xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 2caf0dcd2abc26b477e317999994020212790d38)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/zio_compress.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/callb.h>
56 
57 static uint32_t spa_active_count;
58 
59 /*
60  * ==========================================================================
61  * SPA state manipulation (open/create/destroy/import/export)
62  * ==========================================================================
63  */
64 
65 static int
66 spa_error_entry_compare(const void *a, const void *b)
67 {
68 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
69 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
70 	int ret;
71 
72 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
73 	    sizeof (zbookmark_t));
74 
75 	if (ret < 0)
76 		return (-1);
77 	else if (ret > 0)
78 		return (1);
79 	else
80 		return (0);
81 }
82 
83 /*
84  * Utility function which retrieves copies of the current logs and
85  * re-initializes them in the process.
86  */
87 void
88 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
89 {
90 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
91 
92 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
93 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
94 
95 	avl_create(&spa->spa_errlist_scrub,
96 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
97 	    offsetof(spa_error_entry_t, se_avl));
98 	avl_create(&spa->spa_errlist_last,
99 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
100 	    offsetof(spa_error_entry_t, se_avl));
101 }
102 
103 /*
104  * Activate an uninitialized pool.
105  */
106 static void
107 spa_activate(spa_t *spa)
108 {
109 	int t;
110 
111 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
112 
113 	spa->spa_state = POOL_STATE_ACTIVE;
114 
115 	spa->spa_normal_class = metaslab_class_create();
116 
117 	for (t = 0; t < ZIO_TYPES; t++) {
118 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
119 		    8, maxclsyspri, 50, INT_MAX,
120 		    TASKQ_PREPOPULATE);
121 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
122 		    8, maxclsyspri, 50, INT_MAX,
123 		    TASKQ_PREPOPULATE);
124 	}
125 
126 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
127 
128 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
129 	    offsetof(vdev_t, vdev_dirty_node));
130 
131 	txg_list_create(&spa->spa_vdev_txg_list,
132 	    offsetof(struct vdev, vdev_txg_node));
133 
134 	avl_create(&spa->spa_errlist_scrub,
135 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
136 	    offsetof(spa_error_entry_t, se_avl));
137 	avl_create(&spa->spa_errlist_last,
138 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
139 	    offsetof(spa_error_entry_t, se_avl));
140 }
141 
142 /*
143  * Opposite of spa_activate().
144  */
145 static void
146 spa_deactivate(spa_t *spa)
147 {
148 	int t;
149 
150 	ASSERT(spa->spa_sync_on == B_FALSE);
151 	ASSERT(spa->spa_dsl_pool == NULL);
152 	ASSERT(spa->spa_root_vdev == NULL);
153 
154 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
155 
156 	txg_list_destroy(&spa->spa_vdev_txg_list);
157 
158 	list_destroy(&spa->spa_dirty_list);
159 
160 	rw_destroy(&spa->spa_traverse_lock);
161 
162 	for (t = 0; t < ZIO_TYPES; t++) {
163 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
164 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
165 		spa->spa_zio_issue_taskq[t] = NULL;
166 		spa->spa_zio_intr_taskq[t] = NULL;
167 	}
168 
169 	metaslab_class_destroy(spa->spa_normal_class);
170 	spa->spa_normal_class = NULL;
171 
172 	/*
173 	 * If this was part of an import or the open otherwise failed, we may
174 	 * still have errors left in the queues.  Empty them just in case.
175 	 */
176 	spa_errlog_drain(spa);
177 
178 	avl_destroy(&spa->spa_errlist_scrub);
179 	avl_destroy(&spa->spa_errlist_last);
180 
181 	spa->spa_state = POOL_STATE_UNINITIALIZED;
182 }
183 
184 /*
185  * Verify a pool configuration, and construct the vdev tree appropriately.  This
186  * will create all the necessary vdevs in the appropriate layout, with each vdev
187  * in the CLOSED state.  This will prep the pool before open/creation/import.
188  * All vdev validation is done by the vdev_alloc() routine.
189  */
190 static vdev_t *
191 spa_config_parse(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int atype)
192 {
193 	nvlist_t **child;
194 	uint_t c, children;
195 	vdev_t *vd;
196 
197 	if ((vd = vdev_alloc(spa, nv, parent, id, atype)) == NULL)
198 		return (NULL);
199 
200 	if (vd->vdev_ops->vdev_op_leaf)
201 		return (vd);
202 
203 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
204 	    &child, &children) != 0) {
205 		vdev_free(vd);
206 		return (NULL);
207 	}
208 
209 	for (c = 0; c < children; c++) {
210 		if (spa_config_parse(spa, child[c], vd, c, atype) == NULL) {
211 			vdev_free(vd);
212 			return (NULL);
213 		}
214 	}
215 
216 	return (vd);
217 }
218 
219 /*
220  * Opposite of spa_load().
221  */
222 static void
223 spa_unload(spa_t *spa)
224 {
225 	/*
226 	 * Stop async tasks.
227 	 */
228 	spa_async_suspend(spa);
229 
230 	/*
231 	 * Stop syncing.
232 	 */
233 	if (spa->spa_sync_on) {
234 		txg_sync_stop(spa->spa_dsl_pool);
235 		spa->spa_sync_on = B_FALSE;
236 	}
237 
238 	/*
239 	 * Wait for any outstanding prefetch I/O to complete.
240 	 */
241 	spa_config_enter(spa, RW_WRITER, FTAG);
242 	spa_config_exit(spa, FTAG);
243 
244 	/*
245 	 * Close the dsl pool.
246 	 */
247 	if (spa->spa_dsl_pool) {
248 		dsl_pool_close(spa->spa_dsl_pool);
249 		spa->spa_dsl_pool = NULL;
250 	}
251 
252 	/*
253 	 * Close all vdevs.
254 	 */
255 	if (spa->spa_root_vdev) {
256 		vdev_free(spa->spa_root_vdev);
257 		spa->spa_root_vdev = NULL;
258 	}
259 
260 	spa->spa_async_suspended = 0;
261 }
262 
263 /*
264  * Load an existing storage pool, using the pool's builtin spa_config as a
265  * source of configuration information.
266  */
267 static int
268 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
269 {
270 	int error = 0;
271 	nvlist_t *nvroot = NULL;
272 	vdev_t *rvd;
273 	uberblock_t *ub = &spa->spa_uberblock;
274 	uint64_t pool_guid;
275 	zio_t *zio;
276 
277 	spa->spa_load_state = state;
278 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
279 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
280 		error = EINVAL;
281 		goto out;
282 	}
283 
284 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
285 	    &spa->spa_config_txg);
286 
287 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
288 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
289 	    spa_guid_exists(pool_guid, 0)) {
290 		error = EEXIST;
291 		goto out;
292 	}
293 
294 	/*
295 	 * Parse the configuration into a vdev tree.
296 	 */
297 	spa_config_enter(spa, RW_WRITER, FTAG);
298 	rvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
299 	spa_config_exit(spa, FTAG);
300 
301 	if (rvd == NULL) {
302 		error = EINVAL;
303 		goto out;
304 	}
305 
306 	spa->spa_root_vdev = rvd;
307 	ASSERT(spa_guid(spa) == pool_guid);
308 
309 	/*
310 	 * Try to open all vdevs, loading each label in the process.
311 	 */
312 	if (vdev_open(rvd) != 0) {
313 		error = ENXIO;
314 		goto out;
315 	}
316 
317 	/*
318 	 * Find the best uberblock.
319 	 */
320 	bzero(ub, sizeof (uberblock_t));
321 
322 	zio = zio_root(spa, NULL, NULL,
323 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
324 	vdev_uberblock_load(zio, rvd, ub);
325 	error = zio_wait(zio);
326 
327 	/*
328 	 * If we weren't able to find a single valid uberblock, return failure.
329 	 */
330 	if (ub->ub_txg == 0) {
331 		error = ENXIO;
332 		goto out;
333 	}
334 
335 	/*
336 	 * If the pool is newer than the code, we can't open it.
337 	 */
338 	if (ub->ub_version > UBERBLOCK_VERSION) {
339 		error = ENOTSUP;
340 		goto out;
341 	}
342 
343 	/*
344 	 * If the vdev guid sum doesn't match the uberblock, we have an
345 	 * incomplete configuration.
346 	 */
347 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
348 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
349 		    VDEV_AUX_BAD_GUID_SUM);
350 		error = ENXIO;
351 		goto out;
352 	}
353 
354 	/*
355 	 * Initialize internal SPA structures.
356 	 */
357 	spa->spa_state = POOL_STATE_ACTIVE;
358 	spa->spa_ubsync = spa->spa_uberblock;
359 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
360 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
361 	if (error) {
362 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
363 		    VDEV_AUX_CORRUPT_DATA);
364 		goto out;
365 	}
366 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
367 
368 	if (zap_lookup(spa->spa_meta_objset,
369 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
370 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
371 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
372 		    VDEV_AUX_CORRUPT_DATA);
373 		error = EIO;
374 		goto out;
375 	}
376 
377 	if (!mosconfig) {
378 		dmu_buf_t *db;
379 		char *packed = NULL;
380 		size_t nvsize = 0;
381 		nvlist_t *newconfig = NULL;
382 
383 		VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
384 		    spa->spa_config_object, FTAG, &db));
385 		nvsize = *(uint64_t *)db->db_data;
386 		dmu_buf_rele(db, FTAG);
387 
388 		packed = kmem_alloc(nvsize, KM_SLEEP);
389 		error = dmu_read(spa->spa_meta_objset,
390 		    spa->spa_config_object, 0, nvsize, packed);
391 		if (error == 0)
392 			error = nvlist_unpack(packed, nvsize, &newconfig, 0);
393 		kmem_free(packed, nvsize);
394 
395 		if (error) {
396 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
397 			    VDEV_AUX_CORRUPT_DATA);
398 			error = EIO;
399 			goto out;
400 		}
401 
402 		spa_config_set(spa, newconfig);
403 
404 		spa_unload(spa);
405 		spa_deactivate(spa);
406 		spa_activate(spa);
407 
408 		return (spa_load(spa, newconfig, state, B_TRUE));
409 	}
410 
411 	if (zap_lookup(spa->spa_meta_objset,
412 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
413 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
414 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
415 		    VDEV_AUX_CORRUPT_DATA);
416 		error = EIO;
417 		goto out;
418 	}
419 
420 	/*
421 	 * Load the persistent error log.  If we have an older pool, this will
422 	 * not be present.
423 	 */
424 	error = zap_lookup(spa->spa_meta_objset,
425 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
426 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
427 	if (error != 0 &&error != ENOENT) {
428 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
429 		    VDEV_AUX_CORRUPT_DATA);
430 		error = EIO;
431 		goto out;
432 	}
433 
434 	error = zap_lookup(spa->spa_meta_objset,
435 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
436 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
437 	if (error != 0 && error != ENOENT) {
438 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
439 		    VDEV_AUX_CORRUPT_DATA);
440 		error = EIO;
441 		goto out;
442 	}
443 
444 	/*
445 	 * Load the vdev state for all top level vdevs.  We need to grab the
446 	 * config lock because all label I/O is done with the
447 	 * ZIO_FLAG_CONFIG_HELD flag.
448 	 */
449 	spa_config_enter(spa, RW_READER, FTAG);
450 	if ((error = vdev_load(rvd)) != 0) {
451 		spa_config_exit(spa, FTAG);
452 		goto out;
453 	}
454 	spa_config_exit(spa, FTAG);
455 
456 	/*
457 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
458 	 */
459 	spa_config_enter(spa, RW_WRITER, FTAG);
460 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
461 	spa_config_exit(spa, FTAG);
462 
463 	/*
464 	 * Check the state of the root vdev.  If it can't be opened, it
465 	 * indicates one or more toplevel vdevs are faulted.
466 	 */
467 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
468 		error = ENXIO;
469 		goto out;
470 	}
471 
472 	/*
473 	 * Claim log blocks that haven't been committed yet, and update all
474 	 * top-level vdevs to sync any config changes found in vdev_load().
475 	 * This must all happen in a single txg.
476 	 */
477 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
478 		dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa),
479 		    spa_first_txg(spa));
480 		dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
481 		vdev_config_dirty(rvd);
482 		dmu_tx_commit(tx);
483 
484 		spa->spa_sync_on = B_TRUE;
485 		txg_sync_start(spa->spa_dsl_pool);
486 
487 		/*
488 		 * Wait for all claims to sync.
489 		 */
490 		txg_wait_synced(spa->spa_dsl_pool, 0);
491 	}
492 
493 	error = 0;
494 out:
495 	if (error)
496 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
497 	spa->spa_load_state = SPA_LOAD_NONE;
498 	spa->spa_ena = 0;
499 
500 	return (error);
501 }
502 
503 /*
504  * Pool Open/Import
505  *
506  * The import case is identical to an open except that the configuration is sent
507  * down from userland, instead of grabbed from the configuration cache.  For the
508  * case of an open, the pool configuration will exist in the
509  * POOL_STATE_UNITIALIZED state.
510  *
511  * The stats information (gen/count/ustats) is used to gather vdev statistics at
512  * the same time open the pool, without having to keep around the spa_t in some
513  * ambiguous state.
514  */
515 static int
516 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
517 {
518 	spa_t *spa;
519 	int error;
520 	int loaded = B_FALSE;
521 	int locked = B_FALSE;
522 
523 	*spapp = NULL;
524 
525 	/*
526 	 * As disgusting as this is, we need to support recursive calls to this
527 	 * function because dsl_dir_open() is called during spa_load(), and ends
528 	 * up calling spa_open() again.  The real fix is to figure out how to
529 	 * avoid dsl_dir_open() calling this in the first place.
530 	 */
531 	if (mutex_owner(&spa_namespace_lock) != curthread) {
532 		mutex_enter(&spa_namespace_lock);
533 		locked = B_TRUE;
534 	}
535 
536 	if ((spa = spa_lookup(pool)) == NULL) {
537 		if (locked)
538 			mutex_exit(&spa_namespace_lock);
539 		return (ENOENT);
540 	}
541 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
542 
543 		spa_activate(spa);
544 
545 		error = spa_load(spa, spa->spa_config,
546 		    SPA_LOAD_OPEN, B_FALSE);
547 
548 		if (error == EBADF) {
549 			/*
550 			 * If vdev_load() returns EBADF, it indicates that one
551 			 * of the vdevs indicates that the pool has been
552 			 * exported or destroyed.  If this is the case, the
553 			 * config cache is out of sync and we should remove the
554 			 * pool from the namespace.
555 			 */
556 			spa_unload(spa);
557 			spa_deactivate(spa);
558 			spa_remove(spa);
559 			spa_config_sync();
560 			if (locked)
561 				mutex_exit(&spa_namespace_lock);
562 			return (ENOENT);
563 		}
564 
565 		if (error) {
566 			/*
567 			 * We can't open the pool, but we still have useful
568 			 * information: the state of each vdev after the
569 			 * attempted vdev_open().  Return this to the user.
570 			 */
571 			if (config != NULL && spa->spa_root_vdev != NULL)
572 				*config = spa_config_generate(spa, NULL, -1ULL,
573 				    B_TRUE);
574 			spa_unload(spa);
575 			spa_deactivate(spa);
576 			spa->spa_last_open_failed = B_TRUE;
577 			if (locked)
578 				mutex_exit(&spa_namespace_lock);
579 			*spapp = NULL;
580 			return (error);
581 		} else {
582 			zfs_post_ok(spa, NULL);
583 			spa->spa_last_open_failed = B_FALSE;
584 		}
585 
586 		loaded = B_TRUE;
587 	}
588 
589 	spa_open_ref(spa, tag);
590 	if (locked)
591 		mutex_exit(&spa_namespace_lock);
592 
593 	*spapp = spa;
594 
595 	if (config != NULL) {
596 		spa_config_enter(spa, RW_READER, FTAG);
597 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
598 		spa_config_exit(spa, FTAG);
599 	}
600 
601 	/*
602 	 * If we just loaded the pool, resilver anything that's out of date.
603 	 */
604 	if (loaded && (spa_mode & FWRITE))
605 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
606 
607 	return (0);
608 }
609 
610 int
611 spa_open(const char *name, spa_t **spapp, void *tag)
612 {
613 	return (spa_open_common(name, spapp, tag, NULL));
614 }
615 
616 /*
617  * Lookup the given spa_t, incrementing the inject count in the process,
618  * preventing it from being exported or destroyed.
619  */
620 spa_t *
621 spa_inject_addref(char *name)
622 {
623 	spa_t *spa;
624 
625 	mutex_enter(&spa_namespace_lock);
626 	if ((spa = spa_lookup(name)) == NULL) {
627 		mutex_exit(&spa_namespace_lock);
628 		return (NULL);
629 	}
630 	spa->spa_inject_ref++;
631 	mutex_exit(&spa_namespace_lock);
632 
633 	return (spa);
634 }
635 
636 void
637 spa_inject_delref(spa_t *spa)
638 {
639 	mutex_enter(&spa_namespace_lock);
640 	spa->spa_inject_ref--;
641 	mutex_exit(&spa_namespace_lock);
642 }
643 
644 int
645 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
646 {
647 	int error;
648 	spa_t *spa;
649 
650 	*config = NULL;
651 	error = spa_open_common(name, &spa, FTAG, config);
652 
653 	if (spa && *config != NULL)
654 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
655 		    spa_get_errlog_size(spa)) == 0);
656 
657 	/*
658 	 * We want to get the alternate root even for faulted pools, so we cheat
659 	 * and call spa_lookup() directly.
660 	 */
661 	if (altroot) {
662 		if (spa == NULL) {
663 			mutex_enter(&spa_namespace_lock);
664 			spa = spa_lookup(name);
665 			if (spa)
666 				spa_altroot(spa, altroot, buflen);
667 			else
668 				altroot[0] = '\0';
669 			spa = NULL;
670 			mutex_exit(&spa_namespace_lock);
671 		} else {
672 			spa_altroot(spa, altroot, buflen);
673 		}
674 	}
675 
676 	if (spa != NULL)
677 		spa_close(spa, FTAG);
678 
679 	return (error);
680 }
681 
682 /*
683  * Pool Creation
684  */
685 int
686 spa_create(const char *pool, nvlist_t *nvroot, char *altroot)
687 {
688 	spa_t *spa;
689 	dsl_pool_t *dp;
690 	dmu_tx_t *tx;
691 	int error;
692 	uint64_t txg = TXG_INITIAL;
693 
694 	/*
695 	 * If this pool already exists, return failure.
696 	 */
697 	mutex_enter(&spa_namespace_lock);
698 	if (spa_lookup(pool) != NULL) {
699 		mutex_exit(&spa_namespace_lock);
700 		return (EEXIST);
701 	}
702 	spa = spa_add(pool);
703 
704 	/*
705 	 * Allocate a new spa_t structure.
706 	 */
707 	spa_activate(spa);
708 
709 	spa->spa_uberblock.ub_txg = txg - 1;
710 	spa->spa_ubsync = spa->spa_uberblock;
711 
712 	error = spa_vdev_add(spa, nvroot);
713 
714 	if (error) {
715 		spa_unload(spa);
716 		spa_deactivate(spa);
717 		spa_remove(spa);
718 		mutex_exit(&spa_namespace_lock);
719 		return (error);
720 	}
721 
722 	if (altroot != NULL) {
723 		spa->spa_root = spa_strdup(altroot);
724 		atomic_add_32(&spa_active_count, 1);
725 	}
726 
727 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
728 	spa->spa_meta_objset = dp->dp_meta_objset;
729 
730 	tx = dmu_tx_create_assigned(dp, txg);
731 
732 	/*
733 	 * Create the pool config object.
734 	 */
735 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
736 	    DMU_OT_PACKED_NVLIST, 1 << 14,
737 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
738 
739 	if (zap_add(spa->spa_meta_objset,
740 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
741 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
742 		cmn_err(CE_PANIC, "failed to add pool config");
743 	}
744 
745 	/*
746 	 * Create the deferred-free bplist object.  Turn off compression
747 	 * because sync-to-convergence takes longer if the blocksize
748 	 * keeps changing.
749 	 */
750 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
751 	    1 << 14, tx);
752 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
753 	    ZIO_COMPRESS_OFF, tx);
754 
755 	if (zap_add(spa->spa_meta_objset,
756 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
757 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
758 		cmn_err(CE_PANIC, "failed to add bplist");
759 	}
760 
761 	dmu_tx_commit(tx);
762 
763 	spa->spa_sync_on = B_TRUE;
764 	txg_sync_start(spa->spa_dsl_pool);
765 
766 	/*
767 	 * We explicitly wait for the first transaction to complete so that our
768 	 * bean counters are appropriately updated.
769 	 */
770 	txg_wait_synced(spa->spa_dsl_pool, txg);
771 
772 	spa_config_sync();
773 
774 	mutex_exit(&spa_namespace_lock);
775 
776 	return (0);
777 }
778 
779 /*
780  * Import the given pool into the system.  We set up the necessary spa_t and
781  * then call spa_load() to do the dirty work.
782  */
783 int
784 spa_import(const char *pool, nvlist_t *config, char *altroot)
785 {
786 	spa_t *spa;
787 	int error;
788 
789 	if (!(spa_mode & FWRITE))
790 		return (EROFS);
791 
792 	/*
793 	 * If a pool with this name exists, return failure.
794 	 */
795 	mutex_enter(&spa_namespace_lock);
796 	if (spa_lookup(pool) != NULL) {
797 		mutex_exit(&spa_namespace_lock);
798 		return (EEXIST);
799 	}
800 
801 	/*
802 	 * Create an initialize the spa structure
803 	 */
804 	spa = spa_add(pool);
805 	spa_activate(spa);
806 
807 	/*
808 	 * Pass off the heavy lifting to spa_load().  We pass TRUE for mosconfig
809 	 * so that we don't try to open the pool if the config is damaged.
810 	 */
811 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
812 
813 	if (error) {
814 		spa_unload(spa);
815 		spa_deactivate(spa);
816 		spa_remove(spa);
817 		mutex_exit(&spa_namespace_lock);
818 		return (error);
819 	}
820 
821 	/*
822 	 * Set the alternate root, if there is one.
823 	 */
824 	if (altroot != NULL) {
825 		atomic_add_32(&spa_active_count, 1);
826 		spa->spa_root = spa_strdup(altroot);
827 	}
828 
829 	/*
830 	 * Initialize the config based on the in-core state.
831 	 */
832 	config = spa_config_generate(spa, NULL, spa_last_synced_txg(spa), 0);
833 
834 	spa_config_set(spa, config);
835 
836 	/*
837 	 * Sync the configuration cache.
838 	 */
839 	spa_config_sync();
840 
841 	mutex_exit(&spa_namespace_lock);
842 
843 	/*
844 	 * Resilver anything that's out of date.
845 	 */
846 	if (spa_mode & FWRITE)
847 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
848 
849 	return (0);
850 }
851 
852 /*
853  * This (illegal) pool name is used when temporarily importing a spa_t in order
854  * to get the vdev stats associated with the imported devices.
855  */
856 #define	TRYIMPORT_NAME	"$import"
857 
858 nvlist_t *
859 spa_tryimport(nvlist_t *tryconfig)
860 {
861 	nvlist_t *config = NULL;
862 	char *poolname;
863 	spa_t *spa;
864 	uint64_t state;
865 
866 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
867 		return (NULL);
868 
869 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
870 		return (NULL);
871 
872 	mutex_enter(&spa_namespace_lock);
873 	spa = spa_add(TRYIMPORT_NAME);
874 
875 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
876 
877 	/*
878 	 * Initialize the spa_t structure.
879 	 */
880 	spa_activate(spa);
881 
882 	/*
883 	 * Pass off the heavy lifting to spa_load().  We pass TRUE for mosconfig
884 	 * so we don't try to open the pool if the config is damaged.
885 	 */
886 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
887 
888 	/*
889 	 * If 'tryconfig' was at least parsable, return the current config.
890 	 */
891 	if (spa->spa_root_vdev != NULL) {
892 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
893 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
894 		    poolname) == 0);
895 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
896 		    state) == 0);
897 	}
898 
899 	spa_unload(spa);
900 	spa_deactivate(spa);
901 	spa_remove(spa);
902 	mutex_exit(&spa_namespace_lock);
903 
904 	return (config);
905 }
906 
907 /*
908  * Pool export/destroy
909  *
910  * The act of destroying or exporting a pool is very simple.  We make sure there
911  * is no more pending I/O and any references to the pool are gone.  Then, we
912  * update the pool state and sync all the labels to disk, removing the
913  * configuration from the cache afterwards.
914  */
915 static int
916 spa_export_common(char *pool, int new_state)
917 {
918 	spa_t *spa;
919 
920 	if (!(spa_mode & FWRITE))
921 		return (EROFS);
922 
923 	mutex_enter(&spa_namespace_lock);
924 	if ((spa = spa_lookup(pool)) == NULL) {
925 		mutex_exit(&spa_namespace_lock);
926 		return (ENOENT);
927 	}
928 
929 	/*
930 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
931 	 * reacquire the namespace lock, and see if we can export.
932 	 */
933 	spa_open_ref(spa, FTAG);
934 	mutex_exit(&spa_namespace_lock);
935 	spa_async_suspend(spa);
936 	mutex_enter(&spa_namespace_lock);
937 	spa_close(spa, FTAG);
938 
939 	/*
940 	 * The pool will be in core if it's openable,
941 	 * in which case we can modify its state.
942 	 */
943 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
944 		/*
945 		 * Objsets may be open only because they're dirty, so we
946 		 * have to force it to sync before checking spa_refcnt.
947 		 */
948 		spa_scrub_suspend(spa);
949 		txg_wait_synced(spa->spa_dsl_pool, 0);
950 
951 		/*
952 		 * A pool cannot be exported or destroyed if there are active
953 		 * references.  If we are resetting a pool, allow references by
954 		 * fault injection handlers.
955 		 */
956 		if (!spa_refcount_zero(spa) ||
957 		    (spa->spa_inject_ref != 0 &&
958 		    new_state != POOL_STATE_UNINITIALIZED)) {
959 			spa_scrub_resume(spa);
960 			spa_async_resume(spa);
961 			mutex_exit(&spa_namespace_lock);
962 			return (EBUSY);
963 		}
964 
965 		spa_scrub_resume(spa);
966 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
967 
968 		if (spa->spa_root != NULL)
969 			atomic_add_32(&spa_active_count, -1);
970 
971 		/*
972 		 * We want this to be reflected on every label,
973 		 * so mark them all dirty.  spa_unload() will do the
974 		 * final sync that pushes these changes out.
975 		 */
976 		if (new_state != POOL_STATE_UNINITIALIZED) {
977 			spa->spa_state = new_state;
978 			vdev_config_dirty(spa->spa_root_vdev);
979 		}
980 	}
981 
982 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
983 		spa_unload(spa);
984 		spa_deactivate(spa);
985 	}
986 
987 	if (new_state != POOL_STATE_UNINITIALIZED) {
988 		spa_remove(spa);
989 		spa_config_sync();
990 	}
991 	mutex_exit(&spa_namespace_lock);
992 
993 	return (0);
994 }
995 
996 /*
997  * Destroy a storage pool.
998  */
999 int
1000 spa_destroy(char *pool)
1001 {
1002 	return (spa_export_common(pool, POOL_STATE_DESTROYED));
1003 }
1004 
1005 /*
1006  * Export a storage pool.
1007  */
1008 int
1009 spa_export(char *pool)
1010 {
1011 	return (spa_export_common(pool, POOL_STATE_EXPORTED));
1012 }
1013 
1014 /*
1015  * Similar to spa_export(), this unloads the spa_t without actually removing it
1016  * from the namespace in any way.
1017  */
1018 int
1019 spa_reset(char *pool)
1020 {
1021 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED));
1022 }
1023 
1024 
1025 /*
1026  * ==========================================================================
1027  * Device manipulation
1028  * ==========================================================================
1029  */
1030 
1031 /*
1032  * Add capacity to a storage pool.
1033  */
1034 int
1035 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1036 {
1037 	uint64_t txg;
1038 	int c, error;
1039 	vdev_t *rvd = spa->spa_root_vdev;
1040 	vdev_t *vd;
1041 
1042 	txg = spa_vdev_enter(spa);
1043 
1044 	vd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1045 
1046 	if (vd == NULL)
1047 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1048 
1049 	if (rvd == NULL)			/* spa_create() */
1050 		spa->spa_root_vdev = rvd = vd;
1051 
1052 	if ((error = vdev_create(vd, txg)) != 0)
1053 		return (spa_vdev_exit(spa, vd, txg, error));
1054 
1055 	/*
1056 	 * Transfer each top-level vdev from the temporary root
1057 	 * to the spa's root and initialize its metaslabs.
1058 	 */
1059 	for (c = 0; c < vd->vdev_children; c++) {
1060 		vdev_t *tvd = vd->vdev_child[c];
1061 		if (vd != rvd) {
1062 			vdev_remove_child(vd, tvd);
1063 			tvd->vdev_id = rvd->vdev_children;
1064 			vdev_add_child(rvd, tvd);
1065 		}
1066 		if ((error = vdev_init(tvd, txg)) != 0)
1067 			return (spa_vdev_exit(spa, vd, txg, error));
1068 		vdev_config_dirty(tvd);
1069 	}
1070 
1071 	/*
1072 	 * Update the config based on the new in-core state.
1073 	 */
1074 	spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
1075 
1076 	return (spa_vdev_exit(spa, vd, txg, 0));
1077 }
1078 
1079 /*
1080  * Attach a device to a mirror.  The arguments are the path to any device
1081  * in the mirror, and the nvroot for the new device.  If the path specifies
1082  * a device that is not mirrored, we automatically insert the mirror vdev.
1083  *
1084  * If 'replacing' is specified, the new device is intended to replace the
1085  * existing device; in this case the two devices are made into their own
1086  * mirror using the 'replacing' vdev, which is functionally idendical to
1087  * the mirror vdev (it actually reuses all the same ops) but has a few
1088  * extra rules: you can't attach to it after it's been created, and upon
1089  * completion of resilvering, the first disk (the one being replaced)
1090  * is automatically detached.
1091  */
1092 int
1093 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1094 {
1095 	uint64_t txg, open_txg;
1096 	int error;
1097 	vdev_t *rvd = spa->spa_root_vdev;
1098 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1099 	vdev_ops_t *pvops = replacing ? &vdev_replacing_ops : &vdev_mirror_ops;
1100 
1101 	txg = spa_vdev_enter(spa);
1102 
1103 	oldvd = vdev_lookup_by_guid(rvd, guid);
1104 
1105 	if (oldvd == NULL)
1106 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1107 
1108 	pvd = oldvd->vdev_parent;
1109 
1110 	/*
1111 	 * The parent must be a mirror or the root, unless we're replacing;
1112 	 * in that case, the parent can be anything but another replacing vdev.
1113 	 */
1114 	if (pvd->vdev_ops != &vdev_mirror_ops &&
1115 	    pvd->vdev_ops != &vdev_root_ops &&
1116 	    (!replacing || pvd->vdev_ops == &vdev_replacing_ops))
1117 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1118 
1119 	newrootvd = spa_config_parse(spa, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1120 
1121 	if (newrootvd == NULL || newrootvd->vdev_children != 1)
1122 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1123 
1124 	newvd = newrootvd->vdev_child[0];
1125 
1126 	if (!newvd->vdev_ops->vdev_op_leaf)
1127 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1128 
1129 	if ((error = vdev_create(newrootvd, txg)) != 0)
1130 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1131 
1132 	/*
1133 	 * Compare the new device size with the replaceable/attachable
1134 	 * device size.
1135 	 */
1136 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1137 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1138 
1139 	if (newvd->vdev_ashift != oldvd->vdev_ashift && oldvd->vdev_ashift != 0)
1140 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1141 
1142 	/*
1143 	 * If this is an in-place replacement, update oldvd's path and devid
1144 	 * to make it distinguishable from newvd, and unopenable from now on.
1145 	 */
1146 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1147 		spa_strfree(oldvd->vdev_path);
1148 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1149 		    KM_SLEEP);
1150 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1151 		    newvd->vdev_path, "old");
1152 		if (oldvd->vdev_devid != NULL) {
1153 			spa_strfree(oldvd->vdev_devid);
1154 			oldvd->vdev_devid = NULL;
1155 		}
1156 	}
1157 
1158 	/*
1159 	 * If the parent is not a mirror, or if we're replacing,
1160 	 * insert the new mirror/replacing vdev above oldvd.
1161 	 */
1162 	if (pvd->vdev_ops != pvops)
1163 		pvd = vdev_add_parent(oldvd, pvops);
1164 
1165 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1166 	ASSERT(pvd->vdev_ops == pvops);
1167 	ASSERT(oldvd->vdev_parent == pvd);
1168 
1169 	/*
1170 	 * Extract the new device from its root and add it to pvd.
1171 	 */
1172 	vdev_remove_child(newrootvd, newvd);
1173 	newvd->vdev_id = pvd->vdev_children;
1174 	vdev_add_child(pvd, newvd);
1175 
1176 	/*
1177 	 * If newvd is smaller than oldvd, but larger than its rsize,
1178 	 * the addition of newvd may have decreased our parent's asize.
1179 	 */
1180 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1181 
1182 	tvd = newvd->vdev_top;
1183 	ASSERT(pvd->vdev_top == tvd);
1184 	ASSERT(tvd->vdev_parent == rvd);
1185 
1186 	/*
1187 	 * Update the config based on the new in-core state.
1188 	 */
1189 	spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
1190 	vdev_config_dirty(tvd);
1191 
1192 	/*
1193 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1194 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1195 	 */
1196 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1197 
1198 	mutex_enter(&newvd->vdev_dtl_lock);
1199 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1200 	    open_txg - TXG_INITIAL + 1);
1201 	mutex_exit(&newvd->vdev_dtl_lock);
1202 
1203 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1204 
1205 	/*
1206 	 * Mark newvd's DTL dirty in this txg.
1207 	 */
1208 	vdev_dirty(tvd, VDD_DTL, txg);
1209 	(void) txg_list_add(&tvd->vdev_dtl_list, newvd, txg);
1210 
1211 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1212 
1213 	/*
1214 	 * Kick off a resilver to update newvd.
1215 	 */
1216 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1217 
1218 	return (0);
1219 }
1220 
1221 /*
1222  * Detach a device from a mirror or replacing vdev.
1223  * If 'replace_done' is specified, only detach if the parent
1224  * is a replacing vdev.
1225  */
1226 int
1227 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1228 {
1229 	uint64_t txg;
1230 	int c, t, error;
1231 	vdev_t *rvd = spa->spa_root_vdev;
1232 	vdev_t *vd, *pvd, *cvd, *tvd;
1233 
1234 	txg = spa_vdev_enter(spa);
1235 
1236 	vd = vdev_lookup_by_guid(rvd, guid);
1237 
1238 	if (vd == NULL)
1239 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1240 
1241 	pvd = vd->vdev_parent;
1242 
1243 	/*
1244 	 * If replace_done is specified, only remove this device if it's
1245 	 * the first child of a replacing vdev.
1246 	 */
1247 	if (replace_done &&
1248 	    (vd->vdev_id != 0 || pvd->vdev_ops != &vdev_replacing_ops))
1249 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1250 
1251 	/*
1252 	 * Only mirror and replacing vdevs support detach.
1253 	 */
1254 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1255 	    pvd->vdev_ops != &vdev_mirror_ops)
1256 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1257 
1258 	/*
1259 	 * If there's only one replica, you can't detach it.
1260 	 */
1261 	if (pvd->vdev_children <= 1)
1262 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1263 
1264 	/*
1265 	 * If all siblings have non-empty DTLs, this device may have the only
1266 	 * valid copy of the data, which means we cannot safely detach it.
1267 	 *
1268 	 * XXX -- as in the vdev_offline() case, we really want a more
1269 	 * precise DTL check.
1270 	 */
1271 	for (c = 0; c < pvd->vdev_children; c++) {
1272 		uint64_t dirty;
1273 
1274 		cvd = pvd->vdev_child[c];
1275 		if (cvd == vd)
1276 			continue;
1277 		if (vdev_is_dead(cvd))
1278 			continue;
1279 		mutex_enter(&cvd->vdev_dtl_lock);
1280 		dirty = cvd->vdev_dtl_map.sm_space |
1281 		    cvd->vdev_dtl_scrub.sm_space;
1282 		mutex_exit(&cvd->vdev_dtl_lock);
1283 		if (!dirty)
1284 			break;
1285 	}
1286 	if (c == pvd->vdev_children)
1287 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1288 
1289 	/*
1290 	 * Erase the disk labels so the disk can be used for other things.
1291 	 * This must be done after all other error cases are handled,
1292 	 * but before we disembowel vd (so we can still do I/O to it).
1293 	 * But if we can't do it, don't treat the error as fatal --
1294 	 * it may be that the unwritability of the disk is the reason
1295 	 * it's being detached!
1296 	 */
1297 	error = vdev_label_init(vd, 0);
1298 	if (error)
1299 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1300 
1301 	/*
1302 	 * Remove vd from its parent and compact the parent's children.
1303 	 */
1304 	vdev_remove_child(pvd, vd);
1305 	vdev_compact_children(pvd);
1306 
1307 	/*
1308 	 * Remember one of the remaining children so we can get tvd below.
1309 	 */
1310 	cvd = pvd->vdev_child[0];
1311 
1312 	/*
1313 	 * If the parent mirror/replacing vdev only has one child,
1314 	 * the parent is no longer needed.  Remove it from the tree.
1315 	 */
1316 	if (pvd->vdev_children == 1)
1317 		vdev_remove_parent(cvd);
1318 
1319 	/*
1320 	 * We don't set tvd until now because the parent we just removed
1321 	 * may have been the previous top-level vdev.
1322 	 */
1323 	tvd = cvd->vdev_top;
1324 	ASSERT(tvd->vdev_parent == rvd);
1325 
1326 	/*
1327 	 * Reopen this top-level vdev to reassess health after detach.
1328 	 */
1329 	vdev_reopen(tvd);
1330 
1331 	/*
1332 	 * If the device we just detached was smaller than the others,
1333 	 * it may be possible to add metaslabs (i.e. grow the pool).  We ignore
1334 	 * the error here because the detach still succeeded - we just weren't
1335 	 * able to reinitialize the metaslabs.  This pool is in for a world of
1336 	 * hurt, in any case.
1337 	 */
1338 	(void) vdev_metaslab_init(tvd, txg);
1339 
1340 	/*
1341 	 * Update the config based on the new in-core state.
1342 	 */
1343 	spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
1344 
1345 	vdev_config_dirty(tvd);
1346 
1347 	/*
1348 	 * Mark vd's DTL as dirty in this txg.
1349 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1350 	 * and free vd's DTL object in syncing context.
1351 	 * But first make sure we're not on any *other* txg's DTL list,
1352 	 * to prevent vd from being accessed after it's freed.
1353 	 */
1354 	vdev_dirty(tvd, VDD_DTL, txg);
1355 	vd->vdev_detached = B_TRUE;
1356 	for (t = 0; t < TXG_SIZE; t++)
1357 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1358 	(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
1359 
1360 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1361 
1362 	return (spa_vdev_exit(spa, vd, txg, 0));
1363 }
1364 
1365 /*
1366  * Find any device that's done replacing, so we can detach it.
1367  */
1368 static vdev_t *
1369 spa_vdev_replace_done_hunt(vdev_t *vd)
1370 {
1371 	vdev_t *newvd, *oldvd;
1372 	int c;
1373 
1374 	for (c = 0; c < vd->vdev_children; c++) {
1375 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1376 		if (oldvd != NULL)
1377 			return (oldvd);
1378 	}
1379 
1380 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1381 		oldvd = vd->vdev_child[0];
1382 		newvd = vd->vdev_child[1];
1383 
1384 		mutex_enter(&newvd->vdev_dtl_lock);
1385 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1386 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1387 			mutex_exit(&newvd->vdev_dtl_lock);
1388 			return (oldvd);
1389 		}
1390 		mutex_exit(&newvd->vdev_dtl_lock);
1391 	}
1392 
1393 	return (NULL);
1394 }
1395 
1396 static void
1397 spa_vdev_replace_done(spa_t *spa)
1398 {
1399 	vdev_t *vd;
1400 	uint64_t guid;
1401 
1402 	spa_config_enter(spa, RW_READER, FTAG);
1403 
1404 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
1405 		guid = vd->vdev_guid;
1406 		spa_config_exit(spa, FTAG);
1407 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
1408 			return;
1409 		spa_config_enter(spa, RW_READER, FTAG);
1410 	}
1411 
1412 	spa_config_exit(spa, FTAG);
1413 }
1414 
1415 /*
1416  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
1417  * on spa_vdev_enter/exit() to synchronize the labels and cache.
1418  */
1419 int
1420 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
1421 {
1422 	vdev_t *rvd, *vd;
1423 	uint64_t txg;
1424 
1425 	rvd = spa->spa_root_vdev;
1426 
1427 	txg = spa_vdev_enter(spa);
1428 
1429 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1430 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
1431 
1432 	spa_strfree(vd->vdev_path);
1433 	vd->vdev_path = spa_strdup(newpath);
1434 
1435 	spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0));
1436 
1437 	vdev_config_dirty(vd->vdev_top);
1438 
1439 	return (spa_vdev_exit(spa, NULL, txg, 0));
1440 }
1441 
1442 /*
1443  * ==========================================================================
1444  * SPA Scrubbing
1445  * ==========================================================================
1446  */
1447 
1448 void
1449 spa_scrub_throttle(spa_t *spa, int direction)
1450 {
1451 	mutex_enter(&spa->spa_scrub_lock);
1452 	spa->spa_scrub_throttled += direction;
1453 	ASSERT(spa->spa_scrub_throttled >= 0);
1454 	if (spa->spa_scrub_throttled == 0)
1455 		cv_broadcast(&spa->spa_scrub_io_cv);
1456 	mutex_exit(&spa->spa_scrub_lock);
1457 }
1458 
1459 static void
1460 spa_scrub_io_done(zio_t *zio)
1461 {
1462 	spa_t *spa = zio->io_spa;
1463 
1464 	zio_buf_free(zio->io_data, zio->io_size);
1465 
1466 	mutex_enter(&spa->spa_scrub_lock);
1467 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1468 		vdev_t *vd = zio->io_vd;
1469 		spa->spa_scrub_errors++;
1470 		mutex_enter(&vd->vdev_stat_lock);
1471 		vd->vdev_stat.vs_scrub_errors++;
1472 		mutex_exit(&vd->vdev_stat_lock);
1473 	}
1474 	if (--spa->spa_scrub_inflight == 0) {
1475 		cv_broadcast(&spa->spa_scrub_io_cv);
1476 		ASSERT(spa->spa_scrub_throttled == 0);
1477 	}
1478 	mutex_exit(&spa->spa_scrub_lock);
1479 }
1480 
1481 static void
1482 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
1483     zbookmark_t *zb)
1484 {
1485 	size_t size = BP_GET_LSIZE(bp);
1486 	void *data = zio_buf_alloc(size);
1487 
1488 	mutex_enter(&spa->spa_scrub_lock);
1489 	spa->spa_scrub_inflight++;
1490 	mutex_exit(&spa->spa_scrub_lock);
1491 
1492 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
1493 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
1494 
1495 	flags |= ZIO_FLAG_CANFAIL;
1496 
1497 	zio_nowait(zio_read(NULL, spa, bp, data, size,
1498 	    spa_scrub_io_done, NULL, priority, flags, zb));
1499 }
1500 
1501 /* ARGSUSED */
1502 static int
1503 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
1504 {
1505 	blkptr_t *bp = &bc->bc_blkptr;
1506 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1507 
1508 	if (bc->bc_errno || vd == NULL) {
1509 		/*
1510 		 * We can't scrub this block, but we can continue to scrub
1511 		 * the rest of the pool.  Note the error and move along.
1512 		 */
1513 		mutex_enter(&spa->spa_scrub_lock);
1514 		spa->spa_scrub_errors++;
1515 		mutex_exit(&spa->spa_scrub_lock);
1516 
1517 		if (vd != NULL) {
1518 			mutex_enter(&vd->vdev_stat_lock);
1519 			vd->vdev_stat.vs_scrub_errors++;
1520 			mutex_exit(&vd->vdev_stat_lock);
1521 		}
1522 
1523 		return (ERESTART);
1524 	}
1525 
1526 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
1527 
1528 	/*
1529 	 * Keep track of how much data we've examined so that
1530 	 * zpool(1M) status can make useful progress reports.
1531 	 */
1532 	mutex_enter(&vd->vdev_stat_lock);
1533 	vd->vdev_stat.vs_scrub_examined += BP_GET_ASIZE(bp);
1534 	mutex_exit(&vd->vdev_stat_lock);
1535 
1536 	if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
1537 		if (DVA_GET_GANG(&bp->blk_dva[0])) {
1538 			/*
1539 			 * Gang members may be spread across multiple vdevs,
1540 			 * so the best we can do is look at the pool-wide DTL.
1541 			 * XXX -- it would be better to change our allocation
1542 			 * policy to ensure that this can't happen.
1543 			 */
1544 			vd = spa->spa_root_vdev;
1545 		}
1546 		if (vdev_dtl_contains(&vd->vdev_dtl_map, bp->blk_birth, 1)) {
1547 			spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
1548 			    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
1549 		}
1550 	} else {
1551 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
1552 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
1553 	}
1554 
1555 	return (0);
1556 }
1557 
1558 static void
1559 spa_scrub_thread(spa_t *spa)
1560 {
1561 	callb_cpr_t cprinfo;
1562 	traverse_handle_t *th = spa->spa_scrub_th;
1563 	vdev_t *rvd = spa->spa_root_vdev;
1564 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
1565 	int error = 0;
1566 	boolean_t complete;
1567 
1568 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
1569 
1570 	/*
1571 	 * If we're restarting due to a snapshot create/delete,
1572 	 * wait for that to complete.
1573 	 */
1574 	txg_wait_synced(spa_get_dsl(spa), 0);
1575 
1576 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
1577 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1578 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
1579 
1580 	spa_config_enter(spa, RW_WRITER, FTAG);
1581 	vdev_reopen(rvd);		/* purge all vdev caches */
1582 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
1583 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
1584 	spa_config_exit(spa, FTAG);
1585 
1586 	mutex_enter(&spa->spa_scrub_lock);
1587 	spa->spa_scrub_errors = 0;
1588 	spa->spa_scrub_active = 1;
1589 	ASSERT(spa->spa_scrub_inflight == 0);
1590 	ASSERT(spa->spa_scrub_throttled == 0);
1591 
1592 	while (!spa->spa_scrub_stop) {
1593 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1594 		while (spa->spa_scrub_suspended) {
1595 			spa->spa_scrub_active = 0;
1596 			cv_broadcast(&spa->spa_scrub_cv);
1597 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1598 			spa->spa_scrub_active = 1;
1599 		}
1600 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
1601 
1602 		if (spa->spa_scrub_restart_txg != 0)
1603 			break;
1604 
1605 		mutex_exit(&spa->spa_scrub_lock);
1606 		error = traverse_more(th);
1607 		mutex_enter(&spa->spa_scrub_lock);
1608 		if (error != EAGAIN)
1609 			break;
1610 
1611 		while (spa->spa_scrub_throttled > 0)
1612 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1613 	}
1614 
1615 	while (spa->spa_scrub_inflight)
1616 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1617 
1618 	if (spa->spa_scrub_restart_txg != 0)
1619 		error = ERESTART;
1620 
1621 	if (spa->spa_scrub_stop)
1622 		error = EINTR;
1623 
1624 	spa->spa_scrub_active = 0;
1625 	cv_broadcast(&spa->spa_scrub_cv);
1626 
1627 	/*
1628 	 * Even if there were uncorrectable errors, we consider the scrub
1629 	 * completed.  The downside is that if there is a transient error during
1630 	 * a resilver, we won't resilver the data properly to the target.  But
1631 	 * if the damage is permanent (more likely) we will resilver forever,
1632 	 * which isn't really acceptable.  Since there is enough information for
1633 	 * the user to know what has failed and why, this seems like a more
1634 	 * tractable approach.
1635 	 */
1636 	complete = (error == 0);
1637 
1638 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
1639 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
1640 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
1641 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
1642 
1643 	mutex_exit(&spa->spa_scrub_lock);
1644 
1645 	/*
1646 	 * If the scrub/resilver completed, update all DTLs to reflect this.
1647 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
1648 	 */
1649 	spa_config_enter(spa, RW_WRITER, FTAG);
1650 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
1651 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
1652 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
1653 	spa_errlog_rotate(spa);
1654 	spa_config_exit(spa, FTAG);
1655 
1656 	mutex_enter(&spa->spa_scrub_lock);
1657 
1658 	/*
1659 	 * We may have finished replacing a device.
1660 	 * Let the async thread assess this and handle the detach.
1661 	 */
1662 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
1663 
1664 	/*
1665 	 * If we were told to restart, our final act is to start a new scrub.
1666 	 */
1667 	if (error == ERESTART)
1668 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
1669 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
1670 
1671 	spa->spa_scrub_type = POOL_SCRUB_NONE;
1672 	spa->spa_scrub_active = 0;
1673 	spa->spa_scrub_thread = NULL;
1674 	cv_broadcast(&spa->spa_scrub_cv);
1675 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
1676 	thread_exit();
1677 }
1678 
1679 void
1680 spa_scrub_suspend(spa_t *spa)
1681 {
1682 	mutex_enter(&spa->spa_scrub_lock);
1683 	spa->spa_scrub_suspended++;
1684 	while (spa->spa_scrub_active) {
1685 		cv_broadcast(&spa->spa_scrub_cv);
1686 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1687 	}
1688 	while (spa->spa_scrub_inflight)
1689 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1690 	mutex_exit(&spa->spa_scrub_lock);
1691 }
1692 
1693 void
1694 spa_scrub_resume(spa_t *spa)
1695 {
1696 	mutex_enter(&spa->spa_scrub_lock);
1697 	ASSERT(spa->spa_scrub_suspended != 0);
1698 	if (--spa->spa_scrub_suspended == 0)
1699 		cv_broadcast(&spa->spa_scrub_cv);
1700 	mutex_exit(&spa->spa_scrub_lock);
1701 }
1702 
1703 void
1704 spa_scrub_restart(spa_t *spa, uint64_t txg)
1705 {
1706 	/*
1707 	 * Something happened (e.g. snapshot create/delete) that means
1708 	 * we must restart any in-progress scrubs.  The itinerary will
1709 	 * fix this properly.
1710 	 */
1711 	mutex_enter(&spa->spa_scrub_lock);
1712 	spa->spa_scrub_restart_txg = txg;
1713 	mutex_exit(&spa->spa_scrub_lock);
1714 }
1715 
1716 int
1717 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
1718 {
1719 	space_seg_t *ss;
1720 	uint64_t mintxg, maxtxg;
1721 	vdev_t *rvd = spa->spa_root_vdev;
1722 	int advance = ADVANCE_PRE | ADVANCE_ZIL;
1723 
1724 	if ((uint_t)type >= POOL_SCRUB_TYPES)
1725 		return (ENOTSUP);
1726 
1727 	mutex_enter(&spa->spa_scrub_lock);
1728 
1729 	/*
1730 	 * If there's a scrub or resilver already in progress, stop it.
1731 	 */
1732 	while (spa->spa_scrub_thread != NULL) {
1733 		/*
1734 		 * Don't stop a resilver unless forced.
1735 		 */
1736 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
1737 			mutex_exit(&spa->spa_scrub_lock);
1738 			return (EBUSY);
1739 		}
1740 		spa->spa_scrub_stop = 1;
1741 		cv_broadcast(&spa->spa_scrub_cv);
1742 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
1743 	}
1744 
1745 	/*
1746 	 * Terminate the previous traverse.
1747 	 */
1748 	if (spa->spa_scrub_th != NULL) {
1749 		traverse_fini(spa->spa_scrub_th);
1750 		spa->spa_scrub_th = NULL;
1751 	}
1752 
1753 	if (rvd == NULL) {
1754 		ASSERT(spa->spa_scrub_stop == 0);
1755 		ASSERT(spa->spa_scrub_type == type);
1756 		ASSERT(spa->spa_scrub_restart_txg == 0);
1757 		mutex_exit(&spa->spa_scrub_lock);
1758 		return (0);
1759 	}
1760 
1761 	mintxg = TXG_INITIAL - 1;
1762 	maxtxg = spa_last_synced_txg(spa) + 1;
1763 
1764 	mutex_enter(&rvd->vdev_dtl_lock);
1765 
1766 	if (rvd->vdev_dtl_map.sm_space == 0) {
1767 		/*
1768 		 * The pool-wide DTL is empty.
1769 		 * If this is a resilver, there's nothing to do.
1770 		 */
1771 		if (type == POOL_SCRUB_RESILVER)
1772 			type = POOL_SCRUB_NONE;
1773 	} else {
1774 		/*
1775 		 * The pool-wide DTL is non-empty.
1776 		 * If this is a normal scrub, upgrade to a resilver instead.
1777 		 */
1778 		if (type == POOL_SCRUB_EVERYTHING)
1779 			type = POOL_SCRUB_RESILVER;
1780 	}
1781 
1782 	if (type == POOL_SCRUB_RESILVER) {
1783 		/*
1784 		 * Determine the resilvering boundaries.
1785 		 *
1786 		 * Note: (mintxg, maxtxg) is an open interval,
1787 		 * i.e. mintxg and maxtxg themselves are not included.
1788 		 *
1789 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
1790 		 * so we don't claim to resilver a txg that's still changing.
1791 		 */
1792 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
1793 		mintxg = ss->ss_start - 1;
1794 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
1795 		maxtxg = MIN(ss->ss_end, maxtxg);
1796 
1797 		advance |= ADVANCE_PRUNE;
1798 	}
1799 
1800 	mutex_exit(&rvd->vdev_dtl_lock);
1801 
1802 	spa->spa_scrub_stop = 0;
1803 	spa->spa_scrub_type = type;
1804 	spa->spa_scrub_restart_txg = 0;
1805 
1806 	if (type != POOL_SCRUB_NONE) {
1807 		spa->spa_scrub_mintxg = mintxg;
1808 		spa->spa_scrub_maxtxg = maxtxg;
1809 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
1810 		    advance, ZIO_FLAG_CANFAIL);
1811 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
1812 		spa->spa_scrub_thread = thread_create(NULL, 0,
1813 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
1814 	}
1815 
1816 	mutex_exit(&spa->spa_scrub_lock);
1817 
1818 	return (0);
1819 }
1820 
1821 /*
1822  * ==========================================================================
1823  * SPA async task processing
1824  * ==========================================================================
1825  */
1826 
1827 static void
1828 spa_async_reopen(spa_t *spa)
1829 {
1830 	vdev_t *rvd = spa->spa_root_vdev;
1831 	vdev_t *tvd;
1832 	int c;
1833 
1834 	spa_config_enter(spa, RW_WRITER, FTAG);
1835 
1836 	for (c = 0; c < rvd->vdev_children; c++) {
1837 		tvd = rvd->vdev_child[c];
1838 		if (tvd->vdev_reopen_wanted) {
1839 			tvd->vdev_reopen_wanted = 0;
1840 			vdev_reopen(tvd);
1841 		}
1842 	}
1843 
1844 	spa_config_exit(spa, FTAG);
1845 }
1846 
1847 static void
1848 spa_async_thread(spa_t *spa)
1849 {
1850 	int tasks;
1851 
1852 	ASSERT(spa->spa_sync_on);
1853 
1854 	mutex_enter(&spa->spa_async_lock);
1855 	tasks = spa->spa_async_tasks;
1856 	spa->spa_async_tasks = 0;
1857 	mutex_exit(&spa->spa_async_lock);
1858 
1859 	/*
1860 	 * See if any devices need to be reopened.
1861 	 */
1862 	if (tasks & SPA_ASYNC_REOPEN)
1863 		spa_async_reopen(spa);
1864 
1865 	/*
1866 	 * If any devices are done replacing, detach them.
1867 	 */
1868 	if (tasks & SPA_ASYNC_REPLACE_DONE)
1869 		spa_vdev_replace_done(spa);
1870 
1871 	/*
1872 	 * Kick off a scrub.
1873 	 */
1874 	if (tasks & SPA_ASYNC_SCRUB)
1875 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
1876 
1877 	/*
1878 	 * Kick off a resilver.
1879 	 */
1880 	if (tasks & SPA_ASYNC_RESILVER)
1881 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1882 
1883 	/*
1884 	 * Let the world know that we're done.
1885 	 */
1886 	mutex_enter(&spa->spa_async_lock);
1887 	spa->spa_async_thread = NULL;
1888 	cv_broadcast(&spa->spa_async_cv);
1889 	mutex_exit(&spa->spa_async_lock);
1890 	thread_exit();
1891 }
1892 
1893 void
1894 spa_async_suspend(spa_t *spa)
1895 {
1896 	mutex_enter(&spa->spa_async_lock);
1897 	spa->spa_async_suspended++;
1898 	while (spa->spa_async_thread != NULL)
1899 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
1900 	mutex_exit(&spa->spa_async_lock);
1901 }
1902 
1903 void
1904 spa_async_resume(spa_t *spa)
1905 {
1906 	mutex_enter(&spa->spa_async_lock);
1907 	ASSERT(spa->spa_async_suspended != 0);
1908 	spa->spa_async_suspended--;
1909 	mutex_exit(&spa->spa_async_lock);
1910 }
1911 
1912 static void
1913 spa_async_dispatch(spa_t *spa)
1914 {
1915 	mutex_enter(&spa->spa_async_lock);
1916 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
1917 	    spa->spa_async_thread == NULL)
1918 		spa->spa_async_thread = thread_create(NULL, 0,
1919 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
1920 	mutex_exit(&spa->spa_async_lock);
1921 }
1922 
1923 void
1924 spa_async_request(spa_t *spa, int task)
1925 {
1926 	mutex_enter(&spa->spa_async_lock);
1927 	spa->spa_async_tasks |= task;
1928 	mutex_exit(&spa->spa_async_lock);
1929 }
1930 
1931 /*
1932  * ==========================================================================
1933  * SPA syncing routines
1934  * ==========================================================================
1935  */
1936 
1937 static void
1938 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
1939 {
1940 	bplist_t *bpl = &spa->spa_sync_bplist;
1941 	dmu_tx_t *tx;
1942 	blkptr_t blk;
1943 	uint64_t itor = 0;
1944 	zio_t *zio;
1945 	int error;
1946 	uint8_t c = 1;
1947 
1948 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
1949 
1950 	while (bplist_iterate(bpl, &itor, &blk) == 0)
1951 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
1952 
1953 	error = zio_wait(zio);
1954 	ASSERT3U(error, ==, 0);
1955 
1956 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1957 	bplist_vacate(bpl, tx);
1958 
1959 	/*
1960 	 * Pre-dirty the first block so we sync to convergence faster.
1961 	 * (Usually only the first block is needed.)
1962 	 */
1963 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
1964 	dmu_tx_commit(tx);
1965 }
1966 
1967 static void
1968 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
1969 {
1970 	nvlist_t *config;
1971 	char *packed = NULL;
1972 	size_t nvsize = 0;
1973 	dmu_buf_t *db;
1974 
1975 	if (list_is_empty(&spa->spa_dirty_list))
1976 		return;
1977 
1978 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
1979 
1980 	spa_config_set(spa, config);
1981 
1982 	VERIFY(nvlist_size(config, &nvsize, NV_ENCODE_XDR) == 0);
1983 
1984 	packed = kmem_alloc(nvsize, KM_SLEEP);
1985 
1986 	VERIFY(nvlist_pack(config, &packed, &nvsize, NV_ENCODE_XDR,
1987 	    KM_SLEEP) == 0);
1988 
1989 	dmu_write(spa->spa_meta_objset, spa->spa_config_object, 0, nvsize,
1990 	    packed, tx);
1991 
1992 	kmem_free(packed, nvsize);
1993 
1994 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset,
1995 	    spa->spa_config_object, FTAG, &db));
1996 	dmu_buf_will_dirty(db, tx);
1997 	*(uint64_t *)db->db_data = nvsize;
1998 	dmu_buf_rele(db, FTAG);
1999 }
2000 
2001 /*
2002  * Sync the specified transaction group.  New blocks may be dirtied as
2003  * part of the process, so we iterate until it converges.
2004  */
2005 void
2006 spa_sync(spa_t *spa, uint64_t txg)
2007 {
2008 	dsl_pool_t *dp = spa->spa_dsl_pool;
2009 	objset_t *mos = spa->spa_meta_objset;
2010 	bplist_t *bpl = &spa->spa_sync_bplist;
2011 	vdev_t *vd;
2012 	dmu_tx_t *tx;
2013 	int dirty_vdevs;
2014 
2015 	/*
2016 	 * Lock out configuration changes.
2017 	 */
2018 	spa_config_enter(spa, RW_READER, FTAG);
2019 
2020 	spa->spa_syncing_txg = txg;
2021 	spa->spa_sync_pass = 0;
2022 
2023 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2024 
2025 	/*
2026 	 * If anything has changed in this txg, push the deferred frees
2027 	 * from the previous txg.  If not, leave them alone so that we
2028 	 * don't generate work on an otherwise idle system.
2029 	 */
2030 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2031 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
2032 		spa_sync_deferred_frees(spa, txg);
2033 
2034 	/*
2035 	 * Iterate to convergence.
2036 	 */
2037 	do {
2038 		spa->spa_sync_pass++;
2039 
2040 		tx = dmu_tx_create_assigned(dp, txg);
2041 		spa_sync_config_object(spa, tx);
2042 		dmu_tx_commit(tx);
2043 
2044 		spa_errlog_sync(spa, txg);
2045 
2046 		dsl_pool_sync(dp, txg);
2047 
2048 		dirty_vdevs = 0;
2049 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2050 			vdev_sync(vd, txg);
2051 			dirty_vdevs++;
2052 		}
2053 
2054 		tx = dmu_tx_create_assigned(dp, txg);
2055 		bplist_sync(bpl, tx);
2056 		dmu_tx_commit(tx);
2057 
2058 	} while (dirty_vdevs);
2059 
2060 	bplist_close(bpl);
2061 
2062 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2063 
2064 	/*
2065 	 * Rewrite the vdev configuration (which includes the uberblock)
2066 	 * to commit the transaction group.
2067 	 */
2068 	VERIFY(0 == spa_sync_labels(spa, txg));
2069 
2070 	/*
2071 	 * Make a stable copy of the fully synced uberblock.
2072 	 * We use this as the root for pool traversals.
2073 	 */
2074 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2075 
2076 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2077 
2078 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2079 	spa->spa_traverse_wanted = 0;
2080 	spa->spa_ubsync = spa->spa_uberblock;
2081 	rw_exit(&spa->spa_traverse_lock);
2082 
2083 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2084 
2085 	/*
2086 	 * Clean up the ZIL records for the synced txg.
2087 	 */
2088 	dsl_pool_zil_clean(dp);
2089 
2090 	/*
2091 	 * Update usable space statistics.
2092 	 */
2093 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2094 		vdev_sync_done(vd, txg);
2095 
2096 	/*
2097 	 * It had better be the case that we didn't dirty anything
2098 	 * since spa_sync_labels().
2099 	 */
2100 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2101 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2102 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2103 	ASSERT(bpl->bpl_queue == NULL);
2104 
2105 	spa_config_exit(spa, FTAG);
2106 
2107 	/*
2108 	 * If any async tasks have been requested, kick them off.
2109 	 */
2110 	spa_async_dispatch(spa);
2111 }
2112 
2113 /*
2114  * Sync all pools.  We don't want to hold the namespace lock across these
2115  * operations, so we take a reference on the spa_t and drop the lock during the
2116  * sync.
2117  */
2118 void
2119 spa_sync_allpools(void)
2120 {
2121 	spa_t *spa = NULL;
2122 	mutex_enter(&spa_namespace_lock);
2123 	while ((spa = spa_next(spa)) != NULL) {
2124 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2125 			continue;
2126 		spa_open_ref(spa, FTAG);
2127 		mutex_exit(&spa_namespace_lock);
2128 		txg_wait_synced(spa_get_dsl(spa), 0);
2129 		mutex_enter(&spa_namespace_lock);
2130 		spa_close(spa, FTAG);
2131 	}
2132 	mutex_exit(&spa_namespace_lock);
2133 }
2134 
2135 /*
2136  * ==========================================================================
2137  * Miscellaneous routines
2138  * ==========================================================================
2139  */
2140 
2141 int
2142 spa_busy(void)
2143 {
2144 	return (spa_active_count != 0);
2145 }
2146 
2147 /*
2148  * Remove all pools in the system.
2149  */
2150 void
2151 spa_evict_all(void)
2152 {
2153 	spa_t *spa;
2154 
2155 	/*
2156 	 * Remove all cached state.  All pools should be closed now,
2157 	 * so every spa in the AVL tree should be unreferenced.
2158 	 */
2159 	mutex_enter(&spa_namespace_lock);
2160 	while ((spa = spa_next(NULL)) != NULL) {
2161 		/*
2162 		 * Stop async tasks.  The async thread may need to detach
2163 		 * a device that's been replaced, which requires grabbing
2164 		 * spa_namespace_lock, so we must drop it here.
2165 		 */
2166 		spa_open_ref(spa, FTAG);
2167 		mutex_exit(&spa_namespace_lock);
2168 		spa_async_suspend(spa);
2169 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2170 		mutex_enter(&spa_namespace_lock);
2171 		spa_close(spa, FTAG);
2172 
2173 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2174 			spa_unload(spa);
2175 			spa_deactivate(spa);
2176 		}
2177 		spa_remove(spa);
2178 	}
2179 	mutex_exit(&spa_namespace_lock);
2180 }
2181 
2182 vdev_t *
2183 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2184 {
2185 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2186 }
2187