1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 */ 28 29 /* 30 * SPA: Storage Pool Allocator 31 * 32 * This file contains all the routines used when modifying on-disk SPA state. 33 * This includes opening, importing, destroying, exporting a pool, and syncing a 34 * pool. 35 */ 36 37 #include <sys/zfs_context.h> 38 #include <sys/fm/fs/zfs.h> 39 #include <sys/spa_impl.h> 40 #include <sys/zio.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu.h> 43 #include <sys/dmu_tx.h> 44 #include <sys/zap.h> 45 #include <sys/zil.h> 46 #include <sys/ddt.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/metaslab.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/dmu_traverse.h> 54 #include <sys/dmu_objset.h> 55 #include <sys/unique.h> 56 #include <sys/dsl_pool.h> 57 #include <sys/dsl_dataset.h> 58 #include <sys/dsl_dir.h> 59 #include <sys/dsl_prop.h> 60 #include <sys/dsl_synctask.h> 61 #include <sys/fs/zfs.h> 62 #include <sys/arc.h> 63 #include <sys/callb.h> 64 #include <sys/systeminfo.h> 65 #include <sys/spa_boot.h> 66 #include <sys/zfs_ioctl.h> 67 #include <sys/dsl_scan.h> 68 #include <sys/zfeature.h> 69 #include <sys/dsl_destroy.h> 70 71 #ifdef _KERNEL 72 #include <sys/bootprops.h> 73 #include <sys/callb.h> 74 #include <sys/cpupart.h> 75 #include <sys/pool.h> 76 #include <sys/sysdc.h> 77 #include <sys/zone.h> 78 #endif /* _KERNEL */ 79 80 #include "zfs_prop.h" 81 #include "zfs_comutil.h" 82 83 /* 84 * The interval, in seconds, at which failed configuration cache file writes 85 * should be retried. 86 */ 87 static int zfs_ccw_retry_interval = 300; 88 89 typedef enum zti_modes { 90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 92 ZTI_MODE_NULL, /* don't create a taskq */ 93 ZTI_NMODES 94 } zti_modes_t; 95 96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 99 100 #define ZTI_N(n) ZTI_P(n, 1) 101 #define ZTI_ONE ZTI_N(1) 102 103 typedef struct zio_taskq_info { 104 zti_modes_t zti_mode; 105 uint_t zti_value; 106 uint_t zti_count; 107 } zio_taskq_info_t; 108 109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 110 "issue", "issue_high", "intr", "intr_high" 111 }; 112 113 /* 114 * This table defines the taskq settings for each ZFS I/O type. When 115 * initializing a pool, we use this table to create an appropriately sized 116 * taskq. Some operations are low volume and therefore have a small, static 117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 118 * macros. Other operations process a large amount of data; the ZTI_BATCH 119 * macro causes us to create a taskq oriented for throughput. Some operations 120 * are so high frequency and short-lived that the taskq itself can become a a 121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 122 * additional degree of parallelism specified by the number of threads per- 123 * taskq and the number of taskqs; when dispatching an event in this case, the 124 * particular taskq is chosen at random. 125 * 126 * The different taskq priorities are to handle the different contexts (issue 127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 128 * need to be handled with minimum delay. 129 */ 130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 133 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 138 }; 139 140 static void spa_sync_version(void *arg, dmu_tx_t *tx); 141 static void spa_sync_props(void *arg, dmu_tx_t *tx); 142 static boolean_t spa_has_active_shared_spare(spa_t *spa); 143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 145 char **ereport); 146 static void spa_vdev_resilver_done(spa_t *spa); 147 148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 149 id_t zio_taskq_psrset_bind = PS_NONE; 150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 151 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 152 153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 154 extern int zfs_sync_pass_deferred_free; 155 156 /* 157 * This (illegal) pool name is used when temporarily importing a spa_t in order 158 * to get the vdev stats associated with the imported devices. 159 */ 160 #define TRYIMPORT_NAME "$import" 161 162 /* 163 * ========================================================================== 164 * SPA properties routines 165 * ========================================================================== 166 */ 167 168 /* 169 * Add a (source=src, propname=propval) list to an nvlist. 170 */ 171 static void 172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 173 uint64_t intval, zprop_source_t src) 174 { 175 const char *propname = zpool_prop_to_name(prop); 176 nvlist_t *propval; 177 178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 180 181 if (strval != NULL) 182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 183 else 184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 185 186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 187 nvlist_free(propval); 188 } 189 190 /* 191 * Get property values from the spa configuration. 192 */ 193 static void 194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 195 { 196 vdev_t *rvd = spa->spa_root_vdev; 197 dsl_pool_t *pool = spa->spa_dsl_pool; 198 uint64_t size, alloc, cap, version; 199 zprop_source_t src = ZPROP_SRC_NONE; 200 spa_config_dirent_t *dp; 201 metaslab_class_t *mc = spa_normal_class(spa); 202 203 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 204 205 if (rvd != NULL) { 206 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 207 size = metaslab_class_get_space(spa_normal_class(spa)); 208 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 212 size - alloc, src); 213 214 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 215 metaslab_class_fragmentation(mc), src); 216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 217 metaslab_class_expandable_space(mc), src); 218 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 219 (spa_mode(spa) == FREAD), src); 220 221 cap = (size == 0) ? 0 : (alloc * 100 / size); 222 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 223 224 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 225 ddt_get_pool_dedup_ratio(spa), src); 226 227 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 228 rvd->vdev_state, src); 229 230 version = spa_version(spa); 231 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 232 src = ZPROP_SRC_DEFAULT; 233 else 234 src = ZPROP_SRC_LOCAL; 235 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 236 } 237 238 if (pool != NULL) { 239 /* 240 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 241 * when opening pools before this version freedir will be NULL. 242 */ 243 if (pool->dp_free_dir != NULL) { 244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 245 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 246 src); 247 } else { 248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 249 NULL, 0, src); 250 } 251 252 if (pool->dp_leak_dir != NULL) { 253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 254 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 255 src); 256 } else { 257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 258 NULL, 0, src); 259 } 260 } 261 262 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 263 264 if (spa->spa_comment != NULL) { 265 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 266 0, ZPROP_SRC_LOCAL); 267 } 268 269 if (spa->spa_root != NULL) 270 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 271 0, ZPROP_SRC_LOCAL); 272 273 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 275 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 276 } else { 277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 278 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 279 } 280 281 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 282 if (dp->scd_path == NULL) { 283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 284 "none", 0, ZPROP_SRC_LOCAL); 285 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 287 dp->scd_path, 0, ZPROP_SRC_LOCAL); 288 } 289 } 290 } 291 292 /* 293 * Get zpool property values. 294 */ 295 int 296 spa_prop_get(spa_t *spa, nvlist_t **nvp) 297 { 298 objset_t *mos = spa->spa_meta_objset; 299 zap_cursor_t zc; 300 zap_attribute_t za; 301 int err; 302 303 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 304 305 mutex_enter(&spa->spa_props_lock); 306 307 /* 308 * Get properties from the spa config. 309 */ 310 spa_prop_get_config(spa, nvp); 311 312 /* If no pool property object, no more prop to get. */ 313 if (mos == NULL || spa->spa_pool_props_object == 0) { 314 mutex_exit(&spa->spa_props_lock); 315 return (0); 316 } 317 318 /* 319 * Get properties from the MOS pool property object. 320 */ 321 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 322 (err = zap_cursor_retrieve(&zc, &za)) == 0; 323 zap_cursor_advance(&zc)) { 324 uint64_t intval = 0; 325 char *strval = NULL; 326 zprop_source_t src = ZPROP_SRC_DEFAULT; 327 zpool_prop_t prop; 328 329 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 330 continue; 331 332 switch (za.za_integer_length) { 333 case 8: 334 /* integer property */ 335 if (za.za_first_integer != 336 zpool_prop_default_numeric(prop)) 337 src = ZPROP_SRC_LOCAL; 338 339 if (prop == ZPOOL_PROP_BOOTFS) { 340 dsl_pool_t *dp; 341 dsl_dataset_t *ds = NULL; 342 343 dp = spa_get_dsl(spa); 344 dsl_pool_config_enter(dp, FTAG); 345 if (err = dsl_dataset_hold_obj(dp, 346 za.za_first_integer, FTAG, &ds)) { 347 dsl_pool_config_exit(dp, FTAG); 348 break; 349 } 350 351 strval = kmem_alloc( 352 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 353 KM_SLEEP); 354 dsl_dataset_name(ds, strval); 355 dsl_dataset_rele(ds, FTAG); 356 dsl_pool_config_exit(dp, FTAG); 357 } else { 358 strval = NULL; 359 intval = za.za_first_integer; 360 } 361 362 spa_prop_add_list(*nvp, prop, strval, intval, src); 363 364 if (strval != NULL) 365 kmem_free(strval, 366 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 367 368 break; 369 370 case 1: 371 /* string property */ 372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 373 err = zap_lookup(mos, spa->spa_pool_props_object, 374 za.za_name, 1, za.za_num_integers, strval); 375 if (err) { 376 kmem_free(strval, za.za_num_integers); 377 break; 378 } 379 spa_prop_add_list(*nvp, prop, strval, 0, src); 380 kmem_free(strval, za.za_num_integers); 381 break; 382 383 default: 384 break; 385 } 386 } 387 zap_cursor_fini(&zc); 388 mutex_exit(&spa->spa_props_lock); 389 out: 390 if (err && err != ENOENT) { 391 nvlist_free(*nvp); 392 *nvp = NULL; 393 return (err); 394 } 395 396 return (0); 397 } 398 399 /* 400 * Validate the given pool properties nvlist and modify the list 401 * for the property values to be set. 402 */ 403 static int 404 spa_prop_validate(spa_t *spa, nvlist_t *props) 405 { 406 nvpair_t *elem; 407 int error = 0, reset_bootfs = 0; 408 uint64_t objnum = 0; 409 boolean_t has_feature = B_FALSE; 410 411 elem = NULL; 412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 413 uint64_t intval; 414 char *strval, *slash, *check, *fname; 415 const char *propname = nvpair_name(elem); 416 zpool_prop_t prop = zpool_name_to_prop(propname); 417 418 switch (prop) { 419 case ZPROP_INVAL: 420 if (!zpool_prop_feature(propname)) { 421 error = SET_ERROR(EINVAL); 422 break; 423 } 424 425 /* 426 * Sanitize the input. 427 */ 428 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 429 error = SET_ERROR(EINVAL); 430 break; 431 } 432 433 if (nvpair_value_uint64(elem, &intval) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 if (intval != 0) { 439 error = SET_ERROR(EINVAL); 440 break; 441 } 442 443 fname = strchr(propname, '@') + 1; 444 if (zfeature_lookup_name(fname, NULL) != 0) { 445 error = SET_ERROR(EINVAL); 446 break; 447 } 448 449 has_feature = B_TRUE; 450 break; 451 452 case ZPOOL_PROP_VERSION: 453 error = nvpair_value_uint64(elem, &intval); 454 if (!error && 455 (intval < spa_version(spa) || 456 intval > SPA_VERSION_BEFORE_FEATURES || 457 has_feature)) 458 error = SET_ERROR(EINVAL); 459 break; 460 461 case ZPOOL_PROP_DELEGATION: 462 case ZPOOL_PROP_AUTOREPLACE: 463 case ZPOOL_PROP_LISTSNAPS: 464 case ZPOOL_PROP_AUTOEXPAND: 465 error = nvpair_value_uint64(elem, &intval); 466 if (!error && intval > 1) 467 error = SET_ERROR(EINVAL); 468 break; 469 470 case ZPOOL_PROP_BOOTFS: 471 /* 472 * If the pool version is less than SPA_VERSION_BOOTFS, 473 * or the pool is still being created (version == 0), 474 * the bootfs property cannot be set. 475 */ 476 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 477 error = SET_ERROR(ENOTSUP); 478 break; 479 } 480 481 /* 482 * Make sure the vdev config is bootable 483 */ 484 if (!vdev_is_bootable(spa->spa_root_vdev)) { 485 error = SET_ERROR(ENOTSUP); 486 break; 487 } 488 489 reset_bootfs = 1; 490 491 error = nvpair_value_string(elem, &strval); 492 493 if (!error) { 494 objset_t *os; 495 uint64_t propval; 496 497 if (strval == NULL || strval[0] == '\0') { 498 objnum = zpool_prop_default_numeric( 499 ZPOOL_PROP_BOOTFS); 500 break; 501 } 502 503 if (error = dmu_objset_hold(strval, FTAG, &os)) 504 break; 505 506 /* 507 * Must be ZPL, and its property settings 508 * must be supported by GRUB (compression 509 * is not gzip, and large blocks are not used). 510 */ 511 512 if (dmu_objset_type(os) != DMU_OST_ZFS) { 513 error = SET_ERROR(ENOTSUP); 514 } else if ((error = 515 dsl_prop_get_int_ds(dmu_objset_ds(os), 516 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 517 &propval)) == 0 && 518 !BOOTFS_COMPRESS_VALID(propval)) { 519 error = SET_ERROR(ENOTSUP); 520 } else if ((error = 521 dsl_prop_get_int_ds(dmu_objset_ds(os), 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 523 &propval)) == 0 && 524 propval > SPA_OLD_MAXBLOCKSIZE) { 525 error = SET_ERROR(ENOTSUP); 526 } else { 527 objnum = dmu_objset_id(os); 528 } 529 dmu_objset_rele(os, FTAG); 530 } 531 break; 532 533 case ZPOOL_PROP_FAILUREMODE: 534 error = nvpair_value_uint64(elem, &intval); 535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 536 intval > ZIO_FAILURE_MODE_PANIC)) 537 error = SET_ERROR(EINVAL); 538 539 /* 540 * This is a special case which only occurs when 541 * the pool has completely failed. This allows 542 * the user to change the in-core failmode property 543 * without syncing it out to disk (I/Os might 544 * currently be blocked). We do this by returning 545 * EIO to the caller (spa_prop_set) to trick it 546 * into thinking we encountered a property validation 547 * error. 548 */ 549 if (!error && spa_suspended(spa)) { 550 spa->spa_failmode = intval; 551 error = SET_ERROR(EIO); 552 } 553 break; 554 555 case ZPOOL_PROP_CACHEFILE: 556 if ((error = nvpair_value_string(elem, &strval)) != 0) 557 break; 558 559 if (strval[0] == '\0') 560 break; 561 562 if (strcmp(strval, "none") == 0) 563 break; 564 565 if (strval[0] != '/') { 566 error = SET_ERROR(EINVAL); 567 break; 568 } 569 570 slash = strrchr(strval, '/'); 571 ASSERT(slash != NULL); 572 573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 574 strcmp(slash, "/..") == 0) 575 error = SET_ERROR(EINVAL); 576 break; 577 578 case ZPOOL_PROP_COMMENT: 579 if ((error = nvpair_value_string(elem, &strval)) != 0) 580 break; 581 for (check = strval; *check != '\0'; check++) { 582 /* 583 * The kernel doesn't have an easy isprint() 584 * check. For this kernel check, we merely 585 * check ASCII apart from DEL. Fix this if 586 * there is an easy-to-use kernel isprint(). 587 */ 588 if (*check >= 0x7f) { 589 error = SET_ERROR(EINVAL); 590 break; 591 } 592 check++; 593 } 594 if (strlen(strval) > ZPROP_MAX_COMMENT) 595 error = E2BIG; 596 break; 597 598 case ZPOOL_PROP_DEDUPDITTO: 599 if (spa_version(spa) < SPA_VERSION_DEDUP) 600 error = SET_ERROR(ENOTSUP); 601 else 602 error = nvpair_value_uint64(elem, &intval); 603 if (error == 0 && 604 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 605 error = SET_ERROR(EINVAL); 606 break; 607 } 608 609 if (error) 610 break; 611 } 612 613 if (!error && reset_bootfs) { 614 error = nvlist_remove(props, 615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 616 617 if (!error) { 618 error = nvlist_add_uint64(props, 619 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 620 } 621 } 622 623 return (error); 624 } 625 626 void 627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 628 { 629 char *cachefile; 630 spa_config_dirent_t *dp; 631 632 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 633 &cachefile) != 0) 634 return; 635 636 dp = kmem_alloc(sizeof (spa_config_dirent_t), 637 KM_SLEEP); 638 639 if (cachefile[0] == '\0') 640 dp->scd_path = spa_strdup(spa_config_path); 641 else if (strcmp(cachefile, "none") == 0) 642 dp->scd_path = NULL; 643 else 644 dp->scd_path = spa_strdup(cachefile); 645 646 list_insert_head(&spa->spa_config_list, dp); 647 if (need_sync) 648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 649 } 650 651 int 652 spa_prop_set(spa_t *spa, nvlist_t *nvp) 653 { 654 int error; 655 nvpair_t *elem = NULL; 656 boolean_t need_sync = B_FALSE; 657 658 if ((error = spa_prop_validate(spa, nvp)) != 0) 659 return (error); 660 661 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 662 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 663 664 if (prop == ZPOOL_PROP_CACHEFILE || 665 prop == ZPOOL_PROP_ALTROOT || 666 prop == ZPOOL_PROP_READONLY) 667 continue; 668 669 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 670 uint64_t ver; 671 672 if (prop == ZPOOL_PROP_VERSION) { 673 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 674 } else { 675 ASSERT(zpool_prop_feature(nvpair_name(elem))); 676 ver = SPA_VERSION_FEATURES; 677 need_sync = B_TRUE; 678 } 679 680 /* Save time if the version is already set. */ 681 if (ver == spa_version(spa)) 682 continue; 683 684 /* 685 * In addition to the pool directory object, we might 686 * create the pool properties object, the features for 687 * read object, the features for write object, or the 688 * feature descriptions object. 689 */ 690 error = dsl_sync_task(spa->spa_name, NULL, 691 spa_sync_version, &ver, 692 6, ZFS_SPACE_CHECK_RESERVED); 693 if (error) 694 return (error); 695 continue; 696 } 697 698 need_sync = B_TRUE; 699 break; 700 } 701 702 if (need_sync) { 703 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 704 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 705 } 706 707 return (0); 708 } 709 710 /* 711 * If the bootfs property value is dsobj, clear it. 712 */ 713 void 714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 715 { 716 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 717 VERIFY(zap_remove(spa->spa_meta_objset, 718 spa->spa_pool_props_object, 719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 720 spa->spa_bootfs = 0; 721 } 722 } 723 724 /*ARGSUSED*/ 725 static int 726 spa_change_guid_check(void *arg, dmu_tx_t *tx) 727 { 728 uint64_t *newguid = arg; 729 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 730 vdev_t *rvd = spa->spa_root_vdev; 731 uint64_t vdev_state; 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 vdev_state = rvd->vdev_state; 735 spa_config_exit(spa, SCL_STATE, FTAG); 736 737 if (vdev_state != VDEV_STATE_HEALTHY) 738 return (SET_ERROR(ENXIO)); 739 740 ASSERT3U(spa_guid(spa), !=, *newguid); 741 742 return (0); 743 } 744 745 static void 746 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 747 { 748 uint64_t *newguid = arg; 749 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 750 uint64_t oldguid; 751 vdev_t *rvd = spa->spa_root_vdev; 752 753 oldguid = spa_guid(spa); 754 755 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 756 rvd->vdev_guid = *newguid; 757 rvd->vdev_guid_sum += (*newguid - oldguid); 758 vdev_config_dirty(rvd); 759 spa_config_exit(spa, SCL_STATE, FTAG); 760 761 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 762 oldguid, *newguid); 763 } 764 765 /* 766 * Change the GUID for the pool. This is done so that we can later 767 * re-import a pool built from a clone of our own vdevs. We will modify 768 * the root vdev's guid, our own pool guid, and then mark all of our 769 * vdevs dirty. Note that we must make sure that all our vdevs are 770 * online when we do this, or else any vdevs that weren't present 771 * would be orphaned from our pool. We are also going to issue a 772 * sysevent to update any watchers. 773 */ 774 int 775 spa_change_guid(spa_t *spa) 776 { 777 int error; 778 uint64_t guid; 779 780 mutex_enter(&spa->spa_vdev_top_lock); 781 mutex_enter(&spa_namespace_lock); 782 guid = spa_generate_guid(NULL); 783 784 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 785 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 786 787 if (error == 0) { 788 spa_config_sync(spa, B_FALSE, B_TRUE); 789 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 790 } 791 792 mutex_exit(&spa_namespace_lock); 793 mutex_exit(&spa->spa_vdev_top_lock); 794 795 return (error); 796 } 797 798 /* 799 * ========================================================================== 800 * SPA state manipulation (open/create/destroy/import/export) 801 * ========================================================================== 802 */ 803 804 static int 805 spa_error_entry_compare(const void *a, const void *b) 806 { 807 spa_error_entry_t *sa = (spa_error_entry_t *)a; 808 spa_error_entry_t *sb = (spa_error_entry_t *)b; 809 int ret; 810 811 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 812 sizeof (zbookmark_phys_t)); 813 814 if (ret < 0) 815 return (-1); 816 else if (ret > 0) 817 return (1); 818 else 819 return (0); 820 } 821 822 /* 823 * Utility function which retrieves copies of the current logs and 824 * re-initializes them in the process. 825 */ 826 void 827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 828 { 829 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 830 831 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 832 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 833 834 avl_create(&spa->spa_errlist_scrub, 835 spa_error_entry_compare, sizeof (spa_error_entry_t), 836 offsetof(spa_error_entry_t, se_avl)); 837 avl_create(&spa->spa_errlist_last, 838 spa_error_entry_compare, sizeof (spa_error_entry_t), 839 offsetof(spa_error_entry_t, se_avl)); 840 } 841 842 static void 843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 844 { 845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 846 enum zti_modes mode = ztip->zti_mode; 847 uint_t value = ztip->zti_value; 848 uint_t count = ztip->zti_count; 849 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 850 char name[32]; 851 uint_t flags = 0; 852 boolean_t batch = B_FALSE; 853 854 if (mode == ZTI_MODE_NULL) { 855 tqs->stqs_count = 0; 856 tqs->stqs_taskq = NULL; 857 return; 858 } 859 860 ASSERT3U(count, >, 0); 861 862 tqs->stqs_count = count; 863 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 864 865 switch (mode) { 866 case ZTI_MODE_FIXED: 867 ASSERT3U(value, >=, 1); 868 value = MAX(value, 1); 869 break; 870 871 case ZTI_MODE_BATCH: 872 batch = B_TRUE; 873 flags |= TASKQ_THREADS_CPU_PCT; 874 value = zio_taskq_batch_pct; 875 break; 876 877 default: 878 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 879 "spa_activate()", 880 zio_type_name[t], zio_taskq_types[q], mode, value); 881 break; 882 } 883 884 for (uint_t i = 0; i < count; i++) { 885 taskq_t *tq; 886 887 if (count > 1) { 888 (void) snprintf(name, sizeof (name), "%s_%s_%u", 889 zio_type_name[t], zio_taskq_types[q], i); 890 } else { 891 (void) snprintf(name, sizeof (name), "%s_%s", 892 zio_type_name[t], zio_taskq_types[q]); 893 } 894 895 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 896 if (batch) 897 flags |= TASKQ_DC_BATCH; 898 899 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 900 spa->spa_proc, zio_taskq_basedc, flags); 901 } else { 902 pri_t pri = maxclsyspri; 903 /* 904 * The write issue taskq can be extremely CPU 905 * intensive. Run it at slightly lower priority 906 * than the other taskqs. 907 */ 908 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 909 pri--; 910 911 tq = taskq_create_proc(name, value, pri, 50, 912 INT_MAX, spa->spa_proc, flags); 913 } 914 915 tqs->stqs_taskq[i] = tq; 916 } 917 } 918 919 static void 920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 921 { 922 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 923 924 if (tqs->stqs_taskq == NULL) { 925 ASSERT0(tqs->stqs_count); 926 return; 927 } 928 929 for (uint_t i = 0; i < tqs->stqs_count; i++) { 930 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 931 taskq_destroy(tqs->stqs_taskq[i]); 932 } 933 934 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 935 tqs->stqs_taskq = NULL; 936 } 937 938 /* 939 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 940 * Note that a type may have multiple discrete taskqs to avoid lock contention 941 * on the taskq itself. In that case we choose which taskq at random by using 942 * the low bits of gethrtime(). 943 */ 944 void 945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 946 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 947 { 948 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 949 taskq_t *tq; 950 951 ASSERT3P(tqs->stqs_taskq, !=, NULL); 952 ASSERT3U(tqs->stqs_count, !=, 0); 953 954 if (tqs->stqs_count == 1) { 955 tq = tqs->stqs_taskq[0]; 956 } else { 957 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 958 } 959 960 taskq_dispatch_ent(tq, func, arg, flags, ent); 961 } 962 963 static void 964 spa_create_zio_taskqs(spa_t *spa) 965 { 966 for (int t = 0; t < ZIO_TYPES; t++) { 967 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 968 spa_taskqs_init(spa, t, q); 969 } 970 } 971 } 972 973 #ifdef _KERNEL 974 static void 975 spa_thread(void *arg) 976 { 977 callb_cpr_t cprinfo; 978 979 spa_t *spa = arg; 980 user_t *pu = PTOU(curproc); 981 982 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 983 spa->spa_name); 984 985 ASSERT(curproc != &p0); 986 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 987 "zpool-%s", spa->spa_name); 988 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 989 990 /* bind this thread to the requested psrset */ 991 if (zio_taskq_psrset_bind != PS_NONE) { 992 pool_lock(); 993 mutex_enter(&cpu_lock); 994 mutex_enter(&pidlock); 995 mutex_enter(&curproc->p_lock); 996 997 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 998 0, NULL, NULL) == 0) { 999 curthread->t_bind_pset = zio_taskq_psrset_bind; 1000 } else { 1001 cmn_err(CE_WARN, 1002 "Couldn't bind process for zfs pool \"%s\" to " 1003 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1004 } 1005 1006 mutex_exit(&curproc->p_lock); 1007 mutex_exit(&pidlock); 1008 mutex_exit(&cpu_lock); 1009 pool_unlock(); 1010 } 1011 1012 if (zio_taskq_sysdc) { 1013 sysdc_thread_enter(curthread, 100, 0); 1014 } 1015 1016 spa->spa_proc = curproc; 1017 spa->spa_did = curthread->t_did; 1018 1019 spa_create_zio_taskqs(spa); 1020 1021 mutex_enter(&spa->spa_proc_lock); 1022 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1023 1024 spa->spa_proc_state = SPA_PROC_ACTIVE; 1025 cv_broadcast(&spa->spa_proc_cv); 1026 1027 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1028 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1029 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1030 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1031 1032 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1033 spa->spa_proc_state = SPA_PROC_GONE; 1034 spa->spa_proc = &p0; 1035 cv_broadcast(&spa->spa_proc_cv); 1036 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1037 1038 mutex_enter(&curproc->p_lock); 1039 lwp_exit(); 1040 } 1041 #endif 1042 1043 /* 1044 * Activate an uninitialized pool. 1045 */ 1046 static void 1047 spa_activate(spa_t *spa, int mode) 1048 { 1049 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1050 1051 spa->spa_state = POOL_STATE_ACTIVE; 1052 spa->spa_mode = mode; 1053 1054 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1055 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1056 1057 /* Try to create a covering process */ 1058 mutex_enter(&spa->spa_proc_lock); 1059 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1060 ASSERT(spa->spa_proc == &p0); 1061 spa->spa_did = 0; 1062 1063 /* Only create a process if we're going to be around a while. */ 1064 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1065 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1066 NULL, 0) == 0) { 1067 spa->spa_proc_state = SPA_PROC_CREATED; 1068 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1069 cv_wait(&spa->spa_proc_cv, 1070 &spa->spa_proc_lock); 1071 } 1072 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1073 ASSERT(spa->spa_proc != &p0); 1074 ASSERT(spa->spa_did != 0); 1075 } else { 1076 #ifdef _KERNEL 1077 cmn_err(CE_WARN, 1078 "Couldn't create process for zfs pool \"%s\"\n", 1079 spa->spa_name); 1080 #endif 1081 } 1082 } 1083 mutex_exit(&spa->spa_proc_lock); 1084 1085 /* If we didn't create a process, we need to create our taskqs. */ 1086 if (spa->spa_proc == &p0) { 1087 spa_create_zio_taskqs(spa); 1088 } 1089 1090 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1091 offsetof(vdev_t, vdev_config_dirty_node)); 1092 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1093 offsetof(objset_t, os_evicting_node)); 1094 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1095 offsetof(vdev_t, vdev_state_dirty_node)); 1096 1097 txg_list_create(&spa->spa_vdev_txg_list, 1098 offsetof(struct vdev, vdev_txg_node)); 1099 1100 avl_create(&spa->spa_errlist_scrub, 1101 spa_error_entry_compare, sizeof (spa_error_entry_t), 1102 offsetof(spa_error_entry_t, se_avl)); 1103 avl_create(&spa->spa_errlist_last, 1104 spa_error_entry_compare, sizeof (spa_error_entry_t), 1105 offsetof(spa_error_entry_t, se_avl)); 1106 } 1107 1108 /* 1109 * Opposite of spa_activate(). 1110 */ 1111 static void 1112 spa_deactivate(spa_t *spa) 1113 { 1114 ASSERT(spa->spa_sync_on == B_FALSE); 1115 ASSERT(spa->spa_dsl_pool == NULL); 1116 ASSERT(spa->spa_root_vdev == NULL); 1117 ASSERT(spa->spa_async_zio_root == NULL); 1118 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1119 1120 spa_evicting_os_wait(spa); 1121 1122 txg_list_destroy(&spa->spa_vdev_txg_list); 1123 1124 list_destroy(&spa->spa_config_dirty_list); 1125 list_destroy(&spa->spa_evicting_os_list); 1126 list_destroy(&spa->spa_state_dirty_list); 1127 1128 for (int t = 0; t < ZIO_TYPES; t++) { 1129 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1130 spa_taskqs_fini(spa, t, q); 1131 } 1132 } 1133 1134 metaslab_class_destroy(spa->spa_normal_class); 1135 spa->spa_normal_class = NULL; 1136 1137 metaslab_class_destroy(spa->spa_log_class); 1138 spa->spa_log_class = NULL; 1139 1140 /* 1141 * If this was part of an import or the open otherwise failed, we may 1142 * still have errors left in the queues. Empty them just in case. 1143 */ 1144 spa_errlog_drain(spa); 1145 1146 avl_destroy(&spa->spa_errlist_scrub); 1147 avl_destroy(&spa->spa_errlist_last); 1148 1149 spa->spa_state = POOL_STATE_UNINITIALIZED; 1150 1151 mutex_enter(&spa->spa_proc_lock); 1152 if (spa->spa_proc_state != SPA_PROC_NONE) { 1153 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1154 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1155 cv_broadcast(&spa->spa_proc_cv); 1156 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1157 ASSERT(spa->spa_proc != &p0); 1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1159 } 1160 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1161 spa->spa_proc_state = SPA_PROC_NONE; 1162 } 1163 ASSERT(spa->spa_proc == &p0); 1164 mutex_exit(&spa->spa_proc_lock); 1165 1166 /* 1167 * We want to make sure spa_thread() has actually exited the ZFS 1168 * module, so that the module can't be unloaded out from underneath 1169 * it. 1170 */ 1171 if (spa->spa_did != 0) { 1172 thread_join(spa->spa_did); 1173 spa->spa_did = 0; 1174 } 1175 } 1176 1177 /* 1178 * Verify a pool configuration, and construct the vdev tree appropriately. This 1179 * will create all the necessary vdevs in the appropriate layout, with each vdev 1180 * in the CLOSED state. This will prep the pool before open/creation/import. 1181 * All vdev validation is done by the vdev_alloc() routine. 1182 */ 1183 static int 1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1185 uint_t id, int atype) 1186 { 1187 nvlist_t **child; 1188 uint_t children; 1189 int error; 1190 1191 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1192 return (error); 1193 1194 if ((*vdp)->vdev_ops->vdev_op_leaf) 1195 return (0); 1196 1197 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1198 &child, &children); 1199 1200 if (error == ENOENT) 1201 return (0); 1202 1203 if (error) { 1204 vdev_free(*vdp); 1205 *vdp = NULL; 1206 return (SET_ERROR(EINVAL)); 1207 } 1208 1209 for (int c = 0; c < children; c++) { 1210 vdev_t *vd; 1211 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1212 atype)) != 0) { 1213 vdev_free(*vdp); 1214 *vdp = NULL; 1215 return (error); 1216 } 1217 } 1218 1219 ASSERT(*vdp != NULL); 1220 1221 return (0); 1222 } 1223 1224 /* 1225 * Opposite of spa_load(). 1226 */ 1227 static void 1228 spa_unload(spa_t *spa) 1229 { 1230 int i; 1231 1232 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1233 1234 /* 1235 * Stop async tasks. 1236 */ 1237 spa_async_suspend(spa); 1238 1239 /* 1240 * Stop syncing. 1241 */ 1242 if (spa->spa_sync_on) { 1243 txg_sync_stop(spa->spa_dsl_pool); 1244 spa->spa_sync_on = B_FALSE; 1245 } 1246 1247 /* 1248 * Wait for any outstanding async I/O to complete. 1249 */ 1250 if (spa->spa_async_zio_root != NULL) { 1251 for (int i = 0; i < max_ncpus; i++) 1252 (void) zio_wait(spa->spa_async_zio_root[i]); 1253 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1254 spa->spa_async_zio_root = NULL; 1255 } 1256 1257 bpobj_close(&spa->spa_deferred_bpobj); 1258 1259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1260 1261 /* 1262 * Close all vdevs. 1263 */ 1264 if (spa->spa_root_vdev) 1265 vdev_free(spa->spa_root_vdev); 1266 ASSERT(spa->spa_root_vdev == NULL); 1267 1268 /* 1269 * Close the dsl pool. 1270 */ 1271 if (spa->spa_dsl_pool) { 1272 dsl_pool_close(spa->spa_dsl_pool); 1273 spa->spa_dsl_pool = NULL; 1274 spa->spa_meta_objset = NULL; 1275 } 1276 1277 ddt_unload(spa); 1278 1279 1280 /* 1281 * Drop and purge level 2 cache 1282 */ 1283 spa_l2cache_drop(spa); 1284 1285 for (i = 0; i < spa->spa_spares.sav_count; i++) 1286 vdev_free(spa->spa_spares.sav_vdevs[i]); 1287 if (spa->spa_spares.sav_vdevs) { 1288 kmem_free(spa->spa_spares.sav_vdevs, 1289 spa->spa_spares.sav_count * sizeof (void *)); 1290 spa->spa_spares.sav_vdevs = NULL; 1291 } 1292 if (spa->spa_spares.sav_config) { 1293 nvlist_free(spa->spa_spares.sav_config); 1294 spa->spa_spares.sav_config = NULL; 1295 } 1296 spa->spa_spares.sav_count = 0; 1297 1298 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1299 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1300 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1301 } 1302 if (spa->spa_l2cache.sav_vdevs) { 1303 kmem_free(spa->spa_l2cache.sav_vdevs, 1304 spa->spa_l2cache.sav_count * sizeof (void *)); 1305 spa->spa_l2cache.sav_vdevs = NULL; 1306 } 1307 if (spa->spa_l2cache.sav_config) { 1308 nvlist_free(spa->spa_l2cache.sav_config); 1309 spa->spa_l2cache.sav_config = NULL; 1310 } 1311 spa->spa_l2cache.sav_count = 0; 1312 1313 spa->spa_async_suspended = 0; 1314 1315 if (spa->spa_comment != NULL) { 1316 spa_strfree(spa->spa_comment); 1317 spa->spa_comment = NULL; 1318 } 1319 1320 spa_config_exit(spa, SCL_ALL, FTAG); 1321 } 1322 1323 /* 1324 * Load (or re-load) the current list of vdevs describing the active spares for 1325 * this pool. When this is called, we have some form of basic information in 1326 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1327 * then re-generate a more complete list including status information. 1328 */ 1329 static void 1330 spa_load_spares(spa_t *spa) 1331 { 1332 nvlist_t **spares; 1333 uint_t nspares; 1334 int i; 1335 vdev_t *vd, *tvd; 1336 1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1338 1339 /* 1340 * First, close and free any existing spare vdevs. 1341 */ 1342 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1343 vd = spa->spa_spares.sav_vdevs[i]; 1344 1345 /* Undo the call to spa_activate() below */ 1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1347 B_FALSE)) != NULL && tvd->vdev_isspare) 1348 spa_spare_remove(tvd); 1349 vdev_close(vd); 1350 vdev_free(vd); 1351 } 1352 1353 if (spa->spa_spares.sav_vdevs) 1354 kmem_free(spa->spa_spares.sav_vdevs, 1355 spa->spa_spares.sav_count * sizeof (void *)); 1356 1357 if (spa->spa_spares.sav_config == NULL) 1358 nspares = 0; 1359 else 1360 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1361 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1362 1363 spa->spa_spares.sav_count = (int)nspares; 1364 spa->spa_spares.sav_vdevs = NULL; 1365 1366 if (nspares == 0) 1367 return; 1368 1369 /* 1370 * Construct the array of vdevs, opening them to get status in the 1371 * process. For each spare, there is potentially two different vdev_t 1372 * structures associated with it: one in the list of spares (used only 1373 * for basic validation purposes) and one in the active vdev 1374 * configuration (if it's spared in). During this phase we open and 1375 * validate each vdev on the spare list. If the vdev also exists in the 1376 * active configuration, then we also mark this vdev as an active spare. 1377 */ 1378 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1379 KM_SLEEP); 1380 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1381 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1382 VDEV_ALLOC_SPARE) == 0); 1383 ASSERT(vd != NULL); 1384 1385 spa->spa_spares.sav_vdevs[i] = vd; 1386 1387 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1388 B_FALSE)) != NULL) { 1389 if (!tvd->vdev_isspare) 1390 spa_spare_add(tvd); 1391 1392 /* 1393 * We only mark the spare active if we were successfully 1394 * able to load the vdev. Otherwise, importing a pool 1395 * with a bad active spare would result in strange 1396 * behavior, because multiple pool would think the spare 1397 * is actively in use. 1398 * 1399 * There is a vulnerability here to an equally bizarre 1400 * circumstance, where a dead active spare is later 1401 * brought back to life (onlined or otherwise). Given 1402 * the rarity of this scenario, and the extra complexity 1403 * it adds, we ignore the possibility. 1404 */ 1405 if (!vdev_is_dead(tvd)) 1406 spa_spare_activate(tvd); 1407 } 1408 1409 vd->vdev_top = vd; 1410 vd->vdev_aux = &spa->spa_spares; 1411 1412 if (vdev_open(vd) != 0) 1413 continue; 1414 1415 if (vdev_validate_aux(vd) == 0) 1416 spa_spare_add(vd); 1417 } 1418 1419 /* 1420 * Recompute the stashed list of spares, with status information 1421 * this time. 1422 */ 1423 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1424 DATA_TYPE_NVLIST_ARRAY) == 0); 1425 1426 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1427 KM_SLEEP); 1428 for (i = 0; i < spa->spa_spares.sav_count; i++) 1429 spares[i] = vdev_config_generate(spa, 1430 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1431 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1432 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1433 for (i = 0; i < spa->spa_spares.sav_count; i++) 1434 nvlist_free(spares[i]); 1435 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1436 } 1437 1438 /* 1439 * Load (or re-load) the current list of vdevs describing the active l2cache for 1440 * this pool. When this is called, we have some form of basic information in 1441 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1442 * then re-generate a more complete list including status information. 1443 * Devices which are already active have their details maintained, and are 1444 * not re-opened. 1445 */ 1446 static void 1447 spa_load_l2cache(spa_t *spa) 1448 { 1449 nvlist_t **l2cache; 1450 uint_t nl2cache; 1451 int i, j, oldnvdevs; 1452 uint64_t guid; 1453 vdev_t *vd, **oldvdevs, **newvdevs; 1454 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1455 1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1457 1458 if (sav->sav_config != NULL) { 1459 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1460 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1461 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1462 } else { 1463 nl2cache = 0; 1464 newvdevs = NULL; 1465 } 1466 1467 oldvdevs = sav->sav_vdevs; 1468 oldnvdevs = sav->sav_count; 1469 sav->sav_vdevs = NULL; 1470 sav->sav_count = 0; 1471 1472 /* 1473 * Process new nvlist of vdevs. 1474 */ 1475 for (i = 0; i < nl2cache; i++) { 1476 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1477 &guid) == 0); 1478 1479 newvdevs[i] = NULL; 1480 for (j = 0; j < oldnvdevs; j++) { 1481 vd = oldvdevs[j]; 1482 if (vd != NULL && guid == vd->vdev_guid) { 1483 /* 1484 * Retain previous vdev for add/remove ops. 1485 */ 1486 newvdevs[i] = vd; 1487 oldvdevs[j] = NULL; 1488 break; 1489 } 1490 } 1491 1492 if (newvdevs[i] == NULL) { 1493 /* 1494 * Create new vdev 1495 */ 1496 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1497 VDEV_ALLOC_L2CACHE) == 0); 1498 ASSERT(vd != NULL); 1499 newvdevs[i] = vd; 1500 1501 /* 1502 * Commit this vdev as an l2cache device, 1503 * even if it fails to open. 1504 */ 1505 spa_l2cache_add(vd); 1506 1507 vd->vdev_top = vd; 1508 vd->vdev_aux = sav; 1509 1510 spa_l2cache_activate(vd); 1511 1512 if (vdev_open(vd) != 0) 1513 continue; 1514 1515 (void) vdev_validate_aux(vd); 1516 1517 if (!vdev_is_dead(vd)) 1518 l2arc_add_vdev(spa, vd); 1519 } 1520 } 1521 1522 /* 1523 * Purge vdevs that were dropped 1524 */ 1525 for (i = 0; i < oldnvdevs; i++) { 1526 uint64_t pool; 1527 1528 vd = oldvdevs[i]; 1529 if (vd != NULL) { 1530 ASSERT(vd->vdev_isl2cache); 1531 1532 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1533 pool != 0ULL && l2arc_vdev_present(vd)) 1534 l2arc_remove_vdev(vd); 1535 vdev_clear_stats(vd); 1536 vdev_free(vd); 1537 } 1538 } 1539 1540 if (oldvdevs) 1541 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1542 1543 if (sav->sav_config == NULL) 1544 goto out; 1545 1546 sav->sav_vdevs = newvdevs; 1547 sav->sav_count = (int)nl2cache; 1548 1549 /* 1550 * Recompute the stashed list of l2cache devices, with status 1551 * information this time. 1552 */ 1553 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1554 DATA_TYPE_NVLIST_ARRAY) == 0); 1555 1556 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1557 for (i = 0; i < sav->sav_count; i++) 1558 l2cache[i] = vdev_config_generate(spa, 1559 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1560 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1561 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1562 out: 1563 for (i = 0; i < sav->sav_count; i++) 1564 nvlist_free(l2cache[i]); 1565 if (sav->sav_count) 1566 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1567 } 1568 1569 static int 1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1571 { 1572 dmu_buf_t *db; 1573 char *packed = NULL; 1574 size_t nvsize = 0; 1575 int error; 1576 *value = NULL; 1577 1578 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1579 nvsize = *(uint64_t *)db->db_data; 1580 dmu_buf_rele(db, FTAG); 1581 1582 packed = kmem_alloc(nvsize, KM_SLEEP); 1583 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1584 DMU_READ_PREFETCH); 1585 if (error == 0) 1586 error = nvlist_unpack(packed, nvsize, value, 0); 1587 kmem_free(packed, nvsize); 1588 1589 return (error); 1590 } 1591 1592 /* 1593 * Checks to see if the given vdev could not be opened, in which case we post a 1594 * sysevent to notify the autoreplace code that the device has been removed. 1595 */ 1596 static void 1597 spa_check_removed(vdev_t *vd) 1598 { 1599 for (int c = 0; c < vd->vdev_children; c++) 1600 spa_check_removed(vd->vdev_child[c]); 1601 1602 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1603 !vd->vdev_ishole) { 1604 zfs_post_autoreplace(vd->vdev_spa, vd); 1605 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1606 } 1607 } 1608 1609 /* 1610 * Validate the current config against the MOS config 1611 */ 1612 static boolean_t 1613 spa_config_valid(spa_t *spa, nvlist_t *config) 1614 { 1615 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1616 nvlist_t *nv; 1617 1618 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1619 1620 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1621 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1622 1623 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1624 1625 /* 1626 * If we're doing a normal import, then build up any additional 1627 * diagnostic information about missing devices in this config. 1628 * We'll pass this up to the user for further processing. 1629 */ 1630 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1631 nvlist_t **child, *nv; 1632 uint64_t idx = 0; 1633 1634 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1635 KM_SLEEP); 1636 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1637 1638 for (int c = 0; c < rvd->vdev_children; c++) { 1639 vdev_t *tvd = rvd->vdev_child[c]; 1640 vdev_t *mtvd = mrvd->vdev_child[c]; 1641 1642 if (tvd->vdev_ops == &vdev_missing_ops && 1643 mtvd->vdev_ops != &vdev_missing_ops && 1644 mtvd->vdev_islog) 1645 child[idx++] = vdev_config_generate(spa, mtvd, 1646 B_FALSE, 0); 1647 } 1648 1649 if (idx) { 1650 VERIFY(nvlist_add_nvlist_array(nv, 1651 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1652 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1653 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1654 1655 for (int i = 0; i < idx; i++) 1656 nvlist_free(child[i]); 1657 } 1658 nvlist_free(nv); 1659 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1660 } 1661 1662 /* 1663 * Compare the root vdev tree with the information we have 1664 * from the MOS config (mrvd). Check each top-level vdev 1665 * with the corresponding MOS config top-level (mtvd). 1666 */ 1667 for (int c = 0; c < rvd->vdev_children; c++) { 1668 vdev_t *tvd = rvd->vdev_child[c]; 1669 vdev_t *mtvd = mrvd->vdev_child[c]; 1670 1671 /* 1672 * Resolve any "missing" vdevs in the current configuration. 1673 * If we find that the MOS config has more accurate information 1674 * about the top-level vdev then use that vdev instead. 1675 */ 1676 if (tvd->vdev_ops == &vdev_missing_ops && 1677 mtvd->vdev_ops != &vdev_missing_ops) { 1678 1679 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1680 continue; 1681 1682 /* 1683 * Device specific actions. 1684 */ 1685 if (mtvd->vdev_islog) { 1686 spa_set_log_state(spa, SPA_LOG_CLEAR); 1687 } else { 1688 /* 1689 * XXX - once we have 'readonly' pool 1690 * support we should be able to handle 1691 * missing data devices by transitioning 1692 * the pool to readonly. 1693 */ 1694 continue; 1695 } 1696 1697 /* 1698 * Swap the missing vdev with the data we were 1699 * able to obtain from the MOS config. 1700 */ 1701 vdev_remove_child(rvd, tvd); 1702 vdev_remove_child(mrvd, mtvd); 1703 1704 vdev_add_child(rvd, mtvd); 1705 vdev_add_child(mrvd, tvd); 1706 1707 spa_config_exit(spa, SCL_ALL, FTAG); 1708 vdev_load(mtvd); 1709 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1710 1711 vdev_reopen(rvd); 1712 } else if (mtvd->vdev_islog) { 1713 /* 1714 * Load the slog device's state from the MOS config 1715 * since it's possible that the label does not 1716 * contain the most up-to-date information. 1717 */ 1718 vdev_load_log_state(tvd, mtvd); 1719 vdev_reopen(tvd); 1720 } 1721 } 1722 vdev_free(mrvd); 1723 spa_config_exit(spa, SCL_ALL, FTAG); 1724 1725 /* 1726 * Ensure we were able to validate the config. 1727 */ 1728 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1729 } 1730 1731 /* 1732 * Check for missing log devices 1733 */ 1734 static boolean_t 1735 spa_check_logs(spa_t *spa) 1736 { 1737 boolean_t rv = B_FALSE; 1738 1739 switch (spa->spa_log_state) { 1740 case SPA_LOG_MISSING: 1741 /* need to recheck in case slog has been restored */ 1742 case SPA_LOG_UNKNOWN: 1743 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1744 NULL, DS_FIND_CHILDREN) != 0); 1745 if (rv) 1746 spa_set_log_state(spa, SPA_LOG_MISSING); 1747 break; 1748 } 1749 return (rv); 1750 } 1751 1752 static boolean_t 1753 spa_passivate_log(spa_t *spa) 1754 { 1755 vdev_t *rvd = spa->spa_root_vdev; 1756 boolean_t slog_found = B_FALSE; 1757 1758 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1759 1760 if (!spa_has_slogs(spa)) 1761 return (B_FALSE); 1762 1763 for (int c = 0; c < rvd->vdev_children; c++) { 1764 vdev_t *tvd = rvd->vdev_child[c]; 1765 metaslab_group_t *mg = tvd->vdev_mg; 1766 1767 if (tvd->vdev_islog) { 1768 metaslab_group_passivate(mg); 1769 slog_found = B_TRUE; 1770 } 1771 } 1772 1773 return (slog_found); 1774 } 1775 1776 static void 1777 spa_activate_log(spa_t *spa) 1778 { 1779 vdev_t *rvd = spa->spa_root_vdev; 1780 1781 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1782 1783 for (int c = 0; c < rvd->vdev_children; c++) { 1784 vdev_t *tvd = rvd->vdev_child[c]; 1785 metaslab_group_t *mg = tvd->vdev_mg; 1786 1787 if (tvd->vdev_islog) 1788 metaslab_group_activate(mg); 1789 } 1790 } 1791 1792 int 1793 spa_offline_log(spa_t *spa) 1794 { 1795 int error; 1796 1797 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1798 NULL, DS_FIND_CHILDREN); 1799 if (error == 0) { 1800 /* 1801 * We successfully offlined the log device, sync out the 1802 * current txg so that the "stubby" block can be removed 1803 * by zil_sync(). 1804 */ 1805 txg_wait_synced(spa->spa_dsl_pool, 0); 1806 } 1807 return (error); 1808 } 1809 1810 static void 1811 spa_aux_check_removed(spa_aux_vdev_t *sav) 1812 { 1813 for (int i = 0; i < sav->sav_count; i++) 1814 spa_check_removed(sav->sav_vdevs[i]); 1815 } 1816 1817 void 1818 spa_claim_notify(zio_t *zio) 1819 { 1820 spa_t *spa = zio->io_spa; 1821 1822 if (zio->io_error) 1823 return; 1824 1825 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1826 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1827 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1828 mutex_exit(&spa->spa_props_lock); 1829 } 1830 1831 typedef struct spa_load_error { 1832 uint64_t sle_meta_count; 1833 uint64_t sle_data_count; 1834 } spa_load_error_t; 1835 1836 static void 1837 spa_load_verify_done(zio_t *zio) 1838 { 1839 blkptr_t *bp = zio->io_bp; 1840 spa_load_error_t *sle = zio->io_private; 1841 dmu_object_type_t type = BP_GET_TYPE(bp); 1842 int error = zio->io_error; 1843 spa_t *spa = zio->io_spa; 1844 1845 if (error) { 1846 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1847 type != DMU_OT_INTENT_LOG) 1848 atomic_inc_64(&sle->sle_meta_count); 1849 else 1850 atomic_inc_64(&sle->sle_data_count); 1851 } 1852 zio_data_buf_free(zio->io_data, zio->io_size); 1853 1854 mutex_enter(&spa->spa_scrub_lock); 1855 spa->spa_scrub_inflight--; 1856 cv_broadcast(&spa->spa_scrub_io_cv); 1857 mutex_exit(&spa->spa_scrub_lock); 1858 } 1859 1860 /* 1861 * Maximum number of concurrent scrub i/os to create while verifying 1862 * a pool while importing it. 1863 */ 1864 int spa_load_verify_maxinflight = 10000; 1865 boolean_t spa_load_verify_metadata = B_TRUE; 1866 boolean_t spa_load_verify_data = B_TRUE; 1867 1868 /*ARGSUSED*/ 1869 static int 1870 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1871 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1872 { 1873 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1874 return (0); 1875 /* 1876 * Note: normally this routine will not be called if 1877 * spa_load_verify_metadata is not set. However, it may be useful 1878 * to manually set the flag after the traversal has begun. 1879 */ 1880 if (!spa_load_verify_metadata) 1881 return (0); 1882 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1883 return (0); 1884 1885 zio_t *rio = arg; 1886 size_t size = BP_GET_PSIZE(bp); 1887 void *data = zio_data_buf_alloc(size); 1888 1889 mutex_enter(&spa->spa_scrub_lock); 1890 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1891 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1892 spa->spa_scrub_inflight++; 1893 mutex_exit(&spa->spa_scrub_lock); 1894 1895 zio_nowait(zio_read(rio, spa, bp, data, size, 1896 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1897 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1898 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1899 return (0); 1900 } 1901 1902 static int 1903 spa_load_verify(spa_t *spa) 1904 { 1905 zio_t *rio; 1906 spa_load_error_t sle = { 0 }; 1907 zpool_rewind_policy_t policy; 1908 boolean_t verify_ok = B_FALSE; 1909 int error = 0; 1910 1911 zpool_get_rewind_policy(spa->spa_config, &policy); 1912 1913 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1914 return (0); 1915 1916 rio = zio_root(spa, NULL, &sle, 1917 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1918 1919 if (spa_load_verify_metadata) { 1920 error = traverse_pool(spa, spa->spa_verify_min_txg, 1921 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1922 spa_load_verify_cb, rio); 1923 } 1924 1925 (void) zio_wait(rio); 1926 1927 spa->spa_load_meta_errors = sle.sle_meta_count; 1928 spa->spa_load_data_errors = sle.sle_data_count; 1929 1930 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1931 sle.sle_data_count <= policy.zrp_maxdata) { 1932 int64_t loss = 0; 1933 1934 verify_ok = B_TRUE; 1935 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1936 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1937 1938 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1939 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1940 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1941 VERIFY(nvlist_add_int64(spa->spa_load_info, 1942 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1943 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1944 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1945 } else { 1946 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1947 } 1948 1949 if (error) { 1950 if (error != ENXIO && error != EIO) 1951 error = SET_ERROR(EIO); 1952 return (error); 1953 } 1954 1955 return (verify_ok ? 0 : EIO); 1956 } 1957 1958 /* 1959 * Find a value in the pool props object. 1960 */ 1961 static void 1962 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1963 { 1964 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1965 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1966 } 1967 1968 /* 1969 * Find a value in the pool directory object. 1970 */ 1971 static int 1972 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1973 { 1974 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1975 name, sizeof (uint64_t), 1, val)); 1976 } 1977 1978 static int 1979 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1980 { 1981 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1982 return (err); 1983 } 1984 1985 /* 1986 * Fix up config after a partly-completed split. This is done with the 1987 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1988 * pool have that entry in their config, but only the splitting one contains 1989 * a list of all the guids of the vdevs that are being split off. 1990 * 1991 * This function determines what to do with that list: either rejoin 1992 * all the disks to the pool, or complete the splitting process. To attempt 1993 * the rejoin, each disk that is offlined is marked online again, and 1994 * we do a reopen() call. If the vdev label for every disk that was 1995 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1996 * then we call vdev_split() on each disk, and complete the split. 1997 * 1998 * Otherwise we leave the config alone, with all the vdevs in place in 1999 * the original pool. 2000 */ 2001 static void 2002 spa_try_repair(spa_t *spa, nvlist_t *config) 2003 { 2004 uint_t extracted; 2005 uint64_t *glist; 2006 uint_t i, gcount; 2007 nvlist_t *nvl; 2008 vdev_t **vd; 2009 boolean_t attempt_reopen; 2010 2011 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2012 return; 2013 2014 /* check that the config is complete */ 2015 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2016 &glist, &gcount) != 0) 2017 return; 2018 2019 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2020 2021 /* attempt to online all the vdevs & validate */ 2022 attempt_reopen = B_TRUE; 2023 for (i = 0; i < gcount; i++) { 2024 if (glist[i] == 0) /* vdev is hole */ 2025 continue; 2026 2027 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2028 if (vd[i] == NULL) { 2029 /* 2030 * Don't bother attempting to reopen the disks; 2031 * just do the split. 2032 */ 2033 attempt_reopen = B_FALSE; 2034 } else { 2035 /* attempt to re-online it */ 2036 vd[i]->vdev_offline = B_FALSE; 2037 } 2038 } 2039 2040 if (attempt_reopen) { 2041 vdev_reopen(spa->spa_root_vdev); 2042 2043 /* check each device to see what state it's in */ 2044 for (extracted = 0, i = 0; i < gcount; i++) { 2045 if (vd[i] != NULL && 2046 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2047 break; 2048 ++extracted; 2049 } 2050 } 2051 2052 /* 2053 * If every disk has been moved to the new pool, or if we never 2054 * even attempted to look at them, then we split them off for 2055 * good. 2056 */ 2057 if (!attempt_reopen || gcount == extracted) { 2058 for (i = 0; i < gcount; i++) 2059 if (vd[i] != NULL) 2060 vdev_split(vd[i]); 2061 vdev_reopen(spa->spa_root_vdev); 2062 } 2063 2064 kmem_free(vd, gcount * sizeof (vdev_t *)); 2065 } 2066 2067 static int 2068 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2069 boolean_t mosconfig) 2070 { 2071 nvlist_t *config = spa->spa_config; 2072 char *ereport = FM_EREPORT_ZFS_POOL; 2073 char *comment; 2074 int error; 2075 uint64_t pool_guid; 2076 nvlist_t *nvl; 2077 2078 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2079 return (SET_ERROR(EINVAL)); 2080 2081 ASSERT(spa->spa_comment == NULL); 2082 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2083 spa->spa_comment = spa_strdup(comment); 2084 2085 /* 2086 * Versioning wasn't explicitly added to the label until later, so if 2087 * it's not present treat it as the initial version. 2088 */ 2089 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2090 &spa->spa_ubsync.ub_version) != 0) 2091 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2092 2093 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2094 &spa->spa_config_txg); 2095 2096 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2097 spa_guid_exists(pool_guid, 0)) { 2098 error = SET_ERROR(EEXIST); 2099 } else { 2100 spa->spa_config_guid = pool_guid; 2101 2102 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2103 &nvl) == 0) { 2104 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2105 KM_SLEEP) == 0); 2106 } 2107 2108 nvlist_free(spa->spa_load_info); 2109 spa->spa_load_info = fnvlist_alloc(); 2110 2111 gethrestime(&spa->spa_loaded_ts); 2112 error = spa_load_impl(spa, pool_guid, config, state, type, 2113 mosconfig, &ereport); 2114 } 2115 2116 /* 2117 * Don't count references from objsets that are already closed 2118 * and are making their way through the eviction process. 2119 */ 2120 spa_evicting_os_wait(spa); 2121 spa->spa_minref = refcount_count(&spa->spa_refcount); 2122 if (error) { 2123 if (error != EEXIST) { 2124 spa->spa_loaded_ts.tv_sec = 0; 2125 spa->spa_loaded_ts.tv_nsec = 0; 2126 } 2127 if (error != EBADF) { 2128 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2129 } 2130 } 2131 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2132 spa->spa_ena = 0; 2133 2134 return (error); 2135 } 2136 2137 /* 2138 * Load an existing storage pool, using the pool's builtin spa_config as a 2139 * source of configuration information. 2140 */ 2141 static int 2142 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2144 char **ereport) 2145 { 2146 int error = 0; 2147 nvlist_t *nvroot = NULL; 2148 nvlist_t *label; 2149 vdev_t *rvd; 2150 uberblock_t *ub = &spa->spa_uberblock; 2151 uint64_t children, config_cache_txg = spa->spa_config_txg; 2152 int orig_mode = spa->spa_mode; 2153 int parse; 2154 uint64_t obj; 2155 boolean_t missing_feat_write = B_FALSE; 2156 2157 /* 2158 * If this is an untrusted config, access the pool in read-only mode. 2159 * This prevents things like resilvering recently removed devices. 2160 */ 2161 if (!mosconfig) 2162 spa->spa_mode = FREAD; 2163 2164 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2165 2166 spa->spa_load_state = state; 2167 2168 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2169 return (SET_ERROR(EINVAL)); 2170 2171 parse = (type == SPA_IMPORT_EXISTING ? 2172 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2173 2174 /* 2175 * Create "The Godfather" zio to hold all async IOs 2176 */ 2177 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2178 KM_SLEEP); 2179 for (int i = 0; i < max_ncpus; i++) { 2180 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2181 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2182 ZIO_FLAG_GODFATHER); 2183 } 2184 2185 /* 2186 * Parse the configuration into a vdev tree. We explicitly set the 2187 * value that will be returned by spa_version() since parsing the 2188 * configuration requires knowing the version number. 2189 */ 2190 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2191 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2192 spa_config_exit(spa, SCL_ALL, FTAG); 2193 2194 if (error != 0) 2195 return (error); 2196 2197 ASSERT(spa->spa_root_vdev == rvd); 2198 2199 if (type != SPA_IMPORT_ASSEMBLE) { 2200 ASSERT(spa_guid(spa) == pool_guid); 2201 } 2202 2203 /* 2204 * Try to open all vdevs, loading each label in the process. 2205 */ 2206 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2207 error = vdev_open(rvd); 2208 spa_config_exit(spa, SCL_ALL, FTAG); 2209 if (error != 0) 2210 return (error); 2211 2212 /* 2213 * We need to validate the vdev labels against the configuration that 2214 * we have in hand, which is dependent on the setting of mosconfig. If 2215 * mosconfig is true then we're validating the vdev labels based on 2216 * that config. Otherwise, we're validating against the cached config 2217 * (zpool.cache) that was read when we loaded the zfs module, and then 2218 * later we will recursively call spa_load() and validate against 2219 * the vdev config. 2220 * 2221 * If we're assembling a new pool that's been split off from an 2222 * existing pool, the labels haven't yet been updated so we skip 2223 * validation for now. 2224 */ 2225 if (type != SPA_IMPORT_ASSEMBLE) { 2226 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2227 error = vdev_validate(rvd, mosconfig); 2228 spa_config_exit(spa, SCL_ALL, FTAG); 2229 2230 if (error != 0) 2231 return (error); 2232 2233 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2234 return (SET_ERROR(ENXIO)); 2235 } 2236 2237 /* 2238 * Find the best uberblock. 2239 */ 2240 vdev_uberblock_load(rvd, ub, &label); 2241 2242 /* 2243 * If we weren't able to find a single valid uberblock, return failure. 2244 */ 2245 if (ub->ub_txg == 0) { 2246 nvlist_free(label); 2247 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2248 } 2249 2250 /* 2251 * If the pool has an unsupported version we can't open it. 2252 */ 2253 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2254 nvlist_free(label); 2255 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2256 } 2257 2258 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2259 nvlist_t *features; 2260 2261 /* 2262 * If we weren't able to find what's necessary for reading the 2263 * MOS in the label, return failure. 2264 */ 2265 if (label == NULL || nvlist_lookup_nvlist(label, 2266 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2267 nvlist_free(label); 2268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2269 ENXIO)); 2270 } 2271 2272 /* 2273 * Update our in-core representation with the definitive values 2274 * from the label. 2275 */ 2276 nvlist_free(spa->spa_label_features); 2277 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2278 } 2279 2280 nvlist_free(label); 2281 2282 /* 2283 * Look through entries in the label nvlist's features_for_read. If 2284 * there is a feature listed there which we don't understand then we 2285 * cannot open a pool. 2286 */ 2287 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2288 nvlist_t *unsup_feat; 2289 2290 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2291 0); 2292 2293 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2294 NULL); nvp != NULL; 2295 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2296 if (!zfeature_is_supported(nvpair_name(nvp))) { 2297 VERIFY(nvlist_add_string(unsup_feat, 2298 nvpair_name(nvp), "") == 0); 2299 } 2300 } 2301 2302 if (!nvlist_empty(unsup_feat)) { 2303 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2304 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2305 nvlist_free(unsup_feat); 2306 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2307 ENOTSUP)); 2308 } 2309 2310 nvlist_free(unsup_feat); 2311 } 2312 2313 /* 2314 * If the vdev guid sum doesn't match the uberblock, we have an 2315 * incomplete configuration. We first check to see if the pool 2316 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2317 * If it is, defer the vdev_guid_sum check till later so we 2318 * can handle missing vdevs. 2319 */ 2320 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2321 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2322 rvd->vdev_guid_sum != ub->ub_guid_sum) 2323 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2324 2325 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2326 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2327 spa_try_repair(spa, config); 2328 spa_config_exit(spa, SCL_ALL, FTAG); 2329 nvlist_free(spa->spa_config_splitting); 2330 spa->spa_config_splitting = NULL; 2331 } 2332 2333 /* 2334 * Initialize internal SPA structures. 2335 */ 2336 spa->spa_state = POOL_STATE_ACTIVE; 2337 spa->spa_ubsync = spa->spa_uberblock; 2338 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2339 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2340 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2341 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2342 spa->spa_claim_max_txg = spa->spa_first_txg; 2343 spa->spa_prev_software_version = ub->ub_software_version; 2344 2345 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2346 if (error) 2347 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2348 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2349 2350 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2351 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2352 2353 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2354 boolean_t missing_feat_read = B_FALSE; 2355 nvlist_t *unsup_feat, *enabled_feat; 2356 2357 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2358 &spa->spa_feat_for_read_obj) != 0) { 2359 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2360 } 2361 2362 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2363 &spa->spa_feat_for_write_obj) != 0) { 2364 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2365 } 2366 2367 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2368 &spa->spa_feat_desc_obj) != 0) { 2369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2370 } 2371 2372 enabled_feat = fnvlist_alloc(); 2373 unsup_feat = fnvlist_alloc(); 2374 2375 if (!spa_features_check(spa, B_FALSE, 2376 unsup_feat, enabled_feat)) 2377 missing_feat_read = B_TRUE; 2378 2379 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2380 if (!spa_features_check(spa, B_TRUE, 2381 unsup_feat, enabled_feat)) { 2382 missing_feat_write = B_TRUE; 2383 } 2384 } 2385 2386 fnvlist_add_nvlist(spa->spa_load_info, 2387 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2388 2389 if (!nvlist_empty(unsup_feat)) { 2390 fnvlist_add_nvlist(spa->spa_load_info, 2391 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2392 } 2393 2394 fnvlist_free(enabled_feat); 2395 fnvlist_free(unsup_feat); 2396 2397 if (!missing_feat_read) { 2398 fnvlist_add_boolean(spa->spa_load_info, 2399 ZPOOL_CONFIG_CAN_RDONLY); 2400 } 2401 2402 /* 2403 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2404 * twofold: to determine whether the pool is available for 2405 * import in read-write mode and (if it is not) whether the 2406 * pool is available for import in read-only mode. If the pool 2407 * is available for import in read-write mode, it is displayed 2408 * as available in userland; if it is not available for import 2409 * in read-only mode, it is displayed as unavailable in 2410 * userland. If the pool is available for import in read-only 2411 * mode but not read-write mode, it is displayed as unavailable 2412 * in userland with a special note that the pool is actually 2413 * available for open in read-only mode. 2414 * 2415 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2416 * missing a feature for write, we must first determine whether 2417 * the pool can be opened read-only before returning to 2418 * userland in order to know whether to display the 2419 * abovementioned note. 2420 */ 2421 if (missing_feat_read || (missing_feat_write && 2422 spa_writeable(spa))) { 2423 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2424 ENOTSUP)); 2425 } 2426 2427 /* 2428 * Load refcounts for ZFS features from disk into an in-memory 2429 * cache during SPA initialization. 2430 */ 2431 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2432 uint64_t refcount; 2433 2434 error = feature_get_refcount_from_disk(spa, 2435 &spa_feature_table[i], &refcount); 2436 if (error == 0) { 2437 spa->spa_feat_refcount_cache[i] = refcount; 2438 } else if (error == ENOTSUP) { 2439 spa->spa_feat_refcount_cache[i] = 2440 SPA_FEATURE_DISABLED; 2441 } else { 2442 return (spa_vdev_err(rvd, 2443 VDEV_AUX_CORRUPT_DATA, EIO)); 2444 } 2445 } 2446 } 2447 2448 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2449 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2450 &spa->spa_feat_enabled_txg_obj) != 0) 2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2452 } 2453 2454 spa->spa_is_initializing = B_TRUE; 2455 error = dsl_pool_open(spa->spa_dsl_pool); 2456 spa->spa_is_initializing = B_FALSE; 2457 if (error != 0) 2458 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2459 2460 if (!mosconfig) { 2461 uint64_t hostid; 2462 nvlist_t *policy = NULL, *nvconfig; 2463 2464 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2465 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2466 2467 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2468 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2469 char *hostname; 2470 unsigned long myhostid = 0; 2471 2472 VERIFY(nvlist_lookup_string(nvconfig, 2473 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2474 2475 #ifdef _KERNEL 2476 myhostid = zone_get_hostid(NULL); 2477 #else /* _KERNEL */ 2478 /* 2479 * We're emulating the system's hostid in userland, so 2480 * we can't use zone_get_hostid(). 2481 */ 2482 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2483 #endif /* _KERNEL */ 2484 if (hostid != 0 && myhostid != 0 && 2485 hostid != myhostid) { 2486 nvlist_free(nvconfig); 2487 cmn_err(CE_WARN, "pool '%s' could not be " 2488 "loaded as it was last accessed by " 2489 "another system (host: %s hostid: 0x%lx). " 2490 "See: http://illumos.org/msg/ZFS-8000-EY", 2491 spa_name(spa), hostname, 2492 (unsigned long)hostid); 2493 return (SET_ERROR(EBADF)); 2494 } 2495 } 2496 if (nvlist_lookup_nvlist(spa->spa_config, 2497 ZPOOL_REWIND_POLICY, &policy) == 0) 2498 VERIFY(nvlist_add_nvlist(nvconfig, 2499 ZPOOL_REWIND_POLICY, policy) == 0); 2500 2501 spa_config_set(spa, nvconfig); 2502 spa_unload(spa); 2503 spa_deactivate(spa); 2504 spa_activate(spa, orig_mode); 2505 2506 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2507 } 2508 2509 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2510 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2511 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2512 if (error != 0) 2513 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2514 2515 /* 2516 * Load the bit that tells us to use the new accounting function 2517 * (raid-z deflation). If we have an older pool, this will not 2518 * be present. 2519 */ 2520 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2521 if (error != 0 && error != ENOENT) 2522 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2523 2524 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2525 &spa->spa_creation_version); 2526 if (error != 0 && error != ENOENT) 2527 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2528 2529 /* 2530 * Load the persistent error log. If we have an older pool, this will 2531 * not be present. 2532 */ 2533 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2534 if (error != 0 && error != ENOENT) 2535 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2536 2537 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2538 &spa->spa_errlog_scrub); 2539 if (error != 0 && error != ENOENT) 2540 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2541 2542 /* 2543 * Load the history object. If we have an older pool, this 2544 * will not be present. 2545 */ 2546 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2547 if (error != 0 && error != ENOENT) 2548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2549 2550 /* 2551 * If we're assembling the pool from the split-off vdevs of 2552 * an existing pool, we don't want to attach the spares & cache 2553 * devices. 2554 */ 2555 2556 /* 2557 * Load any hot spares for this pool. 2558 */ 2559 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2560 if (error != 0 && error != ENOENT) 2561 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2562 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2563 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2564 if (load_nvlist(spa, spa->spa_spares.sav_object, 2565 &spa->spa_spares.sav_config) != 0) 2566 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2567 2568 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2569 spa_load_spares(spa); 2570 spa_config_exit(spa, SCL_ALL, FTAG); 2571 } else if (error == 0) { 2572 spa->spa_spares.sav_sync = B_TRUE; 2573 } 2574 2575 /* 2576 * Load any level 2 ARC devices for this pool. 2577 */ 2578 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2579 &spa->spa_l2cache.sav_object); 2580 if (error != 0 && error != ENOENT) 2581 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2582 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2583 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2584 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2585 &spa->spa_l2cache.sav_config) != 0) 2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2587 2588 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2589 spa_load_l2cache(spa); 2590 spa_config_exit(spa, SCL_ALL, FTAG); 2591 } else if (error == 0) { 2592 spa->spa_l2cache.sav_sync = B_TRUE; 2593 } 2594 2595 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2596 2597 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2598 if (error && error != ENOENT) 2599 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2600 2601 if (error == 0) { 2602 uint64_t autoreplace; 2603 2604 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2605 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2606 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2607 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2608 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2609 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2610 &spa->spa_dedup_ditto); 2611 2612 spa->spa_autoreplace = (autoreplace != 0); 2613 } 2614 2615 /* 2616 * If the 'autoreplace' property is set, then post a resource notifying 2617 * the ZFS DE that it should not issue any faults for unopenable 2618 * devices. We also iterate over the vdevs, and post a sysevent for any 2619 * unopenable vdevs so that the normal autoreplace handler can take 2620 * over. 2621 */ 2622 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2623 spa_check_removed(spa->spa_root_vdev); 2624 /* 2625 * For the import case, this is done in spa_import(), because 2626 * at this point we're using the spare definitions from 2627 * the MOS config, not necessarily from the userland config. 2628 */ 2629 if (state != SPA_LOAD_IMPORT) { 2630 spa_aux_check_removed(&spa->spa_spares); 2631 spa_aux_check_removed(&spa->spa_l2cache); 2632 } 2633 } 2634 2635 /* 2636 * Load the vdev state for all toplevel vdevs. 2637 */ 2638 vdev_load(rvd); 2639 2640 /* 2641 * Propagate the leaf DTLs we just loaded all the way up the tree. 2642 */ 2643 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2644 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2645 spa_config_exit(spa, SCL_ALL, FTAG); 2646 2647 /* 2648 * Load the DDTs (dedup tables). 2649 */ 2650 error = ddt_load(spa); 2651 if (error != 0) 2652 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2653 2654 spa_update_dspace(spa); 2655 2656 /* 2657 * Validate the config, using the MOS config to fill in any 2658 * information which might be missing. If we fail to validate 2659 * the config then declare the pool unfit for use. If we're 2660 * assembling a pool from a split, the log is not transferred 2661 * over. 2662 */ 2663 if (type != SPA_IMPORT_ASSEMBLE) { 2664 nvlist_t *nvconfig; 2665 2666 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2667 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2668 2669 if (!spa_config_valid(spa, nvconfig)) { 2670 nvlist_free(nvconfig); 2671 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2672 ENXIO)); 2673 } 2674 nvlist_free(nvconfig); 2675 2676 /* 2677 * Now that we've validated the config, check the state of the 2678 * root vdev. If it can't be opened, it indicates one or 2679 * more toplevel vdevs are faulted. 2680 */ 2681 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2682 return (SET_ERROR(ENXIO)); 2683 2684 if (spa_check_logs(spa)) { 2685 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2686 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2687 } 2688 } 2689 2690 if (missing_feat_write) { 2691 ASSERT(state == SPA_LOAD_TRYIMPORT); 2692 2693 /* 2694 * At this point, we know that we can open the pool in 2695 * read-only mode but not read-write mode. We now have enough 2696 * information and can return to userland. 2697 */ 2698 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2699 } 2700 2701 /* 2702 * We've successfully opened the pool, verify that we're ready 2703 * to start pushing transactions. 2704 */ 2705 if (state != SPA_LOAD_TRYIMPORT) { 2706 if (error = spa_load_verify(spa)) 2707 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2708 error)); 2709 } 2710 2711 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2712 spa->spa_load_max_txg == UINT64_MAX)) { 2713 dmu_tx_t *tx; 2714 int need_update = B_FALSE; 2715 2716 ASSERT(state != SPA_LOAD_TRYIMPORT); 2717 2718 /* 2719 * Claim log blocks that haven't been committed yet. 2720 * This must all happen in a single txg. 2721 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2722 * invoked from zil_claim_log_block()'s i/o done callback. 2723 * Price of rollback is that we abandon the log. 2724 */ 2725 spa->spa_claiming = B_TRUE; 2726 2727 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2728 spa_first_txg(spa)); 2729 (void) dmu_objset_find(spa_name(spa), 2730 zil_claim, tx, DS_FIND_CHILDREN); 2731 dmu_tx_commit(tx); 2732 2733 spa->spa_claiming = B_FALSE; 2734 2735 spa_set_log_state(spa, SPA_LOG_GOOD); 2736 spa->spa_sync_on = B_TRUE; 2737 txg_sync_start(spa->spa_dsl_pool); 2738 2739 /* 2740 * Wait for all claims to sync. We sync up to the highest 2741 * claimed log block birth time so that claimed log blocks 2742 * don't appear to be from the future. spa_claim_max_txg 2743 * will have been set for us by either zil_check_log_chain() 2744 * (invoked from spa_check_logs()) or zil_claim() above. 2745 */ 2746 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2747 2748 /* 2749 * If the config cache is stale, or we have uninitialized 2750 * metaslabs (see spa_vdev_add()), then update the config. 2751 * 2752 * If this is a verbatim import, trust the current 2753 * in-core spa_config and update the disk labels. 2754 */ 2755 if (config_cache_txg != spa->spa_config_txg || 2756 state == SPA_LOAD_IMPORT || 2757 state == SPA_LOAD_RECOVER || 2758 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2759 need_update = B_TRUE; 2760 2761 for (int c = 0; c < rvd->vdev_children; c++) 2762 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2763 need_update = B_TRUE; 2764 2765 /* 2766 * Update the config cache asychronously in case we're the 2767 * root pool, in which case the config cache isn't writable yet. 2768 */ 2769 if (need_update) 2770 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2771 2772 /* 2773 * Check all DTLs to see if anything needs resilvering. 2774 */ 2775 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2776 vdev_resilver_needed(rvd, NULL, NULL)) 2777 spa_async_request(spa, SPA_ASYNC_RESILVER); 2778 2779 /* 2780 * Log the fact that we booted up (so that we can detect if 2781 * we rebooted in the middle of an operation). 2782 */ 2783 spa_history_log_version(spa, "open"); 2784 2785 /* 2786 * Delete any inconsistent datasets. 2787 */ 2788 (void) dmu_objset_find(spa_name(spa), 2789 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2790 2791 /* 2792 * Clean up any stale temporary dataset userrefs. 2793 */ 2794 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2795 } 2796 2797 return (0); 2798 } 2799 2800 static int 2801 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2802 { 2803 int mode = spa->spa_mode; 2804 2805 spa_unload(spa); 2806 spa_deactivate(spa); 2807 2808 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2809 2810 spa_activate(spa, mode); 2811 spa_async_suspend(spa); 2812 2813 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2814 } 2815 2816 /* 2817 * If spa_load() fails this function will try loading prior txg's. If 2818 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2819 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2820 * function will not rewind the pool and will return the same error as 2821 * spa_load(). 2822 */ 2823 static int 2824 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2825 uint64_t max_request, int rewind_flags) 2826 { 2827 nvlist_t *loadinfo = NULL; 2828 nvlist_t *config = NULL; 2829 int load_error, rewind_error; 2830 uint64_t safe_rewind_txg; 2831 uint64_t min_txg; 2832 2833 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2834 spa->spa_load_max_txg = spa->spa_load_txg; 2835 spa_set_log_state(spa, SPA_LOG_CLEAR); 2836 } else { 2837 spa->spa_load_max_txg = max_request; 2838 if (max_request != UINT64_MAX) 2839 spa->spa_extreme_rewind = B_TRUE; 2840 } 2841 2842 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2843 mosconfig); 2844 if (load_error == 0) 2845 return (0); 2846 2847 if (spa->spa_root_vdev != NULL) 2848 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2849 2850 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2851 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2852 2853 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2854 nvlist_free(config); 2855 return (load_error); 2856 } 2857 2858 if (state == SPA_LOAD_RECOVER) { 2859 /* Price of rolling back is discarding txgs, including log */ 2860 spa_set_log_state(spa, SPA_LOG_CLEAR); 2861 } else { 2862 /* 2863 * If we aren't rolling back save the load info from our first 2864 * import attempt so that we can restore it after attempting 2865 * to rewind. 2866 */ 2867 loadinfo = spa->spa_load_info; 2868 spa->spa_load_info = fnvlist_alloc(); 2869 } 2870 2871 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2872 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2873 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2874 TXG_INITIAL : safe_rewind_txg; 2875 2876 /* 2877 * Continue as long as we're finding errors, we're still within 2878 * the acceptable rewind range, and we're still finding uberblocks 2879 */ 2880 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2881 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2882 if (spa->spa_load_max_txg < safe_rewind_txg) 2883 spa->spa_extreme_rewind = B_TRUE; 2884 rewind_error = spa_load_retry(spa, state, mosconfig); 2885 } 2886 2887 spa->spa_extreme_rewind = B_FALSE; 2888 spa->spa_load_max_txg = UINT64_MAX; 2889 2890 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2891 spa_config_set(spa, config); 2892 2893 if (state == SPA_LOAD_RECOVER) { 2894 ASSERT3P(loadinfo, ==, NULL); 2895 return (rewind_error); 2896 } else { 2897 /* Store the rewind info as part of the initial load info */ 2898 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2899 spa->spa_load_info); 2900 2901 /* Restore the initial load info */ 2902 fnvlist_free(spa->spa_load_info); 2903 spa->spa_load_info = loadinfo; 2904 2905 return (load_error); 2906 } 2907 } 2908 2909 /* 2910 * Pool Open/Import 2911 * 2912 * The import case is identical to an open except that the configuration is sent 2913 * down from userland, instead of grabbed from the configuration cache. For the 2914 * case of an open, the pool configuration will exist in the 2915 * POOL_STATE_UNINITIALIZED state. 2916 * 2917 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2918 * the same time open the pool, without having to keep around the spa_t in some 2919 * ambiguous state. 2920 */ 2921 static int 2922 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2923 nvlist_t **config) 2924 { 2925 spa_t *spa; 2926 spa_load_state_t state = SPA_LOAD_OPEN; 2927 int error; 2928 int locked = B_FALSE; 2929 2930 *spapp = NULL; 2931 2932 /* 2933 * As disgusting as this is, we need to support recursive calls to this 2934 * function because dsl_dir_open() is called during spa_load(), and ends 2935 * up calling spa_open() again. The real fix is to figure out how to 2936 * avoid dsl_dir_open() calling this in the first place. 2937 */ 2938 if (mutex_owner(&spa_namespace_lock) != curthread) { 2939 mutex_enter(&spa_namespace_lock); 2940 locked = B_TRUE; 2941 } 2942 2943 if ((spa = spa_lookup(pool)) == NULL) { 2944 if (locked) 2945 mutex_exit(&spa_namespace_lock); 2946 return (SET_ERROR(ENOENT)); 2947 } 2948 2949 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2950 zpool_rewind_policy_t policy; 2951 2952 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2953 &policy); 2954 if (policy.zrp_request & ZPOOL_DO_REWIND) 2955 state = SPA_LOAD_RECOVER; 2956 2957 spa_activate(spa, spa_mode_global); 2958 2959 if (state != SPA_LOAD_RECOVER) 2960 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2961 2962 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2963 policy.zrp_request); 2964 2965 if (error == EBADF) { 2966 /* 2967 * If vdev_validate() returns failure (indicated by 2968 * EBADF), it indicates that one of the vdevs indicates 2969 * that the pool has been exported or destroyed. If 2970 * this is the case, the config cache is out of sync and 2971 * we should remove the pool from the namespace. 2972 */ 2973 spa_unload(spa); 2974 spa_deactivate(spa); 2975 spa_config_sync(spa, B_TRUE, B_TRUE); 2976 spa_remove(spa); 2977 if (locked) 2978 mutex_exit(&spa_namespace_lock); 2979 return (SET_ERROR(ENOENT)); 2980 } 2981 2982 if (error) { 2983 /* 2984 * We can't open the pool, but we still have useful 2985 * information: the state of each vdev after the 2986 * attempted vdev_open(). Return this to the user. 2987 */ 2988 if (config != NULL && spa->spa_config) { 2989 VERIFY(nvlist_dup(spa->spa_config, config, 2990 KM_SLEEP) == 0); 2991 VERIFY(nvlist_add_nvlist(*config, 2992 ZPOOL_CONFIG_LOAD_INFO, 2993 spa->spa_load_info) == 0); 2994 } 2995 spa_unload(spa); 2996 spa_deactivate(spa); 2997 spa->spa_last_open_failed = error; 2998 if (locked) 2999 mutex_exit(&spa_namespace_lock); 3000 *spapp = NULL; 3001 return (error); 3002 } 3003 } 3004 3005 spa_open_ref(spa, tag); 3006 3007 if (config != NULL) 3008 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3009 3010 /* 3011 * If we've recovered the pool, pass back any information we 3012 * gathered while doing the load. 3013 */ 3014 if (state == SPA_LOAD_RECOVER) { 3015 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3016 spa->spa_load_info) == 0); 3017 } 3018 3019 if (locked) { 3020 spa->spa_last_open_failed = 0; 3021 spa->spa_last_ubsync_txg = 0; 3022 spa->spa_load_txg = 0; 3023 mutex_exit(&spa_namespace_lock); 3024 } 3025 3026 *spapp = spa; 3027 3028 return (0); 3029 } 3030 3031 int 3032 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3033 nvlist_t **config) 3034 { 3035 return (spa_open_common(name, spapp, tag, policy, config)); 3036 } 3037 3038 int 3039 spa_open(const char *name, spa_t **spapp, void *tag) 3040 { 3041 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3042 } 3043 3044 /* 3045 * Lookup the given spa_t, incrementing the inject count in the process, 3046 * preventing it from being exported or destroyed. 3047 */ 3048 spa_t * 3049 spa_inject_addref(char *name) 3050 { 3051 spa_t *spa; 3052 3053 mutex_enter(&spa_namespace_lock); 3054 if ((spa = spa_lookup(name)) == NULL) { 3055 mutex_exit(&spa_namespace_lock); 3056 return (NULL); 3057 } 3058 spa->spa_inject_ref++; 3059 mutex_exit(&spa_namespace_lock); 3060 3061 return (spa); 3062 } 3063 3064 void 3065 spa_inject_delref(spa_t *spa) 3066 { 3067 mutex_enter(&spa_namespace_lock); 3068 spa->spa_inject_ref--; 3069 mutex_exit(&spa_namespace_lock); 3070 } 3071 3072 /* 3073 * Add spares device information to the nvlist. 3074 */ 3075 static void 3076 spa_add_spares(spa_t *spa, nvlist_t *config) 3077 { 3078 nvlist_t **spares; 3079 uint_t i, nspares; 3080 nvlist_t *nvroot; 3081 uint64_t guid; 3082 vdev_stat_t *vs; 3083 uint_t vsc; 3084 uint64_t pool; 3085 3086 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3087 3088 if (spa->spa_spares.sav_count == 0) 3089 return; 3090 3091 VERIFY(nvlist_lookup_nvlist(config, 3092 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3093 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3094 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3095 if (nspares != 0) { 3096 VERIFY(nvlist_add_nvlist_array(nvroot, 3097 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3098 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3099 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3100 3101 /* 3102 * Go through and find any spares which have since been 3103 * repurposed as an active spare. If this is the case, update 3104 * their status appropriately. 3105 */ 3106 for (i = 0; i < nspares; i++) { 3107 VERIFY(nvlist_lookup_uint64(spares[i], 3108 ZPOOL_CONFIG_GUID, &guid) == 0); 3109 if (spa_spare_exists(guid, &pool, NULL) && 3110 pool != 0ULL) { 3111 VERIFY(nvlist_lookup_uint64_array( 3112 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3113 (uint64_t **)&vs, &vsc) == 0); 3114 vs->vs_state = VDEV_STATE_CANT_OPEN; 3115 vs->vs_aux = VDEV_AUX_SPARED; 3116 } 3117 } 3118 } 3119 } 3120 3121 /* 3122 * Add l2cache device information to the nvlist, including vdev stats. 3123 */ 3124 static void 3125 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3126 { 3127 nvlist_t **l2cache; 3128 uint_t i, j, nl2cache; 3129 nvlist_t *nvroot; 3130 uint64_t guid; 3131 vdev_t *vd; 3132 vdev_stat_t *vs; 3133 uint_t vsc; 3134 3135 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3136 3137 if (spa->spa_l2cache.sav_count == 0) 3138 return; 3139 3140 VERIFY(nvlist_lookup_nvlist(config, 3141 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3142 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3143 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3144 if (nl2cache != 0) { 3145 VERIFY(nvlist_add_nvlist_array(nvroot, 3146 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3147 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3148 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3149 3150 /* 3151 * Update level 2 cache device stats. 3152 */ 3153 3154 for (i = 0; i < nl2cache; i++) { 3155 VERIFY(nvlist_lookup_uint64(l2cache[i], 3156 ZPOOL_CONFIG_GUID, &guid) == 0); 3157 3158 vd = NULL; 3159 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3160 if (guid == 3161 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3162 vd = spa->spa_l2cache.sav_vdevs[j]; 3163 break; 3164 } 3165 } 3166 ASSERT(vd != NULL); 3167 3168 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3169 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3170 == 0); 3171 vdev_get_stats(vd, vs); 3172 } 3173 } 3174 } 3175 3176 static void 3177 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3178 { 3179 nvlist_t *features; 3180 zap_cursor_t zc; 3181 zap_attribute_t za; 3182 3183 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3184 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3185 3186 if (spa->spa_feat_for_read_obj != 0) { 3187 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3188 spa->spa_feat_for_read_obj); 3189 zap_cursor_retrieve(&zc, &za) == 0; 3190 zap_cursor_advance(&zc)) { 3191 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3192 za.za_num_integers == 1); 3193 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3194 za.za_first_integer)); 3195 } 3196 zap_cursor_fini(&zc); 3197 } 3198 3199 if (spa->spa_feat_for_write_obj != 0) { 3200 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3201 spa->spa_feat_for_write_obj); 3202 zap_cursor_retrieve(&zc, &za) == 0; 3203 zap_cursor_advance(&zc)) { 3204 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3205 za.za_num_integers == 1); 3206 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3207 za.za_first_integer)); 3208 } 3209 zap_cursor_fini(&zc); 3210 } 3211 3212 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3213 features) == 0); 3214 nvlist_free(features); 3215 } 3216 3217 int 3218 spa_get_stats(const char *name, nvlist_t **config, 3219 char *altroot, size_t buflen) 3220 { 3221 int error; 3222 spa_t *spa; 3223 3224 *config = NULL; 3225 error = spa_open_common(name, &spa, FTAG, NULL, config); 3226 3227 if (spa != NULL) { 3228 /* 3229 * This still leaves a window of inconsistency where the spares 3230 * or l2cache devices could change and the config would be 3231 * self-inconsistent. 3232 */ 3233 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3234 3235 if (*config != NULL) { 3236 uint64_t loadtimes[2]; 3237 3238 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3239 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3240 VERIFY(nvlist_add_uint64_array(*config, 3241 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3242 3243 VERIFY(nvlist_add_uint64(*config, 3244 ZPOOL_CONFIG_ERRCOUNT, 3245 spa_get_errlog_size(spa)) == 0); 3246 3247 if (spa_suspended(spa)) 3248 VERIFY(nvlist_add_uint64(*config, 3249 ZPOOL_CONFIG_SUSPENDED, 3250 spa->spa_failmode) == 0); 3251 3252 spa_add_spares(spa, *config); 3253 spa_add_l2cache(spa, *config); 3254 spa_add_feature_stats(spa, *config); 3255 } 3256 } 3257 3258 /* 3259 * We want to get the alternate root even for faulted pools, so we cheat 3260 * and call spa_lookup() directly. 3261 */ 3262 if (altroot) { 3263 if (spa == NULL) { 3264 mutex_enter(&spa_namespace_lock); 3265 spa = spa_lookup(name); 3266 if (spa) 3267 spa_altroot(spa, altroot, buflen); 3268 else 3269 altroot[0] = '\0'; 3270 spa = NULL; 3271 mutex_exit(&spa_namespace_lock); 3272 } else { 3273 spa_altroot(spa, altroot, buflen); 3274 } 3275 } 3276 3277 if (spa != NULL) { 3278 spa_config_exit(spa, SCL_CONFIG, FTAG); 3279 spa_close(spa, FTAG); 3280 } 3281 3282 return (error); 3283 } 3284 3285 /* 3286 * Validate that the auxiliary device array is well formed. We must have an 3287 * array of nvlists, each which describes a valid leaf vdev. If this is an 3288 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3289 * specified, as long as they are well-formed. 3290 */ 3291 static int 3292 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3293 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3294 vdev_labeltype_t label) 3295 { 3296 nvlist_t **dev; 3297 uint_t i, ndev; 3298 vdev_t *vd; 3299 int error; 3300 3301 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3302 3303 /* 3304 * It's acceptable to have no devs specified. 3305 */ 3306 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3307 return (0); 3308 3309 if (ndev == 0) 3310 return (SET_ERROR(EINVAL)); 3311 3312 /* 3313 * Make sure the pool is formatted with a version that supports this 3314 * device type. 3315 */ 3316 if (spa_version(spa) < version) 3317 return (SET_ERROR(ENOTSUP)); 3318 3319 /* 3320 * Set the pending device list so we correctly handle device in-use 3321 * checking. 3322 */ 3323 sav->sav_pending = dev; 3324 sav->sav_npending = ndev; 3325 3326 for (i = 0; i < ndev; i++) { 3327 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3328 mode)) != 0) 3329 goto out; 3330 3331 if (!vd->vdev_ops->vdev_op_leaf) { 3332 vdev_free(vd); 3333 error = SET_ERROR(EINVAL); 3334 goto out; 3335 } 3336 3337 /* 3338 * The L2ARC currently only supports disk devices in 3339 * kernel context. For user-level testing, we allow it. 3340 */ 3341 #ifdef _KERNEL 3342 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3343 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3344 error = SET_ERROR(ENOTBLK); 3345 vdev_free(vd); 3346 goto out; 3347 } 3348 #endif 3349 vd->vdev_top = vd; 3350 3351 if ((error = vdev_open(vd)) == 0 && 3352 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3353 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3354 vd->vdev_guid) == 0); 3355 } 3356 3357 vdev_free(vd); 3358 3359 if (error && 3360 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3361 goto out; 3362 else 3363 error = 0; 3364 } 3365 3366 out: 3367 sav->sav_pending = NULL; 3368 sav->sav_npending = 0; 3369 return (error); 3370 } 3371 3372 static int 3373 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3374 { 3375 int error; 3376 3377 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3378 3379 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3380 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3381 VDEV_LABEL_SPARE)) != 0) { 3382 return (error); 3383 } 3384 3385 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3386 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3387 VDEV_LABEL_L2CACHE)); 3388 } 3389 3390 static void 3391 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3392 const char *config) 3393 { 3394 int i; 3395 3396 if (sav->sav_config != NULL) { 3397 nvlist_t **olddevs; 3398 uint_t oldndevs; 3399 nvlist_t **newdevs; 3400 3401 /* 3402 * Generate new dev list by concatentating with the 3403 * current dev list. 3404 */ 3405 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3406 &olddevs, &oldndevs) == 0); 3407 3408 newdevs = kmem_alloc(sizeof (void *) * 3409 (ndevs + oldndevs), KM_SLEEP); 3410 for (i = 0; i < oldndevs; i++) 3411 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3412 KM_SLEEP) == 0); 3413 for (i = 0; i < ndevs; i++) 3414 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3415 KM_SLEEP) == 0); 3416 3417 VERIFY(nvlist_remove(sav->sav_config, config, 3418 DATA_TYPE_NVLIST_ARRAY) == 0); 3419 3420 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3421 config, newdevs, ndevs + oldndevs) == 0); 3422 for (i = 0; i < oldndevs + ndevs; i++) 3423 nvlist_free(newdevs[i]); 3424 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3425 } else { 3426 /* 3427 * Generate a new dev list. 3428 */ 3429 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3430 KM_SLEEP) == 0); 3431 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3432 devs, ndevs) == 0); 3433 } 3434 } 3435 3436 /* 3437 * Stop and drop level 2 ARC devices 3438 */ 3439 void 3440 spa_l2cache_drop(spa_t *spa) 3441 { 3442 vdev_t *vd; 3443 int i; 3444 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3445 3446 for (i = 0; i < sav->sav_count; i++) { 3447 uint64_t pool; 3448 3449 vd = sav->sav_vdevs[i]; 3450 ASSERT(vd != NULL); 3451 3452 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3453 pool != 0ULL && l2arc_vdev_present(vd)) 3454 l2arc_remove_vdev(vd); 3455 } 3456 } 3457 3458 /* 3459 * Pool Creation 3460 */ 3461 int 3462 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3463 nvlist_t *zplprops) 3464 { 3465 spa_t *spa; 3466 char *altroot = NULL; 3467 vdev_t *rvd; 3468 dsl_pool_t *dp; 3469 dmu_tx_t *tx; 3470 int error = 0; 3471 uint64_t txg = TXG_INITIAL; 3472 nvlist_t **spares, **l2cache; 3473 uint_t nspares, nl2cache; 3474 uint64_t version, obj; 3475 boolean_t has_features; 3476 3477 /* 3478 * If this pool already exists, return failure. 3479 */ 3480 mutex_enter(&spa_namespace_lock); 3481 if (spa_lookup(pool) != NULL) { 3482 mutex_exit(&spa_namespace_lock); 3483 return (SET_ERROR(EEXIST)); 3484 } 3485 3486 /* 3487 * Allocate a new spa_t structure. 3488 */ 3489 (void) nvlist_lookup_string(props, 3490 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3491 spa = spa_add(pool, NULL, altroot); 3492 spa_activate(spa, spa_mode_global); 3493 3494 if (props && (error = spa_prop_validate(spa, props))) { 3495 spa_deactivate(spa); 3496 spa_remove(spa); 3497 mutex_exit(&spa_namespace_lock); 3498 return (error); 3499 } 3500 3501 has_features = B_FALSE; 3502 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3503 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3504 if (zpool_prop_feature(nvpair_name(elem))) 3505 has_features = B_TRUE; 3506 } 3507 3508 if (has_features || nvlist_lookup_uint64(props, 3509 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3510 version = SPA_VERSION; 3511 } 3512 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3513 3514 spa->spa_first_txg = txg; 3515 spa->spa_uberblock.ub_txg = txg - 1; 3516 spa->spa_uberblock.ub_version = version; 3517 spa->spa_ubsync = spa->spa_uberblock; 3518 3519 /* 3520 * Create "The Godfather" zio to hold all async IOs 3521 */ 3522 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3523 KM_SLEEP); 3524 for (int i = 0; i < max_ncpus; i++) { 3525 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3526 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3527 ZIO_FLAG_GODFATHER); 3528 } 3529 3530 /* 3531 * Create the root vdev. 3532 */ 3533 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3534 3535 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3536 3537 ASSERT(error != 0 || rvd != NULL); 3538 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3539 3540 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3541 error = SET_ERROR(EINVAL); 3542 3543 if (error == 0 && 3544 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3545 (error = spa_validate_aux(spa, nvroot, txg, 3546 VDEV_ALLOC_ADD)) == 0) { 3547 for (int c = 0; c < rvd->vdev_children; c++) { 3548 vdev_metaslab_set_size(rvd->vdev_child[c]); 3549 vdev_expand(rvd->vdev_child[c], txg); 3550 } 3551 } 3552 3553 spa_config_exit(spa, SCL_ALL, FTAG); 3554 3555 if (error != 0) { 3556 spa_unload(spa); 3557 spa_deactivate(spa); 3558 spa_remove(spa); 3559 mutex_exit(&spa_namespace_lock); 3560 return (error); 3561 } 3562 3563 /* 3564 * Get the list of spares, if specified. 3565 */ 3566 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3567 &spares, &nspares) == 0) { 3568 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3569 KM_SLEEP) == 0); 3570 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3571 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3573 spa_load_spares(spa); 3574 spa_config_exit(spa, SCL_ALL, FTAG); 3575 spa->spa_spares.sav_sync = B_TRUE; 3576 } 3577 3578 /* 3579 * Get the list of level 2 cache devices, if specified. 3580 */ 3581 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3582 &l2cache, &nl2cache) == 0) { 3583 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3584 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3585 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3586 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3588 spa_load_l2cache(spa); 3589 spa_config_exit(spa, SCL_ALL, FTAG); 3590 spa->spa_l2cache.sav_sync = B_TRUE; 3591 } 3592 3593 spa->spa_is_initializing = B_TRUE; 3594 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3595 spa->spa_meta_objset = dp->dp_meta_objset; 3596 spa->spa_is_initializing = B_FALSE; 3597 3598 /* 3599 * Create DDTs (dedup tables). 3600 */ 3601 ddt_create(spa); 3602 3603 spa_update_dspace(spa); 3604 3605 tx = dmu_tx_create_assigned(dp, txg); 3606 3607 /* 3608 * Create the pool config object. 3609 */ 3610 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3611 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3612 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3613 3614 if (zap_add(spa->spa_meta_objset, 3615 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3616 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3617 cmn_err(CE_PANIC, "failed to add pool config"); 3618 } 3619 3620 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3621 spa_feature_create_zap_objects(spa, tx); 3622 3623 if (zap_add(spa->spa_meta_objset, 3624 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3625 sizeof (uint64_t), 1, &version, tx) != 0) { 3626 cmn_err(CE_PANIC, "failed to add pool version"); 3627 } 3628 3629 /* Newly created pools with the right version are always deflated. */ 3630 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3631 spa->spa_deflate = TRUE; 3632 if (zap_add(spa->spa_meta_objset, 3633 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3634 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3635 cmn_err(CE_PANIC, "failed to add deflate"); 3636 } 3637 } 3638 3639 /* 3640 * Create the deferred-free bpobj. Turn off compression 3641 * because sync-to-convergence takes longer if the blocksize 3642 * keeps changing. 3643 */ 3644 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3645 dmu_object_set_compress(spa->spa_meta_objset, obj, 3646 ZIO_COMPRESS_OFF, tx); 3647 if (zap_add(spa->spa_meta_objset, 3648 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3649 sizeof (uint64_t), 1, &obj, tx) != 0) { 3650 cmn_err(CE_PANIC, "failed to add bpobj"); 3651 } 3652 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3653 spa->spa_meta_objset, obj)); 3654 3655 /* 3656 * Create the pool's history object. 3657 */ 3658 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3659 spa_history_create_obj(spa, tx); 3660 3661 /* 3662 * Set pool properties. 3663 */ 3664 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3665 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3666 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3667 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3668 3669 if (props != NULL) { 3670 spa_configfile_set(spa, props, B_FALSE); 3671 spa_sync_props(props, tx); 3672 } 3673 3674 dmu_tx_commit(tx); 3675 3676 spa->spa_sync_on = B_TRUE; 3677 txg_sync_start(spa->spa_dsl_pool); 3678 3679 /* 3680 * We explicitly wait for the first transaction to complete so that our 3681 * bean counters are appropriately updated. 3682 */ 3683 txg_wait_synced(spa->spa_dsl_pool, txg); 3684 3685 spa_config_sync(spa, B_FALSE, B_TRUE); 3686 3687 spa_history_log_version(spa, "create"); 3688 3689 /* 3690 * Don't count references from objsets that are already closed 3691 * and are making their way through the eviction process. 3692 */ 3693 spa_evicting_os_wait(spa); 3694 spa->spa_minref = refcount_count(&spa->spa_refcount); 3695 3696 mutex_exit(&spa_namespace_lock); 3697 3698 return (0); 3699 } 3700 3701 #ifdef _KERNEL 3702 /* 3703 * Get the root pool information from the root disk, then import the root pool 3704 * during the system boot up time. 3705 */ 3706 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3707 3708 static nvlist_t * 3709 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3710 { 3711 nvlist_t *config; 3712 nvlist_t *nvtop, *nvroot; 3713 uint64_t pgid; 3714 3715 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3716 return (NULL); 3717 3718 /* 3719 * Add this top-level vdev to the child array. 3720 */ 3721 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3722 &nvtop) == 0); 3723 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3724 &pgid) == 0); 3725 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3726 3727 /* 3728 * Put this pool's top-level vdevs into a root vdev. 3729 */ 3730 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3731 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3732 VDEV_TYPE_ROOT) == 0); 3733 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3734 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3735 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3736 &nvtop, 1) == 0); 3737 3738 /* 3739 * Replace the existing vdev_tree with the new root vdev in 3740 * this pool's configuration (remove the old, add the new). 3741 */ 3742 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3743 nvlist_free(nvroot); 3744 return (config); 3745 } 3746 3747 /* 3748 * Walk the vdev tree and see if we can find a device with "better" 3749 * configuration. A configuration is "better" if the label on that 3750 * device has a more recent txg. 3751 */ 3752 static void 3753 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3754 { 3755 for (int c = 0; c < vd->vdev_children; c++) 3756 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3757 3758 if (vd->vdev_ops->vdev_op_leaf) { 3759 nvlist_t *label; 3760 uint64_t label_txg; 3761 3762 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3763 &label) != 0) 3764 return; 3765 3766 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3767 &label_txg) == 0); 3768 3769 /* 3770 * Do we have a better boot device? 3771 */ 3772 if (label_txg > *txg) { 3773 *txg = label_txg; 3774 *avd = vd; 3775 } 3776 nvlist_free(label); 3777 } 3778 } 3779 3780 /* 3781 * Import a root pool. 3782 * 3783 * For x86. devpath_list will consist of devid and/or physpath name of 3784 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3785 * The GRUB "findroot" command will return the vdev we should boot. 3786 * 3787 * For Sparc, devpath_list consists the physpath name of the booting device 3788 * no matter the rootpool is a single device pool or a mirrored pool. 3789 * e.g. 3790 * "/pci@1f,0/ide@d/disk@0,0:a" 3791 */ 3792 int 3793 spa_import_rootpool(char *devpath, char *devid) 3794 { 3795 spa_t *spa; 3796 vdev_t *rvd, *bvd, *avd = NULL; 3797 nvlist_t *config, *nvtop; 3798 uint64_t guid, txg; 3799 char *pname; 3800 int error; 3801 3802 /* 3803 * Read the label from the boot device and generate a configuration. 3804 */ 3805 config = spa_generate_rootconf(devpath, devid, &guid); 3806 #if defined(_OBP) && defined(_KERNEL) 3807 if (config == NULL) { 3808 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3809 /* iscsi boot */ 3810 get_iscsi_bootpath_phy(devpath); 3811 config = spa_generate_rootconf(devpath, devid, &guid); 3812 } 3813 } 3814 #endif 3815 if (config == NULL) { 3816 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3817 devpath); 3818 return (SET_ERROR(EIO)); 3819 } 3820 3821 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3822 &pname) == 0); 3823 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3824 3825 mutex_enter(&spa_namespace_lock); 3826 if ((spa = spa_lookup(pname)) != NULL) { 3827 /* 3828 * Remove the existing root pool from the namespace so that we 3829 * can replace it with the correct config we just read in. 3830 */ 3831 spa_remove(spa); 3832 } 3833 3834 spa = spa_add(pname, config, NULL); 3835 spa->spa_is_root = B_TRUE; 3836 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3837 3838 /* 3839 * Build up a vdev tree based on the boot device's label config. 3840 */ 3841 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3842 &nvtop) == 0); 3843 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3844 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3845 VDEV_ALLOC_ROOTPOOL); 3846 spa_config_exit(spa, SCL_ALL, FTAG); 3847 if (error) { 3848 mutex_exit(&spa_namespace_lock); 3849 nvlist_free(config); 3850 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3851 pname); 3852 return (error); 3853 } 3854 3855 /* 3856 * Get the boot vdev. 3857 */ 3858 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3859 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3860 (u_longlong_t)guid); 3861 error = SET_ERROR(ENOENT); 3862 goto out; 3863 } 3864 3865 /* 3866 * Determine if there is a better boot device. 3867 */ 3868 avd = bvd; 3869 spa_alt_rootvdev(rvd, &avd, &txg); 3870 if (avd != bvd) { 3871 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3872 "try booting from '%s'", avd->vdev_path); 3873 error = SET_ERROR(EINVAL); 3874 goto out; 3875 } 3876 3877 /* 3878 * If the boot device is part of a spare vdev then ensure that 3879 * we're booting off the active spare. 3880 */ 3881 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3882 !bvd->vdev_isspare) { 3883 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3884 "try booting from '%s'", 3885 bvd->vdev_parent-> 3886 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3887 error = SET_ERROR(EINVAL); 3888 goto out; 3889 } 3890 3891 error = 0; 3892 out: 3893 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3894 vdev_free(rvd); 3895 spa_config_exit(spa, SCL_ALL, FTAG); 3896 mutex_exit(&spa_namespace_lock); 3897 3898 nvlist_free(config); 3899 return (error); 3900 } 3901 3902 #endif 3903 3904 /* 3905 * Import a non-root pool into the system. 3906 */ 3907 int 3908 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3909 { 3910 spa_t *spa; 3911 char *altroot = NULL; 3912 spa_load_state_t state = SPA_LOAD_IMPORT; 3913 zpool_rewind_policy_t policy; 3914 uint64_t mode = spa_mode_global; 3915 uint64_t readonly = B_FALSE; 3916 int error; 3917 nvlist_t *nvroot; 3918 nvlist_t **spares, **l2cache; 3919 uint_t nspares, nl2cache; 3920 3921 /* 3922 * If a pool with this name exists, return failure. 3923 */ 3924 mutex_enter(&spa_namespace_lock); 3925 if (spa_lookup(pool) != NULL) { 3926 mutex_exit(&spa_namespace_lock); 3927 return (SET_ERROR(EEXIST)); 3928 } 3929 3930 /* 3931 * Create and initialize the spa structure. 3932 */ 3933 (void) nvlist_lookup_string(props, 3934 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3935 (void) nvlist_lookup_uint64(props, 3936 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3937 if (readonly) 3938 mode = FREAD; 3939 spa = spa_add(pool, config, altroot); 3940 spa->spa_import_flags = flags; 3941 3942 /* 3943 * Verbatim import - Take a pool and insert it into the namespace 3944 * as if it had been loaded at boot. 3945 */ 3946 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3947 if (props != NULL) 3948 spa_configfile_set(spa, props, B_FALSE); 3949 3950 spa_config_sync(spa, B_FALSE, B_TRUE); 3951 3952 mutex_exit(&spa_namespace_lock); 3953 return (0); 3954 } 3955 3956 spa_activate(spa, mode); 3957 3958 /* 3959 * Don't start async tasks until we know everything is healthy. 3960 */ 3961 spa_async_suspend(spa); 3962 3963 zpool_get_rewind_policy(config, &policy); 3964 if (policy.zrp_request & ZPOOL_DO_REWIND) 3965 state = SPA_LOAD_RECOVER; 3966 3967 /* 3968 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3969 * because the user-supplied config is actually the one to trust when 3970 * doing an import. 3971 */ 3972 if (state != SPA_LOAD_RECOVER) 3973 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3974 3975 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3976 policy.zrp_request); 3977 3978 /* 3979 * Propagate anything learned while loading the pool and pass it 3980 * back to caller (i.e. rewind info, missing devices, etc). 3981 */ 3982 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3983 spa->spa_load_info) == 0); 3984 3985 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3986 /* 3987 * Toss any existing sparelist, as it doesn't have any validity 3988 * anymore, and conflicts with spa_has_spare(). 3989 */ 3990 if (spa->spa_spares.sav_config) { 3991 nvlist_free(spa->spa_spares.sav_config); 3992 spa->spa_spares.sav_config = NULL; 3993 spa_load_spares(spa); 3994 } 3995 if (spa->spa_l2cache.sav_config) { 3996 nvlist_free(spa->spa_l2cache.sav_config); 3997 spa->spa_l2cache.sav_config = NULL; 3998 spa_load_l2cache(spa); 3999 } 4000 4001 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4002 &nvroot) == 0); 4003 if (error == 0) 4004 error = spa_validate_aux(spa, nvroot, -1ULL, 4005 VDEV_ALLOC_SPARE); 4006 if (error == 0) 4007 error = spa_validate_aux(spa, nvroot, -1ULL, 4008 VDEV_ALLOC_L2CACHE); 4009 spa_config_exit(spa, SCL_ALL, FTAG); 4010 4011 if (props != NULL) 4012 spa_configfile_set(spa, props, B_FALSE); 4013 4014 if (error != 0 || (props && spa_writeable(spa) && 4015 (error = spa_prop_set(spa, props)))) { 4016 spa_unload(spa); 4017 spa_deactivate(spa); 4018 spa_remove(spa); 4019 mutex_exit(&spa_namespace_lock); 4020 return (error); 4021 } 4022 4023 spa_async_resume(spa); 4024 4025 /* 4026 * Override any spares and level 2 cache devices as specified by 4027 * the user, as these may have correct device names/devids, etc. 4028 */ 4029 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4030 &spares, &nspares) == 0) { 4031 if (spa->spa_spares.sav_config) 4032 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4033 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4034 else 4035 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4036 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4037 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4038 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4039 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4040 spa_load_spares(spa); 4041 spa_config_exit(spa, SCL_ALL, FTAG); 4042 spa->spa_spares.sav_sync = B_TRUE; 4043 } 4044 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4045 &l2cache, &nl2cache) == 0) { 4046 if (spa->spa_l2cache.sav_config) 4047 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4048 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4049 else 4050 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4051 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4052 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4053 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4054 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4055 spa_load_l2cache(spa); 4056 spa_config_exit(spa, SCL_ALL, FTAG); 4057 spa->spa_l2cache.sav_sync = B_TRUE; 4058 } 4059 4060 /* 4061 * Check for any removed devices. 4062 */ 4063 if (spa->spa_autoreplace) { 4064 spa_aux_check_removed(&spa->spa_spares); 4065 spa_aux_check_removed(&spa->spa_l2cache); 4066 } 4067 4068 if (spa_writeable(spa)) { 4069 /* 4070 * Update the config cache to include the newly-imported pool. 4071 */ 4072 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4073 } 4074 4075 /* 4076 * It's possible that the pool was expanded while it was exported. 4077 * We kick off an async task to handle this for us. 4078 */ 4079 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4080 4081 mutex_exit(&spa_namespace_lock); 4082 spa_history_log_version(spa, "import"); 4083 4084 return (0); 4085 } 4086 4087 nvlist_t * 4088 spa_tryimport(nvlist_t *tryconfig) 4089 { 4090 nvlist_t *config = NULL; 4091 char *poolname; 4092 spa_t *spa; 4093 uint64_t state; 4094 int error; 4095 4096 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4097 return (NULL); 4098 4099 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4100 return (NULL); 4101 4102 /* 4103 * Create and initialize the spa structure. 4104 */ 4105 mutex_enter(&spa_namespace_lock); 4106 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4107 spa_activate(spa, FREAD); 4108 4109 /* 4110 * Pass off the heavy lifting to spa_load(). 4111 * Pass TRUE for mosconfig because the user-supplied config 4112 * is actually the one to trust when doing an import. 4113 */ 4114 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4115 4116 /* 4117 * If 'tryconfig' was at least parsable, return the current config. 4118 */ 4119 if (spa->spa_root_vdev != NULL) { 4120 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4121 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4122 poolname) == 0); 4123 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4124 state) == 0); 4125 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4126 spa->spa_uberblock.ub_timestamp) == 0); 4127 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4128 spa->spa_load_info) == 0); 4129 4130 /* 4131 * If the bootfs property exists on this pool then we 4132 * copy it out so that external consumers can tell which 4133 * pools are bootable. 4134 */ 4135 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4136 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4137 4138 /* 4139 * We have to play games with the name since the 4140 * pool was opened as TRYIMPORT_NAME. 4141 */ 4142 if (dsl_dsobj_to_dsname(spa_name(spa), 4143 spa->spa_bootfs, tmpname) == 0) { 4144 char *cp; 4145 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4146 4147 cp = strchr(tmpname, '/'); 4148 if (cp == NULL) { 4149 (void) strlcpy(dsname, tmpname, 4150 MAXPATHLEN); 4151 } else { 4152 (void) snprintf(dsname, MAXPATHLEN, 4153 "%s/%s", poolname, ++cp); 4154 } 4155 VERIFY(nvlist_add_string(config, 4156 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4157 kmem_free(dsname, MAXPATHLEN); 4158 } 4159 kmem_free(tmpname, MAXPATHLEN); 4160 } 4161 4162 /* 4163 * Add the list of hot spares and level 2 cache devices. 4164 */ 4165 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4166 spa_add_spares(spa, config); 4167 spa_add_l2cache(spa, config); 4168 spa_config_exit(spa, SCL_CONFIG, FTAG); 4169 } 4170 4171 spa_unload(spa); 4172 spa_deactivate(spa); 4173 spa_remove(spa); 4174 mutex_exit(&spa_namespace_lock); 4175 4176 return (config); 4177 } 4178 4179 /* 4180 * Pool export/destroy 4181 * 4182 * The act of destroying or exporting a pool is very simple. We make sure there 4183 * is no more pending I/O and any references to the pool are gone. Then, we 4184 * update the pool state and sync all the labels to disk, removing the 4185 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4186 * we don't sync the labels or remove the configuration cache. 4187 */ 4188 static int 4189 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4190 boolean_t force, boolean_t hardforce) 4191 { 4192 spa_t *spa; 4193 4194 if (oldconfig) 4195 *oldconfig = NULL; 4196 4197 if (!(spa_mode_global & FWRITE)) 4198 return (SET_ERROR(EROFS)); 4199 4200 mutex_enter(&spa_namespace_lock); 4201 if ((spa = spa_lookup(pool)) == NULL) { 4202 mutex_exit(&spa_namespace_lock); 4203 return (SET_ERROR(ENOENT)); 4204 } 4205 4206 /* 4207 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4208 * reacquire the namespace lock, and see if we can export. 4209 */ 4210 spa_open_ref(spa, FTAG); 4211 mutex_exit(&spa_namespace_lock); 4212 spa_async_suspend(spa); 4213 mutex_enter(&spa_namespace_lock); 4214 spa_close(spa, FTAG); 4215 4216 /* 4217 * The pool will be in core if it's openable, 4218 * in which case we can modify its state. 4219 */ 4220 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4221 /* 4222 * Objsets may be open only because they're dirty, so we 4223 * have to force it to sync before checking spa_refcnt. 4224 */ 4225 txg_wait_synced(spa->spa_dsl_pool, 0); 4226 spa_evicting_os_wait(spa); 4227 4228 /* 4229 * A pool cannot be exported or destroyed if there are active 4230 * references. If we are resetting a pool, allow references by 4231 * fault injection handlers. 4232 */ 4233 if (!spa_refcount_zero(spa) || 4234 (spa->spa_inject_ref != 0 && 4235 new_state != POOL_STATE_UNINITIALIZED)) { 4236 spa_async_resume(spa); 4237 mutex_exit(&spa_namespace_lock); 4238 return (SET_ERROR(EBUSY)); 4239 } 4240 4241 /* 4242 * A pool cannot be exported if it has an active shared spare. 4243 * This is to prevent other pools stealing the active spare 4244 * from an exported pool. At user's own will, such pool can 4245 * be forcedly exported. 4246 */ 4247 if (!force && new_state == POOL_STATE_EXPORTED && 4248 spa_has_active_shared_spare(spa)) { 4249 spa_async_resume(spa); 4250 mutex_exit(&spa_namespace_lock); 4251 return (SET_ERROR(EXDEV)); 4252 } 4253 4254 /* 4255 * We want this to be reflected on every label, 4256 * so mark them all dirty. spa_unload() will do the 4257 * final sync that pushes these changes out. 4258 */ 4259 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4261 spa->spa_state = new_state; 4262 spa->spa_final_txg = spa_last_synced_txg(spa) + 4263 TXG_DEFER_SIZE + 1; 4264 vdev_config_dirty(spa->spa_root_vdev); 4265 spa_config_exit(spa, SCL_ALL, FTAG); 4266 } 4267 } 4268 4269 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4270 4271 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4272 spa_unload(spa); 4273 spa_deactivate(spa); 4274 } 4275 4276 if (oldconfig && spa->spa_config) 4277 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4278 4279 if (new_state != POOL_STATE_UNINITIALIZED) { 4280 if (!hardforce) 4281 spa_config_sync(spa, B_TRUE, B_TRUE); 4282 spa_remove(spa); 4283 } 4284 mutex_exit(&spa_namespace_lock); 4285 4286 return (0); 4287 } 4288 4289 /* 4290 * Destroy a storage pool. 4291 */ 4292 int 4293 spa_destroy(char *pool) 4294 { 4295 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4296 B_FALSE, B_FALSE)); 4297 } 4298 4299 /* 4300 * Export a storage pool. 4301 */ 4302 int 4303 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4304 boolean_t hardforce) 4305 { 4306 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4307 force, hardforce)); 4308 } 4309 4310 /* 4311 * Similar to spa_export(), this unloads the spa_t without actually removing it 4312 * from the namespace in any way. 4313 */ 4314 int 4315 spa_reset(char *pool) 4316 { 4317 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4318 B_FALSE, B_FALSE)); 4319 } 4320 4321 /* 4322 * ========================================================================== 4323 * Device manipulation 4324 * ========================================================================== 4325 */ 4326 4327 /* 4328 * Add a device to a storage pool. 4329 */ 4330 int 4331 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4332 { 4333 uint64_t txg, id; 4334 int error; 4335 vdev_t *rvd = spa->spa_root_vdev; 4336 vdev_t *vd, *tvd; 4337 nvlist_t **spares, **l2cache; 4338 uint_t nspares, nl2cache; 4339 4340 ASSERT(spa_writeable(spa)); 4341 4342 txg = spa_vdev_enter(spa); 4343 4344 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4345 VDEV_ALLOC_ADD)) != 0) 4346 return (spa_vdev_exit(spa, NULL, txg, error)); 4347 4348 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4349 4350 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4351 &nspares) != 0) 4352 nspares = 0; 4353 4354 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4355 &nl2cache) != 0) 4356 nl2cache = 0; 4357 4358 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4359 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4360 4361 if (vd->vdev_children != 0 && 4362 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4363 return (spa_vdev_exit(spa, vd, txg, error)); 4364 4365 /* 4366 * We must validate the spares and l2cache devices after checking the 4367 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4368 */ 4369 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4370 return (spa_vdev_exit(spa, vd, txg, error)); 4371 4372 /* 4373 * Transfer each new top-level vdev from vd to rvd. 4374 */ 4375 for (int c = 0; c < vd->vdev_children; c++) { 4376 4377 /* 4378 * Set the vdev id to the first hole, if one exists. 4379 */ 4380 for (id = 0; id < rvd->vdev_children; id++) { 4381 if (rvd->vdev_child[id]->vdev_ishole) { 4382 vdev_free(rvd->vdev_child[id]); 4383 break; 4384 } 4385 } 4386 tvd = vd->vdev_child[c]; 4387 vdev_remove_child(vd, tvd); 4388 tvd->vdev_id = id; 4389 vdev_add_child(rvd, tvd); 4390 vdev_config_dirty(tvd); 4391 } 4392 4393 if (nspares != 0) { 4394 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4395 ZPOOL_CONFIG_SPARES); 4396 spa_load_spares(spa); 4397 spa->spa_spares.sav_sync = B_TRUE; 4398 } 4399 4400 if (nl2cache != 0) { 4401 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4402 ZPOOL_CONFIG_L2CACHE); 4403 spa_load_l2cache(spa); 4404 spa->spa_l2cache.sav_sync = B_TRUE; 4405 } 4406 4407 /* 4408 * We have to be careful when adding new vdevs to an existing pool. 4409 * If other threads start allocating from these vdevs before we 4410 * sync the config cache, and we lose power, then upon reboot we may 4411 * fail to open the pool because there are DVAs that the config cache 4412 * can't translate. Therefore, we first add the vdevs without 4413 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4414 * and then let spa_config_update() initialize the new metaslabs. 4415 * 4416 * spa_load() checks for added-but-not-initialized vdevs, so that 4417 * if we lose power at any point in this sequence, the remaining 4418 * steps will be completed the next time we load the pool. 4419 */ 4420 (void) spa_vdev_exit(spa, vd, txg, 0); 4421 4422 mutex_enter(&spa_namespace_lock); 4423 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4424 mutex_exit(&spa_namespace_lock); 4425 4426 return (0); 4427 } 4428 4429 /* 4430 * Attach a device to a mirror. The arguments are the path to any device 4431 * in the mirror, and the nvroot for the new device. If the path specifies 4432 * a device that is not mirrored, we automatically insert the mirror vdev. 4433 * 4434 * If 'replacing' is specified, the new device is intended to replace the 4435 * existing device; in this case the two devices are made into their own 4436 * mirror using the 'replacing' vdev, which is functionally identical to 4437 * the mirror vdev (it actually reuses all the same ops) but has a few 4438 * extra rules: you can't attach to it after it's been created, and upon 4439 * completion of resilvering, the first disk (the one being replaced) 4440 * is automatically detached. 4441 */ 4442 int 4443 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4444 { 4445 uint64_t txg, dtl_max_txg; 4446 vdev_t *rvd = spa->spa_root_vdev; 4447 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4448 vdev_ops_t *pvops; 4449 char *oldvdpath, *newvdpath; 4450 int newvd_isspare; 4451 int error; 4452 4453 ASSERT(spa_writeable(spa)); 4454 4455 txg = spa_vdev_enter(spa); 4456 4457 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4458 4459 if (oldvd == NULL) 4460 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4461 4462 if (!oldvd->vdev_ops->vdev_op_leaf) 4463 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4464 4465 pvd = oldvd->vdev_parent; 4466 4467 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4468 VDEV_ALLOC_ATTACH)) != 0) 4469 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4470 4471 if (newrootvd->vdev_children != 1) 4472 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4473 4474 newvd = newrootvd->vdev_child[0]; 4475 4476 if (!newvd->vdev_ops->vdev_op_leaf) 4477 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4478 4479 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4480 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4481 4482 /* 4483 * Spares can't replace logs 4484 */ 4485 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4486 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4487 4488 if (!replacing) { 4489 /* 4490 * For attach, the only allowable parent is a mirror or the root 4491 * vdev. 4492 */ 4493 if (pvd->vdev_ops != &vdev_mirror_ops && 4494 pvd->vdev_ops != &vdev_root_ops) 4495 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4496 4497 pvops = &vdev_mirror_ops; 4498 } else { 4499 /* 4500 * Active hot spares can only be replaced by inactive hot 4501 * spares. 4502 */ 4503 if (pvd->vdev_ops == &vdev_spare_ops && 4504 oldvd->vdev_isspare && 4505 !spa_has_spare(spa, newvd->vdev_guid)) 4506 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4507 4508 /* 4509 * If the source is a hot spare, and the parent isn't already a 4510 * spare, then we want to create a new hot spare. Otherwise, we 4511 * want to create a replacing vdev. The user is not allowed to 4512 * attach to a spared vdev child unless the 'isspare' state is 4513 * the same (spare replaces spare, non-spare replaces 4514 * non-spare). 4515 */ 4516 if (pvd->vdev_ops == &vdev_replacing_ops && 4517 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4518 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4519 } else if (pvd->vdev_ops == &vdev_spare_ops && 4520 newvd->vdev_isspare != oldvd->vdev_isspare) { 4521 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4522 } 4523 4524 if (newvd->vdev_isspare) 4525 pvops = &vdev_spare_ops; 4526 else 4527 pvops = &vdev_replacing_ops; 4528 } 4529 4530 /* 4531 * Make sure the new device is big enough. 4532 */ 4533 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4534 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4535 4536 /* 4537 * The new device cannot have a higher alignment requirement 4538 * than the top-level vdev. 4539 */ 4540 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4541 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4542 4543 /* 4544 * If this is an in-place replacement, update oldvd's path and devid 4545 * to make it distinguishable from newvd, and unopenable from now on. 4546 */ 4547 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4548 spa_strfree(oldvd->vdev_path); 4549 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4550 KM_SLEEP); 4551 (void) sprintf(oldvd->vdev_path, "%s/%s", 4552 newvd->vdev_path, "old"); 4553 if (oldvd->vdev_devid != NULL) { 4554 spa_strfree(oldvd->vdev_devid); 4555 oldvd->vdev_devid = NULL; 4556 } 4557 } 4558 4559 /* mark the device being resilvered */ 4560 newvd->vdev_resilver_txg = txg; 4561 4562 /* 4563 * If the parent is not a mirror, or if we're replacing, insert the new 4564 * mirror/replacing/spare vdev above oldvd. 4565 */ 4566 if (pvd->vdev_ops != pvops) 4567 pvd = vdev_add_parent(oldvd, pvops); 4568 4569 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4570 ASSERT(pvd->vdev_ops == pvops); 4571 ASSERT(oldvd->vdev_parent == pvd); 4572 4573 /* 4574 * Extract the new device from its root and add it to pvd. 4575 */ 4576 vdev_remove_child(newrootvd, newvd); 4577 newvd->vdev_id = pvd->vdev_children; 4578 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4579 vdev_add_child(pvd, newvd); 4580 4581 tvd = newvd->vdev_top; 4582 ASSERT(pvd->vdev_top == tvd); 4583 ASSERT(tvd->vdev_parent == rvd); 4584 4585 vdev_config_dirty(tvd); 4586 4587 /* 4588 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4589 * for any dmu_sync-ed blocks. It will propagate upward when 4590 * spa_vdev_exit() calls vdev_dtl_reassess(). 4591 */ 4592 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4593 4594 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4595 dtl_max_txg - TXG_INITIAL); 4596 4597 if (newvd->vdev_isspare) { 4598 spa_spare_activate(newvd); 4599 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4600 } 4601 4602 oldvdpath = spa_strdup(oldvd->vdev_path); 4603 newvdpath = spa_strdup(newvd->vdev_path); 4604 newvd_isspare = newvd->vdev_isspare; 4605 4606 /* 4607 * Mark newvd's DTL dirty in this txg. 4608 */ 4609 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4610 4611 /* 4612 * Schedule the resilver to restart in the future. We do this to 4613 * ensure that dmu_sync-ed blocks have been stitched into the 4614 * respective datasets. 4615 */ 4616 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4617 4618 /* 4619 * Commit the config 4620 */ 4621 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4622 4623 spa_history_log_internal(spa, "vdev attach", NULL, 4624 "%s vdev=%s %s vdev=%s", 4625 replacing && newvd_isspare ? "spare in" : 4626 replacing ? "replace" : "attach", newvdpath, 4627 replacing ? "for" : "to", oldvdpath); 4628 4629 spa_strfree(oldvdpath); 4630 spa_strfree(newvdpath); 4631 4632 if (spa->spa_bootfs) 4633 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4634 4635 return (0); 4636 } 4637 4638 /* 4639 * Detach a device from a mirror or replacing vdev. 4640 * 4641 * If 'replace_done' is specified, only detach if the parent 4642 * is a replacing vdev. 4643 */ 4644 int 4645 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4646 { 4647 uint64_t txg; 4648 int error; 4649 vdev_t *rvd = spa->spa_root_vdev; 4650 vdev_t *vd, *pvd, *cvd, *tvd; 4651 boolean_t unspare = B_FALSE; 4652 uint64_t unspare_guid = 0; 4653 char *vdpath; 4654 4655 ASSERT(spa_writeable(spa)); 4656 4657 txg = spa_vdev_enter(spa); 4658 4659 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4660 4661 if (vd == NULL) 4662 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4663 4664 if (!vd->vdev_ops->vdev_op_leaf) 4665 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4666 4667 pvd = vd->vdev_parent; 4668 4669 /* 4670 * If the parent/child relationship is not as expected, don't do it. 4671 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4672 * vdev that's replacing B with C. The user's intent in replacing 4673 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4674 * the replace by detaching C, the expected behavior is to end up 4675 * M(A,B). But suppose that right after deciding to detach C, 4676 * the replacement of B completes. We would have M(A,C), and then 4677 * ask to detach C, which would leave us with just A -- not what 4678 * the user wanted. To prevent this, we make sure that the 4679 * parent/child relationship hasn't changed -- in this example, 4680 * that C's parent is still the replacing vdev R. 4681 */ 4682 if (pvd->vdev_guid != pguid && pguid != 0) 4683 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4684 4685 /* 4686 * Only 'replacing' or 'spare' vdevs can be replaced. 4687 */ 4688 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4689 pvd->vdev_ops != &vdev_spare_ops) 4690 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4691 4692 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4693 spa_version(spa) >= SPA_VERSION_SPARES); 4694 4695 /* 4696 * Only mirror, replacing, and spare vdevs support detach. 4697 */ 4698 if (pvd->vdev_ops != &vdev_replacing_ops && 4699 pvd->vdev_ops != &vdev_mirror_ops && 4700 pvd->vdev_ops != &vdev_spare_ops) 4701 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4702 4703 /* 4704 * If this device has the only valid copy of some data, 4705 * we cannot safely detach it. 4706 */ 4707 if (vdev_dtl_required(vd)) 4708 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4709 4710 ASSERT(pvd->vdev_children >= 2); 4711 4712 /* 4713 * If we are detaching the second disk from a replacing vdev, then 4714 * check to see if we changed the original vdev's path to have "/old" 4715 * at the end in spa_vdev_attach(). If so, undo that change now. 4716 */ 4717 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4718 vd->vdev_path != NULL) { 4719 size_t len = strlen(vd->vdev_path); 4720 4721 for (int c = 0; c < pvd->vdev_children; c++) { 4722 cvd = pvd->vdev_child[c]; 4723 4724 if (cvd == vd || cvd->vdev_path == NULL) 4725 continue; 4726 4727 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4728 strcmp(cvd->vdev_path + len, "/old") == 0) { 4729 spa_strfree(cvd->vdev_path); 4730 cvd->vdev_path = spa_strdup(vd->vdev_path); 4731 break; 4732 } 4733 } 4734 } 4735 4736 /* 4737 * If we are detaching the original disk from a spare, then it implies 4738 * that the spare should become a real disk, and be removed from the 4739 * active spare list for the pool. 4740 */ 4741 if (pvd->vdev_ops == &vdev_spare_ops && 4742 vd->vdev_id == 0 && 4743 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4744 unspare = B_TRUE; 4745 4746 /* 4747 * Erase the disk labels so the disk can be used for other things. 4748 * This must be done after all other error cases are handled, 4749 * but before we disembowel vd (so we can still do I/O to it). 4750 * But if we can't do it, don't treat the error as fatal -- 4751 * it may be that the unwritability of the disk is the reason 4752 * it's being detached! 4753 */ 4754 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4755 4756 /* 4757 * Remove vd from its parent and compact the parent's children. 4758 */ 4759 vdev_remove_child(pvd, vd); 4760 vdev_compact_children(pvd); 4761 4762 /* 4763 * Remember one of the remaining children so we can get tvd below. 4764 */ 4765 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4766 4767 /* 4768 * If we need to remove the remaining child from the list of hot spares, 4769 * do it now, marking the vdev as no longer a spare in the process. 4770 * We must do this before vdev_remove_parent(), because that can 4771 * change the GUID if it creates a new toplevel GUID. For a similar 4772 * reason, we must remove the spare now, in the same txg as the detach; 4773 * otherwise someone could attach a new sibling, change the GUID, and 4774 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4775 */ 4776 if (unspare) { 4777 ASSERT(cvd->vdev_isspare); 4778 spa_spare_remove(cvd); 4779 unspare_guid = cvd->vdev_guid; 4780 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4781 cvd->vdev_unspare = B_TRUE; 4782 } 4783 4784 /* 4785 * If the parent mirror/replacing vdev only has one child, 4786 * the parent is no longer needed. Remove it from the tree. 4787 */ 4788 if (pvd->vdev_children == 1) { 4789 if (pvd->vdev_ops == &vdev_spare_ops) 4790 cvd->vdev_unspare = B_FALSE; 4791 vdev_remove_parent(cvd); 4792 } 4793 4794 4795 /* 4796 * We don't set tvd until now because the parent we just removed 4797 * may have been the previous top-level vdev. 4798 */ 4799 tvd = cvd->vdev_top; 4800 ASSERT(tvd->vdev_parent == rvd); 4801 4802 /* 4803 * Reevaluate the parent vdev state. 4804 */ 4805 vdev_propagate_state(cvd); 4806 4807 /* 4808 * If the 'autoexpand' property is set on the pool then automatically 4809 * try to expand the size of the pool. For example if the device we 4810 * just detached was smaller than the others, it may be possible to 4811 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4812 * first so that we can obtain the updated sizes of the leaf vdevs. 4813 */ 4814 if (spa->spa_autoexpand) { 4815 vdev_reopen(tvd); 4816 vdev_expand(tvd, txg); 4817 } 4818 4819 vdev_config_dirty(tvd); 4820 4821 /* 4822 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4823 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4824 * But first make sure we're not on any *other* txg's DTL list, to 4825 * prevent vd from being accessed after it's freed. 4826 */ 4827 vdpath = spa_strdup(vd->vdev_path); 4828 for (int t = 0; t < TXG_SIZE; t++) 4829 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4830 vd->vdev_detached = B_TRUE; 4831 vdev_dirty(tvd, VDD_DTL, vd, txg); 4832 4833 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4834 4835 /* hang on to the spa before we release the lock */ 4836 spa_open_ref(spa, FTAG); 4837 4838 error = spa_vdev_exit(spa, vd, txg, 0); 4839 4840 spa_history_log_internal(spa, "detach", NULL, 4841 "vdev=%s", vdpath); 4842 spa_strfree(vdpath); 4843 4844 /* 4845 * If this was the removal of the original device in a hot spare vdev, 4846 * then we want to go through and remove the device from the hot spare 4847 * list of every other pool. 4848 */ 4849 if (unspare) { 4850 spa_t *altspa = NULL; 4851 4852 mutex_enter(&spa_namespace_lock); 4853 while ((altspa = spa_next(altspa)) != NULL) { 4854 if (altspa->spa_state != POOL_STATE_ACTIVE || 4855 altspa == spa) 4856 continue; 4857 4858 spa_open_ref(altspa, FTAG); 4859 mutex_exit(&spa_namespace_lock); 4860 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4861 mutex_enter(&spa_namespace_lock); 4862 spa_close(altspa, FTAG); 4863 } 4864 mutex_exit(&spa_namespace_lock); 4865 4866 /* search the rest of the vdevs for spares to remove */ 4867 spa_vdev_resilver_done(spa); 4868 } 4869 4870 /* all done with the spa; OK to release */ 4871 mutex_enter(&spa_namespace_lock); 4872 spa_close(spa, FTAG); 4873 mutex_exit(&spa_namespace_lock); 4874 4875 return (error); 4876 } 4877 4878 /* 4879 * Split a set of devices from their mirrors, and create a new pool from them. 4880 */ 4881 int 4882 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4883 nvlist_t *props, boolean_t exp) 4884 { 4885 int error = 0; 4886 uint64_t txg, *glist; 4887 spa_t *newspa; 4888 uint_t c, children, lastlog; 4889 nvlist_t **child, *nvl, *tmp; 4890 dmu_tx_t *tx; 4891 char *altroot = NULL; 4892 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4893 boolean_t activate_slog; 4894 4895 ASSERT(spa_writeable(spa)); 4896 4897 txg = spa_vdev_enter(spa); 4898 4899 /* clear the log and flush everything up to now */ 4900 activate_slog = spa_passivate_log(spa); 4901 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4902 error = spa_offline_log(spa); 4903 txg = spa_vdev_config_enter(spa); 4904 4905 if (activate_slog) 4906 spa_activate_log(spa); 4907 4908 if (error != 0) 4909 return (spa_vdev_exit(spa, NULL, txg, error)); 4910 4911 /* check new spa name before going any further */ 4912 if (spa_lookup(newname) != NULL) 4913 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4914 4915 /* 4916 * scan through all the children to ensure they're all mirrors 4917 */ 4918 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4919 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4920 &children) != 0) 4921 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4922 4923 /* first, check to ensure we've got the right child count */ 4924 rvd = spa->spa_root_vdev; 4925 lastlog = 0; 4926 for (c = 0; c < rvd->vdev_children; c++) { 4927 vdev_t *vd = rvd->vdev_child[c]; 4928 4929 /* don't count the holes & logs as children */ 4930 if (vd->vdev_islog || vd->vdev_ishole) { 4931 if (lastlog == 0) 4932 lastlog = c; 4933 continue; 4934 } 4935 4936 lastlog = 0; 4937 } 4938 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4939 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4940 4941 /* next, ensure no spare or cache devices are part of the split */ 4942 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4943 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4944 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4945 4946 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4947 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4948 4949 /* then, loop over each vdev and validate it */ 4950 for (c = 0; c < children; c++) { 4951 uint64_t is_hole = 0; 4952 4953 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4954 &is_hole); 4955 4956 if (is_hole != 0) { 4957 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4958 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4959 continue; 4960 } else { 4961 error = SET_ERROR(EINVAL); 4962 break; 4963 } 4964 } 4965 4966 /* which disk is going to be split? */ 4967 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4968 &glist[c]) != 0) { 4969 error = SET_ERROR(EINVAL); 4970 break; 4971 } 4972 4973 /* look it up in the spa */ 4974 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4975 if (vml[c] == NULL) { 4976 error = SET_ERROR(ENODEV); 4977 break; 4978 } 4979 4980 /* make sure there's nothing stopping the split */ 4981 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4982 vml[c]->vdev_islog || 4983 vml[c]->vdev_ishole || 4984 vml[c]->vdev_isspare || 4985 vml[c]->vdev_isl2cache || 4986 !vdev_writeable(vml[c]) || 4987 vml[c]->vdev_children != 0 || 4988 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4989 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4990 error = SET_ERROR(EINVAL); 4991 break; 4992 } 4993 4994 if (vdev_dtl_required(vml[c])) { 4995 error = SET_ERROR(EBUSY); 4996 break; 4997 } 4998 4999 /* we need certain info from the top level */ 5000 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5001 vml[c]->vdev_top->vdev_ms_array) == 0); 5002 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5003 vml[c]->vdev_top->vdev_ms_shift) == 0); 5004 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5005 vml[c]->vdev_top->vdev_asize) == 0); 5006 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5007 vml[c]->vdev_top->vdev_ashift) == 0); 5008 } 5009 5010 if (error != 0) { 5011 kmem_free(vml, children * sizeof (vdev_t *)); 5012 kmem_free(glist, children * sizeof (uint64_t)); 5013 return (spa_vdev_exit(spa, NULL, txg, error)); 5014 } 5015 5016 /* stop writers from using the disks */ 5017 for (c = 0; c < children; c++) { 5018 if (vml[c] != NULL) 5019 vml[c]->vdev_offline = B_TRUE; 5020 } 5021 vdev_reopen(spa->spa_root_vdev); 5022 5023 /* 5024 * Temporarily record the splitting vdevs in the spa config. This 5025 * will disappear once the config is regenerated. 5026 */ 5027 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5028 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5029 glist, children) == 0); 5030 kmem_free(glist, children * sizeof (uint64_t)); 5031 5032 mutex_enter(&spa->spa_props_lock); 5033 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5034 nvl) == 0); 5035 mutex_exit(&spa->spa_props_lock); 5036 spa->spa_config_splitting = nvl; 5037 vdev_config_dirty(spa->spa_root_vdev); 5038 5039 /* configure and create the new pool */ 5040 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5041 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5042 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5043 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5044 spa_version(spa)) == 0); 5045 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5046 spa->spa_config_txg) == 0); 5047 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5048 spa_generate_guid(NULL)) == 0); 5049 (void) nvlist_lookup_string(props, 5050 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5051 5052 /* add the new pool to the namespace */ 5053 newspa = spa_add(newname, config, altroot); 5054 newspa->spa_config_txg = spa->spa_config_txg; 5055 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5056 5057 /* release the spa config lock, retaining the namespace lock */ 5058 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5059 5060 if (zio_injection_enabled) 5061 zio_handle_panic_injection(spa, FTAG, 1); 5062 5063 spa_activate(newspa, spa_mode_global); 5064 spa_async_suspend(newspa); 5065 5066 /* create the new pool from the disks of the original pool */ 5067 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5068 if (error) 5069 goto out; 5070 5071 /* if that worked, generate a real config for the new pool */ 5072 if (newspa->spa_root_vdev != NULL) { 5073 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5074 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5075 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5076 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5077 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5078 B_TRUE)); 5079 } 5080 5081 /* set the props */ 5082 if (props != NULL) { 5083 spa_configfile_set(newspa, props, B_FALSE); 5084 error = spa_prop_set(newspa, props); 5085 if (error) 5086 goto out; 5087 } 5088 5089 /* flush everything */ 5090 txg = spa_vdev_config_enter(newspa); 5091 vdev_config_dirty(newspa->spa_root_vdev); 5092 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5093 5094 if (zio_injection_enabled) 5095 zio_handle_panic_injection(spa, FTAG, 2); 5096 5097 spa_async_resume(newspa); 5098 5099 /* finally, update the original pool's config */ 5100 txg = spa_vdev_config_enter(spa); 5101 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5102 error = dmu_tx_assign(tx, TXG_WAIT); 5103 if (error != 0) 5104 dmu_tx_abort(tx); 5105 for (c = 0; c < children; c++) { 5106 if (vml[c] != NULL) { 5107 vdev_split(vml[c]); 5108 if (error == 0) 5109 spa_history_log_internal(spa, "detach", tx, 5110 "vdev=%s", vml[c]->vdev_path); 5111 vdev_free(vml[c]); 5112 } 5113 } 5114 vdev_config_dirty(spa->spa_root_vdev); 5115 spa->spa_config_splitting = NULL; 5116 nvlist_free(nvl); 5117 if (error == 0) 5118 dmu_tx_commit(tx); 5119 (void) spa_vdev_exit(spa, NULL, txg, 0); 5120 5121 if (zio_injection_enabled) 5122 zio_handle_panic_injection(spa, FTAG, 3); 5123 5124 /* split is complete; log a history record */ 5125 spa_history_log_internal(newspa, "split", NULL, 5126 "from pool %s", spa_name(spa)); 5127 5128 kmem_free(vml, children * sizeof (vdev_t *)); 5129 5130 /* if we're not going to mount the filesystems in userland, export */ 5131 if (exp) 5132 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5133 B_FALSE, B_FALSE); 5134 5135 return (error); 5136 5137 out: 5138 spa_unload(newspa); 5139 spa_deactivate(newspa); 5140 spa_remove(newspa); 5141 5142 txg = spa_vdev_config_enter(spa); 5143 5144 /* re-online all offlined disks */ 5145 for (c = 0; c < children; c++) { 5146 if (vml[c] != NULL) 5147 vml[c]->vdev_offline = B_FALSE; 5148 } 5149 vdev_reopen(spa->spa_root_vdev); 5150 5151 nvlist_free(spa->spa_config_splitting); 5152 spa->spa_config_splitting = NULL; 5153 (void) spa_vdev_exit(spa, NULL, txg, error); 5154 5155 kmem_free(vml, children * sizeof (vdev_t *)); 5156 return (error); 5157 } 5158 5159 static nvlist_t * 5160 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5161 { 5162 for (int i = 0; i < count; i++) { 5163 uint64_t guid; 5164 5165 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5166 &guid) == 0); 5167 5168 if (guid == target_guid) 5169 return (nvpp[i]); 5170 } 5171 5172 return (NULL); 5173 } 5174 5175 static void 5176 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5177 nvlist_t *dev_to_remove) 5178 { 5179 nvlist_t **newdev = NULL; 5180 5181 if (count > 1) 5182 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5183 5184 for (int i = 0, j = 0; i < count; i++) { 5185 if (dev[i] == dev_to_remove) 5186 continue; 5187 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5188 } 5189 5190 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5191 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5192 5193 for (int i = 0; i < count - 1; i++) 5194 nvlist_free(newdev[i]); 5195 5196 if (count > 1) 5197 kmem_free(newdev, (count - 1) * sizeof (void *)); 5198 } 5199 5200 /* 5201 * Evacuate the device. 5202 */ 5203 static int 5204 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5205 { 5206 uint64_t txg; 5207 int error = 0; 5208 5209 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5210 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5211 ASSERT(vd == vd->vdev_top); 5212 5213 /* 5214 * Evacuate the device. We don't hold the config lock as writer 5215 * since we need to do I/O but we do keep the 5216 * spa_namespace_lock held. Once this completes the device 5217 * should no longer have any blocks allocated on it. 5218 */ 5219 if (vd->vdev_islog) { 5220 if (vd->vdev_stat.vs_alloc != 0) 5221 error = spa_offline_log(spa); 5222 } else { 5223 error = SET_ERROR(ENOTSUP); 5224 } 5225 5226 if (error) 5227 return (error); 5228 5229 /* 5230 * The evacuation succeeded. Remove any remaining MOS metadata 5231 * associated with this vdev, and wait for these changes to sync. 5232 */ 5233 ASSERT0(vd->vdev_stat.vs_alloc); 5234 txg = spa_vdev_config_enter(spa); 5235 vd->vdev_removing = B_TRUE; 5236 vdev_dirty_leaves(vd, VDD_DTL, txg); 5237 vdev_config_dirty(vd); 5238 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5239 5240 return (0); 5241 } 5242 5243 /* 5244 * Complete the removal by cleaning up the namespace. 5245 */ 5246 static void 5247 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5248 { 5249 vdev_t *rvd = spa->spa_root_vdev; 5250 uint64_t id = vd->vdev_id; 5251 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5252 5253 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5254 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5255 ASSERT(vd == vd->vdev_top); 5256 5257 /* 5258 * Only remove any devices which are empty. 5259 */ 5260 if (vd->vdev_stat.vs_alloc != 0) 5261 return; 5262 5263 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5264 5265 if (list_link_active(&vd->vdev_state_dirty_node)) 5266 vdev_state_clean(vd); 5267 if (list_link_active(&vd->vdev_config_dirty_node)) 5268 vdev_config_clean(vd); 5269 5270 vdev_free(vd); 5271 5272 if (last_vdev) { 5273 vdev_compact_children(rvd); 5274 } else { 5275 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5276 vdev_add_child(rvd, vd); 5277 } 5278 vdev_config_dirty(rvd); 5279 5280 /* 5281 * Reassess the health of our root vdev. 5282 */ 5283 vdev_reopen(rvd); 5284 } 5285 5286 /* 5287 * Remove a device from the pool - 5288 * 5289 * Removing a device from the vdev namespace requires several steps 5290 * and can take a significant amount of time. As a result we use 5291 * the spa_vdev_config_[enter/exit] functions which allow us to 5292 * grab and release the spa_config_lock while still holding the namespace 5293 * lock. During each step the configuration is synced out. 5294 * 5295 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5296 * devices. 5297 */ 5298 int 5299 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5300 { 5301 vdev_t *vd; 5302 metaslab_group_t *mg; 5303 nvlist_t **spares, **l2cache, *nv; 5304 uint64_t txg = 0; 5305 uint_t nspares, nl2cache; 5306 int error = 0; 5307 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5308 5309 ASSERT(spa_writeable(spa)); 5310 5311 if (!locked) 5312 txg = spa_vdev_enter(spa); 5313 5314 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5315 5316 if (spa->spa_spares.sav_vdevs != NULL && 5317 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5318 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5319 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5320 /* 5321 * Only remove the hot spare if it's not currently in use 5322 * in this pool. 5323 */ 5324 if (vd == NULL || unspare) { 5325 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5326 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5327 spa_load_spares(spa); 5328 spa->spa_spares.sav_sync = B_TRUE; 5329 } else { 5330 error = SET_ERROR(EBUSY); 5331 } 5332 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5333 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5334 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5335 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5336 /* 5337 * Cache devices can always be removed. 5338 */ 5339 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5340 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5341 spa_load_l2cache(spa); 5342 spa->spa_l2cache.sav_sync = B_TRUE; 5343 } else if (vd != NULL && vd->vdev_islog) { 5344 ASSERT(!locked); 5345 ASSERT(vd == vd->vdev_top); 5346 5347 mg = vd->vdev_mg; 5348 5349 /* 5350 * Stop allocating from this vdev. 5351 */ 5352 metaslab_group_passivate(mg); 5353 5354 /* 5355 * Wait for the youngest allocations and frees to sync, 5356 * and then wait for the deferral of those frees to finish. 5357 */ 5358 spa_vdev_config_exit(spa, NULL, 5359 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5360 5361 /* 5362 * Attempt to evacuate the vdev. 5363 */ 5364 error = spa_vdev_remove_evacuate(spa, vd); 5365 5366 txg = spa_vdev_config_enter(spa); 5367 5368 /* 5369 * If we couldn't evacuate the vdev, unwind. 5370 */ 5371 if (error) { 5372 metaslab_group_activate(mg); 5373 return (spa_vdev_exit(spa, NULL, txg, error)); 5374 } 5375 5376 /* 5377 * Clean up the vdev namespace. 5378 */ 5379 spa_vdev_remove_from_namespace(spa, vd); 5380 5381 } else if (vd != NULL) { 5382 /* 5383 * Normal vdevs cannot be removed (yet). 5384 */ 5385 error = SET_ERROR(ENOTSUP); 5386 } else { 5387 /* 5388 * There is no vdev of any kind with the specified guid. 5389 */ 5390 error = SET_ERROR(ENOENT); 5391 } 5392 5393 if (!locked) 5394 return (spa_vdev_exit(spa, NULL, txg, error)); 5395 5396 return (error); 5397 } 5398 5399 /* 5400 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5401 * currently spared, so we can detach it. 5402 */ 5403 static vdev_t * 5404 spa_vdev_resilver_done_hunt(vdev_t *vd) 5405 { 5406 vdev_t *newvd, *oldvd; 5407 5408 for (int c = 0; c < vd->vdev_children; c++) { 5409 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5410 if (oldvd != NULL) 5411 return (oldvd); 5412 } 5413 5414 /* 5415 * Check for a completed replacement. We always consider the first 5416 * vdev in the list to be the oldest vdev, and the last one to be 5417 * the newest (see spa_vdev_attach() for how that works). In 5418 * the case where the newest vdev is faulted, we will not automatically 5419 * remove it after a resilver completes. This is OK as it will require 5420 * user intervention to determine which disk the admin wishes to keep. 5421 */ 5422 if (vd->vdev_ops == &vdev_replacing_ops) { 5423 ASSERT(vd->vdev_children > 1); 5424 5425 newvd = vd->vdev_child[vd->vdev_children - 1]; 5426 oldvd = vd->vdev_child[0]; 5427 5428 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5429 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5430 !vdev_dtl_required(oldvd)) 5431 return (oldvd); 5432 } 5433 5434 /* 5435 * Check for a completed resilver with the 'unspare' flag set. 5436 */ 5437 if (vd->vdev_ops == &vdev_spare_ops) { 5438 vdev_t *first = vd->vdev_child[0]; 5439 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5440 5441 if (last->vdev_unspare) { 5442 oldvd = first; 5443 newvd = last; 5444 } else if (first->vdev_unspare) { 5445 oldvd = last; 5446 newvd = first; 5447 } else { 5448 oldvd = NULL; 5449 } 5450 5451 if (oldvd != NULL && 5452 vdev_dtl_empty(newvd, DTL_MISSING) && 5453 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5454 !vdev_dtl_required(oldvd)) 5455 return (oldvd); 5456 5457 /* 5458 * If there are more than two spares attached to a disk, 5459 * and those spares are not required, then we want to 5460 * attempt to free them up now so that they can be used 5461 * by other pools. Once we're back down to a single 5462 * disk+spare, we stop removing them. 5463 */ 5464 if (vd->vdev_children > 2) { 5465 newvd = vd->vdev_child[1]; 5466 5467 if (newvd->vdev_isspare && last->vdev_isspare && 5468 vdev_dtl_empty(last, DTL_MISSING) && 5469 vdev_dtl_empty(last, DTL_OUTAGE) && 5470 !vdev_dtl_required(newvd)) 5471 return (newvd); 5472 } 5473 } 5474 5475 return (NULL); 5476 } 5477 5478 static void 5479 spa_vdev_resilver_done(spa_t *spa) 5480 { 5481 vdev_t *vd, *pvd, *ppvd; 5482 uint64_t guid, sguid, pguid, ppguid; 5483 5484 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5485 5486 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5487 pvd = vd->vdev_parent; 5488 ppvd = pvd->vdev_parent; 5489 guid = vd->vdev_guid; 5490 pguid = pvd->vdev_guid; 5491 ppguid = ppvd->vdev_guid; 5492 sguid = 0; 5493 /* 5494 * If we have just finished replacing a hot spared device, then 5495 * we need to detach the parent's first child (the original hot 5496 * spare) as well. 5497 */ 5498 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5499 ppvd->vdev_children == 2) { 5500 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5501 sguid = ppvd->vdev_child[1]->vdev_guid; 5502 } 5503 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5504 5505 spa_config_exit(spa, SCL_ALL, FTAG); 5506 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5507 return; 5508 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5509 return; 5510 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5511 } 5512 5513 spa_config_exit(spa, SCL_ALL, FTAG); 5514 } 5515 5516 /* 5517 * Update the stored path or FRU for this vdev. 5518 */ 5519 int 5520 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5521 boolean_t ispath) 5522 { 5523 vdev_t *vd; 5524 boolean_t sync = B_FALSE; 5525 5526 ASSERT(spa_writeable(spa)); 5527 5528 spa_vdev_state_enter(spa, SCL_ALL); 5529 5530 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5531 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5532 5533 if (!vd->vdev_ops->vdev_op_leaf) 5534 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5535 5536 if (ispath) { 5537 if (strcmp(value, vd->vdev_path) != 0) { 5538 spa_strfree(vd->vdev_path); 5539 vd->vdev_path = spa_strdup(value); 5540 sync = B_TRUE; 5541 } 5542 } else { 5543 if (vd->vdev_fru == NULL) { 5544 vd->vdev_fru = spa_strdup(value); 5545 sync = B_TRUE; 5546 } else if (strcmp(value, vd->vdev_fru) != 0) { 5547 spa_strfree(vd->vdev_fru); 5548 vd->vdev_fru = spa_strdup(value); 5549 sync = B_TRUE; 5550 } 5551 } 5552 5553 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5554 } 5555 5556 int 5557 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5558 { 5559 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5560 } 5561 5562 int 5563 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5564 { 5565 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5566 } 5567 5568 /* 5569 * ========================================================================== 5570 * SPA Scanning 5571 * ========================================================================== 5572 */ 5573 5574 int 5575 spa_scan_stop(spa_t *spa) 5576 { 5577 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5578 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5579 return (SET_ERROR(EBUSY)); 5580 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5581 } 5582 5583 int 5584 spa_scan(spa_t *spa, pool_scan_func_t func) 5585 { 5586 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5587 5588 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5589 return (SET_ERROR(ENOTSUP)); 5590 5591 /* 5592 * If a resilver was requested, but there is no DTL on a 5593 * writeable leaf device, we have nothing to do. 5594 */ 5595 if (func == POOL_SCAN_RESILVER && 5596 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5597 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5598 return (0); 5599 } 5600 5601 return (dsl_scan(spa->spa_dsl_pool, func)); 5602 } 5603 5604 /* 5605 * ========================================================================== 5606 * SPA async task processing 5607 * ========================================================================== 5608 */ 5609 5610 static void 5611 spa_async_remove(spa_t *spa, vdev_t *vd) 5612 { 5613 if (vd->vdev_remove_wanted) { 5614 vd->vdev_remove_wanted = B_FALSE; 5615 vd->vdev_delayed_close = B_FALSE; 5616 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5617 5618 /* 5619 * We want to clear the stats, but we don't want to do a full 5620 * vdev_clear() as that will cause us to throw away 5621 * degraded/faulted state as well as attempt to reopen the 5622 * device, all of which is a waste. 5623 */ 5624 vd->vdev_stat.vs_read_errors = 0; 5625 vd->vdev_stat.vs_write_errors = 0; 5626 vd->vdev_stat.vs_checksum_errors = 0; 5627 5628 vdev_state_dirty(vd->vdev_top); 5629 } 5630 5631 for (int c = 0; c < vd->vdev_children; c++) 5632 spa_async_remove(spa, vd->vdev_child[c]); 5633 } 5634 5635 static void 5636 spa_async_probe(spa_t *spa, vdev_t *vd) 5637 { 5638 if (vd->vdev_probe_wanted) { 5639 vd->vdev_probe_wanted = B_FALSE; 5640 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5641 } 5642 5643 for (int c = 0; c < vd->vdev_children; c++) 5644 spa_async_probe(spa, vd->vdev_child[c]); 5645 } 5646 5647 static void 5648 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5649 { 5650 sysevent_id_t eid; 5651 nvlist_t *attr; 5652 char *physpath; 5653 5654 if (!spa->spa_autoexpand) 5655 return; 5656 5657 for (int c = 0; c < vd->vdev_children; c++) { 5658 vdev_t *cvd = vd->vdev_child[c]; 5659 spa_async_autoexpand(spa, cvd); 5660 } 5661 5662 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5663 return; 5664 5665 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5666 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5667 5668 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5669 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5670 5671 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5672 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5673 5674 nvlist_free(attr); 5675 kmem_free(physpath, MAXPATHLEN); 5676 } 5677 5678 static void 5679 spa_async_thread(spa_t *spa) 5680 { 5681 int tasks; 5682 5683 ASSERT(spa->spa_sync_on); 5684 5685 mutex_enter(&spa->spa_async_lock); 5686 tasks = spa->spa_async_tasks; 5687 spa->spa_async_tasks = 0; 5688 mutex_exit(&spa->spa_async_lock); 5689 5690 /* 5691 * See if the config needs to be updated. 5692 */ 5693 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5694 uint64_t old_space, new_space; 5695 5696 mutex_enter(&spa_namespace_lock); 5697 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5698 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5699 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5700 mutex_exit(&spa_namespace_lock); 5701 5702 /* 5703 * If the pool grew as a result of the config update, 5704 * then log an internal history event. 5705 */ 5706 if (new_space != old_space) { 5707 spa_history_log_internal(spa, "vdev online", NULL, 5708 "pool '%s' size: %llu(+%llu)", 5709 spa_name(spa), new_space, new_space - old_space); 5710 } 5711 } 5712 5713 /* 5714 * See if any devices need to be marked REMOVED. 5715 */ 5716 if (tasks & SPA_ASYNC_REMOVE) { 5717 spa_vdev_state_enter(spa, SCL_NONE); 5718 spa_async_remove(spa, spa->spa_root_vdev); 5719 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5720 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5721 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5722 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5723 (void) spa_vdev_state_exit(spa, NULL, 0); 5724 } 5725 5726 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5727 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5728 spa_async_autoexpand(spa, spa->spa_root_vdev); 5729 spa_config_exit(spa, SCL_CONFIG, FTAG); 5730 } 5731 5732 /* 5733 * See if any devices need to be probed. 5734 */ 5735 if (tasks & SPA_ASYNC_PROBE) { 5736 spa_vdev_state_enter(spa, SCL_NONE); 5737 spa_async_probe(spa, spa->spa_root_vdev); 5738 (void) spa_vdev_state_exit(spa, NULL, 0); 5739 } 5740 5741 /* 5742 * If any devices are done replacing, detach them. 5743 */ 5744 if (tasks & SPA_ASYNC_RESILVER_DONE) 5745 spa_vdev_resilver_done(spa); 5746 5747 /* 5748 * Kick off a resilver. 5749 */ 5750 if (tasks & SPA_ASYNC_RESILVER) 5751 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5752 5753 /* 5754 * Let the world know that we're done. 5755 */ 5756 mutex_enter(&spa->spa_async_lock); 5757 spa->spa_async_thread = NULL; 5758 cv_broadcast(&spa->spa_async_cv); 5759 mutex_exit(&spa->spa_async_lock); 5760 thread_exit(); 5761 } 5762 5763 void 5764 spa_async_suspend(spa_t *spa) 5765 { 5766 mutex_enter(&spa->spa_async_lock); 5767 spa->spa_async_suspended++; 5768 while (spa->spa_async_thread != NULL) 5769 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5770 mutex_exit(&spa->spa_async_lock); 5771 } 5772 5773 void 5774 spa_async_resume(spa_t *spa) 5775 { 5776 mutex_enter(&spa->spa_async_lock); 5777 ASSERT(spa->spa_async_suspended != 0); 5778 spa->spa_async_suspended--; 5779 mutex_exit(&spa->spa_async_lock); 5780 } 5781 5782 static boolean_t 5783 spa_async_tasks_pending(spa_t *spa) 5784 { 5785 uint_t non_config_tasks; 5786 uint_t config_task; 5787 boolean_t config_task_suspended; 5788 5789 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5790 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5791 if (spa->spa_ccw_fail_time == 0) { 5792 config_task_suspended = B_FALSE; 5793 } else { 5794 config_task_suspended = 5795 (gethrtime() - spa->spa_ccw_fail_time) < 5796 (zfs_ccw_retry_interval * NANOSEC); 5797 } 5798 5799 return (non_config_tasks || (config_task && !config_task_suspended)); 5800 } 5801 5802 static void 5803 spa_async_dispatch(spa_t *spa) 5804 { 5805 mutex_enter(&spa->spa_async_lock); 5806 if (spa_async_tasks_pending(spa) && 5807 !spa->spa_async_suspended && 5808 spa->spa_async_thread == NULL && 5809 rootdir != NULL) 5810 spa->spa_async_thread = thread_create(NULL, 0, 5811 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5812 mutex_exit(&spa->spa_async_lock); 5813 } 5814 5815 void 5816 spa_async_request(spa_t *spa, int task) 5817 { 5818 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5819 mutex_enter(&spa->spa_async_lock); 5820 spa->spa_async_tasks |= task; 5821 mutex_exit(&spa->spa_async_lock); 5822 } 5823 5824 /* 5825 * ========================================================================== 5826 * SPA syncing routines 5827 * ========================================================================== 5828 */ 5829 5830 static int 5831 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5832 { 5833 bpobj_t *bpo = arg; 5834 bpobj_enqueue(bpo, bp, tx); 5835 return (0); 5836 } 5837 5838 static int 5839 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5840 { 5841 zio_t *zio = arg; 5842 5843 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5844 zio->io_flags)); 5845 return (0); 5846 } 5847 5848 /* 5849 * Note: this simple function is not inlined to make it easier to dtrace the 5850 * amount of time spent syncing frees. 5851 */ 5852 static void 5853 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5854 { 5855 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5856 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5857 VERIFY(zio_wait(zio) == 0); 5858 } 5859 5860 /* 5861 * Note: this simple function is not inlined to make it easier to dtrace the 5862 * amount of time spent syncing deferred frees. 5863 */ 5864 static void 5865 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5866 { 5867 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5868 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5869 spa_free_sync_cb, zio, tx), ==, 0); 5870 VERIFY0(zio_wait(zio)); 5871 } 5872 5873 5874 static void 5875 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5876 { 5877 char *packed = NULL; 5878 size_t bufsize; 5879 size_t nvsize = 0; 5880 dmu_buf_t *db; 5881 5882 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5883 5884 /* 5885 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5886 * information. This avoids the dmu_buf_will_dirty() path and 5887 * saves us a pre-read to get data we don't actually care about. 5888 */ 5889 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5890 packed = kmem_alloc(bufsize, KM_SLEEP); 5891 5892 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5893 KM_SLEEP) == 0); 5894 bzero(packed + nvsize, bufsize - nvsize); 5895 5896 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5897 5898 kmem_free(packed, bufsize); 5899 5900 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5901 dmu_buf_will_dirty(db, tx); 5902 *(uint64_t *)db->db_data = nvsize; 5903 dmu_buf_rele(db, FTAG); 5904 } 5905 5906 static void 5907 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5908 const char *config, const char *entry) 5909 { 5910 nvlist_t *nvroot; 5911 nvlist_t **list; 5912 int i; 5913 5914 if (!sav->sav_sync) 5915 return; 5916 5917 /* 5918 * Update the MOS nvlist describing the list of available devices. 5919 * spa_validate_aux() will have already made sure this nvlist is 5920 * valid and the vdevs are labeled appropriately. 5921 */ 5922 if (sav->sav_object == 0) { 5923 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5924 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5925 sizeof (uint64_t), tx); 5926 VERIFY(zap_update(spa->spa_meta_objset, 5927 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5928 &sav->sav_object, tx) == 0); 5929 } 5930 5931 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5932 if (sav->sav_count == 0) { 5933 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5934 } else { 5935 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5936 for (i = 0; i < sav->sav_count; i++) 5937 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5938 B_FALSE, VDEV_CONFIG_L2CACHE); 5939 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5940 sav->sav_count) == 0); 5941 for (i = 0; i < sav->sav_count; i++) 5942 nvlist_free(list[i]); 5943 kmem_free(list, sav->sav_count * sizeof (void *)); 5944 } 5945 5946 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5947 nvlist_free(nvroot); 5948 5949 sav->sav_sync = B_FALSE; 5950 } 5951 5952 static void 5953 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5954 { 5955 nvlist_t *config; 5956 5957 if (list_is_empty(&spa->spa_config_dirty_list)) 5958 return; 5959 5960 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5961 5962 config = spa_config_generate(spa, spa->spa_root_vdev, 5963 dmu_tx_get_txg(tx), B_FALSE); 5964 5965 /* 5966 * If we're upgrading the spa version then make sure that 5967 * the config object gets updated with the correct version. 5968 */ 5969 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5970 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5971 spa->spa_uberblock.ub_version); 5972 5973 spa_config_exit(spa, SCL_STATE, FTAG); 5974 5975 if (spa->spa_config_syncing) 5976 nvlist_free(spa->spa_config_syncing); 5977 spa->spa_config_syncing = config; 5978 5979 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5980 } 5981 5982 static void 5983 spa_sync_version(void *arg, dmu_tx_t *tx) 5984 { 5985 uint64_t *versionp = arg; 5986 uint64_t version = *versionp; 5987 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5988 5989 /* 5990 * Setting the version is special cased when first creating the pool. 5991 */ 5992 ASSERT(tx->tx_txg != TXG_INITIAL); 5993 5994 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5995 ASSERT(version >= spa_version(spa)); 5996 5997 spa->spa_uberblock.ub_version = version; 5998 vdev_config_dirty(spa->spa_root_vdev); 5999 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6000 } 6001 6002 /* 6003 * Set zpool properties. 6004 */ 6005 static void 6006 spa_sync_props(void *arg, dmu_tx_t *tx) 6007 { 6008 nvlist_t *nvp = arg; 6009 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6010 objset_t *mos = spa->spa_meta_objset; 6011 nvpair_t *elem = NULL; 6012 6013 mutex_enter(&spa->spa_props_lock); 6014 6015 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6016 uint64_t intval; 6017 char *strval, *fname; 6018 zpool_prop_t prop; 6019 const char *propname; 6020 zprop_type_t proptype; 6021 spa_feature_t fid; 6022 6023 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6024 case ZPROP_INVAL: 6025 /* 6026 * We checked this earlier in spa_prop_validate(). 6027 */ 6028 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6029 6030 fname = strchr(nvpair_name(elem), '@') + 1; 6031 VERIFY0(zfeature_lookup_name(fname, &fid)); 6032 6033 spa_feature_enable(spa, fid, tx); 6034 spa_history_log_internal(spa, "set", tx, 6035 "%s=enabled", nvpair_name(elem)); 6036 break; 6037 6038 case ZPOOL_PROP_VERSION: 6039 intval = fnvpair_value_uint64(elem); 6040 /* 6041 * The version is synced seperatly before other 6042 * properties and should be correct by now. 6043 */ 6044 ASSERT3U(spa_version(spa), >=, intval); 6045 break; 6046 6047 case ZPOOL_PROP_ALTROOT: 6048 /* 6049 * 'altroot' is a non-persistent property. It should 6050 * have been set temporarily at creation or import time. 6051 */ 6052 ASSERT(spa->spa_root != NULL); 6053 break; 6054 6055 case ZPOOL_PROP_READONLY: 6056 case ZPOOL_PROP_CACHEFILE: 6057 /* 6058 * 'readonly' and 'cachefile' are also non-persisitent 6059 * properties. 6060 */ 6061 break; 6062 case ZPOOL_PROP_COMMENT: 6063 strval = fnvpair_value_string(elem); 6064 if (spa->spa_comment != NULL) 6065 spa_strfree(spa->spa_comment); 6066 spa->spa_comment = spa_strdup(strval); 6067 /* 6068 * We need to dirty the configuration on all the vdevs 6069 * so that their labels get updated. It's unnecessary 6070 * to do this for pool creation since the vdev's 6071 * configuratoin has already been dirtied. 6072 */ 6073 if (tx->tx_txg != TXG_INITIAL) 6074 vdev_config_dirty(spa->spa_root_vdev); 6075 spa_history_log_internal(spa, "set", tx, 6076 "%s=%s", nvpair_name(elem), strval); 6077 break; 6078 default: 6079 /* 6080 * Set pool property values in the poolprops mos object. 6081 */ 6082 if (spa->spa_pool_props_object == 0) { 6083 spa->spa_pool_props_object = 6084 zap_create_link(mos, DMU_OT_POOL_PROPS, 6085 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6086 tx); 6087 } 6088 6089 /* normalize the property name */ 6090 propname = zpool_prop_to_name(prop); 6091 proptype = zpool_prop_get_type(prop); 6092 6093 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6094 ASSERT(proptype == PROP_TYPE_STRING); 6095 strval = fnvpair_value_string(elem); 6096 VERIFY0(zap_update(mos, 6097 spa->spa_pool_props_object, propname, 6098 1, strlen(strval) + 1, strval, tx)); 6099 spa_history_log_internal(spa, "set", tx, 6100 "%s=%s", nvpair_name(elem), strval); 6101 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6102 intval = fnvpair_value_uint64(elem); 6103 6104 if (proptype == PROP_TYPE_INDEX) { 6105 const char *unused; 6106 VERIFY0(zpool_prop_index_to_string( 6107 prop, intval, &unused)); 6108 } 6109 VERIFY0(zap_update(mos, 6110 spa->spa_pool_props_object, propname, 6111 8, 1, &intval, tx)); 6112 spa_history_log_internal(spa, "set", tx, 6113 "%s=%lld", nvpair_name(elem), intval); 6114 } else { 6115 ASSERT(0); /* not allowed */ 6116 } 6117 6118 switch (prop) { 6119 case ZPOOL_PROP_DELEGATION: 6120 spa->spa_delegation = intval; 6121 break; 6122 case ZPOOL_PROP_BOOTFS: 6123 spa->spa_bootfs = intval; 6124 break; 6125 case ZPOOL_PROP_FAILUREMODE: 6126 spa->spa_failmode = intval; 6127 break; 6128 case ZPOOL_PROP_AUTOEXPAND: 6129 spa->spa_autoexpand = intval; 6130 if (tx->tx_txg != TXG_INITIAL) 6131 spa_async_request(spa, 6132 SPA_ASYNC_AUTOEXPAND); 6133 break; 6134 case ZPOOL_PROP_DEDUPDITTO: 6135 spa->spa_dedup_ditto = intval; 6136 break; 6137 default: 6138 break; 6139 } 6140 } 6141 6142 } 6143 6144 mutex_exit(&spa->spa_props_lock); 6145 } 6146 6147 /* 6148 * Perform one-time upgrade on-disk changes. spa_version() does not 6149 * reflect the new version this txg, so there must be no changes this 6150 * txg to anything that the upgrade code depends on after it executes. 6151 * Therefore this must be called after dsl_pool_sync() does the sync 6152 * tasks. 6153 */ 6154 static void 6155 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6156 { 6157 dsl_pool_t *dp = spa->spa_dsl_pool; 6158 6159 ASSERT(spa->spa_sync_pass == 1); 6160 6161 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6162 6163 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6164 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6165 dsl_pool_create_origin(dp, tx); 6166 6167 /* Keeping the origin open increases spa_minref */ 6168 spa->spa_minref += 3; 6169 } 6170 6171 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6172 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6173 dsl_pool_upgrade_clones(dp, tx); 6174 } 6175 6176 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6177 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6178 dsl_pool_upgrade_dir_clones(dp, tx); 6179 6180 /* Keeping the freedir open increases spa_minref */ 6181 spa->spa_minref += 3; 6182 } 6183 6184 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6185 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6186 spa_feature_create_zap_objects(spa, tx); 6187 } 6188 6189 /* 6190 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6191 * when possibility to use lz4 compression for metadata was added 6192 * Old pools that have this feature enabled must be upgraded to have 6193 * this feature active 6194 */ 6195 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6196 boolean_t lz4_en = spa_feature_is_enabled(spa, 6197 SPA_FEATURE_LZ4_COMPRESS); 6198 boolean_t lz4_ac = spa_feature_is_active(spa, 6199 SPA_FEATURE_LZ4_COMPRESS); 6200 6201 if (lz4_en && !lz4_ac) 6202 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6203 } 6204 rrw_exit(&dp->dp_config_rwlock, FTAG); 6205 } 6206 6207 /* 6208 * Sync the specified transaction group. New blocks may be dirtied as 6209 * part of the process, so we iterate until it converges. 6210 */ 6211 void 6212 spa_sync(spa_t *spa, uint64_t txg) 6213 { 6214 dsl_pool_t *dp = spa->spa_dsl_pool; 6215 objset_t *mos = spa->spa_meta_objset; 6216 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6217 vdev_t *rvd = spa->spa_root_vdev; 6218 vdev_t *vd; 6219 dmu_tx_t *tx; 6220 int error; 6221 6222 VERIFY(spa_writeable(spa)); 6223 6224 /* 6225 * Lock out configuration changes. 6226 */ 6227 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6228 6229 spa->spa_syncing_txg = txg; 6230 spa->spa_sync_pass = 0; 6231 6232 /* 6233 * If there are any pending vdev state changes, convert them 6234 * into config changes that go out with this transaction group. 6235 */ 6236 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6237 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6238 /* 6239 * We need the write lock here because, for aux vdevs, 6240 * calling vdev_config_dirty() modifies sav_config. 6241 * This is ugly and will become unnecessary when we 6242 * eliminate the aux vdev wart by integrating all vdevs 6243 * into the root vdev tree. 6244 */ 6245 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6246 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6247 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6248 vdev_state_clean(vd); 6249 vdev_config_dirty(vd); 6250 } 6251 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6252 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6253 } 6254 spa_config_exit(spa, SCL_STATE, FTAG); 6255 6256 tx = dmu_tx_create_assigned(dp, txg); 6257 6258 spa->spa_sync_starttime = gethrtime(); 6259 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6260 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6261 6262 /* 6263 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6264 * set spa_deflate if we have no raid-z vdevs. 6265 */ 6266 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6267 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6268 int i; 6269 6270 for (i = 0; i < rvd->vdev_children; i++) { 6271 vd = rvd->vdev_child[i]; 6272 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6273 break; 6274 } 6275 if (i == rvd->vdev_children) { 6276 spa->spa_deflate = TRUE; 6277 VERIFY(0 == zap_add(spa->spa_meta_objset, 6278 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6279 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6280 } 6281 } 6282 6283 /* 6284 * Iterate to convergence. 6285 */ 6286 do { 6287 int pass = ++spa->spa_sync_pass; 6288 6289 spa_sync_config_object(spa, tx); 6290 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6291 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6292 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6293 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6294 spa_errlog_sync(spa, txg); 6295 dsl_pool_sync(dp, txg); 6296 6297 if (pass < zfs_sync_pass_deferred_free) { 6298 spa_sync_frees(spa, free_bpl, tx); 6299 } else { 6300 /* 6301 * We can not defer frees in pass 1, because 6302 * we sync the deferred frees later in pass 1. 6303 */ 6304 ASSERT3U(pass, >, 1); 6305 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6306 &spa->spa_deferred_bpobj, tx); 6307 } 6308 6309 ddt_sync(spa, txg); 6310 dsl_scan_sync(dp, tx); 6311 6312 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6313 vdev_sync(vd, txg); 6314 6315 if (pass == 1) { 6316 spa_sync_upgrades(spa, tx); 6317 ASSERT3U(txg, >=, 6318 spa->spa_uberblock.ub_rootbp.blk_birth); 6319 /* 6320 * Note: We need to check if the MOS is dirty 6321 * because we could have marked the MOS dirty 6322 * without updating the uberblock (e.g. if we 6323 * have sync tasks but no dirty user data). We 6324 * need to check the uberblock's rootbp because 6325 * it is updated if we have synced out dirty 6326 * data (though in this case the MOS will most 6327 * likely also be dirty due to second order 6328 * effects, we don't want to rely on that here). 6329 */ 6330 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6331 !dmu_objset_is_dirty(mos, txg)) { 6332 /* 6333 * Nothing changed on the first pass, 6334 * therefore this TXG is a no-op. Avoid 6335 * syncing deferred frees, so that we 6336 * can keep this TXG as a no-op. 6337 */ 6338 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6339 txg)); 6340 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6341 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6342 break; 6343 } 6344 spa_sync_deferred_frees(spa, tx); 6345 } 6346 6347 } while (dmu_objset_is_dirty(mos, txg)); 6348 6349 /* 6350 * Rewrite the vdev configuration (which includes the uberblock) 6351 * to commit the transaction group. 6352 * 6353 * If there are no dirty vdevs, we sync the uberblock to a few 6354 * random top-level vdevs that are known to be visible in the 6355 * config cache (see spa_vdev_add() for a complete description). 6356 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6357 */ 6358 for (;;) { 6359 /* 6360 * We hold SCL_STATE to prevent vdev open/close/etc. 6361 * while we're attempting to write the vdev labels. 6362 */ 6363 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6364 6365 if (list_is_empty(&spa->spa_config_dirty_list)) { 6366 vdev_t *svd[SPA_DVAS_PER_BP]; 6367 int svdcount = 0; 6368 int children = rvd->vdev_children; 6369 int c0 = spa_get_random(children); 6370 6371 for (int c = 0; c < children; c++) { 6372 vd = rvd->vdev_child[(c0 + c) % children]; 6373 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6374 continue; 6375 svd[svdcount++] = vd; 6376 if (svdcount == SPA_DVAS_PER_BP) 6377 break; 6378 } 6379 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6380 if (error != 0) 6381 error = vdev_config_sync(svd, svdcount, txg, 6382 B_TRUE); 6383 } else { 6384 error = vdev_config_sync(rvd->vdev_child, 6385 rvd->vdev_children, txg, B_FALSE); 6386 if (error != 0) 6387 error = vdev_config_sync(rvd->vdev_child, 6388 rvd->vdev_children, txg, B_TRUE); 6389 } 6390 6391 if (error == 0) 6392 spa->spa_last_synced_guid = rvd->vdev_guid; 6393 6394 spa_config_exit(spa, SCL_STATE, FTAG); 6395 6396 if (error == 0) 6397 break; 6398 zio_suspend(spa, NULL); 6399 zio_resume_wait(spa); 6400 } 6401 dmu_tx_commit(tx); 6402 6403 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6404 6405 /* 6406 * Clear the dirty config list. 6407 */ 6408 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6409 vdev_config_clean(vd); 6410 6411 /* 6412 * Now that the new config has synced transactionally, 6413 * let it become visible to the config cache. 6414 */ 6415 if (spa->spa_config_syncing != NULL) { 6416 spa_config_set(spa, spa->spa_config_syncing); 6417 spa->spa_config_txg = txg; 6418 spa->spa_config_syncing = NULL; 6419 } 6420 6421 spa->spa_ubsync = spa->spa_uberblock; 6422 6423 dsl_pool_sync_done(dp, txg); 6424 6425 /* 6426 * Update usable space statistics. 6427 */ 6428 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6429 vdev_sync_done(vd, txg); 6430 6431 spa_update_dspace(spa); 6432 6433 /* 6434 * It had better be the case that we didn't dirty anything 6435 * since vdev_config_sync(). 6436 */ 6437 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6438 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6439 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6440 6441 spa->spa_sync_pass = 0; 6442 6443 spa_config_exit(spa, SCL_CONFIG, FTAG); 6444 6445 spa_handle_ignored_writes(spa); 6446 6447 /* 6448 * If any async tasks have been requested, kick them off. 6449 */ 6450 spa_async_dispatch(spa); 6451 } 6452 6453 /* 6454 * Sync all pools. We don't want to hold the namespace lock across these 6455 * operations, so we take a reference on the spa_t and drop the lock during the 6456 * sync. 6457 */ 6458 void 6459 spa_sync_allpools(void) 6460 { 6461 spa_t *spa = NULL; 6462 mutex_enter(&spa_namespace_lock); 6463 while ((spa = spa_next(spa)) != NULL) { 6464 if (spa_state(spa) != POOL_STATE_ACTIVE || 6465 !spa_writeable(spa) || spa_suspended(spa)) 6466 continue; 6467 spa_open_ref(spa, FTAG); 6468 mutex_exit(&spa_namespace_lock); 6469 txg_wait_synced(spa_get_dsl(spa), 0); 6470 mutex_enter(&spa_namespace_lock); 6471 spa_close(spa, FTAG); 6472 } 6473 mutex_exit(&spa_namespace_lock); 6474 } 6475 6476 /* 6477 * ========================================================================== 6478 * Miscellaneous routines 6479 * ========================================================================== 6480 */ 6481 6482 /* 6483 * Remove all pools in the system. 6484 */ 6485 void 6486 spa_evict_all(void) 6487 { 6488 spa_t *spa; 6489 6490 /* 6491 * Remove all cached state. All pools should be closed now, 6492 * so every spa in the AVL tree should be unreferenced. 6493 */ 6494 mutex_enter(&spa_namespace_lock); 6495 while ((spa = spa_next(NULL)) != NULL) { 6496 /* 6497 * Stop async tasks. The async thread may need to detach 6498 * a device that's been replaced, which requires grabbing 6499 * spa_namespace_lock, so we must drop it here. 6500 */ 6501 spa_open_ref(spa, FTAG); 6502 mutex_exit(&spa_namespace_lock); 6503 spa_async_suspend(spa); 6504 mutex_enter(&spa_namespace_lock); 6505 spa_close(spa, FTAG); 6506 6507 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6508 spa_unload(spa); 6509 spa_deactivate(spa); 6510 } 6511 spa_remove(spa); 6512 } 6513 mutex_exit(&spa_namespace_lock); 6514 } 6515 6516 vdev_t * 6517 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6518 { 6519 vdev_t *vd; 6520 int i; 6521 6522 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6523 return (vd); 6524 6525 if (aux) { 6526 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6527 vd = spa->spa_l2cache.sav_vdevs[i]; 6528 if (vd->vdev_guid == guid) 6529 return (vd); 6530 } 6531 6532 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6533 vd = spa->spa_spares.sav_vdevs[i]; 6534 if (vd->vdev_guid == guid) 6535 return (vd); 6536 } 6537 } 6538 6539 return (NULL); 6540 } 6541 6542 void 6543 spa_upgrade(spa_t *spa, uint64_t version) 6544 { 6545 ASSERT(spa_writeable(spa)); 6546 6547 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6548 6549 /* 6550 * This should only be called for a non-faulted pool, and since a 6551 * future version would result in an unopenable pool, this shouldn't be 6552 * possible. 6553 */ 6554 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6555 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6556 6557 spa->spa_uberblock.ub_version = version; 6558 vdev_config_dirty(spa->spa_root_vdev); 6559 6560 spa_config_exit(spa, SCL_ALL, FTAG); 6561 6562 txg_wait_synced(spa_get_dsl(spa), 0); 6563 } 6564 6565 boolean_t 6566 spa_has_spare(spa_t *spa, uint64_t guid) 6567 { 6568 int i; 6569 uint64_t spareguid; 6570 spa_aux_vdev_t *sav = &spa->spa_spares; 6571 6572 for (i = 0; i < sav->sav_count; i++) 6573 if (sav->sav_vdevs[i]->vdev_guid == guid) 6574 return (B_TRUE); 6575 6576 for (i = 0; i < sav->sav_npending; i++) { 6577 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6578 &spareguid) == 0 && spareguid == guid) 6579 return (B_TRUE); 6580 } 6581 6582 return (B_FALSE); 6583 } 6584 6585 /* 6586 * Check if a pool has an active shared spare device. 6587 * Note: reference count of an active spare is 2, as a spare and as a replace 6588 */ 6589 static boolean_t 6590 spa_has_active_shared_spare(spa_t *spa) 6591 { 6592 int i, refcnt; 6593 uint64_t pool; 6594 spa_aux_vdev_t *sav = &spa->spa_spares; 6595 6596 for (i = 0; i < sav->sav_count; i++) { 6597 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6598 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6599 refcnt > 2) 6600 return (B_TRUE); 6601 } 6602 6603 return (B_FALSE); 6604 } 6605 6606 /* 6607 * Post a sysevent corresponding to the given event. The 'name' must be one of 6608 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6609 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6610 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6611 * or zdb as real changes. 6612 */ 6613 void 6614 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6615 { 6616 #ifdef _KERNEL 6617 sysevent_t *ev; 6618 sysevent_attr_list_t *attr = NULL; 6619 sysevent_value_t value; 6620 sysevent_id_t eid; 6621 6622 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6623 SE_SLEEP); 6624 6625 value.value_type = SE_DATA_TYPE_STRING; 6626 value.value.sv_string = spa_name(spa); 6627 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6628 goto done; 6629 6630 value.value_type = SE_DATA_TYPE_UINT64; 6631 value.value.sv_uint64 = spa_guid(spa); 6632 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6633 goto done; 6634 6635 if (vd) { 6636 value.value_type = SE_DATA_TYPE_UINT64; 6637 value.value.sv_uint64 = vd->vdev_guid; 6638 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6639 SE_SLEEP) != 0) 6640 goto done; 6641 6642 if (vd->vdev_path) { 6643 value.value_type = SE_DATA_TYPE_STRING; 6644 value.value.sv_string = vd->vdev_path; 6645 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6646 &value, SE_SLEEP) != 0) 6647 goto done; 6648 } 6649 } 6650 6651 if (sysevent_attach_attributes(ev, attr) != 0) 6652 goto done; 6653 attr = NULL; 6654 6655 (void) log_sysevent(ev, SE_SLEEP, &eid); 6656 6657 done: 6658 if (attr) 6659 sysevent_free_attr(attr); 6660 sysevent_free(ev); 6661 #endif 6662 } 6663