removing the
2540  * configuration from the cache afterwards.
2541  */
2542 static int
2543 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2544     boolean_t force)
2545 {
2546 	spa_t *spa;
2547 
2548 	if (oldconfig)
2549 		*oldconfig = NULL;
2550 
2551 	if (!(spa_mode & FWRITE))
2552 		return (EROFS);
2553 
2554 	mutex_enter(&spa_namespace_lock);
2555 	if ((spa = spa_lookup(pool)) == NULL) {
2556 		mutex_exit(&spa_namespace_lock);
2557 		return (ENOENT);
2558 	}
2559 
2560 	/*
2561 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2562 	 * reacquire the namespace lock, and see if we can export.
2563 	 */
2564 	spa_open_ref(spa, FTAG);
2565 	mutex_exit(&spa_namespace_lock);
2566 	spa_async_suspend(spa);
2567 	mutex_enter(&spa_namespace_lock);
2568 	spa_close(spa, FTAG);
2569 
2570 	/*
2571 	 * The pool will be in core if it's openable,
2572 	 * in which case we can modify its state.
2573 	 */
2574 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2575 		/*
2576 		 * Objsets may be open only because they're dirty, so we
2577 		 * have to force it to sync before checking spa_refcnt.
2578 		 */
2579 		txg_wait_synced(spa->spa_dsl_pool, 0);
2580 
2581 		/*
2582 		 * A pool cannot be exported or destroyed if there are active
2583 		 * references.  If we are resetting a pool, allow references by
2584 		 * fault injection handlers.
2585 		 */
2586 		if (!spa_refcount_zero(spa) ||
2587 		    (spa->spa_inject_ref != 0 &&
2588 		    new_state != POOL_STATE_UNINITIALIZED)) {
2589 			spa_async_resume(spa);
2590 			mutex_exit(&spa_namespace_lock);
2591 			return (EBUSY);
2592 		}
2593 
2594 		/*
2595 		 * A pool cannot be exported if it has an active shared spare.
2596 		 * This is to prevent other pools stealing the active spare
2597 		 * from an exported pool. At user's own will, such pool can
2598 		 * be forcedly exported.
2599 		 */
2600 		if (!force && new_state == POOL_STATE_EXPORTED &&
2601 		    spa_has_active_shared_spare(spa)) {
2602 			spa_async_resume(spa);
2603 			mutex_exit(&spa_namespace_lock);
2604 			return (EXDEV);
2605 		}
2606 
2607 		/*
2608 		 * We want this to be reflected on every label,
2609 		 * so mark them all dirty.  spa_unload() will do the
2610 		 * final sync that pushes these changes out.
2611 		 */
2612 		if (new_state != POOL_STATE_UNINITIALIZED) {
2613 			spa_config_enter(spa, RW_WRITER, FTAG);
2614 			spa->spa_state = new_state;
2615 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2616 			vdev_config_dirty(spa->spa_root_vdev);
2617 			spa_config_exit(spa, FTAG);
2618 		}
2619 	}
2620 
2621 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2622 
2623 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2624 		spa_unload(spa);
2625 		spa_deactivate(spa);
2626 	}
2627 
2628 	if (oldconfig && spa->spa_config)
2629 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2630 
2631 	if (new_state != POOL_STATE_UNINITIALIZED) {
2632 		spa_config_sync(spa, B_TRUE, B_TRUE);
2633 		spa_remove(spa);
2634 	}
2635 	mutex_exit(&spa_namespace_lock);
2636 
2637 	return (0);
2638 }
2639 
2640 /*
2641  * Destroy a storage pool.
2642  */
2643 int
2644 spa_destroy(char *pool)
2645 {
2646 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE));
2647 }
2648 
2649 /*
2650  * Export a storage pool.
2651  */
2652 int
2653 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force)
2654 {
2655 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force));
2656 }
2657 
2658 /*
2659  * Similar to spa_export(), this unloads the spa_t without actually removing it
2660  * from the namespace in any way.
2661  */
2662 int
2663 spa_reset(char *pool)
2664 {
2665 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2666 	    B_FALSE));
2667 }
2668 
2669 /*
2670  * ==========================================================================
2671  * Device manipulation
2672  * ==========================================================================
2673  */
2674 
2675 /*
2676  * Add a device to a storage pool.
2677  */
2678 int
2679 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2680 {
2681 	uint64_t txg;
2682 	int c, error;
2683 	vdev_t *rvd = spa->spa_root_vdev;
2684 	vdev_t *vd, *tvd;
2685 	nvlist_t **spares, **l2cache;
2686 	uint_t nspares, nl2cache;
2687 
2688 	txg = spa_vdev_enter(spa);
2689 
2690 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2691 	    VDEV_ALLOC_ADD)) != 0)
2692 		return (spa_vdev_exit(spa, NULL, txg, error));
2693 
2694 	spa->spa_pending_vdev = vd;
2695 
2696 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2697 	    &nspares) != 0)
2698 		nspares = 0;
2699 
2700 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2701 	    &nl2cache) != 0)
2702 		nl2cache = 0;
2703 
2704 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) {
2705 		spa->spa_pending_vdev = NULL;
2706 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2707 	}
2708 
2709 	if (vd->vdev_children != 0) {
2710 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
2711 			spa->spa_pending_vdev = NULL;
2712 			return (spa_vdev_exit(spa, vd, txg, error));
2713 		}
2714 	}
2715 
2716 	/*
2717 	 * We must validate the spares and l2cache devices after checking the
2718 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2719 	 */
2720 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) {
2721 		spa->spa_pending_vdev = NULL;
2722 		return (spa_vdev_exit(spa, vd, txg, error));
2723 	}
2724 
2725 	spa->spa_pending_vdev = NULL;
2726 
2727 	/*
2728 	 * Transfer each new top-level vdev from vd to rvd.
2729 	 */
2730 	for (c = 0; c < vd->vdev_children; c++) {
2731 		tvd = vd->vdev_child[c];
2732 		vdev_remove_child(vd, tvd);
2733 		tvd->vdev_id = rvd->vdev_children;
2734 		vdev_add_child(rvd, tvd);
2735 		vdev_config_dirty(tvd);
2736 	}
2737 
2738 	if (nspares != 0) {
2739 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2740 		    ZPOOL_CONFIG_SPARES);
2741 		spa_load_spares(spa);
2742 		spa->spa_spares.sav_sync = B_TRUE;
2743 	}
2744 
2745 	if (nl2cache != 0) {
2746 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2747 		    ZPOOL_CONFIG_L2CACHE);
2748 		spa_load_l2cache(spa);
2749 		spa->spa_l2cache.sav_sync = B_TRUE;
2750 	}
2751 
2752 	/*
2753 	 * We have to be careful when adding new vdevs to an existing pool.
2754 	 * If other threads start allocating from these vdevs before we
2755 	 * sync the config cache, and we lose power, then upon reboot we may
2756 	 * fail to open the pool because there are DVAs that the config cache
2757 	 * can't translate.  Therefore, we first add the vdevs without
2758 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2759 	 * and then let spa_config_update() initialize the new metaslabs.
2760 	 *
2761 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2762 	 * if we lose power at any point in this sequence, the remaining
2763 	 * steps will be completed the next time we load the pool.
2764 	 */
2765 	(void) spa_vdev_exit(spa, vd, txg, 0);
2766 
2767 	mutex_enter(&spa_namespace_lock);
2768 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2769 	mutex_exit(&spa_namespace_lock);
2770 
2771 	return (0);
2772 }
2773 
2774 /*
2775  * Attach a device to a mirror.  The arguments are the path to any device
2776  * in the mirror, and the nvroot for the new device.  If the path specifies
2777  * a device that is not mirrored, we automatically insert the mirror vdev.
2778  *
2779  * If 'replacing' is specified, the new device is intended to replace the
2780  * existing device; in this case the two devices are made into their own
2781  * mirror using the 'replacing' vdev, which is functionally identical to
2782  * the mirror vdev (it actually reuses all the same ops) but has a few
2783  * extra rules: you can't attach to it after it's been created, and upon
2784  * completion of resilvering, the first disk (the one being replaced)
2785  * is automatically detached.
2786  */
2787 int
2788 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2789 {
2790 	uint64_t txg, open_txg;
2791 	vdev_t *rvd = spa->spa_root_vdev;
2792 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2793 	vdev_ops_t *pvops;
2794 	dmu_tx_t *tx;
2795 	char *oldvdpath, *newvdpath;
2796 	int newvd_isspare;
2797 	int error;
2798 
2799 	txg = spa_vdev_enter(spa);
2800 
2801 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2802 
2803 	if (oldvd == NULL)
2804 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2805 
2806 	if (!oldvd->vdev_ops->vdev_op_leaf)
2807 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2808 
2809 	pvd = oldvd->vdev_parent;
2810 
2811 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2812 	    VDEV_ALLOC_ADD)) != 0)
2813 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2814 
2815 	if (newrootvd->vdev_children != 1)
2816 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2817 
2818 	newvd = newrootvd->vdev_child[0];
2819 
2820 	if (!newvd->vdev_ops->vdev_op_leaf)
2821 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2822 
2823 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2824 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2825 
2826 	/*
2827 	 * Spares can't replace logs
2828 	 */
2829 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
2830 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2831 
2832 	if (!replacing) {
2833 		/*
2834 		 * For attach, the only allowable parent is a mirror or the root
2835 		 * vdev.
2836 		 */
2837 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2838 		    pvd->vdev_ops != &vdev_root_ops)
2839 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2840 
2841 		pvops = &vdev_mirror_ops;
2842 	} else {
2843 		/*
2844 		 * Active hot spares can only be replaced by inactive hot
2845 		 * spares.
2846 		 */
2847 		if (pvd->vdev_ops == &vdev_spare_ops &&
2848 		    pvd->vdev_child[1] == oldvd &&
2849 		    !spa_has_spare(spa, newvd->vdev_guid))
2850 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2851 
2852 		/*
2853 		 * If the source is a hot spare, and the parent isn't already a
2854 		 * spare, then we want to create a new hot spare.  Otherwise, we
2855 		 * want to create a replacing vdev.  The user is not allowed to
2856 		 * attach to a spared vdev child unless the 'isspare' state is
2857 		 * the same (spare replaces spare, non-spare replaces
2858 		 * non-spare).
2859 		 */
2860 		if (pvd->vdev_ops == &vdev_replacing_ops)
2861 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2862 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2863 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2864 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2865 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2866 		    newvd->vdev_isspare)
2867 			pvops = &vdev_spare_ops;
2868 		else
2869 			pvops = &vdev_replacing_ops;
2870 	}
2871 
2872 	/*
2873 	 * Compare the new device size with the replaceable/attachable
2874 	 * device size.
2875 	 */
2876 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2877 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2878 
2879 	/*
2880 	 * The new device cannot have a higher alignment requirement
2881 	 * than the top-level vdev.
2882 	 */
2883 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2884 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2885 
2886 	/*
2887 	 * If this is an in-place replacement, update oldvd's path and devid
2888 	 * to make it distinguishable from newvd, and unopenable from now on.
2889 	 */
2890 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2891 		spa_strfree(oldvd->vdev_path);
2892 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2893 		    KM_SLEEP);
2894 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2895 		    newvd->vdev_path, "old");
2896 		if (oldvd->vdev_devid != NULL) {
2897 			spa_strfree(oldvd->vdev_devid);
2898 			oldvd->vdev_devid = NULL;
2899 		}
2900 	}
2901 
2902 	/*
2903 	 * If the parent is not a mirror, or if we're replacing, insert the new
2904 	 * mirror/replacing/spare vdev above oldvd.
2905 	 */
2906 	if (pvd->vdev_ops != pvops)
2907 		pvd = vdev_add_parent(oldvd, pvops);
2908 
2909 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2910 	ASSERT(pvd->vdev_ops == pvops);
2911 	ASSERT(oldvd->vdev_parent == pvd);
2912 
2913 	/*
2914 	 * Extract the new device from its root and add it to pvd.
2915 	 */
2916 	vdev_remove_child(newrootvd, newvd);
2917 	newvd->vdev_id = pvd->vdev_children;
2918 	vdev_add_child(pvd, newvd);
2919 
2920 	/*
2921 	 * If newvd is smaller than oldvd, but larger than its rsize,
2922 	 * the addition of newvd may have decreased our parent's asize.
2923 	 */
2924 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2925 
2926 	tvd = newvd->vdev_top;
2927 	ASSERT(pvd->vdev_top == tvd);
2928 	ASSERT(tvd->vdev_parent == rvd);
2929 
2930 	vdev_config_dirty(tvd);
2931 
2932 	/*
2933 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2934 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2935 	 */
2936 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2937 
2938 	mutex_enter(&newvd->vdev_dtl_lock);
2939 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2940 	    open_txg - TXG_INITIAL + 1);
2941 	mutex_exit(&newvd->vdev_dtl_lock);
2942 
2943 	if (newvd->vdev_isspare)
2944 		spa_spare_activate(newvd);
2945 	oldvdpath = spa_strdup(vdev_description(oldvd));
2946 	newvdpath = spa_strdup(vdev_description(newvd));
2947 	newvd_isspare = newvd->vdev_isspare;
2948 
2949 	/*
2950 	 * Mark newvd's DTL dirty in this txg.
2951 	 */
2952 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2953 
2954 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2955 
2956 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2957 	if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
2958 		spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
2959 		    CRED(),  "%s vdev=%s %s vdev=%s",
2960 		    replacing && newvd_isspare ? "spare in" :
2961 		    replacing ? "replace" : "attach", newvdpath,
2962 		    replacing ? "for" : "to", oldvdpath);
2963 		dmu_tx_commit(tx);
2964 	} else {
2965 		dmu_tx_abort(tx);
2966 	}
2967 
2968 	spa_strfree(oldvdpath);
2969 	spa_strfree(newvdpath);
2970 
2971 	/*
2972 	 * Kick off a resilver to update newvd.
2973 	 */
2974 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
2975 
2976 	return (0);
2977 }
2978 
2979 /*
2980  * Detach a device from a mirror or replacing vdev.
2981  * If 'replace_done' is specified, only detach if the parent
2982  * is a replacing vdev.
2983  */
2984 int
2985 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2986 {
2987 	uint64_t txg;
2988 	int c, t, error;
2989 	vdev_t *rvd = spa->spa_root_vdev;
2990 	vdev_t *vd, *pvd, *cvd, *tvd;
2991 	boolean_t unspare = B_FALSE;
2992 	uint64_t unspare_guid;
2993 	size_t len;
2994 
2995 	txg = spa_vdev_enter(spa);
2996 
2997 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2998 
2999 	if (vd == NULL)
3000 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3001 
3002 	if (!vd->vdev_ops->vdev_op_leaf)
3003 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3004 
3005 	pvd = vd->vdev_parent;
3006 
3007 	/*
3008 	 * If replace_done is specified, only remove this device if it's
3009 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3010 	 * disk can be removed.
3011 	 */
3012 	if (replace_done) {
3013 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3014 			if (vd->vdev_id != 0)
3015 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3016 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3017 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3018 		}
3019 	}
3020 
3021 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3022 	    spa_version(spa) >= SPA_VERSION_SPARES);
3023 
3024 	/*
3025 	 * Only mirror, replacing, and spare vdevs support detach.
3026 	 */
3027 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3028 	    pvd->vdev_ops != &vdev_mirror_ops &&
3029 	    pvd->vdev_ops != &vdev_spare_ops)
3030 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3031 
3032 	/*
3033 	 * If there's only one replica, you can't detach it.
3034 	 */
3035 	if (pvd->vdev_children <= 1)
3036 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3037 
3038 	/*
3039 	 * If all siblings have non-empty DTLs, this device may have the only
3040 	 * valid copy of the data, which means we cannot safely detach it.
3041 	 *
3042 	 * XXX -- as in the vdev_offline() case, we really want a more
3043 	 * precise DTL check.
3044 	 */
3045 	for (c = 0; c < pvd->vdev_children; c++) {
3046 		uint64_t dirty;
3047 
3048 		cvd = pvd->vdev_child[c];
3049 		if (cvd == vd)
3050 			continue;
3051 		if (vdev_is_dead(cvd))
3052 			continue;
3053 		mutex_enter(&cvd->vdev_dtl_lock);
3054 		dirty = cvd->vdev_dtl_map.sm_space |
3055 		    cvd->vdev_dtl_scrub.sm_space;
3056 		mutex_exit(&cvd->vdev_dtl_lock);
3057 		if (!dirty)
3058 			break;
3059 	}
3060 
3061 	/*
3062 	 * If we are a replacing or spare vdev, then we can always detach the
3063 	 * latter child, as that is how one cancels the operation.
3064 	 */
3065 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
3066 	    c == pvd->vdev_children)
3067 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3068 
3069 	/*
3070 	 * If we are detaching the second disk from a replacing vdev, then
3071 	 * check to see if we changed the original vdev's path to have "/old"
3072 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3073 	 */
3074 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3075 	    pvd->vdev_child[0]->vdev_path != NULL &&
3076 	    pvd->vdev_child[1]->vdev_path != NULL) {
3077 		ASSERT(pvd->vdev_child[1] == vd);
3078 		cvd = pvd->vdev_child[0];
3079 		len = strlen(vd->vdev_path);
3080 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3081 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3082 			spa_strfree(cvd->vdev_path);
3083 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3084 		}
3085 	}
3086 
3087 	/*
3088 	 * If we are detaching the original disk from a spare, then it implies
3089 	 * that the spare should become a real disk, and be removed from the
3090 	 * active spare list for the pool.
3091 	 */
3092 	if (pvd->vdev_ops == &vdev_spare_ops &&
3093 	    vd->vdev_id == 0)
3094 		unspare = B_TRUE;
3095 
3096 	/*
3097 	 * Erase the disk labels so the disk can be used for other things.
3098 	 * This must be done after all other error cases are handled,
3099 	 * but before we disembowel vd (so we can still do I/O to it).
3100 	 * But if we can't do it, don't treat the error as fatal --
3101 	 * it may be that the unwritability of the disk is the reason
3102 	 * it's being detached!
3103 	 */
3104 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3105 
3106 	/*
3107 	 * Remove vd from its parent and compact the parent's children.
3108 	 */
3109 	vdev_remove_child(pvd, vd);
3110 	vdev_compact_children(pvd);
3111 
3112 	/*
3113 	 * Remember one of the remaining children so we can get tvd below.
3114 	 */
3115 	cvd = pvd->vdev_child[0];
3116 
3117 	/*
3118 	 * If we need to remove the remaining child from the list of hot spares,
3119 	 * do it now, marking the vdev as no longer a spare in the process.  We
3120 	 * must do this before vdev_remove_parent(), because that can change the
3121 	 * GUID if it creates a new toplevel GUID.
3122 	 */
3123 	if (unspare) {
3124 		ASSERT(cvd->vdev_isspare);
3125 		spa_spare_remove(cvd);
3126 		unspare_guid = cvd->vdev_guid;
3127 	}
3128 
3129 	/*
3130 	 * If the parent mirror/replacing vdev only has one child,
3131 	 * the parent is no longer needed.  Remove it from the tree.
3132 	 */
3133 	if (pvd->vdev_children == 1)
3134 		vdev_remove_parent(cvd);
3135 
3136 	/*
3137 	 * We don't set tvd until now because the parent we just removed
3138 	 * may have been the previous top-level vdev.
3139 	 */
3140 	tvd = cvd->vdev_top;
3141 	ASSERT(tvd->vdev_parent == rvd);
3142 
3143 	/*
3144 	 * Reevaluate the parent vdev state.
3145 	 */
3146 	vdev_propagate_state(cvd);
3147 
3148 	/*
3149 	 * If the device we just detached was smaller than the others, it may be
3150 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3151 	 * can't fail because the existing metaslabs are already in core, so
3152 	 * there's nothing to read from disk.
3153 	 */
3154 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3155 
3156 	vdev_config_dirty(tvd);
3157 
3158 	/*
3159 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3160 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3161 	 * But first make sure we're not on any *other* txg's DTL list, to
3162 	 * prevent vd from being accessed after it's freed.
3163 	 */
3164 	for (t = 0; t < TXG_SIZE; t++)
3165 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3166 	vd->vdev_detached = B_TRUE;
3167 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3168 
3169 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3170 
3171 	error = spa_vdev_exit(spa, vd, txg, 0);
3172 
3173 	/*
3174 	 * If this was the removal of the original device in a hot spare vdev,
3175 	 * then we want to go through and remove the device from the hot spare
3176 	 * list of every other pool.
3177 	 */
3178 	if (unspare) {
3179 		spa = NULL;
3180 		mutex_enter(&spa_namespace_lock);
3181 		while ((spa = spa_next(spa)) != NULL) {
3182 			if (spa->spa_state != POOL_STATE_ACTIVE)
3183 				continue;
3184 
3185 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3186 		}
3187 		mutex_exit(&spa_namespace_lock);
3188 	}
3189 
3190 	return (error);
3191 }
3192 
3193 /*
3194  * Remove a spares vdev from the nvlist config.
3195  */
3196 static int
3197 spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare,
3198     nvlist_t **spares, int nspares, vdev_t *vd)
3199 {
3200 	nvlist_t *nv, **newspares;
3201 	int i, j;
3202 
3203 	nv = NULL;
3204 	for (i = 0; i < nspares; i++) {
3205 		uint64_t theguid;
3206 
3207 		VERIFY(nvlist_lookup_uint64(spares[i],
3208 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3209 		if (theguid == guid) {
3210 			nv = spares[i];
3211 			break;
3212 		}
3213 	}
3214 
3215 	/*
3216 	 * Only remove the hot spare if it's not currently in use in this pool.
3217 	 */
3218 	if (nv == NULL && vd == NULL)
3219 		return (ENOENT);
3220 
3221 	if (nv == NULL && vd != NULL)
3222 		return (ENOTSUP);
3223 
3224 	if (!unspare && nv != NULL && vd != NULL)
3225 		return (EBUSY);
3226 
3227 	if (nspares == 1) {
3228 		newspares = NULL;
3229 	} else {
3230 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
3231 		    KM_SLEEP);
3232 		for (i = 0, j = 0; i < nspares; i++) {
3233 			if (spares[i] != nv)
3234 				VERIFY(nvlist_dup(spares[i],
3235 				    &newspares[j++], KM_SLEEP) == 0);
3236 		}
3237 	}
3238 
3239 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES,
3240 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3241 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3242 	    ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0);
3243 	for (i = 0; i < nspares - 1; i++)
3244 		nvlist_free(newspares[i]);
3245 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
3246 
3247 	return (0);
3248 }
3249 
3250 /*
3251  * Remove an l2cache vdev from the nvlist config.
3252  */
3253 static int
3254 spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache,
3255     int nl2cache, vdev_t *vd)
3256 {
3257 	nvlist_t *nv, **newl2cache;
3258 	int i, j;
3259 
3260 	nv = NULL;
3261 	for (i = 0; i < nl2cache; i++) {
3262 		uint64_t theguid;
3263 
3264 		VERIFY(nvlist_lookup_uint64(l2cache[i],
3265 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3266 		if (theguid == guid) {
3267 			nv = l2cache[i];
3268 			break;
3269 		}
3270 	}
3271 
3272 	if (vd == NULL) {
3273 		for (i = 0; i < nl2cache; i++) {
3274 			if (sav->sav_vdevs[i]->vdev_guid == guid) {
3275 				vd = sav->sav_vdevs[i];
3276 				break;
3277 			}
3278 		}
3279 	}
3280 
3281 	if (nv == NULL && vd == NULL)
3282 		return (ENOENT);
3283 
3284 	if (nv == NULL && vd != NULL)
3285 		return (ENOTSUP);
3286 
3287 	if (nl2cache == 1) {
3288 		newl2cache = NULL;
3289 	} else {
3290 		newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *),
3291 		    KM_SLEEP);
3292 		for (i = 0, j = 0; i < nl2cache; i++) {
3293 			if (l2cache[i] != nv)
3294 				VERIFY(nvlist_dup(l2cache[i],
3295 				    &newl2cache[j++], KM_SLEEP) == 0);
3296 		}
3297 	}
3298 
3299 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
3300 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3301 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3302 	    ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0);
3303 	for (i = 0; i < nl2cache - 1; i++)
3304 		nvlist_free(newl2cache[i]);
3305 	kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *));
3306 
3307 	return (0);
3308 }
3309 
3310 /*
3311  * Remove a device from the pool.  Currently, this supports removing only hot
3312  * spares and level 2 ARC devices.
3313  */
3314 int
3315 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3316 {
3317 	vdev_t *vd;
3318 	nvlist_t **spares, **l2cache;
3319 	uint_t nspares, nl2cache;
3320 	int error = 0;
3321 
3322 	spa_config_enter(spa, RW_WRITER, FTAG);
3323 
3324 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3325 
3326 	if (spa->spa_spares.sav_vdevs != NULL &&
3327 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3328 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) {
3329 		if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare,
3330 		    spares, nspares, vd)) != 0)
3331 			goto cache;
3332 		spa_load_spares(spa);
3333 		spa->spa_spares.sav_sync = B_TRUE;
3334 		goto out;
3335 	}
3336 
3337 cache:
3338 	if (spa->spa_l2cache.sav_vdevs != NULL &&
3339 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3340 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) {
3341 		if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid,
3342 		    l2cache, nl2cache, vd)) != 0)
3343 			goto out;
3344 		spa_load_l2cache(spa);
3345 		spa->spa_l2cache.sav_sync = B_TRUE;
3346 	}
3347 
3348 out:
3349 	spa_config_exit(spa, FTAG);
3350 	return (error);
3351 }
3352 
3353 /*
3354  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3355  * current spared, so we can detach it.
3356  */
3357 static vdev_t *
3358 spa_vdev_resilver_done_hunt(vdev_t *vd)
3359 {
3360 	vdev_t *newvd, *oldvd;
3361 	int c;
3362 
3363 	for (c = 0; c < vd->vdev_children; c++) {
3364 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3365 		if (oldvd != NULL)
3366 			return (oldvd);
3367 	}
3368 
3369 	/*
3370 	 * Check for a completed replacement.
3371 	 */
3372 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3373 		oldvd = vd->vdev_child[0];
3374 		newvd = vd->vdev_child[1];
3375 
3376 		mutex_enter(&newvd->vdev_dtl_lock);
3377 		if (newvd->vdev_dtl_map.sm_space == 0 &&
3378 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3379 			mutex_exit(&newvd->vdev_dtl_lock);
3380 			return (oldvd);
3381 		}
3382 		mutex_exit(&newvd->vdev_dtl_lock);
3383 	}
3384 
3385 	/*
3386 	 * Check for a completed resilver with the 'unspare' flag set.
3387 	 */
3388 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3389 		newvd = vd->vdev_child[0];
3390 		oldvd = vd->vdev_child[1];
3391 
3392 		mutex_enter(&newvd->vdev_dtl_lock);
3393 		if (newvd->vdev_unspare &&
3394 		    newvd->vdev_dtl_map.sm_space == 0 &&
3395 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3396 			newvd->vdev_unspare = 0;
3397 			mutex_exit(&newvd->vdev_dtl_lock);
3398 			return (oldvd);
3399 		}
3400 		mutex_exit(&newvd->vdev_dtl_lock);
3401 	}
3402 
3403 	return (NULL);
3404 }
3405 
3406 static void
3407 spa_vdev_resilver_done(spa_t *spa)
3408 {
3409 	vdev_t *vd;
3410 	vdev_t *pvd;
3411 	uint64_t guid;
3412 	uint64_t pguid = 0;
3413 
3414 	spa_config_enter(spa, RW_READER, FTAG);
3415 
3416 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3417 		guid = vd->vdev_guid;
3418 		/*
3419 		 * If we have just finished replacing a hot spared device, then
3420 		 * we need to detach the parent's first child (the original hot
3421 		 * spare) as well.
3422 		 */
3423 		pvd = vd->vdev_parent;
3424 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3425 		    pvd->vdev_id == 0) {
3426 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3427 			ASSERT(pvd->vdev_parent->vdev_children == 2);
3428 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
3429 		}
3430 		spa_config_exit(spa, FTAG);
3431 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
3432 			return;
3433 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
3434 			return;
3435 		spa_config_enter(spa, RW_READER, FTAG);
3436 	}
3437 
3438 	spa_config_exit(spa, FTAG);
3439 }
3440 
3441 /*
3442  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3443  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3444  */
3445 int
3446 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3447 {
3448 	vdev_t *vd;
3449 	uint64_t txg;
3450 
3451 	txg = spa_vdev_enter(spa);
3452 
3453 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3454 		/*
3455 		 * Determine if this is a reference to a hot spare device.  If
3456 		 * it is, update the path manually as there is no associated
3457 		 * vdev_t that can be synced to disk.
3458 		 */
3459 		nvlist_t **spares;
3460 		uint_t i, nspares;
3461 
3462 		if (spa->spa_spares.sav_config != NULL) {
3463 			VERIFY(nvlist_lookup_nvlist_array(
3464 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3465 			    &spares, &nspares) == 0);
3466 			for (i = 0; i < nspares; i++) {
3467 				uint64_t theguid;
3468 				VERIFY(nvlist_lookup_uint64(spares[i],
3469 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3470 				if (theguid == guid) {
3471 					VERIFY(nvlist_add_string(spares[i],
3472 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3473 					spa_load_spares(spa);
3474 					spa->spa_spares.sav_sync = B_TRUE;
3475 					return (spa_vdev_exit(spa, NULL, txg,
3476 					    0));
3477 				}
3478 			}
3479 		}
3480 
3481 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3482 	}
3483 
3484 	if (!vd->vdev_ops->vdev_op_leaf)
3485 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3486 
3487 	spa_strfree(vd->vdev_path);
3488 	vd->vdev_path = spa_strdup(newpath);
3489 
3490 	vdev_config_dirty(vd->vdev_top);
3491 
3492 	return (spa_vdev_exit(spa, NULL, txg, 0));
3493 }
3494 
3495 /*
3496  * ==========================================================================
3497  * SPA Scrubbing
3498  * ==========================================================================
3499  */
3500 
3501 int
3502 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3503 {
3504 	ASSERT(!spa_config_held(spa, RW_WRITER));
3505 
3506 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3507 		return (ENOTSUP);
3508 
3509 	/*
3510 	 * If a resilver was requested, but there is no DTL on a
3511 	 * writeable leaf device, we have nothing to do.
3512 	 */
3513 	if (type == POOL_SCRUB_RESILVER &&
3514 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3515 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3516 		return (0);
3517 	}
3518 
3519 	if (type == POOL_SCRUB_EVERYTHING &&
3520 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3521 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3522 		return (EBUSY);
3523 
3524 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3525 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3526 	} else if (type == POOL_SCRUB_NONE) {
3527 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3528 	} else {
3529 		return (EINVAL);
3530 	}
3531 }
3532 
3533 /*
3534  * ==========================================================================
3535  * SPA async task processing
3536  * ==========================================================================
3537  */
3538 
3539 static void
3540 spa_async_remove(spa_t *spa, vdev_t *vd)
3541 {
3542 	int c;
3543 
3544 	if (vd->vdev_remove_wanted) {
3545 		vd->vdev_remove_wanted = 0;
3546 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3547 		vdev_clear(spa, vd, B_TRUE);
3548 		vdev_config_dirty(vd->vdev_top);
3549 	}
3550 
3551 	for (c = 0; c < vd->vdev_children; c++)
3552 		spa_async_remove(spa, vd->vdev_child[c]);
3553 }
3554 
3555 static void
3556 spa_async_thread(spa_t *spa)
3557 {
3558 	int tasks, i;
3559 	uint64_t txg;
3560 
3561 	ASSERT(spa->spa_sync_on);
3562 
3563 	mutex_enter(&spa->spa_async_lock);
3564 	tasks = spa->spa_async_tasks;
3565 	spa->spa_async_tasks = 0;
3566 	mutex_exit(&spa->spa_async_lock);
3567 
3568 	/*
3569 	 * See if the config needs to be updated.
3570 	 */
3571 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3572 		mutex_enter(&spa_namespace_lock);
3573 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3574 		mutex_exit(&spa_namespace_lock);
3575 	}
3576 
3577 	/*
3578 	 * See if any devices need to be marked REMOVED.
3579 	 *
3580 	 * XXX - We avoid doing this when we are in
3581 	 * I/O failure state since spa_vdev_enter() grabs
3582 	 * the namespace lock and would not be able to obtain
3583 	 * the writer config lock.
3584 	 */
3585 	if (tasks & SPA_ASYNC_REMOVE &&
3586 	    spa_state(spa) != POOL_STATE_IO_FAILURE) {
3587 		txg = spa_vdev_enter(spa);
3588 		spa_async_remove(spa, spa->spa_root_vdev);
3589 		for (i = 0; i < spa->spa_l2cache.sav_count; i++)
3590 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3591 		for (i = 0; i < spa->spa_spares.sav_count; i++)
3592 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3593 		(void) spa_vdev_exit(spa, NULL, txg, 0);
3594 	}
3595 
3596 	/*
3597 	 * If any devices are done replacing, detach them.
3598 	 */
3599 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3600 		spa_vdev_resilver_done(spa);
3601 
3602 	/*
3603 	 * Kick off a resilver.
3604 	 */
3605 	if (tasks & SPA_ASYNC_RESILVER)
3606 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3607 
3608 	/*
3609 	 * Let the world know that we're done.
3610 	 */
3611 	mutex_enter(&spa->spa_async_lock);
3612 	spa->spa_async_thread = NULL;
3613 	cv_broadcast(&spa->spa_async_cv);
3614 	mutex_exit(&spa->spa_async_lock);
3615 	thread_exit();
3616 }
3617 
3618 void
3619 spa_async_suspend(spa_t *spa)
3620 {
3621 	mutex_enter(&spa->spa_async_lock);
3622 	spa->spa_async_suspended++;
3623 	while (spa->spa_async_thread != NULL)
3624 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3625 	mutex_exit(&spa->spa_async_lock);
3626 }
3627 
3628 void
3629 spa_async_resume(spa_t *spa)
3630 {
3631 	mutex_enter(&spa->spa_async_lock);
3632 	ASSERT(spa->spa_async_suspended != 0);
3633 	spa->spa_async_suspended--;
3634 	mutex_exit(&spa->spa_async_lock);
3635 }
3636 
3637 static void
3638 spa_async_dispatch(spa_t *spa)
3639 {
3640 	mutex_enter(&spa->spa_async_lock);
3641 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3642 	    spa->spa_async_thread == NULL &&
3643 	    rootdir != NULL && !vn_is_readonly(rootdir))
3644 		spa->spa_async_thread = thread_create(NULL, 0,
3645 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3646 	mutex_exit(&spa->spa_async_lock);
3647 }
3648 
3649 void
3650 spa_async_request(spa_t *spa, int task)
3651 {
3652 	mutex_enter(&spa->spa_async_lock);
3653 	spa->spa_async_tasks |= task;
3654 	mutex_exit(&spa->spa_async_lock);
3655 }
3656 
3657 /*
3658  * ==========================================================================
3659  * SPA syncing routines
3660  * ==========================================================================
3661  */
3662 
3663 static void
3664 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3665 {
3666 	bplist_t *bpl = &spa->spa_sync_bplist;
3667 	dmu_tx_t *tx;
3668 	blkptr_t blk;
3669 	uint64_t itor = 0;
3670 	zio_t *zio;
3671 	int error;
3672 	uint8_t c = 1;
3673 
3674 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
3675 
3676 	while (bplist_iterate(bpl, &itor, &blk) == 0)
3677 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
3678 
3679 	error = zio_wait(zio);
3680 	ASSERT3U(error, ==, 0);
3681 
3682 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3683 	bplist_vacate(bpl, tx);
3684 
3685 	/*
3686 	 * Pre-dirty the first block so we sync to convergence faster.
3687 	 * (Usually only the first block is needed.)
3688 	 */
3689 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3690 	dmu_tx_commit(tx);
3691 }
3692 
3693 static void
3694 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3695 {
3696 	char *packed = NULL;
3697 	size_t bufsize;
3698 	size_t nvsize = 0;
3699 	dmu_buf_t *db;
3700 
3701 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3702 
3703 	/*
3704 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3705 	 * information.  This avoids the dbuf_will_dirty() path and
3706 	 * saves us a pre-read to get data we don't actually care about.
3707 	 */
3708 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3709 	packed = kmem_alloc(bufsize, KM_SLEEP);
3710 
3711 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3712 	    KM_SLEEP) == 0);
3713 	bzero(packed + nvsize, bufsize - nvsize);
3714 
3715 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3716 
3717 	kmem_free(packed, bufsize);
3718 
3719 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3720 	dmu_buf_will_dirty(db, tx);
3721 	*(uint64_t *)db->db_data = nvsize;
3722 	dmu_buf_rele(db, FTAG);
3723 }
3724 
3725 static void
3726 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3727     const char *config, const char *entry)
3728 {
3729 	nvlist_t *nvroot;
3730 	nvlist_t **list;
3731 	int i;
3732 
3733 	if (!sav->sav_sync)
3734 		return;
3735 
3736 	/*
3737 	 * Update the MOS nvlist describing the list of available devices.
3738 	 * spa_validate_aux() will have already made sure this nvlist is
3739 	 * valid and the vdevs are labeled appropriately.
3740 	 */
3741 	if (sav->sav_object == 0) {
3742 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3743 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3744 		    sizeof (uint64_t), tx);
3745 		VERIFY(zap_update(spa->spa_meta_objset,
3746 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3747 		    &sav->sav_object, tx) == 0);
3748 	}
3749 
3750 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3751 	if (sav->sav_count == 0) {
3752 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3753 	} else {
3754 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3755 		for (i = 0; i < sav->sav_count; i++)
3756 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3757 			    B_FALSE, B_FALSE, B_TRUE);
3758 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3759 		    sav->sav_count) == 0);
3760 		for (i = 0; i < sav->sav_count; i++)
3761 			nvlist_free(list[i]);
3762 		kmem_free(list, sav->sav_count * sizeof (void *));
3763 	}
3764 
3765 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3766 	nvlist_free(nvroot);
3767 
3768 	sav->sav_sync = B_FALSE;
3769 }
3770 
3771 static void
3772 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3773 {
3774 	nvlist_t *config;
3775 
3776 	if (list_is_empty(&spa->spa_dirty_list))
3777 		return;
3778 
3779 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
3780 
3781 	if (spa->spa_config_syncing)
3782 		nvlist_free(spa->spa_config_syncing);
3783 	spa->spa_config_syncing = config;
3784 
3785 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3786 }
3787 
3788 /*
3789  * Set zpool properties.
3790  */
3791 static void
3792 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3793 {
3794 	spa_t *spa = arg1;
3795 	objset_t *mos = spa->spa_meta_objset;
3796 	nvlist_t *nvp = arg2;
3797 	nvpair_t *elem;
3798 	uint64_t intval;
3799 	char *strval;
3800 	zpool_prop_t prop;
3801 	const char *propname;
3802 	zprop_type_t proptype;
3803 	spa_config_dirent_t *dp;
3804 
3805 	elem = NULL;
3806 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3807 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3808 		case ZPOOL_PROP_VERSION:
3809 			/*
3810 			 * Only set version for non-zpool-creation cases
3811 			 * (set/import). spa_create() needs special care
3812 			 * for version setting.
3813 			 */
3814 			if (tx->tx_txg != TXG_INITIAL) {
3815 				VERIFY(nvpair_value_uint64(elem,
3816 				    &intval) == 0);
3817 				ASSERT(intval <= SPA_VERSION);
3818 				ASSERT(intval >= spa_version(spa));
3819 				spa->spa_uberblock.ub_version = intval;
3820 				vdev_config_dirty(spa->spa_root_vdev);
3821 			}
3822 			break;
3823 
3824 		case ZPOOL_PROP_ALTROOT:
3825 			/*
3826 			 * 'altroot' is a non-persistent property. It should
3827 			 * have been set temporarily at creation or import time.
3828 			 */
3829 			ASSERT(spa->spa_root != NULL);
3830 			break;
3831 
3832 		case ZPOOL_PROP_CACHEFILE:
3833 			/*
3834 			 * 'cachefile' is a non-persistent property, but note
3835 			 * an async request that the config cache needs to be
3836 			 * udpated.
3837 			 */
3838 			VERIFY(nvpair_value_string(elem, &strval) == 0);
3839 
3840 			dp = kmem_alloc(sizeof (spa_config_dirent_t),
3841 			    KM_SLEEP);
3842 
3843 			if (strval[0] == '\0')
3844 				dp->scd_path = spa_strdup(spa_config_path);
3845 			else if (strcmp(strval, "none") == 0)
3846 				dp->scd_path = NULL;
3847 			else
3848 				dp->scd_path = spa_strdup(strval);
3849 
3850 			list_insert_head(&spa->spa_config_list, dp);
3851 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3852 			break;
3853 		default:
3854 			/*
3855 			 * Set pool property values in the poolprops mos object.
3856 			 */
3857 			mutex_enter(&spa->spa_props_lock);
3858 			if (spa->spa_pool_props_object == 0) {
3859 				objset_t *mos = spa->spa_meta_objset;
3860 
3861 				VERIFY((spa->spa_pool_props_object =
3862 				    zap_create(mos, DMU_OT_POOL_PROPS,
3863 				    DMU_OT_NONE, 0, tx)) > 0);
3864 
3865 				VERIFY(zap_update(mos,
3866 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3867 				    8, 1, &spa->spa_pool_props_object, tx)
3868 				    == 0);
3869 			}
3870 			mutex_exit(&spa->spa_props_lock);
3871 
3872 			/* normalize the property name */
3873 			propname = zpool_prop_to_name(prop);
3874 			proptype = zpool_prop_get_type(prop);
3875 
3876 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3877 				ASSERT(proptype == PROP_TYPE_STRING);
3878 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3879 				VERIFY(zap_update(mos,
3880 				    spa->spa_pool_props_object, propname,
3881 				    1, strlen(strval) + 1, strval, tx) == 0);
3882 
3883 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3884 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3885 
3886 				if (proptype == PROP_TYPE_INDEX) {
3887 					const char *unused;
3888 					VERIFY(zpool_prop_index_to_string(
3889 					    prop, intval, &unused) == 0);
3890 				}
3891 				VERIFY(zap_update(mos,
3892 				    spa->spa_pool_props_object, propname,
3893 				    8, 1, &intval, tx) == 0);
3894 			} else {
3895 				ASSERT(0); /* not allowed */
3896 			}
3897 
3898 			switch (prop) {
3899 			case ZPOOL_PROP_DELEGATION:
3900 				spa->spa_delegation = intval;
3901 				break;
3902 			case ZPOOL_PROP_BOOTFS:
3903 				spa->spa_bootfs = intval;
3904 				break;
3905 			case ZPOOL_PROP_FAILUREMODE:
3906 				spa->spa_failmode = intval;
3907 				break;
3908 			default:
3909 				break;
3910 			}
3911 		}
3912 
3913 		/* log internal history if this is not a zpool create */
3914 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3915 		    tx->tx_txg != TXG_INITIAL) {
3916 			spa_history_internal_log(LOG_POOL_PROPSET,
3917 			    spa, tx, cr, "%s %lld %s",
3918 			    nvpair_name(elem), intval, spa->spa_name);
3919 		}
3920 	}
3921 }
3922 
3923 /*
3924  * Sync the specified transaction group.  New blocks may be dirtied as
3925  * part of the process, so we iterate until it converges.
3926  */
3927 void
3928 spa_sync(spa_t *spa, uint64_t txg)
3929 {
3930 	dsl_pool_t *dp = spa->spa_dsl_pool;
3931 	objset_t *mos = spa->spa_meta_objset;
3932 	bplist_t *bpl = &spa->spa_sync_bplist;
3933 	vdev_t *rvd = spa->spa_root_vdev;
3934 	vdev_t *vd;
3935 	dmu_tx_t *tx;
3936 	int dirty_vdevs;
3937 
3938 	/*
3939 	 * Lock out configuration changes.
3940 	 */
3941 	spa_config_enter(spa, RW_READER, FTAG);
3942 
3943 	spa->spa_syncing_txg = txg;
3944 	spa->spa_sync_pass = 0;
3945 
3946 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3947 
3948 	tx = dmu_tx_create_assigned(dp, txg);
3949 
3950 	/*
3951 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3952 	 * set spa_deflate if we have no raid-z vdevs.
3953 	 */
3954 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3955 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3956 		int i;
3957 
3958 		for (i = 0; i < rvd->vdev_children; i++) {
3959 			vd = rvd->vdev_child[i];
3960 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3961 				break;
3962 		}
3963 		if (i == rvd->vdev_children) {
3964 			spa->spa_deflate = TRUE;
3965 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3966 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3967 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3968 		}
3969 	}
3970 
3971 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
3972 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
3973 		dsl_pool_create_origin(dp, tx);
3974 
3975 		/* Keeping the origin open increases spa_minref */
3976 		spa->spa_minref += 3;
3977 	}
3978 
3979 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
3980 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
3981 		dsl_pool_upgrade_clones(dp, tx);
3982 	}
3983 
3984 	/*
3985 	 * If anything has changed in this txg, push the deferred frees
3986 	 * from the previous txg.  If not, leave them alone so that we
3987 	 * don't generate work on an otherwise idle system.
3988 	 */
3989 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3990 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3991 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3992 		spa_sync_deferred_frees(spa, txg);
3993 
3994 	/*
3995 	 * Iterate to convergence.
3996 	 */
3997 	do {
3998 		spa->spa_sync_pass++;
3999 
4000 		spa_sync_config_object(spa, tx);
4001 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4002 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4003 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4004 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4005 		spa_errlog_sync(spa, txg);
4006 		dsl_pool_sync(dp, txg);
4007 
4008 		dirty_vdevs = 0;
4009 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4010 			vdev_sync(vd, txg);
4011 			dirty_vdevs++;
4012 		}
4013 
4014 		bplist_sync(bpl, tx);
4015 	} while (dirty_vdevs);
4016 
4017 	bplist_close(bpl);
4018 
4019 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4020 
4021 	/*
4022 	 * Rewrite the vdev configuration (which includes the uberblock)
4023 	 * to commit the transaction group.
4024 	 *
4025 	 * If there are no dirty vdevs, we sync the uberblock to a few
4026 	 * random top-level vdevs that are known to be visible in the
4027 	 * config cache (see spa_vdev_add() for details).  If there *are*
4028 	 * dirty vdevs -- or if the sync to our random subset fails --
4029 	 * then sync the uberblock to all vdevs.
4030 	 */
4031 	if (list_is_empty(&spa->spa_dirty_list)) {
4032 		vdev_t *svd[SPA_DVAS_PER_BP];
4033 		int svdcount = 0;
4034 		int children = rvd->vdev_children;
4035 		int c0 = spa_get_random(children);
4036 		int c;
4037 
4038 		for (c = 0; c < children; c++) {
4039 			vd = rvd->vdev_child[(c0 + c) % children];
4040 			if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4041 				continue;
4042 			svd[svdcount++] = vd;
4043 			if (svdcount == SPA_DVAS_PER_BP)
4044 				break;
4045 		}
4046 		vdev_config_sync(svd, svdcount, txg);
4047 	} else {
4048 		vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg);
4049 	}
4050 	dmu_tx_commit(tx);
4051 
4052 	/*
4053 	 * Clear the dirty config list.
4054 	 */
4055 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
4056 		vdev_config_clean(vd);
4057 
4058 	/*
4059 	 * Now that the new config has synced transactionally,
4060 	 * let it become visible to the config cache.
4061 	 */
4062 	if (spa->spa_config_syncing != NULL) {
4063 		spa_config_set(spa, spa->spa_config_syncing);
4064 		spa->spa_config_txg = txg;
4065 		spa->spa_config_syncing = NULL;
4066 	}
4067 
4068 	spa->spa_traverse_wanted = B_TRUE;
4069 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
4070 	spa->spa_traverse_wanted = B_FALSE;
4071 	spa->spa_ubsync = spa->spa_uberblock;
4072 	rw_exit(&spa->spa_traverse_lock);
4073 
4074 	/*
4075 	 * Clean up the ZIL records for the synced txg.
4076 	 */
4077 	dsl_pool_zil_clean(dp);
4078 
4079 	/*
4080 	 * Update usable space statistics.
4081 	 */
4082 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4083 		vdev_sync_done(vd, txg);
4084 
4085 	/*
4086 	 * It had better be the case that we didn't dirty anything
4087 	 * since vdev_config_sync().
4088 	 */
4089 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4090 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4091 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4092 	ASSERT(bpl->bpl_queue == NULL);
4093 
4094 	spa_config_exit(spa, FTAG);
4095 
4096 	/*
4097 	 * If any async tasks have been requested, kick them off.
4098 	 */
4099 	spa_async_dispatch(spa);
4100 }
4101 
4102 /*
4103  * Sync all pools.  We don't want to hold the namespace lock across these
4104  * operations, so we take a reference on the spa_t and drop the lock during the
4105  * sync.
4106  */
4107 void
4108 spa_sync_allpools(void)
4109 {
4110 	spa_t *spa = NULL;
4111 	mutex_enter(&spa_namespace_lock);
4112 	while ((spa = spa_next(spa)) != NULL) {
4113 		if (spa_state(spa) != POOL_STATE_ACTIVE)
4114 			continue;
4115 		spa_open_ref(spa, FTAG);
4116 		mutex_exit(&spa_namespace_lock);
4117 		txg_wait_synced(spa_get_dsl(spa), 0);
4118 		mutex_enter(&spa_namespace_lock);
4119 		spa_close(spa, FTAG);
4120 	}
4121 	mutex_exit(&spa_namespace_lock);
4122 }
4123 
4124 /*
4125  * ==========================================================================
4126  * Miscellaneous routines
4127  * ==========================================================================
4128  */
4129 
4130 /*
4131  * Remove all pools in the system.
4132  */
4133 void
4134 spa_evict_all(void)
4135 {
4136 	spa_t *spa;
4137 
4138 	/*
4139 	 * Remove all cached state.  All pools should be closed now,
4140 	 * so every spa in the AVL tree should be unreferenced.
4141 	 */
4142 	mutex_enter(&spa_namespace_lock);
4143 	while ((spa = spa_next(NULL)) != NULL) {
4144 		/*
4145 		 * Stop async tasks.  The async thread may need to detach
4146 		 * a device that's been replaced, which requires grabbing
4147 		 * spa_namespace_lock, so we must drop it here.
4148 		 */
4149 		spa_open_ref(spa, FTAG);
4150 		mutex_exit(&spa_namespace_lock);
4151 		spa_async_suspend(spa);
4152 		mutex_enter(&spa_namespace_lock);
4153 		spa_close(spa, FTAG);
4154 
4155 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4156 			spa_unload(spa);
4157 			spa_deactivate(spa);
4158 		}
4159 		spa_remove(spa);
4160 	}
4161 	mutex_exit(&spa_namespace_lock);
4162 }
4163 
4164 vdev_t *
4165 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4166 {
4167 	vdev_t *vd;
4168 	int i;
4169 
4170 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4171 		return (vd);
4172 
4173 	if (l2cache) {
4174 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4175 			vd = spa->spa_l2cache.sav_vdevs[i];
4176 			if (vd->vdev_guid == guid)
4177 				return (vd);
4178 		}
4179 	}
4180 
4181 	return (NULL);
4182 }
4183 
4184 void
4185 spa_upgrade(spa_t *spa, uint64_t version)
4186 {
4187 	spa_config_enter(spa, RW_WRITER, FTAG);
4188 
4189 	/*
4190 	 * This should only be called for a non-faulted pool, and since a
4191 	 * future version would result in an unopenable pool, this shouldn't be
4192 	 * possible.
4193 	 */
4194 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4195 	ASSERT(version >= spa->spa_uberblock.ub_version);
4196 
4197 	spa->spa_uberblock.ub_version = version;
4198 	vdev_config_dirty(spa->spa_root_vdev);
4199 
4200 	spa_config_exit(spa, FTAG);
4201 
4202 	txg_wait_synced(spa_get_dsl(spa), 0);
4203 }
4204 
4205 boolean_t
4206 spa_has_spare(spa_t *spa, uint64_t guid)
4207 {
4208 	int i;
4209 	uint64_t spareguid;
4210 	spa_aux_vdev_t *sav = &spa->spa_spares;
4211 
4212 	for (i = 0; i < sav->sav_count; i++)
4213 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4214 			return (B_TRUE);
4215 
4216 	for (i = 0; i < sav->sav_npending; i++) {
4217 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4218 		    &spareguid) == 0 && spareguid == guid)
4219 			return (B_TRUE);
4220 	}
4221 
4222 	return (B_FALSE);
4223 }
4224 
4225 /*
4226  * Check if a pool has an active shared spare device.
4227  * Note: reference count of an active spare is 2, as a spare and as a replace
4228  */
4229 static boolean_t
4230 spa_has_active_shared_spare(spa_t *spa)
4231 {
4232 	int i, refcnt;
4233 	uint64_t pool;
4234 	spa_aux_vdev_t *sav = &spa->spa_spares;
4235 
4236 	for (i = 0; i < sav->sav_count; i++) {
4237 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4238 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4239 		    refcnt > 2)
4240 			return (B_TRUE);
4241 	}
4242 
4243 	return (B_FALSE);
4244 }
4245 
4246 /*
4247  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4248  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4249  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4250  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4251  * or zdb as real changes.
4252  */
4253 void
4254 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4255 {
4256 #ifdef _KERNEL
4257 	sysevent_t		*ev;
4258 	sysevent_attr_list_t	*attr = NULL;
4259 	sysevent_value_t	value;
4260 	sysevent_id_t		eid;
4261 
4262 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4263 	    SE_SLEEP);
4264 
4265 	value.value_type = SE_DATA_TYPE_STRING;
4266 	value.value.sv_string = spa_name(spa);
4267 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4268 		goto done;
4269 
4270 	value.value_type = SE_DATA_TYPE_UINT64;
4271 	value.value.sv_uint64 = spa_guid(spa);
4272 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4273 		goto done;
4274 
4275 	if (vd) {
4276 		value.value_type = SE_DATA_TYPE_UINT64;
4277 		value.value.sv_uint64 = vd->vdev_guid;
4278 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4279 		    SE_SLEEP) != 0)
4280 			goto done;
4281 
4282 		if (vd->vdev_path) {
4283 			value.value_type = SE_DATA_TYPE_STRING;
4284 			value.value.sv_string = vd->vdev_path;
4285 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4286 			    &value, SE_SLEEP) != 0)
4287 				goto done;
4288 		}
4289 	}
4290 
4291 	if (sysevent_attach_attributes(ev, attr) != 0)
4292 		goto done;
4293 	attr = NULL;
4294 
4295 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4296 
4297 done:
4298 	if (attr)
4299 		sysevent_free_attr(attr);
4300 	sysevent_free(ev);
4301 #endif
4302 }
4303