1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright 2018 Joyent, Inc. 31 * Copyright (c) 2017, Intel Corporation. 32 * Copyright (c) 2017 Datto Inc. 33 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 34 */ 35 36 /* 37 * SPA: Storage Pool Allocator 38 * 39 * This file contains all the routines used when modifying on-disk SPA state. 40 * This includes opening, importing, destroying, exporting a pool, and syncing a 41 * pool. 42 */ 43 44 #include <sys/zfs_context.h> 45 #include <sys/fm/fs/zfs.h> 46 #include <sys/spa_impl.h> 47 #include <sys/zio.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/dmu.h> 50 #include <sys/dmu_tx.h> 51 #include <sys/zap.h> 52 #include <sys/zil.h> 53 #include <sys/ddt.h> 54 #include <sys/vdev_impl.h> 55 #include <sys/vdev_removal.h> 56 #include <sys/vdev_indirect_mapping.h> 57 #include <sys/vdev_indirect_births.h> 58 #include <sys/vdev_initialize.h> 59 #include <sys/metaslab.h> 60 #include <sys/metaslab_impl.h> 61 #include <sys/mmp.h> 62 #include <sys/uberblock_impl.h> 63 #include <sys/txg.h> 64 #include <sys/avl.h> 65 #include <sys/bpobj.h> 66 #include <sys/dmu_traverse.h> 67 #include <sys/dmu_objset.h> 68 #include <sys/unique.h> 69 #include <sys/dsl_pool.h> 70 #include <sys/dsl_dataset.h> 71 #include <sys/dsl_dir.h> 72 #include <sys/dsl_prop.h> 73 #include <sys/dsl_synctask.h> 74 #include <sys/fs/zfs.h> 75 #include <sys/arc.h> 76 #include <sys/callb.h> 77 #include <sys/systeminfo.h> 78 #include <sys/spa_boot.h> 79 #include <sys/zfs_ioctl.h> 80 #include <sys/dsl_scan.h> 81 #include <sys/zfeature.h> 82 #include <sys/dsl_destroy.h> 83 #include <sys/abd.h> 84 85 #ifdef _KERNEL 86 #include <sys/bootprops.h> 87 #include <sys/callb.h> 88 #include <sys/cpupart.h> 89 #include <sys/pool.h> 90 #include <sys/sysdc.h> 91 #include <sys/zone.h> 92 #endif /* _KERNEL */ 93 94 #include "zfs_prop.h" 95 #include "zfs_comutil.h" 96 97 /* 98 * The interval, in seconds, at which failed configuration cache file writes 99 * should be retried. 100 */ 101 int zfs_ccw_retry_interval = 300; 102 103 typedef enum zti_modes { 104 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 105 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 106 ZTI_MODE_NULL, /* don't create a taskq */ 107 ZTI_NMODES 108 } zti_modes_t; 109 110 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 111 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 112 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 113 114 #define ZTI_N(n) ZTI_P(n, 1) 115 #define ZTI_ONE ZTI_N(1) 116 117 typedef struct zio_taskq_info { 118 zti_modes_t zti_mode; 119 uint_t zti_value; 120 uint_t zti_count; 121 } zio_taskq_info_t; 122 123 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 124 "issue", "issue_high", "intr", "intr_high" 125 }; 126 127 /* 128 * This table defines the taskq settings for each ZFS I/O type. When 129 * initializing a pool, we use this table to create an appropriately sized 130 * taskq. Some operations are low volume and therefore have a small, static 131 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 132 * macros. Other operations process a large amount of data; the ZTI_BATCH 133 * macro causes us to create a taskq oriented for throughput. Some operations 134 * are so high frequency and short-lived that the taskq itself can become a a 135 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 136 * additional degree of parallelism specified by the number of threads per- 137 * taskq and the number of taskqs; when dispatching an event in this case, the 138 * particular taskq is chosen at random. 139 * 140 * The different taskq priorities are to handle the different contexts (issue 141 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 142 * need to be handled with minimum delay. 143 */ 144 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 145 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 146 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 147 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 148 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 149 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 151 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 152 }; 153 154 static void spa_sync_version(void *arg, dmu_tx_t *tx); 155 static void spa_sync_props(void *arg, dmu_tx_t *tx); 156 static boolean_t spa_has_active_shared_spare(spa_t *spa); 157 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); 158 static void spa_vdev_resilver_done(spa_t *spa); 159 160 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 161 id_t zio_taskq_psrset_bind = PS_NONE; 162 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 163 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 164 165 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 166 extern int zfs_sync_pass_deferred_free; 167 168 /* 169 * Report any spa_load_verify errors found, but do not fail spa_load. 170 * This is used by zdb to analyze non-idle pools. 171 */ 172 boolean_t spa_load_verify_dryrun = B_FALSE; 173 174 /* 175 * This (illegal) pool name is used when temporarily importing a spa_t in order 176 * to get the vdev stats associated with the imported devices. 177 */ 178 #define TRYIMPORT_NAME "$import" 179 180 /* 181 * For debugging purposes: print out vdev tree during pool import. 182 */ 183 boolean_t spa_load_print_vdev_tree = B_FALSE; 184 185 /* 186 * A non-zero value for zfs_max_missing_tvds means that we allow importing 187 * pools with missing top-level vdevs. This is strictly intended for advanced 188 * pool recovery cases since missing data is almost inevitable. Pools with 189 * missing devices can only be imported read-only for safety reasons, and their 190 * fail-mode will be automatically set to "continue". 191 * 192 * With 1 missing vdev we should be able to import the pool and mount all 193 * datasets. User data that was not modified after the missing device has been 194 * added should be recoverable. This means that snapshots created prior to the 195 * addition of that device should be completely intact. 196 * 197 * With 2 missing vdevs, some datasets may fail to mount since there are 198 * dataset statistics that are stored as regular metadata. Some data might be 199 * recoverable if those vdevs were added recently. 200 * 201 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 202 * may be missing entirely. Chances of data recovery are very low. Note that 203 * there are also risks of performing an inadvertent rewind as we might be 204 * missing all the vdevs with the latest uberblocks. 205 */ 206 uint64_t zfs_max_missing_tvds = 0; 207 208 /* 209 * The parameters below are similar to zfs_max_missing_tvds but are only 210 * intended for a preliminary open of the pool with an untrusted config which 211 * might be incomplete or out-dated. 212 * 213 * We are more tolerant for pools opened from a cachefile since we could have 214 * an out-dated cachefile where a device removal was not registered. 215 * We could have set the limit arbitrarily high but in the case where devices 216 * are really missing we would want to return the proper error codes; we chose 217 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 218 * and we get a chance to retrieve the trusted config. 219 */ 220 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 221 222 /* 223 * In the case where config was assembled by scanning device paths (/dev/dsks 224 * by default) we are less tolerant since all the existing devices should have 225 * been detected and we want spa_load to return the right error codes. 226 */ 227 uint64_t zfs_max_missing_tvds_scan = 0; 228 229 /* 230 * Debugging aid that pauses spa_sync() towards the end. 231 */ 232 boolean_t zfs_pause_spa_sync = B_FALSE; 233 234 /* 235 * ========================================================================== 236 * SPA properties routines 237 * ========================================================================== 238 */ 239 240 /* 241 * Add a (source=src, propname=propval) list to an nvlist. 242 */ 243 static void 244 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 245 uint64_t intval, zprop_source_t src) 246 { 247 const char *propname = zpool_prop_to_name(prop); 248 nvlist_t *propval; 249 250 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 251 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 252 253 if (strval != NULL) 254 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 255 else 256 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 257 258 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 259 nvlist_free(propval); 260 } 261 262 /* 263 * Get property values from the spa configuration. 264 */ 265 static void 266 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 267 { 268 vdev_t *rvd = spa->spa_root_vdev; 269 dsl_pool_t *pool = spa->spa_dsl_pool; 270 uint64_t size, alloc, cap, version; 271 zprop_source_t src = ZPROP_SRC_NONE; 272 spa_config_dirent_t *dp; 273 metaslab_class_t *mc = spa_normal_class(spa); 274 275 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 276 277 if (rvd != NULL) { 278 alloc = metaslab_class_get_alloc(mc); 279 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 280 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 281 282 size = metaslab_class_get_space(mc); 283 size += metaslab_class_get_space(spa_special_class(spa)); 284 size += metaslab_class_get_space(spa_dedup_class(spa)); 285 286 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 287 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 288 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 289 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 290 size - alloc, src); 291 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 292 spa->spa_checkpoint_info.sci_dspace, src); 293 294 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 295 metaslab_class_fragmentation(mc), src); 296 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 297 metaslab_class_expandable_space(mc), src); 298 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 299 (spa_mode(spa) == FREAD), src); 300 301 cap = (size == 0) ? 0 : (alloc * 100 / size); 302 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 303 304 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 305 ddt_get_pool_dedup_ratio(spa), src); 306 307 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 308 rvd->vdev_state, src); 309 310 version = spa_version(spa); 311 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 312 src = ZPROP_SRC_DEFAULT; 313 else 314 src = ZPROP_SRC_LOCAL; 315 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 316 } 317 318 if (pool != NULL) { 319 /* 320 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 321 * when opening pools before this version freedir will be NULL. 322 */ 323 if (pool->dp_free_dir != NULL) { 324 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 325 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 326 src); 327 } else { 328 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 329 NULL, 0, src); 330 } 331 332 if (pool->dp_leak_dir != NULL) { 333 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 334 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 335 src); 336 } else { 337 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 338 NULL, 0, src); 339 } 340 } 341 342 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 343 344 if (spa->spa_comment != NULL) { 345 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 346 0, ZPROP_SRC_LOCAL); 347 } 348 349 if (spa->spa_root != NULL) 350 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 351 0, ZPROP_SRC_LOCAL); 352 353 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 354 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 355 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 356 } else { 357 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 358 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 359 } 360 361 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 362 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 363 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 364 } else { 365 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 366 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 367 } 368 369 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 370 if (dp->scd_path == NULL) { 371 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 372 "none", 0, ZPROP_SRC_LOCAL); 373 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 374 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 375 dp->scd_path, 0, ZPROP_SRC_LOCAL); 376 } 377 } 378 } 379 380 /* 381 * Get zpool property values. 382 */ 383 int 384 spa_prop_get(spa_t *spa, nvlist_t **nvp) 385 { 386 objset_t *mos = spa->spa_meta_objset; 387 zap_cursor_t zc; 388 zap_attribute_t za; 389 int err; 390 391 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 392 393 mutex_enter(&spa->spa_props_lock); 394 395 /* 396 * Get properties from the spa config. 397 */ 398 spa_prop_get_config(spa, nvp); 399 400 /* If no pool property object, no more prop to get. */ 401 if (mos == NULL || spa->spa_pool_props_object == 0) { 402 mutex_exit(&spa->spa_props_lock); 403 return (0); 404 } 405 406 /* 407 * Get properties from the MOS pool property object. 408 */ 409 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 410 (err = zap_cursor_retrieve(&zc, &za)) == 0; 411 zap_cursor_advance(&zc)) { 412 uint64_t intval = 0; 413 char *strval = NULL; 414 zprop_source_t src = ZPROP_SRC_DEFAULT; 415 zpool_prop_t prop; 416 417 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 418 continue; 419 420 switch (za.za_integer_length) { 421 case 8: 422 /* integer property */ 423 if (za.za_first_integer != 424 zpool_prop_default_numeric(prop)) 425 src = ZPROP_SRC_LOCAL; 426 427 if (prop == ZPOOL_PROP_BOOTFS) { 428 dsl_pool_t *dp; 429 dsl_dataset_t *ds = NULL; 430 431 dp = spa_get_dsl(spa); 432 dsl_pool_config_enter(dp, FTAG); 433 err = dsl_dataset_hold_obj(dp, 434 za.za_first_integer, FTAG, &ds); 435 if (err != 0) { 436 dsl_pool_config_exit(dp, FTAG); 437 break; 438 } 439 440 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 441 KM_SLEEP); 442 dsl_dataset_name(ds, strval); 443 dsl_dataset_rele(ds, FTAG); 444 dsl_pool_config_exit(dp, FTAG); 445 } else { 446 strval = NULL; 447 intval = za.za_first_integer; 448 } 449 450 spa_prop_add_list(*nvp, prop, strval, intval, src); 451 452 if (strval != NULL) 453 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 454 455 break; 456 457 case 1: 458 /* string property */ 459 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 460 err = zap_lookup(mos, spa->spa_pool_props_object, 461 za.za_name, 1, za.za_num_integers, strval); 462 if (err) { 463 kmem_free(strval, za.za_num_integers); 464 break; 465 } 466 spa_prop_add_list(*nvp, prop, strval, 0, src); 467 kmem_free(strval, za.za_num_integers); 468 break; 469 470 default: 471 break; 472 } 473 } 474 zap_cursor_fini(&zc); 475 mutex_exit(&spa->spa_props_lock); 476 out: 477 if (err && err != ENOENT) { 478 nvlist_free(*nvp); 479 *nvp = NULL; 480 return (err); 481 } 482 483 return (0); 484 } 485 486 /* 487 * Validate the given pool properties nvlist and modify the list 488 * for the property values to be set. 489 */ 490 static int 491 spa_prop_validate(spa_t *spa, nvlist_t *props) 492 { 493 nvpair_t *elem; 494 int error = 0, reset_bootfs = 0; 495 uint64_t objnum = 0; 496 boolean_t has_feature = B_FALSE; 497 498 elem = NULL; 499 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 500 uint64_t intval; 501 char *strval, *slash, *check, *fname; 502 const char *propname = nvpair_name(elem); 503 zpool_prop_t prop = zpool_name_to_prop(propname); 504 505 switch (prop) { 506 case ZPOOL_PROP_INVAL: 507 if (!zpool_prop_feature(propname)) { 508 error = SET_ERROR(EINVAL); 509 break; 510 } 511 512 /* 513 * Sanitize the input. 514 */ 515 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 516 error = SET_ERROR(EINVAL); 517 break; 518 } 519 520 if (nvpair_value_uint64(elem, &intval) != 0) { 521 error = SET_ERROR(EINVAL); 522 break; 523 } 524 525 if (intval != 0) { 526 error = SET_ERROR(EINVAL); 527 break; 528 } 529 530 fname = strchr(propname, '@') + 1; 531 if (zfeature_lookup_name(fname, NULL) != 0) { 532 error = SET_ERROR(EINVAL); 533 break; 534 } 535 536 has_feature = B_TRUE; 537 break; 538 539 case ZPOOL_PROP_VERSION: 540 error = nvpair_value_uint64(elem, &intval); 541 if (!error && 542 (intval < spa_version(spa) || 543 intval > SPA_VERSION_BEFORE_FEATURES || 544 has_feature)) 545 error = SET_ERROR(EINVAL); 546 break; 547 548 case ZPOOL_PROP_DELEGATION: 549 case ZPOOL_PROP_AUTOREPLACE: 550 case ZPOOL_PROP_LISTSNAPS: 551 case ZPOOL_PROP_AUTOEXPAND: 552 error = nvpair_value_uint64(elem, &intval); 553 if (!error && intval > 1) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_MULTIHOST: 558 error = nvpair_value_uint64(elem, &intval); 559 if (!error && intval > 1) 560 error = SET_ERROR(EINVAL); 561 562 if (!error && !spa_get_hostid()) 563 error = SET_ERROR(ENOTSUP); 564 565 break; 566 567 case ZPOOL_PROP_BOOTFS: 568 /* 569 * If the pool version is less than SPA_VERSION_BOOTFS, 570 * or the pool is still being created (version == 0), 571 * the bootfs property cannot be set. 572 */ 573 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 574 error = SET_ERROR(ENOTSUP); 575 break; 576 } 577 578 /* 579 * Make sure the vdev config is bootable 580 */ 581 if (!vdev_is_bootable(spa->spa_root_vdev)) { 582 error = SET_ERROR(ENOTSUP); 583 break; 584 } 585 586 reset_bootfs = 1; 587 588 error = nvpair_value_string(elem, &strval); 589 590 if (!error) { 591 objset_t *os; 592 uint64_t propval; 593 594 if (strval == NULL || strval[0] == '\0') { 595 objnum = zpool_prop_default_numeric( 596 ZPOOL_PROP_BOOTFS); 597 break; 598 } 599 600 error = dmu_objset_hold(strval, FTAG, &os); 601 if (error != 0) 602 break; 603 604 /* 605 * Must be ZPL, and its property settings 606 * must be supported. 607 */ 608 609 if (dmu_objset_type(os) != DMU_OST_ZFS) { 610 error = SET_ERROR(ENOTSUP); 611 } else if ((error = 612 dsl_prop_get_int_ds(dmu_objset_ds(os), 613 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 614 &propval)) == 0 && 615 !BOOTFS_COMPRESS_VALID(propval)) { 616 error = SET_ERROR(ENOTSUP); 617 } else { 618 objnum = dmu_objset_id(os); 619 } 620 dmu_objset_rele(os, FTAG); 621 } 622 break; 623 624 case ZPOOL_PROP_FAILUREMODE: 625 error = nvpair_value_uint64(elem, &intval); 626 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 627 intval > ZIO_FAILURE_MODE_PANIC)) 628 error = SET_ERROR(EINVAL); 629 630 /* 631 * This is a special case which only occurs when 632 * the pool has completely failed. This allows 633 * the user to change the in-core failmode property 634 * without syncing it out to disk (I/Os might 635 * currently be blocked). We do this by returning 636 * EIO to the caller (spa_prop_set) to trick it 637 * into thinking we encountered a property validation 638 * error. 639 */ 640 if (!error && spa_suspended(spa)) { 641 spa->spa_failmode = intval; 642 error = SET_ERROR(EIO); 643 } 644 break; 645 646 case ZPOOL_PROP_CACHEFILE: 647 if ((error = nvpair_value_string(elem, &strval)) != 0) 648 break; 649 650 if (strval[0] == '\0') 651 break; 652 653 if (strcmp(strval, "none") == 0) 654 break; 655 656 if (strval[0] != '/') { 657 error = SET_ERROR(EINVAL); 658 break; 659 } 660 661 slash = strrchr(strval, '/'); 662 ASSERT(slash != NULL); 663 664 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 665 strcmp(slash, "/..") == 0) 666 error = SET_ERROR(EINVAL); 667 break; 668 669 case ZPOOL_PROP_COMMENT: 670 if ((error = nvpair_value_string(elem, &strval)) != 0) 671 break; 672 for (check = strval; *check != '\0'; check++) { 673 /* 674 * The kernel doesn't have an easy isprint() 675 * check. For this kernel check, we merely 676 * check ASCII apart from DEL. Fix this if 677 * there is an easy-to-use kernel isprint(). 678 */ 679 if (*check >= 0x7f) { 680 error = SET_ERROR(EINVAL); 681 break; 682 } 683 } 684 if (strlen(strval) > ZPROP_MAX_COMMENT) 685 error = E2BIG; 686 break; 687 688 case ZPOOL_PROP_DEDUPDITTO: 689 if (spa_version(spa) < SPA_VERSION_DEDUP) 690 error = SET_ERROR(ENOTSUP); 691 else 692 error = nvpair_value_uint64(elem, &intval); 693 if (error == 0 && 694 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 695 error = SET_ERROR(EINVAL); 696 break; 697 } 698 699 if (error) 700 break; 701 } 702 703 if (!error && reset_bootfs) { 704 error = nvlist_remove(props, 705 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 706 707 if (!error) { 708 error = nvlist_add_uint64(props, 709 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 710 } 711 } 712 713 return (error); 714 } 715 716 void 717 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 718 { 719 char *cachefile; 720 spa_config_dirent_t *dp; 721 722 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 723 &cachefile) != 0) 724 return; 725 726 dp = kmem_alloc(sizeof (spa_config_dirent_t), 727 KM_SLEEP); 728 729 if (cachefile[0] == '\0') 730 dp->scd_path = spa_strdup(spa_config_path); 731 else if (strcmp(cachefile, "none") == 0) 732 dp->scd_path = NULL; 733 else 734 dp->scd_path = spa_strdup(cachefile); 735 736 list_insert_head(&spa->spa_config_list, dp); 737 if (need_sync) 738 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 739 } 740 741 int 742 spa_prop_set(spa_t *spa, nvlist_t *nvp) 743 { 744 int error; 745 nvpair_t *elem = NULL; 746 boolean_t need_sync = B_FALSE; 747 748 if ((error = spa_prop_validate(spa, nvp)) != 0) 749 return (error); 750 751 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 752 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 753 754 if (prop == ZPOOL_PROP_CACHEFILE || 755 prop == ZPOOL_PROP_ALTROOT || 756 prop == ZPOOL_PROP_READONLY) 757 continue; 758 759 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 760 uint64_t ver; 761 762 if (prop == ZPOOL_PROP_VERSION) { 763 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 764 } else { 765 ASSERT(zpool_prop_feature(nvpair_name(elem))); 766 ver = SPA_VERSION_FEATURES; 767 need_sync = B_TRUE; 768 } 769 770 /* Save time if the version is already set. */ 771 if (ver == spa_version(spa)) 772 continue; 773 774 /* 775 * In addition to the pool directory object, we might 776 * create the pool properties object, the features for 777 * read object, the features for write object, or the 778 * feature descriptions object. 779 */ 780 error = dsl_sync_task(spa->spa_name, NULL, 781 spa_sync_version, &ver, 782 6, ZFS_SPACE_CHECK_RESERVED); 783 if (error) 784 return (error); 785 continue; 786 } 787 788 need_sync = B_TRUE; 789 break; 790 } 791 792 if (need_sync) { 793 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 794 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 795 } 796 797 return (0); 798 } 799 800 /* 801 * If the bootfs property value is dsobj, clear it. 802 */ 803 void 804 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 805 { 806 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 807 VERIFY(zap_remove(spa->spa_meta_objset, 808 spa->spa_pool_props_object, 809 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 810 spa->spa_bootfs = 0; 811 } 812 } 813 814 /*ARGSUSED*/ 815 static int 816 spa_change_guid_check(void *arg, dmu_tx_t *tx) 817 { 818 uint64_t *newguid = arg; 819 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 820 vdev_t *rvd = spa->spa_root_vdev; 821 uint64_t vdev_state; 822 823 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 824 int error = (spa_has_checkpoint(spa)) ? 825 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 826 return (SET_ERROR(error)); 827 } 828 829 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 830 vdev_state = rvd->vdev_state; 831 spa_config_exit(spa, SCL_STATE, FTAG); 832 833 if (vdev_state != VDEV_STATE_HEALTHY) 834 return (SET_ERROR(ENXIO)); 835 836 ASSERT3U(spa_guid(spa), !=, *newguid); 837 838 return (0); 839 } 840 841 static void 842 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 843 { 844 uint64_t *newguid = arg; 845 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 846 uint64_t oldguid; 847 vdev_t *rvd = spa->spa_root_vdev; 848 849 oldguid = spa_guid(spa); 850 851 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 852 rvd->vdev_guid = *newguid; 853 rvd->vdev_guid_sum += (*newguid - oldguid); 854 vdev_config_dirty(rvd); 855 spa_config_exit(spa, SCL_STATE, FTAG); 856 857 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 858 oldguid, *newguid); 859 } 860 861 /* 862 * Change the GUID for the pool. This is done so that we can later 863 * re-import a pool built from a clone of our own vdevs. We will modify 864 * the root vdev's guid, our own pool guid, and then mark all of our 865 * vdevs dirty. Note that we must make sure that all our vdevs are 866 * online when we do this, or else any vdevs that weren't present 867 * would be orphaned from our pool. We are also going to issue a 868 * sysevent to update any watchers. 869 */ 870 int 871 spa_change_guid(spa_t *spa) 872 { 873 int error; 874 uint64_t guid; 875 876 mutex_enter(&spa->spa_vdev_top_lock); 877 mutex_enter(&spa_namespace_lock); 878 guid = spa_generate_guid(NULL); 879 880 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 881 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 882 883 if (error == 0) { 884 spa_write_cachefile(spa, B_FALSE, B_TRUE); 885 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 886 } 887 888 mutex_exit(&spa_namespace_lock); 889 mutex_exit(&spa->spa_vdev_top_lock); 890 891 return (error); 892 } 893 894 /* 895 * ========================================================================== 896 * SPA state manipulation (open/create/destroy/import/export) 897 * ========================================================================== 898 */ 899 900 static int 901 spa_error_entry_compare(const void *a, const void *b) 902 { 903 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 904 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 905 int ret; 906 907 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 908 sizeof (zbookmark_phys_t)); 909 910 return (AVL_ISIGN(ret)); 911 } 912 913 /* 914 * Utility function which retrieves copies of the current logs and 915 * re-initializes them in the process. 916 */ 917 void 918 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 919 { 920 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 921 922 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 923 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 924 925 avl_create(&spa->spa_errlist_scrub, 926 spa_error_entry_compare, sizeof (spa_error_entry_t), 927 offsetof(spa_error_entry_t, se_avl)); 928 avl_create(&spa->spa_errlist_last, 929 spa_error_entry_compare, sizeof (spa_error_entry_t), 930 offsetof(spa_error_entry_t, se_avl)); 931 } 932 933 static void 934 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 935 { 936 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 937 enum zti_modes mode = ztip->zti_mode; 938 uint_t value = ztip->zti_value; 939 uint_t count = ztip->zti_count; 940 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 941 char name[32]; 942 uint_t flags = 0; 943 boolean_t batch = B_FALSE; 944 945 if (mode == ZTI_MODE_NULL) { 946 tqs->stqs_count = 0; 947 tqs->stqs_taskq = NULL; 948 return; 949 } 950 951 ASSERT3U(count, >, 0); 952 953 tqs->stqs_count = count; 954 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 955 956 switch (mode) { 957 case ZTI_MODE_FIXED: 958 ASSERT3U(value, >=, 1); 959 value = MAX(value, 1); 960 break; 961 962 case ZTI_MODE_BATCH: 963 batch = B_TRUE; 964 flags |= TASKQ_THREADS_CPU_PCT; 965 value = zio_taskq_batch_pct; 966 break; 967 968 default: 969 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 970 "spa_activate()", 971 zio_type_name[t], zio_taskq_types[q], mode, value); 972 break; 973 } 974 975 for (uint_t i = 0; i < count; i++) { 976 taskq_t *tq; 977 978 if (count > 1) { 979 (void) snprintf(name, sizeof (name), "%s_%s_%u", 980 zio_type_name[t], zio_taskq_types[q], i); 981 } else { 982 (void) snprintf(name, sizeof (name), "%s_%s", 983 zio_type_name[t], zio_taskq_types[q]); 984 } 985 986 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 987 if (batch) 988 flags |= TASKQ_DC_BATCH; 989 990 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 991 spa->spa_proc, zio_taskq_basedc, flags); 992 } else { 993 pri_t pri = maxclsyspri; 994 /* 995 * The write issue taskq can be extremely CPU 996 * intensive. Run it at slightly lower priority 997 * than the other taskqs. 998 */ 999 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 1000 pri--; 1001 1002 tq = taskq_create_proc(name, value, pri, 50, 1003 INT_MAX, spa->spa_proc, flags); 1004 } 1005 1006 tqs->stqs_taskq[i] = tq; 1007 } 1008 } 1009 1010 static void 1011 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1012 { 1013 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1014 1015 if (tqs->stqs_taskq == NULL) { 1016 ASSERT0(tqs->stqs_count); 1017 return; 1018 } 1019 1020 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1021 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1022 taskq_destroy(tqs->stqs_taskq[i]); 1023 } 1024 1025 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1026 tqs->stqs_taskq = NULL; 1027 } 1028 1029 /* 1030 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1031 * Note that a type may have multiple discrete taskqs to avoid lock contention 1032 * on the taskq itself. In that case we choose which taskq at random by using 1033 * the low bits of gethrtime(). 1034 */ 1035 void 1036 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1037 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1038 { 1039 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1040 taskq_t *tq; 1041 1042 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1043 ASSERT3U(tqs->stqs_count, !=, 0); 1044 1045 if (tqs->stqs_count == 1) { 1046 tq = tqs->stqs_taskq[0]; 1047 } else { 1048 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 1049 } 1050 1051 taskq_dispatch_ent(tq, func, arg, flags, ent); 1052 } 1053 1054 static void 1055 spa_create_zio_taskqs(spa_t *spa) 1056 { 1057 for (int t = 0; t < ZIO_TYPES; t++) { 1058 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1059 spa_taskqs_init(spa, t, q); 1060 } 1061 } 1062 } 1063 1064 #ifdef _KERNEL 1065 static void 1066 spa_thread(void *arg) 1067 { 1068 callb_cpr_t cprinfo; 1069 1070 spa_t *spa = arg; 1071 user_t *pu = PTOU(curproc); 1072 1073 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1074 spa->spa_name); 1075 1076 ASSERT(curproc != &p0); 1077 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1078 "zpool-%s", spa->spa_name); 1079 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1080 1081 /* bind this thread to the requested psrset */ 1082 if (zio_taskq_psrset_bind != PS_NONE) { 1083 pool_lock(); 1084 mutex_enter(&cpu_lock); 1085 mutex_enter(&pidlock); 1086 mutex_enter(&curproc->p_lock); 1087 1088 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1089 0, NULL, NULL) == 0) { 1090 curthread->t_bind_pset = zio_taskq_psrset_bind; 1091 } else { 1092 cmn_err(CE_WARN, 1093 "Couldn't bind process for zfs pool \"%s\" to " 1094 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1095 } 1096 1097 mutex_exit(&curproc->p_lock); 1098 mutex_exit(&pidlock); 1099 mutex_exit(&cpu_lock); 1100 pool_unlock(); 1101 } 1102 1103 if (zio_taskq_sysdc) { 1104 sysdc_thread_enter(curthread, 100, 0); 1105 } 1106 1107 spa->spa_proc = curproc; 1108 spa->spa_did = curthread->t_did; 1109 1110 spa_create_zio_taskqs(spa); 1111 1112 mutex_enter(&spa->spa_proc_lock); 1113 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1114 1115 spa->spa_proc_state = SPA_PROC_ACTIVE; 1116 cv_broadcast(&spa->spa_proc_cv); 1117 1118 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1119 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1120 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1121 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1122 1123 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1124 spa->spa_proc_state = SPA_PROC_GONE; 1125 spa->spa_proc = &p0; 1126 cv_broadcast(&spa->spa_proc_cv); 1127 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1128 1129 mutex_enter(&curproc->p_lock); 1130 lwp_exit(); 1131 } 1132 #endif 1133 1134 /* 1135 * Activate an uninitialized pool. 1136 */ 1137 static void 1138 spa_activate(spa_t *spa, int mode) 1139 { 1140 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1141 1142 spa->spa_state = POOL_STATE_ACTIVE; 1143 spa->spa_mode = mode; 1144 1145 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1146 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1147 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops); 1148 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops); 1149 1150 /* Try to create a covering process */ 1151 mutex_enter(&spa->spa_proc_lock); 1152 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1153 ASSERT(spa->spa_proc == &p0); 1154 spa->spa_did = 0; 1155 1156 /* Only create a process if we're going to be around a while. */ 1157 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1158 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1159 NULL, 0) == 0) { 1160 spa->spa_proc_state = SPA_PROC_CREATED; 1161 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1162 cv_wait(&spa->spa_proc_cv, 1163 &spa->spa_proc_lock); 1164 } 1165 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1166 ASSERT(spa->spa_proc != &p0); 1167 ASSERT(spa->spa_did != 0); 1168 } else { 1169 #ifdef _KERNEL 1170 cmn_err(CE_WARN, 1171 "Couldn't create process for zfs pool \"%s\"\n", 1172 spa->spa_name); 1173 #endif 1174 } 1175 } 1176 mutex_exit(&spa->spa_proc_lock); 1177 1178 /* If we didn't create a process, we need to create our taskqs. */ 1179 if (spa->spa_proc == &p0) { 1180 spa_create_zio_taskqs(spa); 1181 } 1182 1183 for (size_t i = 0; i < TXG_SIZE; i++) { 1184 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1185 ZIO_FLAG_CANFAIL); 1186 } 1187 1188 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1189 offsetof(vdev_t, vdev_config_dirty_node)); 1190 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1191 offsetof(objset_t, os_evicting_node)); 1192 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1193 offsetof(vdev_t, vdev_state_dirty_node)); 1194 1195 txg_list_create(&spa->spa_vdev_txg_list, spa, 1196 offsetof(struct vdev, vdev_txg_node)); 1197 1198 avl_create(&spa->spa_errlist_scrub, 1199 spa_error_entry_compare, sizeof (spa_error_entry_t), 1200 offsetof(spa_error_entry_t, se_avl)); 1201 avl_create(&spa->spa_errlist_last, 1202 spa_error_entry_compare, sizeof (spa_error_entry_t), 1203 offsetof(spa_error_entry_t, se_avl)); 1204 } 1205 1206 /* 1207 * Opposite of spa_activate(). 1208 */ 1209 static void 1210 spa_deactivate(spa_t *spa) 1211 { 1212 ASSERT(spa->spa_sync_on == B_FALSE); 1213 ASSERT(spa->spa_dsl_pool == NULL); 1214 ASSERT(spa->spa_root_vdev == NULL); 1215 ASSERT(spa->spa_async_zio_root == NULL); 1216 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1217 1218 spa_evicting_os_wait(spa); 1219 1220 txg_list_destroy(&spa->spa_vdev_txg_list); 1221 1222 list_destroy(&spa->spa_config_dirty_list); 1223 list_destroy(&spa->spa_evicting_os_list); 1224 list_destroy(&spa->spa_state_dirty_list); 1225 1226 for (int t = 0; t < ZIO_TYPES; t++) { 1227 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1228 spa_taskqs_fini(spa, t, q); 1229 } 1230 } 1231 1232 for (size_t i = 0; i < TXG_SIZE; i++) { 1233 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1234 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1235 spa->spa_txg_zio[i] = NULL; 1236 } 1237 1238 metaslab_class_destroy(spa->spa_normal_class); 1239 spa->spa_normal_class = NULL; 1240 1241 metaslab_class_destroy(spa->spa_log_class); 1242 spa->spa_log_class = NULL; 1243 1244 metaslab_class_destroy(spa->spa_special_class); 1245 spa->spa_special_class = NULL; 1246 1247 metaslab_class_destroy(spa->spa_dedup_class); 1248 spa->spa_dedup_class = NULL; 1249 1250 /* 1251 * If this was part of an import or the open otherwise failed, we may 1252 * still have errors left in the queues. Empty them just in case. 1253 */ 1254 spa_errlog_drain(spa); 1255 1256 avl_destroy(&spa->spa_errlist_scrub); 1257 avl_destroy(&spa->spa_errlist_last); 1258 1259 spa->spa_state = POOL_STATE_UNINITIALIZED; 1260 1261 mutex_enter(&spa->spa_proc_lock); 1262 if (spa->spa_proc_state != SPA_PROC_NONE) { 1263 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1264 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1265 cv_broadcast(&spa->spa_proc_cv); 1266 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1267 ASSERT(spa->spa_proc != &p0); 1268 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1269 } 1270 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1271 spa->spa_proc_state = SPA_PROC_NONE; 1272 } 1273 ASSERT(spa->spa_proc == &p0); 1274 mutex_exit(&spa->spa_proc_lock); 1275 1276 /* 1277 * We want to make sure spa_thread() has actually exited the ZFS 1278 * module, so that the module can't be unloaded out from underneath 1279 * it. 1280 */ 1281 if (spa->spa_did != 0) { 1282 thread_join(spa->spa_did); 1283 spa->spa_did = 0; 1284 } 1285 } 1286 1287 /* 1288 * Verify a pool configuration, and construct the vdev tree appropriately. This 1289 * will create all the necessary vdevs in the appropriate layout, with each vdev 1290 * in the CLOSED state. This will prep the pool before open/creation/import. 1291 * All vdev validation is done by the vdev_alloc() routine. 1292 */ 1293 static int 1294 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1295 uint_t id, int atype) 1296 { 1297 nvlist_t **child; 1298 uint_t children; 1299 int error; 1300 1301 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1302 return (error); 1303 1304 if ((*vdp)->vdev_ops->vdev_op_leaf) 1305 return (0); 1306 1307 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1308 &child, &children); 1309 1310 if (error == ENOENT) 1311 return (0); 1312 1313 if (error) { 1314 vdev_free(*vdp); 1315 *vdp = NULL; 1316 return (SET_ERROR(EINVAL)); 1317 } 1318 1319 for (int c = 0; c < children; c++) { 1320 vdev_t *vd; 1321 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1322 atype)) != 0) { 1323 vdev_free(*vdp); 1324 *vdp = NULL; 1325 return (error); 1326 } 1327 } 1328 1329 ASSERT(*vdp != NULL); 1330 1331 return (0); 1332 } 1333 1334 /* 1335 * Opposite of spa_load(). 1336 */ 1337 static void 1338 spa_unload(spa_t *spa) 1339 { 1340 int i; 1341 1342 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1343 1344 spa_load_note(spa, "UNLOADING"); 1345 1346 /* 1347 * Stop async tasks. 1348 */ 1349 spa_async_suspend(spa); 1350 1351 if (spa->spa_root_vdev) { 1352 vdev_initialize_stop_all(spa->spa_root_vdev, 1353 VDEV_INITIALIZE_ACTIVE); 1354 } 1355 1356 /* 1357 * Stop syncing. 1358 */ 1359 if (spa->spa_sync_on) { 1360 txg_sync_stop(spa->spa_dsl_pool); 1361 spa->spa_sync_on = B_FALSE; 1362 } 1363 1364 /* 1365 * Even though vdev_free() also calls vdev_metaslab_fini, we need 1366 * to call it earlier, before we wait for async i/o to complete. 1367 * This ensures that there is no async metaslab prefetching, by 1368 * calling taskq_wait(mg_taskq). 1369 */ 1370 if (spa->spa_root_vdev != NULL) { 1371 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1372 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) 1373 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]); 1374 spa_config_exit(spa, SCL_ALL, spa); 1375 } 1376 1377 if (spa->spa_mmp.mmp_thread) 1378 mmp_thread_stop(spa); 1379 1380 /* 1381 * Wait for any outstanding async I/O to complete. 1382 */ 1383 if (spa->spa_async_zio_root != NULL) { 1384 for (int i = 0; i < max_ncpus; i++) 1385 (void) zio_wait(spa->spa_async_zio_root[i]); 1386 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1387 spa->spa_async_zio_root = NULL; 1388 } 1389 1390 if (spa->spa_vdev_removal != NULL) { 1391 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1392 spa->spa_vdev_removal = NULL; 1393 } 1394 1395 if (spa->spa_condense_zthr != NULL) { 1396 zthr_destroy(spa->spa_condense_zthr); 1397 spa->spa_condense_zthr = NULL; 1398 } 1399 1400 if (spa->spa_checkpoint_discard_zthr != NULL) { 1401 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1402 spa->spa_checkpoint_discard_zthr = NULL; 1403 } 1404 1405 spa_condense_fini(spa); 1406 1407 bpobj_close(&spa->spa_deferred_bpobj); 1408 1409 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1410 1411 /* 1412 * Close all vdevs. 1413 */ 1414 if (spa->spa_root_vdev) 1415 vdev_free(spa->spa_root_vdev); 1416 ASSERT(spa->spa_root_vdev == NULL); 1417 1418 /* 1419 * Close the dsl pool. 1420 */ 1421 if (spa->spa_dsl_pool) { 1422 dsl_pool_close(spa->spa_dsl_pool); 1423 spa->spa_dsl_pool = NULL; 1424 spa->spa_meta_objset = NULL; 1425 } 1426 1427 ddt_unload(spa); 1428 1429 /* 1430 * Drop and purge level 2 cache 1431 */ 1432 spa_l2cache_drop(spa); 1433 1434 for (i = 0; i < spa->spa_spares.sav_count; i++) 1435 vdev_free(spa->spa_spares.sav_vdevs[i]); 1436 if (spa->spa_spares.sav_vdevs) { 1437 kmem_free(spa->spa_spares.sav_vdevs, 1438 spa->spa_spares.sav_count * sizeof (void *)); 1439 spa->spa_spares.sav_vdevs = NULL; 1440 } 1441 if (spa->spa_spares.sav_config) { 1442 nvlist_free(spa->spa_spares.sav_config); 1443 spa->spa_spares.sav_config = NULL; 1444 } 1445 spa->spa_spares.sav_count = 0; 1446 1447 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1448 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1449 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1450 } 1451 if (spa->spa_l2cache.sav_vdevs) { 1452 kmem_free(spa->spa_l2cache.sav_vdevs, 1453 spa->spa_l2cache.sav_count * sizeof (void *)); 1454 spa->spa_l2cache.sav_vdevs = NULL; 1455 } 1456 if (spa->spa_l2cache.sav_config) { 1457 nvlist_free(spa->spa_l2cache.sav_config); 1458 spa->spa_l2cache.sav_config = NULL; 1459 } 1460 spa->spa_l2cache.sav_count = 0; 1461 1462 spa->spa_async_suspended = 0; 1463 1464 spa->spa_indirect_vdevs_loaded = B_FALSE; 1465 1466 if (spa->spa_comment != NULL) { 1467 spa_strfree(spa->spa_comment); 1468 spa->spa_comment = NULL; 1469 } 1470 1471 spa_config_exit(spa, SCL_ALL, spa); 1472 } 1473 1474 /* 1475 * Load (or re-load) the current list of vdevs describing the active spares for 1476 * this pool. When this is called, we have some form of basic information in 1477 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1478 * then re-generate a more complete list including status information. 1479 */ 1480 void 1481 spa_load_spares(spa_t *spa) 1482 { 1483 nvlist_t **spares; 1484 uint_t nspares; 1485 int i; 1486 vdev_t *vd, *tvd; 1487 1488 #ifndef _KERNEL 1489 /* 1490 * zdb opens both the current state of the pool and the 1491 * checkpointed state (if present), with a different spa_t. 1492 * 1493 * As spare vdevs are shared among open pools, we skip loading 1494 * them when we load the checkpointed state of the pool. 1495 */ 1496 if (!spa_writeable(spa)) 1497 return; 1498 #endif 1499 1500 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1501 1502 /* 1503 * First, close and free any existing spare vdevs. 1504 */ 1505 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1506 vd = spa->spa_spares.sav_vdevs[i]; 1507 1508 /* Undo the call to spa_activate() below */ 1509 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1510 B_FALSE)) != NULL && tvd->vdev_isspare) 1511 spa_spare_remove(tvd); 1512 vdev_close(vd); 1513 vdev_free(vd); 1514 } 1515 1516 if (spa->spa_spares.sav_vdevs) 1517 kmem_free(spa->spa_spares.sav_vdevs, 1518 spa->spa_spares.sav_count * sizeof (void *)); 1519 1520 if (spa->spa_spares.sav_config == NULL) 1521 nspares = 0; 1522 else 1523 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1524 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1525 1526 spa->spa_spares.sav_count = (int)nspares; 1527 spa->spa_spares.sav_vdevs = NULL; 1528 1529 if (nspares == 0) 1530 return; 1531 1532 /* 1533 * Construct the array of vdevs, opening them to get status in the 1534 * process. For each spare, there is potentially two different vdev_t 1535 * structures associated with it: one in the list of spares (used only 1536 * for basic validation purposes) and one in the active vdev 1537 * configuration (if it's spared in). During this phase we open and 1538 * validate each vdev on the spare list. If the vdev also exists in the 1539 * active configuration, then we also mark this vdev as an active spare. 1540 */ 1541 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1542 KM_SLEEP); 1543 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1544 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1545 VDEV_ALLOC_SPARE) == 0); 1546 ASSERT(vd != NULL); 1547 1548 spa->spa_spares.sav_vdevs[i] = vd; 1549 1550 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1551 B_FALSE)) != NULL) { 1552 if (!tvd->vdev_isspare) 1553 spa_spare_add(tvd); 1554 1555 /* 1556 * We only mark the spare active if we were successfully 1557 * able to load the vdev. Otherwise, importing a pool 1558 * with a bad active spare would result in strange 1559 * behavior, because multiple pool would think the spare 1560 * is actively in use. 1561 * 1562 * There is a vulnerability here to an equally bizarre 1563 * circumstance, where a dead active spare is later 1564 * brought back to life (onlined or otherwise). Given 1565 * the rarity of this scenario, and the extra complexity 1566 * it adds, we ignore the possibility. 1567 */ 1568 if (!vdev_is_dead(tvd)) 1569 spa_spare_activate(tvd); 1570 } 1571 1572 vd->vdev_top = vd; 1573 vd->vdev_aux = &spa->spa_spares; 1574 1575 if (vdev_open(vd) != 0) 1576 continue; 1577 1578 if (vdev_validate_aux(vd) == 0) 1579 spa_spare_add(vd); 1580 } 1581 1582 /* 1583 * Recompute the stashed list of spares, with status information 1584 * this time. 1585 */ 1586 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1587 DATA_TYPE_NVLIST_ARRAY) == 0); 1588 1589 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1590 KM_SLEEP); 1591 for (i = 0; i < spa->spa_spares.sav_count; i++) 1592 spares[i] = vdev_config_generate(spa, 1593 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1594 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1595 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1596 for (i = 0; i < spa->spa_spares.sav_count; i++) 1597 nvlist_free(spares[i]); 1598 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1599 } 1600 1601 /* 1602 * Load (or re-load) the current list of vdevs describing the active l2cache for 1603 * this pool. When this is called, we have some form of basic information in 1604 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1605 * then re-generate a more complete list including status information. 1606 * Devices which are already active have their details maintained, and are 1607 * not re-opened. 1608 */ 1609 void 1610 spa_load_l2cache(spa_t *spa) 1611 { 1612 nvlist_t **l2cache; 1613 uint_t nl2cache; 1614 int i, j, oldnvdevs; 1615 uint64_t guid; 1616 vdev_t *vd, **oldvdevs, **newvdevs; 1617 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1618 1619 #ifndef _KERNEL 1620 /* 1621 * zdb opens both the current state of the pool and the 1622 * checkpointed state (if present), with a different spa_t. 1623 * 1624 * As L2 caches are part of the ARC which is shared among open 1625 * pools, we skip loading them when we load the checkpointed 1626 * state of the pool. 1627 */ 1628 if (!spa_writeable(spa)) 1629 return; 1630 #endif 1631 1632 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1633 1634 if (sav->sav_config != NULL) { 1635 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1636 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1637 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1638 } else { 1639 nl2cache = 0; 1640 newvdevs = NULL; 1641 } 1642 1643 oldvdevs = sav->sav_vdevs; 1644 oldnvdevs = sav->sav_count; 1645 sav->sav_vdevs = NULL; 1646 sav->sav_count = 0; 1647 1648 /* 1649 * Process new nvlist of vdevs. 1650 */ 1651 for (i = 0; i < nl2cache; i++) { 1652 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1653 &guid) == 0); 1654 1655 newvdevs[i] = NULL; 1656 for (j = 0; j < oldnvdevs; j++) { 1657 vd = oldvdevs[j]; 1658 if (vd != NULL && guid == vd->vdev_guid) { 1659 /* 1660 * Retain previous vdev for add/remove ops. 1661 */ 1662 newvdevs[i] = vd; 1663 oldvdevs[j] = NULL; 1664 break; 1665 } 1666 } 1667 1668 if (newvdevs[i] == NULL) { 1669 /* 1670 * Create new vdev 1671 */ 1672 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1673 VDEV_ALLOC_L2CACHE) == 0); 1674 ASSERT(vd != NULL); 1675 newvdevs[i] = vd; 1676 1677 /* 1678 * Commit this vdev as an l2cache device, 1679 * even if it fails to open. 1680 */ 1681 spa_l2cache_add(vd); 1682 1683 vd->vdev_top = vd; 1684 vd->vdev_aux = sav; 1685 1686 spa_l2cache_activate(vd); 1687 1688 if (vdev_open(vd) != 0) 1689 continue; 1690 1691 (void) vdev_validate_aux(vd); 1692 1693 if (!vdev_is_dead(vd)) 1694 l2arc_add_vdev(spa, vd); 1695 } 1696 } 1697 1698 /* 1699 * Purge vdevs that were dropped 1700 */ 1701 for (i = 0; i < oldnvdevs; i++) { 1702 uint64_t pool; 1703 1704 vd = oldvdevs[i]; 1705 if (vd != NULL) { 1706 ASSERT(vd->vdev_isl2cache); 1707 1708 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1709 pool != 0ULL && l2arc_vdev_present(vd)) 1710 l2arc_remove_vdev(vd); 1711 vdev_clear_stats(vd); 1712 vdev_free(vd); 1713 } 1714 } 1715 1716 if (oldvdevs) 1717 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1718 1719 if (sav->sav_config == NULL) 1720 goto out; 1721 1722 sav->sav_vdevs = newvdevs; 1723 sav->sav_count = (int)nl2cache; 1724 1725 /* 1726 * Recompute the stashed list of l2cache devices, with status 1727 * information this time. 1728 */ 1729 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1730 DATA_TYPE_NVLIST_ARRAY) == 0); 1731 1732 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1733 for (i = 0; i < sav->sav_count; i++) 1734 l2cache[i] = vdev_config_generate(spa, 1735 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1736 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1737 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1738 out: 1739 for (i = 0; i < sav->sav_count; i++) 1740 nvlist_free(l2cache[i]); 1741 if (sav->sav_count) 1742 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1743 } 1744 1745 static int 1746 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1747 { 1748 dmu_buf_t *db; 1749 char *packed = NULL; 1750 size_t nvsize = 0; 1751 int error; 1752 *value = NULL; 1753 1754 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1755 if (error != 0) 1756 return (error); 1757 1758 nvsize = *(uint64_t *)db->db_data; 1759 dmu_buf_rele(db, FTAG); 1760 1761 packed = kmem_alloc(nvsize, KM_SLEEP); 1762 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1763 DMU_READ_PREFETCH); 1764 if (error == 0) 1765 error = nvlist_unpack(packed, nvsize, value, 0); 1766 kmem_free(packed, nvsize); 1767 1768 return (error); 1769 } 1770 1771 /* 1772 * Concrete top-level vdevs that are not missing and are not logs. At every 1773 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 1774 */ 1775 static uint64_t 1776 spa_healthy_core_tvds(spa_t *spa) 1777 { 1778 vdev_t *rvd = spa->spa_root_vdev; 1779 uint64_t tvds = 0; 1780 1781 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1782 vdev_t *vd = rvd->vdev_child[i]; 1783 if (vd->vdev_islog) 1784 continue; 1785 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 1786 tvds++; 1787 } 1788 1789 return (tvds); 1790 } 1791 1792 /* 1793 * Checks to see if the given vdev could not be opened, in which case we post a 1794 * sysevent to notify the autoreplace code that the device has been removed. 1795 */ 1796 static void 1797 spa_check_removed(vdev_t *vd) 1798 { 1799 for (uint64_t c = 0; c < vd->vdev_children; c++) 1800 spa_check_removed(vd->vdev_child[c]); 1801 1802 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1803 vdev_is_concrete(vd)) { 1804 zfs_post_autoreplace(vd->vdev_spa, vd); 1805 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 1806 } 1807 } 1808 1809 static int 1810 spa_check_for_missing_logs(spa_t *spa) 1811 { 1812 vdev_t *rvd = spa->spa_root_vdev; 1813 1814 /* 1815 * If we're doing a normal import, then build up any additional 1816 * diagnostic information about missing log devices. 1817 * We'll pass this up to the user for further processing. 1818 */ 1819 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1820 nvlist_t **child, *nv; 1821 uint64_t idx = 0; 1822 1823 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1824 KM_SLEEP); 1825 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1826 1827 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1828 vdev_t *tvd = rvd->vdev_child[c]; 1829 1830 /* 1831 * We consider a device as missing only if it failed 1832 * to open (i.e. offline or faulted is not considered 1833 * as missing). 1834 */ 1835 if (tvd->vdev_islog && 1836 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1837 child[idx++] = vdev_config_generate(spa, tvd, 1838 B_FALSE, VDEV_CONFIG_MISSING); 1839 } 1840 } 1841 1842 if (idx > 0) { 1843 fnvlist_add_nvlist_array(nv, 1844 ZPOOL_CONFIG_CHILDREN, child, idx); 1845 fnvlist_add_nvlist(spa->spa_load_info, 1846 ZPOOL_CONFIG_MISSING_DEVICES, nv); 1847 1848 for (uint64_t i = 0; i < idx; i++) 1849 nvlist_free(child[i]); 1850 } 1851 nvlist_free(nv); 1852 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1853 1854 if (idx > 0) { 1855 spa_load_failed(spa, "some log devices are missing"); 1856 vdev_dbgmsg_print_tree(rvd, 2); 1857 return (SET_ERROR(ENXIO)); 1858 } 1859 } else { 1860 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1861 vdev_t *tvd = rvd->vdev_child[c]; 1862 1863 if (tvd->vdev_islog && 1864 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1865 spa_set_log_state(spa, SPA_LOG_CLEAR); 1866 spa_load_note(spa, "some log devices are " 1867 "missing, ZIL is dropped."); 1868 vdev_dbgmsg_print_tree(rvd, 2); 1869 break; 1870 } 1871 } 1872 } 1873 1874 return (0); 1875 } 1876 1877 /* 1878 * Check for missing log devices 1879 */ 1880 static boolean_t 1881 spa_check_logs(spa_t *spa) 1882 { 1883 boolean_t rv = B_FALSE; 1884 dsl_pool_t *dp = spa_get_dsl(spa); 1885 1886 switch (spa->spa_log_state) { 1887 case SPA_LOG_MISSING: 1888 /* need to recheck in case slog has been restored */ 1889 case SPA_LOG_UNKNOWN: 1890 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1891 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1892 if (rv) 1893 spa_set_log_state(spa, SPA_LOG_MISSING); 1894 break; 1895 } 1896 return (rv); 1897 } 1898 1899 static boolean_t 1900 spa_passivate_log(spa_t *spa) 1901 { 1902 vdev_t *rvd = spa->spa_root_vdev; 1903 boolean_t slog_found = B_FALSE; 1904 1905 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1906 1907 if (!spa_has_slogs(spa)) 1908 return (B_FALSE); 1909 1910 for (int c = 0; c < rvd->vdev_children; c++) { 1911 vdev_t *tvd = rvd->vdev_child[c]; 1912 metaslab_group_t *mg = tvd->vdev_mg; 1913 1914 if (tvd->vdev_islog) { 1915 metaslab_group_passivate(mg); 1916 slog_found = B_TRUE; 1917 } 1918 } 1919 1920 return (slog_found); 1921 } 1922 1923 static void 1924 spa_activate_log(spa_t *spa) 1925 { 1926 vdev_t *rvd = spa->spa_root_vdev; 1927 1928 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1929 1930 for (int c = 0; c < rvd->vdev_children; c++) { 1931 vdev_t *tvd = rvd->vdev_child[c]; 1932 metaslab_group_t *mg = tvd->vdev_mg; 1933 1934 if (tvd->vdev_islog) 1935 metaslab_group_activate(mg); 1936 } 1937 } 1938 1939 int 1940 spa_reset_logs(spa_t *spa) 1941 { 1942 int error; 1943 1944 error = dmu_objset_find(spa_name(spa), zil_reset, 1945 NULL, DS_FIND_CHILDREN); 1946 if (error == 0) { 1947 /* 1948 * We successfully offlined the log device, sync out the 1949 * current txg so that the "stubby" block can be removed 1950 * by zil_sync(). 1951 */ 1952 txg_wait_synced(spa->spa_dsl_pool, 0); 1953 } 1954 return (error); 1955 } 1956 1957 static void 1958 spa_aux_check_removed(spa_aux_vdev_t *sav) 1959 { 1960 for (int i = 0; i < sav->sav_count; i++) 1961 spa_check_removed(sav->sav_vdevs[i]); 1962 } 1963 1964 void 1965 spa_claim_notify(zio_t *zio) 1966 { 1967 spa_t *spa = zio->io_spa; 1968 1969 if (zio->io_error) 1970 return; 1971 1972 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1973 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1974 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1975 mutex_exit(&spa->spa_props_lock); 1976 } 1977 1978 typedef struct spa_load_error { 1979 uint64_t sle_meta_count; 1980 uint64_t sle_data_count; 1981 } spa_load_error_t; 1982 1983 static void 1984 spa_load_verify_done(zio_t *zio) 1985 { 1986 blkptr_t *bp = zio->io_bp; 1987 spa_load_error_t *sle = zio->io_private; 1988 dmu_object_type_t type = BP_GET_TYPE(bp); 1989 int error = zio->io_error; 1990 spa_t *spa = zio->io_spa; 1991 1992 abd_free(zio->io_abd); 1993 if (error) { 1994 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1995 type != DMU_OT_INTENT_LOG) 1996 atomic_inc_64(&sle->sle_meta_count); 1997 else 1998 atomic_inc_64(&sle->sle_data_count); 1999 } 2000 2001 mutex_enter(&spa->spa_scrub_lock); 2002 spa->spa_load_verify_ios--; 2003 cv_broadcast(&spa->spa_scrub_io_cv); 2004 mutex_exit(&spa->spa_scrub_lock); 2005 } 2006 2007 /* 2008 * Maximum number of concurrent scrub i/os to create while verifying 2009 * a pool while importing it. 2010 */ 2011 int spa_load_verify_maxinflight = 10000; 2012 boolean_t spa_load_verify_metadata = B_TRUE; 2013 boolean_t spa_load_verify_data = B_TRUE; 2014 2015 /*ARGSUSED*/ 2016 static int 2017 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2018 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2019 { 2020 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 2021 return (0); 2022 /* 2023 * Note: normally this routine will not be called if 2024 * spa_load_verify_metadata is not set. However, it may be useful 2025 * to manually set the flag after the traversal has begun. 2026 */ 2027 if (!spa_load_verify_metadata) 2028 return (0); 2029 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 2030 return (0); 2031 2032 zio_t *rio = arg; 2033 size_t size = BP_GET_PSIZE(bp); 2034 2035 mutex_enter(&spa->spa_scrub_lock); 2036 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight) 2037 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2038 spa->spa_load_verify_ios++; 2039 mutex_exit(&spa->spa_scrub_lock); 2040 2041 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2042 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2043 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2044 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2045 return (0); 2046 } 2047 2048 /* ARGSUSED */ 2049 int 2050 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2051 { 2052 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2053 return (SET_ERROR(ENAMETOOLONG)); 2054 2055 return (0); 2056 } 2057 2058 static int 2059 spa_load_verify(spa_t *spa) 2060 { 2061 zio_t *rio; 2062 spa_load_error_t sle = { 0 }; 2063 zpool_load_policy_t policy; 2064 boolean_t verify_ok = B_FALSE; 2065 int error = 0; 2066 2067 zpool_get_load_policy(spa->spa_config, &policy); 2068 2069 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) 2070 return (0); 2071 2072 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2073 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2074 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2075 DS_FIND_CHILDREN); 2076 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2077 if (error != 0) 2078 return (error); 2079 2080 rio = zio_root(spa, NULL, &sle, 2081 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2082 2083 if (spa_load_verify_metadata) { 2084 if (spa->spa_extreme_rewind) { 2085 spa_load_note(spa, "performing a complete scan of the " 2086 "pool since extreme rewind is on. This may take " 2087 "a very long time.\n (spa_load_verify_data=%u, " 2088 "spa_load_verify_metadata=%u)", 2089 spa_load_verify_data, spa_load_verify_metadata); 2090 } 2091 error = traverse_pool(spa, spa->spa_verify_min_txg, 2092 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 2093 spa_load_verify_cb, rio); 2094 } 2095 2096 (void) zio_wait(rio); 2097 2098 spa->spa_load_meta_errors = sle.sle_meta_count; 2099 spa->spa_load_data_errors = sle.sle_data_count; 2100 2101 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2102 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2103 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2104 (u_longlong_t)sle.sle_data_count); 2105 } 2106 2107 if (spa_load_verify_dryrun || 2108 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2109 sle.sle_data_count <= policy.zlp_maxdata)) { 2110 int64_t loss = 0; 2111 2112 verify_ok = B_TRUE; 2113 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2114 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2115 2116 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2117 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2118 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2119 VERIFY(nvlist_add_int64(spa->spa_load_info, 2120 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2121 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2122 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2123 } else { 2124 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2125 } 2126 2127 if (spa_load_verify_dryrun) 2128 return (0); 2129 2130 if (error) { 2131 if (error != ENXIO && error != EIO) 2132 error = SET_ERROR(EIO); 2133 return (error); 2134 } 2135 2136 return (verify_ok ? 0 : EIO); 2137 } 2138 2139 /* 2140 * Find a value in the pool props object. 2141 */ 2142 static void 2143 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2144 { 2145 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2146 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2147 } 2148 2149 /* 2150 * Find a value in the pool directory object. 2151 */ 2152 static int 2153 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2154 { 2155 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2156 name, sizeof (uint64_t), 1, val); 2157 2158 if (error != 0 && (error != ENOENT || log_enoent)) { 2159 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2160 "[error=%d]", name, error); 2161 } 2162 2163 return (error); 2164 } 2165 2166 static int 2167 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2168 { 2169 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2170 return (SET_ERROR(err)); 2171 } 2172 2173 static void 2174 spa_spawn_aux_threads(spa_t *spa) 2175 { 2176 ASSERT(spa_writeable(spa)); 2177 2178 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2179 2180 spa_start_indirect_condensing_thread(spa); 2181 2182 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2183 spa->spa_checkpoint_discard_zthr = 2184 zthr_create(spa_checkpoint_discard_thread_check, 2185 spa_checkpoint_discard_thread, spa); 2186 } 2187 2188 /* 2189 * Fix up config after a partly-completed split. This is done with the 2190 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2191 * pool have that entry in their config, but only the splitting one contains 2192 * a list of all the guids of the vdevs that are being split off. 2193 * 2194 * This function determines what to do with that list: either rejoin 2195 * all the disks to the pool, or complete the splitting process. To attempt 2196 * the rejoin, each disk that is offlined is marked online again, and 2197 * we do a reopen() call. If the vdev label for every disk that was 2198 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2199 * then we call vdev_split() on each disk, and complete the split. 2200 * 2201 * Otherwise we leave the config alone, with all the vdevs in place in 2202 * the original pool. 2203 */ 2204 static void 2205 spa_try_repair(spa_t *spa, nvlist_t *config) 2206 { 2207 uint_t extracted; 2208 uint64_t *glist; 2209 uint_t i, gcount; 2210 nvlist_t *nvl; 2211 vdev_t **vd; 2212 boolean_t attempt_reopen; 2213 2214 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2215 return; 2216 2217 /* check that the config is complete */ 2218 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2219 &glist, &gcount) != 0) 2220 return; 2221 2222 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2223 2224 /* attempt to online all the vdevs & validate */ 2225 attempt_reopen = B_TRUE; 2226 for (i = 0; i < gcount; i++) { 2227 if (glist[i] == 0) /* vdev is hole */ 2228 continue; 2229 2230 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2231 if (vd[i] == NULL) { 2232 /* 2233 * Don't bother attempting to reopen the disks; 2234 * just do the split. 2235 */ 2236 attempt_reopen = B_FALSE; 2237 } else { 2238 /* attempt to re-online it */ 2239 vd[i]->vdev_offline = B_FALSE; 2240 } 2241 } 2242 2243 if (attempt_reopen) { 2244 vdev_reopen(spa->spa_root_vdev); 2245 2246 /* check each device to see what state it's in */ 2247 for (extracted = 0, i = 0; i < gcount; i++) { 2248 if (vd[i] != NULL && 2249 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2250 break; 2251 ++extracted; 2252 } 2253 } 2254 2255 /* 2256 * If every disk has been moved to the new pool, or if we never 2257 * even attempted to look at them, then we split them off for 2258 * good. 2259 */ 2260 if (!attempt_reopen || gcount == extracted) { 2261 for (i = 0; i < gcount; i++) 2262 if (vd[i] != NULL) 2263 vdev_split(vd[i]); 2264 vdev_reopen(spa->spa_root_vdev); 2265 } 2266 2267 kmem_free(vd, gcount * sizeof (vdev_t *)); 2268 } 2269 2270 static int 2271 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2272 { 2273 char *ereport = FM_EREPORT_ZFS_POOL; 2274 int error; 2275 2276 spa->spa_load_state = state; 2277 2278 gethrestime(&spa->spa_loaded_ts); 2279 error = spa_load_impl(spa, type, &ereport); 2280 2281 /* 2282 * Don't count references from objsets that are already closed 2283 * and are making their way through the eviction process. 2284 */ 2285 spa_evicting_os_wait(spa); 2286 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 2287 if (error) { 2288 if (error != EEXIST) { 2289 spa->spa_loaded_ts.tv_sec = 0; 2290 spa->spa_loaded_ts.tv_nsec = 0; 2291 } 2292 if (error != EBADF) { 2293 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2294 } 2295 } 2296 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2297 spa->spa_ena = 0; 2298 2299 return (error); 2300 } 2301 2302 /* 2303 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2304 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2305 * spa's per-vdev ZAP list. 2306 */ 2307 static uint64_t 2308 vdev_count_verify_zaps(vdev_t *vd) 2309 { 2310 spa_t *spa = vd->vdev_spa; 2311 uint64_t total = 0; 2312 if (vd->vdev_top_zap != 0) { 2313 total++; 2314 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2315 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2316 } 2317 if (vd->vdev_leaf_zap != 0) { 2318 total++; 2319 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2320 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2321 } 2322 2323 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2324 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2325 } 2326 2327 return (total); 2328 } 2329 2330 /* 2331 * Determine whether the activity check is required. 2332 */ 2333 static boolean_t 2334 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 2335 nvlist_t *config) 2336 { 2337 uint64_t state = 0; 2338 uint64_t hostid = 0; 2339 uint64_t tryconfig_txg = 0; 2340 uint64_t tryconfig_timestamp = 0; 2341 nvlist_t *nvinfo; 2342 2343 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 2344 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 2345 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 2346 &tryconfig_txg); 2347 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2348 &tryconfig_timestamp); 2349 } 2350 2351 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 2352 2353 /* 2354 * Disable the MMP activity check - This is used by zdb which 2355 * is intended to be used on potentially active pools. 2356 */ 2357 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 2358 return (B_FALSE); 2359 2360 /* 2361 * Skip the activity check when the MMP feature is disabled. 2362 */ 2363 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 2364 return (B_FALSE); 2365 /* 2366 * If the tryconfig_* values are nonzero, they are the results of an 2367 * earlier tryimport. If they match the uberblock we just found, then 2368 * the pool has not changed and we return false so we do not test a 2369 * second time. 2370 */ 2371 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 2372 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp) 2373 return (B_FALSE); 2374 2375 /* 2376 * Allow the activity check to be skipped when importing the pool 2377 * on the same host which last imported it. Since the hostid from 2378 * configuration may be stale use the one read from the label. 2379 */ 2380 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 2381 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 2382 2383 if (hostid == spa_get_hostid()) 2384 return (B_FALSE); 2385 2386 /* 2387 * Skip the activity test when the pool was cleanly exported. 2388 */ 2389 if (state != POOL_STATE_ACTIVE) 2390 return (B_FALSE); 2391 2392 return (B_TRUE); 2393 } 2394 2395 /* 2396 * Perform the import activity check. If the user canceled the import or 2397 * we detected activity then fail. 2398 */ 2399 static int 2400 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 2401 { 2402 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 2403 uint64_t txg = ub->ub_txg; 2404 uint64_t timestamp = ub->ub_timestamp; 2405 uint64_t import_delay = NANOSEC; 2406 hrtime_t import_expire; 2407 nvlist_t *mmp_label = NULL; 2408 vdev_t *rvd = spa->spa_root_vdev; 2409 kcondvar_t cv; 2410 kmutex_t mtx; 2411 int error = 0; 2412 2413 cv_init(&cv, NULL, CV_DEFAULT, NULL); 2414 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 2415 mutex_enter(&mtx); 2416 2417 /* 2418 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 2419 * during the earlier tryimport. If the txg recorded there is 0 then 2420 * the pool is known to be active on another host. 2421 * 2422 * Otherwise, the pool might be in use on another node. Check for 2423 * changes in the uberblocks on disk if necessary. 2424 */ 2425 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 2426 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 2427 ZPOOL_CONFIG_LOAD_INFO); 2428 2429 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 2430 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 2431 vdev_uberblock_load(rvd, ub, &mmp_label); 2432 error = SET_ERROR(EREMOTEIO); 2433 goto out; 2434 } 2435 } 2436 2437 /* 2438 * Preferentially use the zfs_multihost_interval from the node which 2439 * last imported the pool. This value is stored in an MMP uberblock as. 2440 * 2441 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval 2442 */ 2443 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay) 2444 import_delay = MAX(import_delay, import_intervals * 2445 ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1)); 2446 2447 /* Apply a floor using the local default values. */ 2448 import_delay = MAX(import_delay, import_intervals * 2449 MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL))); 2450 2451 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu import_intervals=%u " 2452 "leaves=%u", import_delay, ub->ub_mmp_delay, import_intervals, 2453 vdev_count_leaves(spa)); 2454 2455 /* Add a small random factor in case of simultaneous imports (0-25%) */ 2456 import_expire = gethrtime() + import_delay + 2457 (import_delay * spa_get_random(250) / 1000); 2458 2459 while (gethrtime() < import_expire) { 2460 vdev_uberblock_load(rvd, ub, &mmp_label); 2461 2462 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) { 2463 error = SET_ERROR(EREMOTEIO); 2464 break; 2465 } 2466 2467 if (mmp_label) { 2468 nvlist_free(mmp_label); 2469 mmp_label = NULL; 2470 } 2471 2472 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 2473 if (error != -1) { 2474 error = SET_ERROR(EINTR); 2475 break; 2476 } 2477 error = 0; 2478 } 2479 2480 out: 2481 mutex_exit(&mtx); 2482 mutex_destroy(&mtx); 2483 cv_destroy(&cv); 2484 2485 /* 2486 * If the pool is determined to be active store the status in the 2487 * spa->spa_load_info nvlist. If the remote hostname or hostid are 2488 * available from configuration read from disk store them as well. 2489 * This allows 'zpool import' to generate a more useful message. 2490 * 2491 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 2492 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 2493 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 2494 */ 2495 if (error == EREMOTEIO) { 2496 char *hostname = "<unknown>"; 2497 uint64_t hostid = 0; 2498 2499 if (mmp_label) { 2500 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 2501 hostname = fnvlist_lookup_string(mmp_label, 2502 ZPOOL_CONFIG_HOSTNAME); 2503 fnvlist_add_string(spa->spa_load_info, 2504 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 2505 } 2506 2507 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 2508 hostid = fnvlist_lookup_uint64(mmp_label, 2509 ZPOOL_CONFIG_HOSTID); 2510 fnvlist_add_uint64(spa->spa_load_info, 2511 ZPOOL_CONFIG_MMP_HOSTID, hostid); 2512 } 2513 } 2514 2515 fnvlist_add_uint64(spa->spa_load_info, 2516 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 2517 fnvlist_add_uint64(spa->spa_load_info, 2518 ZPOOL_CONFIG_MMP_TXG, 0); 2519 2520 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 2521 } 2522 2523 if (mmp_label) 2524 nvlist_free(mmp_label); 2525 2526 return (error); 2527 } 2528 2529 static int 2530 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 2531 { 2532 uint64_t hostid; 2533 char *hostname; 2534 uint64_t myhostid = 0; 2535 2536 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 2537 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2538 hostname = fnvlist_lookup_string(mos_config, 2539 ZPOOL_CONFIG_HOSTNAME); 2540 2541 myhostid = zone_get_hostid(NULL); 2542 2543 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 2544 cmn_err(CE_WARN, "pool '%s' could not be " 2545 "loaded as it was last accessed by " 2546 "another system (host: %s hostid: 0x%llx). " 2547 "See: http://illumos.org/msg/ZFS-8000-EY", 2548 spa_name(spa), hostname, (u_longlong_t)hostid); 2549 spa_load_failed(spa, "hostid verification failed: pool " 2550 "last accessed by host: %s (hostid: 0x%llx)", 2551 hostname, (u_longlong_t)hostid); 2552 return (SET_ERROR(EBADF)); 2553 } 2554 } 2555 2556 return (0); 2557 } 2558 2559 static int 2560 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 2561 { 2562 int error = 0; 2563 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 2564 int parse; 2565 vdev_t *rvd; 2566 uint64_t pool_guid; 2567 char *comment; 2568 2569 /* 2570 * Versioning wasn't explicitly added to the label until later, so if 2571 * it's not present treat it as the initial version. 2572 */ 2573 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2574 &spa->spa_ubsync.ub_version) != 0) 2575 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2576 2577 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 2578 spa_load_failed(spa, "invalid config provided: '%s' missing", 2579 ZPOOL_CONFIG_POOL_GUID); 2580 return (SET_ERROR(EINVAL)); 2581 } 2582 2583 /* 2584 * If we are doing an import, ensure that the pool is not already 2585 * imported by checking if its pool guid already exists in the 2586 * spa namespace. 2587 * 2588 * The only case that we allow an already imported pool to be 2589 * imported again, is when the pool is checkpointed and we want to 2590 * look at its checkpointed state from userland tools like zdb. 2591 */ 2592 #ifdef _KERNEL 2593 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2594 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2595 spa_guid_exists(pool_guid, 0)) { 2596 #else 2597 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2598 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2599 spa_guid_exists(pool_guid, 0) && 2600 !spa_importing_readonly_checkpoint(spa)) { 2601 #endif 2602 spa_load_failed(spa, "a pool with guid %llu is already open", 2603 (u_longlong_t)pool_guid); 2604 return (SET_ERROR(EEXIST)); 2605 } 2606 2607 spa->spa_config_guid = pool_guid; 2608 2609 nvlist_free(spa->spa_load_info); 2610 spa->spa_load_info = fnvlist_alloc(); 2611 2612 ASSERT(spa->spa_comment == NULL); 2613 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2614 spa->spa_comment = spa_strdup(comment); 2615 2616 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2617 &spa->spa_config_txg); 2618 2619 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 2620 spa->spa_config_splitting = fnvlist_dup(nvl); 2621 2622 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 2623 spa_load_failed(spa, "invalid config provided: '%s' missing", 2624 ZPOOL_CONFIG_VDEV_TREE); 2625 return (SET_ERROR(EINVAL)); 2626 } 2627 2628 /* 2629 * Create "The Godfather" zio to hold all async IOs 2630 */ 2631 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2632 KM_SLEEP); 2633 for (int i = 0; i < max_ncpus; i++) { 2634 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2635 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2636 ZIO_FLAG_GODFATHER); 2637 } 2638 2639 /* 2640 * Parse the configuration into a vdev tree. We explicitly set the 2641 * value that will be returned by spa_version() since parsing the 2642 * configuration requires knowing the version number. 2643 */ 2644 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2645 parse = (type == SPA_IMPORT_EXISTING ? 2646 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2647 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 2648 spa_config_exit(spa, SCL_ALL, FTAG); 2649 2650 if (error != 0) { 2651 spa_load_failed(spa, "unable to parse config [error=%d]", 2652 error); 2653 return (error); 2654 } 2655 2656 ASSERT(spa->spa_root_vdev == rvd); 2657 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2658 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2659 2660 if (type != SPA_IMPORT_ASSEMBLE) { 2661 ASSERT(spa_guid(spa) == pool_guid); 2662 } 2663 2664 return (0); 2665 } 2666 2667 /* 2668 * Recursively open all vdevs in the vdev tree. This function is called twice: 2669 * first with the untrusted config, then with the trusted config. 2670 */ 2671 static int 2672 spa_ld_open_vdevs(spa_t *spa) 2673 { 2674 int error = 0; 2675 2676 /* 2677 * spa_missing_tvds_allowed defines how many top-level vdevs can be 2678 * missing/unopenable for the root vdev to be still considered openable. 2679 */ 2680 if (spa->spa_trust_config) { 2681 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 2682 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 2683 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 2684 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 2685 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 2686 } else { 2687 spa->spa_missing_tvds_allowed = 0; 2688 } 2689 2690 spa->spa_missing_tvds_allowed = 2691 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 2692 2693 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2694 error = vdev_open(spa->spa_root_vdev); 2695 spa_config_exit(spa, SCL_ALL, FTAG); 2696 2697 if (spa->spa_missing_tvds != 0) { 2698 spa_load_note(spa, "vdev tree has %lld missing top-level " 2699 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 2700 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) { 2701 /* 2702 * Although theoretically we could allow users to open 2703 * incomplete pools in RW mode, we'd need to add a lot 2704 * of extra logic (e.g. adjust pool space to account 2705 * for missing vdevs). 2706 * This limitation also prevents users from accidentally 2707 * opening the pool in RW mode during data recovery and 2708 * damaging it further. 2709 */ 2710 spa_load_note(spa, "pools with missing top-level " 2711 "vdevs can only be opened in read-only mode."); 2712 error = SET_ERROR(ENXIO); 2713 } else { 2714 spa_load_note(spa, "current settings allow for maximum " 2715 "%lld missing top-level vdevs at this stage.", 2716 (u_longlong_t)spa->spa_missing_tvds_allowed); 2717 } 2718 } 2719 if (error != 0) { 2720 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 2721 error); 2722 } 2723 if (spa->spa_missing_tvds != 0 || error != 0) 2724 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 2725 2726 return (error); 2727 } 2728 2729 /* 2730 * We need to validate the vdev labels against the configuration that 2731 * we have in hand. This function is called twice: first with an untrusted 2732 * config, then with a trusted config. The validation is more strict when the 2733 * config is trusted. 2734 */ 2735 static int 2736 spa_ld_validate_vdevs(spa_t *spa) 2737 { 2738 int error = 0; 2739 vdev_t *rvd = spa->spa_root_vdev; 2740 2741 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2742 error = vdev_validate(rvd); 2743 spa_config_exit(spa, SCL_ALL, FTAG); 2744 2745 if (error != 0) { 2746 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 2747 return (error); 2748 } 2749 2750 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 2751 spa_load_failed(spa, "cannot open vdev tree after invalidating " 2752 "some vdevs"); 2753 vdev_dbgmsg_print_tree(rvd, 2); 2754 return (SET_ERROR(ENXIO)); 2755 } 2756 2757 return (0); 2758 } 2759 2760 static void 2761 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 2762 { 2763 spa->spa_state = POOL_STATE_ACTIVE; 2764 spa->spa_ubsync = spa->spa_uberblock; 2765 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2766 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2767 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2768 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2769 spa->spa_claim_max_txg = spa->spa_first_txg; 2770 spa->spa_prev_software_version = ub->ub_software_version; 2771 } 2772 2773 static int 2774 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 2775 { 2776 vdev_t *rvd = spa->spa_root_vdev; 2777 nvlist_t *label; 2778 uberblock_t *ub = &spa->spa_uberblock; 2779 boolean_t activity_check = B_FALSE; 2780 2781 /* 2782 * If we are opening the checkpointed state of the pool by 2783 * rewinding to it, at this point we will have written the 2784 * checkpointed uberblock to the vdev labels, so searching 2785 * the labels will find the right uberblock. However, if 2786 * we are opening the checkpointed state read-only, we have 2787 * not modified the labels. Therefore, we must ignore the 2788 * labels and continue using the spa_uberblock that was set 2789 * by spa_ld_checkpoint_rewind. 2790 * 2791 * Note that it would be fine to ignore the labels when 2792 * rewinding (opening writeable) as well. However, if we 2793 * crash just after writing the labels, we will end up 2794 * searching the labels. Doing so in the common case means 2795 * that this code path gets exercised normally, rather than 2796 * just in the edge case. 2797 */ 2798 if (ub->ub_checkpoint_txg != 0 && 2799 spa_importing_readonly_checkpoint(spa)) { 2800 spa_ld_select_uberblock_done(spa, ub); 2801 return (0); 2802 } 2803 2804 /* 2805 * Find the best uberblock. 2806 */ 2807 vdev_uberblock_load(rvd, ub, &label); 2808 2809 /* 2810 * If we weren't able to find a single valid uberblock, return failure. 2811 */ 2812 if (ub->ub_txg == 0) { 2813 nvlist_free(label); 2814 spa_load_failed(spa, "no valid uberblock found"); 2815 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2816 } 2817 2818 spa_load_note(spa, "using uberblock with txg=%llu", 2819 (u_longlong_t)ub->ub_txg); 2820 2821 /* 2822 * For pools which have the multihost property on determine if the 2823 * pool is truly inactive and can be safely imported. Prevent 2824 * hosts which don't have a hostid set from importing the pool. 2825 */ 2826 activity_check = spa_activity_check_required(spa, ub, label, 2827 spa->spa_config); 2828 if (activity_check) { 2829 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 2830 spa_get_hostid() == 0) { 2831 nvlist_free(label); 2832 fnvlist_add_uint64(spa->spa_load_info, 2833 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 2834 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 2835 } 2836 2837 int error = spa_activity_check(spa, ub, spa->spa_config); 2838 if (error) { 2839 nvlist_free(label); 2840 return (error); 2841 } 2842 2843 fnvlist_add_uint64(spa->spa_load_info, 2844 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 2845 fnvlist_add_uint64(spa->spa_load_info, 2846 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 2847 } 2848 2849 /* 2850 * If the pool has an unsupported version we can't open it. 2851 */ 2852 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2853 nvlist_free(label); 2854 spa_load_failed(spa, "version %llu is not supported", 2855 (u_longlong_t)ub->ub_version); 2856 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2857 } 2858 2859 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2860 nvlist_t *features; 2861 2862 /* 2863 * If we weren't able to find what's necessary for reading the 2864 * MOS in the label, return failure. 2865 */ 2866 if (label == NULL) { 2867 spa_load_failed(spa, "label config unavailable"); 2868 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2869 ENXIO)); 2870 } 2871 2872 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 2873 &features) != 0) { 2874 nvlist_free(label); 2875 spa_load_failed(spa, "invalid label: '%s' missing", 2876 ZPOOL_CONFIG_FEATURES_FOR_READ); 2877 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2878 ENXIO)); 2879 } 2880 2881 /* 2882 * Update our in-core representation with the definitive values 2883 * from the label. 2884 */ 2885 nvlist_free(spa->spa_label_features); 2886 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2887 } 2888 2889 nvlist_free(label); 2890 2891 /* 2892 * Look through entries in the label nvlist's features_for_read. If 2893 * there is a feature listed there which we don't understand then we 2894 * cannot open a pool. 2895 */ 2896 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2897 nvlist_t *unsup_feat; 2898 2899 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2900 0); 2901 2902 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2903 NULL); nvp != NULL; 2904 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2905 if (!zfeature_is_supported(nvpair_name(nvp))) { 2906 VERIFY(nvlist_add_string(unsup_feat, 2907 nvpair_name(nvp), "") == 0); 2908 } 2909 } 2910 2911 if (!nvlist_empty(unsup_feat)) { 2912 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2913 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2914 nvlist_free(unsup_feat); 2915 spa_load_failed(spa, "some features are unsupported"); 2916 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2917 ENOTSUP)); 2918 } 2919 2920 nvlist_free(unsup_feat); 2921 } 2922 2923 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2924 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2925 spa_try_repair(spa, spa->spa_config); 2926 spa_config_exit(spa, SCL_ALL, FTAG); 2927 nvlist_free(spa->spa_config_splitting); 2928 spa->spa_config_splitting = NULL; 2929 } 2930 2931 /* 2932 * Initialize internal SPA structures. 2933 */ 2934 spa_ld_select_uberblock_done(spa, ub); 2935 2936 return (0); 2937 } 2938 2939 static int 2940 spa_ld_open_rootbp(spa_t *spa) 2941 { 2942 int error = 0; 2943 vdev_t *rvd = spa->spa_root_vdev; 2944 2945 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2946 if (error != 0) { 2947 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 2948 "[error=%d]", error); 2949 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2950 } 2951 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2952 2953 return (0); 2954 } 2955 2956 static int 2957 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 2958 boolean_t reloading) 2959 { 2960 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 2961 nvlist_t *nv, *mos_config, *policy; 2962 int error = 0, copy_error; 2963 uint64_t healthy_tvds, healthy_tvds_mos; 2964 uint64_t mos_config_txg; 2965 2966 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 2967 != 0) 2968 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2969 2970 /* 2971 * If we're assembling a pool from a split, the config provided is 2972 * already trusted so there is nothing to do. 2973 */ 2974 if (type == SPA_IMPORT_ASSEMBLE) 2975 return (0); 2976 2977 healthy_tvds = spa_healthy_core_tvds(spa); 2978 2979 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 2980 != 0) { 2981 spa_load_failed(spa, "unable to retrieve MOS config"); 2982 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2983 } 2984 2985 /* 2986 * If we are doing an open, pool owner wasn't verified yet, thus do 2987 * the verification here. 2988 */ 2989 if (spa->spa_load_state == SPA_LOAD_OPEN) { 2990 error = spa_verify_host(spa, mos_config); 2991 if (error != 0) { 2992 nvlist_free(mos_config); 2993 return (error); 2994 } 2995 } 2996 2997 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 2998 2999 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3000 3001 /* 3002 * Build a new vdev tree from the trusted config 3003 */ 3004 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 3005 3006 /* 3007 * Vdev paths in the MOS may be obsolete. If the untrusted config was 3008 * obtained by scanning /dev/dsk, then it will have the right vdev 3009 * paths. We update the trusted MOS config with this information. 3010 * We first try to copy the paths with vdev_copy_path_strict, which 3011 * succeeds only when both configs have exactly the same vdev tree. 3012 * If that fails, we fall back to a more flexible method that has a 3013 * best effort policy. 3014 */ 3015 copy_error = vdev_copy_path_strict(rvd, mrvd); 3016 if (copy_error != 0 || spa_load_print_vdev_tree) { 3017 spa_load_note(spa, "provided vdev tree:"); 3018 vdev_dbgmsg_print_tree(rvd, 2); 3019 spa_load_note(spa, "MOS vdev tree:"); 3020 vdev_dbgmsg_print_tree(mrvd, 2); 3021 } 3022 if (copy_error != 0) { 3023 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 3024 "back to vdev_copy_path_relaxed"); 3025 vdev_copy_path_relaxed(rvd, mrvd); 3026 } 3027 3028 vdev_close(rvd); 3029 vdev_free(rvd); 3030 spa->spa_root_vdev = mrvd; 3031 rvd = mrvd; 3032 spa_config_exit(spa, SCL_ALL, FTAG); 3033 3034 /* 3035 * We will use spa_config if we decide to reload the spa or if spa_load 3036 * fails and we rewind. We must thus regenerate the config using the 3037 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 3038 * pass settings on how to load the pool and is not stored in the MOS. 3039 * We copy it over to our new, trusted config. 3040 */ 3041 mos_config_txg = fnvlist_lookup_uint64(mos_config, 3042 ZPOOL_CONFIG_POOL_TXG); 3043 nvlist_free(mos_config); 3044 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 3045 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 3046 &policy) == 0) 3047 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 3048 spa_config_set(spa, mos_config); 3049 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 3050 3051 /* 3052 * Now that we got the config from the MOS, we should be more strict 3053 * in checking blkptrs and can make assumptions about the consistency 3054 * of the vdev tree. spa_trust_config must be set to true before opening 3055 * vdevs in order for them to be writeable. 3056 */ 3057 spa->spa_trust_config = B_TRUE; 3058 3059 /* 3060 * Open and validate the new vdev tree 3061 */ 3062 error = spa_ld_open_vdevs(spa); 3063 if (error != 0) 3064 return (error); 3065 3066 error = spa_ld_validate_vdevs(spa); 3067 if (error != 0) 3068 return (error); 3069 3070 if (copy_error != 0 || spa_load_print_vdev_tree) { 3071 spa_load_note(spa, "final vdev tree:"); 3072 vdev_dbgmsg_print_tree(rvd, 2); 3073 } 3074 3075 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 3076 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 3077 /* 3078 * Sanity check to make sure that we are indeed loading the 3079 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 3080 * in the config provided and they happened to be the only ones 3081 * to have the latest uberblock, we could involuntarily perform 3082 * an extreme rewind. 3083 */ 3084 healthy_tvds_mos = spa_healthy_core_tvds(spa); 3085 if (healthy_tvds_mos - healthy_tvds >= 3086 SPA_SYNC_MIN_VDEVS) { 3087 spa_load_note(spa, "config provided misses too many " 3088 "top-level vdevs compared to MOS (%lld vs %lld). ", 3089 (u_longlong_t)healthy_tvds, 3090 (u_longlong_t)healthy_tvds_mos); 3091 spa_load_note(spa, "vdev tree:"); 3092 vdev_dbgmsg_print_tree(rvd, 2); 3093 if (reloading) { 3094 spa_load_failed(spa, "config was already " 3095 "provided from MOS. Aborting."); 3096 return (spa_vdev_err(rvd, 3097 VDEV_AUX_CORRUPT_DATA, EIO)); 3098 } 3099 spa_load_note(spa, "spa must be reloaded using MOS " 3100 "config"); 3101 return (SET_ERROR(EAGAIN)); 3102 } 3103 } 3104 3105 error = spa_check_for_missing_logs(spa); 3106 if (error != 0) 3107 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 3108 3109 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 3110 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 3111 "guid sum (%llu != %llu)", 3112 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 3113 (u_longlong_t)rvd->vdev_guid_sum); 3114 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 3115 ENXIO)); 3116 } 3117 3118 return (0); 3119 } 3120 3121 static int 3122 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 3123 { 3124 int error = 0; 3125 vdev_t *rvd = spa->spa_root_vdev; 3126 3127 /* 3128 * Everything that we read before spa_remove_init() must be stored 3129 * on concreted vdevs. Therefore we do this as early as possible. 3130 */ 3131 error = spa_remove_init(spa); 3132 if (error != 0) { 3133 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 3134 error); 3135 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3136 } 3137 3138 /* 3139 * Retrieve information needed to condense indirect vdev mappings. 3140 */ 3141 error = spa_condense_init(spa); 3142 if (error != 0) { 3143 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 3144 error); 3145 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3146 } 3147 3148 return (0); 3149 } 3150 3151 static int 3152 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 3153 { 3154 int error = 0; 3155 vdev_t *rvd = spa->spa_root_vdev; 3156 3157 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 3158 boolean_t missing_feat_read = B_FALSE; 3159 nvlist_t *unsup_feat, *enabled_feat; 3160 3161 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 3162 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 3163 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3164 } 3165 3166 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 3167 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 3168 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3169 } 3170 3171 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 3172 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 3173 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3174 } 3175 3176 enabled_feat = fnvlist_alloc(); 3177 unsup_feat = fnvlist_alloc(); 3178 3179 if (!spa_features_check(spa, B_FALSE, 3180 unsup_feat, enabled_feat)) 3181 missing_feat_read = B_TRUE; 3182 3183 if (spa_writeable(spa) || 3184 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 3185 if (!spa_features_check(spa, B_TRUE, 3186 unsup_feat, enabled_feat)) { 3187 *missing_feat_writep = B_TRUE; 3188 } 3189 } 3190 3191 fnvlist_add_nvlist(spa->spa_load_info, 3192 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 3193 3194 if (!nvlist_empty(unsup_feat)) { 3195 fnvlist_add_nvlist(spa->spa_load_info, 3196 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 3197 } 3198 3199 fnvlist_free(enabled_feat); 3200 fnvlist_free(unsup_feat); 3201 3202 if (!missing_feat_read) { 3203 fnvlist_add_boolean(spa->spa_load_info, 3204 ZPOOL_CONFIG_CAN_RDONLY); 3205 } 3206 3207 /* 3208 * If the state is SPA_LOAD_TRYIMPORT, our objective is 3209 * twofold: to determine whether the pool is available for 3210 * import in read-write mode and (if it is not) whether the 3211 * pool is available for import in read-only mode. If the pool 3212 * is available for import in read-write mode, it is displayed 3213 * as available in userland; if it is not available for import 3214 * in read-only mode, it is displayed as unavailable in 3215 * userland. If the pool is available for import in read-only 3216 * mode but not read-write mode, it is displayed as unavailable 3217 * in userland with a special note that the pool is actually 3218 * available for open in read-only mode. 3219 * 3220 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 3221 * missing a feature for write, we must first determine whether 3222 * the pool can be opened read-only before returning to 3223 * userland in order to know whether to display the 3224 * abovementioned note. 3225 */ 3226 if (missing_feat_read || (*missing_feat_writep && 3227 spa_writeable(spa))) { 3228 spa_load_failed(spa, "pool uses unsupported features"); 3229 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3230 ENOTSUP)); 3231 } 3232 3233 /* 3234 * Load refcounts for ZFS features from disk into an in-memory 3235 * cache during SPA initialization. 3236 */ 3237 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 3238 uint64_t refcount; 3239 3240 error = feature_get_refcount_from_disk(spa, 3241 &spa_feature_table[i], &refcount); 3242 if (error == 0) { 3243 spa->spa_feat_refcount_cache[i] = refcount; 3244 } else if (error == ENOTSUP) { 3245 spa->spa_feat_refcount_cache[i] = 3246 SPA_FEATURE_DISABLED; 3247 } else { 3248 spa_load_failed(spa, "error getting refcount " 3249 "for feature %s [error=%d]", 3250 spa_feature_table[i].fi_guid, error); 3251 return (spa_vdev_err(rvd, 3252 VDEV_AUX_CORRUPT_DATA, EIO)); 3253 } 3254 } 3255 } 3256 3257 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 3258 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 3259 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 3260 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3261 } 3262 3263 return (0); 3264 } 3265 3266 static int 3267 spa_ld_load_special_directories(spa_t *spa) 3268 { 3269 int error = 0; 3270 vdev_t *rvd = spa->spa_root_vdev; 3271 3272 spa->spa_is_initializing = B_TRUE; 3273 error = dsl_pool_open(spa->spa_dsl_pool); 3274 spa->spa_is_initializing = B_FALSE; 3275 if (error != 0) { 3276 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 3277 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3278 } 3279 3280 return (0); 3281 } 3282 3283 static int 3284 spa_ld_get_props(spa_t *spa) 3285 { 3286 int error = 0; 3287 uint64_t obj; 3288 vdev_t *rvd = spa->spa_root_vdev; 3289 3290 /* Grab the secret checksum salt from the MOS. */ 3291 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3292 DMU_POOL_CHECKSUM_SALT, 1, 3293 sizeof (spa->spa_cksum_salt.zcs_bytes), 3294 spa->spa_cksum_salt.zcs_bytes); 3295 if (error == ENOENT) { 3296 /* Generate a new salt for subsequent use */ 3297 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3298 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3299 } else if (error != 0) { 3300 spa_load_failed(spa, "unable to retrieve checksum salt from " 3301 "MOS [error=%d]", error); 3302 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3303 } 3304 3305 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 3306 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3307 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 3308 if (error != 0) { 3309 spa_load_failed(spa, "error opening deferred-frees bpobj " 3310 "[error=%d]", error); 3311 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3312 } 3313 3314 /* 3315 * Load the bit that tells us to use the new accounting function 3316 * (raid-z deflation). If we have an older pool, this will not 3317 * be present. 3318 */ 3319 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 3320 if (error != 0 && error != ENOENT) 3321 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3322 3323 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 3324 &spa->spa_creation_version, B_FALSE); 3325 if (error != 0 && error != ENOENT) 3326 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3327 3328 /* 3329 * Load the persistent error log. If we have an older pool, this will 3330 * not be present. 3331 */ 3332 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 3333 B_FALSE); 3334 if (error != 0 && error != ENOENT) 3335 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3336 3337 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 3338 &spa->spa_errlog_scrub, B_FALSE); 3339 if (error != 0 && error != ENOENT) 3340 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3341 3342 /* 3343 * Load the history object. If we have an older pool, this 3344 * will not be present. 3345 */ 3346 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 3347 if (error != 0 && error != ENOENT) 3348 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3349 3350 /* 3351 * Load the per-vdev ZAP map. If we have an older pool, this will not 3352 * be present; in this case, defer its creation to a later time to 3353 * avoid dirtying the MOS this early / out of sync context. See 3354 * spa_sync_config_object. 3355 */ 3356 3357 /* The sentinel is only available in the MOS config. */ 3358 nvlist_t *mos_config; 3359 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 3360 spa_load_failed(spa, "unable to retrieve MOS config"); 3361 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3362 } 3363 3364 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 3365 &spa->spa_all_vdev_zaps, B_FALSE); 3366 3367 if (error == ENOENT) { 3368 VERIFY(!nvlist_exists(mos_config, 3369 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 3370 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 3371 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3372 } else if (error != 0) { 3373 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3374 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 3375 /* 3376 * An older version of ZFS overwrote the sentinel value, so 3377 * we have orphaned per-vdev ZAPs in the MOS. Defer their 3378 * destruction to later; see spa_sync_config_object. 3379 */ 3380 spa->spa_avz_action = AVZ_ACTION_DESTROY; 3381 /* 3382 * We're assuming that no vdevs have had their ZAPs created 3383 * before this. Better be sure of it. 3384 */ 3385 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3386 } 3387 nvlist_free(mos_config); 3388 3389 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3390 3391 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 3392 B_FALSE); 3393 if (error && error != ENOENT) 3394 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3395 3396 if (error == 0) { 3397 uint64_t autoreplace; 3398 3399 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 3400 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 3401 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 3402 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 3403 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 3404 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 3405 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 3406 &spa->spa_dedup_ditto); 3407 3408 spa->spa_autoreplace = (autoreplace != 0); 3409 } 3410 3411 /* 3412 * If we are importing a pool with missing top-level vdevs, 3413 * we enforce that the pool doesn't panic or get suspended on 3414 * error since the likelihood of missing data is extremely high. 3415 */ 3416 if (spa->spa_missing_tvds > 0 && 3417 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 3418 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3419 spa_load_note(spa, "forcing failmode to 'continue' " 3420 "as some top level vdevs are missing"); 3421 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 3422 } 3423 3424 return (0); 3425 } 3426 3427 static int 3428 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 3429 { 3430 int error = 0; 3431 vdev_t *rvd = spa->spa_root_vdev; 3432 3433 /* 3434 * If we're assembling the pool from the split-off vdevs of 3435 * an existing pool, we don't want to attach the spares & cache 3436 * devices. 3437 */ 3438 3439 /* 3440 * Load any hot spares for this pool. 3441 */ 3442 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 3443 B_FALSE); 3444 if (error != 0 && error != ENOENT) 3445 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3446 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3447 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 3448 if (load_nvlist(spa, spa->spa_spares.sav_object, 3449 &spa->spa_spares.sav_config) != 0) { 3450 spa_load_failed(spa, "error loading spares nvlist"); 3451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3452 } 3453 3454 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3455 spa_load_spares(spa); 3456 spa_config_exit(spa, SCL_ALL, FTAG); 3457 } else if (error == 0) { 3458 spa->spa_spares.sav_sync = B_TRUE; 3459 } 3460 3461 /* 3462 * Load any level 2 ARC devices for this pool. 3463 */ 3464 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 3465 &spa->spa_l2cache.sav_object, B_FALSE); 3466 if (error != 0 && error != ENOENT) 3467 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3468 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3469 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 3470 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 3471 &spa->spa_l2cache.sav_config) != 0) { 3472 spa_load_failed(spa, "error loading l2cache nvlist"); 3473 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3474 } 3475 3476 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3477 spa_load_l2cache(spa); 3478 spa_config_exit(spa, SCL_ALL, FTAG); 3479 } else if (error == 0) { 3480 spa->spa_l2cache.sav_sync = B_TRUE; 3481 } 3482 3483 return (0); 3484 } 3485 3486 static int 3487 spa_ld_load_vdev_metadata(spa_t *spa) 3488 { 3489 int error = 0; 3490 vdev_t *rvd = spa->spa_root_vdev; 3491 3492 /* 3493 * If the 'multihost' property is set, then never allow a pool to 3494 * be imported when the system hostid is zero. The exception to 3495 * this rule is zdb which is always allowed to access pools. 3496 */ 3497 if (spa_multihost(spa) && spa_get_hostid() == 0 && 3498 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 3499 fnvlist_add_uint64(spa->spa_load_info, 3500 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3501 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3502 } 3503 3504 /* 3505 * If the 'autoreplace' property is set, then post a resource notifying 3506 * the ZFS DE that it should not issue any faults for unopenable 3507 * devices. We also iterate over the vdevs, and post a sysevent for any 3508 * unopenable vdevs so that the normal autoreplace handler can take 3509 * over. 3510 */ 3511 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3512 spa_check_removed(spa->spa_root_vdev); 3513 /* 3514 * For the import case, this is done in spa_import(), because 3515 * at this point we're using the spare definitions from 3516 * the MOS config, not necessarily from the userland config. 3517 */ 3518 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 3519 spa_aux_check_removed(&spa->spa_spares); 3520 spa_aux_check_removed(&spa->spa_l2cache); 3521 } 3522 } 3523 3524 /* 3525 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 3526 */ 3527 error = vdev_load(rvd); 3528 if (error != 0) { 3529 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 3530 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3531 } 3532 3533 /* 3534 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 3535 */ 3536 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3537 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 3538 spa_config_exit(spa, SCL_ALL, FTAG); 3539 3540 return (0); 3541 } 3542 3543 static int 3544 spa_ld_load_dedup_tables(spa_t *spa) 3545 { 3546 int error = 0; 3547 vdev_t *rvd = spa->spa_root_vdev; 3548 3549 error = ddt_load(spa); 3550 if (error != 0) { 3551 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 3552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3553 } 3554 3555 return (0); 3556 } 3557 3558 static int 3559 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 3560 { 3561 vdev_t *rvd = spa->spa_root_vdev; 3562 3563 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 3564 boolean_t missing = spa_check_logs(spa); 3565 if (missing) { 3566 if (spa->spa_missing_tvds != 0) { 3567 spa_load_note(spa, "spa_check_logs failed " 3568 "so dropping the logs"); 3569 } else { 3570 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 3571 spa_load_failed(spa, "spa_check_logs failed"); 3572 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 3573 ENXIO)); 3574 } 3575 } 3576 } 3577 3578 return (0); 3579 } 3580 3581 static int 3582 spa_ld_verify_pool_data(spa_t *spa) 3583 { 3584 int error = 0; 3585 vdev_t *rvd = spa->spa_root_vdev; 3586 3587 /* 3588 * We've successfully opened the pool, verify that we're ready 3589 * to start pushing transactions. 3590 */ 3591 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3592 error = spa_load_verify(spa); 3593 if (error != 0) { 3594 spa_load_failed(spa, "spa_load_verify failed " 3595 "[error=%d]", error); 3596 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3597 error)); 3598 } 3599 } 3600 3601 return (0); 3602 } 3603 3604 static void 3605 spa_ld_claim_log_blocks(spa_t *spa) 3606 { 3607 dmu_tx_t *tx; 3608 dsl_pool_t *dp = spa_get_dsl(spa); 3609 3610 /* 3611 * Claim log blocks that haven't been committed yet. 3612 * This must all happen in a single txg. 3613 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 3614 * invoked from zil_claim_log_block()'s i/o done callback. 3615 * Price of rollback is that we abandon the log. 3616 */ 3617 spa->spa_claiming = B_TRUE; 3618 3619 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 3620 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3621 zil_claim, tx, DS_FIND_CHILDREN); 3622 dmu_tx_commit(tx); 3623 3624 spa->spa_claiming = B_FALSE; 3625 3626 spa_set_log_state(spa, SPA_LOG_GOOD); 3627 } 3628 3629 static void 3630 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 3631 boolean_t update_config_cache) 3632 { 3633 vdev_t *rvd = spa->spa_root_vdev; 3634 int need_update = B_FALSE; 3635 3636 /* 3637 * If the config cache is stale, or we have uninitialized 3638 * metaslabs (see spa_vdev_add()), then update the config. 3639 * 3640 * If this is a verbatim import, trust the current 3641 * in-core spa_config and update the disk labels. 3642 */ 3643 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 3644 spa->spa_load_state == SPA_LOAD_IMPORT || 3645 spa->spa_load_state == SPA_LOAD_RECOVER || 3646 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 3647 need_update = B_TRUE; 3648 3649 for (int c = 0; c < rvd->vdev_children; c++) 3650 if (rvd->vdev_child[c]->vdev_ms_array == 0) 3651 need_update = B_TRUE; 3652 3653 /* 3654 * Update the config cache asychronously in case we're the 3655 * root pool, in which case the config cache isn't writable yet. 3656 */ 3657 if (need_update) 3658 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3659 } 3660 3661 static void 3662 spa_ld_prepare_for_reload(spa_t *spa) 3663 { 3664 int mode = spa->spa_mode; 3665 int async_suspended = spa->spa_async_suspended; 3666 3667 spa_unload(spa); 3668 spa_deactivate(spa); 3669 spa_activate(spa, mode); 3670 3671 /* 3672 * We save the value of spa_async_suspended as it gets reset to 0 by 3673 * spa_unload(). We want to restore it back to the original value before 3674 * returning as we might be calling spa_async_resume() later. 3675 */ 3676 spa->spa_async_suspended = async_suspended; 3677 } 3678 3679 static int 3680 spa_ld_read_checkpoint_txg(spa_t *spa) 3681 { 3682 uberblock_t checkpoint; 3683 int error = 0; 3684 3685 ASSERT0(spa->spa_checkpoint_txg); 3686 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3687 3688 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3689 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 3690 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 3691 3692 if (error == ENOENT) 3693 return (0); 3694 3695 if (error != 0) 3696 return (error); 3697 3698 ASSERT3U(checkpoint.ub_txg, !=, 0); 3699 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 3700 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 3701 spa->spa_checkpoint_txg = checkpoint.ub_txg; 3702 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 3703 3704 return (0); 3705 } 3706 3707 static int 3708 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 3709 { 3710 int error = 0; 3711 3712 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3713 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 3714 3715 /* 3716 * Never trust the config that is provided unless we are assembling 3717 * a pool following a split. 3718 * This means don't trust blkptrs and the vdev tree in general. This 3719 * also effectively puts the spa in read-only mode since 3720 * spa_writeable() checks for spa_trust_config to be true. 3721 * We will later load a trusted config from the MOS. 3722 */ 3723 if (type != SPA_IMPORT_ASSEMBLE) 3724 spa->spa_trust_config = B_FALSE; 3725 3726 /* 3727 * Parse the config provided to create a vdev tree. 3728 */ 3729 error = spa_ld_parse_config(spa, type); 3730 if (error != 0) 3731 return (error); 3732 3733 /* 3734 * Now that we have the vdev tree, try to open each vdev. This involves 3735 * opening the underlying physical device, retrieving its geometry and 3736 * probing the vdev with a dummy I/O. The state of each vdev will be set 3737 * based on the success of those operations. After this we'll be ready 3738 * to read from the vdevs. 3739 */ 3740 error = spa_ld_open_vdevs(spa); 3741 if (error != 0) 3742 return (error); 3743 3744 /* 3745 * Read the label of each vdev and make sure that the GUIDs stored 3746 * there match the GUIDs in the config provided. 3747 * If we're assembling a new pool that's been split off from an 3748 * existing pool, the labels haven't yet been updated so we skip 3749 * validation for now. 3750 */ 3751 if (type != SPA_IMPORT_ASSEMBLE) { 3752 error = spa_ld_validate_vdevs(spa); 3753 if (error != 0) 3754 return (error); 3755 } 3756 3757 /* 3758 * Read all vdev labels to find the best uberblock (i.e. latest, 3759 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 3760 * get the list of features required to read blkptrs in the MOS from 3761 * the vdev label with the best uberblock and verify that our version 3762 * of zfs supports them all. 3763 */ 3764 error = spa_ld_select_uberblock(spa, type); 3765 if (error != 0) 3766 return (error); 3767 3768 /* 3769 * Pass that uberblock to the dsl_pool layer which will open the root 3770 * blkptr. This blkptr points to the latest version of the MOS and will 3771 * allow us to read its contents. 3772 */ 3773 error = spa_ld_open_rootbp(spa); 3774 if (error != 0) 3775 return (error); 3776 3777 return (0); 3778 } 3779 3780 static int 3781 spa_ld_checkpoint_rewind(spa_t *spa) 3782 { 3783 uberblock_t checkpoint; 3784 int error = 0; 3785 3786 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3787 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3788 3789 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3790 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 3791 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 3792 3793 if (error != 0) { 3794 spa_load_failed(spa, "unable to retrieve checkpointed " 3795 "uberblock from the MOS config [error=%d]", error); 3796 3797 if (error == ENOENT) 3798 error = ZFS_ERR_NO_CHECKPOINT; 3799 3800 return (error); 3801 } 3802 3803 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 3804 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 3805 3806 /* 3807 * We need to update the txg and timestamp of the checkpointed 3808 * uberblock to be higher than the latest one. This ensures that 3809 * the checkpointed uberblock is selected if we were to close and 3810 * reopen the pool right after we've written it in the vdev labels. 3811 * (also see block comment in vdev_uberblock_compare) 3812 */ 3813 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 3814 checkpoint.ub_timestamp = gethrestime_sec(); 3815 3816 /* 3817 * Set current uberblock to be the checkpointed uberblock. 3818 */ 3819 spa->spa_uberblock = checkpoint; 3820 3821 /* 3822 * If we are doing a normal rewind, then the pool is open for 3823 * writing and we sync the "updated" checkpointed uberblock to 3824 * disk. Once this is done, we've basically rewound the whole 3825 * pool and there is no way back. 3826 * 3827 * There are cases when we don't want to attempt and sync the 3828 * checkpointed uberblock to disk because we are opening a 3829 * pool as read-only. Specifically, verifying the checkpointed 3830 * state with zdb, and importing the checkpointed state to get 3831 * a "preview" of its content. 3832 */ 3833 if (spa_writeable(spa)) { 3834 vdev_t *rvd = spa->spa_root_vdev; 3835 3836 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3837 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 3838 int svdcount = 0; 3839 int children = rvd->vdev_children; 3840 int c0 = spa_get_random(children); 3841 3842 for (int c = 0; c < children; c++) { 3843 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 3844 3845 /* Stop when revisiting the first vdev */ 3846 if (c > 0 && svd[0] == vd) 3847 break; 3848 3849 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 3850 !vdev_is_concrete(vd)) 3851 continue; 3852 3853 svd[svdcount++] = vd; 3854 if (svdcount == SPA_SYNC_MIN_VDEVS) 3855 break; 3856 } 3857 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 3858 if (error == 0) 3859 spa->spa_last_synced_guid = rvd->vdev_guid; 3860 spa_config_exit(spa, SCL_ALL, FTAG); 3861 3862 if (error != 0) { 3863 spa_load_failed(spa, "failed to write checkpointed " 3864 "uberblock to the vdev labels [error=%d]", error); 3865 return (error); 3866 } 3867 } 3868 3869 return (0); 3870 } 3871 3872 static int 3873 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 3874 boolean_t *update_config_cache) 3875 { 3876 int error; 3877 3878 /* 3879 * Parse the config for pool, open and validate vdevs, 3880 * select an uberblock, and use that uberblock to open 3881 * the MOS. 3882 */ 3883 error = spa_ld_mos_init(spa, type); 3884 if (error != 0) 3885 return (error); 3886 3887 /* 3888 * Retrieve the trusted config stored in the MOS and use it to create 3889 * a new, exact version of the vdev tree, then reopen all vdevs. 3890 */ 3891 error = spa_ld_trusted_config(spa, type, B_FALSE); 3892 if (error == EAGAIN) { 3893 if (update_config_cache != NULL) 3894 *update_config_cache = B_TRUE; 3895 3896 /* 3897 * Redo the loading process with the trusted config if it is 3898 * too different from the untrusted config. 3899 */ 3900 spa_ld_prepare_for_reload(spa); 3901 spa_load_note(spa, "RELOADING"); 3902 error = spa_ld_mos_init(spa, type); 3903 if (error != 0) 3904 return (error); 3905 3906 error = spa_ld_trusted_config(spa, type, B_TRUE); 3907 if (error != 0) 3908 return (error); 3909 3910 } else if (error != 0) { 3911 return (error); 3912 } 3913 3914 return (0); 3915 } 3916 3917 /* 3918 * Load an existing storage pool, using the config provided. This config 3919 * describes which vdevs are part of the pool and is later validated against 3920 * partial configs present in each vdev's label and an entire copy of the 3921 * config stored in the MOS. 3922 */ 3923 static int 3924 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) 3925 { 3926 int error = 0; 3927 boolean_t missing_feat_write = B_FALSE; 3928 boolean_t checkpoint_rewind = 3929 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3930 boolean_t update_config_cache = B_FALSE; 3931 3932 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3933 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 3934 3935 spa_load_note(spa, "LOADING"); 3936 3937 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 3938 if (error != 0) 3939 return (error); 3940 3941 /* 3942 * If we are rewinding to the checkpoint then we need to repeat 3943 * everything we've done so far in this function but this time 3944 * selecting the checkpointed uberblock and using that to open 3945 * the MOS. 3946 */ 3947 if (checkpoint_rewind) { 3948 /* 3949 * If we are rewinding to the checkpoint update config cache 3950 * anyway. 3951 */ 3952 update_config_cache = B_TRUE; 3953 3954 /* 3955 * Extract the checkpointed uberblock from the current MOS 3956 * and use this as the pool's uberblock from now on. If the 3957 * pool is imported as writeable we also write the checkpoint 3958 * uberblock to the labels, making the rewind permanent. 3959 */ 3960 error = spa_ld_checkpoint_rewind(spa); 3961 if (error != 0) 3962 return (error); 3963 3964 /* 3965 * Redo the loading process process again with the 3966 * checkpointed uberblock. 3967 */ 3968 spa_ld_prepare_for_reload(spa); 3969 spa_load_note(spa, "LOADING checkpointed uberblock"); 3970 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 3971 if (error != 0) 3972 return (error); 3973 } 3974 3975 /* 3976 * Retrieve the checkpoint txg if the pool has a checkpoint. 3977 */ 3978 error = spa_ld_read_checkpoint_txg(spa); 3979 if (error != 0) 3980 return (error); 3981 3982 /* 3983 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 3984 * from the pool and their contents were re-mapped to other vdevs. Note 3985 * that everything that we read before this step must have been 3986 * rewritten on concrete vdevs after the last device removal was 3987 * initiated. Otherwise we could be reading from indirect vdevs before 3988 * we have loaded their mappings. 3989 */ 3990 error = spa_ld_open_indirect_vdev_metadata(spa); 3991 if (error != 0) 3992 return (error); 3993 3994 /* 3995 * Retrieve the full list of active features from the MOS and check if 3996 * they are all supported. 3997 */ 3998 error = spa_ld_check_features(spa, &missing_feat_write); 3999 if (error != 0) 4000 return (error); 4001 4002 /* 4003 * Load several special directories from the MOS needed by the dsl_pool 4004 * layer. 4005 */ 4006 error = spa_ld_load_special_directories(spa); 4007 if (error != 0) 4008 return (error); 4009 4010 /* 4011 * Retrieve pool properties from the MOS. 4012 */ 4013 error = spa_ld_get_props(spa); 4014 if (error != 0) 4015 return (error); 4016 4017 /* 4018 * Retrieve the list of auxiliary devices - cache devices and spares - 4019 * and open them. 4020 */ 4021 error = spa_ld_open_aux_vdevs(spa, type); 4022 if (error != 0) 4023 return (error); 4024 4025 /* 4026 * Load the metadata for all vdevs. Also check if unopenable devices 4027 * should be autoreplaced. 4028 */ 4029 error = spa_ld_load_vdev_metadata(spa); 4030 if (error != 0) 4031 return (error); 4032 4033 error = spa_ld_load_dedup_tables(spa); 4034 if (error != 0) 4035 return (error); 4036 4037 /* 4038 * Verify the logs now to make sure we don't have any unexpected errors 4039 * when we claim log blocks later. 4040 */ 4041 error = spa_ld_verify_logs(spa, type, ereport); 4042 if (error != 0) 4043 return (error); 4044 4045 if (missing_feat_write) { 4046 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 4047 4048 /* 4049 * At this point, we know that we can open the pool in 4050 * read-only mode but not read-write mode. We now have enough 4051 * information and can return to userland. 4052 */ 4053 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 4054 ENOTSUP)); 4055 } 4056 4057 /* 4058 * Traverse the last txgs to make sure the pool was left off in a safe 4059 * state. When performing an extreme rewind, we verify the whole pool, 4060 * which can take a very long time. 4061 */ 4062 error = spa_ld_verify_pool_data(spa); 4063 if (error != 0) 4064 return (error); 4065 4066 /* 4067 * Calculate the deflated space for the pool. This must be done before 4068 * we write anything to the pool because we'd need to update the space 4069 * accounting using the deflated sizes. 4070 */ 4071 spa_update_dspace(spa); 4072 4073 /* 4074 * We have now retrieved all the information we needed to open the 4075 * pool. If we are importing the pool in read-write mode, a few 4076 * additional steps must be performed to finish the import. 4077 */ 4078 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 4079 spa->spa_load_max_txg == UINT64_MAX)) { 4080 uint64_t config_cache_txg = spa->spa_config_txg; 4081 4082 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 4083 4084 /* 4085 * In case of a checkpoint rewind, log the original txg 4086 * of the checkpointed uberblock. 4087 */ 4088 if (checkpoint_rewind) { 4089 spa_history_log_internal(spa, "checkpoint rewind", 4090 NULL, "rewound state to txg=%llu", 4091 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 4092 } 4093 4094 /* 4095 * Traverse the ZIL and claim all blocks. 4096 */ 4097 spa_ld_claim_log_blocks(spa); 4098 4099 /* 4100 * Kick-off the syncing thread. 4101 */ 4102 spa->spa_sync_on = B_TRUE; 4103 txg_sync_start(spa->spa_dsl_pool); 4104 mmp_thread_start(spa); 4105 4106 /* 4107 * Wait for all claims to sync. We sync up to the highest 4108 * claimed log block birth time so that claimed log blocks 4109 * don't appear to be from the future. spa_claim_max_txg 4110 * will have been set for us by ZIL traversal operations 4111 * performed above. 4112 */ 4113 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 4114 4115 /* 4116 * Check if we need to request an update of the config. On the 4117 * next sync, we would update the config stored in vdev labels 4118 * and the cachefile (by default /etc/zfs/zpool.cache). 4119 */ 4120 spa_ld_check_for_config_update(spa, config_cache_txg, 4121 update_config_cache); 4122 4123 /* 4124 * Check all DTLs to see if anything needs resilvering. 4125 */ 4126 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 4127 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 4128 spa_async_request(spa, SPA_ASYNC_RESILVER); 4129 4130 /* 4131 * Log the fact that we booted up (so that we can detect if 4132 * we rebooted in the middle of an operation). 4133 */ 4134 spa_history_log_version(spa, "open"); 4135 4136 spa_restart_removal(spa); 4137 spa_spawn_aux_threads(spa); 4138 4139 /* 4140 * Delete any inconsistent datasets. 4141 * 4142 * Note: 4143 * Since we may be issuing deletes for clones here, 4144 * we make sure to do so after we've spawned all the 4145 * auxiliary threads above (from which the livelist 4146 * deletion zthr is part of). 4147 */ 4148 (void) dmu_objset_find(spa_name(spa), 4149 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 4150 4151 /* 4152 * Clean up any stale temporary dataset userrefs. 4153 */ 4154 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 4155 4156 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4157 vdev_initialize_restart(spa->spa_root_vdev); 4158 spa_config_exit(spa, SCL_CONFIG, FTAG); 4159 } 4160 4161 spa_load_note(spa, "LOADED"); 4162 4163 return (0); 4164 } 4165 4166 static int 4167 spa_load_retry(spa_t *spa, spa_load_state_t state) 4168 { 4169 int mode = spa->spa_mode; 4170 4171 spa_unload(spa); 4172 spa_deactivate(spa); 4173 4174 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 4175 4176 spa_activate(spa, mode); 4177 spa_async_suspend(spa); 4178 4179 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 4180 (u_longlong_t)spa->spa_load_max_txg); 4181 4182 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 4183 } 4184 4185 /* 4186 * If spa_load() fails this function will try loading prior txg's. If 4187 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 4188 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 4189 * function will not rewind the pool and will return the same error as 4190 * spa_load(). 4191 */ 4192 static int 4193 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 4194 int rewind_flags) 4195 { 4196 nvlist_t *loadinfo = NULL; 4197 nvlist_t *config = NULL; 4198 int load_error, rewind_error; 4199 uint64_t safe_rewind_txg; 4200 uint64_t min_txg; 4201 4202 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 4203 spa->spa_load_max_txg = spa->spa_load_txg; 4204 spa_set_log_state(spa, SPA_LOG_CLEAR); 4205 } else { 4206 spa->spa_load_max_txg = max_request; 4207 if (max_request != UINT64_MAX) 4208 spa->spa_extreme_rewind = B_TRUE; 4209 } 4210 4211 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 4212 if (load_error == 0) 4213 return (0); 4214 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 4215 /* 4216 * When attempting checkpoint-rewind on a pool with no 4217 * checkpoint, we should not attempt to load uberblocks 4218 * from previous txgs when spa_load fails. 4219 */ 4220 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4221 return (load_error); 4222 } 4223 4224 if (spa->spa_root_vdev != NULL) 4225 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4226 4227 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 4228 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 4229 4230 if (rewind_flags & ZPOOL_NEVER_REWIND) { 4231 nvlist_free(config); 4232 return (load_error); 4233 } 4234 4235 if (state == SPA_LOAD_RECOVER) { 4236 /* Price of rolling back is discarding txgs, including log */ 4237 spa_set_log_state(spa, SPA_LOG_CLEAR); 4238 } else { 4239 /* 4240 * If we aren't rolling back save the load info from our first 4241 * import attempt so that we can restore it after attempting 4242 * to rewind. 4243 */ 4244 loadinfo = spa->spa_load_info; 4245 spa->spa_load_info = fnvlist_alloc(); 4246 } 4247 4248 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 4249 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 4250 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 4251 TXG_INITIAL : safe_rewind_txg; 4252 4253 /* 4254 * Continue as long as we're finding errors, we're still within 4255 * the acceptable rewind range, and we're still finding uberblocks 4256 */ 4257 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 4258 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 4259 if (spa->spa_load_max_txg < safe_rewind_txg) 4260 spa->spa_extreme_rewind = B_TRUE; 4261 rewind_error = spa_load_retry(spa, state); 4262 } 4263 4264 spa->spa_extreme_rewind = B_FALSE; 4265 spa->spa_load_max_txg = UINT64_MAX; 4266 4267 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 4268 spa_config_set(spa, config); 4269 else 4270 nvlist_free(config); 4271 4272 if (state == SPA_LOAD_RECOVER) { 4273 ASSERT3P(loadinfo, ==, NULL); 4274 return (rewind_error); 4275 } else { 4276 /* Store the rewind info as part of the initial load info */ 4277 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 4278 spa->spa_load_info); 4279 4280 /* Restore the initial load info */ 4281 fnvlist_free(spa->spa_load_info); 4282 spa->spa_load_info = loadinfo; 4283 4284 return (load_error); 4285 } 4286 } 4287 4288 /* 4289 * Pool Open/Import 4290 * 4291 * The import case is identical to an open except that the configuration is sent 4292 * down from userland, instead of grabbed from the configuration cache. For the 4293 * case of an open, the pool configuration will exist in the 4294 * POOL_STATE_UNINITIALIZED state. 4295 * 4296 * The stats information (gen/count/ustats) is used to gather vdev statistics at 4297 * the same time open the pool, without having to keep around the spa_t in some 4298 * ambiguous state. 4299 */ 4300 static int 4301 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 4302 nvlist_t **config) 4303 { 4304 spa_t *spa; 4305 spa_load_state_t state = SPA_LOAD_OPEN; 4306 int error; 4307 int locked = B_FALSE; 4308 4309 *spapp = NULL; 4310 4311 /* 4312 * As disgusting as this is, we need to support recursive calls to this 4313 * function because dsl_dir_open() is called during spa_load(), and ends 4314 * up calling spa_open() again. The real fix is to figure out how to 4315 * avoid dsl_dir_open() calling this in the first place. 4316 */ 4317 if (mutex_owner(&spa_namespace_lock) != curthread) { 4318 mutex_enter(&spa_namespace_lock); 4319 locked = B_TRUE; 4320 } 4321 4322 if ((spa = spa_lookup(pool)) == NULL) { 4323 if (locked) 4324 mutex_exit(&spa_namespace_lock); 4325 return (SET_ERROR(ENOENT)); 4326 } 4327 4328 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 4329 zpool_load_policy_t policy; 4330 4331 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 4332 &policy); 4333 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 4334 state = SPA_LOAD_RECOVER; 4335 4336 spa_activate(spa, spa_mode_global); 4337 4338 if (state != SPA_LOAD_RECOVER) 4339 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4340 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 4341 4342 zfs_dbgmsg("spa_open_common: opening %s", pool); 4343 error = spa_load_best(spa, state, policy.zlp_txg, 4344 policy.zlp_rewind); 4345 4346 if (error == EBADF) { 4347 /* 4348 * If vdev_validate() returns failure (indicated by 4349 * EBADF), it indicates that one of the vdevs indicates 4350 * that the pool has been exported or destroyed. If 4351 * this is the case, the config cache is out of sync and 4352 * we should remove the pool from the namespace. 4353 */ 4354 spa_unload(spa); 4355 spa_deactivate(spa); 4356 spa_write_cachefile(spa, B_TRUE, B_TRUE); 4357 spa_remove(spa); 4358 if (locked) 4359 mutex_exit(&spa_namespace_lock); 4360 return (SET_ERROR(ENOENT)); 4361 } 4362 4363 if (error) { 4364 /* 4365 * We can't open the pool, but we still have useful 4366 * information: the state of each vdev after the 4367 * attempted vdev_open(). Return this to the user. 4368 */ 4369 if (config != NULL && spa->spa_config) { 4370 VERIFY(nvlist_dup(spa->spa_config, config, 4371 KM_SLEEP) == 0); 4372 VERIFY(nvlist_add_nvlist(*config, 4373 ZPOOL_CONFIG_LOAD_INFO, 4374 spa->spa_load_info) == 0); 4375 } 4376 spa_unload(spa); 4377 spa_deactivate(spa); 4378 spa->spa_last_open_failed = error; 4379 if (locked) 4380 mutex_exit(&spa_namespace_lock); 4381 *spapp = NULL; 4382 return (error); 4383 } 4384 } 4385 4386 spa_open_ref(spa, tag); 4387 4388 if (config != NULL) 4389 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4390 4391 /* 4392 * If we've recovered the pool, pass back any information we 4393 * gathered while doing the load. 4394 */ 4395 if (state == SPA_LOAD_RECOVER) { 4396 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 4397 spa->spa_load_info) == 0); 4398 } 4399 4400 if (locked) { 4401 spa->spa_last_open_failed = 0; 4402 spa->spa_last_ubsync_txg = 0; 4403 spa->spa_load_txg = 0; 4404 mutex_exit(&spa_namespace_lock); 4405 } 4406 4407 *spapp = spa; 4408 4409 return (0); 4410 } 4411 4412 int 4413 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 4414 nvlist_t **config) 4415 { 4416 return (spa_open_common(name, spapp, tag, policy, config)); 4417 } 4418 4419 int 4420 spa_open(const char *name, spa_t **spapp, void *tag) 4421 { 4422 return (spa_open_common(name, spapp, tag, NULL, NULL)); 4423 } 4424 4425 /* 4426 * Lookup the given spa_t, incrementing the inject count in the process, 4427 * preventing it from being exported or destroyed. 4428 */ 4429 spa_t * 4430 spa_inject_addref(char *name) 4431 { 4432 spa_t *spa; 4433 4434 mutex_enter(&spa_namespace_lock); 4435 if ((spa = spa_lookup(name)) == NULL) { 4436 mutex_exit(&spa_namespace_lock); 4437 return (NULL); 4438 } 4439 spa->spa_inject_ref++; 4440 mutex_exit(&spa_namespace_lock); 4441 4442 return (spa); 4443 } 4444 4445 void 4446 spa_inject_delref(spa_t *spa) 4447 { 4448 mutex_enter(&spa_namespace_lock); 4449 spa->spa_inject_ref--; 4450 mutex_exit(&spa_namespace_lock); 4451 } 4452 4453 /* 4454 * Add spares device information to the nvlist. 4455 */ 4456 static void 4457 spa_add_spares(spa_t *spa, nvlist_t *config) 4458 { 4459 nvlist_t **spares; 4460 uint_t i, nspares; 4461 nvlist_t *nvroot; 4462 uint64_t guid; 4463 vdev_stat_t *vs; 4464 uint_t vsc; 4465 uint64_t pool; 4466 4467 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4468 4469 if (spa->spa_spares.sav_count == 0) 4470 return; 4471 4472 VERIFY(nvlist_lookup_nvlist(config, 4473 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4474 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4475 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4476 if (nspares != 0) { 4477 VERIFY(nvlist_add_nvlist_array(nvroot, 4478 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4479 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4480 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4481 4482 /* 4483 * Go through and find any spares which have since been 4484 * repurposed as an active spare. If this is the case, update 4485 * their status appropriately. 4486 */ 4487 for (i = 0; i < nspares; i++) { 4488 VERIFY(nvlist_lookup_uint64(spares[i], 4489 ZPOOL_CONFIG_GUID, &guid) == 0); 4490 if (spa_spare_exists(guid, &pool, NULL) && 4491 pool != 0ULL) { 4492 VERIFY(nvlist_lookup_uint64_array( 4493 spares[i], ZPOOL_CONFIG_VDEV_STATS, 4494 (uint64_t **)&vs, &vsc) == 0); 4495 vs->vs_state = VDEV_STATE_CANT_OPEN; 4496 vs->vs_aux = VDEV_AUX_SPARED; 4497 } 4498 } 4499 } 4500 } 4501 4502 /* 4503 * Add l2cache device information to the nvlist, including vdev stats. 4504 */ 4505 static void 4506 spa_add_l2cache(spa_t *spa, nvlist_t *config) 4507 { 4508 nvlist_t **l2cache; 4509 uint_t i, j, nl2cache; 4510 nvlist_t *nvroot; 4511 uint64_t guid; 4512 vdev_t *vd; 4513 vdev_stat_t *vs; 4514 uint_t vsc; 4515 4516 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4517 4518 if (spa->spa_l2cache.sav_count == 0) 4519 return; 4520 4521 VERIFY(nvlist_lookup_nvlist(config, 4522 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4523 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4524 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4525 if (nl2cache != 0) { 4526 VERIFY(nvlist_add_nvlist_array(nvroot, 4527 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4528 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4529 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4530 4531 /* 4532 * Update level 2 cache device stats. 4533 */ 4534 4535 for (i = 0; i < nl2cache; i++) { 4536 VERIFY(nvlist_lookup_uint64(l2cache[i], 4537 ZPOOL_CONFIG_GUID, &guid) == 0); 4538 4539 vd = NULL; 4540 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 4541 if (guid == 4542 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 4543 vd = spa->spa_l2cache.sav_vdevs[j]; 4544 break; 4545 } 4546 } 4547 ASSERT(vd != NULL); 4548 4549 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 4550 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 4551 == 0); 4552 vdev_get_stats(vd, vs); 4553 } 4554 } 4555 } 4556 4557 static void 4558 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 4559 { 4560 nvlist_t *features; 4561 zap_cursor_t zc; 4562 zap_attribute_t za; 4563 4564 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4565 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4566 4567 if (spa->spa_feat_for_read_obj != 0) { 4568 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4569 spa->spa_feat_for_read_obj); 4570 zap_cursor_retrieve(&zc, &za) == 0; 4571 zap_cursor_advance(&zc)) { 4572 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4573 za.za_num_integers == 1); 4574 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4575 za.za_first_integer)); 4576 } 4577 zap_cursor_fini(&zc); 4578 } 4579 4580 if (spa->spa_feat_for_write_obj != 0) { 4581 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4582 spa->spa_feat_for_write_obj); 4583 zap_cursor_retrieve(&zc, &za) == 0; 4584 zap_cursor_advance(&zc)) { 4585 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4586 za.za_num_integers == 1); 4587 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4588 za.za_first_integer)); 4589 } 4590 zap_cursor_fini(&zc); 4591 } 4592 4593 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 4594 features) == 0); 4595 nvlist_free(features); 4596 } 4597 4598 int 4599 spa_get_stats(const char *name, nvlist_t **config, 4600 char *altroot, size_t buflen) 4601 { 4602 int error; 4603 spa_t *spa; 4604 4605 *config = NULL; 4606 error = spa_open_common(name, &spa, FTAG, NULL, config); 4607 4608 if (spa != NULL) { 4609 /* 4610 * This still leaves a window of inconsistency where the spares 4611 * or l2cache devices could change and the config would be 4612 * self-inconsistent. 4613 */ 4614 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4615 4616 if (*config != NULL) { 4617 uint64_t loadtimes[2]; 4618 4619 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 4620 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 4621 VERIFY(nvlist_add_uint64_array(*config, 4622 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 4623 4624 VERIFY(nvlist_add_uint64(*config, 4625 ZPOOL_CONFIG_ERRCOUNT, 4626 spa_get_errlog_size(spa)) == 0); 4627 4628 if (spa_suspended(spa)) { 4629 VERIFY(nvlist_add_uint64(*config, 4630 ZPOOL_CONFIG_SUSPENDED, 4631 spa->spa_failmode) == 0); 4632 VERIFY(nvlist_add_uint64(*config, 4633 ZPOOL_CONFIG_SUSPENDED_REASON, 4634 spa->spa_suspended) == 0); 4635 } 4636 4637 spa_add_spares(spa, *config); 4638 spa_add_l2cache(spa, *config); 4639 spa_add_feature_stats(spa, *config); 4640 } 4641 } 4642 4643 /* 4644 * We want to get the alternate root even for faulted pools, so we cheat 4645 * and call spa_lookup() directly. 4646 */ 4647 if (altroot) { 4648 if (spa == NULL) { 4649 mutex_enter(&spa_namespace_lock); 4650 spa = spa_lookup(name); 4651 if (spa) 4652 spa_altroot(spa, altroot, buflen); 4653 else 4654 altroot[0] = '\0'; 4655 spa = NULL; 4656 mutex_exit(&spa_namespace_lock); 4657 } else { 4658 spa_altroot(spa, altroot, buflen); 4659 } 4660 } 4661 4662 if (spa != NULL) { 4663 spa_config_exit(spa, SCL_CONFIG, FTAG); 4664 spa_close(spa, FTAG); 4665 } 4666 4667 return (error); 4668 } 4669 4670 /* 4671 * Validate that the auxiliary device array is well formed. We must have an 4672 * array of nvlists, each which describes a valid leaf vdev. If this is an 4673 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 4674 * specified, as long as they are well-formed. 4675 */ 4676 static int 4677 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 4678 spa_aux_vdev_t *sav, const char *config, uint64_t version, 4679 vdev_labeltype_t label) 4680 { 4681 nvlist_t **dev; 4682 uint_t i, ndev; 4683 vdev_t *vd; 4684 int error; 4685 4686 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4687 4688 /* 4689 * It's acceptable to have no devs specified. 4690 */ 4691 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 4692 return (0); 4693 4694 if (ndev == 0) 4695 return (SET_ERROR(EINVAL)); 4696 4697 /* 4698 * Make sure the pool is formatted with a version that supports this 4699 * device type. 4700 */ 4701 if (spa_version(spa) < version) 4702 return (SET_ERROR(ENOTSUP)); 4703 4704 /* 4705 * Set the pending device list so we correctly handle device in-use 4706 * checking. 4707 */ 4708 sav->sav_pending = dev; 4709 sav->sav_npending = ndev; 4710 4711 for (i = 0; i < ndev; i++) { 4712 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 4713 mode)) != 0) 4714 goto out; 4715 4716 if (!vd->vdev_ops->vdev_op_leaf) { 4717 vdev_free(vd); 4718 error = SET_ERROR(EINVAL); 4719 goto out; 4720 } 4721 4722 vd->vdev_top = vd; 4723 4724 if ((error = vdev_open(vd)) == 0 && 4725 (error = vdev_label_init(vd, crtxg, label)) == 0) { 4726 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 4727 vd->vdev_guid) == 0); 4728 } 4729 4730 vdev_free(vd); 4731 4732 if (error && 4733 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 4734 goto out; 4735 else 4736 error = 0; 4737 } 4738 4739 out: 4740 sav->sav_pending = NULL; 4741 sav->sav_npending = 0; 4742 return (error); 4743 } 4744 4745 static int 4746 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 4747 { 4748 int error; 4749 4750 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4751 4752 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4753 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 4754 VDEV_LABEL_SPARE)) != 0) { 4755 return (error); 4756 } 4757 4758 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4759 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 4760 VDEV_LABEL_L2CACHE)); 4761 } 4762 4763 static void 4764 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 4765 const char *config) 4766 { 4767 int i; 4768 4769 if (sav->sav_config != NULL) { 4770 nvlist_t **olddevs; 4771 uint_t oldndevs; 4772 nvlist_t **newdevs; 4773 4774 /* 4775 * Generate new dev list by concatentating with the 4776 * current dev list. 4777 */ 4778 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 4779 &olddevs, &oldndevs) == 0); 4780 4781 newdevs = kmem_alloc(sizeof (void *) * 4782 (ndevs + oldndevs), KM_SLEEP); 4783 for (i = 0; i < oldndevs; i++) 4784 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 4785 KM_SLEEP) == 0); 4786 for (i = 0; i < ndevs; i++) 4787 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 4788 KM_SLEEP) == 0); 4789 4790 VERIFY(nvlist_remove(sav->sav_config, config, 4791 DATA_TYPE_NVLIST_ARRAY) == 0); 4792 4793 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 4794 config, newdevs, ndevs + oldndevs) == 0); 4795 for (i = 0; i < oldndevs + ndevs; i++) 4796 nvlist_free(newdevs[i]); 4797 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 4798 } else { 4799 /* 4800 * Generate a new dev list. 4801 */ 4802 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 4803 KM_SLEEP) == 0); 4804 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 4805 devs, ndevs) == 0); 4806 } 4807 } 4808 4809 /* 4810 * Stop and drop level 2 ARC devices 4811 */ 4812 void 4813 spa_l2cache_drop(spa_t *spa) 4814 { 4815 vdev_t *vd; 4816 int i; 4817 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4818 4819 for (i = 0; i < sav->sav_count; i++) { 4820 uint64_t pool; 4821 4822 vd = sav->sav_vdevs[i]; 4823 ASSERT(vd != NULL); 4824 4825 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 4826 pool != 0ULL && l2arc_vdev_present(vd)) 4827 l2arc_remove_vdev(vd); 4828 } 4829 } 4830 4831 /* 4832 * Pool Creation 4833 */ 4834 int 4835 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 4836 nvlist_t *zplprops) 4837 { 4838 spa_t *spa; 4839 char *altroot = NULL; 4840 vdev_t *rvd; 4841 dsl_pool_t *dp; 4842 dmu_tx_t *tx; 4843 int error = 0; 4844 uint64_t txg = TXG_INITIAL; 4845 nvlist_t **spares, **l2cache; 4846 uint_t nspares, nl2cache; 4847 uint64_t version, obj; 4848 boolean_t has_features; 4849 char *poolname; 4850 nvlist_t *nvl; 4851 4852 if (props == NULL || 4853 nvlist_lookup_string(props, 4854 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0) 4855 poolname = (char *)pool; 4856 4857 /* 4858 * If this pool already exists, return failure. 4859 */ 4860 mutex_enter(&spa_namespace_lock); 4861 if (spa_lookup(poolname) != NULL) { 4862 mutex_exit(&spa_namespace_lock); 4863 return (SET_ERROR(EEXIST)); 4864 } 4865 4866 /* 4867 * Allocate a new spa_t structure. 4868 */ 4869 nvl = fnvlist_alloc(); 4870 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 4871 (void) nvlist_lookup_string(props, 4872 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4873 spa = spa_add(poolname, nvl, altroot); 4874 fnvlist_free(nvl); 4875 spa_activate(spa, spa_mode_global); 4876 4877 if (props && (error = spa_prop_validate(spa, props))) { 4878 spa_deactivate(spa); 4879 spa_remove(spa); 4880 mutex_exit(&spa_namespace_lock); 4881 return (error); 4882 } 4883 4884 /* 4885 * Temporary pool names should never be written to disk. 4886 */ 4887 if (poolname != pool) 4888 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 4889 4890 has_features = B_FALSE; 4891 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 4892 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 4893 if (zpool_prop_feature(nvpair_name(elem))) 4894 has_features = B_TRUE; 4895 } 4896 4897 if (has_features || nvlist_lookup_uint64(props, 4898 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 4899 version = SPA_VERSION; 4900 } 4901 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 4902 4903 spa->spa_first_txg = txg; 4904 spa->spa_uberblock.ub_txg = txg - 1; 4905 spa->spa_uberblock.ub_version = version; 4906 spa->spa_ubsync = spa->spa_uberblock; 4907 spa->spa_load_state = SPA_LOAD_CREATE; 4908 spa->spa_removing_phys.sr_state = DSS_NONE; 4909 spa->spa_removing_phys.sr_removing_vdev = -1; 4910 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 4911 spa->spa_indirect_vdevs_loaded = B_TRUE; 4912 4913 /* 4914 * Create "The Godfather" zio to hold all async IOs 4915 */ 4916 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 4917 KM_SLEEP); 4918 for (int i = 0; i < max_ncpus; i++) { 4919 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 4920 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 4921 ZIO_FLAG_GODFATHER); 4922 } 4923 4924 /* 4925 * Create the root vdev. 4926 */ 4927 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4928 4929 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 4930 4931 ASSERT(error != 0 || rvd != NULL); 4932 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 4933 4934 if (error == 0 && !zfs_allocatable_devs(nvroot)) 4935 error = SET_ERROR(EINVAL); 4936 4937 if (error == 0 && 4938 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 4939 (error = spa_validate_aux(spa, nvroot, txg, 4940 VDEV_ALLOC_ADD)) == 0) { 4941 /* 4942 * instantiate the metaslab groups (this will dirty the vdevs) 4943 * we can no longer error exit past this point 4944 */ 4945 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 4946 vdev_t *vd = rvd->vdev_child[c]; 4947 4948 vdev_metaslab_set_size(vd); 4949 vdev_expand(vd, txg); 4950 } 4951 } 4952 4953 spa_config_exit(spa, SCL_ALL, FTAG); 4954 4955 if (error != 0) { 4956 spa_unload(spa); 4957 spa_deactivate(spa); 4958 spa_remove(spa); 4959 mutex_exit(&spa_namespace_lock); 4960 return (error); 4961 } 4962 4963 /* 4964 * Get the list of spares, if specified. 4965 */ 4966 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4967 &spares, &nspares) == 0) { 4968 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 4969 KM_SLEEP) == 0); 4970 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4971 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4972 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4973 spa_load_spares(spa); 4974 spa_config_exit(spa, SCL_ALL, FTAG); 4975 spa->spa_spares.sav_sync = B_TRUE; 4976 } 4977 4978 /* 4979 * Get the list of level 2 cache devices, if specified. 4980 */ 4981 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4982 &l2cache, &nl2cache) == 0) { 4983 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4984 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4985 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4986 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4987 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4988 spa_load_l2cache(spa); 4989 spa_config_exit(spa, SCL_ALL, FTAG); 4990 spa->spa_l2cache.sav_sync = B_TRUE; 4991 } 4992 4993 spa->spa_is_initializing = B_TRUE; 4994 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 4995 spa->spa_meta_objset = dp->dp_meta_objset; 4996 spa->spa_is_initializing = B_FALSE; 4997 4998 /* 4999 * Create DDTs (dedup tables). 5000 */ 5001 ddt_create(spa); 5002 5003 spa_update_dspace(spa); 5004 5005 tx = dmu_tx_create_assigned(dp, txg); 5006 5007 /* 5008 * Create the pool config object. 5009 */ 5010 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 5011 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 5012 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 5013 5014 if (zap_add(spa->spa_meta_objset, 5015 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 5016 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 5017 cmn_err(CE_PANIC, "failed to add pool config"); 5018 } 5019 5020 if (spa_version(spa) >= SPA_VERSION_FEATURES) 5021 spa_feature_create_zap_objects(spa, tx); 5022 5023 if (zap_add(spa->spa_meta_objset, 5024 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 5025 sizeof (uint64_t), 1, &version, tx) != 0) { 5026 cmn_err(CE_PANIC, "failed to add pool version"); 5027 } 5028 5029 /* Newly created pools with the right version are always deflated. */ 5030 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 5031 spa->spa_deflate = TRUE; 5032 if (zap_add(spa->spa_meta_objset, 5033 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5034 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 5035 cmn_err(CE_PANIC, "failed to add deflate"); 5036 } 5037 } 5038 5039 /* 5040 * Create the deferred-free bpobj. Turn off compression 5041 * because sync-to-convergence takes longer if the blocksize 5042 * keeps changing. 5043 */ 5044 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 5045 dmu_object_set_compress(spa->spa_meta_objset, obj, 5046 ZIO_COMPRESS_OFF, tx); 5047 if (zap_add(spa->spa_meta_objset, 5048 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 5049 sizeof (uint64_t), 1, &obj, tx) != 0) { 5050 cmn_err(CE_PANIC, "failed to add bpobj"); 5051 } 5052 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 5053 spa->spa_meta_objset, obj)); 5054 5055 /* 5056 * Create the pool's history object. 5057 */ 5058 if (version >= SPA_VERSION_ZPOOL_HISTORY) 5059 spa_history_create_obj(spa, tx); 5060 5061 /* 5062 * Generate some random noise for salted checksums to operate on. 5063 */ 5064 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 5065 sizeof (spa->spa_cksum_salt.zcs_bytes)); 5066 5067 /* 5068 * Set pool properties. 5069 */ 5070 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 5071 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 5072 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 5073 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 5074 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 5075 5076 if (props != NULL) { 5077 spa_configfile_set(spa, props, B_FALSE); 5078 spa_sync_props(props, tx); 5079 } 5080 5081 dmu_tx_commit(tx); 5082 5083 spa->spa_sync_on = B_TRUE; 5084 txg_sync_start(spa->spa_dsl_pool); 5085 mmp_thread_start(spa); 5086 5087 /* 5088 * We explicitly wait for the first transaction to complete so that our 5089 * bean counters are appropriately updated. 5090 */ 5091 txg_wait_synced(spa->spa_dsl_pool, txg); 5092 5093 spa_spawn_aux_threads(spa); 5094 5095 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5096 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 5097 5098 spa_history_log_version(spa, "create"); 5099 5100 /* 5101 * Don't count references from objsets that are already closed 5102 * and are making their way through the eviction process. 5103 */ 5104 spa_evicting_os_wait(spa); 5105 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 5106 spa->spa_load_state = SPA_LOAD_NONE; 5107 5108 mutex_exit(&spa_namespace_lock); 5109 5110 return (0); 5111 } 5112 5113 #ifdef _KERNEL 5114 /* 5115 * Get the root pool information from the root disk, then import the root pool 5116 * during the system boot up time. 5117 */ 5118 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 5119 5120 static nvlist_t * 5121 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 5122 { 5123 nvlist_t *config; 5124 nvlist_t *nvtop, *nvroot; 5125 uint64_t pgid; 5126 5127 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 5128 return (NULL); 5129 5130 /* 5131 * Add this top-level vdev to the child array. 5132 */ 5133 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5134 &nvtop) == 0); 5135 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5136 &pgid) == 0); 5137 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 5138 5139 /* 5140 * Put this pool's top-level vdevs into a root vdev. 5141 */ 5142 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5143 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 5144 VDEV_TYPE_ROOT) == 0); 5145 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 5146 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 5147 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 5148 &nvtop, 1) == 0); 5149 5150 /* 5151 * Replace the existing vdev_tree with the new root vdev in 5152 * this pool's configuration (remove the old, add the new). 5153 */ 5154 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 5155 nvlist_free(nvroot); 5156 return (config); 5157 } 5158 5159 /* 5160 * Walk the vdev tree and see if we can find a device with "better" 5161 * configuration. A configuration is "better" if the label on that 5162 * device has a more recent txg. 5163 */ 5164 static void 5165 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 5166 { 5167 for (int c = 0; c < vd->vdev_children; c++) 5168 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 5169 5170 if (vd->vdev_ops->vdev_op_leaf) { 5171 nvlist_t *label; 5172 uint64_t label_txg; 5173 5174 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 5175 &label) != 0) 5176 return; 5177 5178 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 5179 &label_txg) == 0); 5180 5181 /* 5182 * Do we have a better boot device? 5183 */ 5184 if (label_txg > *txg) { 5185 *txg = label_txg; 5186 *avd = vd; 5187 } 5188 nvlist_free(label); 5189 } 5190 } 5191 5192 /* 5193 * Import a root pool. 5194 * 5195 * For x86. devpath_list will consist of devid and/or physpath name of 5196 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 5197 * The GRUB "findroot" command will return the vdev we should boot. 5198 * 5199 * For Sparc, devpath_list consists the physpath name of the booting device 5200 * no matter the rootpool is a single device pool or a mirrored pool. 5201 * e.g. 5202 * "/pci@1f,0/ide@d/disk@0,0:a" 5203 */ 5204 int 5205 spa_import_rootpool(char *devpath, char *devid) 5206 { 5207 spa_t *spa; 5208 vdev_t *rvd, *bvd, *avd = NULL; 5209 nvlist_t *config, *nvtop; 5210 uint64_t guid, txg; 5211 char *pname; 5212 int error; 5213 5214 /* 5215 * Read the label from the boot device and generate a configuration. 5216 */ 5217 config = spa_generate_rootconf(devpath, devid, &guid); 5218 #if defined(_OBP) && defined(_KERNEL) 5219 if (config == NULL) { 5220 if (strstr(devpath, "/iscsi/ssd") != NULL) { 5221 /* iscsi boot */ 5222 get_iscsi_bootpath_phy(devpath); 5223 config = spa_generate_rootconf(devpath, devid, &guid); 5224 } 5225 } 5226 #endif 5227 if (config == NULL) { 5228 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 5229 devpath); 5230 return (SET_ERROR(EIO)); 5231 } 5232 5233 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 5234 &pname) == 0); 5235 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 5236 5237 mutex_enter(&spa_namespace_lock); 5238 if ((spa = spa_lookup(pname)) != NULL) { 5239 /* 5240 * Remove the existing root pool from the namespace so that we 5241 * can replace it with the correct config we just read in. 5242 */ 5243 spa_remove(spa); 5244 } 5245 5246 spa = spa_add(pname, config, NULL); 5247 spa->spa_is_root = B_TRUE; 5248 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 5249 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 5250 &spa->spa_ubsync.ub_version) != 0) 5251 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 5252 5253 /* 5254 * Build up a vdev tree based on the boot device's label config. 5255 */ 5256 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5257 &nvtop) == 0); 5258 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5259 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 5260 VDEV_ALLOC_ROOTPOOL); 5261 spa_config_exit(spa, SCL_ALL, FTAG); 5262 if (error) { 5263 mutex_exit(&spa_namespace_lock); 5264 nvlist_free(config); 5265 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 5266 pname); 5267 return (error); 5268 } 5269 5270 /* 5271 * Get the boot vdev. 5272 */ 5273 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 5274 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 5275 (u_longlong_t)guid); 5276 error = SET_ERROR(ENOENT); 5277 goto out; 5278 } 5279 5280 /* 5281 * Determine if there is a better boot device. 5282 */ 5283 avd = bvd; 5284 spa_alt_rootvdev(rvd, &avd, &txg); 5285 if (avd != bvd) { 5286 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 5287 "try booting from '%s'", avd->vdev_path); 5288 error = SET_ERROR(EINVAL); 5289 goto out; 5290 } 5291 5292 /* 5293 * If the boot device is part of a spare vdev then ensure that 5294 * we're booting off the active spare. 5295 */ 5296 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 5297 !bvd->vdev_isspare) { 5298 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 5299 "try booting from '%s'", 5300 bvd->vdev_parent-> 5301 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 5302 error = SET_ERROR(EINVAL); 5303 goto out; 5304 } 5305 5306 error = 0; 5307 out: 5308 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5309 vdev_free(rvd); 5310 spa_config_exit(spa, SCL_ALL, FTAG); 5311 mutex_exit(&spa_namespace_lock); 5312 5313 nvlist_free(config); 5314 return (error); 5315 } 5316 5317 #endif 5318 5319 /* 5320 * Import a non-root pool into the system. 5321 */ 5322 int 5323 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 5324 { 5325 spa_t *spa; 5326 char *altroot = NULL; 5327 spa_load_state_t state = SPA_LOAD_IMPORT; 5328 zpool_load_policy_t policy; 5329 uint64_t mode = spa_mode_global; 5330 uint64_t readonly = B_FALSE; 5331 int error; 5332 nvlist_t *nvroot; 5333 nvlist_t **spares, **l2cache; 5334 uint_t nspares, nl2cache; 5335 5336 /* 5337 * If a pool with this name exists, return failure. 5338 */ 5339 mutex_enter(&spa_namespace_lock); 5340 if (spa_lookup(pool) != NULL) { 5341 mutex_exit(&spa_namespace_lock); 5342 return (SET_ERROR(EEXIST)); 5343 } 5344 5345 /* 5346 * Create and initialize the spa structure. 5347 */ 5348 (void) nvlist_lookup_string(props, 5349 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5350 (void) nvlist_lookup_uint64(props, 5351 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 5352 if (readonly) 5353 mode = FREAD; 5354 spa = spa_add(pool, config, altroot); 5355 spa->spa_import_flags = flags; 5356 5357 /* 5358 * Verbatim import - Take a pool and insert it into the namespace 5359 * as if it had been loaded at boot. 5360 */ 5361 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 5362 if (props != NULL) 5363 spa_configfile_set(spa, props, B_FALSE); 5364 5365 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5366 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5367 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 5368 mutex_exit(&spa_namespace_lock); 5369 return (0); 5370 } 5371 5372 spa_activate(spa, mode); 5373 5374 /* 5375 * Don't start async tasks until we know everything is healthy. 5376 */ 5377 spa_async_suspend(spa); 5378 5379 zpool_get_load_policy(config, &policy); 5380 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5381 state = SPA_LOAD_RECOVER; 5382 5383 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 5384 5385 if (state != SPA_LOAD_RECOVER) { 5386 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5387 zfs_dbgmsg("spa_import: importing %s", pool); 5388 } else { 5389 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 5390 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 5391 } 5392 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 5393 5394 /* 5395 * Propagate anything learned while loading the pool and pass it 5396 * back to caller (i.e. rewind info, missing devices, etc). 5397 */ 5398 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5399 spa->spa_load_info) == 0); 5400 5401 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5402 /* 5403 * Toss any existing sparelist, as it doesn't have any validity 5404 * anymore, and conflicts with spa_has_spare(). 5405 */ 5406 if (spa->spa_spares.sav_config) { 5407 nvlist_free(spa->spa_spares.sav_config); 5408 spa->spa_spares.sav_config = NULL; 5409 spa_load_spares(spa); 5410 } 5411 if (spa->spa_l2cache.sav_config) { 5412 nvlist_free(spa->spa_l2cache.sav_config); 5413 spa->spa_l2cache.sav_config = NULL; 5414 spa_load_l2cache(spa); 5415 } 5416 5417 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5418 &nvroot) == 0); 5419 if (error == 0) 5420 error = spa_validate_aux(spa, nvroot, -1ULL, 5421 VDEV_ALLOC_SPARE); 5422 if (error == 0) 5423 error = spa_validate_aux(spa, nvroot, -1ULL, 5424 VDEV_ALLOC_L2CACHE); 5425 spa_config_exit(spa, SCL_ALL, FTAG); 5426 5427 if (props != NULL) 5428 spa_configfile_set(spa, props, B_FALSE); 5429 5430 if (error != 0 || (props && spa_writeable(spa) && 5431 (error = spa_prop_set(spa, props)))) { 5432 spa_unload(spa); 5433 spa_deactivate(spa); 5434 spa_remove(spa); 5435 mutex_exit(&spa_namespace_lock); 5436 return (error); 5437 } 5438 5439 spa_async_resume(spa); 5440 5441 /* 5442 * Override any spares and level 2 cache devices as specified by 5443 * the user, as these may have correct device names/devids, etc. 5444 */ 5445 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5446 &spares, &nspares) == 0) { 5447 if (spa->spa_spares.sav_config) 5448 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 5449 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 5450 else 5451 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 5452 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5453 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5454 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5455 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5456 spa_load_spares(spa); 5457 spa_config_exit(spa, SCL_ALL, FTAG); 5458 spa->spa_spares.sav_sync = B_TRUE; 5459 } 5460 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5461 &l2cache, &nl2cache) == 0) { 5462 if (spa->spa_l2cache.sav_config) 5463 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 5464 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 5465 else 5466 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5467 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5468 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5469 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5470 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5471 spa_load_l2cache(spa); 5472 spa_config_exit(spa, SCL_ALL, FTAG); 5473 spa->spa_l2cache.sav_sync = B_TRUE; 5474 } 5475 5476 /* 5477 * Check for any removed devices. 5478 */ 5479 if (spa->spa_autoreplace) { 5480 spa_aux_check_removed(&spa->spa_spares); 5481 spa_aux_check_removed(&spa->spa_l2cache); 5482 } 5483 5484 if (spa_writeable(spa)) { 5485 /* 5486 * Update the config cache to include the newly-imported pool. 5487 */ 5488 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5489 } 5490 5491 /* 5492 * It's possible that the pool was expanded while it was exported. 5493 * We kick off an async task to handle this for us. 5494 */ 5495 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 5496 5497 spa_history_log_version(spa, "import"); 5498 5499 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5500 5501 mutex_exit(&spa_namespace_lock); 5502 5503 return (0); 5504 } 5505 5506 nvlist_t * 5507 spa_tryimport(nvlist_t *tryconfig) 5508 { 5509 nvlist_t *config = NULL; 5510 char *poolname, *cachefile; 5511 spa_t *spa; 5512 uint64_t state; 5513 int error; 5514 zpool_load_policy_t policy; 5515 5516 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 5517 return (NULL); 5518 5519 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 5520 return (NULL); 5521 5522 /* 5523 * Create and initialize the spa structure. 5524 */ 5525 mutex_enter(&spa_namespace_lock); 5526 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 5527 spa_activate(spa, FREAD); 5528 5529 /* 5530 * Rewind pool if a max txg was provided. 5531 */ 5532 zpool_get_load_policy(spa->spa_config, &policy); 5533 if (policy.zlp_txg != UINT64_MAX) { 5534 spa->spa_load_max_txg = policy.zlp_txg; 5535 spa->spa_extreme_rewind = B_TRUE; 5536 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 5537 poolname, (longlong_t)policy.zlp_txg); 5538 } else { 5539 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 5540 } 5541 5542 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 5543 == 0) { 5544 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 5545 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5546 } else { 5547 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 5548 } 5549 5550 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 5551 5552 /* 5553 * If 'tryconfig' was at least parsable, return the current config. 5554 */ 5555 if (spa->spa_root_vdev != NULL) { 5556 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5557 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 5558 poolname) == 0); 5559 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5560 state) == 0); 5561 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 5562 spa->spa_uberblock.ub_timestamp) == 0); 5563 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5564 spa->spa_load_info) == 0); 5565 5566 /* 5567 * If the bootfs property exists on this pool then we 5568 * copy it out so that external consumers can tell which 5569 * pools are bootable. 5570 */ 5571 if ((!error || error == EEXIST) && spa->spa_bootfs) { 5572 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5573 5574 /* 5575 * We have to play games with the name since the 5576 * pool was opened as TRYIMPORT_NAME. 5577 */ 5578 if (dsl_dsobj_to_dsname(spa_name(spa), 5579 spa->spa_bootfs, tmpname) == 0) { 5580 char *cp; 5581 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5582 5583 cp = strchr(tmpname, '/'); 5584 if (cp == NULL) { 5585 (void) strlcpy(dsname, tmpname, 5586 MAXPATHLEN); 5587 } else { 5588 (void) snprintf(dsname, MAXPATHLEN, 5589 "%s/%s", poolname, ++cp); 5590 } 5591 VERIFY(nvlist_add_string(config, 5592 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 5593 kmem_free(dsname, MAXPATHLEN); 5594 } 5595 kmem_free(tmpname, MAXPATHLEN); 5596 } 5597 5598 /* 5599 * Add the list of hot spares and level 2 cache devices. 5600 */ 5601 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5602 spa_add_spares(spa, config); 5603 spa_add_l2cache(spa, config); 5604 spa_config_exit(spa, SCL_CONFIG, FTAG); 5605 } 5606 5607 spa_unload(spa); 5608 spa_deactivate(spa); 5609 spa_remove(spa); 5610 mutex_exit(&spa_namespace_lock); 5611 5612 return (config); 5613 } 5614 5615 /* 5616 * Pool export/destroy 5617 * 5618 * The act of destroying or exporting a pool is very simple. We make sure there 5619 * is no more pending I/O and any references to the pool are gone. Then, we 5620 * update the pool state and sync all the labels to disk, removing the 5621 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 5622 * we don't sync the labels or remove the configuration cache. 5623 */ 5624 static int 5625 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 5626 boolean_t force, boolean_t hardforce) 5627 { 5628 spa_t *spa; 5629 5630 if (oldconfig) 5631 *oldconfig = NULL; 5632 5633 if (!(spa_mode_global & FWRITE)) 5634 return (SET_ERROR(EROFS)); 5635 5636 mutex_enter(&spa_namespace_lock); 5637 if ((spa = spa_lookup(pool)) == NULL) { 5638 mutex_exit(&spa_namespace_lock); 5639 return (SET_ERROR(ENOENT)); 5640 } 5641 5642 /* 5643 * Put a hold on the pool, drop the namespace lock, stop async tasks, 5644 * reacquire the namespace lock, and see if we can export. 5645 */ 5646 spa_open_ref(spa, FTAG); 5647 mutex_exit(&spa_namespace_lock); 5648 spa_async_suspend(spa); 5649 mutex_enter(&spa_namespace_lock); 5650 spa_close(spa, FTAG); 5651 5652 /* 5653 * The pool will be in core if it's openable, 5654 * in which case we can modify its state. 5655 */ 5656 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 5657 5658 /* 5659 * Objsets may be open only because they're dirty, so we 5660 * have to force it to sync before checking spa_refcnt. 5661 */ 5662 txg_wait_synced(spa->spa_dsl_pool, 0); 5663 spa_evicting_os_wait(spa); 5664 5665 /* 5666 * A pool cannot be exported or destroyed if there are active 5667 * references. If we are resetting a pool, allow references by 5668 * fault injection handlers. 5669 */ 5670 if (!spa_refcount_zero(spa) || 5671 (spa->spa_inject_ref != 0 && 5672 new_state != POOL_STATE_UNINITIALIZED)) { 5673 spa_async_resume(spa); 5674 mutex_exit(&spa_namespace_lock); 5675 return (SET_ERROR(EBUSY)); 5676 } 5677 5678 /* 5679 * A pool cannot be exported if it has an active shared spare. 5680 * This is to prevent other pools stealing the active spare 5681 * from an exported pool. At user's own will, such pool can 5682 * be forcedly exported. 5683 */ 5684 if (!force && new_state == POOL_STATE_EXPORTED && 5685 spa_has_active_shared_spare(spa)) { 5686 spa_async_resume(spa); 5687 mutex_exit(&spa_namespace_lock); 5688 return (SET_ERROR(EXDEV)); 5689 } 5690 5691 /* 5692 * We're about to export or destroy this pool. Make sure 5693 * we stop all initializtion activity here before we 5694 * set the spa_final_txg. This will ensure that all 5695 * dirty data resulting from the initialization is 5696 * committed to disk before we unload the pool. 5697 */ 5698 if (spa->spa_root_vdev != NULL) { 5699 vdev_initialize_stop_all(spa->spa_root_vdev, 5700 VDEV_INITIALIZE_ACTIVE); 5701 } 5702 5703 /* 5704 * We want this to be reflected on every label, 5705 * so mark them all dirty. spa_unload() will do the 5706 * final sync that pushes these changes out. 5707 */ 5708 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 5709 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5710 spa->spa_state = new_state; 5711 spa->spa_final_txg = spa_last_synced_txg(spa) + 5712 TXG_DEFER_SIZE + 1; 5713 vdev_config_dirty(spa->spa_root_vdev); 5714 spa_config_exit(spa, SCL_ALL, FTAG); 5715 } 5716 } 5717 5718 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 5719 5720 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5721 spa_unload(spa); 5722 spa_deactivate(spa); 5723 } 5724 5725 if (oldconfig && spa->spa_config) 5726 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 5727 5728 if (new_state != POOL_STATE_UNINITIALIZED) { 5729 if (!hardforce) 5730 spa_write_cachefile(spa, B_TRUE, B_TRUE); 5731 spa_remove(spa); 5732 } 5733 mutex_exit(&spa_namespace_lock); 5734 5735 return (0); 5736 } 5737 5738 /* 5739 * Destroy a storage pool. 5740 */ 5741 int 5742 spa_destroy(char *pool) 5743 { 5744 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 5745 B_FALSE, B_FALSE)); 5746 } 5747 5748 /* 5749 * Export a storage pool. 5750 */ 5751 int 5752 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 5753 boolean_t hardforce) 5754 { 5755 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 5756 force, hardforce)); 5757 } 5758 5759 /* 5760 * Similar to spa_export(), this unloads the spa_t without actually removing it 5761 * from the namespace in any way. 5762 */ 5763 int 5764 spa_reset(char *pool) 5765 { 5766 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 5767 B_FALSE, B_FALSE)); 5768 } 5769 5770 /* 5771 * ========================================================================== 5772 * Device manipulation 5773 * ========================================================================== 5774 */ 5775 5776 /* 5777 * Add a device to a storage pool. 5778 */ 5779 int 5780 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 5781 { 5782 uint64_t txg, id; 5783 int error; 5784 vdev_t *rvd = spa->spa_root_vdev; 5785 vdev_t *vd, *tvd; 5786 nvlist_t **spares, **l2cache; 5787 uint_t nspares, nl2cache; 5788 5789 ASSERT(spa_writeable(spa)); 5790 5791 txg = spa_vdev_enter(spa); 5792 5793 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 5794 VDEV_ALLOC_ADD)) != 0) 5795 return (spa_vdev_exit(spa, NULL, txg, error)); 5796 5797 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 5798 5799 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 5800 &nspares) != 0) 5801 nspares = 0; 5802 5803 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 5804 &nl2cache) != 0) 5805 nl2cache = 0; 5806 5807 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 5808 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5809 5810 if (vd->vdev_children != 0 && 5811 (error = vdev_create(vd, txg, B_FALSE)) != 0) 5812 return (spa_vdev_exit(spa, vd, txg, error)); 5813 5814 /* 5815 * We must validate the spares and l2cache devices after checking the 5816 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 5817 */ 5818 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 5819 return (spa_vdev_exit(spa, vd, txg, error)); 5820 5821 /* 5822 * If we are in the middle of a device removal, we can only add 5823 * devices which match the existing devices in the pool. 5824 * If we are in the middle of a removal, or have some indirect 5825 * vdevs, we can not add raidz toplevels. 5826 */ 5827 if (spa->spa_vdev_removal != NULL || 5828 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 5829 for (int c = 0; c < vd->vdev_children; c++) { 5830 tvd = vd->vdev_child[c]; 5831 if (spa->spa_vdev_removal != NULL && 5832 tvd->vdev_ashift != spa->spa_max_ashift) { 5833 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5834 } 5835 /* Fail if top level vdev is raidz */ 5836 if (tvd->vdev_ops == &vdev_raidz_ops) { 5837 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5838 } 5839 /* 5840 * Need the top level mirror to be 5841 * a mirror of leaf vdevs only 5842 */ 5843 if (tvd->vdev_ops == &vdev_mirror_ops) { 5844 for (uint64_t cid = 0; 5845 cid < tvd->vdev_children; cid++) { 5846 vdev_t *cvd = tvd->vdev_child[cid]; 5847 if (!cvd->vdev_ops->vdev_op_leaf) { 5848 return (spa_vdev_exit(spa, vd, 5849 txg, EINVAL)); 5850 } 5851 } 5852 } 5853 } 5854 } 5855 5856 for (int c = 0; c < vd->vdev_children; c++) { 5857 5858 /* 5859 * Set the vdev id to the first hole, if one exists. 5860 */ 5861 for (id = 0; id < rvd->vdev_children; id++) { 5862 if (rvd->vdev_child[id]->vdev_ishole) { 5863 vdev_free(rvd->vdev_child[id]); 5864 break; 5865 } 5866 } 5867 tvd = vd->vdev_child[c]; 5868 vdev_remove_child(vd, tvd); 5869 tvd->vdev_id = id; 5870 vdev_add_child(rvd, tvd); 5871 vdev_config_dirty(tvd); 5872 } 5873 5874 if (nspares != 0) { 5875 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 5876 ZPOOL_CONFIG_SPARES); 5877 spa_load_spares(spa); 5878 spa->spa_spares.sav_sync = B_TRUE; 5879 } 5880 5881 if (nl2cache != 0) { 5882 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 5883 ZPOOL_CONFIG_L2CACHE); 5884 spa_load_l2cache(spa); 5885 spa->spa_l2cache.sav_sync = B_TRUE; 5886 } 5887 5888 /* 5889 * We have to be careful when adding new vdevs to an existing pool. 5890 * If other threads start allocating from these vdevs before we 5891 * sync the config cache, and we lose power, then upon reboot we may 5892 * fail to open the pool because there are DVAs that the config cache 5893 * can't translate. Therefore, we first add the vdevs without 5894 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 5895 * and then let spa_config_update() initialize the new metaslabs. 5896 * 5897 * spa_load() checks for added-but-not-initialized vdevs, so that 5898 * if we lose power at any point in this sequence, the remaining 5899 * steps will be completed the next time we load the pool. 5900 */ 5901 (void) spa_vdev_exit(spa, vd, txg, 0); 5902 5903 mutex_enter(&spa_namespace_lock); 5904 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5905 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 5906 mutex_exit(&spa_namespace_lock); 5907 5908 return (0); 5909 } 5910 5911 /* 5912 * Attach a device to a mirror. The arguments are the path to any device 5913 * in the mirror, and the nvroot for the new device. If the path specifies 5914 * a device that is not mirrored, we automatically insert the mirror vdev. 5915 * 5916 * If 'replacing' is specified, the new device is intended to replace the 5917 * existing device; in this case the two devices are made into their own 5918 * mirror using the 'replacing' vdev, which is functionally identical to 5919 * the mirror vdev (it actually reuses all the same ops) but has a few 5920 * extra rules: you can't attach to it after it's been created, and upon 5921 * completion of resilvering, the first disk (the one being replaced) 5922 * is automatically detached. 5923 */ 5924 int 5925 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 5926 { 5927 uint64_t txg, dtl_max_txg; 5928 vdev_t *rvd = spa->spa_root_vdev; 5929 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 5930 vdev_ops_t *pvops; 5931 char *oldvdpath, *newvdpath; 5932 int newvd_isspare; 5933 int error; 5934 5935 ASSERT(spa_writeable(spa)); 5936 5937 txg = spa_vdev_enter(spa); 5938 5939 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 5940 5941 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5942 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 5943 error = (spa_has_checkpoint(spa)) ? 5944 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 5945 return (spa_vdev_exit(spa, NULL, txg, error)); 5946 } 5947 5948 if (spa->spa_vdev_removal != NULL) 5949 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5950 5951 if (oldvd == NULL) 5952 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 5953 5954 if (!oldvd->vdev_ops->vdev_op_leaf) 5955 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5956 5957 pvd = oldvd->vdev_parent; 5958 5959 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 5960 VDEV_ALLOC_ATTACH)) != 0) 5961 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5962 5963 if (newrootvd->vdev_children != 1) 5964 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 5965 5966 newvd = newrootvd->vdev_child[0]; 5967 5968 if (!newvd->vdev_ops->vdev_op_leaf) 5969 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 5970 5971 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 5972 return (spa_vdev_exit(spa, newrootvd, txg, error)); 5973 5974 /* 5975 * Spares can't replace logs 5976 */ 5977 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 5978 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5979 5980 if (!replacing) { 5981 /* 5982 * For attach, the only allowable parent is a mirror or the root 5983 * vdev. 5984 */ 5985 if (pvd->vdev_ops != &vdev_mirror_ops && 5986 pvd->vdev_ops != &vdev_root_ops) 5987 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5988 5989 pvops = &vdev_mirror_ops; 5990 } else { 5991 /* 5992 * Active hot spares can only be replaced by inactive hot 5993 * spares. 5994 */ 5995 if (pvd->vdev_ops == &vdev_spare_ops && 5996 oldvd->vdev_isspare && 5997 !spa_has_spare(spa, newvd->vdev_guid)) 5998 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5999 6000 /* 6001 * If the source is a hot spare, and the parent isn't already a 6002 * spare, then we want to create a new hot spare. Otherwise, we 6003 * want to create a replacing vdev. The user is not allowed to 6004 * attach to a spared vdev child unless the 'isspare' state is 6005 * the same (spare replaces spare, non-spare replaces 6006 * non-spare). 6007 */ 6008 if (pvd->vdev_ops == &vdev_replacing_ops && 6009 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 6010 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6011 } else if (pvd->vdev_ops == &vdev_spare_ops && 6012 newvd->vdev_isspare != oldvd->vdev_isspare) { 6013 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6014 } 6015 6016 if (newvd->vdev_isspare) 6017 pvops = &vdev_spare_ops; 6018 else 6019 pvops = &vdev_replacing_ops; 6020 } 6021 6022 /* 6023 * Make sure the new device is big enough. 6024 */ 6025 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 6026 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 6027 6028 /* 6029 * The new device cannot have a higher alignment requirement 6030 * than the top-level vdev. 6031 */ 6032 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 6033 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 6034 6035 /* 6036 * If this is an in-place replacement, update oldvd's path and devid 6037 * to make it distinguishable from newvd, and unopenable from now on. 6038 */ 6039 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 6040 spa_strfree(oldvd->vdev_path); 6041 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 6042 KM_SLEEP); 6043 (void) sprintf(oldvd->vdev_path, "%s/%s", 6044 newvd->vdev_path, "old"); 6045 if (oldvd->vdev_devid != NULL) { 6046 spa_strfree(oldvd->vdev_devid); 6047 oldvd->vdev_devid = NULL; 6048 } 6049 } 6050 6051 /* mark the device being resilvered */ 6052 newvd->vdev_resilver_txg = txg; 6053 6054 /* 6055 * If the parent is not a mirror, or if we're replacing, insert the new 6056 * mirror/replacing/spare vdev above oldvd. 6057 */ 6058 if (pvd->vdev_ops != pvops) 6059 pvd = vdev_add_parent(oldvd, pvops); 6060 6061 ASSERT(pvd->vdev_top->vdev_parent == rvd); 6062 ASSERT(pvd->vdev_ops == pvops); 6063 ASSERT(oldvd->vdev_parent == pvd); 6064 6065 /* 6066 * Extract the new device from its root and add it to pvd. 6067 */ 6068 vdev_remove_child(newrootvd, newvd); 6069 newvd->vdev_id = pvd->vdev_children; 6070 newvd->vdev_crtxg = oldvd->vdev_crtxg; 6071 vdev_add_child(pvd, newvd); 6072 6073 tvd = newvd->vdev_top; 6074 ASSERT(pvd->vdev_top == tvd); 6075 ASSERT(tvd->vdev_parent == rvd); 6076 6077 vdev_config_dirty(tvd); 6078 6079 /* 6080 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 6081 * for any dmu_sync-ed blocks. It will propagate upward when 6082 * spa_vdev_exit() calls vdev_dtl_reassess(). 6083 */ 6084 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 6085 6086 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 6087 dtl_max_txg - TXG_INITIAL); 6088 6089 if (newvd->vdev_isspare) { 6090 spa_spare_activate(newvd); 6091 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 6092 } 6093 6094 oldvdpath = spa_strdup(oldvd->vdev_path); 6095 newvdpath = spa_strdup(newvd->vdev_path); 6096 newvd_isspare = newvd->vdev_isspare; 6097 6098 /* 6099 * Mark newvd's DTL dirty in this txg. 6100 */ 6101 vdev_dirty(tvd, VDD_DTL, newvd, txg); 6102 6103 /* 6104 * Schedule the resilver to restart in the future. We do this to 6105 * ensure that dmu_sync-ed blocks have been stitched into the 6106 * respective datasets. We do not do this if resilvers have been 6107 * deferred. 6108 */ 6109 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 6110 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 6111 vdev_set_deferred_resilver(spa, newvd); 6112 else 6113 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 6114 6115 if (spa->spa_bootfs) 6116 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 6117 6118 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 6119 6120 /* 6121 * Commit the config 6122 */ 6123 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 6124 6125 spa_history_log_internal(spa, "vdev attach", NULL, 6126 "%s vdev=%s %s vdev=%s", 6127 replacing && newvd_isspare ? "spare in" : 6128 replacing ? "replace" : "attach", newvdpath, 6129 replacing ? "for" : "to", oldvdpath); 6130 6131 spa_strfree(oldvdpath); 6132 spa_strfree(newvdpath); 6133 6134 return (0); 6135 } 6136 6137 /* 6138 * Detach a device from a mirror or replacing vdev. 6139 * 6140 * If 'replace_done' is specified, only detach if the parent 6141 * is a replacing vdev. 6142 */ 6143 int 6144 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 6145 { 6146 uint64_t txg; 6147 int error; 6148 vdev_t *rvd = spa->spa_root_vdev; 6149 vdev_t *vd, *pvd, *cvd, *tvd; 6150 boolean_t unspare = B_FALSE; 6151 uint64_t unspare_guid = 0; 6152 char *vdpath; 6153 6154 ASSERT(spa_writeable(spa)); 6155 6156 txg = spa_vdev_enter(spa); 6157 6158 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6159 6160 /* 6161 * Besides being called directly from the userland through the 6162 * ioctl interface, spa_vdev_detach() can be potentially called 6163 * at the end of spa_vdev_resilver_done(). 6164 * 6165 * In the regular case, when we have a checkpoint this shouldn't 6166 * happen as we never empty the DTLs of a vdev during the scrub 6167 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 6168 * should never get here when we have a checkpoint. 6169 * 6170 * That said, even in a case when we checkpoint the pool exactly 6171 * as spa_vdev_resilver_done() calls this function everything 6172 * should be fine as the resilver will return right away. 6173 */ 6174 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6175 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6176 error = (spa_has_checkpoint(spa)) ? 6177 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6178 return (spa_vdev_exit(spa, NULL, txg, error)); 6179 } 6180 6181 if (vd == NULL) 6182 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6183 6184 if (!vd->vdev_ops->vdev_op_leaf) 6185 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6186 6187 pvd = vd->vdev_parent; 6188 6189 /* 6190 * If the parent/child relationship is not as expected, don't do it. 6191 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 6192 * vdev that's replacing B with C. The user's intent in replacing 6193 * is to go from M(A,B) to M(A,C). If the user decides to cancel 6194 * the replace by detaching C, the expected behavior is to end up 6195 * M(A,B). But suppose that right after deciding to detach C, 6196 * the replacement of B completes. We would have M(A,C), and then 6197 * ask to detach C, which would leave us with just A -- not what 6198 * the user wanted. To prevent this, we make sure that the 6199 * parent/child relationship hasn't changed -- in this example, 6200 * that C's parent is still the replacing vdev R. 6201 */ 6202 if (pvd->vdev_guid != pguid && pguid != 0) 6203 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6204 6205 /* 6206 * Only 'replacing' or 'spare' vdevs can be replaced. 6207 */ 6208 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 6209 pvd->vdev_ops != &vdev_spare_ops) 6210 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6211 6212 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 6213 spa_version(spa) >= SPA_VERSION_SPARES); 6214 6215 /* 6216 * Only mirror, replacing, and spare vdevs support detach. 6217 */ 6218 if (pvd->vdev_ops != &vdev_replacing_ops && 6219 pvd->vdev_ops != &vdev_mirror_ops && 6220 pvd->vdev_ops != &vdev_spare_ops) 6221 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6222 6223 /* 6224 * If this device has the only valid copy of some data, 6225 * we cannot safely detach it. 6226 */ 6227 if (vdev_dtl_required(vd)) 6228 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6229 6230 ASSERT(pvd->vdev_children >= 2); 6231 6232 /* 6233 * If we are detaching the second disk from a replacing vdev, then 6234 * check to see if we changed the original vdev's path to have "/old" 6235 * at the end in spa_vdev_attach(). If so, undo that change now. 6236 */ 6237 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 6238 vd->vdev_path != NULL) { 6239 size_t len = strlen(vd->vdev_path); 6240 6241 for (int c = 0; c < pvd->vdev_children; c++) { 6242 cvd = pvd->vdev_child[c]; 6243 6244 if (cvd == vd || cvd->vdev_path == NULL) 6245 continue; 6246 6247 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 6248 strcmp(cvd->vdev_path + len, "/old") == 0) { 6249 spa_strfree(cvd->vdev_path); 6250 cvd->vdev_path = spa_strdup(vd->vdev_path); 6251 break; 6252 } 6253 } 6254 } 6255 6256 /* 6257 * If we are detaching the original disk from a spare, then it implies 6258 * that the spare should become a real disk, and be removed from the 6259 * active spare list for the pool. 6260 */ 6261 if (pvd->vdev_ops == &vdev_spare_ops && 6262 vd->vdev_id == 0 && 6263 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 6264 unspare = B_TRUE; 6265 6266 /* 6267 * Erase the disk labels so the disk can be used for other things. 6268 * This must be done after all other error cases are handled, 6269 * but before we disembowel vd (so we can still do I/O to it). 6270 * But if we can't do it, don't treat the error as fatal -- 6271 * it may be that the unwritability of the disk is the reason 6272 * it's being detached! 6273 */ 6274 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 6275 6276 /* 6277 * Remove vd from its parent and compact the parent's children. 6278 */ 6279 vdev_remove_child(pvd, vd); 6280 vdev_compact_children(pvd); 6281 6282 /* 6283 * Remember one of the remaining children so we can get tvd below. 6284 */ 6285 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 6286 6287 /* 6288 * If we need to remove the remaining child from the list of hot spares, 6289 * do it now, marking the vdev as no longer a spare in the process. 6290 * We must do this before vdev_remove_parent(), because that can 6291 * change the GUID if it creates a new toplevel GUID. For a similar 6292 * reason, we must remove the spare now, in the same txg as the detach; 6293 * otherwise someone could attach a new sibling, change the GUID, and 6294 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 6295 */ 6296 if (unspare) { 6297 ASSERT(cvd->vdev_isspare); 6298 spa_spare_remove(cvd); 6299 unspare_guid = cvd->vdev_guid; 6300 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 6301 cvd->vdev_unspare = B_TRUE; 6302 } 6303 6304 /* 6305 * If the parent mirror/replacing vdev only has one child, 6306 * the parent is no longer needed. Remove it from the tree. 6307 */ 6308 if (pvd->vdev_children == 1) { 6309 if (pvd->vdev_ops == &vdev_spare_ops) 6310 cvd->vdev_unspare = B_FALSE; 6311 vdev_remove_parent(cvd); 6312 } 6313 6314 6315 /* 6316 * We don't set tvd until now because the parent we just removed 6317 * may have been the previous top-level vdev. 6318 */ 6319 tvd = cvd->vdev_top; 6320 ASSERT(tvd->vdev_parent == rvd); 6321 6322 /* 6323 * Reevaluate the parent vdev state. 6324 */ 6325 vdev_propagate_state(cvd); 6326 6327 /* 6328 * If the 'autoexpand' property is set on the pool then automatically 6329 * try to expand the size of the pool. For example if the device we 6330 * just detached was smaller than the others, it may be possible to 6331 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 6332 * first so that we can obtain the updated sizes of the leaf vdevs. 6333 */ 6334 if (spa->spa_autoexpand) { 6335 vdev_reopen(tvd); 6336 vdev_expand(tvd, txg); 6337 } 6338 6339 vdev_config_dirty(tvd); 6340 6341 /* 6342 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 6343 * vd->vdev_detached is set and free vd's DTL object in syncing context. 6344 * But first make sure we're not on any *other* txg's DTL list, to 6345 * prevent vd from being accessed after it's freed. 6346 */ 6347 vdpath = spa_strdup(vd->vdev_path); 6348 for (int t = 0; t < TXG_SIZE; t++) 6349 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 6350 vd->vdev_detached = B_TRUE; 6351 vdev_dirty(tvd, VDD_DTL, vd, txg); 6352 6353 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 6354 6355 /* hang on to the spa before we release the lock */ 6356 spa_open_ref(spa, FTAG); 6357 6358 error = spa_vdev_exit(spa, vd, txg, 0); 6359 6360 spa_history_log_internal(spa, "detach", NULL, 6361 "vdev=%s", vdpath); 6362 spa_strfree(vdpath); 6363 6364 /* 6365 * If this was the removal of the original device in a hot spare vdev, 6366 * then we want to go through and remove the device from the hot spare 6367 * list of every other pool. 6368 */ 6369 if (unspare) { 6370 spa_t *altspa = NULL; 6371 6372 mutex_enter(&spa_namespace_lock); 6373 while ((altspa = spa_next(altspa)) != NULL) { 6374 if (altspa->spa_state != POOL_STATE_ACTIVE || 6375 altspa == spa) 6376 continue; 6377 6378 spa_open_ref(altspa, FTAG); 6379 mutex_exit(&spa_namespace_lock); 6380 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 6381 mutex_enter(&spa_namespace_lock); 6382 spa_close(altspa, FTAG); 6383 } 6384 mutex_exit(&spa_namespace_lock); 6385 6386 /* search the rest of the vdevs for spares to remove */ 6387 spa_vdev_resilver_done(spa); 6388 } 6389 6390 /* all done with the spa; OK to release */ 6391 mutex_enter(&spa_namespace_lock); 6392 spa_close(spa, FTAG); 6393 mutex_exit(&spa_namespace_lock); 6394 6395 return (error); 6396 } 6397 6398 int 6399 spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type) 6400 { 6401 /* 6402 * We hold the namespace lock through the whole function 6403 * to prevent any changes to the pool while we're starting or 6404 * stopping initialization. The config and state locks are held so that 6405 * we can properly assess the vdev state before we commit to 6406 * the initializing operation. 6407 */ 6408 mutex_enter(&spa_namespace_lock); 6409 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6410 6411 /* Look up vdev and ensure it's a leaf. */ 6412 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6413 if (vd == NULL || vd->vdev_detached) { 6414 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6415 mutex_exit(&spa_namespace_lock); 6416 return (SET_ERROR(ENODEV)); 6417 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 6418 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6419 mutex_exit(&spa_namespace_lock); 6420 return (SET_ERROR(EINVAL)); 6421 } else if (!vdev_writeable(vd)) { 6422 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6423 mutex_exit(&spa_namespace_lock); 6424 return (SET_ERROR(EROFS)); 6425 } 6426 mutex_enter(&vd->vdev_initialize_lock); 6427 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6428 6429 /* 6430 * When we activate an initialize action we check to see 6431 * if the vdev_initialize_thread is NULL. We do this instead 6432 * of using the vdev_initialize_state since there might be 6433 * a previous initialization process which has completed but 6434 * the thread is not exited. 6435 */ 6436 if (cmd_type == POOL_INITIALIZE_DO && 6437 (vd->vdev_initialize_thread != NULL || 6438 vd->vdev_top->vdev_removing)) { 6439 mutex_exit(&vd->vdev_initialize_lock); 6440 mutex_exit(&spa_namespace_lock); 6441 return (SET_ERROR(EBUSY)); 6442 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 6443 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 6444 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 6445 mutex_exit(&vd->vdev_initialize_lock); 6446 mutex_exit(&spa_namespace_lock); 6447 return (SET_ERROR(ESRCH)); 6448 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 6449 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 6450 mutex_exit(&vd->vdev_initialize_lock); 6451 mutex_exit(&spa_namespace_lock); 6452 return (SET_ERROR(ESRCH)); 6453 } 6454 6455 switch (cmd_type) { 6456 case POOL_INITIALIZE_DO: 6457 vdev_initialize(vd); 6458 break; 6459 case POOL_INITIALIZE_CANCEL: 6460 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED); 6461 break; 6462 case POOL_INITIALIZE_SUSPEND: 6463 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED); 6464 break; 6465 default: 6466 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 6467 } 6468 mutex_exit(&vd->vdev_initialize_lock); 6469 6470 /* Sync out the initializing state */ 6471 txg_wait_synced(spa->spa_dsl_pool, 0); 6472 mutex_exit(&spa_namespace_lock); 6473 6474 return (0); 6475 } 6476 6477 6478 /* 6479 * Split a set of devices from their mirrors, and create a new pool from them. 6480 */ 6481 int 6482 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 6483 nvlist_t *props, boolean_t exp) 6484 { 6485 int error = 0; 6486 uint64_t txg, *glist; 6487 spa_t *newspa; 6488 uint_t c, children, lastlog; 6489 nvlist_t **child, *nvl, *tmp; 6490 dmu_tx_t *tx; 6491 char *altroot = NULL; 6492 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 6493 boolean_t activate_slog; 6494 6495 ASSERT(spa_writeable(spa)); 6496 6497 txg = spa_vdev_enter(spa); 6498 6499 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6500 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6501 error = (spa_has_checkpoint(spa)) ? 6502 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6503 return (spa_vdev_exit(spa, NULL, txg, error)); 6504 } 6505 6506 /* clear the log and flush everything up to now */ 6507 activate_slog = spa_passivate_log(spa); 6508 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 6509 error = spa_reset_logs(spa); 6510 txg = spa_vdev_config_enter(spa); 6511 6512 if (activate_slog) 6513 spa_activate_log(spa); 6514 6515 if (error != 0) 6516 return (spa_vdev_exit(spa, NULL, txg, error)); 6517 6518 /* check new spa name before going any further */ 6519 if (spa_lookup(newname) != NULL) 6520 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 6521 6522 /* 6523 * scan through all the children to ensure they're all mirrors 6524 */ 6525 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 6526 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 6527 &children) != 0) 6528 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6529 6530 /* first, check to ensure we've got the right child count */ 6531 rvd = spa->spa_root_vdev; 6532 lastlog = 0; 6533 for (c = 0; c < rvd->vdev_children; c++) { 6534 vdev_t *vd = rvd->vdev_child[c]; 6535 6536 /* don't count the holes & logs as children */ 6537 if (vd->vdev_islog || !vdev_is_concrete(vd)) { 6538 if (lastlog == 0) 6539 lastlog = c; 6540 continue; 6541 } 6542 6543 lastlog = 0; 6544 } 6545 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 6546 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6547 6548 /* next, ensure no spare or cache devices are part of the split */ 6549 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 6550 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 6551 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6552 6553 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 6554 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 6555 6556 /* then, loop over each vdev and validate it */ 6557 for (c = 0; c < children; c++) { 6558 uint64_t is_hole = 0; 6559 6560 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 6561 &is_hole); 6562 6563 if (is_hole != 0) { 6564 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 6565 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 6566 continue; 6567 } else { 6568 error = SET_ERROR(EINVAL); 6569 break; 6570 } 6571 } 6572 6573 /* which disk is going to be split? */ 6574 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 6575 &glist[c]) != 0) { 6576 error = SET_ERROR(EINVAL); 6577 break; 6578 } 6579 6580 /* look it up in the spa */ 6581 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 6582 if (vml[c] == NULL) { 6583 error = SET_ERROR(ENODEV); 6584 break; 6585 } 6586 6587 /* make sure there's nothing stopping the split */ 6588 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 6589 vml[c]->vdev_islog || 6590 !vdev_is_concrete(vml[c]) || 6591 vml[c]->vdev_isspare || 6592 vml[c]->vdev_isl2cache || 6593 !vdev_writeable(vml[c]) || 6594 vml[c]->vdev_children != 0 || 6595 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 6596 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 6597 error = SET_ERROR(EINVAL); 6598 break; 6599 } 6600 6601 if (vdev_dtl_required(vml[c])) { 6602 error = SET_ERROR(EBUSY); 6603 break; 6604 } 6605 6606 /* we need certain info from the top level */ 6607 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 6608 vml[c]->vdev_top->vdev_ms_array) == 0); 6609 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 6610 vml[c]->vdev_top->vdev_ms_shift) == 0); 6611 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 6612 vml[c]->vdev_top->vdev_asize) == 0); 6613 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 6614 vml[c]->vdev_top->vdev_ashift) == 0); 6615 6616 /* transfer per-vdev ZAPs */ 6617 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 6618 VERIFY0(nvlist_add_uint64(child[c], 6619 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 6620 6621 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 6622 VERIFY0(nvlist_add_uint64(child[c], 6623 ZPOOL_CONFIG_VDEV_TOP_ZAP, 6624 vml[c]->vdev_parent->vdev_top_zap)); 6625 } 6626 6627 if (error != 0) { 6628 kmem_free(vml, children * sizeof (vdev_t *)); 6629 kmem_free(glist, children * sizeof (uint64_t)); 6630 return (spa_vdev_exit(spa, NULL, txg, error)); 6631 } 6632 6633 /* stop writers from using the disks */ 6634 for (c = 0; c < children; c++) { 6635 if (vml[c] != NULL) 6636 vml[c]->vdev_offline = B_TRUE; 6637 } 6638 vdev_reopen(spa->spa_root_vdev); 6639 6640 /* 6641 * Temporarily record the splitting vdevs in the spa config. This 6642 * will disappear once the config is regenerated. 6643 */ 6644 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6645 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 6646 glist, children) == 0); 6647 kmem_free(glist, children * sizeof (uint64_t)); 6648 6649 mutex_enter(&spa->spa_props_lock); 6650 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 6651 nvl) == 0); 6652 mutex_exit(&spa->spa_props_lock); 6653 spa->spa_config_splitting = nvl; 6654 vdev_config_dirty(spa->spa_root_vdev); 6655 6656 /* configure and create the new pool */ 6657 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 6658 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 6659 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 6660 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6661 spa_version(spa)) == 0); 6662 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 6663 spa->spa_config_txg) == 0); 6664 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 6665 spa_generate_guid(NULL)) == 0); 6666 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 6667 (void) nvlist_lookup_string(props, 6668 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6669 6670 /* add the new pool to the namespace */ 6671 newspa = spa_add(newname, config, altroot); 6672 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 6673 newspa->spa_config_txg = spa->spa_config_txg; 6674 spa_set_log_state(newspa, SPA_LOG_CLEAR); 6675 6676 /* release the spa config lock, retaining the namespace lock */ 6677 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 6678 6679 if (zio_injection_enabled) 6680 zio_handle_panic_injection(spa, FTAG, 1); 6681 6682 spa_activate(newspa, spa_mode_global); 6683 spa_async_suspend(newspa); 6684 6685 for (c = 0; c < children; c++) { 6686 if (vml[c] != NULL) { 6687 /* 6688 * Temporarily stop the initializing activity. We set 6689 * the state to ACTIVE so that we know to resume 6690 * the initializing once the split has completed. 6691 */ 6692 mutex_enter(&vml[c]->vdev_initialize_lock); 6693 vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE); 6694 mutex_exit(&vml[c]->vdev_initialize_lock); 6695 } 6696 } 6697 6698 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 6699 6700 /* create the new pool from the disks of the original pool */ 6701 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 6702 if (error) 6703 goto out; 6704 6705 /* if that worked, generate a real config for the new pool */ 6706 if (newspa->spa_root_vdev != NULL) { 6707 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 6708 NV_UNIQUE_NAME, KM_SLEEP) == 0); 6709 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 6710 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 6711 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 6712 B_TRUE)); 6713 } 6714 6715 /* set the props */ 6716 if (props != NULL) { 6717 spa_configfile_set(newspa, props, B_FALSE); 6718 error = spa_prop_set(newspa, props); 6719 if (error) 6720 goto out; 6721 } 6722 6723 /* flush everything */ 6724 txg = spa_vdev_config_enter(newspa); 6725 vdev_config_dirty(newspa->spa_root_vdev); 6726 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 6727 6728 if (zio_injection_enabled) 6729 zio_handle_panic_injection(spa, FTAG, 2); 6730 6731 spa_async_resume(newspa); 6732 6733 /* finally, update the original pool's config */ 6734 txg = spa_vdev_config_enter(spa); 6735 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 6736 error = dmu_tx_assign(tx, TXG_WAIT); 6737 if (error != 0) 6738 dmu_tx_abort(tx); 6739 for (c = 0; c < children; c++) { 6740 if (vml[c] != NULL) { 6741 vdev_split(vml[c]); 6742 if (error == 0) 6743 spa_history_log_internal(spa, "detach", tx, 6744 "vdev=%s", vml[c]->vdev_path); 6745 6746 vdev_free(vml[c]); 6747 } 6748 } 6749 spa->spa_avz_action = AVZ_ACTION_REBUILD; 6750 vdev_config_dirty(spa->spa_root_vdev); 6751 spa->spa_config_splitting = NULL; 6752 nvlist_free(nvl); 6753 if (error == 0) 6754 dmu_tx_commit(tx); 6755 (void) spa_vdev_exit(spa, NULL, txg, 0); 6756 6757 if (zio_injection_enabled) 6758 zio_handle_panic_injection(spa, FTAG, 3); 6759 6760 /* split is complete; log a history record */ 6761 spa_history_log_internal(newspa, "split", NULL, 6762 "from pool %s", spa_name(spa)); 6763 6764 kmem_free(vml, children * sizeof (vdev_t *)); 6765 6766 /* if we're not going to mount the filesystems in userland, export */ 6767 if (exp) 6768 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 6769 B_FALSE, B_FALSE); 6770 6771 return (error); 6772 6773 out: 6774 spa_unload(newspa); 6775 spa_deactivate(newspa); 6776 spa_remove(newspa); 6777 6778 txg = spa_vdev_config_enter(spa); 6779 6780 /* re-online all offlined disks */ 6781 for (c = 0; c < children; c++) { 6782 if (vml[c] != NULL) 6783 vml[c]->vdev_offline = B_FALSE; 6784 } 6785 6786 /* restart initializing disks as necessary */ 6787 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 6788 6789 vdev_reopen(spa->spa_root_vdev); 6790 6791 nvlist_free(spa->spa_config_splitting); 6792 spa->spa_config_splitting = NULL; 6793 (void) spa_vdev_exit(spa, NULL, txg, error); 6794 6795 kmem_free(vml, children * sizeof (vdev_t *)); 6796 return (error); 6797 } 6798 6799 /* 6800 * Find any device that's done replacing, or a vdev marked 'unspare' that's 6801 * currently spared, so we can detach it. 6802 */ 6803 static vdev_t * 6804 spa_vdev_resilver_done_hunt(vdev_t *vd) 6805 { 6806 vdev_t *newvd, *oldvd; 6807 6808 for (int c = 0; c < vd->vdev_children; c++) { 6809 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 6810 if (oldvd != NULL) 6811 return (oldvd); 6812 } 6813 6814 /* 6815 * Check for a completed replacement. We always consider the first 6816 * vdev in the list to be the oldest vdev, and the last one to be 6817 * the newest (see spa_vdev_attach() for how that works). In 6818 * the case where the newest vdev is faulted, we will not automatically 6819 * remove it after a resilver completes. This is OK as it will require 6820 * user intervention to determine which disk the admin wishes to keep. 6821 */ 6822 if (vd->vdev_ops == &vdev_replacing_ops) { 6823 ASSERT(vd->vdev_children > 1); 6824 6825 newvd = vd->vdev_child[vd->vdev_children - 1]; 6826 oldvd = vd->vdev_child[0]; 6827 6828 if (vdev_dtl_empty(newvd, DTL_MISSING) && 6829 vdev_dtl_empty(newvd, DTL_OUTAGE) && 6830 !vdev_dtl_required(oldvd)) 6831 return (oldvd); 6832 } 6833 6834 /* 6835 * Check for a completed resilver with the 'unspare' flag set. 6836 * Also potentially update faulted state. 6837 */ 6838 if (vd->vdev_ops == &vdev_spare_ops) { 6839 vdev_t *first = vd->vdev_child[0]; 6840 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 6841 6842 if (last->vdev_unspare) { 6843 oldvd = first; 6844 newvd = last; 6845 } else if (first->vdev_unspare) { 6846 oldvd = last; 6847 newvd = first; 6848 } else { 6849 oldvd = NULL; 6850 } 6851 6852 if (oldvd != NULL && 6853 vdev_dtl_empty(newvd, DTL_MISSING) && 6854 vdev_dtl_empty(newvd, DTL_OUTAGE) && 6855 !vdev_dtl_required(oldvd)) 6856 return (oldvd); 6857 6858 vdev_propagate_state(vd); 6859 6860 /* 6861 * If there are more than two spares attached to a disk, 6862 * and those spares are not required, then we want to 6863 * attempt to free them up now so that they can be used 6864 * by other pools. Once we're back down to a single 6865 * disk+spare, we stop removing them. 6866 */ 6867 if (vd->vdev_children > 2) { 6868 newvd = vd->vdev_child[1]; 6869 6870 if (newvd->vdev_isspare && last->vdev_isspare && 6871 vdev_dtl_empty(last, DTL_MISSING) && 6872 vdev_dtl_empty(last, DTL_OUTAGE) && 6873 !vdev_dtl_required(newvd)) 6874 return (newvd); 6875 } 6876 } 6877 6878 return (NULL); 6879 } 6880 6881 static void 6882 spa_vdev_resilver_done(spa_t *spa) 6883 { 6884 vdev_t *vd, *pvd, *ppvd; 6885 uint64_t guid, sguid, pguid, ppguid; 6886 6887 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6888 6889 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 6890 pvd = vd->vdev_parent; 6891 ppvd = pvd->vdev_parent; 6892 guid = vd->vdev_guid; 6893 pguid = pvd->vdev_guid; 6894 ppguid = ppvd->vdev_guid; 6895 sguid = 0; 6896 /* 6897 * If we have just finished replacing a hot spared device, then 6898 * we need to detach the parent's first child (the original hot 6899 * spare) as well. 6900 */ 6901 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 6902 ppvd->vdev_children == 2) { 6903 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 6904 sguid = ppvd->vdev_child[1]->vdev_guid; 6905 } 6906 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 6907 6908 spa_config_exit(spa, SCL_ALL, FTAG); 6909 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 6910 return; 6911 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 6912 return; 6913 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6914 } 6915 6916 spa_config_exit(spa, SCL_ALL, FTAG); 6917 } 6918 6919 /* 6920 * Update the stored path or FRU for this vdev. 6921 */ 6922 int 6923 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 6924 boolean_t ispath) 6925 { 6926 vdev_t *vd; 6927 boolean_t sync = B_FALSE; 6928 6929 ASSERT(spa_writeable(spa)); 6930 6931 spa_vdev_state_enter(spa, SCL_ALL); 6932 6933 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 6934 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 6935 6936 if (!vd->vdev_ops->vdev_op_leaf) 6937 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 6938 6939 if (ispath) { 6940 if (strcmp(value, vd->vdev_path) != 0) { 6941 spa_strfree(vd->vdev_path); 6942 vd->vdev_path = spa_strdup(value); 6943 sync = B_TRUE; 6944 } 6945 } else { 6946 if (vd->vdev_fru == NULL) { 6947 vd->vdev_fru = spa_strdup(value); 6948 sync = B_TRUE; 6949 } else if (strcmp(value, vd->vdev_fru) != 0) { 6950 spa_strfree(vd->vdev_fru); 6951 vd->vdev_fru = spa_strdup(value); 6952 sync = B_TRUE; 6953 } 6954 } 6955 6956 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 6957 } 6958 6959 int 6960 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 6961 { 6962 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 6963 } 6964 6965 int 6966 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 6967 { 6968 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 6969 } 6970 6971 /* 6972 * ========================================================================== 6973 * SPA Scanning 6974 * ========================================================================== 6975 */ 6976 int 6977 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 6978 { 6979 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6980 6981 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 6982 return (SET_ERROR(EBUSY)); 6983 6984 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 6985 } 6986 6987 int 6988 spa_scan_stop(spa_t *spa) 6989 { 6990 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6991 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 6992 return (SET_ERROR(EBUSY)); 6993 return (dsl_scan_cancel(spa->spa_dsl_pool)); 6994 } 6995 6996 int 6997 spa_scan(spa_t *spa, pool_scan_func_t func) 6998 { 6999 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7000 7001 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 7002 return (SET_ERROR(ENOTSUP)); 7003 7004 if (func == POOL_SCAN_RESILVER && 7005 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 7006 return (SET_ERROR(ENOTSUP)); 7007 7008 /* 7009 * If a resilver was requested, but there is no DTL on a 7010 * writeable leaf device, we have nothing to do. 7011 */ 7012 if (func == POOL_SCAN_RESILVER && 7013 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 7014 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 7015 return (0); 7016 } 7017 7018 return (dsl_scan(spa->spa_dsl_pool, func)); 7019 } 7020 7021 /* 7022 * ========================================================================== 7023 * SPA async task processing 7024 * ========================================================================== 7025 */ 7026 7027 static void 7028 spa_async_remove(spa_t *spa, vdev_t *vd) 7029 { 7030 if (vd->vdev_remove_wanted) { 7031 vd->vdev_remove_wanted = B_FALSE; 7032 vd->vdev_delayed_close = B_FALSE; 7033 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 7034 7035 /* 7036 * We want to clear the stats, but we don't want to do a full 7037 * vdev_clear() as that will cause us to throw away 7038 * degraded/faulted state as well as attempt to reopen the 7039 * device, all of which is a waste. 7040 */ 7041 vd->vdev_stat.vs_read_errors = 0; 7042 vd->vdev_stat.vs_write_errors = 0; 7043 vd->vdev_stat.vs_checksum_errors = 0; 7044 7045 vdev_state_dirty(vd->vdev_top); 7046 } 7047 7048 for (int c = 0; c < vd->vdev_children; c++) 7049 spa_async_remove(spa, vd->vdev_child[c]); 7050 } 7051 7052 static void 7053 spa_async_probe(spa_t *spa, vdev_t *vd) 7054 { 7055 if (vd->vdev_probe_wanted) { 7056 vd->vdev_probe_wanted = B_FALSE; 7057 vdev_reopen(vd); /* vdev_open() does the actual probe */ 7058 } 7059 7060 for (int c = 0; c < vd->vdev_children; c++) 7061 spa_async_probe(spa, vd->vdev_child[c]); 7062 } 7063 7064 static void 7065 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 7066 { 7067 sysevent_id_t eid; 7068 nvlist_t *attr; 7069 char *physpath; 7070 7071 if (!spa->spa_autoexpand) 7072 return; 7073 7074 for (int c = 0; c < vd->vdev_children; c++) { 7075 vdev_t *cvd = vd->vdev_child[c]; 7076 spa_async_autoexpand(spa, cvd); 7077 } 7078 7079 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 7080 return; 7081 7082 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 7083 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 7084 7085 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7086 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 7087 7088 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 7089 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 7090 7091 nvlist_free(attr); 7092 kmem_free(physpath, MAXPATHLEN); 7093 } 7094 7095 static void 7096 spa_async_thread(void *arg) 7097 { 7098 spa_t *spa = (spa_t *)arg; 7099 dsl_pool_t *dp = spa->spa_dsl_pool; 7100 int tasks; 7101 7102 ASSERT(spa->spa_sync_on); 7103 7104 mutex_enter(&spa->spa_async_lock); 7105 tasks = spa->spa_async_tasks; 7106 spa->spa_async_tasks = 0; 7107 mutex_exit(&spa->spa_async_lock); 7108 7109 /* 7110 * See if the config needs to be updated. 7111 */ 7112 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 7113 uint64_t old_space, new_space; 7114 7115 mutex_enter(&spa_namespace_lock); 7116 old_space = metaslab_class_get_space(spa_normal_class(spa)); 7117 old_space += metaslab_class_get_space(spa_special_class(spa)); 7118 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 7119 7120 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7121 7122 new_space = metaslab_class_get_space(spa_normal_class(spa)); 7123 new_space += metaslab_class_get_space(spa_special_class(spa)); 7124 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 7125 mutex_exit(&spa_namespace_lock); 7126 7127 /* 7128 * If the pool grew as a result of the config update, 7129 * then log an internal history event. 7130 */ 7131 if (new_space != old_space) { 7132 spa_history_log_internal(spa, "vdev online", NULL, 7133 "pool '%s' size: %llu(+%llu)", 7134 spa_name(spa), new_space, new_space - old_space); 7135 } 7136 } 7137 7138 /* 7139 * See if any devices need to be marked REMOVED. 7140 */ 7141 if (tasks & SPA_ASYNC_REMOVE) { 7142 spa_vdev_state_enter(spa, SCL_NONE); 7143 spa_async_remove(spa, spa->spa_root_vdev); 7144 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 7145 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 7146 for (int i = 0; i < spa->spa_spares.sav_count; i++) 7147 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 7148 (void) spa_vdev_state_exit(spa, NULL, 0); 7149 } 7150 7151 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 7152 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7153 spa_async_autoexpand(spa, spa->spa_root_vdev); 7154 spa_config_exit(spa, SCL_CONFIG, FTAG); 7155 } 7156 7157 /* 7158 * See if any devices need to be probed. 7159 */ 7160 if (tasks & SPA_ASYNC_PROBE) { 7161 spa_vdev_state_enter(spa, SCL_NONE); 7162 spa_async_probe(spa, spa->spa_root_vdev); 7163 (void) spa_vdev_state_exit(spa, NULL, 0); 7164 } 7165 7166 /* 7167 * If any devices are done replacing, detach them. 7168 */ 7169 if (tasks & SPA_ASYNC_RESILVER_DONE) 7170 spa_vdev_resilver_done(spa); 7171 7172 /* 7173 * Kick off a resilver. 7174 */ 7175 if (tasks & SPA_ASYNC_RESILVER && 7176 (!dsl_scan_resilvering(dp) || 7177 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 7178 dsl_resilver_restart(dp, 0); 7179 7180 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 7181 mutex_enter(&spa_namespace_lock); 7182 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7183 vdev_initialize_restart(spa->spa_root_vdev); 7184 spa_config_exit(spa, SCL_CONFIG, FTAG); 7185 mutex_exit(&spa_namespace_lock); 7186 } 7187 7188 /* 7189 * Let the world know that we're done. 7190 */ 7191 mutex_enter(&spa->spa_async_lock); 7192 spa->spa_async_thread = NULL; 7193 cv_broadcast(&spa->spa_async_cv); 7194 mutex_exit(&spa->spa_async_lock); 7195 thread_exit(); 7196 } 7197 7198 void 7199 spa_async_suspend(spa_t *spa) 7200 { 7201 mutex_enter(&spa->spa_async_lock); 7202 spa->spa_async_suspended++; 7203 while (spa->spa_async_thread != NULL) 7204 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 7205 mutex_exit(&spa->spa_async_lock); 7206 7207 spa_vdev_remove_suspend(spa); 7208 7209 zthr_t *condense_thread = spa->spa_condense_zthr; 7210 if (condense_thread != NULL) 7211 zthr_cancel(condense_thread); 7212 7213 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 7214 if (discard_thread != NULL) 7215 zthr_cancel(discard_thread); 7216 } 7217 7218 void 7219 spa_async_resume(spa_t *spa) 7220 { 7221 mutex_enter(&spa->spa_async_lock); 7222 ASSERT(spa->spa_async_suspended != 0); 7223 spa->spa_async_suspended--; 7224 mutex_exit(&spa->spa_async_lock); 7225 spa_restart_removal(spa); 7226 7227 zthr_t *condense_thread = spa->spa_condense_zthr; 7228 if (condense_thread != NULL) 7229 zthr_resume(condense_thread); 7230 7231 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 7232 if (discard_thread != NULL) 7233 zthr_resume(discard_thread); 7234 } 7235 7236 static boolean_t 7237 spa_async_tasks_pending(spa_t *spa) 7238 { 7239 uint_t non_config_tasks; 7240 uint_t config_task; 7241 boolean_t config_task_suspended; 7242 7243 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 7244 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 7245 if (spa->spa_ccw_fail_time == 0) { 7246 config_task_suspended = B_FALSE; 7247 } else { 7248 config_task_suspended = 7249 (gethrtime() - spa->spa_ccw_fail_time) < 7250 (zfs_ccw_retry_interval * NANOSEC); 7251 } 7252 7253 return (non_config_tasks || (config_task && !config_task_suspended)); 7254 } 7255 7256 static void 7257 spa_async_dispatch(spa_t *spa) 7258 { 7259 mutex_enter(&spa->spa_async_lock); 7260 if (spa_async_tasks_pending(spa) && 7261 !spa->spa_async_suspended && 7262 spa->spa_async_thread == NULL && 7263 rootdir != NULL) 7264 spa->spa_async_thread = thread_create(NULL, 0, 7265 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 7266 mutex_exit(&spa->spa_async_lock); 7267 } 7268 7269 void 7270 spa_async_request(spa_t *spa, int task) 7271 { 7272 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 7273 mutex_enter(&spa->spa_async_lock); 7274 spa->spa_async_tasks |= task; 7275 mutex_exit(&spa->spa_async_lock); 7276 } 7277 7278 /* 7279 * ========================================================================== 7280 * SPA syncing routines 7281 * ========================================================================== 7282 */ 7283 7284 static int 7285 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 7286 { 7287 bpobj_t *bpo = arg; 7288 bpobj_enqueue(bpo, bp, tx); 7289 return (0); 7290 } 7291 7292 static int 7293 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 7294 { 7295 zio_t *zio = arg; 7296 7297 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 7298 zio->io_flags)); 7299 return (0); 7300 } 7301 7302 /* 7303 * Note: this simple function is not inlined to make it easier to dtrace the 7304 * amount of time spent syncing frees. 7305 */ 7306 static void 7307 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 7308 { 7309 zio_t *zio = zio_root(spa, NULL, NULL, 0); 7310 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 7311 VERIFY(zio_wait(zio) == 0); 7312 } 7313 7314 /* 7315 * Note: this simple function is not inlined to make it easier to dtrace the 7316 * amount of time spent syncing deferred frees. 7317 */ 7318 static void 7319 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 7320 { 7321 if (spa_sync_pass(spa) != 1) 7322 return; 7323 7324 zio_t *zio = zio_root(spa, NULL, NULL, 0); 7325 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 7326 spa_free_sync_cb, zio, tx), ==, 0); 7327 VERIFY0(zio_wait(zio)); 7328 } 7329 7330 7331 static void 7332 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 7333 { 7334 char *packed = NULL; 7335 size_t bufsize; 7336 size_t nvsize = 0; 7337 dmu_buf_t *db; 7338 7339 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 7340 7341 /* 7342 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 7343 * information. This avoids the dmu_buf_will_dirty() path and 7344 * saves us a pre-read to get data we don't actually care about. 7345 */ 7346 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 7347 packed = kmem_alloc(bufsize, KM_SLEEP); 7348 7349 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 7350 KM_SLEEP) == 0); 7351 bzero(packed + nvsize, bufsize - nvsize); 7352 7353 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 7354 7355 kmem_free(packed, bufsize); 7356 7357 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 7358 dmu_buf_will_dirty(db, tx); 7359 *(uint64_t *)db->db_data = nvsize; 7360 dmu_buf_rele(db, FTAG); 7361 } 7362 7363 static void 7364 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 7365 const char *config, const char *entry) 7366 { 7367 nvlist_t *nvroot; 7368 nvlist_t **list; 7369 int i; 7370 7371 if (!sav->sav_sync) 7372 return; 7373 7374 /* 7375 * Update the MOS nvlist describing the list of available devices. 7376 * spa_validate_aux() will have already made sure this nvlist is 7377 * valid and the vdevs are labeled appropriately. 7378 */ 7379 if (sav->sav_object == 0) { 7380 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 7381 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 7382 sizeof (uint64_t), tx); 7383 VERIFY(zap_update(spa->spa_meta_objset, 7384 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 7385 &sav->sav_object, tx) == 0); 7386 } 7387 7388 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7389 if (sav->sav_count == 0) { 7390 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 7391 } else { 7392 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 7393 for (i = 0; i < sav->sav_count; i++) 7394 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 7395 B_FALSE, VDEV_CONFIG_L2CACHE); 7396 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 7397 sav->sav_count) == 0); 7398 for (i = 0; i < sav->sav_count; i++) 7399 nvlist_free(list[i]); 7400 kmem_free(list, sav->sav_count * sizeof (void *)); 7401 } 7402 7403 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 7404 nvlist_free(nvroot); 7405 7406 sav->sav_sync = B_FALSE; 7407 } 7408 7409 /* 7410 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 7411 * The all-vdev ZAP must be empty. 7412 */ 7413 static void 7414 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 7415 { 7416 spa_t *spa = vd->vdev_spa; 7417 if (vd->vdev_top_zap != 0) { 7418 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7419 vd->vdev_top_zap, tx)); 7420 } 7421 if (vd->vdev_leaf_zap != 0) { 7422 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7423 vd->vdev_leaf_zap, tx)); 7424 } 7425 for (uint64_t i = 0; i < vd->vdev_children; i++) { 7426 spa_avz_build(vd->vdev_child[i], avz, tx); 7427 } 7428 } 7429 7430 static void 7431 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 7432 { 7433 nvlist_t *config; 7434 7435 /* 7436 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 7437 * its config may not be dirty but we still need to build per-vdev ZAPs. 7438 * Similarly, if the pool is being assembled (e.g. after a split), we 7439 * need to rebuild the AVZ although the config may not be dirty. 7440 */ 7441 if (list_is_empty(&spa->spa_config_dirty_list) && 7442 spa->spa_avz_action == AVZ_ACTION_NONE) 7443 return; 7444 7445 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7446 7447 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 7448 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 7449 spa->spa_all_vdev_zaps != 0); 7450 7451 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 7452 /* Make and build the new AVZ */ 7453 uint64_t new_avz = zap_create(spa->spa_meta_objset, 7454 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 7455 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 7456 7457 /* Diff old AVZ with new one */ 7458 zap_cursor_t zc; 7459 zap_attribute_t za; 7460 7461 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7462 spa->spa_all_vdev_zaps); 7463 zap_cursor_retrieve(&zc, &za) == 0; 7464 zap_cursor_advance(&zc)) { 7465 uint64_t vdzap = za.za_first_integer; 7466 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 7467 vdzap) == ENOENT) { 7468 /* 7469 * ZAP is listed in old AVZ but not in new one; 7470 * destroy it 7471 */ 7472 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 7473 tx)); 7474 } 7475 } 7476 7477 zap_cursor_fini(&zc); 7478 7479 /* Destroy the old AVZ */ 7480 VERIFY0(zap_destroy(spa->spa_meta_objset, 7481 spa->spa_all_vdev_zaps, tx)); 7482 7483 /* Replace the old AVZ in the dir obj with the new one */ 7484 VERIFY0(zap_update(spa->spa_meta_objset, 7485 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 7486 sizeof (new_avz), 1, &new_avz, tx)); 7487 7488 spa->spa_all_vdev_zaps = new_avz; 7489 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 7490 zap_cursor_t zc; 7491 zap_attribute_t za; 7492 7493 /* Walk through the AVZ and destroy all listed ZAPs */ 7494 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7495 spa->spa_all_vdev_zaps); 7496 zap_cursor_retrieve(&zc, &za) == 0; 7497 zap_cursor_advance(&zc)) { 7498 uint64_t zap = za.za_first_integer; 7499 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 7500 } 7501 7502 zap_cursor_fini(&zc); 7503 7504 /* Destroy and unlink the AVZ itself */ 7505 VERIFY0(zap_destroy(spa->spa_meta_objset, 7506 spa->spa_all_vdev_zaps, tx)); 7507 VERIFY0(zap_remove(spa->spa_meta_objset, 7508 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 7509 spa->spa_all_vdev_zaps = 0; 7510 } 7511 7512 if (spa->spa_all_vdev_zaps == 0) { 7513 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 7514 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 7515 DMU_POOL_VDEV_ZAP_MAP, tx); 7516 } 7517 spa->spa_avz_action = AVZ_ACTION_NONE; 7518 7519 /* Create ZAPs for vdevs that don't have them. */ 7520 vdev_construct_zaps(spa->spa_root_vdev, tx); 7521 7522 config = spa_config_generate(spa, spa->spa_root_vdev, 7523 dmu_tx_get_txg(tx), B_FALSE); 7524 7525 /* 7526 * If we're upgrading the spa version then make sure that 7527 * the config object gets updated with the correct version. 7528 */ 7529 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 7530 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 7531 spa->spa_uberblock.ub_version); 7532 7533 spa_config_exit(spa, SCL_STATE, FTAG); 7534 7535 nvlist_free(spa->spa_config_syncing); 7536 spa->spa_config_syncing = config; 7537 7538 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 7539 } 7540 7541 static void 7542 spa_sync_version(void *arg, dmu_tx_t *tx) 7543 { 7544 uint64_t *versionp = arg; 7545 uint64_t version = *versionp; 7546 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7547 7548 /* 7549 * Setting the version is special cased when first creating the pool. 7550 */ 7551 ASSERT(tx->tx_txg != TXG_INITIAL); 7552 7553 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 7554 ASSERT(version >= spa_version(spa)); 7555 7556 spa->spa_uberblock.ub_version = version; 7557 vdev_config_dirty(spa->spa_root_vdev); 7558 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 7559 } 7560 7561 /* 7562 * Set zpool properties. 7563 */ 7564 static void 7565 spa_sync_props(void *arg, dmu_tx_t *tx) 7566 { 7567 nvlist_t *nvp = arg; 7568 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7569 objset_t *mos = spa->spa_meta_objset; 7570 nvpair_t *elem = NULL; 7571 7572 mutex_enter(&spa->spa_props_lock); 7573 7574 while ((elem = nvlist_next_nvpair(nvp, elem))) { 7575 uint64_t intval; 7576 char *strval, *fname; 7577 zpool_prop_t prop; 7578 const char *propname; 7579 zprop_type_t proptype; 7580 spa_feature_t fid; 7581 7582 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 7583 case ZPOOL_PROP_INVAL: 7584 /* 7585 * We checked this earlier in spa_prop_validate(). 7586 */ 7587 ASSERT(zpool_prop_feature(nvpair_name(elem))); 7588 7589 fname = strchr(nvpair_name(elem), '@') + 1; 7590 VERIFY0(zfeature_lookup_name(fname, &fid)); 7591 7592 spa_feature_enable(spa, fid, tx); 7593 spa_history_log_internal(spa, "set", tx, 7594 "%s=enabled", nvpair_name(elem)); 7595 break; 7596 7597 case ZPOOL_PROP_VERSION: 7598 intval = fnvpair_value_uint64(elem); 7599 /* 7600 * The version is synced seperatly before other 7601 * properties and should be correct by now. 7602 */ 7603 ASSERT3U(spa_version(spa), >=, intval); 7604 break; 7605 7606 case ZPOOL_PROP_ALTROOT: 7607 /* 7608 * 'altroot' is a non-persistent property. It should 7609 * have been set temporarily at creation or import time. 7610 */ 7611 ASSERT(spa->spa_root != NULL); 7612 break; 7613 7614 case ZPOOL_PROP_READONLY: 7615 case ZPOOL_PROP_CACHEFILE: 7616 /* 7617 * 'readonly' and 'cachefile' are also non-persisitent 7618 * properties. 7619 */ 7620 break; 7621 case ZPOOL_PROP_COMMENT: 7622 strval = fnvpair_value_string(elem); 7623 if (spa->spa_comment != NULL) 7624 spa_strfree(spa->spa_comment); 7625 spa->spa_comment = spa_strdup(strval); 7626 /* 7627 * We need to dirty the configuration on all the vdevs 7628 * so that their labels get updated. It's unnecessary 7629 * to do this for pool creation since the vdev's 7630 * configuratoin has already been dirtied. 7631 */ 7632 if (tx->tx_txg != TXG_INITIAL) 7633 vdev_config_dirty(spa->spa_root_vdev); 7634 spa_history_log_internal(spa, "set", tx, 7635 "%s=%s", nvpair_name(elem), strval); 7636 break; 7637 default: 7638 /* 7639 * Set pool property values in the poolprops mos object. 7640 */ 7641 if (spa->spa_pool_props_object == 0) { 7642 spa->spa_pool_props_object = 7643 zap_create_link(mos, DMU_OT_POOL_PROPS, 7644 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 7645 tx); 7646 } 7647 7648 /* normalize the property name */ 7649 propname = zpool_prop_to_name(prop); 7650 proptype = zpool_prop_get_type(prop); 7651 7652 if (nvpair_type(elem) == DATA_TYPE_STRING) { 7653 ASSERT(proptype == PROP_TYPE_STRING); 7654 strval = fnvpair_value_string(elem); 7655 VERIFY0(zap_update(mos, 7656 spa->spa_pool_props_object, propname, 7657 1, strlen(strval) + 1, strval, tx)); 7658 spa_history_log_internal(spa, "set", tx, 7659 "%s=%s", nvpair_name(elem), strval); 7660 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 7661 intval = fnvpair_value_uint64(elem); 7662 7663 if (proptype == PROP_TYPE_INDEX) { 7664 const char *unused; 7665 VERIFY0(zpool_prop_index_to_string( 7666 prop, intval, &unused)); 7667 } 7668 VERIFY0(zap_update(mos, 7669 spa->spa_pool_props_object, propname, 7670 8, 1, &intval, tx)); 7671 spa_history_log_internal(spa, "set", tx, 7672 "%s=%lld", nvpair_name(elem), intval); 7673 } else { 7674 ASSERT(0); /* not allowed */ 7675 } 7676 7677 switch (prop) { 7678 case ZPOOL_PROP_DELEGATION: 7679 spa->spa_delegation = intval; 7680 break; 7681 case ZPOOL_PROP_BOOTFS: 7682 spa->spa_bootfs = intval; 7683 break; 7684 case ZPOOL_PROP_FAILUREMODE: 7685 spa->spa_failmode = intval; 7686 break; 7687 case ZPOOL_PROP_AUTOEXPAND: 7688 spa->spa_autoexpand = intval; 7689 if (tx->tx_txg != TXG_INITIAL) 7690 spa_async_request(spa, 7691 SPA_ASYNC_AUTOEXPAND); 7692 break; 7693 case ZPOOL_PROP_MULTIHOST: 7694 spa->spa_multihost = intval; 7695 break; 7696 case ZPOOL_PROP_DEDUPDITTO: 7697 spa->spa_dedup_ditto = intval; 7698 break; 7699 default: 7700 break; 7701 } 7702 } 7703 7704 } 7705 7706 mutex_exit(&spa->spa_props_lock); 7707 } 7708 7709 /* 7710 * Perform one-time upgrade on-disk changes. spa_version() does not 7711 * reflect the new version this txg, so there must be no changes this 7712 * txg to anything that the upgrade code depends on after it executes. 7713 * Therefore this must be called after dsl_pool_sync() does the sync 7714 * tasks. 7715 */ 7716 static void 7717 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 7718 { 7719 if (spa_sync_pass(spa) != 1) 7720 return; 7721 7722 dsl_pool_t *dp = spa->spa_dsl_pool; 7723 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 7724 7725 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 7726 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 7727 dsl_pool_create_origin(dp, tx); 7728 7729 /* Keeping the origin open increases spa_minref */ 7730 spa->spa_minref += 3; 7731 } 7732 7733 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 7734 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 7735 dsl_pool_upgrade_clones(dp, tx); 7736 } 7737 7738 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 7739 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 7740 dsl_pool_upgrade_dir_clones(dp, tx); 7741 7742 /* Keeping the freedir open increases spa_minref */ 7743 spa->spa_minref += 3; 7744 } 7745 7746 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 7747 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 7748 spa_feature_create_zap_objects(spa, tx); 7749 } 7750 7751 /* 7752 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 7753 * when possibility to use lz4 compression for metadata was added 7754 * Old pools that have this feature enabled must be upgraded to have 7755 * this feature active 7756 */ 7757 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 7758 boolean_t lz4_en = spa_feature_is_enabled(spa, 7759 SPA_FEATURE_LZ4_COMPRESS); 7760 boolean_t lz4_ac = spa_feature_is_active(spa, 7761 SPA_FEATURE_LZ4_COMPRESS); 7762 7763 if (lz4_en && !lz4_ac) 7764 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 7765 } 7766 7767 /* 7768 * If we haven't written the salt, do so now. Note that the 7769 * feature may not be activated yet, but that's fine since 7770 * the presence of this ZAP entry is backwards compatible. 7771 */ 7772 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7773 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 7774 VERIFY0(zap_add(spa->spa_meta_objset, 7775 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 7776 sizeof (spa->spa_cksum_salt.zcs_bytes), 7777 spa->spa_cksum_salt.zcs_bytes, tx)); 7778 } 7779 7780 rrw_exit(&dp->dp_config_rwlock, FTAG); 7781 } 7782 7783 static void 7784 vdev_indirect_state_sync_verify(vdev_t *vd) 7785 { 7786 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7787 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 7788 7789 if (vd->vdev_ops == &vdev_indirect_ops) { 7790 ASSERT(vim != NULL); 7791 ASSERT(vib != NULL); 7792 } 7793 7794 if (vdev_obsolete_sm_object(vd) != 0) { 7795 ASSERT(vd->vdev_obsolete_sm != NULL); 7796 ASSERT(vd->vdev_removing || 7797 vd->vdev_ops == &vdev_indirect_ops); 7798 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 7799 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 7800 7801 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 7802 space_map_object(vd->vdev_obsolete_sm)); 7803 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 7804 space_map_allocated(vd->vdev_obsolete_sm)); 7805 } 7806 ASSERT(vd->vdev_obsolete_segments != NULL); 7807 7808 /* 7809 * Since frees / remaps to an indirect vdev can only 7810 * happen in syncing context, the obsolete segments 7811 * tree must be empty when we start syncing. 7812 */ 7813 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 7814 } 7815 7816 /* 7817 * Set the top-level vdev's max queue depth. Evaluate each top-level's 7818 * async write queue depth in case it changed. The max queue depth will 7819 * not change in the middle of syncing out this txg. 7820 */ 7821 static void 7822 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 7823 { 7824 ASSERT(spa_writeable(spa)); 7825 7826 vdev_t *rvd = spa->spa_root_vdev; 7827 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 7828 zfs_vdev_queue_depth_pct / 100; 7829 metaslab_class_t *normal = spa_normal_class(spa); 7830 metaslab_class_t *special = spa_special_class(spa); 7831 metaslab_class_t *dedup = spa_dedup_class(spa); 7832 7833 uint64_t slots_per_allocator = 0; 7834 for (int c = 0; c < rvd->vdev_children; c++) { 7835 vdev_t *tvd = rvd->vdev_child[c]; 7836 7837 metaslab_group_t *mg = tvd->vdev_mg; 7838 if (mg == NULL || !metaslab_group_initialized(mg)) 7839 continue; 7840 7841 metaslab_class_t *mc = mg->mg_class; 7842 if (mc != normal && mc != special && mc != dedup) 7843 continue; 7844 7845 /* 7846 * It is safe to do a lock-free check here because only async 7847 * allocations look at mg_max_alloc_queue_depth, and async 7848 * allocations all happen from spa_sync(). 7849 */ 7850 for (int i = 0; i < spa->spa_alloc_count; i++) 7851 ASSERT0(zfs_refcount_count( 7852 &(mg->mg_alloc_queue_depth[i]))); 7853 mg->mg_max_alloc_queue_depth = max_queue_depth; 7854 7855 for (int i = 0; i < spa->spa_alloc_count; i++) { 7856 mg->mg_cur_max_alloc_queue_depth[i] = 7857 zfs_vdev_def_queue_depth; 7858 } 7859 slots_per_allocator += zfs_vdev_def_queue_depth; 7860 } 7861 7862 for (int i = 0; i < spa->spa_alloc_count; i++) { 7863 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i])); 7864 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i])); 7865 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i])); 7866 normal->mc_alloc_max_slots[i] = slots_per_allocator; 7867 special->mc_alloc_max_slots[i] = slots_per_allocator; 7868 dedup->mc_alloc_max_slots[i] = slots_per_allocator; 7869 } 7870 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 7871 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 7872 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 7873 } 7874 7875 static void 7876 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 7877 { 7878 ASSERT(spa_writeable(spa)); 7879 7880 vdev_t *rvd = spa->spa_root_vdev; 7881 for (int c = 0; c < rvd->vdev_children; c++) { 7882 vdev_t *vd = rvd->vdev_child[c]; 7883 vdev_indirect_state_sync_verify(vd); 7884 7885 if (vdev_indirect_should_condense(vd)) { 7886 spa_condense_indirect_start_sync(vd, tx); 7887 break; 7888 } 7889 } 7890 } 7891 7892 static void 7893 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 7894 { 7895 objset_t *mos = spa->spa_meta_objset; 7896 dsl_pool_t *dp = spa->spa_dsl_pool; 7897 uint64_t txg = tx->tx_txg; 7898 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 7899 7900 do { 7901 int pass = ++spa->spa_sync_pass; 7902 7903 spa_sync_config_object(spa, tx); 7904 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 7905 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 7906 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 7907 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 7908 spa_errlog_sync(spa, txg); 7909 dsl_pool_sync(dp, txg); 7910 7911 if (pass < zfs_sync_pass_deferred_free) { 7912 spa_sync_frees(spa, free_bpl, tx); 7913 } else { 7914 /* 7915 * We can not defer frees in pass 1, because 7916 * we sync the deferred frees later in pass 1. 7917 */ 7918 ASSERT3U(pass, >, 1); 7919 bplist_iterate(free_bpl, bpobj_enqueue_cb, 7920 &spa->spa_deferred_bpobj, tx); 7921 } 7922 7923 ddt_sync(spa, txg); 7924 dsl_scan_sync(dp, tx); 7925 svr_sync(spa, tx); 7926 spa_sync_upgrades(spa, tx); 7927 7928 vdev_t *vd = NULL; 7929 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 7930 != NULL) 7931 vdev_sync(vd, txg); 7932 7933 /* 7934 * Note: We need to check if the MOS is dirty because we could 7935 * have marked the MOS dirty without updating the uberblock 7936 * (e.g. if we have sync tasks but no dirty user data). We need 7937 * to check the uberblock's rootbp because it is updated if we 7938 * have synced out dirty data (though in this case the MOS will 7939 * most likely also be dirty due to second order effects, we 7940 * don't want to rely on that here). 7941 */ 7942 if (pass == 1 && 7943 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 7944 !dmu_objset_is_dirty(mos, txg)) { 7945 /* 7946 * Nothing changed on the first pass, therefore this 7947 * TXG is a no-op. Avoid syncing deferred frees, so 7948 * that we can keep this TXG as a no-op. 7949 */ 7950 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 7951 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 7952 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 7953 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 7954 break; 7955 } 7956 7957 spa_sync_deferred_frees(spa, tx); 7958 } while (dmu_objset_is_dirty(mos, txg)); 7959 } 7960 7961 /* 7962 * Rewrite the vdev configuration (which includes the uberblock) to 7963 * commit the transaction group. 7964 * 7965 * If there are no dirty vdevs, we sync the uberblock to a few random 7966 * top-level vdevs that are known to be visible in the config cache 7967 * (see spa_vdev_add() for a complete description). If there *are* dirty 7968 * vdevs, sync the uberblock to all vdevs. 7969 */ 7970 static void 7971 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 7972 { 7973 vdev_t *rvd = spa->spa_root_vdev; 7974 uint64_t txg = tx->tx_txg; 7975 7976 for (;;) { 7977 int error = 0; 7978 7979 /* 7980 * We hold SCL_STATE to prevent vdev open/close/etc. 7981 * while we're attempting to write the vdev labels. 7982 */ 7983 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7984 7985 if (list_is_empty(&spa->spa_config_dirty_list)) { 7986 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 7987 int svdcount = 0; 7988 int children = rvd->vdev_children; 7989 int c0 = spa_get_random(children); 7990 7991 for (int c = 0; c < children; c++) { 7992 vdev_t *vd = 7993 rvd->vdev_child[(c0 + c) % children]; 7994 7995 /* Stop when revisiting the first vdev */ 7996 if (c > 0 && svd[0] == vd) 7997 break; 7998 7999 if (vd->vdev_ms_array == 0 || 8000 vd->vdev_islog || 8001 !vdev_is_concrete(vd)) 8002 continue; 8003 8004 svd[svdcount++] = vd; 8005 if (svdcount == SPA_SYNC_MIN_VDEVS) 8006 break; 8007 } 8008 error = vdev_config_sync(svd, svdcount, txg); 8009 } else { 8010 error = vdev_config_sync(rvd->vdev_child, 8011 rvd->vdev_children, txg); 8012 } 8013 8014 if (error == 0) 8015 spa->spa_last_synced_guid = rvd->vdev_guid; 8016 8017 spa_config_exit(spa, SCL_STATE, FTAG); 8018 8019 if (error == 0) 8020 break; 8021 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 8022 zio_resume_wait(spa); 8023 } 8024 } 8025 8026 /* 8027 * Sync the specified transaction group. New blocks may be dirtied as 8028 * part of the process, so we iterate until it converges. 8029 */ 8030 void 8031 spa_sync(spa_t *spa, uint64_t txg) 8032 { 8033 vdev_t *vd = NULL; 8034 8035 VERIFY(spa_writeable(spa)); 8036 8037 /* 8038 * Wait for i/os issued in open context that need to complete 8039 * before this txg syncs. 8040 */ 8041 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 8042 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 8043 ZIO_FLAG_CANFAIL); 8044 8045 /* 8046 * Lock out configuration changes. 8047 */ 8048 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8049 8050 spa->spa_syncing_txg = txg; 8051 spa->spa_sync_pass = 0; 8052 8053 for (int i = 0; i < spa->spa_alloc_count; i++) { 8054 mutex_enter(&spa->spa_alloc_locks[i]); 8055 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 8056 mutex_exit(&spa->spa_alloc_locks[i]); 8057 } 8058 8059 /* 8060 * If there are any pending vdev state changes, convert them 8061 * into config changes that go out with this transaction group. 8062 */ 8063 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8064 while (list_head(&spa->spa_state_dirty_list) != NULL) { 8065 /* 8066 * We need the write lock here because, for aux vdevs, 8067 * calling vdev_config_dirty() modifies sav_config. 8068 * This is ugly and will become unnecessary when we 8069 * eliminate the aux vdev wart by integrating all vdevs 8070 * into the root vdev tree. 8071 */ 8072 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8073 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 8074 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 8075 vdev_state_clean(vd); 8076 vdev_config_dirty(vd); 8077 } 8078 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8079 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8080 } 8081 spa_config_exit(spa, SCL_STATE, FTAG); 8082 8083 dsl_pool_t *dp = spa->spa_dsl_pool; 8084 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 8085 8086 spa->spa_sync_starttime = gethrtime(); 8087 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 8088 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 8089 8090 /* 8091 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 8092 * set spa_deflate if we have no raid-z vdevs. 8093 */ 8094 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 8095 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 8096 vdev_t *rvd = spa->spa_root_vdev; 8097 8098 int i; 8099 for (i = 0; i < rvd->vdev_children; i++) { 8100 vd = rvd->vdev_child[i]; 8101 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 8102 break; 8103 } 8104 if (i == rvd->vdev_children) { 8105 spa->spa_deflate = TRUE; 8106 VERIFY0(zap_add(spa->spa_meta_objset, 8107 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 8108 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 8109 } 8110 } 8111 8112 spa_sync_adjust_vdev_max_queue_depth(spa); 8113 8114 spa_sync_condense_indirect(spa, tx); 8115 8116 spa_sync_iterate_to_convergence(spa, tx); 8117 8118 #ifdef ZFS_DEBUG 8119 if (!list_is_empty(&spa->spa_config_dirty_list)) { 8120 /* 8121 * Make sure that the number of ZAPs for all the vdevs matches 8122 * the number of ZAPs in the per-vdev ZAP list. This only gets 8123 * called if the config is dirty; otherwise there may be 8124 * outstanding AVZ operations that weren't completed in 8125 * spa_sync_config_object. 8126 */ 8127 uint64_t all_vdev_zap_entry_count; 8128 ASSERT0(zap_count(spa->spa_meta_objset, 8129 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 8130 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 8131 all_vdev_zap_entry_count); 8132 } 8133 #endif 8134 8135 if (spa->spa_vdev_removal != NULL) { 8136 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 8137 } 8138 8139 spa_sync_rewrite_vdev_config(spa, tx); 8140 dmu_tx_commit(tx); 8141 8142 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 8143 8144 /* 8145 * Clear the dirty config list. 8146 */ 8147 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 8148 vdev_config_clean(vd); 8149 8150 /* 8151 * Now that the new config has synced transactionally, 8152 * let it become visible to the config cache. 8153 */ 8154 if (spa->spa_config_syncing != NULL) { 8155 spa_config_set(spa, spa->spa_config_syncing); 8156 spa->spa_config_txg = txg; 8157 spa->spa_config_syncing = NULL; 8158 } 8159 8160 dsl_pool_sync_done(dp, txg); 8161 8162 for (int i = 0; i < spa->spa_alloc_count; i++) { 8163 mutex_enter(&spa->spa_alloc_locks[i]); 8164 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 8165 mutex_exit(&spa->spa_alloc_locks[i]); 8166 } 8167 8168 /* 8169 * Update usable space statistics. 8170 */ 8171 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 8172 != NULL) 8173 vdev_sync_done(vd, txg); 8174 8175 spa_update_dspace(spa); 8176 8177 /* 8178 * It had better be the case that we didn't dirty anything 8179 * since vdev_config_sync(). 8180 */ 8181 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 8182 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 8183 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 8184 8185 while (zfs_pause_spa_sync) 8186 delay(1); 8187 8188 spa->spa_sync_pass = 0; 8189 8190 /* 8191 * Update the last synced uberblock here. We want to do this at 8192 * the end of spa_sync() so that consumers of spa_last_synced_txg() 8193 * will be guaranteed that all the processing associated with 8194 * that txg has been completed. 8195 */ 8196 spa->spa_ubsync = spa->spa_uberblock; 8197 spa_config_exit(spa, SCL_CONFIG, FTAG); 8198 8199 spa_handle_ignored_writes(spa); 8200 8201 /* 8202 * If any async tasks have been requested, kick them off. 8203 */ 8204 spa_async_dispatch(spa); 8205 } 8206 8207 /* 8208 * Sync all pools. We don't want to hold the namespace lock across these 8209 * operations, so we take a reference on the spa_t and drop the lock during the 8210 * sync. 8211 */ 8212 void 8213 spa_sync_allpools(void) 8214 { 8215 spa_t *spa = NULL; 8216 mutex_enter(&spa_namespace_lock); 8217 while ((spa = spa_next(spa)) != NULL) { 8218 if (spa_state(spa) != POOL_STATE_ACTIVE || 8219 !spa_writeable(spa) || spa_suspended(spa)) 8220 continue; 8221 spa_open_ref(spa, FTAG); 8222 mutex_exit(&spa_namespace_lock); 8223 txg_wait_synced(spa_get_dsl(spa), 0); 8224 mutex_enter(&spa_namespace_lock); 8225 spa_close(spa, FTAG); 8226 } 8227 mutex_exit(&spa_namespace_lock); 8228 } 8229 8230 /* 8231 * ========================================================================== 8232 * Miscellaneous routines 8233 * ========================================================================== 8234 */ 8235 8236 /* 8237 * Remove all pools in the system. 8238 */ 8239 void 8240 spa_evict_all(void) 8241 { 8242 spa_t *spa; 8243 8244 /* 8245 * Remove all cached state. All pools should be closed now, 8246 * so every spa in the AVL tree should be unreferenced. 8247 */ 8248 mutex_enter(&spa_namespace_lock); 8249 while ((spa = spa_next(NULL)) != NULL) { 8250 /* 8251 * Stop async tasks. The async thread may need to detach 8252 * a device that's been replaced, which requires grabbing 8253 * spa_namespace_lock, so we must drop it here. 8254 */ 8255 spa_open_ref(spa, FTAG); 8256 mutex_exit(&spa_namespace_lock); 8257 spa_async_suspend(spa); 8258 mutex_enter(&spa_namespace_lock); 8259 spa_close(spa, FTAG); 8260 8261 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 8262 spa_unload(spa); 8263 spa_deactivate(spa); 8264 } 8265 spa_remove(spa); 8266 } 8267 mutex_exit(&spa_namespace_lock); 8268 } 8269 8270 vdev_t * 8271 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 8272 { 8273 vdev_t *vd; 8274 int i; 8275 8276 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 8277 return (vd); 8278 8279 if (aux) { 8280 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 8281 vd = spa->spa_l2cache.sav_vdevs[i]; 8282 if (vd->vdev_guid == guid) 8283 return (vd); 8284 } 8285 8286 for (i = 0; i < spa->spa_spares.sav_count; i++) { 8287 vd = spa->spa_spares.sav_vdevs[i]; 8288 if (vd->vdev_guid == guid) 8289 return (vd); 8290 } 8291 } 8292 8293 return (NULL); 8294 } 8295 8296 void 8297 spa_upgrade(spa_t *spa, uint64_t version) 8298 { 8299 ASSERT(spa_writeable(spa)); 8300 8301 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8302 8303 /* 8304 * This should only be called for a non-faulted pool, and since a 8305 * future version would result in an unopenable pool, this shouldn't be 8306 * possible. 8307 */ 8308 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 8309 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 8310 8311 spa->spa_uberblock.ub_version = version; 8312 vdev_config_dirty(spa->spa_root_vdev); 8313 8314 spa_config_exit(spa, SCL_ALL, FTAG); 8315 8316 txg_wait_synced(spa_get_dsl(spa), 0); 8317 } 8318 8319 boolean_t 8320 spa_has_spare(spa_t *spa, uint64_t guid) 8321 { 8322 int i; 8323 uint64_t spareguid; 8324 spa_aux_vdev_t *sav = &spa->spa_spares; 8325 8326 for (i = 0; i < sav->sav_count; i++) 8327 if (sav->sav_vdevs[i]->vdev_guid == guid) 8328 return (B_TRUE); 8329 8330 for (i = 0; i < sav->sav_npending; i++) { 8331 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 8332 &spareguid) == 0 && spareguid == guid) 8333 return (B_TRUE); 8334 } 8335 8336 return (B_FALSE); 8337 } 8338 8339 /* 8340 * Check if a pool has an active shared spare device. 8341 * Note: reference count of an active spare is 2, as a spare and as a replace 8342 */ 8343 static boolean_t 8344 spa_has_active_shared_spare(spa_t *spa) 8345 { 8346 int i, refcnt; 8347 uint64_t pool; 8348 spa_aux_vdev_t *sav = &spa->spa_spares; 8349 8350 for (i = 0; i < sav->sav_count; i++) { 8351 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 8352 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 8353 refcnt > 2) 8354 return (B_TRUE); 8355 } 8356 8357 return (B_FALSE); 8358 } 8359 8360 sysevent_t * 8361 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8362 { 8363 sysevent_t *ev = NULL; 8364 #ifdef _KERNEL 8365 sysevent_attr_list_t *attr = NULL; 8366 sysevent_value_t value; 8367 8368 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 8369 SE_SLEEP); 8370 ASSERT(ev != NULL); 8371 8372 value.value_type = SE_DATA_TYPE_STRING; 8373 value.value.sv_string = spa_name(spa); 8374 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 8375 goto done; 8376 8377 value.value_type = SE_DATA_TYPE_UINT64; 8378 value.value.sv_uint64 = spa_guid(spa); 8379 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 8380 goto done; 8381 8382 if (vd) { 8383 value.value_type = SE_DATA_TYPE_UINT64; 8384 value.value.sv_uint64 = vd->vdev_guid; 8385 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 8386 SE_SLEEP) != 0) 8387 goto done; 8388 8389 if (vd->vdev_path) { 8390 value.value_type = SE_DATA_TYPE_STRING; 8391 value.value.sv_string = vd->vdev_path; 8392 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 8393 &value, SE_SLEEP) != 0) 8394 goto done; 8395 } 8396 } 8397 8398 if (hist_nvl != NULL) { 8399 fnvlist_merge((nvlist_t *)attr, hist_nvl); 8400 } 8401 8402 if (sysevent_attach_attributes(ev, attr) != 0) 8403 goto done; 8404 attr = NULL; 8405 8406 done: 8407 if (attr) 8408 sysevent_free_attr(attr); 8409 8410 #endif 8411 return (ev); 8412 } 8413 8414 void 8415 spa_event_post(sysevent_t *ev) 8416 { 8417 #ifdef _KERNEL 8418 sysevent_id_t eid; 8419 8420 (void) log_sysevent(ev, SE_SLEEP, &eid); 8421 sysevent_free(ev); 8422 #endif 8423 } 8424 8425 void 8426 spa_event_discard(sysevent_t *ev) 8427 { 8428 #ifdef _KERNEL 8429 sysevent_free(ev); 8430 #endif 8431 } 8432 8433 /* 8434 * Post a sysevent corresponding to the given event. The 'name' must be one of 8435 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 8436 * filled in from the spa and (optionally) the vdev and history nvl. This 8437 * doesn't do anything in the userland libzpool, as we don't want consumers to 8438 * misinterpret ztest or zdb as real changes. 8439 */ 8440 void 8441 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8442 { 8443 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 8444 } 8445