1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * This file contains all the routines used when modifying on-disk SPA state. 28 * This includes opening, importing, destroying, exporting a pool, and syncing a 29 * pool. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zio.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/ddt.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/metaslab.h> 44 #include <sys/metaslab_impl.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/txg.h> 47 #include <sys/avl.h> 48 #include <sys/dmu_traverse.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dataset.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/dsl_synctask.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/arc.h> 58 #include <sys/callb.h> 59 #include <sys/systeminfo.h> 60 #include <sys/spa_boot.h> 61 #include <sys/zfs_ioctl.h> 62 #include <sys/dsl_scan.h> 63 64 #ifdef _KERNEL 65 #include <sys/bootprops.h> 66 #include <sys/callb.h> 67 #include <sys/cpupart.h> 68 #include <sys/pool.h> 69 #include <sys/sysdc.h> 70 #include <sys/zone.h> 71 #endif /* _KERNEL */ 72 73 #include "zfs_prop.h" 74 #include "zfs_comutil.h" 75 76 typedef enum zti_modes { 77 zti_mode_fixed, /* value is # of threads (min 1) */ 78 zti_mode_online_percent, /* value is % of online CPUs */ 79 zti_mode_batch, /* cpu-intensive; value is ignored */ 80 zti_mode_null, /* don't create a taskq */ 81 zti_nmodes 82 } zti_modes_t; 83 84 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 85 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 86 #define ZTI_BATCH { zti_mode_batch, 0 } 87 #define ZTI_NULL { zti_mode_null, 0 } 88 89 #define ZTI_ONE ZTI_FIX(1) 90 91 typedef struct zio_taskq_info { 92 enum zti_modes zti_mode; 93 uint_t zti_value; 94 } zio_taskq_info_t; 95 96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 97 "issue", "issue_high", "intr", "intr_high" 98 }; 99 100 /* 101 * Define the taskq threads for the following I/O types: 102 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 103 */ 104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 105 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 106 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 107 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 108 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 109 { ZTI_FIX(10), ZTI_NULL, ZTI_FIX(10), ZTI_NULL }, 110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 111 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 112 }; 113 114 static dsl_syncfunc_t spa_sync_props; 115 static boolean_t spa_has_active_shared_spare(spa_t *spa); 116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 117 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 118 char **ereport); 119 120 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 121 id_t zio_taskq_psrset_bind = PS_NONE; 122 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 123 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 124 125 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 126 127 /* 128 * This (illegal) pool name is used when temporarily importing a spa_t in order 129 * to get the vdev stats associated with the imported devices. 130 */ 131 #define TRYIMPORT_NAME "$import" 132 133 /* 134 * ========================================================================== 135 * SPA properties routines 136 * ========================================================================== 137 */ 138 139 /* 140 * Add a (source=src, propname=propval) list to an nvlist. 141 */ 142 static void 143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 144 uint64_t intval, zprop_source_t src) 145 { 146 const char *propname = zpool_prop_to_name(prop); 147 nvlist_t *propval; 148 149 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 150 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 151 152 if (strval != NULL) 153 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 154 else 155 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 156 157 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 158 nvlist_free(propval); 159 } 160 161 /* 162 * Get property values from the spa configuration. 163 */ 164 static void 165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 166 { 167 uint64_t size; 168 uint64_t alloc; 169 uint64_t cap, version; 170 zprop_source_t src = ZPROP_SRC_NONE; 171 spa_config_dirent_t *dp; 172 173 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 174 175 if (spa->spa_root_vdev != NULL) { 176 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 177 size = metaslab_class_get_space(spa_normal_class(spa)); 178 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 179 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 181 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 182 size - alloc, src); 183 184 cap = (size == 0) ? 0 : (alloc * 100 / size); 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 186 187 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 188 ddt_get_pool_dedup_ratio(spa), src); 189 190 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 191 spa->spa_root_vdev->vdev_state, src); 192 193 version = spa_version(spa); 194 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 195 src = ZPROP_SRC_DEFAULT; 196 else 197 src = ZPROP_SRC_LOCAL; 198 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 199 } 200 201 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 202 203 if (spa->spa_root != NULL) 204 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 205 0, ZPROP_SRC_LOCAL); 206 207 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 208 if (dp->scd_path == NULL) { 209 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 210 "none", 0, ZPROP_SRC_LOCAL); 211 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 212 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 213 dp->scd_path, 0, ZPROP_SRC_LOCAL); 214 } 215 } 216 } 217 218 /* 219 * Get zpool property values. 220 */ 221 int 222 spa_prop_get(spa_t *spa, nvlist_t **nvp) 223 { 224 objset_t *mos = spa->spa_meta_objset; 225 zap_cursor_t zc; 226 zap_attribute_t za; 227 int err; 228 229 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 230 231 mutex_enter(&spa->spa_props_lock); 232 233 /* 234 * Get properties from the spa config. 235 */ 236 spa_prop_get_config(spa, nvp); 237 238 /* If no pool property object, no more prop to get. */ 239 if (mos == NULL || spa->spa_pool_props_object == 0) { 240 mutex_exit(&spa->spa_props_lock); 241 return (0); 242 } 243 244 /* 245 * Get properties from the MOS pool property object. 246 */ 247 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 248 (err = zap_cursor_retrieve(&zc, &za)) == 0; 249 zap_cursor_advance(&zc)) { 250 uint64_t intval = 0; 251 char *strval = NULL; 252 zprop_source_t src = ZPROP_SRC_DEFAULT; 253 zpool_prop_t prop; 254 255 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 256 continue; 257 258 switch (za.za_integer_length) { 259 case 8: 260 /* integer property */ 261 if (za.za_first_integer != 262 zpool_prop_default_numeric(prop)) 263 src = ZPROP_SRC_LOCAL; 264 265 if (prop == ZPOOL_PROP_BOOTFS) { 266 dsl_pool_t *dp; 267 dsl_dataset_t *ds = NULL; 268 269 dp = spa_get_dsl(spa); 270 rw_enter(&dp->dp_config_rwlock, RW_READER); 271 if (err = dsl_dataset_hold_obj(dp, 272 za.za_first_integer, FTAG, &ds)) { 273 rw_exit(&dp->dp_config_rwlock); 274 break; 275 } 276 277 strval = kmem_alloc( 278 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 279 KM_SLEEP); 280 dsl_dataset_name(ds, strval); 281 dsl_dataset_rele(ds, FTAG); 282 rw_exit(&dp->dp_config_rwlock); 283 } else { 284 strval = NULL; 285 intval = za.za_first_integer; 286 } 287 288 spa_prop_add_list(*nvp, prop, strval, intval, src); 289 290 if (strval != NULL) 291 kmem_free(strval, 292 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 293 294 break; 295 296 case 1: 297 /* string property */ 298 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 299 err = zap_lookup(mos, spa->spa_pool_props_object, 300 za.za_name, 1, za.za_num_integers, strval); 301 if (err) { 302 kmem_free(strval, za.za_num_integers); 303 break; 304 } 305 spa_prop_add_list(*nvp, prop, strval, 0, src); 306 kmem_free(strval, za.za_num_integers); 307 break; 308 309 default: 310 break; 311 } 312 } 313 zap_cursor_fini(&zc); 314 mutex_exit(&spa->spa_props_lock); 315 out: 316 if (err && err != ENOENT) { 317 nvlist_free(*nvp); 318 *nvp = NULL; 319 return (err); 320 } 321 322 return (0); 323 } 324 325 /* 326 * Validate the given pool properties nvlist and modify the list 327 * for the property values to be set. 328 */ 329 static int 330 spa_prop_validate(spa_t *spa, nvlist_t *props) 331 { 332 nvpair_t *elem; 333 int error = 0, reset_bootfs = 0; 334 uint64_t objnum; 335 336 elem = NULL; 337 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 338 zpool_prop_t prop; 339 char *propname, *strval; 340 uint64_t intval; 341 objset_t *os; 342 char *slash; 343 344 propname = nvpair_name(elem); 345 346 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 347 return (EINVAL); 348 349 switch (prop) { 350 case ZPOOL_PROP_VERSION: 351 error = nvpair_value_uint64(elem, &intval); 352 if (!error && 353 (intval < spa_version(spa) || intval > SPA_VERSION)) 354 error = EINVAL; 355 break; 356 357 case ZPOOL_PROP_DELEGATION: 358 case ZPOOL_PROP_AUTOREPLACE: 359 case ZPOOL_PROP_LISTSNAPS: 360 case ZPOOL_PROP_AUTOEXPAND: 361 error = nvpair_value_uint64(elem, &intval); 362 if (!error && intval > 1) 363 error = EINVAL; 364 break; 365 366 case ZPOOL_PROP_BOOTFS: 367 /* 368 * If the pool version is less than SPA_VERSION_BOOTFS, 369 * or the pool is still being created (version == 0), 370 * the bootfs property cannot be set. 371 */ 372 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 373 error = ENOTSUP; 374 break; 375 } 376 377 /* 378 * Make sure the vdev config is bootable 379 */ 380 if (!vdev_is_bootable(spa->spa_root_vdev)) { 381 error = ENOTSUP; 382 break; 383 } 384 385 reset_bootfs = 1; 386 387 error = nvpair_value_string(elem, &strval); 388 389 if (!error) { 390 uint64_t compress; 391 392 if (strval == NULL || strval[0] == '\0') { 393 objnum = zpool_prop_default_numeric( 394 ZPOOL_PROP_BOOTFS); 395 break; 396 } 397 398 if (error = dmu_objset_hold(strval, FTAG, &os)) 399 break; 400 401 /* Must be ZPL and not gzip compressed. */ 402 403 if (dmu_objset_type(os) != DMU_OST_ZFS) { 404 error = ENOTSUP; 405 } else if ((error = dsl_prop_get_integer(strval, 406 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 407 &compress, NULL)) == 0 && 408 !BOOTFS_COMPRESS_VALID(compress)) { 409 error = ENOTSUP; 410 } else { 411 objnum = dmu_objset_id(os); 412 } 413 dmu_objset_rele(os, FTAG); 414 } 415 break; 416 417 case ZPOOL_PROP_FAILUREMODE: 418 error = nvpair_value_uint64(elem, &intval); 419 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 420 intval > ZIO_FAILURE_MODE_PANIC)) 421 error = EINVAL; 422 423 /* 424 * This is a special case which only occurs when 425 * the pool has completely failed. This allows 426 * the user to change the in-core failmode property 427 * without syncing it out to disk (I/Os might 428 * currently be blocked). We do this by returning 429 * EIO to the caller (spa_prop_set) to trick it 430 * into thinking we encountered a property validation 431 * error. 432 */ 433 if (!error && spa_suspended(spa)) { 434 spa->spa_failmode = intval; 435 error = EIO; 436 } 437 break; 438 439 case ZPOOL_PROP_CACHEFILE: 440 if ((error = nvpair_value_string(elem, &strval)) != 0) 441 break; 442 443 if (strval[0] == '\0') 444 break; 445 446 if (strcmp(strval, "none") == 0) 447 break; 448 449 if (strval[0] != '/') { 450 error = EINVAL; 451 break; 452 } 453 454 slash = strrchr(strval, '/'); 455 ASSERT(slash != NULL); 456 457 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 458 strcmp(slash, "/..") == 0) 459 error = EINVAL; 460 break; 461 462 case ZPOOL_PROP_DEDUPDITTO: 463 if (spa_version(spa) < SPA_VERSION_DEDUP) 464 error = ENOTSUP; 465 else 466 error = nvpair_value_uint64(elem, &intval); 467 if (error == 0 && 468 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 469 error = EINVAL; 470 break; 471 } 472 473 if (error) 474 break; 475 } 476 477 if (!error && reset_bootfs) { 478 error = nvlist_remove(props, 479 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 480 481 if (!error) { 482 error = nvlist_add_uint64(props, 483 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 484 } 485 } 486 487 return (error); 488 } 489 490 void 491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 492 { 493 char *cachefile; 494 spa_config_dirent_t *dp; 495 496 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 497 &cachefile) != 0) 498 return; 499 500 dp = kmem_alloc(sizeof (spa_config_dirent_t), 501 KM_SLEEP); 502 503 if (cachefile[0] == '\0') 504 dp->scd_path = spa_strdup(spa_config_path); 505 else if (strcmp(cachefile, "none") == 0) 506 dp->scd_path = NULL; 507 else 508 dp->scd_path = spa_strdup(cachefile); 509 510 list_insert_head(&spa->spa_config_list, dp); 511 if (need_sync) 512 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 513 } 514 515 int 516 spa_prop_set(spa_t *spa, nvlist_t *nvp) 517 { 518 int error; 519 nvpair_t *elem; 520 boolean_t need_sync = B_FALSE; 521 zpool_prop_t prop; 522 523 if ((error = spa_prop_validate(spa, nvp)) != 0) 524 return (error); 525 526 elem = NULL; 527 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 528 if ((prop = zpool_name_to_prop( 529 nvpair_name(elem))) == ZPROP_INVAL) 530 return (EINVAL); 531 532 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 533 continue; 534 535 need_sync = B_TRUE; 536 break; 537 } 538 539 if (need_sync) 540 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 541 spa, nvp, 3)); 542 else 543 return (0); 544 } 545 546 /* 547 * If the bootfs property value is dsobj, clear it. 548 */ 549 void 550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 551 { 552 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 553 VERIFY(zap_remove(spa->spa_meta_objset, 554 spa->spa_pool_props_object, 555 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 556 spa->spa_bootfs = 0; 557 } 558 } 559 560 /* 561 * ========================================================================== 562 * SPA state manipulation (open/create/destroy/import/export) 563 * ========================================================================== 564 */ 565 566 static int 567 spa_error_entry_compare(const void *a, const void *b) 568 { 569 spa_error_entry_t *sa = (spa_error_entry_t *)a; 570 spa_error_entry_t *sb = (spa_error_entry_t *)b; 571 int ret; 572 573 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 574 sizeof (zbookmark_t)); 575 576 if (ret < 0) 577 return (-1); 578 else if (ret > 0) 579 return (1); 580 else 581 return (0); 582 } 583 584 /* 585 * Utility function which retrieves copies of the current logs and 586 * re-initializes them in the process. 587 */ 588 void 589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 590 { 591 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 592 593 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 594 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 595 596 avl_create(&spa->spa_errlist_scrub, 597 spa_error_entry_compare, sizeof (spa_error_entry_t), 598 offsetof(spa_error_entry_t, se_avl)); 599 avl_create(&spa->spa_errlist_last, 600 spa_error_entry_compare, sizeof (spa_error_entry_t), 601 offsetof(spa_error_entry_t, se_avl)); 602 } 603 604 static taskq_t * 605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 606 uint_t value) 607 { 608 uint_t flags = TASKQ_PREPOPULATE; 609 boolean_t batch = B_FALSE; 610 611 switch (mode) { 612 case zti_mode_null: 613 return (NULL); /* no taskq needed */ 614 615 case zti_mode_fixed: 616 ASSERT3U(value, >=, 1); 617 value = MAX(value, 1); 618 break; 619 620 case zti_mode_batch: 621 batch = B_TRUE; 622 flags |= TASKQ_THREADS_CPU_PCT; 623 value = zio_taskq_batch_pct; 624 break; 625 626 case zti_mode_online_percent: 627 flags |= TASKQ_THREADS_CPU_PCT; 628 break; 629 630 default: 631 panic("unrecognized mode for %s taskq (%u:%u) in " 632 "spa_activate()", 633 name, mode, value); 634 break; 635 } 636 637 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 638 if (batch) 639 flags |= TASKQ_DC_BATCH; 640 641 return (taskq_create_sysdc(name, value, 50, INT_MAX, 642 spa->spa_proc, zio_taskq_basedc, flags)); 643 } 644 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 645 spa->spa_proc, flags)); 646 } 647 648 static void 649 spa_create_zio_taskqs(spa_t *spa) 650 { 651 for (int t = 0; t < ZIO_TYPES; t++) { 652 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 653 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 654 enum zti_modes mode = ztip->zti_mode; 655 uint_t value = ztip->zti_value; 656 char name[32]; 657 658 (void) snprintf(name, sizeof (name), 659 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 660 661 spa->spa_zio_taskq[t][q] = 662 spa_taskq_create(spa, name, mode, value); 663 } 664 } 665 } 666 667 #ifdef _KERNEL 668 static void 669 spa_thread(void *arg) 670 { 671 callb_cpr_t cprinfo; 672 673 spa_t *spa = arg; 674 user_t *pu = PTOU(curproc); 675 676 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 677 spa->spa_name); 678 679 ASSERT(curproc != &p0); 680 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 681 "zpool-%s", spa->spa_name); 682 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 683 684 /* bind this thread to the requested psrset */ 685 if (zio_taskq_psrset_bind != PS_NONE) { 686 pool_lock(); 687 mutex_enter(&cpu_lock); 688 mutex_enter(&pidlock); 689 mutex_enter(&curproc->p_lock); 690 691 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 692 0, NULL, NULL) == 0) { 693 curthread->t_bind_pset = zio_taskq_psrset_bind; 694 } else { 695 cmn_err(CE_WARN, 696 "Couldn't bind process for zfs pool \"%s\" to " 697 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 698 } 699 700 mutex_exit(&curproc->p_lock); 701 mutex_exit(&pidlock); 702 mutex_exit(&cpu_lock); 703 pool_unlock(); 704 } 705 706 if (zio_taskq_sysdc) { 707 sysdc_thread_enter(curthread, 100, 0); 708 } 709 710 spa->spa_proc = curproc; 711 spa->spa_did = curthread->t_did; 712 713 spa_create_zio_taskqs(spa); 714 715 mutex_enter(&spa->spa_proc_lock); 716 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 717 718 spa->spa_proc_state = SPA_PROC_ACTIVE; 719 cv_broadcast(&spa->spa_proc_cv); 720 721 CALLB_CPR_SAFE_BEGIN(&cprinfo); 722 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 723 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 724 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 725 726 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 727 spa->spa_proc_state = SPA_PROC_GONE; 728 spa->spa_proc = &p0; 729 cv_broadcast(&spa->spa_proc_cv); 730 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 731 732 mutex_enter(&curproc->p_lock); 733 lwp_exit(); 734 } 735 #endif 736 737 /* 738 * Activate an uninitialized pool. 739 */ 740 static void 741 spa_activate(spa_t *spa, int mode) 742 { 743 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 744 745 spa->spa_state = POOL_STATE_ACTIVE; 746 spa->spa_mode = mode; 747 748 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 749 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 750 751 /* Try to create a covering process */ 752 mutex_enter(&spa->spa_proc_lock); 753 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 754 ASSERT(spa->spa_proc == &p0); 755 spa->spa_did = 0; 756 757 /* Only create a process if we're going to be around a while. */ 758 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 759 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 760 NULL, 0) == 0) { 761 spa->spa_proc_state = SPA_PROC_CREATED; 762 while (spa->spa_proc_state == SPA_PROC_CREATED) { 763 cv_wait(&spa->spa_proc_cv, 764 &spa->spa_proc_lock); 765 } 766 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 767 ASSERT(spa->spa_proc != &p0); 768 ASSERT(spa->spa_did != 0); 769 } else { 770 #ifdef _KERNEL 771 cmn_err(CE_WARN, 772 "Couldn't create process for zfs pool \"%s\"\n", 773 spa->spa_name); 774 #endif 775 } 776 } 777 mutex_exit(&spa->spa_proc_lock); 778 779 /* If we didn't create a process, we need to create our taskqs. */ 780 if (spa->spa_proc == &p0) { 781 spa_create_zio_taskqs(spa); 782 } 783 784 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 785 offsetof(vdev_t, vdev_config_dirty_node)); 786 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 787 offsetof(vdev_t, vdev_state_dirty_node)); 788 789 txg_list_create(&spa->spa_vdev_txg_list, 790 offsetof(struct vdev, vdev_txg_node)); 791 792 avl_create(&spa->spa_errlist_scrub, 793 spa_error_entry_compare, sizeof (spa_error_entry_t), 794 offsetof(spa_error_entry_t, se_avl)); 795 avl_create(&spa->spa_errlist_last, 796 spa_error_entry_compare, sizeof (spa_error_entry_t), 797 offsetof(spa_error_entry_t, se_avl)); 798 } 799 800 /* 801 * Opposite of spa_activate(). 802 */ 803 static void 804 spa_deactivate(spa_t *spa) 805 { 806 ASSERT(spa->spa_sync_on == B_FALSE); 807 ASSERT(spa->spa_dsl_pool == NULL); 808 ASSERT(spa->spa_root_vdev == NULL); 809 ASSERT(spa->spa_async_zio_root == NULL); 810 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 811 812 txg_list_destroy(&spa->spa_vdev_txg_list); 813 814 list_destroy(&spa->spa_config_dirty_list); 815 list_destroy(&spa->spa_state_dirty_list); 816 817 for (int t = 0; t < ZIO_TYPES; t++) { 818 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 819 if (spa->spa_zio_taskq[t][q] != NULL) 820 taskq_destroy(spa->spa_zio_taskq[t][q]); 821 spa->spa_zio_taskq[t][q] = NULL; 822 } 823 } 824 825 metaslab_class_destroy(spa->spa_normal_class); 826 spa->spa_normal_class = NULL; 827 828 metaslab_class_destroy(spa->spa_log_class); 829 spa->spa_log_class = NULL; 830 831 /* 832 * If this was part of an import or the open otherwise failed, we may 833 * still have errors left in the queues. Empty them just in case. 834 */ 835 spa_errlog_drain(spa); 836 837 avl_destroy(&spa->spa_errlist_scrub); 838 avl_destroy(&spa->spa_errlist_last); 839 840 spa->spa_state = POOL_STATE_UNINITIALIZED; 841 842 mutex_enter(&spa->spa_proc_lock); 843 if (spa->spa_proc_state != SPA_PROC_NONE) { 844 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 845 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 846 cv_broadcast(&spa->spa_proc_cv); 847 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 848 ASSERT(spa->spa_proc != &p0); 849 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 850 } 851 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 852 spa->spa_proc_state = SPA_PROC_NONE; 853 } 854 ASSERT(spa->spa_proc == &p0); 855 mutex_exit(&spa->spa_proc_lock); 856 857 /* 858 * We want to make sure spa_thread() has actually exited the ZFS 859 * module, so that the module can't be unloaded out from underneath 860 * it. 861 */ 862 if (spa->spa_did != 0) { 863 thread_join(spa->spa_did); 864 spa->spa_did = 0; 865 } 866 } 867 868 /* 869 * Verify a pool configuration, and construct the vdev tree appropriately. This 870 * will create all the necessary vdevs in the appropriate layout, with each vdev 871 * in the CLOSED state. This will prep the pool before open/creation/import. 872 * All vdev validation is done by the vdev_alloc() routine. 873 */ 874 static int 875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 876 uint_t id, int atype) 877 { 878 nvlist_t **child; 879 uint_t children; 880 int error; 881 882 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 883 return (error); 884 885 if ((*vdp)->vdev_ops->vdev_op_leaf) 886 return (0); 887 888 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 889 &child, &children); 890 891 if (error == ENOENT) 892 return (0); 893 894 if (error) { 895 vdev_free(*vdp); 896 *vdp = NULL; 897 return (EINVAL); 898 } 899 900 for (int c = 0; c < children; c++) { 901 vdev_t *vd; 902 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 903 atype)) != 0) { 904 vdev_free(*vdp); 905 *vdp = NULL; 906 return (error); 907 } 908 } 909 910 ASSERT(*vdp != NULL); 911 912 return (0); 913 } 914 915 /* 916 * Opposite of spa_load(). 917 */ 918 static void 919 spa_unload(spa_t *spa) 920 { 921 int i; 922 923 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 924 925 /* 926 * Stop async tasks. 927 */ 928 spa_async_suspend(spa); 929 930 /* 931 * Stop syncing. 932 */ 933 if (spa->spa_sync_on) { 934 txg_sync_stop(spa->spa_dsl_pool); 935 spa->spa_sync_on = B_FALSE; 936 } 937 938 /* 939 * Wait for any outstanding async I/O to complete. 940 */ 941 if (spa->spa_async_zio_root != NULL) { 942 (void) zio_wait(spa->spa_async_zio_root); 943 spa->spa_async_zio_root = NULL; 944 } 945 946 /* 947 * Close the dsl pool. 948 */ 949 if (spa->spa_dsl_pool) { 950 dsl_pool_close(spa->spa_dsl_pool); 951 spa->spa_dsl_pool = NULL; 952 spa->spa_meta_objset = NULL; 953 } 954 955 ddt_unload(spa); 956 957 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 958 959 /* 960 * Drop and purge level 2 cache 961 */ 962 spa_l2cache_drop(spa); 963 964 /* 965 * Close all vdevs. 966 */ 967 if (spa->spa_root_vdev) 968 vdev_free(spa->spa_root_vdev); 969 ASSERT(spa->spa_root_vdev == NULL); 970 971 for (i = 0; i < spa->spa_spares.sav_count; i++) 972 vdev_free(spa->spa_spares.sav_vdevs[i]); 973 if (spa->spa_spares.sav_vdevs) { 974 kmem_free(spa->spa_spares.sav_vdevs, 975 spa->spa_spares.sav_count * sizeof (void *)); 976 spa->spa_spares.sav_vdevs = NULL; 977 } 978 if (spa->spa_spares.sav_config) { 979 nvlist_free(spa->spa_spares.sav_config); 980 spa->spa_spares.sav_config = NULL; 981 } 982 spa->spa_spares.sav_count = 0; 983 984 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 985 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 986 if (spa->spa_l2cache.sav_vdevs) { 987 kmem_free(spa->spa_l2cache.sav_vdevs, 988 spa->spa_l2cache.sav_count * sizeof (void *)); 989 spa->spa_l2cache.sav_vdevs = NULL; 990 } 991 if (spa->spa_l2cache.sav_config) { 992 nvlist_free(spa->spa_l2cache.sav_config); 993 spa->spa_l2cache.sav_config = NULL; 994 } 995 spa->spa_l2cache.sav_count = 0; 996 997 spa->spa_async_suspended = 0; 998 999 spa_config_exit(spa, SCL_ALL, FTAG); 1000 } 1001 1002 /* 1003 * Load (or re-load) the current list of vdevs describing the active spares for 1004 * this pool. When this is called, we have some form of basic information in 1005 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1006 * then re-generate a more complete list including status information. 1007 */ 1008 static void 1009 spa_load_spares(spa_t *spa) 1010 { 1011 nvlist_t **spares; 1012 uint_t nspares; 1013 int i; 1014 vdev_t *vd, *tvd; 1015 1016 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1017 1018 /* 1019 * First, close and free any existing spare vdevs. 1020 */ 1021 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1022 vd = spa->spa_spares.sav_vdevs[i]; 1023 1024 /* Undo the call to spa_activate() below */ 1025 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1026 B_FALSE)) != NULL && tvd->vdev_isspare) 1027 spa_spare_remove(tvd); 1028 vdev_close(vd); 1029 vdev_free(vd); 1030 } 1031 1032 if (spa->spa_spares.sav_vdevs) 1033 kmem_free(spa->spa_spares.sav_vdevs, 1034 spa->spa_spares.sav_count * sizeof (void *)); 1035 1036 if (spa->spa_spares.sav_config == NULL) 1037 nspares = 0; 1038 else 1039 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1040 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1041 1042 spa->spa_spares.sav_count = (int)nspares; 1043 spa->spa_spares.sav_vdevs = NULL; 1044 1045 if (nspares == 0) 1046 return; 1047 1048 /* 1049 * Construct the array of vdevs, opening them to get status in the 1050 * process. For each spare, there is potentially two different vdev_t 1051 * structures associated with it: one in the list of spares (used only 1052 * for basic validation purposes) and one in the active vdev 1053 * configuration (if it's spared in). During this phase we open and 1054 * validate each vdev on the spare list. If the vdev also exists in the 1055 * active configuration, then we also mark this vdev as an active spare. 1056 */ 1057 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1058 KM_SLEEP); 1059 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1060 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1061 VDEV_ALLOC_SPARE) == 0); 1062 ASSERT(vd != NULL); 1063 1064 spa->spa_spares.sav_vdevs[i] = vd; 1065 1066 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1067 B_FALSE)) != NULL) { 1068 if (!tvd->vdev_isspare) 1069 spa_spare_add(tvd); 1070 1071 /* 1072 * We only mark the spare active if we were successfully 1073 * able to load the vdev. Otherwise, importing a pool 1074 * with a bad active spare would result in strange 1075 * behavior, because multiple pool would think the spare 1076 * is actively in use. 1077 * 1078 * There is a vulnerability here to an equally bizarre 1079 * circumstance, where a dead active spare is later 1080 * brought back to life (onlined or otherwise). Given 1081 * the rarity of this scenario, and the extra complexity 1082 * it adds, we ignore the possibility. 1083 */ 1084 if (!vdev_is_dead(tvd)) 1085 spa_spare_activate(tvd); 1086 } 1087 1088 vd->vdev_top = vd; 1089 vd->vdev_aux = &spa->spa_spares; 1090 1091 if (vdev_open(vd) != 0) 1092 continue; 1093 1094 if (vdev_validate_aux(vd) == 0) 1095 spa_spare_add(vd); 1096 } 1097 1098 /* 1099 * Recompute the stashed list of spares, with status information 1100 * this time. 1101 */ 1102 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1103 DATA_TYPE_NVLIST_ARRAY) == 0); 1104 1105 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1106 KM_SLEEP); 1107 for (i = 0; i < spa->spa_spares.sav_count; i++) 1108 spares[i] = vdev_config_generate(spa, 1109 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1110 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1111 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1112 for (i = 0; i < spa->spa_spares.sav_count; i++) 1113 nvlist_free(spares[i]); 1114 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1115 } 1116 1117 /* 1118 * Load (or re-load) the current list of vdevs describing the active l2cache for 1119 * this pool. When this is called, we have some form of basic information in 1120 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1121 * then re-generate a more complete list including status information. 1122 * Devices which are already active have their details maintained, and are 1123 * not re-opened. 1124 */ 1125 static void 1126 spa_load_l2cache(spa_t *spa) 1127 { 1128 nvlist_t **l2cache; 1129 uint_t nl2cache; 1130 int i, j, oldnvdevs; 1131 uint64_t guid; 1132 vdev_t *vd, **oldvdevs, **newvdevs; 1133 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1134 1135 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1136 1137 if (sav->sav_config != NULL) { 1138 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1139 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1140 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1141 } else { 1142 nl2cache = 0; 1143 } 1144 1145 oldvdevs = sav->sav_vdevs; 1146 oldnvdevs = sav->sav_count; 1147 sav->sav_vdevs = NULL; 1148 sav->sav_count = 0; 1149 1150 /* 1151 * Process new nvlist of vdevs. 1152 */ 1153 for (i = 0; i < nl2cache; i++) { 1154 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1155 &guid) == 0); 1156 1157 newvdevs[i] = NULL; 1158 for (j = 0; j < oldnvdevs; j++) { 1159 vd = oldvdevs[j]; 1160 if (vd != NULL && guid == vd->vdev_guid) { 1161 /* 1162 * Retain previous vdev for add/remove ops. 1163 */ 1164 newvdevs[i] = vd; 1165 oldvdevs[j] = NULL; 1166 break; 1167 } 1168 } 1169 1170 if (newvdevs[i] == NULL) { 1171 /* 1172 * Create new vdev 1173 */ 1174 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1175 VDEV_ALLOC_L2CACHE) == 0); 1176 ASSERT(vd != NULL); 1177 newvdevs[i] = vd; 1178 1179 /* 1180 * Commit this vdev as an l2cache device, 1181 * even if it fails to open. 1182 */ 1183 spa_l2cache_add(vd); 1184 1185 vd->vdev_top = vd; 1186 vd->vdev_aux = sav; 1187 1188 spa_l2cache_activate(vd); 1189 1190 if (vdev_open(vd) != 0) 1191 continue; 1192 1193 (void) vdev_validate_aux(vd); 1194 1195 if (!vdev_is_dead(vd)) 1196 l2arc_add_vdev(spa, vd); 1197 } 1198 } 1199 1200 /* 1201 * Purge vdevs that were dropped 1202 */ 1203 for (i = 0; i < oldnvdevs; i++) { 1204 uint64_t pool; 1205 1206 vd = oldvdevs[i]; 1207 if (vd != NULL) { 1208 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1209 pool != 0ULL && l2arc_vdev_present(vd)) 1210 l2arc_remove_vdev(vd); 1211 (void) vdev_close(vd); 1212 spa_l2cache_remove(vd); 1213 } 1214 } 1215 1216 if (oldvdevs) 1217 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1218 1219 if (sav->sav_config == NULL) 1220 goto out; 1221 1222 sav->sav_vdevs = newvdevs; 1223 sav->sav_count = (int)nl2cache; 1224 1225 /* 1226 * Recompute the stashed list of l2cache devices, with status 1227 * information this time. 1228 */ 1229 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1230 DATA_TYPE_NVLIST_ARRAY) == 0); 1231 1232 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1233 for (i = 0; i < sav->sav_count; i++) 1234 l2cache[i] = vdev_config_generate(spa, 1235 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1236 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1237 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1238 out: 1239 for (i = 0; i < sav->sav_count; i++) 1240 nvlist_free(l2cache[i]); 1241 if (sav->sav_count) 1242 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1243 } 1244 1245 static int 1246 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1247 { 1248 dmu_buf_t *db; 1249 char *packed = NULL; 1250 size_t nvsize = 0; 1251 int error; 1252 *value = NULL; 1253 1254 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1255 nvsize = *(uint64_t *)db->db_data; 1256 dmu_buf_rele(db, FTAG); 1257 1258 packed = kmem_alloc(nvsize, KM_SLEEP); 1259 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1260 DMU_READ_PREFETCH); 1261 if (error == 0) 1262 error = nvlist_unpack(packed, nvsize, value, 0); 1263 kmem_free(packed, nvsize); 1264 1265 return (error); 1266 } 1267 1268 /* 1269 * Checks to see if the given vdev could not be opened, in which case we post a 1270 * sysevent to notify the autoreplace code that the device has been removed. 1271 */ 1272 static void 1273 spa_check_removed(vdev_t *vd) 1274 { 1275 for (int c = 0; c < vd->vdev_children; c++) 1276 spa_check_removed(vd->vdev_child[c]); 1277 1278 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1279 zfs_post_autoreplace(vd->vdev_spa, vd); 1280 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1281 } 1282 } 1283 1284 /* 1285 * Load the slog device state from the config object since it's possible 1286 * that the label does not contain the most up-to-date information. 1287 */ 1288 void 1289 spa_load_log_state(spa_t *spa, nvlist_t *nv) 1290 { 1291 vdev_t *ovd, *rvd = spa->spa_root_vdev; 1292 1293 /* 1294 * Load the original root vdev tree from the passed config. 1295 */ 1296 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1297 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1298 1299 for (int c = 0; c < rvd->vdev_children; c++) { 1300 vdev_t *cvd = rvd->vdev_child[c]; 1301 if (cvd->vdev_islog) 1302 vdev_load_log_state(cvd, ovd->vdev_child[c]); 1303 } 1304 vdev_free(ovd); 1305 spa_config_exit(spa, SCL_ALL, FTAG); 1306 } 1307 1308 /* 1309 * Check for missing log devices 1310 */ 1311 int 1312 spa_check_logs(spa_t *spa) 1313 { 1314 switch (spa->spa_log_state) { 1315 case SPA_LOG_MISSING: 1316 /* need to recheck in case slog has been restored */ 1317 case SPA_LOG_UNKNOWN: 1318 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1319 DS_FIND_CHILDREN)) { 1320 spa_set_log_state(spa, SPA_LOG_MISSING); 1321 return (1); 1322 } 1323 break; 1324 } 1325 return (0); 1326 } 1327 1328 static boolean_t 1329 spa_passivate_log(spa_t *spa) 1330 { 1331 vdev_t *rvd = spa->spa_root_vdev; 1332 boolean_t slog_found = B_FALSE; 1333 1334 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1335 1336 if (!spa_has_slogs(spa)) 1337 return (B_FALSE); 1338 1339 for (int c = 0; c < rvd->vdev_children; c++) { 1340 vdev_t *tvd = rvd->vdev_child[c]; 1341 metaslab_group_t *mg = tvd->vdev_mg; 1342 1343 if (tvd->vdev_islog) { 1344 metaslab_group_passivate(mg); 1345 slog_found = B_TRUE; 1346 } 1347 } 1348 1349 return (slog_found); 1350 } 1351 1352 static void 1353 spa_activate_log(spa_t *spa) 1354 { 1355 vdev_t *rvd = spa->spa_root_vdev; 1356 1357 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1358 1359 for (int c = 0; c < rvd->vdev_children; c++) { 1360 vdev_t *tvd = rvd->vdev_child[c]; 1361 metaslab_group_t *mg = tvd->vdev_mg; 1362 1363 if (tvd->vdev_islog) 1364 metaslab_group_activate(mg); 1365 } 1366 } 1367 1368 int 1369 spa_offline_log(spa_t *spa) 1370 { 1371 int error = 0; 1372 1373 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1374 NULL, DS_FIND_CHILDREN)) == 0) { 1375 1376 /* 1377 * We successfully offlined the log device, sync out the 1378 * current txg so that the "stubby" block can be removed 1379 * by zil_sync(). 1380 */ 1381 txg_wait_synced(spa->spa_dsl_pool, 0); 1382 } 1383 return (error); 1384 } 1385 1386 static void 1387 spa_aux_check_removed(spa_aux_vdev_t *sav) 1388 { 1389 for (int i = 0; i < sav->sav_count; i++) 1390 spa_check_removed(sav->sav_vdevs[i]); 1391 } 1392 1393 void 1394 spa_claim_notify(zio_t *zio) 1395 { 1396 spa_t *spa = zio->io_spa; 1397 1398 if (zio->io_error) 1399 return; 1400 1401 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1402 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1403 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1404 mutex_exit(&spa->spa_props_lock); 1405 } 1406 1407 typedef struct spa_load_error { 1408 uint64_t sle_meta_count; 1409 uint64_t sle_data_count; 1410 } spa_load_error_t; 1411 1412 static void 1413 spa_load_verify_done(zio_t *zio) 1414 { 1415 blkptr_t *bp = zio->io_bp; 1416 spa_load_error_t *sle = zio->io_private; 1417 dmu_object_type_t type = BP_GET_TYPE(bp); 1418 int error = zio->io_error; 1419 1420 if (error) { 1421 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1422 type != DMU_OT_INTENT_LOG) 1423 atomic_add_64(&sle->sle_meta_count, 1); 1424 else 1425 atomic_add_64(&sle->sle_data_count, 1); 1426 } 1427 zio_data_buf_free(zio->io_data, zio->io_size); 1428 } 1429 1430 /*ARGSUSED*/ 1431 static int 1432 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1433 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1434 { 1435 if (bp != NULL) { 1436 zio_t *rio = arg; 1437 size_t size = BP_GET_PSIZE(bp); 1438 void *data = zio_data_buf_alloc(size); 1439 1440 zio_nowait(zio_read(rio, spa, bp, data, size, 1441 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1442 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1443 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1444 } 1445 return (0); 1446 } 1447 1448 static int 1449 spa_load_verify(spa_t *spa) 1450 { 1451 zio_t *rio; 1452 spa_load_error_t sle = { 0 }; 1453 zpool_rewind_policy_t policy; 1454 boolean_t verify_ok = B_FALSE; 1455 int error; 1456 1457 zpool_get_rewind_policy(spa->spa_config, &policy); 1458 1459 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1460 return (0); 1461 1462 rio = zio_root(spa, NULL, &sle, 1463 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1464 1465 error = traverse_pool(spa, spa->spa_verify_min_txg, 1466 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1467 1468 (void) zio_wait(rio); 1469 1470 spa->spa_load_meta_errors = sle.sle_meta_count; 1471 spa->spa_load_data_errors = sle.sle_data_count; 1472 1473 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1474 sle.sle_data_count <= policy.zrp_maxdata) { 1475 verify_ok = B_TRUE; 1476 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1477 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1478 } else { 1479 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1480 } 1481 1482 if (error) { 1483 if (error != ENXIO && error != EIO) 1484 error = EIO; 1485 return (error); 1486 } 1487 1488 return (verify_ok ? 0 : EIO); 1489 } 1490 1491 /* 1492 * Find a value in the pool props object. 1493 */ 1494 static void 1495 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1496 { 1497 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1498 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1499 } 1500 1501 /* 1502 * Find a value in the pool directory object. 1503 */ 1504 static int 1505 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1506 { 1507 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1508 name, sizeof (uint64_t), 1, val)); 1509 } 1510 1511 static int 1512 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1513 { 1514 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1515 return (err); 1516 } 1517 1518 /* 1519 * Fix up config after a partly-completed split. This is done with the 1520 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1521 * pool have that entry in their config, but only the splitting one contains 1522 * a list of all the guids of the vdevs that are being split off. 1523 * 1524 * This function determines what to do with that list: either rejoin 1525 * all the disks to the pool, or complete the splitting process. To attempt 1526 * the rejoin, each disk that is offlined is marked online again, and 1527 * we do a reopen() call. If the vdev label for every disk that was 1528 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1529 * then we call vdev_split() on each disk, and complete the split. 1530 * 1531 * Otherwise we leave the config alone, with all the vdevs in place in 1532 * the original pool. 1533 */ 1534 static void 1535 spa_try_repair(spa_t *spa, nvlist_t *config) 1536 { 1537 uint_t extracted; 1538 uint64_t *glist; 1539 uint_t i, gcount; 1540 nvlist_t *nvl; 1541 vdev_t **vd; 1542 boolean_t attempt_reopen; 1543 1544 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1545 return; 1546 1547 /* check that the config is complete */ 1548 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1549 &glist, &gcount) != 0) 1550 return; 1551 1552 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1553 1554 /* attempt to online all the vdevs & validate */ 1555 attempt_reopen = B_TRUE; 1556 for (i = 0; i < gcount; i++) { 1557 if (glist[i] == 0) /* vdev is hole */ 1558 continue; 1559 1560 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1561 if (vd[i] == NULL) { 1562 /* 1563 * Don't bother attempting to reopen the disks; 1564 * just do the split. 1565 */ 1566 attempt_reopen = B_FALSE; 1567 } else { 1568 /* attempt to re-online it */ 1569 vd[i]->vdev_offline = B_FALSE; 1570 } 1571 } 1572 1573 if (attempt_reopen) { 1574 vdev_reopen(spa->spa_root_vdev); 1575 1576 /* check each device to see what state it's in */ 1577 for (extracted = 0, i = 0; i < gcount; i++) { 1578 if (vd[i] != NULL && 1579 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1580 break; 1581 ++extracted; 1582 } 1583 } 1584 1585 /* 1586 * If every disk has been moved to the new pool, or if we never 1587 * even attempted to look at them, then we split them off for 1588 * good. 1589 */ 1590 if (!attempt_reopen || gcount == extracted) { 1591 for (i = 0; i < gcount; i++) 1592 if (vd[i] != NULL) 1593 vdev_split(vd[i]); 1594 vdev_reopen(spa->spa_root_vdev); 1595 } 1596 1597 kmem_free(vd, gcount * sizeof (vdev_t *)); 1598 } 1599 1600 static int 1601 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1602 boolean_t mosconfig) 1603 { 1604 nvlist_t *config = spa->spa_config; 1605 char *ereport = FM_EREPORT_ZFS_POOL; 1606 int error; 1607 uint64_t pool_guid; 1608 nvlist_t *nvl; 1609 1610 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1611 return (EINVAL); 1612 1613 /* 1614 * Versioning wasn't explicitly added to the label until later, so if 1615 * it's not present treat it as the initial version. 1616 */ 1617 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1618 &spa->spa_ubsync.ub_version) != 0) 1619 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1620 1621 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1622 &spa->spa_config_txg); 1623 1624 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1625 spa_guid_exists(pool_guid, 0)) { 1626 error = EEXIST; 1627 } else { 1628 spa->spa_load_guid = pool_guid; 1629 1630 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1631 &nvl) == 0) { 1632 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1633 KM_SLEEP) == 0); 1634 } 1635 1636 error = spa_load_impl(spa, pool_guid, config, state, type, 1637 mosconfig, &ereport); 1638 } 1639 1640 spa->spa_minref = refcount_count(&spa->spa_refcount); 1641 if (error && error != EBADF) 1642 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1643 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1644 spa->spa_ena = 0; 1645 1646 return (error); 1647 } 1648 1649 /* 1650 * Load an existing storage pool, using the pool's builtin spa_config as a 1651 * source of configuration information. 1652 */ 1653 static int 1654 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1655 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1656 char **ereport) 1657 { 1658 int error = 0; 1659 nvlist_t *nvroot = NULL; 1660 vdev_t *rvd; 1661 uberblock_t *ub = &spa->spa_uberblock; 1662 uint64_t config_cache_txg = spa->spa_config_txg; 1663 int orig_mode = spa->spa_mode; 1664 int parse; 1665 1666 /* 1667 * If this is an untrusted config, access the pool in read-only mode. 1668 * This prevents things like resilvering recently removed devices. 1669 */ 1670 if (!mosconfig) 1671 spa->spa_mode = FREAD; 1672 1673 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1674 1675 spa->spa_load_state = state; 1676 1677 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1678 return (EINVAL); 1679 1680 parse = (type == SPA_IMPORT_EXISTING ? 1681 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1682 1683 /* 1684 * Create "The Godfather" zio to hold all async IOs 1685 */ 1686 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1687 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1688 1689 /* 1690 * Parse the configuration into a vdev tree. We explicitly set the 1691 * value that will be returned by spa_version() since parsing the 1692 * configuration requires knowing the version number. 1693 */ 1694 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1695 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1696 spa_config_exit(spa, SCL_ALL, FTAG); 1697 1698 if (error != 0) 1699 return (error); 1700 1701 ASSERT(spa->spa_root_vdev == rvd); 1702 1703 if (type != SPA_IMPORT_ASSEMBLE) { 1704 ASSERT(spa_guid(spa) == pool_guid); 1705 } 1706 1707 /* 1708 * Try to open all vdevs, loading each label in the process. 1709 */ 1710 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1711 error = vdev_open(rvd); 1712 spa_config_exit(spa, SCL_ALL, FTAG); 1713 if (error != 0) 1714 return (error); 1715 1716 /* 1717 * We need to validate the vdev labels against the configuration that 1718 * we have in hand, which is dependent on the setting of mosconfig. If 1719 * mosconfig is true then we're validating the vdev labels based on 1720 * that config. Otherwise, we're validating against the cached config 1721 * (zpool.cache) that was read when we loaded the zfs module, and then 1722 * later we will recursively call spa_load() and validate against 1723 * the vdev config. 1724 * 1725 * If we're assembling a new pool that's been split off from an 1726 * existing pool, the labels haven't yet been updated so we skip 1727 * validation for now. 1728 */ 1729 if (type != SPA_IMPORT_ASSEMBLE) { 1730 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1731 error = vdev_validate(rvd); 1732 spa_config_exit(spa, SCL_ALL, FTAG); 1733 1734 if (error != 0) 1735 return (error); 1736 1737 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1738 return (ENXIO); 1739 } 1740 1741 /* 1742 * Find the best uberblock. 1743 */ 1744 vdev_uberblock_load(NULL, rvd, ub); 1745 1746 /* 1747 * If we weren't able to find a single valid uberblock, return failure. 1748 */ 1749 if (ub->ub_txg == 0) 1750 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1751 1752 /* 1753 * If the pool is newer than the code, we can't open it. 1754 */ 1755 if (ub->ub_version > SPA_VERSION) 1756 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1757 1758 /* 1759 * If the vdev guid sum doesn't match the uberblock, we have an 1760 * incomplete configuration. 1761 */ 1762 if (mosconfig && type != SPA_IMPORT_ASSEMBLE && 1763 rvd->vdev_guid_sum != ub->ub_guid_sum) 1764 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1765 1766 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1767 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1768 spa_try_repair(spa, config); 1769 spa_config_exit(spa, SCL_ALL, FTAG); 1770 nvlist_free(spa->spa_config_splitting); 1771 spa->spa_config_splitting = NULL; 1772 } 1773 1774 /* 1775 * Initialize internal SPA structures. 1776 */ 1777 spa->spa_state = POOL_STATE_ACTIVE; 1778 spa->spa_ubsync = spa->spa_uberblock; 1779 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1780 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 1781 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1782 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1783 spa->spa_claim_max_txg = spa->spa_first_txg; 1784 spa->spa_prev_software_version = ub->ub_software_version; 1785 1786 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1787 if (error) 1788 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1789 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1790 1791 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 1792 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1793 1794 if (!mosconfig) { 1795 uint64_t hostid; 1796 nvlist_t *policy = NULL, *nvconfig; 1797 1798 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 1799 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1800 1801 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1802 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1803 char *hostname; 1804 unsigned long myhostid = 0; 1805 1806 VERIFY(nvlist_lookup_string(nvconfig, 1807 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1808 1809 #ifdef _KERNEL 1810 myhostid = zone_get_hostid(NULL); 1811 #else /* _KERNEL */ 1812 /* 1813 * We're emulating the system's hostid in userland, so 1814 * we can't use zone_get_hostid(). 1815 */ 1816 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1817 #endif /* _KERNEL */ 1818 if (hostid != 0 && myhostid != 0 && 1819 hostid != myhostid) { 1820 nvlist_free(nvconfig); 1821 cmn_err(CE_WARN, "pool '%s' could not be " 1822 "loaded as it was last accessed by " 1823 "another system (host: %s hostid: 0x%lx). " 1824 "See: http://www.sun.com/msg/ZFS-8000-EY", 1825 spa_name(spa), hostname, 1826 (unsigned long)hostid); 1827 return (EBADF); 1828 } 1829 } 1830 if (nvlist_lookup_nvlist(spa->spa_config, 1831 ZPOOL_REWIND_POLICY, &policy) == 0) 1832 VERIFY(nvlist_add_nvlist(nvconfig, 1833 ZPOOL_REWIND_POLICY, policy) == 0); 1834 1835 spa_config_set(spa, nvconfig); 1836 spa_unload(spa); 1837 spa_deactivate(spa); 1838 spa_activate(spa, orig_mode); 1839 1840 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 1841 } 1842 1843 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPLIST, 1844 &spa->spa_deferred_bplist_obj) != 0) 1845 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1846 1847 /* 1848 * Load the bit that tells us to use the new accounting function 1849 * (raid-z deflation). If we have an older pool, this will not 1850 * be present. 1851 */ 1852 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 1853 if (error != 0 && error != ENOENT) 1854 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1855 1856 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 1857 &spa->spa_creation_version); 1858 if (error != 0 && error != ENOENT) 1859 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1860 1861 /* 1862 * Load the persistent error log. If we have an older pool, this will 1863 * not be present. 1864 */ 1865 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 1866 if (error != 0 && error != ENOENT) 1867 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1868 1869 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 1870 &spa->spa_errlog_scrub); 1871 if (error != 0 && error != ENOENT) 1872 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1873 1874 /* 1875 * Load the history object. If we have an older pool, this 1876 * will not be present. 1877 */ 1878 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 1879 if (error != 0 && error != ENOENT) 1880 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1881 1882 /* 1883 * If we're assembling the pool from the split-off vdevs of 1884 * an existing pool, we don't want to attach the spares & cache 1885 * devices. 1886 */ 1887 1888 /* 1889 * Load any hot spares for this pool. 1890 */ 1891 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 1892 if (error != 0 && error != ENOENT) 1893 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1894 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1895 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1896 if (load_nvlist(spa, spa->spa_spares.sav_object, 1897 &spa->spa_spares.sav_config) != 0) 1898 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1899 1900 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1901 spa_load_spares(spa); 1902 spa_config_exit(spa, SCL_ALL, FTAG); 1903 } else if (error == 0) { 1904 spa->spa_spares.sav_sync = B_TRUE; 1905 } 1906 1907 /* 1908 * Load any level 2 ARC devices for this pool. 1909 */ 1910 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 1911 &spa->spa_l2cache.sav_object); 1912 if (error != 0 && error != ENOENT) 1913 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1914 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1915 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1916 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1917 &spa->spa_l2cache.sav_config) != 0) 1918 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1919 1920 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1921 spa_load_l2cache(spa); 1922 spa_config_exit(spa, SCL_ALL, FTAG); 1923 } else if (error == 0) { 1924 spa->spa_l2cache.sav_sync = B_TRUE; 1925 } 1926 1927 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1928 1929 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 1930 if (error && error != ENOENT) 1931 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1932 1933 if (error == 0) { 1934 uint64_t autoreplace; 1935 1936 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 1937 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 1938 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 1939 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 1940 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 1941 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 1942 &spa->spa_dedup_ditto); 1943 1944 spa->spa_autoreplace = (autoreplace != 0); 1945 } 1946 1947 /* 1948 * If the 'autoreplace' property is set, then post a resource notifying 1949 * the ZFS DE that it should not issue any faults for unopenable 1950 * devices. We also iterate over the vdevs, and post a sysevent for any 1951 * unopenable vdevs so that the normal autoreplace handler can take 1952 * over. 1953 */ 1954 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 1955 spa_check_removed(spa->spa_root_vdev); 1956 /* 1957 * For the import case, this is done in spa_import(), because 1958 * at this point we're using the spare definitions from 1959 * the MOS config, not necessarily from the userland config. 1960 */ 1961 if (state != SPA_LOAD_IMPORT) { 1962 spa_aux_check_removed(&spa->spa_spares); 1963 spa_aux_check_removed(&spa->spa_l2cache); 1964 } 1965 } 1966 1967 /* 1968 * Load the vdev state for all toplevel vdevs. 1969 */ 1970 vdev_load(rvd); 1971 1972 /* 1973 * Propagate the leaf DTLs we just loaded all the way up the tree. 1974 */ 1975 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1976 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1977 spa_config_exit(spa, SCL_ALL, FTAG); 1978 1979 /* 1980 * Check the state of the root vdev. If it can't be opened, it 1981 * indicates one or more toplevel vdevs are faulted. 1982 */ 1983 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1984 return (ENXIO); 1985 1986 /* 1987 * Load the DDTs (dedup tables). 1988 */ 1989 error = ddt_load(spa); 1990 if (error != 0) 1991 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1992 1993 spa_update_dspace(spa); 1994 1995 if (state != SPA_LOAD_TRYIMPORT) { 1996 error = spa_load_verify(spa); 1997 if (error) 1998 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 1999 error)); 2000 } 2001 2002 /* 2003 * Load the intent log state and check log integrity. If we're 2004 * assembling a pool from a split, the log is not transferred over. 2005 */ 2006 if (type != SPA_IMPORT_ASSEMBLE) { 2007 nvlist_t *nvconfig; 2008 2009 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2010 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2011 2012 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE, 2013 &nvroot) == 0); 2014 spa_load_log_state(spa, nvroot); 2015 nvlist_free(nvconfig); 2016 2017 if (spa_check_logs(spa)) { 2018 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2019 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2020 } 2021 } 2022 2023 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2024 spa->spa_load_max_txg == UINT64_MAX)) { 2025 dmu_tx_t *tx; 2026 int need_update = B_FALSE; 2027 2028 ASSERT(state != SPA_LOAD_TRYIMPORT); 2029 2030 /* 2031 * Claim log blocks that haven't been committed yet. 2032 * This must all happen in a single txg. 2033 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2034 * invoked from zil_claim_log_block()'s i/o done callback. 2035 * Price of rollback is that we abandon the log. 2036 */ 2037 spa->spa_claiming = B_TRUE; 2038 2039 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2040 spa_first_txg(spa)); 2041 (void) dmu_objset_find(spa_name(spa), 2042 zil_claim, tx, DS_FIND_CHILDREN); 2043 dmu_tx_commit(tx); 2044 2045 spa->spa_claiming = B_FALSE; 2046 2047 spa_set_log_state(spa, SPA_LOG_GOOD); 2048 spa->spa_sync_on = B_TRUE; 2049 txg_sync_start(spa->spa_dsl_pool); 2050 2051 /* 2052 * Wait for all claims to sync. We sync up to the highest 2053 * claimed log block birth time so that claimed log blocks 2054 * don't appear to be from the future. spa_claim_max_txg 2055 * will have been set for us by either zil_check_log_chain() 2056 * (invoked from spa_check_logs()) or zil_claim() above. 2057 */ 2058 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2059 2060 /* 2061 * If the config cache is stale, or we have uninitialized 2062 * metaslabs (see spa_vdev_add()), then update the config. 2063 * 2064 * If spa_load_verbatim is true, trust the current 2065 * in-core spa_config and update the disk labels. 2066 */ 2067 if (config_cache_txg != spa->spa_config_txg || 2068 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim || 2069 state == SPA_LOAD_RECOVER) 2070 need_update = B_TRUE; 2071 2072 for (int c = 0; c < rvd->vdev_children; c++) 2073 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2074 need_update = B_TRUE; 2075 2076 /* 2077 * Update the config cache asychronously in case we're the 2078 * root pool, in which case the config cache isn't writable yet. 2079 */ 2080 if (need_update) 2081 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2082 2083 /* 2084 * Check all DTLs to see if anything needs resilvering. 2085 */ 2086 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2087 vdev_resilver_needed(rvd, NULL, NULL)) 2088 spa_async_request(spa, SPA_ASYNC_RESILVER); 2089 2090 /* 2091 * Delete any inconsistent datasets. 2092 */ 2093 (void) dmu_objset_find(spa_name(spa), 2094 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2095 2096 /* 2097 * Clean up any stale temporary dataset userrefs. 2098 */ 2099 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2100 } 2101 2102 return (0); 2103 } 2104 2105 static int 2106 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2107 { 2108 spa_unload(spa); 2109 spa_deactivate(spa); 2110 2111 spa->spa_load_max_txg--; 2112 2113 spa_activate(spa, spa_mode_global); 2114 spa_async_suspend(spa); 2115 2116 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2117 } 2118 2119 static int 2120 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2121 uint64_t max_request, int rewind_flags) 2122 { 2123 nvlist_t *config = NULL; 2124 int load_error, rewind_error; 2125 uint64_t safe_rewind_txg; 2126 uint64_t min_txg; 2127 2128 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2129 spa->spa_load_max_txg = spa->spa_load_txg; 2130 spa_set_log_state(spa, SPA_LOG_CLEAR); 2131 } else { 2132 spa->spa_load_max_txg = max_request; 2133 } 2134 2135 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2136 mosconfig); 2137 if (load_error == 0) 2138 return (0); 2139 2140 if (spa->spa_root_vdev != NULL) 2141 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2142 2143 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2144 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2145 2146 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2147 nvlist_free(config); 2148 return (load_error); 2149 } 2150 2151 /* Price of rolling back is discarding txgs, including log */ 2152 if (state == SPA_LOAD_RECOVER) 2153 spa_set_log_state(spa, SPA_LOG_CLEAR); 2154 2155 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2156 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2157 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2158 TXG_INITIAL : safe_rewind_txg; 2159 2160 /* 2161 * Continue as long as we're finding errors, we're still within 2162 * the acceptable rewind range, and we're still finding uberblocks 2163 */ 2164 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2165 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2166 if (spa->spa_load_max_txg < safe_rewind_txg) 2167 spa->spa_extreme_rewind = B_TRUE; 2168 rewind_error = spa_load_retry(spa, state, mosconfig); 2169 } 2170 2171 if (config) 2172 spa_rewind_data_to_nvlist(spa, config); 2173 2174 spa->spa_extreme_rewind = B_FALSE; 2175 spa->spa_load_max_txg = UINT64_MAX; 2176 2177 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2178 spa_config_set(spa, config); 2179 2180 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2181 } 2182 2183 /* 2184 * Pool Open/Import 2185 * 2186 * The import case is identical to an open except that the configuration is sent 2187 * down from userland, instead of grabbed from the configuration cache. For the 2188 * case of an open, the pool configuration will exist in the 2189 * POOL_STATE_UNINITIALIZED state. 2190 * 2191 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2192 * the same time open the pool, without having to keep around the spa_t in some 2193 * ambiguous state. 2194 */ 2195 static int 2196 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2197 nvlist_t **config) 2198 { 2199 spa_t *spa; 2200 int error; 2201 int locked = B_FALSE; 2202 2203 *spapp = NULL; 2204 2205 /* 2206 * As disgusting as this is, we need to support recursive calls to this 2207 * function because dsl_dir_open() is called during spa_load(), and ends 2208 * up calling spa_open() again. The real fix is to figure out how to 2209 * avoid dsl_dir_open() calling this in the first place. 2210 */ 2211 if (mutex_owner(&spa_namespace_lock) != curthread) { 2212 mutex_enter(&spa_namespace_lock); 2213 locked = B_TRUE; 2214 } 2215 2216 if ((spa = spa_lookup(pool)) == NULL) { 2217 if (locked) 2218 mutex_exit(&spa_namespace_lock); 2219 return (ENOENT); 2220 } 2221 2222 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2223 spa_load_state_t state = SPA_LOAD_OPEN; 2224 zpool_rewind_policy_t policy; 2225 2226 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2227 &policy); 2228 if (policy.zrp_request & ZPOOL_DO_REWIND) 2229 state = SPA_LOAD_RECOVER; 2230 2231 spa_activate(spa, spa_mode_global); 2232 2233 if (state != SPA_LOAD_RECOVER) 2234 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2235 2236 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2237 policy.zrp_request); 2238 2239 if (error == EBADF) { 2240 /* 2241 * If vdev_validate() returns failure (indicated by 2242 * EBADF), it indicates that one of the vdevs indicates 2243 * that the pool has been exported or destroyed. If 2244 * this is the case, the config cache is out of sync and 2245 * we should remove the pool from the namespace. 2246 */ 2247 spa_unload(spa); 2248 spa_deactivate(spa); 2249 spa_config_sync(spa, B_TRUE, B_TRUE); 2250 spa_remove(spa); 2251 if (locked) 2252 mutex_exit(&spa_namespace_lock); 2253 return (ENOENT); 2254 } 2255 2256 if (error) { 2257 /* 2258 * We can't open the pool, but we still have useful 2259 * information: the state of each vdev after the 2260 * attempted vdev_open(). Return this to the user. 2261 */ 2262 if (config != NULL && spa->spa_config) 2263 VERIFY(nvlist_dup(spa->spa_config, config, 2264 KM_SLEEP) == 0); 2265 spa_unload(spa); 2266 spa_deactivate(spa); 2267 spa->spa_last_open_failed = error; 2268 if (locked) 2269 mutex_exit(&spa_namespace_lock); 2270 *spapp = NULL; 2271 return (error); 2272 } 2273 2274 } 2275 2276 spa_open_ref(spa, tag); 2277 2278 2279 if (config != NULL) 2280 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2281 2282 if (locked) { 2283 spa->spa_last_open_failed = 0; 2284 spa->spa_last_ubsync_txg = 0; 2285 spa->spa_load_txg = 0; 2286 mutex_exit(&spa_namespace_lock); 2287 } 2288 2289 *spapp = spa; 2290 2291 return (0); 2292 } 2293 2294 int 2295 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2296 nvlist_t **config) 2297 { 2298 return (spa_open_common(name, spapp, tag, policy, config)); 2299 } 2300 2301 int 2302 spa_open(const char *name, spa_t **spapp, void *tag) 2303 { 2304 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2305 } 2306 2307 /* 2308 * Lookup the given spa_t, incrementing the inject count in the process, 2309 * preventing it from being exported or destroyed. 2310 */ 2311 spa_t * 2312 spa_inject_addref(char *name) 2313 { 2314 spa_t *spa; 2315 2316 mutex_enter(&spa_namespace_lock); 2317 if ((spa = spa_lookup(name)) == NULL) { 2318 mutex_exit(&spa_namespace_lock); 2319 return (NULL); 2320 } 2321 spa->spa_inject_ref++; 2322 mutex_exit(&spa_namespace_lock); 2323 2324 return (spa); 2325 } 2326 2327 void 2328 spa_inject_delref(spa_t *spa) 2329 { 2330 mutex_enter(&spa_namespace_lock); 2331 spa->spa_inject_ref--; 2332 mutex_exit(&spa_namespace_lock); 2333 } 2334 2335 /* 2336 * Add spares device information to the nvlist. 2337 */ 2338 static void 2339 spa_add_spares(spa_t *spa, nvlist_t *config) 2340 { 2341 nvlist_t **spares; 2342 uint_t i, nspares; 2343 nvlist_t *nvroot; 2344 uint64_t guid; 2345 vdev_stat_t *vs; 2346 uint_t vsc; 2347 uint64_t pool; 2348 2349 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2350 2351 if (spa->spa_spares.sav_count == 0) 2352 return; 2353 2354 VERIFY(nvlist_lookup_nvlist(config, 2355 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2356 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2357 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2358 if (nspares != 0) { 2359 VERIFY(nvlist_add_nvlist_array(nvroot, 2360 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2361 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2362 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2363 2364 /* 2365 * Go through and find any spares which have since been 2366 * repurposed as an active spare. If this is the case, update 2367 * their status appropriately. 2368 */ 2369 for (i = 0; i < nspares; i++) { 2370 VERIFY(nvlist_lookup_uint64(spares[i], 2371 ZPOOL_CONFIG_GUID, &guid) == 0); 2372 if (spa_spare_exists(guid, &pool, NULL) && 2373 pool != 0ULL) { 2374 VERIFY(nvlist_lookup_uint64_array( 2375 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2376 (uint64_t **)&vs, &vsc) == 0); 2377 vs->vs_state = VDEV_STATE_CANT_OPEN; 2378 vs->vs_aux = VDEV_AUX_SPARED; 2379 } 2380 } 2381 } 2382 } 2383 2384 /* 2385 * Add l2cache device information to the nvlist, including vdev stats. 2386 */ 2387 static void 2388 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2389 { 2390 nvlist_t **l2cache; 2391 uint_t i, j, nl2cache; 2392 nvlist_t *nvroot; 2393 uint64_t guid; 2394 vdev_t *vd; 2395 vdev_stat_t *vs; 2396 uint_t vsc; 2397 2398 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2399 2400 if (spa->spa_l2cache.sav_count == 0) 2401 return; 2402 2403 VERIFY(nvlist_lookup_nvlist(config, 2404 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2405 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2406 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2407 if (nl2cache != 0) { 2408 VERIFY(nvlist_add_nvlist_array(nvroot, 2409 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2410 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2411 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2412 2413 /* 2414 * Update level 2 cache device stats. 2415 */ 2416 2417 for (i = 0; i < nl2cache; i++) { 2418 VERIFY(nvlist_lookup_uint64(l2cache[i], 2419 ZPOOL_CONFIG_GUID, &guid) == 0); 2420 2421 vd = NULL; 2422 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2423 if (guid == 2424 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2425 vd = spa->spa_l2cache.sav_vdevs[j]; 2426 break; 2427 } 2428 } 2429 ASSERT(vd != NULL); 2430 2431 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2432 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2433 == 0); 2434 vdev_get_stats(vd, vs); 2435 } 2436 } 2437 } 2438 2439 int 2440 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2441 { 2442 int error; 2443 spa_t *spa; 2444 2445 *config = NULL; 2446 error = spa_open_common(name, &spa, FTAG, NULL, config); 2447 2448 if (spa != NULL) { 2449 /* 2450 * This still leaves a window of inconsistency where the spares 2451 * or l2cache devices could change and the config would be 2452 * self-inconsistent. 2453 */ 2454 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2455 2456 if (*config != NULL) { 2457 VERIFY(nvlist_add_uint64(*config, 2458 ZPOOL_CONFIG_ERRCOUNT, 2459 spa_get_errlog_size(spa)) == 0); 2460 2461 if (spa_suspended(spa)) 2462 VERIFY(nvlist_add_uint64(*config, 2463 ZPOOL_CONFIG_SUSPENDED, 2464 spa->spa_failmode) == 0); 2465 2466 spa_add_spares(spa, *config); 2467 spa_add_l2cache(spa, *config); 2468 } 2469 } 2470 2471 /* 2472 * We want to get the alternate root even for faulted pools, so we cheat 2473 * and call spa_lookup() directly. 2474 */ 2475 if (altroot) { 2476 if (spa == NULL) { 2477 mutex_enter(&spa_namespace_lock); 2478 spa = spa_lookup(name); 2479 if (spa) 2480 spa_altroot(spa, altroot, buflen); 2481 else 2482 altroot[0] = '\0'; 2483 spa = NULL; 2484 mutex_exit(&spa_namespace_lock); 2485 } else { 2486 spa_altroot(spa, altroot, buflen); 2487 } 2488 } 2489 2490 if (spa != NULL) { 2491 spa_config_exit(spa, SCL_CONFIG, FTAG); 2492 spa_close(spa, FTAG); 2493 } 2494 2495 return (error); 2496 } 2497 2498 /* 2499 * Validate that the auxiliary device array is well formed. We must have an 2500 * array of nvlists, each which describes a valid leaf vdev. If this is an 2501 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2502 * specified, as long as they are well-formed. 2503 */ 2504 static int 2505 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2506 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2507 vdev_labeltype_t label) 2508 { 2509 nvlist_t **dev; 2510 uint_t i, ndev; 2511 vdev_t *vd; 2512 int error; 2513 2514 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2515 2516 /* 2517 * It's acceptable to have no devs specified. 2518 */ 2519 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2520 return (0); 2521 2522 if (ndev == 0) 2523 return (EINVAL); 2524 2525 /* 2526 * Make sure the pool is formatted with a version that supports this 2527 * device type. 2528 */ 2529 if (spa_version(spa) < version) 2530 return (ENOTSUP); 2531 2532 /* 2533 * Set the pending device list so we correctly handle device in-use 2534 * checking. 2535 */ 2536 sav->sav_pending = dev; 2537 sav->sav_npending = ndev; 2538 2539 for (i = 0; i < ndev; i++) { 2540 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2541 mode)) != 0) 2542 goto out; 2543 2544 if (!vd->vdev_ops->vdev_op_leaf) { 2545 vdev_free(vd); 2546 error = EINVAL; 2547 goto out; 2548 } 2549 2550 /* 2551 * The L2ARC currently only supports disk devices in 2552 * kernel context. For user-level testing, we allow it. 2553 */ 2554 #ifdef _KERNEL 2555 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2556 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2557 error = ENOTBLK; 2558 goto out; 2559 } 2560 #endif 2561 vd->vdev_top = vd; 2562 2563 if ((error = vdev_open(vd)) == 0 && 2564 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2565 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2566 vd->vdev_guid) == 0); 2567 } 2568 2569 vdev_free(vd); 2570 2571 if (error && 2572 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2573 goto out; 2574 else 2575 error = 0; 2576 } 2577 2578 out: 2579 sav->sav_pending = NULL; 2580 sav->sav_npending = 0; 2581 return (error); 2582 } 2583 2584 static int 2585 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2586 { 2587 int error; 2588 2589 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2590 2591 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2592 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2593 VDEV_LABEL_SPARE)) != 0) { 2594 return (error); 2595 } 2596 2597 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2598 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2599 VDEV_LABEL_L2CACHE)); 2600 } 2601 2602 static void 2603 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2604 const char *config) 2605 { 2606 int i; 2607 2608 if (sav->sav_config != NULL) { 2609 nvlist_t **olddevs; 2610 uint_t oldndevs; 2611 nvlist_t **newdevs; 2612 2613 /* 2614 * Generate new dev list by concatentating with the 2615 * current dev list. 2616 */ 2617 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2618 &olddevs, &oldndevs) == 0); 2619 2620 newdevs = kmem_alloc(sizeof (void *) * 2621 (ndevs + oldndevs), KM_SLEEP); 2622 for (i = 0; i < oldndevs; i++) 2623 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2624 KM_SLEEP) == 0); 2625 for (i = 0; i < ndevs; i++) 2626 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2627 KM_SLEEP) == 0); 2628 2629 VERIFY(nvlist_remove(sav->sav_config, config, 2630 DATA_TYPE_NVLIST_ARRAY) == 0); 2631 2632 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2633 config, newdevs, ndevs + oldndevs) == 0); 2634 for (i = 0; i < oldndevs + ndevs; i++) 2635 nvlist_free(newdevs[i]); 2636 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2637 } else { 2638 /* 2639 * Generate a new dev list. 2640 */ 2641 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2642 KM_SLEEP) == 0); 2643 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2644 devs, ndevs) == 0); 2645 } 2646 } 2647 2648 /* 2649 * Stop and drop level 2 ARC devices 2650 */ 2651 void 2652 spa_l2cache_drop(spa_t *spa) 2653 { 2654 vdev_t *vd; 2655 int i; 2656 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2657 2658 for (i = 0; i < sav->sav_count; i++) { 2659 uint64_t pool; 2660 2661 vd = sav->sav_vdevs[i]; 2662 ASSERT(vd != NULL); 2663 2664 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2665 pool != 0ULL && l2arc_vdev_present(vd)) 2666 l2arc_remove_vdev(vd); 2667 if (vd->vdev_isl2cache) 2668 spa_l2cache_remove(vd); 2669 vdev_clear_stats(vd); 2670 (void) vdev_close(vd); 2671 } 2672 } 2673 2674 /* 2675 * Pool Creation 2676 */ 2677 int 2678 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2679 const char *history_str, nvlist_t *zplprops) 2680 { 2681 spa_t *spa; 2682 char *altroot = NULL; 2683 vdev_t *rvd; 2684 dsl_pool_t *dp; 2685 dmu_tx_t *tx; 2686 int error = 0; 2687 uint64_t txg = TXG_INITIAL; 2688 nvlist_t **spares, **l2cache; 2689 uint_t nspares, nl2cache; 2690 uint64_t version; 2691 2692 /* 2693 * If this pool already exists, return failure. 2694 */ 2695 mutex_enter(&spa_namespace_lock); 2696 if (spa_lookup(pool) != NULL) { 2697 mutex_exit(&spa_namespace_lock); 2698 return (EEXIST); 2699 } 2700 2701 /* 2702 * Allocate a new spa_t structure. 2703 */ 2704 (void) nvlist_lookup_string(props, 2705 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2706 spa = spa_add(pool, NULL, altroot); 2707 spa_activate(spa, spa_mode_global); 2708 2709 if (props && (error = spa_prop_validate(spa, props))) { 2710 spa_deactivate(spa); 2711 spa_remove(spa); 2712 mutex_exit(&spa_namespace_lock); 2713 return (error); 2714 } 2715 2716 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2717 &version) != 0) 2718 version = SPA_VERSION; 2719 ASSERT(version <= SPA_VERSION); 2720 2721 spa->spa_first_txg = txg; 2722 spa->spa_uberblock.ub_txg = txg - 1; 2723 spa->spa_uberblock.ub_version = version; 2724 spa->spa_ubsync = spa->spa_uberblock; 2725 2726 /* 2727 * Create "The Godfather" zio to hold all async IOs 2728 */ 2729 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2730 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2731 2732 /* 2733 * Create the root vdev. 2734 */ 2735 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2736 2737 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2738 2739 ASSERT(error != 0 || rvd != NULL); 2740 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2741 2742 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2743 error = EINVAL; 2744 2745 if (error == 0 && 2746 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2747 (error = spa_validate_aux(spa, nvroot, txg, 2748 VDEV_ALLOC_ADD)) == 0) { 2749 for (int c = 0; c < rvd->vdev_children; c++) { 2750 vdev_metaslab_set_size(rvd->vdev_child[c]); 2751 vdev_expand(rvd->vdev_child[c], txg); 2752 } 2753 } 2754 2755 spa_config_exit(spa, SCL_ALL, FTAG); 2756 2757 if (error != 0) { 2758 spa_unload(spa); 2759 spa_deactivate(spa); 2760 spa_remove(spa); 2761 mutex_exit(&spa_namespace_lock); 2762 return (error); 2763 } 2764 2765 /* 2766 * Get the list of spares, if specified. 2767 */ 2768 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2769 &spares, &nspares) == 0) { 2770 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2771 KM_SLEEP) == 0); 2772 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2773 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2774 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2775 spa_load_spares(spa); 2776 spa_config_exit(spa, SCL_ALL, FTAG); 2777 spa->spa_spares.sav_sync = B_TRUE; 2778 } 2779 2780 /* 2781 * Get the list of level 2 cache devices, if specified. 2782 */ 2783 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2784 &l2cache, &nl2cache) == 0) { 2785 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2786 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2787 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2788 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2789 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2790 spa_load_l2cache(spa); 2791 spa_config_exit(spa, SCL_ALL, FTAG); 2792 spa->spa_l2cache.sav_sync = B_TRUE; 2793 } 2794 2795 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2796 spa->spa_meta_objset = dp->dp_meta_objset; 2797 2798 /* 2799 * Create DDTs (dedup tables). 2800 */ 2801 ddt_create(spa); 2802 2803 spa_update_dspace(spa); 2804 2805 tx = dmu_tx_create_assigned(dp, txg); 2806 2807 /* 2808 * Create the pool config object. 2809 */ 2810 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2811 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2812 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2813 2814 if (zap_add(spa->spa_meta_objset, 2815 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2816 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2817 cmn_err(CE_PANIC, "failed to add pool config"); 2818 } 2819 2820 if (zap_add(spa->spa_meta_objset, 2821 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 2822 sizeof (uint64_t), 1, &version, tx) != 0) { 2823 cmn_err(CE_PANIC, "failed to add pool version"); 2824 } 2825 2826 /* Newly created pools with the right version are always deflated. */ 2827 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2828 spa->spa_deflate = TRUE; 2829 if (zap_add(spa->spa_meta_objset, 2830 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2831 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2832 cmn_err(CE_PANIC, "failed to add deflate"); 2833 } 2834 } 2835 2836 /* 2837 * Create the deferred-free bplist object. Turn off compression 2838 * because sync-to-convergence takes longer if the blocksize 2839 * keeps changing. 2840 */ 2841 spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset, 2842 1 << 14, tx); 2843 dmu_object_set_compress(spa->spa_meta_objset, 2844 spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx); 2845 2846 if (zap_add(spa->spa_meta_objset, 2847 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2848 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) { 2849 cmn_err(CE_PANIC, "failed to add bplist"); 2850 } 2851 2852 /* 2853 * Create the pool's history object. 2854 */ 2855 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2856 spa_history_create_obj(spa, tx); 2857 2858 /* 2859 * Set pool properties. 2860 */ 2861 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2862 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2863 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2864 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2865 2866 if (props != NULL) { 2867 spa_configfile_set(spa, props, B_FALSE); 2868 spa_sync_props(spa, props, tx); 2869 } 2870 2871 dmu_tx_commit(tx); 2872 2873 spa->spa_sync_on = B_TRUE; 2874 txg_sync_start(spa->spa_dsl_pool); 2875 2876 /* 2877 * We explicitly wait for the first transaction to complete so that our 2878 * bean counters are appropriately updated. 2879 */ 2880 txg_wait_synced(spa->spa_dsl_pool, txg); 2881 2882 spa_config_sync(spa, B_FALSE, B_TRUE); 2883 2884 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2885 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2886 spa_history_log_version(spa, LOG_POOL_CREATE); 2887 2888 spa->spa_minref = refcount_count(&spa->spa_refcount); 2889 2890 mutex_exit(&spa_namespace_lock); 2891 2892 return (0); 2893 } 2894 2895 #ifdef _KERNEL 2896 /* 2897 * Get the root pool information from the root disk, then import the root pool 2898 * during the system boot up time. 2899 */ 2900 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2901 2902 static nvlist_t * 2903 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2904 { 2905 nvlist_t *config; 2906 nvlist_t *nvtop, *nvroot; 2907 uint64_t pgid; 2908 2909 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2910 return (NULL); 2911 2912 /* 2913 * Add this top-level vdev to the child array. 2914 */ 2915 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2916 &nvtop) == 0); 2917 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2918 &pgid) == 0); 2919 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2920 2921 /* 2922 * Put this pool's top-level vdevs into a root vdev. 2923 */ 2924 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2925 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2926 VDEV_TYPE_ROOT) == 0); 2927 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2928 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2929 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2930 &nvtop, 1) == 0); 2931 2932 /* 2933 * Replace the existing vdev_tree with the new root vdev in 2934 * this pool's configuration (remove the old, add the new). 2935 */ 2936 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2937 nvlist_free(nvroot); 2938 return (config); 2939 } 2940 2941 /* 2942 * Walk the vdev tree and see if we can find a device with "better" 2943 * configuration. A configuration is "better" if the label on that 2944 * device has a more recent txg. 2945 */ 2946 static void 2947 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2948 { 2949 for (int c = 0; c < vd->vdev_children; c++) 2950 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2951 2952 if (vd->vdev_ops->vdev_op_leaf) { 2953 nvlist_t *label; 2954 uint64_t label_txg; 2955 2956 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2957 &label) != 0) 2958 return; 2959 2960 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2961 &label_txg) == 0); 2962 2963 /* 2964 * Do we have a better boot device? 2965 */ 2966 if (label_txg > *txg) { 2967 *txg = label_txg; 2968 *avd = vd; 2969 } 2970 nvlist_free(label); 2971 } 2972 } 2973 2974 /* 2975 * Import a root pool. 2976 * 2977 * For x86. devpath_list will consist of devid and/or physpath name of 2978 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2979 * The GRUB "findroot" command will return the vdev we should boot. 2980 * 2981 * For Sparc, devpath_list consists the physpath name of the booting device 2982 * no matter the rootpool is a single device pool or a mirrored pool. 2983 * e.g. 2984 * "/pci@1f,0/ide@d/disk@0,0:a" 2985 */ 2986 int 2987 spa_import_rootpool(char *devpath, char *devid) 2988 { 2989 spa_t *spa; 2990 vdev_t *rvd, *bvd, *avd = NULL; 2991 nvlist_t *config, *nvtop; 2992 uint64_t guid, txg; 2993 char *pname; 2994 int error; 2995 2996 /* 2997 * Read the label from the boot device and generate a configuration. 2998 */ 2999 config = spa_generate_rootconf(devpath, devid, &guid); 3000 #if defined(_OBP) && defined(_KERNEL) 3001 if (config == NULL) { 3002 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3003 /* iscsi boot */ 3004 get_iscsi_bootpath_phy(devpath); 3005 config = spa_generate_rootconf(devpath, devid, &guid); 3006 } 3007 } 3008 #endif 3009 if (config == NULL) { 3010 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 3011 devpath); 3012 return (EIO); 3013 } 3014 3015 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3016 &pname) == 0); 3017 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3018 3019 mutex_enter(&spa_namespace_lock); 3020 if ((spa = spa_lookup(pname)) != NULL) { 3021 /* 3022 * Remove the existing root pool from the namespace so that we 3023 * can replace it with the correct config we just read in. 3024 */ 3025 spa_remove(spa); 3026 } 3027 3028 spa = spa_add(pname, config, NULL); 3029 spa->spa_is_root = B_TRUE; 3030 spa->spa_load_verbatim = B_TRUE; 3031 3032 /* 3033 * Build up a vdev tree based on the boot device's label config. 3034 */ 3035 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3036 &nvtop) == 0); 3037 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3038 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3039 VDEV_ALLOC_ROOTPOOL); 3040 spa_config_exit(spa, SCL_ALL, FTAG); 3041 if (error) { 3042 mutex_exit(&spa_namespace_lock); 3043 nvlist_free(config); 3044 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3045 pname); 3046 return (error); 3047 } 3048 3049 /* 3050 * Get the boot vdev. 3051 */ 3052 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3053 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3054 (u_longlong_t)guid); 3055 error = ENOENT; 3056 goto out; 3057 } 3058 3059 /* 3060 * Determine if there is a better boot device. 3061 */ 3062 avd = bvd; 3063 spa_alt_rootvdev(rvd, &avd, &txg); 3064 if (avd != bvd) { 3065 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3066 "try booting from '%s'", avd->vdev_path); 3067 error = EINVAL; 3068 goto out; 3069 } 3070 3071 /* 3072 * If the boot device is part of a spare vdev then ensure that 3073 * we're booting off the active spare. 3074 */ 3075 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3076 !bvd->vdev_isspare) { 3077 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3078 "try booting from '%s'", 3079 bvd->vdev_parent->vdev_child[1]->vdev_path); 3080 error = EINVAL; 3081 goto out; 3082 } 3083 3084 error = 0; 3085 spa_history_log_version(spa, LOG_POOL_IMPORT); 3086 out: 3087 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3088 vdev_free(rvd); 3089 spa_config_exit(spa, SCL_ALL, FTAG); 3090 mutex_exit(&spa_namespace_lock); 3091 3092 nvlist_free(config); 3093 return (error); 3094 } 3095 3096 #endif 3097 3098 /* 3099 * Take a pool and insert it into the namespace as if it had been loaded at 3100 * boot. 3101 */ 3102 int 3103 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 3104 { 3105 spa_t *spa; 3106 char *altroot = NULL; 3107 3108 mutex_enter(&spa_namespace_lock); 3109 if (spa_lookup(pool) != NULL) { 3110 mutex_exit(&spa_namespace_lock); 3111 return (EEXIST); 3112 } 3113 3114 (void) nvlist_lookup_string(props, 3115 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3116 spa = spa_add(pool, config, altroot); 3117 3118 spa->spa_load_verbatim = B_TRUE; 3119 3120 if (props != NULL) 3121 spa_configfile_set(spa, props, B_FALSE); 3122 3123 spa_config_sync(spa, B_FALSE, B_TRUE); 3124 3125 mutex_exit(&spa_namespace_lock); 3126 spa_history_log_version(spa, LOG_POOL_IMPORT); 3127 3128 return (0); 3129 } 3130 3131 /* 3132 * Import a non-root pool into the system. 3133 */ 3134 int 3135 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 3136 { 3137 spa_t *spa; 3138 char *altroot = NULL; 3139 spa_load_state_t state = SPA_LOAD_IMPORT; 3140 zpool_rewind_policy_t policy; 3141 int error; 3142 nvlist_t *nvroot; 3143 nvlist_t **spares, **l2cache; 3144 uint_t nspares, nl2cache; 3145 3146 /* 3147 * If a pool with this name exists, return failure. 3148 */ 3149 mutex_enter(&spa_namespace_lock); 3150 if (spa_lookup(pool) != NULL) { 3151 mutex_exit(&spa_namespace_lock); 3152 return (EEXIST); 3153 } 3154 3155 zpool_get_rewind_policy(config, &policy); 3156 if (policy.zrp_request & ZPOOL_DO_REWIND) 3157 state = SPA_LOAD_RECOVER; 3158 3159 /* 3160 * Create and initialize the spa structure. 3161 */ 3162 (void) nvlist_lookup_string(props, 3163 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3164 spa = spa_add(pool, config, altroot); 3165 spa_activate(spa, spa_mode_global); 3166 3167 /* 3168 * Don't start async tasks until we know everything is healthy. 3169 */ 3170 spa_async_suspend(spa); 3171 3172 /* 3173 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3174 * because the user-supplied config is actually the one to trust when 3175 * doing an import. 3176 */ 3177 if (state != SPA_LOAD_RECOVER) 3178 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3179 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3180 policy.zrp_request); 3181 3182 /* 3183 * Propagate anything learned about failing or best txgs 3184 * back to caller 3185 */ 3186 spa_rewind_data_to_nvlist(spa, config); 3187 3188 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3189 /* 3190 * Toss any existing sparelist, as it doesn't have any validity 3191 * anymore, and conflicts with spa_has_spare(). 3192 */ 3193 if (spa->spa_spares.sav_config) { 3194 nvlist_free(spa->spa_spares.sav_config); 3195 spa->spa_spares.sav_config = NULL; 3196 spa_load_spares(spa); 3197 } 3198 if (spa->spa_l2cache.sav_config) { 3199 nvlist_free(spa->spa_l2cache.sav_config); 3200 spa->spa_l2cache.sav_config = NULL; 3201 spa_load_l2cache(spa); 3202 } 3203 3204 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3205 &nvroot) == 0); 3206 if (error == 0) 3207 error = spa_validate_aux(spa, nvroot, -1ULL, 3208 VDEV_ALLOC_SPARE); 3209 if (error == 0) 3210 error = spa_validate_aux(spa, nvroot, -1ULL, 3211 VDEV_ALLOC_L2CACHE); 3212 spa_config_exit(spa, SCL_ALL, FTAG); 3213 3214 if (props != NULL) 3215 spa_configfile_set(spa, props, B_FALSE); 3216 3217 if (error != 0 || (props && spa_writeable(spa) && 3218 (error = spa_prop_set(spa, props)))) { 3219 spa_unload(spa); 3220 spa_deactivate(spa); 3221 spa_remove(spa); 3222 mutex_exit(&spa_namespace_lock); 3223 return (error); 3224 } 3225 3226 /* 3227 * Override any spares and level 2 cache devices as specified by 3228 * the user, as these may have correct device names/devids, etc. 3229 */ 3230 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3231 &spares, &nspares) == 0) { 3232 if (spa->spa_spares.sav_config) 3233 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3234 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3235 else 3236 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3237 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3238 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3239 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3240 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3241 spa_load_spares(spa); 3242 spa_config_exit(spa, SCL_ALL, FTAG); 3243 spa->spa_spares.sav_sync = B_TRUE; 3244 } 3245 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3246 &l2cache, &nl2cache) == 0) { 3247 if (spa->spa_l2cache.sav_config) 3248 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3249 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3250 else 3251 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3252 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3253 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3254 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3255 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3256 spa_load_l2cache(spa); 3257 spa_config_exit(spa, SCL_ALL, FTAG); 3258 spa->spa_l2cache.sav_sync = B_TRUE; 3259 } 3260 3261 /* 3262 * Check for any removed devices. 3263 */ 3264 if (spa->spa_autoreplace) { 3265 spa_aux_check_removed(&spa->spa_spares); 3266 spa_aux_check_removed(&spa->spa_l2cache); 3267 } 3268 3269 if (spa_writeable(spa)) { 3270 /* 3271 * Update the config cache to include the newly-imported pool. 3272 */ 3273 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3274 } 3275 3276 spa_async_resume(spa); 3277 3278 /* 3279 * It's possible that the pool was expanded while it was exported. 3280 * We kick off an async task to handle this for us. 3281 */ 3282 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3283 3284 mutex_exit(&spa_namespace_lock); 3285 spa_history_log_version(spa, LOG_POOL_IMPORT); 3286 3287 return (0); 3288 } 3289 3290 nvlist_t * 3291 spa_tryimport(nvlist_t *tryconfig) 3292 { 3293 nvlist_t *config = NULL; 3294 char *poolname; 3295 spa_t *spa; 3296 uint64_t state; 3297 int error; 3298 3299 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3300 return (NULL); 3301 3302 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3303 return (NULL); 3304 3305 /* 3306 * Create and initialize the spa structure. 3307 */ 3308 mutex_enter(&spa_namespace_lock); 3309 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3310 spa_activate(spa, FREAD); 3311 3312 /* 3313 * Pass off the heavy lifting to spa_load(). 3314 * Pass TRUE for mosconfig because the user-supplied config 3315 * is actually the one to trust when doing an import. 3316 */ 3317 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3318 3319 /* 3320 * If 'tryconfig' was at least parsable, return the current config. 3321 */ 3322 if (spa->spa_root_vdev != NULL) { 3323 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3324 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3325 poolname) == 0); 3326 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3327 state) == 0); 3328 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3329 spa->spa_uberblock.ub_timestamp) == 0); 3330 3331 /* 3332 * If the bootfs property exists on this pool then we 3333 * copy it out so that external consumers can tell which 3334 * pools are bootable. 3335 */ 3336 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3337 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3338 3339 /* 3340 * We have to play games with the name since the 3341 * pool was opened as TRYIMPORT_NAME. 3342 */ 3343 if (dsl_dsobj_to_dsname(spa_name(spa), 3344 spa->spa_bootfs, tmpname) == 0) { 3345 char *cp; 3346 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3347 3348 cp = strchr(tmpname, '/'); 3349 if (cp == NULL) { 3350 (void) strlcpy(dsname, tmpname, 3351 MAXPATHLEN); 3352 } else { 3353 (void) snprintf(dsname, MAXPATHLEN, 3354 "%s/%s", poolname, ++cp); 3355 } 3356 VERIFY(nvlist_add_string(config, 3357 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3358 kmem_free(dsname, MAXPATHLEN); 3359 } 3360 kmem_free(tmpname, MAXPATHLEN); 3361 } 3362 3363 /* 3364 * Add the list of hot spares and level 2 cache devices. 3365 */ 3366 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3367 spa_add_spares(spa, config); 3368 spa_add_l2cache(spa, config); 3369 spa_config_exit(spa, SCL_CONFIG, FTAG); 3370 } 3371 3372 spa_unload(spa); 3373 spa_deactivate(spa); 3374 spa_remove(spa); 3375 mutex_exit(&spa_namespace_lock); 3376 3377 return (config); 3378 } 3379 3380 /* 3381 * Pool export/destroy 3382 * 3383 * The act of destroying or exporting a pool is very simple. We make sure there 3384 * is no more pending I/O and any references to the pool are gone. Then, we 3385 * update the pool state and sync all the labels to disk, removing the 3386 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3387 * we don't sync the labels or remove the configuration cache. 3388 */ 3389 static int 3390 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3391 boolean_t force, boolean_t hardforce) 3392 { 3393 spa_t *spa; 3394 3395 if (oldconfig) 3396 *oldconfig = NULL; 3397 3398 if (!(spa_mode_global & FWRITE)) 3399 return (EROFS); 3400 3401 mutex_enter(&spa_namespace_lock); 3402 if ((spa = spa_lookup(pool)) == NULL) { 3403 mutex_exit(&spa_namespace_lock); 3404 return (ENOENT); 3405 } 3406 3407 /* 3408 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3409 * reacquire the namespace lock, and see if we can export. 3410 */ 3411 spa_open_ref(spa, FTAG); 3412 mutex_exit(&spa_namespace_lock); 3413 spa_async_suspend(spa); 3414 mutex_enter(&spa_namespace_lock); 3415 spa_close(spa, FTAG); 3416 3417 /* 3418 * The pool will be in core if it's openable, 3419 * in which case we can modify its state. 3420 */ 3421 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3422 /* 3423 * Objsets may be open only because they're dirty, so we 3424 * have to force it to sync before checking spa_refcnt. 3425 */ 3426 txg_wait_synced(spa->spa_dsl_pool, 0); 3427 3428 /* 3429 * A pool cannot be exported or destroyed if there are active 3430 * references. If we are resetting a pool, allow references by 3431 * fault injection handlers. 3432 */ 3433 if (!spa_refcount_zero(spa) || 3434 (spa->spa_inject_ref != 0 && 3435 new_state != POOL_STATE_UNINITIALIZED)) { 3436 spa_async_resume(spa); 3437 mutex_exit(&spa_namespace_lock); 3438 return (EBUSY); 3439 } 3440 3441 /* 3442 * A pool cannot be exported if it has an active shared spare. 3443 * This is to prevent other pools stealing the active spare 3444 * from an exported pool. At user's own will, such pool can 3445 * be forcedly exported. 3446 */ 3447 if (!force && new_state == POOL_STATE_EXPORTED && 3448 spa_has_active_shared_spare(spa)) { 3449 spa_async_resume(spa); 3450 mutex_exit(&spa_namespace_lock); 3451 return (EXDEV); 3452 } 3453 3454 /* 3455 * We want this to be reflected on every label, 3456 * so mark them all dirty. spa_unload() will do the 3457 * final sync that pushes these changes out. 3458 */ 3459 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3460 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3461 spa->spa_state = new_state; 3462 spa->spa_final_txg = spa_last_synced_txg(spa) + 3463 TXG_DEFER_SIZE + 1; 3464 vdev_config_dirty(spa->spa_root_vdev); 3465 spa_config_exit(spa, SCL_ALL, FTAG); 3466 } 3467 } 3468 3469 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3470 3471 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3472 spa_unload(spa); 3473 spa_deactivate(spa); 3474 } 3475 3476 if (oldconfig && spa->spa_config) 3477 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3478 3479 if (new_state != POOL_STATE_UNINITIALIZED) { 3480 if (!hardforce) 3481 spa_config_sync(spa, B_TRUE, B_TRUE); 3482 spa_remove(spa); 3483 } 3484 mutex_exit(&spa_namespace_lock); 3485 3486 return (0); 3487 } 3488 3489 /* 3490 * Destroy a storage pool. 3491 */ 3492 int 3493 spa_destroy(char *pool) 3494 { 3495 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3496 B_FALSE, B_FALSE)); 3497 } 3498 3499 /* 3500 * Export a storage pool. 3501 */ 3502 int 3503 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3504 boolean_t hardforce) 3505 { 3506 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3507 force, hardforce)); 3508 } 3509 3510 /* 3511 * Similar to spa_export(), this unloads the spa_t without actually removing it 3512 * from the namespace in any way. 3513 */ 3514 int 3515 spa_reset(char *pool) 3516 { 3517 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3518 B_FALSE, B_FALSE)); 3519 } 3520 3521 /* 3522 * ========================================================================== 3523 * Device manipulation 3524 * ========================================================================== 3525 */ 3526 3527 /* 3528 * Add a device to a storage pool. 3529 */ 3530 int 3531 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3532 { 3533 uint64_t txg, id; 3534 int error; 3535 vdev_t *rvd = spa->spa_root_vdev; 3536 vdev_t *vd, *tvd; 3537 nvlist_t **spares, **l2cache; 3538 uint_t nspares, nl2cache; 3539 3540 txg = spa_vdev_enter(spa); 3541 3542 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3543 VDEV_ALLOC_ADD)) != 0) 3544 return (spa_vdev_exit(spa, NULL, txg, error)); 3545 3546 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3547 3548 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3549 &nspares) != 0) 3550 nspares = 0; 3551 3552 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3553 &nl2cache) != 0) 3554 nl2cache = 0; 3555 3556 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3557 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3558 3559 if (vd->vdev_children != 0 && 3560 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3561 return (spa_vdev_exit(spa, vd, txg, error)); 3562 3563 /* 3564 * We must validate the spares and l2cache devices after checking the 3565 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3566 */ 3567 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3568 return (spa_vdev_exit(spa, vd, txg, error)); 3569 3570 /* 3571 * Transfer each new top-level vdev from vd to rvd. 3572 */ 3573 for (int c = 0; c < vd->vdev_children; c++) { 3574 3575 /* 3576 * Set the vdev id to the first hole, if one exists. 3577 */ 3578 for (id = 0; id < rvd->vdev_children; id++) { 3579 if (rvd->vdev_child[id]->vdev_ishole) { 3580 vdev_free(rvd->vdev_child[id]); 3581 break; 3582 } 3583 } 3584 tvd = vd->vdev_child[c]; 3585 vdev_remove_child(vd, tvd); 3586 tvd->vdev_id = id; 3587 vdev_add_child(rvd, tvd); 3588 vdev_config_dirty(tvd); 3589 } 3590 3591 if (nspares != 0) { 3592 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3593 ZPOOL_CONFIG_SPARES); 3594 spa_load_spares(spa); 3595 spa->spa_spares.sav_sync = B_TRUE; 3596 } 3597 3598 if (nl2cache != 0) { 3599 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3600 ZPOOL_CONFIG_L2CACHE); 3601 spa_load_l2cache(spa); 3602 spa->spa_l2cache.sav_sync = B_TRUE; 3603 } 3604 3605 /* 3606 * We have to be careful when adding new vdevs to an existing pool. 3607 * If other threads start allocating from these vdevs before we 3608 * sync the config cache, and we lose power, then upon reboot we may 3609 * fail to open the pool because there are DVAs that the config cache 3610 * can't translate. Therefore, we first add the vdevs without 3611 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3612 * and then let spa_config_update() initialize the new metaslabs. 3613 * 3614 * spa_load() checks for added-but-not-initialized vdevs, so that 3615 * if we lose power at any point in this sequence, the remaining 3616 * steps will be completed the next time we load the pool. 3617 */ 3618 (void) spa_vdev_exit(spa, vd, txg, 0); 3619 3620 mutex_enter(&spa_namespace_lock); 3621 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3622 mutex_exit(&spa_namespace_lock); 3623 3624 return (0); 3625 } 3626 3627 /* 3628 * Attach a device to a mirror. The arguments are the path to any device 3629 * in the mirror, and the nvroot for the new device. If the path specifies 3630 * a device that is not mirrored, we automatically insert the mirror vdev. 3631 * 3632 * If 'replacing' is specified, the new device is intended to replace the 3633 * existing device; in this case the two devices are made into their own 3634 * mirror using the 'replacing' vdev, which is functionally identical to 3635 * the mirror vdev (it actually reuses all the same ops) but has a few 3636 * extra rules: you can't attach to it after it's been created, and upon 3637 * completion of resilvering, the first disk (the one being replaced) 3638 * is automatically detached. 3639 */ 3640 int 3641 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3642 { 3643 uint64_t txg, dtl_max_txg; 3644 vdev_t *rvd = spa->spa_root_vdev; 3645 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3646 vdev_ops_t *pvops; 3647 char *oldvdpath, *newvdpath; 3648 int newvd_isspare; 3649 int error; 3650 3651 txg = spa_vdev_enter(spa); 3652 3653 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3654 3655 if (oldvd == NULL) 3656 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3657 3658 if (!oldvd->vdev_ops->vdev_op_leaf) 3659 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3660 3661 pvd = oldvd->vdev_parent; 3662 3663 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3664 VDEV_ALLOC_ADD)) != 0) 3665 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3666 3667 if (newrootvd->vdev_children != 1) 3668 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3669 3670 newvd = newrootvd->vdev_child[0]; 3671 3672 if (!newvd->vdev_ops->vdev_op_leaf) 3673 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3674 3675 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3676 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3677 3678 /* 3679 * Spares can't replace logs 3680 */ 3681 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3682 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3683 3684 if (!replacing) { 3685 /* 3686 * For attach, the only allowable parent is a mirror or the root 3687 * vdev. 3688 */ 3689 if (pvd->vdev_ops != &vdev_mirror_ops && 3690 pvd->vdev_ops != &vdev_root_ops) 3691 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3692 3693 pvops = &vdev_mirror_ops; 3694 } else { 3695 /* 3696 * Active hot spares can only be replaced by inactive hot 3697 * spares. 3698 */ 3699 if (pvd->vdev_ops == &vdev_spare_ops && 3700 pvd->vdev_child[1] == oldvd && 3701 !spa_has_spare(spa, newvd->vdev_guid)) 3702 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3703 3704 /* 3705 * If the source is a hot spare, and the parent isn't already a 3706 * spare, then we want to create a new hot spare. Otherwise, we 3707 * want to create a replacing vdev. The user is not allowed to 3708 * attach to a spared vdev child unless the 'isspare' state is 3709 * the same (spare replaces spare, non-spare replaces 3710 * non-spare). 3711 */ 3712 if (pvd->vdev_ops == &vdev_replacing_ops) 3713 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3714 else if (pvd->vdev_ops == &vdev_spare_ops && 3715 newvd->vdev_isspare != oldvd->vdev_isspare) 3716 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3717 else if (pvd->vdev_ops != &vdev_spare_ops && 3718 newvd->vdev_isspare) 3719 pvops = &vdev_spare_ops; 3720 else 3721 pvops = &vdev_replacing_ops; 3722 } 3723 3724 /* 3725 * Make sure the new device is big enough. 3726 */ 3727 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3728 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3729 3730 /* 3731 * The new device cannot have a higher alignment requirement 3732 * than the top-level vdev. 3733 */ 3734 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3735 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3736 3737 /* 3738 * If this is an in-place replacement, update oldvd's path and devid 3739 * to make it distinguishable from newvd, and unopenable from now on. 3740 */ 3741 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3742 spa_strfree(oldvd->vdev_path); 3743 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3744 KM_SLEEP); 3745 (void) sprintf(oldvd->vdev_path, "%s/%s", 3746 newvd->vdev_path, "old"); 3747 if (oldvd->vdev_devid != NULL) { 3748 spa_strfree(oldvd->vdev_devid); 3749 oldvd->vdev_devid = NULL; 3750 } 3751 } 3752 3753 /* 3754 * If the parent is not a mirror, or if we're replacing, insert the new 3755 * mirror/replacing/spare vdev above oldvd. 3756 */ 3757 if (pvd->vdev_ops != pvops) 3758 pvd = vdev_add_parent(oldvd, pvops); 3759 3760 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3761 ASSERT(pvd->vdev_ops == pvops); 3762 ASSERT(oldvd->vdev_parent == pvd); 3763 3764 /* 3765 * Extract the new device from its root and add it to pvd. 3766 */ 3767 vdev_remove_child(newrootvd, newvd); 3768 newvd->vdev_id = pvd->vdev_children; 3769 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3770 vdev_add_child(pvd, newvd); 3771 3772 tvd = newvd->vdev_top; 3773 ASSERT(pvd->vdev_top == tvd); 3774 ASSERT(tvd->vdev_parent == rvd); 3775 3776 vdev_config_dirty(tvd); 3777 3778 /* 3779 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 3780 * for any dmu_sync-ed blocks. It will propagate upward when 3781 * spa_vdev_exit() calls vdev_dtl_reassess(). 3782 */ 3783 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 3784 3785 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 3786 dtl_max_txg - TXG_INITIAL); 3787 3788 if (newvd->vdev_isspare) { 3789 spa_spare_activate(newvd); 3790 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3791 } 3792 3793 oldvdpath = spa_strdup(oldvd->vdev_path); 3794 newvdpath = spa_strdup(newvd->vdev_path); 3795 newvd_isspare = newvd->vdev_isspare; 3796 3797 /* 3798 * Mark newvd's DTL dirty in this txg. 3799 */ 3800 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3801 3802 /* 3803 * Restart the resilver 3804 */ 3805 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 3806 3807 /* 3808 * Commit the config 3809 */ 3810 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 3811 3812 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL, 3813 "%s vdev=%s %s vdev=%s", 3814 replacing && newvd_isspare ? "spare in" : 3815 replacing ? "replace" : "attach", newvdpath, 3816 replacing ? "for" : "to", oldvdpath); 3817 3818 spa_strfree(oldvdpath); 3819 spa_strfree(newvdpath); 3820 3821 return (0); 3822 } 3823 3824 /* 3825 * Detach a device from a mirror or replacing vdev. 3826 * If 'replace_done' is specified, only detach if the parent 3827 * is a replacing vdev. 3828 */ 3829 int 3830 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3831 { 3832 uint64_t txg; 3833 int error; 3834 vdev_t *rvd = spa->spa_root_vdev; 3835 vdev_t *vd, *pvd, *cvd, *tvd; 3836 boolean_t unspare = B_FALSE; 3837 uint64_t unspare_guid; 3838 size_t len; 3839 char *vdpath; 3840 3841 txg = spa_vdev_enter(spa); 3842 3843 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3844 3845 if (vd == NULL) 3846 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3847 3848 if (!vd->vdev_ops->vdev_op_leaf) 3849 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3850 3851 pvd = vd->vdev_parent; 3852 3853 /* 3854 * If the parent/child relationship is not as expected, don't do it. 3855 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3856 * vdev that's replacing B with C. The user's intent in replacing 3857 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3858 * the replace by detaching C, the expected behavior is to end up 3859 * M(A,B). But suppose that right after deciding to detach C, 3860 * the replacement of B completes. We would have M(A,C), and then 3861 * ask to detach C, which would leave us with just A -- not what 3862 * the user wanted. To prevent this, we make sure that the 3863 * parent/child relationship hasn't changed -- in this example, 3864 * that C's parent is still the replacing vdev R. 3865 */ 3866 if (pvd->vdev_guid != pguid && pguid != 0) 3867 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3868 3869 /* 3870 * If replace_done is specified, only remove this device if it's 3871 * the first child of a replacing vdev. For the 'spare' vdev, either 3872 * disk can be removed. 3873 */ 3874 if (replace_done) { 3875 if (pvd->vdev_ops == &vdev_replacing_ops) { 3876 if (vd->vdev_id != 0) 3877 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3878 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3879 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3880 } 3881 } 3882 3883 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3884 spa_version(spa) >= SPA_VERSION_SPARES); 3885 3886 /* 3887 * Only mirror, replacing, and spare vdevs support detach. 3888 */ 3889 if (pvd->vdev_ops != &vdev_replacing_ops && 3890 pvd->vdev_ops != &vdev_mirror_ops && 3891 pvd->vdev_ops != &vdev_spare_ops) 3892 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3893 3894 /* 3895 * If this device has the only valid copy of some data, 3896 * we cannot safely detach it. 3897 */ 3898 if (vdev_dtl_required(vd)) 3899 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3900 3901 ASSERT(pvd->vdev_children >= 2); 3902 3903 /* 3904 * If we are detaching the second disk from a replacing vdev, then 3905 * check to see if we changed the original vdev's path to have "/old" 3906 * at the end in spa_vdev_attach(). If so, undo that change now. 3907 */ 3908 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3909 pvd->vdev_child[0]->vdev_path != NULL && 3910 pvd->vdev_child[1]->vdev_path != NULL) { 3911 ASSERT(pvd->vdev_child[1] == vd); 3912 cvd = pvd->vdev_child[0]; 3913 len = strlen(vd->vdev_path); 3914 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3915 strcmp(cvd->vdev_path + len, "/old") == 0) { 3916 spa_strfree(cvd->vdev_path); 3917 cvd->vdev_path = spa_strdup(vd->vdev_path); 3918 } 3919 } 3920 3921 /* 3922 * If we are detaching the original disk from a spare, then it implies 3923 * that the spare should become a real disk, and be removed from the 3924 * active spare list for the pool. 3925 */ 3926 if (pvd->vdev_ops == &vdev_spare_ops && 3927 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3928 unspare = B_TRUE; 3929 3930 /* 3931 * Erase the disk labels so the disk can be used for other things. 3932 * This must be done after all other error cases are handled, 3933 * but before we disembowel vd (so we can still do I/O to it). 3934 * But if we can't do it, don't treat the error as fatal -- 3935 * it may be that the unwritability of the disk is the reason 3936 * it's being detached! 3937 */ 3938 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3939 3940 /* 3941 * Remove vd from its parent and compact the parent's children. 3942 */ 3943 vdev_remove_child(pvd, vd); 3944 vdev_compact_children(pvd); 3945 3946 /* 3947 * Remember one of the remaining children so we can get tvd below. 3948 */ 3949 cvd = pvd->vdev_child[0]; 3950 3951 /* 3952 * If we need to remove the remaining child from the list of hot spares, 3953 * do it now, marking the vdev as no longer a spare in the process. 3954 * We must do this before vdev_remove_parent(), because that can 3955 * change the GUID if it creates a new toplevel GUID. For a similar 3956 * reason, we must remove the spare now, in the same txg as the detach; 3957 * otherwise someone could attach a new sibling, change the GUID, and 3958 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3959 */ 3960 if (unspare) { 3961 ASSERT(cvd->vdev_isspare); 3962 spa_spare_remove(cvd); 3963 unspare_guid = cvd->vdev_guid; 3964 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3965 } 3966 3967 /* 3968 * If the parent mirror/replacing vdev only has one child, 3969 * the parent is no longer needed. Remove it from the tree. 3970 */ 3971 if (pvd->vdev_children == 1) 3972 vdev_remove_parent(cvd); 3973 3974 /* 3975 * We don't set tvd until now because the parent we just removed 3976 * may have been the previous top-level vdev. 3977 */ 3978 tvd = cvd->vdev_top; 3979 ASSERT(tvd->vdev_parent == rvd); 3980 3981 /* 3982 * Reevaluate the parent vdev state. 3983 */ 3984 vdev_propagate_state(cvd); 3985 3986 /* 3987 * If the 'autoexpand' property is set on the pool then automatically 3988 * try to expand the size of the pool. For example if the device we 3989 * just detached was smaller than the others, it may be possible to 3990 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3991 * first so that we can obtain the updated sizes of the leaf vdevs. 3992 */ 3993 if (spa->spa_autoexpand) { 3994 vdev_reopen(tvd); 3995 vdev_expand(tvd, txg); 3996 } 3997 3998 vdev_config_dirty(tvd); 3999 4000 /* 4001 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4002 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4003 * But first make sure we're not on any *other* txg's DTL list, to 4004 * prevent vd from being accessed after it's freed. 4005 */ 4006 vdpath = spa_strdup(vd->vdev_path); 4007 for (int t = 0; t < TXG_SIZE; t++) 4008 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4009 vd->vdev_detached = B_TRUE; 4010 vdev_dirty(tvd, VDD_DTL, vd, txg); 4011 4012 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4013 4014 error = spa_vdev_exit(spa, vd, txg, 0); 4015 4016 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL, 4017 "vdev=%s", vdpath); 4018 spa_strfree(vdpath); 4019 4020 /* 4021 * If this was the removal of the original device in a hot spare vdev, 4022 * then we want to go through and remove the device from the hot spare 4023 * list of every other pool. 4024 */ 4025 if (unspare) { 4026 spa_t *myspa = spa; 4027 spa = NULL; 4028 mutex_enter(&spa_namespace_lock); 4029 while ((spa = spa_next(spa)) != NULL) { 4030 if (spa->spa_state != POOL_STATE_ACTIVE) 4031 continue; 4032 if (spa == myspa) 4033 continue; 4034 spa_open_ref(spa, FTAG); 4035 mutex_exit(&spa_namespace_lock); 4036 (void) spa_vdev_remove(spa, unspare_guid, 4037 B_TRUE); 4038 mutex_enter(&spa_namespace_lock); 4039 spa_close(spa, FTAG); 4040 } 4041 mutex_exit(&spa_namespace_lock); 4042 } 4043 4044 return (error); 4045 } 4046 4047 /* 4048 * Split a set of devices from their mirrors, and create a new pool from them. 4049 */ 4050 int 4051 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4052 nvlist_t *props, boolean_t exp) 4053 { 4054 int error = 0; 4055 uint64_t txg, *glist; 4056 spa_t *newspa; 4057 uint_t c, children, lastlog; 4058 nvlist_t **child, *nvl, *tmp; 4059 dmu_tx_t *tx; 4060 char *altroot = NULL; 4061 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4062 boolean_t activate_slog; 4063 4064 if (!spa_writeable(spa)) 4065 return (EROFS); 4066 4067 txg = spa_vdev_enter(spa); 4068 4069 /* clear the log and flush everything up to now */ 4070 activate_slog = spa_passivate_log(spa); 4071 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4072 error = spa_offline_log(spa); 4073 txg = spa_vdev_config_enter(spa); 4074 4075 if (activate_slog) 4076 spa_activate_log(spa); 4077 4078 if (error != 0) 4079 return (spa_vdev_exit(spa, NULL, txg, error)); 4080 4081 /* check new spa name before going any further */ 4082 if (spa_lookup(newname) != NULL) 4083 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4084 4085 /* 4086 * scan through all the children to ensure they're all mirrors 4087 */ 4088 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4089 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4090 &children) != 0) 4091 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4092 4093 /* first, check to ensure we've got the right child count */ 4094 rvd = spa->spa_root_vdev; 4095 lastlog = 0; 4096 for (c = 0; c < rvd->vdev_children; c++) { 4097 vdev_t *vd = rvd->vdev_child[c]; 4098 4099 /* don't count the holes & logs as children */ 4100 if (vd->vdev_islog || vd->vdev_ishole) { 4101 if (lastlog == 0) 4102 lastlog = c; 4103 continue; 4104 } 4105 4106 lastlog = 0; 4107 } 4108 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4109 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4110 4111 /* next, ensure no spare or cache devices are part of the split */ 4112 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4113 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4114 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4115 4116 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4117 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4118 4119 /* then, loop over each vdev and validate it */ 4120 for (c = 0; c < children; c++) { 4121 uint64_t is_hole = 0; 4122 4123 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4124 &is_hole); 4125 4126 if (is_hole != 0) { 4127 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4128 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4129 continue; 4130 } else { 4131 error = EINVAL; 4132 break; 4133 } 4134 } 4135 4136 /* which disk is going to be split? */ 4137 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4138 &glist[c]) != 0) { 4139 error = EINVAL; 4140 break; 4141 } 4142 4143 /* look it up in the spa */ 4144 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4145 if (vml[c] == NULL) { 4146 error = ENODEV; 4147 break; 4148 } 4149 4150 /* make sure there's nothing stopping the split */ 4151 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4152 vml[c]->vdev_islog || 4153 vml[c]->vdev_ishole || 4154 vml[c]->vdev_isspare || 4155 vml[c]->vdev_isl2cache || 4156 !vdev_writeable(vml[c]) || 4157 vml[c]->vdev_children != 0 || 4158 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4159 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4160 error = EINVAL; 4161 break; 4162 } 4163 4164 if (vdev_dtl_required(vml[c])) { 4165 error = EBUSY; 4166 break; 4167 } 4168 4169 /* we need certain info from the top level */ 4170 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4171 vml[c]->vdev_top->vdev_ms_array) == 0); 4172 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4173 vml[c]->vdev_top->vdev_ms_shift) == 0); 4174 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4175 vml[c]->vdev_top->vdev_asize) == 0); 4176 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4177 vml[c]->vdev_top->vdev_ashift) == 0); 4178 } 4179 4180 if (error != 0) { 4181 kmem_free(vml, children * sizeof (vdev_t *)); 4182 kmem_free(glist, children * sizeof (uint64_t)); 4183 return (spa_vdev_exit(spa, NULL, txg, error)); 4184 } 4185 4186 /* stop writers from using the disks */ 4187 for (c = 0; c < children; c++) { 4188 if (vml[c] != NULL) 4189 vml[c]->vdev_offline = B_TRUE; 4190 } 4191 vdev_reopen(spa->spa_root_vdev); 4192 4193 /* 4194 * Temporarily record the splitting vdevs in the spa config. This 4195 * will disappear once the config is regenerated. 4196 */ 4197 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4198 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4199 glist, children) == 0); 4200 kmem_free(glist, children * sizeof (uint64_t)); 4201 4202 mutex_enter(&spa->spa_props_lock); 4203 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4204 nvl) == 0); 4205 mutex_exit(&spa->spa_props_lock); 4206 spa->spa_config_splitting = nvl; 4207 vdev_config_dirty(spa->spa_root_vdev); 4208 4209 /* configure and create the new pool */ 4210 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4211 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4212 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4213 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4214 spa_version(spa)) == 0); 4215 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4216 spa->spa_config_txg) == 0); 4217 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4218 spa_generate_guid(NULL)) == 0); 4219 (void) nvlist_lookup_string(props, 4220 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4221 4222 /* add the new pool to the namespace */ 4223 newspa = spa_add(newname, config, altroot); 4224 newspa->spa_config_txg = spa->spa_config_txg; 4225 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4226 4227 /* release the spa config lock, retaining the namespace lock */ 4228 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4229 4230 if (zio_injection_enabled) 4231 zio_handle_panic_injection(spa, FTAG, 1); 4232 4233 spa_activate(newspa, spa_mode_global); 4234 spa_async_suspend(newspa); 4235 4236 /* create the new pool from the disks of the original pool */ 4237 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4238 if (error) 4239 goto out; 4240 4241 /* if that worked, generate a real config for the new pool */ 4242 if (newspa->spa_root_vdev != NULL) { 4243 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4244 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4245 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4246 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4247 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4248 B_TRUE)); 4249 } 4250 4251 /* set the props */ 4252 if (props != NULL) { 4253 spa_configfile_set(newspa, props, B_FALSE); 4254 error = spa_prop_set(newspa, props); 4255 if (error) 4256 goto out; 4257 } 4258 4259 /* flush everything */ 4260 txg = spa_vdev_config_enter(newspa); 4261 vdev_config_dirty(newspa->spa_root_vdev); 4262 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4263 4264 if (zio_injection_enabled) 4265 zio_handle_panic_injection(spa, FTAG, 2); 4266 4267 spa_async_resume(newspa); 4268 4269 /* finally, update the original pool's config */ 4270 txg = spa_vdev_config_enter(spa); 4271 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4272 error = dmu_tx_assign(tx, TXG_WAIT); 4273 if (error != 0) 4274 dmu_tx_abort(tx); 4275 for (c = 0; c < children; c++) { 4276 if (vml[c] != NULL) { 4277 vdev_split(vml[c]); 4278 if (error == 0) 4279 spa_history_log_internal(LOG_POOL_VDEV_DETACH, 4280 spa, tx, "vdev=%s", 4281 vml[c]->vdev_path); 4282 vdev_free(vml[c]); 4283 } 4284 } 4285 vdev_config_dirty(spa->spa_root_vdev); 4286 spa->spa_config_splitting = NULL; 4287 nvlist_free(nvl); 4288 if (error == 0) 4289 dmu_tx_commit(tx); 4290 (void) spa_vdev_exit(spa, NULL, txg, 0); 4291 4292 if (zio_injection_enabled) 4293 zio_handle_panic_injection(spa, FTAG, 3); 4294 4295 /* split is complete; log a history record */ 4296 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL, 4297 "split new pool %s from pool %s", newname, spa_name(spa)); 4298 4299 kmem_free(vml, children * sizeof (vdev_t *)); 4300 4301 /* if we're not going to mount the filesystems in userland, export */ 4302 if (exp) 4303 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4304 B_FALSE, B_FALSE); 4305 4306 return (error); 4307 4308 out: 4309 spa_unload(newspa); 4310 spa_deactivate(newspa); 4311 spa_remove(newspa); 4312 4313 txg = spa_vdev_config_enter(spa); 4314 4315 /* re-online all offlined disks */ 4316 for (c = 0; c < children; c++) { 4317 if (vml[c] != NULL) 4318 vml[c]->vdev_offline = B_FALSE; 4319 } 4320 vdev_reopen(spa->spa_root_vdev); 4321 4322 nvlist_free(spa->spa_config_splitting); 4323 spa->spa_config_splitting = NULL; 4324 (void) spa_vdev_exit(spa, NULL, txg, error); 4325 4326 kmem_free(vml, children * sizeof (vdev_t *)); 4327 return (error); 4328 } 4329 4330 static nvlist_t * 4331 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4332 { 4333 for (int i = 0; i < count; i++) { 4334 uint64_t guid; 4335 4336 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4337 &guid) == 0); 4338 4339 if (guid == target_guid) 4340 return (nvpp[i]); 4341 } 4342 4343 return (NULL); 4344 } 4345 4346 static void 4347 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4348 nvlist_t *dev_to_remove) 4349 { 4350 nvlist_t **newdev = NULL; 4351 4352 if (count > 1) 4353 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4354 4355 for (int i = 0, j = 0; i < count; i++) { 4356 if (dev[i] == dev_to_remove) 4357 continue; 4358 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4359 } 4360 4361 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4362 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4363 4364 for (int i = 0; i < count - 1; i++) 4365 nvlist_free(newdev[i]); 4366 4367 if (count > 1) 4368 kmem_free(newdev, (count - 1) * sizeof (void *)); 4369 } 4370 4371 /* 4372 * Evacuate the device. 4373 */ 4374 static int 4375 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4376 { 4377 uint64_t txg; 4378 int error = 0; 4379 4380 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4381 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4382 ASSERT(vd == vd->vdev_top); 4383 4384 /* 4385 * Evacuate the device. We don't hold the config lock as writer 4386 * since we need to do I/O but we do keep the 4387 * spa_namespace_lock held. Once this completes the device 4388 * should no longer have any blocks allocated on it. 4389 */ 4390 if (vd->vdev_islog) { 4391 if (vd->vdev_stat.vs_alloc != 0) 4392 error = spa_offline_log(spa); 4393 } else { 4394 error = ENOTSUP; 4395 } 4396 4397 if (error) 4398 return (error); 4399 4400 /* 4401 * The evacuation succeeded. Remove any remaining MOS metadata 4402 * associated with this vdev, and wait for these changes to sync. 4403 */ 4404 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 4405 txg = spa_vdev_config_enter(spa); 4406 vd->vdev_removing = B_TRUE; 4407 vdev_dirty(vd, 0, NULL, txg); 4408 vdev_config_dirty(vd); 4409 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4410 4411 return (0); 4412 } 4413 4414 /* 4415 * Complete the removal by cleaning up the namespace. 4416 */ 4417 static void 4418 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4419 { 4420 vdev_t *rvd = spa->spa_root_vdev; 4421 uint64_t id = vd->vdev_id; 4422 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4423 4424 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4425 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4426 ASSERT(vd == vd->vdev_top); 4427 4428 /* 4429 * Only remove any devices which are empty. 4430 */ 4431 if (vd->vdev_stat.vs_alloc != 0) 4432 return; 4433 4434 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4435 4436 if (list_link_active(&vd->vdev_state_dirty_node)) 4437 vdev_state_clean(vd); 4438 if (list_link_active(&vd->vdev_config_dirty_node)) 4439 vdev_config_clean(vd); 4440 4441 vdev_free(vd); 4442 4443 if (last_vdev) { 4444 vdev_compact_children(rvd); 4445 } else { 4446 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4447 vdev_add_child(rvd, vd); 4448 } 4449 vdev_config_dirty(rvd); 4450 4451 /* 4452 * Reassess the health of our root vdev. 4453 */ 4454 vdev_reopen(rvd); 4455 } 4456 4457 /* 4458 * Remove a device from the pool - 4459 * 4460 * Removing a device from the vdev namespace requires several steps 4461 * and can take a significant amount of time. As a result we use 4462 * the spa_vdev_config_[enter/exit] functions which allow us to 4463 * grab and release the spa_config_lock while still holding the namespace 4464 * lock. During each step the configuration is synced out. 4465 */ 4466 4467 /* 4468 * Remove a device from the pool. Currently, this supports removing only hot 4469 * spares, slogs, and level 2 ARC devices. 4470 */ 4471 int 4472 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4473 { 4474 vdev_t *vd; 4475 metaslab_group_t *mg; 4476 nvlist_t **spares, **l2cache, *nv; 4477 uint64_t txg = 0; 4478 uint_t nspares, nl2cache; 4479 int error = 0; 4480 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4481 4482 if (!locked) 4483 txg = spa_vdev_enter(spa); 4484 4485 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4486 4487 if (spa->spa_spares.sav_vdevs != NULL && 4488 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4489 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4490 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4491 /* 4492 * Only remove the hot spare if it's not currently in use 4493 * in this pool. 4494 */ 4495 if (vd == NULL || unspare) { 4496 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4497 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4498 spa_load_spares(spa); 4499 spa->spa_spares.sav_sync = B_TRUE; 4500 } else { 4501 error = EBUSY; 4502 } 4503 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4504 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4505 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4506 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4507 /* 4508 * Cache devices can always be removed. 4509 */ 4510 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4511 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4512 spa_load_l2cache(spa); 4513 spa->spa_l2cache.sav_sync = B_TRUE; 4514 } else if (vd != NULL && vd->vdev_islog) { 4515 ASSERT(!locked); 4516 ASSERT(vd == vd->vdev_top); 4517 4518 /* 4519 * XXX - Once we have bp-rewrite this should 4520 * become the common case. 4521 */ 4522 4523 mg = vd->vdev_mg; 4524 4525 /* 4526 * Stop allocating from this vdev. 4527 */ 4528 metaslab_group_passivate(mg); 4529 4530 /* 4531 * Wait for the youngest allocations and frees to sync, 4532 * and then wait for the deferral of those frees to finish. 4533 */ 4534 spa_vdev_config_exit(spa, NULL, 4535 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4536 4537 /* 4538 * Attempt to evacuate the vdev. 4539 */ 4540 error = spa_vdev_remove_evacuate(spa, vd); 4541 4542 txg = spa_vdev_config_enter(spa); 4543 4544 /* 4545 * If we couldn't evacuate the vdev, unwind. 4546 */ 4547 if (error) { 4548 metaslab_group_activate(mg); 4549 return (spa_vdev_exit(spa, NULL, txg, error)); 4550 } 4551 4552 /* 4553 * Clean up the vdev namespace. 4554 */ 4555 spa_vdev_remove_from_namespace(spa, vd); 4556 4557 } else if (vd != NULL) { 4558 /* 4559 * Normal vdevs cannot be removed (yet). 4560 */ 4561 error = ENOTSUP; 4562 } else { 4563 /* 4564 * There is no vdev of any kind with the specified guid. 4565 */ 4566 error = ENOENT; 4567 } 4568 4569 if (!locked) 4570 return (spa_vdev_exit(spa, NULL, txg, error)); 4571 4572 return (error); 4573 } 4574 4575 /* 4576 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4577 * current spared, so we can detach it. 4578 */ 4579 static vdev_t * 4580 spa_vdev_resilver_done_hunt(vdev_t *vd) 4581 { 4582 vdev_t *newvd, *oldvd; 4583 4584 for (int c = 0; c < vd->vdev_children; c++) { 4585 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4586 if (oldvd != NULL) 4587 return (oldvd); 4588 } 4589 4590 /* 4591 * Check for a completed replacement. 4592 */ 4593 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4594 oldvd = vd->vdev_child[0]; 4595 newvd = vd->vdev_child[1]; 4596 4597 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4598 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4599 !vdev_dtl_required(oldvd)) 4600 return (oldvd); 4601 } 4602 4603 /* 4604 * Check for a completed resilver with the 'unspare' flag set. 4605 */ 4606 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4607 newvd = vd->vdev_child[0]; 4608 oldvd = vd->vdev_child[1]; 4609 4610 if (newvd->vdev_unspare && 4611 vdev_dtl_empty(newvd, DTL_MISSING) && 4612 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4613 !vdev_dtl_required(oldvd)) { 4614 newvd->vdev_unspare = 0; 4615 return (oldvd); 4616 } 4617 } 4618 4619 return (NULL); 4620 } 4621 4622 static void 4623 spa_vdev_resilver_done(spa_t *spa) 4624 { 4625 vdev_t *vd, *pvd, *ppvd; 4626 uint64_t guid, sguid, pguid, ppguid; 4627 4628 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4629 4630 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4631 pvd = vd->vdev_parent; 4632 ppvd = pvd->vdev_parent; 4633 guid = vd->vdev_guid; 4634 pguid = pvd->vdev_guid; 4635 ppguid = ppvd->vdev_guid; 4636 sguid = 0; 4637 /* 4638 * If we have just finished replacing a hot spared device, then 4639 * we need to detach the parent's first child (the original hot 4640 * spare) as well. 4641 */ 4642 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4643 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4644 ASSERT(ppvd->vdev_children == 2); 4645 sguid = ppvd->vdev_child[1]->vdev_guid; 4646 } 4647 spa_config_exit(spa, SCL_ALL, FTAG); 4648 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4649 return; 4650 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4651 return; 4652 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4653 } 4654 4655 spa_config_exit(spa, SCL_ALL, FTAG); 4656 } 4657 4658 /* 4659 * Update the stored path or FRU for this vdev. 4660 */ 4661 int 4662 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4663 boolean_t ispath) 4664 { 4665 vdev_t *vd; 4666 boolean_t sync = B_FALSE; 4667 4668 spa_vdev_state_enter(spa, SCL_ALL); 4669 4670 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4671 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4672 4673 if (!vd->vdev_ops->vdev_op_leaf) 4674 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4675 4676 if (ispath) { 4677 if (strcmp(value, vd->vdev_path) != 0) { 4678 spa_strfree(vd->vdev_path); 4679 vd->vdev_path = spa_strdup(value); 4680 sync = B_TRUE; 4681 } 4682 } else { 4683 if (vd->vdev_fru == NULL) { 4684 vd->vdev_fru = spa_strdup(value); 4685 sync = B_TRUE; 4686 } else if (strcmp(value, vd->vdev_fru) != 0) { 4687 spa_strfree(vd->vdev_fru); 4688 vd->vdev_fru = spa_strdup(value); 4689 sync = B_TRUE; 4690 } 4691 } 4692 4693 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 4694 } 4695 4696 int 4697 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4698 { 4699 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4700 } 4701 4702 int 4703 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4704 { 4705 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4706 } 4707 4708 /* 4709 * ========================================================================== 4710 * SPA Scanning 4711 * ========================================================================== 4712 */ 4713 4714 int 4715 spa_scan_stop(spa_t *spa) 4716 { 4717 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4718 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 4719 return (EBUSY); 4720 return (dsl_scan_cancel(spa->spa_dsl_pool)); 4721 } 4722 4723 int 4724 spa_scan(spa_t *spa, pool_scan_func_t func) 4725 { 4726 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4727 4728 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 4729 return (ENOTSUP); 4730 4731 /* 4732 * If a resilver was requested, but there is no DTL on a 4733 * writeable leaf device, we have nothing to do. 4734 */ 4735 if (func == POOL_SCAN_RESILVER && 4736 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4737 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4738 return (0); 4739 } 4740 4741 return (dsl_scan(spa->spa_dsl_pool, func)); 4742 } 4743 4744 /* 4745 * ========================================================================== 4746 * SPA async task processing 4747 * ========================================================================== 4748 */ 4749 4750 static void 4751 spa_async_remove(spa_t *spa, vdev_t *vd) 4752 { 4753 if (vd->vdev_remove_wanted) { 4754 vd->vdev_remove_wanted = B_FALSE; 4755 vd->vdev_delayed_close = B_FALSE; 4756 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4757 4758 /* 4759 * We want to clear the stats, but we don't want to do a full 4760 * vdev_clear() as that will cause us to throw away 4761 * degraded/faulted state as well as attempt to reopen the 4762 * device, all of which is a waste. 4763 */ 4764 vd->vdev_stat.vs_read_errors = 0; 4765 vd->vdev_stat.vs_write_errors = 0; 4766 vd->vdev_stat.vs_checksum_errors = 0; 4767 4768 vdev_state_dirty(vd->vdev_top); 4769 } 4770 4771 for (int c = 0; c < vd->vdev_children; c++) 4772 spa_async_remove(spa, vd->vdev_child[c]); 4773 } 4774 4775 static void 4776 spa_async_probe(spa_t *spa, vdev_t *vd) 4777 { 4778 if (vd->vdev_probe_wanted) { 4779 vd->vdev_probe_wanted = B_FALSE; 4780 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4781 } 4782 4783 for (int c = 0; c < vd->vdev_children; c++) 4784 spa_async_probe(spa, vd->vdev_child[c]); 4785 } 4786 4787 static void 4788 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4789 { 4790 sysevent_id_t eid; 4791 nvlist_t *attr; 4792 char *physpath; 4793 4794 if (!spa->spa_autoexpand) 4795 return; 4796 4797 for (int c = 0; c < vd->vdev_children; c++) { 4798 vdev_t *cvd = vd->vdev_child[c]; 4799 spa_async_autoexpand(spa, cvd); 4800 } 4801 4802 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4803 return; 4804 4805 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4806 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4807 4808 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4809 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4810 4811 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4812 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4813 4814 nvlist_free(attr); 4815 kmem_free(physpath, MAXPATHLEN); 4816 } 4817 4818 static void 4819 spa_async_thread(spa_t *spa) 4820 { 4821 int tasks; 4822 4823 ASSERT(spa->spa_sync_on); 4824 4825 mutex_enter(&spa->spa_async_lock); 4826 tasks = spa->spa_async_tasks; 4827 spa->spa_async_tasks = 0; 4828 mutex_exit(&spa->spa_async_lock); 4829 4830 /* 4831 * See if the config needs to be updated. 4832 */ 4833 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4834 uint64_t old_space, new_space; 4835 4836 mutex_enter(&spa_namespace_lock); 4837 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4838 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4839 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4840 mutex_exit(&spa_namespace_lock); 4841 4842 /* 4843 * If the pool grew as a result of the config update, 4844 * then log an internal history event. 4845 */ 4846 if (new_space != old_space) { 4847 spa_history_log_internal(LOG_POOL_VDEV_ONLINE, 4848 spa, NULL, 4849 "pool '%s' size: %llu(+%llu)", 4850 spa_name(spa), new_space, new_space - old_space); 4851 } 4852 } 4853 4854 /* 4855 * See if any devices need to be marked REMOVED. 4856 */ 4857 if (tasks & SPA_ASYNC_REMOVE) { 4858 spa_vdev_state_enter(spa, SCL_NONE); 4859 spa_async_remove(spa, spa->spa_root_vdev); 4860 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 4861 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 4862 for (int i = 0; i < spa->spa_spares.sav_count; i++) 4863 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 4864 (void) spa_vdev_state_exit(spa, NULL, 0); 4865 } 4866 4867 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 4868 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4869 spa_async_autoexpand(spa, spa->spa_root_vdev); 4870 spa_config_exit(spa, SCL_CONFIG, FTAG); 4871 } 4872 4873 /* 4874 * See if any devices need to be probed. 4875 */ 4876 if (tasks & SPA_ASYNC_PROBE) { 4877 spa_vdev_state_enter(spa, SCL_NONE); 4878 spa_async_probe(spa, spa->spa_root_vdev); 4879 (void) spa_vdev_state_exit(spa, NULL, 0); 4880 } 4881 4882 /* 4883 * If any devices are done replacing, detach them. 4884 */ 4885 if (tasks & SPA_ASYNC_RESILVER_DONE) 4886 spa_vdev_resilver_done(spa); 4887 4888 /* 4889 * Kick off a resilver. 4890 */ 4891 if (tasks & SPA_ASYNC_RESILVER) 4892 dsl_resilver_restart(spa->spa_dsl_pool, 0); 4893 4894 /* 4895 * Let the world know that we're done. 4896 */ 4897 mutex_enter(&spa->spa_async_lock); 4898 spa->spa_async_thread = NULL; 4899 cv_broadcast(&spa->spa_async_cv); 4900 mutex_exit(&spa->spa_async_lock); 4901 thread_exit(); 4902 } 4903 4904 void 4905 spa_async_suspend(spa_t *spa) 4906 { 4907 mutex_enter(&spa->spa_async_lock); 4908 spa->spa_async_suspended++; 4909 while (spa->spa_async_thread != NULL) 4910 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 4911 mutex_exit(&spa->spa_async_lock); 4912 } 4913 4914 void 4915 spa_async_resume(spa_t *spa) 4916 { 4917 mutex_enter(&spa->spa_async_lock); 4918 ASSERT(spa->spa_async_suspended != 0); 4919 spa->spa_async_suspended--; 4920 mutex_exit(&spa->spa_async_lock); 4921 } 4922 4923 static void 4924 spa_async_dispatch(spa_t *spa) 4925 { 4926 mutex_enter(&spa->spa_async_lock); 4927 if (spa->spa_async_tasks && !spa->spa_async_suspended && 4928 spa->spa_async_thread == NULL && 4929 rootdir != NULL && !vn_is_readonly(rootdir)) 4930 spa->spa_async_thread = thread_create(NULL, 0, 4931 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 4932 mutex_exit(&spa->spa_async_lock); 4933 } 4934 4935 void 4936 spa_async_request(spa_t *spa, int task) 4937 { 4938 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 4939 mutex_enter(&spa->spa_async_lock); 4940 spa->spa_async_tasks |= task; 4941 mutex_exit(&spa->spa_async_lock); 4942 } 4943 4944 /* 4945 * ========================================================================== 4946 * SPA syncing routines 4947 * ========================================================================== 4948 */ 4949 static void 4950 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg) 4951 { 4952 blkptr_t blk; 4953 uint64_t itor = 0; 4954 uint8_t c = 1; 4955 4956 while (bplist_iterate(bpl, &itor, &blk) == 0) { 4957 ASSERT(blk.blk_birth < txg); 4958 zio_free(spa, txg, &blk); 4959 } 4960 4961 bplist_vacate(bpl, tx); 4962 4963 /* 4964 * Pre-dirty the first block so we sync to convergence faster. 4965 * (Usually only the first block is needed.) 4966 */ 4967 dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx); 4968 } 4969 4970 static void 4971 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4972 { 4973 zio_t *zio = arg; 4974 4975 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 4976 zio->io_flags)); 4977 } 4978 4979 static void 4980 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 4981 { 4982 char *packed = NULL; 4983 size_t bufsize; 4984 size_t nvsize = 0; 4985 dmu_buf_t *db; 4986 4987 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 4988 4989 /* 4990 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 4991 * information. This avoids the dbuf_will_dirty() path and 4992 * saves us a pre-read to get data we don't actually care about. 4993 */ 4994 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 4995 packed = kmem_alloc(bufsize, KM_SLEEP); 4996 4997 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 4998 KM_SLEEP) == 0); 4999 bzero(packed + nvsize, bufsize - nvsize); 5000 5001 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5002 5003 kmem_free(packed, bufsize); 5004 5005 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5006 dmu_buf_will_dirty(db, tx); 5007 *(uint64_t *)db->db_data = nvsize; 5008 dmu_buf_rele(db, FTAG); 5009 } 5010 5011 static void 5012 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5013 const char *config, const char *entry) 5014 { 5015 nvlist_t *nvroot; 5016 nvlist_t **list; 5017 int i; 5018 5019 if (!sav->sav_sync) 5020 return; 5021 5022 /* 5023 * Update the MOS nvlist describing the list of available devices. 5024 * spa_validate_aux() will have already made sure this nvlist is 5025 * valid and the vdevs are labeled appropriately. 5026 */ 5027 if (sav->sav_object == 0) { 5028 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5029 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5030 sizeof (uint64_t), tx); 5031 VERIFY(zap_update(spa->spa_meta_objset, 5032 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5033 &sav->sav_object, tx) == 0); 5034 } 5035 5036 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5037 if (sav->sav_count == 0) { 5038 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5039 } else { 5040 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5041 for (i = 0; i < sav->sav_count; i++) 5042 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5043 B_FALSE, VDEV_CONFIG_L2CACHE); 5044 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5045 sav->sav_count) == 0); 5046 for (i = 0; i < sav->sav_count; i++) 5047 nvlist_free(list[i]); 5048 kmem_free(list, sav->sav_count * sizeof (void *)); 5049 } 5050 5051 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5052 nvlist_free(nvroot); 5053 5054 sav->sav_sync = B_FALSE; 5055 } 5056 5057 static void 5058 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5059 { 5060 nvlist_t *config; 5061 5062 if (list_is_empty(&spa->spa_config_dirty_list)) 5063 return; 5064 5065 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5066 5067 config = spa_config_generate(spa, spa->spa_root_vdev, 5068 dmu_tx_get_txg(tx), B_FALSE); 5069 5070 spa_config_exit(spa, SCL_STATE, FTAG); 5071 5072 if (spa->spa_config_syncing) 5073 nvlist_free(spa->spa_config_syncing); 5074 spa->spa_config_syncing = config; 5075 5076 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5077 } 5078 5079 /* 5080 * Set zpool properties. 5081 */ 5082 static void 5083 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5084 { 5085 spa_t *spa = arg1; 5086 objset_t *mos = spa->spa_meta_objset; 5087 nvlist_t *nvp = arg2; 5088 nvpair_t *elem; 5089 uint64_t intval; 5090 char *strval; 5091 zpool_prop_t prop; 5092 const char *propname; 5093 zprop_type_t proptype; 5094 5095 mutex_enter(&spa->spa_props_lock); 5096 5097 elem = NULL; 5098 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5099 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5100 case ZPOOL_PROP_VERSION: 5101 /* 5102 * Only set version for non-zpool-creation cases 5103 * (set/import). spa_create() needs special care 5104 * for version setting. 5105 */ 5106 if (tx->tx_txg != TXG_INITIAL) { 5107 VERIFY(nvpair_value_uint64(elem, 5108 &intval) == 0); 5109 ASSERT(intval <= SPA_VERSION); 5110 ASSERT(intval >= spa_version(spa)); 5111 spa->spa_uberblock.ub_version = intval; 5112 vdev_config_dirty(spa->spa_root_vdev); 5113 } 5114 break; 5115 5116 case ZPOOL_PROP_ALTROOT: 5117 /* 5118 * 'altroot' is a non-persistent property. It should 5119 * have been set temporarily at creation or import time. 5120 */ 5121 ASSERT(spa->spa_root != NULL); 5122 break; 5123 5124 case ZPOOL_PROP_CACHEFILE: 5125 /* 5126 * 'cachefile' is also a non-persisitent property. 5127 */ 5128 break; 5129 default: 5130 /* 5131 * Set pool property values in the poolprops mos object. 5132 */ 5133 if (spa->spa_pool_props_object == 0) { 5134 VERIFY((spa->spa_pool_props_object = 5135 zap_create(mos, DMU_OT_POOL_PROPS, 5136 DMU_OT_NONE, 0, tx)) > 0); 5137 5138 VERIFY(zap_update(mos, 5139 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5140 8, 1, &spa->spa_pool_props_object, tx) 5141 == 0); 5142 } 5143 5144 /* normalize the property name */ 5145 propname = zpool_prop_to_name(prop); 5146 proptype = zpool_prop_get_type(prop); 5147 5148 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5149 ASSERT(proptype == PROP_TYPE_STRING); 5150 VERIFY(nvpair_value_string(elem, &strval) == 0); 5151 VERIFY(zap_update(mos, 5152 spa->spa_pool_props_object, propname, 5153 1, strlen(strval) + 1, strval, tx) == 0); 5154 5155 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5156 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5157 5158 if (proptype == PROP_TYPE_INDEX) { 5159 const char *unused; 5160 VERIFY(zpool_prop_index_to_string( 5161 prop, intval, &unused) == 0); 5162 } 5163 VERIFY(zap_update(mos, 5164 spa->spa_pool_props_object, propname, 5165 8, 1, &intval, tx) == 0); 5166 } else { 5167 ASSERT(0); /* not allowed */ 5168 } 5169 5170 switch (prop) { 5171 case ZPOOL_PROP_DELEGATION: 5172 spa->spa_delegation = intval; 5173 break; 5174 case ZPOOL_PROP_BOOTFS: 5175 spa->spa_bootfs = intval; 5176 break; 5177 case ZPOOL_PROP_FAILUREMODE: 5178 spa->spa_failmode = intval; 5179 break; 5180 case ZPOOL_PROP_AUTOEXPAND: 5181 spa->spa_autoexpand = intval; 5182 if (tx->tx_txg != TXG_INITIAL) 5183 spa_async_request(spa, 5184 SPA_ASYNC_AUTOEXPAND); 5185 break; 5186 case ZPOOL_PROP_DEDUPDITTO: 5187 spa->spa_dedup_ditto = intval; 5188 break; 5189 default: 5190 break; 5191 } 5192 } 5193 5194 /* log internal history if this is not a zpool create */ 5195 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5196 tx->tx_txg != TXG_INITIAL) { 5197 spa_history_log_internal(LOG_POOL_PROPSET, 5198 spa, tx, "%s %lld %s", 5199 nvpair_name(elem), intval, spa_name(spa)); 5200 } 5201 } 5202 5203 mutex_exit(&spa->spa_props_lock); 5204 } 5205 5206 /* 5207 * Sync the specified transaction group. New blocks may be dirtied as 5208 * part of the process, so we iterate until it converges. 5209 */ 5210 void 5211 spa_sync(spa_t *spa, uint64_t txg) 5212 { 5213 dsl_pool_t *dp = spa->spa_dsl_pool; 5214 objset_t *mos = spa->spa_meta_objset; 5215 bplist_t *defer_bpl = &spa->spa_deferred_bplist; 5216 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5217 vdev_t *rvd = spa->spa_root_vdev; 5218 vdev_t *vd; 5219 dmu_tx_t *tx; 5220 int error; 5221 5222 /* 5223 * Lock out configuration changes. 5224 */ 5225 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5226 5227 spa->spa_syncing_txg = txg; 5228 spa->spa_sync_pass = 0; 5229 5230 /* 5231 * If there are any pending vdev state changes, convert them 5232 * into config changes that go out with this transaction group. 5233 */ 5234 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5235 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5236 /* 5237 * We need the write lock here because, for aux vdevs, 5238 * calling vdev_config_dirty() modifies sav_config. 5239 * This is ugly and will become unnecessary when we 5240 * eliminate the aux vdev wart by integrating all vdevs 5241 * into the root vdev tree. 5242 */ 5243 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5244 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5245 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5246 vdev_state_clean(vd); 5247 vdev_config_dirty(vd); 5248 } 5249 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5250 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5251 } 5252 spa_config_exit(spa, SCL_STATE, FTAG); 5253 5254 VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj)); 5255 5256 tx = dmu_tx_create_assigned(dp, txg); 5257 5258 /* 5259 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5260 * set spa_deflate if we have no raid-z vdevs. 5261 */ 5262 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5263 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5264 int i; 5265 5266 for (i = 0; i < rvd->vdev_children; i++) { 5267 vd = rvd->vdev_child[i]; 5268 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5269 break; 5270 } 5271 if (i == rvd->vdev_children) { 5272 spa->spa_deflate = TRUE; 5273 VERIFY(0 == zap_add(spa->spa_meta_objset, 5274 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5275 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5276 } 5277 } 5278 5279 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5280 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5281 dsl_pool_create_origin(dp, tx); 5282 5283 /* Keeping the origin open increases spa_minref */ 5284 spa->spa_minref += 3; 5285 } 5286 5287 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5288 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5289 dsl_pool_upgrade_clones(dp, tx); 5290 } 5291 5292 /* 5293 * If anything has changed in this txg, or if someone is waiting 5294 * for this txg to sync (eg, spa_vdev_remove()), push the 5295 * deferred frees from the previous txg. If not, leave them 5296 * alone so that we don't generate work on an otherwise idle 5297 * system. 5298 */ 5299 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5300 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5301 !txg_list_empty(&dp->dp_sync_tasks, txg) || 5302 ((dp->dp_scan->scn_phys.scn_state == DSS_SCANNING || 5303 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) 5304 spa_sync_deferred_bplist(spa, defer_bpl, tx, txg); 5305 5306 /* 5307 * Iterate to convergence. 5308 */ 5309 do { 5310 int pass = ++spa->spa_sync_pass; 5311 5312 spa_sync_config_object(spa, tx); 5313 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5314 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5315 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5316 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5317 spa_errlog_sync(spa, txg); 5318 dsl_pool_sync(dp, txg); 5319 5320 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5321 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5322 bplist_sync(free_bpl, spa_sync_free, zio, tx); 5323 VERIFY(zio_wait(zio) == 0); 5324 } else { 5325 bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx); 5326 } 5327 5328 ddt_sync(spa, txg); 5329 dsl_scan_sync(dp, tx); 5330 5331 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5332 vdev_sync(vd, txg); 5333 5334 } while (dmu_objset_is_dirty(mos, txg)); 5335 5336 ASSERT(list_is_empty(&free_bpl->bpl_queue)); 5337 5338 bplist_close(defer_bpl); 5339 5340 /* 5341 * Rewrite the vdev configuration (which includes the uberblock) 5342 * to commit the transaction group. 5343 * 5344 * If there are no dirty vdevs, we sync the uberblock to a few 5345 * random top-level vdevs that are known to be visible in the 5346 * config cache (see spa_vdev_add() for a complete description). 5347 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5348 */ 5349 for (;;) { 5350 /* 5351 * We hold SCL_STATE to prevent vdev open/close/etc. 5352 * while we're attempting to write the vdev labels. 5353 */ 5354 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5355 5356 if (list_is_empty(&spa->spa_config_dirty_list)) { 5357 vdev_t *svd[SPA_DVAS_PER_BP]; 5358 int svdcount = 0; 5359 int children = rvd->vdev_children; 5360 int c0 = spa_get_random(children); 5361 5362 for (int c = 0; c < children; c++) { 5363 vd = rvd->vdev_child[(c0 + c) % children]; 5364 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5365 continue; 5366 svd[svdcount++] = vd; 5367 if (svdcount == SPA_DVAS_PER_BP) 5368 break; 5369 } 5370 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5371 if (error != 0) 5372 error = vdev_config_sync(svd, svdcount, txg, 5373 B_TRUE); 5374 } else { 5375 error = vdev_config_sync(rvd->vdev_child, 5376 rvd->vdev_children, txg, B_FALSE); 5377 if (error != 0) 5378 error = vdev_config_sync(rvd->vdev_child, 5379 rvd->vdev_children, txg, B_TRUE); 5380 } 5381 5382 spa_config_exit(spa, SCL_STATE, FTAG); 5383 5384 if (error == 0) 5385 break; 5386 zio_suspend(spa, NULL); 5387 zio_resume_wait(spa); 5388 } 5389 dmu_tx_commit(tx); 5390 5391 /* 5392 * Clear the dirty config list. 5393 */ 5394 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5395 vdev_config_clean(vd); 5396 5397 /* 5398 * Now that the new config has synced transactionally, 5399 * let it become visible to the config cache. 5400 */ 5401 if (spa->spa_config_syncing != NULL) { 5402 spa_config_set(spa, spa->spa_config_syncing); 5403 spa->spa_config_txg = txg; 5404 spa->spa_config_syncing = NULL; 5405 } 5406 5407 spa->spa_ubsync = spa->spa_uberblock; 5408 5409 dsl_pool_sync_done(dp, txg); 5410 5411 /* 5412 * Update usable space statistics. 5413 */ 5414 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5415 vdev_sync_done(vd, txg); 5416 5417 spa_update_dspace(spa); 5418 5419 /* 5420 * It had better be the case that we didn't dirty anything 5421 * since vdev_config_sync(). 5422 */ 5423 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5424 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5425 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5426 ASSERT(list_is_empty(&defer_bpl->bpl_queue)); 5427 ASSERT(list_is_empty(&free_bpl->bpl_queue)); 5428 5429 spa->spa_sync_pass = 0; 5430 5431 spa_config_exit(spa, SCL_CONFIG, FTAG); 5432 5433 spa_handle_ignored_writes(spa); 5434 5435 /* 5436 * If any async tasks have been requested, kick them off. 5437 */ 5438 spa_async_dispatch(spa); 5439 } 5440 5441 /* 5442 * Sync all pools. We don't want to hold the namespace lock across these 5443 * operations, so we take a reference on the spa_t and drop the lock during the 5444 * sync. 5445 */ 5446 void 5447 spa_sync_allpools(void) 5448 { 5449 spa_t *spa = NULL; 5450 mutex_enter(&spa_namespace_lock); 5451 while ((spa = spa_next(spa)) != NULL) { 5452 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 5453 continue; 5454 spa_open_ref(spa, FTAG); 5455 mutex_exit(&spa_namespace_lock); 5456 txg_wait_synced(spa_get_dsl(spa), 0); 5457 mutex_enter(&spa_namespace_lock); 5458 spa_close(spa, FTAG); 5459 } 5460 mutex_exit(&spa_namespace_lock); 5461 } 5462 5463 /* 5464 * ========================================================================== 5465 * Miscellaneous routines 5466 * ========================================================================== 5467 */ 5468 5469 /* 5470 * Remove all pools in the system. 5471 */ 5472 void 5473 spa_evict_all(void) 5474 { 5475 spa_t *spa; 5476 5477 /* 5478 * Remove all cached state. All pools should be closed now, 5479 * so every spa in the AVL tree should be unreferenced. 5480 */ 5481 mutex_enter(&spa_namespace_lock); 5482 while ((spa = spa_next(NULL)) != NULL) { 5483 /* 5484 * Stop async tasks. The async thread may need to detach 5485 * a device that's been replaced, which requires grabbing 5486 * spa_namespace_lock, so we must drop it here. 5487 */ 5488 spa_open_ref(spa, FTAG); 5489 mutex_exit(&spa_namespace_lock); 5490 spa_async_suspend(spa); 5491 mutex_enter(&spa_namespace_lock); 5492 spa_close(spa, FTAG); 5493 5494 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5495 spa_unload(spa); 5496 spa_deactivate(spa); 5497 } 5498 spa_remove(spa); 5499 } 5500 mutex_exit(&spa_namespace_lock); 5501 } 5502 5503 vdev_t * 5504 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5505 { 5506 vdev_t *vd; 5507 int i; 5508 5509 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5510 return (vd); 5511 5512 if (aux) { 5513 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5514 vd = spa->spa_l2cache.sav_vdevs[i]; 5515 if (vd->vdev_guid == guid) 5516 return (vd); 5517 } 5518 5519 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5520 vd = spa->spa_spares.sav_vdevs[i]; 5521 if (vd->vdev_guid == guid) 5522 return (vd); 5523 } 5524 } 5525 5526 return (NULL); 5527 } 5528 5529 void 5530 spa_upgrade(spa_t *spa, uint64_t version) 5531 { 5532 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5533 5534 /* 5535 * This should only be called for a non-faulted pool, and since a 5536 * future version would result in an unopenable pool, this shouldn't be 5537 * possible. 5538 */ 5539 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5540 ASSERT(version >= spa->spa_uberblock.ub_version); 5541 5542 spa->spa_uberblock.ub_version = version; 5543 vdev_config_dirty(spa->spa_root_vdev); 5544 5545 spa_config_exit(spa, SCL_ALL, FTAG); 5546 5547 txg_wait_synced(spa_get_dsl(spa), 0); 5548 } 5549 5550 boolean_t 5551 spa_has_spare(spa_t *spa, uint64_t guid) 5552 { 5553 int i; 5554 uint64_t spareguid; 5555 spa_aux_vdev_t *sav = &spa->spa_spares; 5556 5557 for (i = 0; i < sav->sav_count; i++) 5558 if (sav->sav_vdevs[i]->vdev_guid == guid) 5559 return (B_TRUE); 5560 5561 for (i = 0; i < sav->sav_npending; i++) { 5562 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5563 &spareguid) == 0 && spareguid == guid) 5564 return (B_TRUE); 5565 } 5566 5567 return (B_FALSE); 5568 } 5569 5570 /* 5571 * Check if a pool has an active shared spare device. 5572 * Note: reference count of an active spare is 2, as a spare and as a replace 5573 */ 5574 static boolean_t 5575 spa_has_active_shared_spare(spa_t *spa) 5576 { 5577 int i, refcnt; 5578 uint64_t pool; 5579 spa_aux_vdev_t *sav = &spa->spa_spares; 5580 5581 for (i = 0; i < sav->sav_count; i++) { 5582 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5583 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5584 refcnt > 2) 5585 return (B_TRUE); 5586 } 5587 5588 return (B_FALSE); 5589 } 5590 5591 /* 5592 * Post a sysevent corresponding to the given event. The 'name' must be one of 5593 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5594 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5595 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5596 * or zdb as real changes. 5597 */ 5598 void 5599 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5600 { 5601 #ifdef _KERNEL 5602 sysevent_t *ev; 5603 sysevent_attr_list_t *attr = NULL; 5604 sysevent_value_t value; 5605 sysevent_id_t eid; 5606 5607 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5608 SE_SLEEP); 5609 5610 value.value_type = SE_DATA_TYPE_STRING; 5611 value.value.sv_string = spa_name(spa); 5612 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5613 goto done; 5614 5615 value.value_type = SE_DATA_TYPE_UINT64; 5616 value.value.sv_uint64 = spa_guid(spa); 5617 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5618 goto done; 5619 5620 if (vd) { 5621 value.value_type = SE_DATA_TYPE_UINT64; 5622 value.value.sv_uint64 = vd->vdev_guid; 5623 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5624 SE_SLEEP) != 0) 5625 goto done; 5626 5627 if (vd->vdev_path) { 5628 value.value_type = SE_DATA_TYPE_STRING; 5629 value.value.sv_string = vd->vdev_path; 5630 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5631 &value, SE_SLEEP) != 0) 5632 goto done; 5633 } 5634 } 5635 5636 if (sysevent_attach_attributes(ev, attr) != 0) 5637 goto done; 5638 attr = NULL; 5639 5640 (void) log_sysevent(ev, SE_SLEEP, &eid); 5641 5642 done: 5643 if (attr) 5644 sysevent_free_attr(attr); 5645 sysevent_free(ev); 5646 #endif 5647 } 5648