xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 0db8de19c0e494758b68b702523a2b0eaffe3b2e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 /*
32  * SPA: Storage Pool Allocator
33  *
34  * This file contains all the routines used when modifying on-disk SPA state.
35  * This includes opening, importing, destroying, exporting a pool, and syncing a
36  * pool.
37  */
38 
39 #include <sys/zfs_context.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <sys/spa_impl.h>
42 #include <sys/zio.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/dmu.h>
45 #include <sys/dmu_tx.h>
46 #include <sys/zap.h>
47 #include <sys/zil.h>
48 #include <sys/ddt.h>
49 #include <sys/vdev_impl.h>
50 #include <sys/metaslab.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/uberblock_impl.h>
53 #include <sys/txg.h>
54 #include <sys/avl.h>
55 #include <sys/dmu_traverse.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/unique.h>
58 #include <sys/dsl_pool.h>
59 #include <sys/dsl_dataset.h>
60 #include <sys/dsl_dir.h>
61 #include <sys/dsl_prop.h>
62 #include <sys/dsl_synctask.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/arc.h>
65 #include <sys/callb.h>
66 #include <sys/systeminfo.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zfs_ioctl.h>
69 #include <sys/dsl_scan.h>
70 #include <sys/zfeature.h>
71 #include <sys/dsl_destroy.h>
72 
73 #ifdef	_KERNEL
74 #include <sys/bootprops.h>
75 #include <sys/callb.h>
76 #include <sys/cpupart.h>
77 #include <sys/pool.h>
78 #include <sys/sysdc.h>
79 #include <sys/zone.h>
80 #endif	/* _KERNEL */
81 
82 #include "zfs_prop.h"
83 #include "zfs_comutil.h"
84 
85 /*
86  * The interval, in seconds, at which failed configuration cache file writes
87  * should be retried.
88  */
89 static int zfs_ccw_retry_interval = 300;
90 
91 typedef enum zti_modes {
92 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
93 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
94 	ZTI_MODE_NULL,			/* don't create a taskq */
95 	ZTI_NMODES
96 } zti_modes_t;
97 
98 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
99 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
100 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
101 
102 #define	ZTI_N(n)	ZTI_P(n, 1)
103 #define	ZTI_ONE		ZTI_N(1)
104 
105 typedef struct zio_taskq_info {
106 	zti_modes_t zti_mode;
107 	uint_t zti_value;
108 	uint_t zti_count;
109 } zio_taskq_info_t;
110 
111 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
112 	"issue", "issue_high", "intr", "intr_high"
113 };
114 
115 /*
116  * This table defines the taskq settings for each ZFS I/O type. When
117  * initializing a pool, we use this table to create an appropriately sized
118  * taskq. Some operations are low volume and therefore have a small, static
119  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
120  * macros. Other operations process a large amount of data; the ZTI_BATCH
121  * macro causes us to create a taskq oriented for throughput. Some operations
122  * are so high frequency and short-lived that the taskq itself can become a a
123  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
124  * additional degree of parallelism specified by the number of threads per-
125  * taskq and the number of taskqs; when dispatching an event in this case, the
126  * particular taskq is chosen at random.
127  *
128  * The different taskq priorities are to handle the different contexts (issue
129  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
130  * need to be handled with minimum delay.
131  */
132 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
133 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
134 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
135 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
136 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
137 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
138 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
139 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
140 };
141 
142 static void spa_sync_version(void *arg, dmu_tx_t *tx);
143 static void spa_sync_props(void *arg, dmu_tx_t *tx);
144 static boolean_t spa_has_active_shared_spare(spa_t *spa);
145 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
146     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
147     char **ereport);
148 static void spa_vdev_resilver_done(spa_t *spa);
149 
150 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
151 id_t		zio_taskq_psrset_bind = PS_NONE;
152 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
153 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
154 
155 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
156 extern int	zfs_sync_pass_deferred_free;
157 
158 /*
159  * This (illegal) pool name is used when temporarily importing a spa_t in order
160  * to get the vdev stats associated with the imported devices.
161  */
162 #define	TRYIMPORT_NAME	"$import"
163 
164 /*
165  * ==========================================================================
166  * SPA properties routines
167  * ==========================================================================
168  */
169 
170 /*
171  * Add a (source=src, propname=propval) list to an nvlist.
172  */
173 static void
174 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
175     uint64_t intval, zprop_source_t src)
176 {
177 	const char *propname = zpool_prop_to_name(prop);
178 	nvlist_t *propval;
179 
180 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
181 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
182 
183 	if (strval != NULL)
184 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
185 	else
186 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
187 
188 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
189 	nvlist_free(propval);
190 }
191 
192 /*
193  * Get property values from the spa configuration.
194  */
195 static void
196 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
197 {
198 	vdev_t *rvd = spa->spa_root_vdev;
199 	dsl_pool_t *pool = spa->spa_dsl_pool;
200 	uint64_t size, alloc, cap, version;
201 	zprop_source_t src = ZPROP_SRC_NONE;
202 	spa_config_dirent_t *dp;
203 	metaslab_class_t *mc = spa_normal_class(spa);
204 
205 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
206 
207 	if (rvd != NULL) {
208 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
209 		size = metaslab_class_get_space(spa_normal_class(spa));
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
214 		    size - alloc, src);
215 
216 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
217 		    metaslab_class_fragmentation(mc), src);
218 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
219 		    metaslab_class_expandable_space(mc), src);
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
221 		    (spa_mode(spa) == FREAD), src);
222 
223 		cap = (size == 0) ? 0 : (alloc * 100 / size);
224 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
225 
226 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
227 		    ddt_get_pool_dedup_ratio(spa), src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
230 		    rvd->vdev_state, src);
231 
232 		version = spa_version(spa);
233 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
234 			src = ZPROP_SRC_DEFAULT;
235 		else
236 			src = ZPROP_SRC_LOCAL;
237 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
238 	}
239 
240 	if (pool != NULL) {
241 		/*
242 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
243 		 * when opening pools before this version freedir will be NULL.
244 		 */
245 		if (pool->dp_free_dir != NULL) {
246 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
247 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
248 			    src);
249 		} else {
250 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
251 			    NULL, 0, src);
252 		}
253 
254 		if (pool->dp_leak_dir != NULL) {
255 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
256 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
257 			    src);
258 		} else {
259 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
260 			    NULL, 0, src);
261 		}
262 	}
263 
264 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
265 
266 	if (spa->spa_comment != NULL) {
267 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
268 		    0, ZPROP_SRC_LOCAL);
269 	}
270 
271 	if (spa->spa_root != NULL)
272 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
273 		    0, ZPROP_SRC_LOCAL);
274 
275 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
276 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
277 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
278 	} else {
279 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
280 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
281 	}
282 
283 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
284 		if (dp->scd_path == NULL) {
285 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
286 			    "none", 0, ZPROP_SRC_LOCAL);
287 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
288 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
289 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
290 		}
291 	}
292 }
293 
294 /*
295  * Get zpool property values.
296  */
297 int
298 spa_prop_get(spa_t *spa, nvlist_t **nvp)
299 {
300 	objset_t *mos = spa->spa_meta_objset;
301 	zap_cursor_t zc;
302 	zap_attribute_t za;
303 	int err;
304 
305 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
306 
307 	mutex_enter(&spa->spa_props_lock);
308 
309 	/*
310 	 * Get properties from the spa config.
311 	 */
312 	spa_prop_get_config(spa, nvp);
313 
314 	/* If no pool property object, no more prop to get. */
315 	if (mos == NULL || spa->spa_pool_props_object == 0) {
316 		mutex_exit(&spa->spa_props_lock);
317 		return (0);
318 	}
319 
320 	/*
321 	 * Get properties from the MOS pool property object.
322 	 */
323 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
324 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
325 	    zap_cursor_advance(&zc)) {
326 		uint64_t intval = 0;
327 		char *strval = NULL;
328 		zprop_source_t src = ZPROP_SRC_DEFAULT;
329 		zpool_prop_t prop;
330 
331 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
332 			continue;
333 
334 		switch (za.za_integer_length) {
335 		case 8:
336 			/* integer property */
337 			if (za.za_first_integer !=
338 			    zpool_prop_default_numeric(prop))
339 				src = ZPROP_SRC_LOCAL;
340 
341 			if (prop == ZPOOL_PROP_BOOTFS) {
342 				dsl_pool_t *dp;
343 				dsl_dataset_t *ds = NULL;
344 
345 				dp = spa_get_dsl(spa);
346 				dsl_pool_config_enter(dp, FTAG);
347 				if (err = dsl_dataset_hold_obj(dp,
348 				    za.za_first_integer, FTAG, &ds)) {
349 					dsl_pool_config_exit(dp, FTAG);
350 					break;
351 				}
352 
353 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
354 				    KM_SLEEP);
355 				dsl_dataset_name(ds, strval);
356 				dsl_dataset_rele(ds, FTAG);
357 				dsl_pool_config_exit(dp, FTAG);
358 			} else {
359 				strval = NULL;
360 				intval = za.za_first_integer;
361 			}
362 
363 			spa_prop_add_list(*nvp, prop, strval, intval, src);
364 
365 			if (strval != NULL)
366 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
367 
368 			break;
369 
370 		case 1:
371 			/* string property */
372 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
373 			err = zap_lookup(mos, spa->spa_pool_props_object,
374 			    za.za_name, 1, za.za_num_integers, strval);
375 			if (err) {
376 				kmem_free(strval, za.za_num_integers);
377 				break;
378 			}
379 			spa_prop_add_list(*nvp, prop, strval, 0, src);
380 			kmem_free(strval, za.za_num_integers);
381 			break;
382 
383 		default:
384 			break;
385 		}
386 	}
387 	zap_cursor_fini(&zc);
388 	mutex_exit(&spa->spa_props_lock);
389 out:
390 	if (err && err != ENOENT) {
391 		nvlist_free(*nvp);
392 		*nvp = NULL;
393 		return (err);
394 	}
395 
396 	return (0);
397 }
398 
399 /*
400  * Validate the given pool properties nvlist and modify the list
401  * for the property values to be set.
402  */
403 static int
404 spa_prop_validate(spa_t *spa, nvlist_t *props)
405 {
406 	nvpair_t *elem;
407 	int error = 0, reset_bootfs = 0;
408 	uint64_t objnum = 0;
409 	boolean_t has_feature = B_FALSE;
410 
411 	elem = NULL;
412 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
413 		uint64_t intval;
414 		char *strval, *slash, *check, *fname;
415 		const char *propname = nvpair_name(elem);
416 		zpool_prop_t prop = zpool_name_to_prop(propname);
417 
418 		switch (prop) {
419 		case ZPROP_INVAL:
420 			if (!zpool_prop_feature(propname)) {
421 				error = SET_ERROR(EINVAL);
422 				break;
423 			}
424 
425 			/*
426 			 * Sanitize the input.
427 			 */
428 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
429 				error = SET_ERROR(EINVAL);
430 				break;
431 			}
432 
433 			if (nvpair_value_uint64(elem, &intval) != 0) {
434 				error = SET_ERROR(EINVAL);
435 				break;
436 			}
437 
438 			if (intval != 0) {
439 				error = SET_ERROR(EINVAL);
440 				break;
441 			}
442 
443 			fname = strchr(propname, '@') + 1;
444 			if (zfeature_lookup_name(fname, NULL) != 0) {
445 				error = SET_ERROR(EINVAL);
446 				break;
447 			}
448 
449 			has_feature = B_TRUE;
450 			break;
451 
452 		case ZPOOL_PROP_VERSION:
453 			error = nvpair_value_uint64(elem, &intval);
454 			if (!error &&
455 			    (intval < spa_version(spa) ||
456 			    intval > SPA_VERSION_BEFORE_FEATURES ||
457 			    has_feature))
458 				error = SET_ERROR(EINVAL);
459 			break;
460 
461 		case ZPOOL_PROP_DELEGATION:
462 		case ZPOOL_PROP_AUTOREPLACE:
463 		case ZPOOL_PROP_LISTSNAPS:
464 		case ZPOOL_PROP_AUTOEXPAND:
465 			error = nvpair_value_uint64(elem, &intval);
466 			if (!error && intval > 1)
467 				error = SET_ERROR(EINVAL);
468 			break;
469 
470 		case ZPOOL_PROP_BOOTFS:
471 			/*
472 			 * If the pool version is less than SPA_VERSION_BOOTFS,
473 			 * or the pool is still being created (version == 0),
474 			 * the bootfs property cannot be set.
475 			 */
476 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
477 				error = SET_ERROR(ENOTSUP);
478 				break;
479 			}
480 
481 			/*
482 			 * Make sure the vdev config is bootable
483 			 */
484 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
485 				error = SET_ERROR(ENOTSUP);
486 				break;
487 			}
488 
489 			reset_bootfs = 1;
490 
491 			error = nvpair_value_string(elem, &strval);
492 
493 			if (!error) {
494 				objset_t *os;
495 				uint64_t propval;
496 
497 				if (strval == NULL || strval[0] == '\0') {
498 					objnum = zpool_prop_default_numeric(
499 					    ZPOOL_PROP_BOOTFS);
500 					break;
501 				}
502 
503 				if (error = dmu_objset_hold(strval, FTAG, &os))
504 					break;
505 
506 				/*
507 				 * Must be ZPL, and its property settings
508 				 * must be supported by GRUB (compression
509 				 * is not gzip, and large blocks are not used).
510 				 */
511 
512 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
513 					error = SET_ERROR(ENOTSUP);
514 				} else if ((error =
515 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
516 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
517 				    &propval)) == 0 &&
518 				    !BOOTFS_COMPRESS_VALID(propval)) {
519 					error = SET_ERROR(ENOTSUP);
520 				} else if ((error =
521 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
522 				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
523 				    &propval)) == 0 &&
524 				    propval > SPA_OLD_MAXBLOCKSIZE) {
525 					error = SET_ERROR(ENOTSUP);
526 				} else {
527 					objnum = dmu_objset_id(os);
528 				}
529 				dmu_objset_rele(os, FTAG);
530 			}
531 			break;
532 
533 		case ZPOOL_PROP_FAILUREMODE:
534 			error = nvpair_value_uint64(elem, &intval);
535 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
536 			    intval > ZIO_FAILURE_MODE_PANIC))
537 				error = SET_ERROR(EINVAL);
538 
539 			/*
540 			 * This is a special case which only occurs when
541 			 * the pool has completely failed. This allows
542 			 * the user to change the in-core failmode property
543 			 * without syncing it out to disk (I/Os might
544 			 * currently be blocked). We do this by returning
545 			 * EIO to the caller (spa_prop_set) to trick it
546 			 * into thinking we encountered a property validation
547 			 * error.
548 			 */
549 			if (!error && spa_suspended(spa)) {
550 				spa->spa_failmode = intval;
551 				error = SET_ERROR(EIO);
552 			}
553 			break;
554 
555 		case ZPOOL_PROP_CACHEFILE:
556 			if ((error = nvpair_value_string(elem, &strval)) != 0)
557 				break;
558 
559 			if (strval[0] == '\0')
560 				break;
561 
562 			if (strcmp(strval, "none") == 0)
563 				break;
564 
565 			if (strval[0] != '/') {
566 				error = SET_ERROR(EINVAL);
567 				break;
568 			}
569 
570 			slash = strrchr(strval, '/');
571 			ASSERT(slash != NULL);
572 
573 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
574 			    strcmp(slash, "/..") == 0)
575 				error = SET_ERROR(EINVAL);
576 			break;
577 
578 		case ZPOOL_PROP_COMMENT:
579 			if ((error = nvpair_value_string(elem, &strval)) != 0)
580 				break;
581 			for (check = strval; *check != '\0'; check++) {
582 				/*
583 				 * The kernel doesn't have an easy isprint()
584 				 * check.  For this kernel check, we merely
585 				 * check ASCII apart from DEL.  Fix this if
586 				 * there is an easy-to-use kernel isprint().
587 				 */
588 				if (*check >= 0x7f) {
589 					error = SET_ERROR(EINVAL);
590 					break;
591 				}
592 			}
593 			if (strlen(strval) > ZPROP_MAX_COMMENT)
594 				error = E2BIG;
595 			break;
596 
597 		case ZPOOL_PROP_DEDUPDITTO:
598 			if (spa_version(spa) < SPA_VERSION_DEDUP)
599 				error = SET_ERROR(ENOTSUP);
600 			else
601 				error = nvpair_value_uint64(elem, &intval);
602 			if (error == 0 &&
603 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
604 				error = SET_ERROR(EINVAL);
605 			break;
606 		}
607 
608 		if (error)
609 			break;
610 	}
611 
612 	if (!error && reset_bootfs) {
613 		error = nvlist_remove(props,
614 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
615 
616 		if (!error) {
617 			error = nvlist_add_uint64(props,
618 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
619 		}
620 	}
621 
622 	return (error);
623 }
624 
625 void
626 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
627 {
628 	char *cachefile;
629 	spa_config_dirent_t *dp;
630 
631 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
632 	    &cachefile) != 0)
633 		return;
634 
635 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
636 	    KM_SLEEP);
637 
638 	if (cachefile[0] == '\0')
639 		dp->scd_path = spa_strdup(spa_config_path);
640 	else if (strcmp(cachefile, "none") == 0)
641 		dp->scd_path = NULL;
642 	else
643 		dp->scd_path = spa_strdup(cachefile);
644 
645 	list_insert_head(&spa->spa_config_list, dp);
646 	if (need_sync)
647 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
648 }
649 
650 int
651 spa_prop_set(spa_t *spa, nvlist_t *nvp)
652 {
653 	int error;
654 	nvpair_t *elem = NULL;
655 	boolean_t need_sync = B_FALSE;
656 
657 	if ((error = spa_prop_validate(spa, nvp)) != 0)
658 		return (error);
659 
660 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
661 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
662 
663 		if (prop == ZPOOL_PROP_CACHEFILE ||
664 		    prop == ZPOOL_PROP_ALTROOT ||
665 		    prop == ZPOOL_PROP_READONLY)
666 			continue;
667 
668 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
669 			uint64_t ver;
670 
671 			if (prop == ZPOOL_PROP_VERSION) {
672 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
673 			} else {
674 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
675 				ver = SPA_VERSION_FEATURES;
676 				need_sync = B_TRUE;
677 			}
678 
679 			/* Save time if the version is already set. */
680 			if (ver == spa_version(spa))
681 				continue;
682 
683 			/*
684 			 * In addition to the pool directory object, we might
685 			 * create the pool properties object, the features for
686 			 * read object, the features for write object, or the
687 			 * feature descriptions object.
688 			 */
689 			error = dsl_sync_task(spa->spa_name, NULL,
690 			    spa_sync_version, &ver,
691 			    6, ZFS_SPACE_CHECK_RESERVED);
692 			if (error)
693 				return (error);
694 			continue;
695 		}
696 
697 		need_sync = B_TRUE;
698 		break;
699 	}
700 
701 	if (need_sync) {
702 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
703 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
704 	}
705 
706 	return (0);
707 }
708 
709 /*
710  * If the bootfs property value is dsobj, clear it.
711  */
712 void
713 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
714 {
715 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
716 		VERIFY(zap_remove(spa->spa_meta_objset,
717 		    spa->spa_pool_props_object,
718 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
719 		spa->spa_bootfs = 0;
720 	}
721 }
722 
723 /*ARGSUSED*/
724 static int
725 spa_change_guid_check(void *arg, dmu_tx_t *tx)
726 {
727 	uint64_t *newguid = arg;
728 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
729 	vdev_t *rvd = spa->spa_root_vdev;
730 	uint64_t vdev_state;
731 
732 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
733 	vdev_state = rvd->vdev_state;
734 	spa_config_exit(spa, SCL_STATE, FTAG);
735 
736 	if (vdev_state != VDEV_STATE_HEALTHY)
737 		return (SET_ERROR(ENXIO));
738 
739 	ASSERT3U(spa_guid(spa), !=, *newguid);
740 
741 	return (0);
742 }
743 
744 static void
745 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
746 {
747 	uint64_t *newguid = arg;
748 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
749 	uint64_t oldguid;
750 	vdev_t *rvd = spa->spa_root_vdev;
751 
752 	oldguid = spa_guid(spa);
753 
754 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755 	rvd->vdev_guid = *newguid;
756 	rvd->vdev_guid_sum += (*newguid - oldguid);
757 	vdev_config_dirty(rvd);
758 	spa_config_exit(spa, SCL_STATE, FTAG);
759 
760 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
761 	    oldguid, *newguid);
762 }
763 
764 /*
765  * Change the GUID for the pool.  This is done so that we can later
766  * re-import a pool built from a clone of our own vdevs.  We will modify
767  * the root vdev's guid, our own pool guid, and then mark all of our
768  * vdevs dirty.  Note that we must make sure that all our vdevs are
769  * online when we do this, or else any vdevs that weren't present
770  * would be orphaned from our pool.  We are also going to issue a
771  * sysevent to update any watchers.
772  */
773 int
774 spa_change_guid(spa_t *spa)
775 {
776 	int error;
777 	uint64_t guid;
778 
779 	mutex_enter(&spa->spa_vdev_top_lock);
780 	mutex_enter(&spa_namespace_lock);
781 	guid = spa_generate_guid(NULL);
782 
783 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
784 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
785 
786 	if (error == 0) {
787 		spa_config_sync(spa, B_FALSE, B_TRUE);
788 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
789 	}
790 
791 	mutex_exit(&spa_namespace_lock);
792 	mutex_exit(&spa->spa_vdev_top_lock);
793 
794 	return (error);
795 }
796 
797 /*
798  * ==========================================================================
799  * SPA state manipulation (open/create/destroy/import/export)
800  * ==========================================================================
801  */
802 
803 static int
804 spa_error_entry_compare(const void *a, const void *b)
805 {
806 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
807 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
808 	int ret;
809 
810 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
811 	    sizeof (zbookmark_phys_t));
812 
813 	if (ret < 0)
814 		return (-1);
815 	else if (ret > 0)
816 		return (1);
817 	else
818 		return (0);
819 }
820 
821 /*
822  * Utility function which retrieves copies of the current logs and
823  * re-initializes them in the process.
824  */
825 void
826 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
827 {
828 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
829 
830 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
831 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
832 
833 	avl_create(&spa->spa_errlist_scrub,
834 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
835 	    offsetof(spa_error_entry_t, se_avl));
836 	avl_create(&spa->spa_errlist_last,
837 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
838 	    offsetof(spa_error_entry_t, se_avl));
839 }
840 
841 static void
842 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
843 {
844 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
845 	enum zti_modes mode = ztip->zti_mode;
846 	uint_t value = ztip->zti_value;
847 	uint_t count = ztip->zti_count;
848 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
849 	char name[32];
850 	uint_t flags = 0;
851 	boolean_t batch = B_FALSE;
852 
853 	if (mode == ZTI_MODE_NULL) {
854 		tqs->stqs_count = 0;
855 		tqs->stqs_taskq = NULL;
856 		return;
857 	}
858 
859 	ASSERT3U(count, >, 0);
860 
861 	tqs->stqs_count = count;
862 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
863 
864 	switch (mode) {
865 	case ZTI_MODE_FIXED:
866 		ASSERT3U(value, >=, 1);
867 		value = MAX(value, 1);
868 		break;
869 
870 	case ZTI_MODE_BATCH:
871 		batch = B_TRUE;
872 		flags |= TASKQ_THREADS_CPU_PCT;
873 		value = zio_taskq_batch_pct;
874 		break;
875 
876 	default:
877 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
878 		    "spa_activate()",
879 		    zio_type_name[t], zio_taskq_types[q], mode, value);
880 		break;
881 	}
882 
883 	for (uint_t i = 0; i < count; i++) {
884 		taskq_t *tq;
885 
886 		if (count > 1) {
887 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
888 			    zio_type_name[t], zio_taskq_types[q], i);
889 		} else {
890 			(void) snprintf(name, sizeof (name), "%s_%s",
891 			    zio_type_name[t], zio_taskq_types[q]);
892 		}
893 
894 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
895 			if (batch)
896 				flags |= TASKQ_DC_BATCH;
897 
898 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
899 			    spa->spa_proc, zio_taskq_basedc, flags);
900 		} else {
901 			pri_t pri = maxclsyspri;
902 			/*
903 			 * The write issue taskq can be extremely CPU
904 			 * intensive.  Run it at slightly lower priority
905 			 * than the other taskqs.
906 			 */
907 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
908 				pri--;
909 
910 			tq = taskq_create_proc(name, value, pri, 50,
911 			    INT_MAX, spa->spa_proc, flags);
912 		}
913 
914 		tqs->stqs_taskq[i] = tq;
915 	}
916 }
917 
918 static void
919 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920 {
921 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922 
923 	if (tqs->stqs_taskq == NULL) {
924 		ASSERT0(tqs->stqs_count);
925 		return;
926 	}
927 
928 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
929 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930 		taskq_destroy(tqs->stqs_taskq[i]);
931 	}
932 
933 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934 	tqs->stqs_taskq = NULL;
935 }
936 
937 /*
938  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939  * Note that a type may have multiple discrete taskqs to avoid lock contention
940  * on the taskq itself. In that case we choose which taskq at random by using
941  * the low bits of gethrtime().
942  */
943 void
944 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946 {
947 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948 	taskq_t *tq;
949 
950 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
951 	ASSERT3U(tqs->stqs_count, !=, 0);
952 
953 	if (tqs->stqs_count == 1) {
954 		tq = tqs->stqs_taskq[0];
955 	} else {
956 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
957 	}
958 
959 	taskq_dispatch_ent(tq, func, arg, flags, ent);
960 }
961 
962 static void
963 spa_create_zio_taskqs(spa_t *spa)
964 {
965 	for (int t = 0; t < ZIO_TYPES; t++) {
966 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
967 			spa_taskqs_init(spa, t, q);
968 		}
969 	}
970 }
971 
972 #ifdef _KERNEL
973 static void
974 spa_thread(void *arg)
975 {
976 	callb_cpr_t cprinfo;
977 
978 	spa_t *spa = arg;
979 	user_t *pu = PTOU(curproc);
980 
981 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
982 	    spa->spa_name);
983 
984 	ASSERT(curproc != &p0);
985 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
986 	    "zpool-%s", spa->spa_name);
987 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
988 
989 	/* bind this thread to the requested psrset */
990 	if (zio_taskq_psrset_bind != PS_NONE) {
991 		pool_lock();
992 		mutex_enter(&cpu_lock);
993 		mutex_enter(&pidlock);
994 		mutex_enter(&curproc->p_lock);
995 
996 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
997 		    0, NULL, NULL) == 0)  {
998 			curthread->t_bind_pset = zio_taskq_psrset_bind;
999 		} else {
1000 			cmn_err(CE_WARN,
1001 			    "Couldn't bind process for zfs pool \"%s\" to "
1002 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1003 		}
1004 
1005 		mutex_exit(&curproc->p_lock);
1006 		mutex_exit(&pidlock);
1007 		mutex_exit(&cpu_lock);
1008 		pool_unlock();
1009 	}
1010 
1011 	if (zio_taskq_sysdc) {
1012 		sysdc_thread_enter(curthread, 100, 0);
1013 	}
1014 
1015 	spa->spa_proc = curproc;
1016 	spa->spa_did = curthread->t_did;
1017 
1018 	spa_create_zio_taskqs(spa);
1019 
1020 	mutex_enter(&spa->spa_proc_lock);
1021 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1022 
1023 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1024 	cv_broadcast(&spa->spa_proc_cv);
1025 
1026 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1027 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1028 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1029 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1030 
1031 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1032 	spa->spa_proc_state = SPA_PROC_GONE;
1033 	spa->spa_proc = &p0;
1034 	cv_broadcast(&spa->spa_proc_cv);
1035 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1036 
1037 	mutex_enter(&curproc->p_lock);
1038 	lwp_exit();
1039 }
1040 #endif
1041 
1042 /*
1043  * Activate an uninitialized pool.
1044  */
1045 static void
1046 spa_activate(spa_t *spa, int mode)
1047 {
1048 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1049 
1050 	spa->spa_state = POOL_STATE_ACTIVE;
1051 	spa->spa_mode = mode;
1052 
1053 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1054 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 
1056 	/* Try to create a covering process */
1057 	mutex_enter(&spa->spa_proc_lock);
1058 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1059 	ASSERT(spa->spa_proc == &p0);
1060 	spa->spa_did = 0;
1061 
1062 	/* Only create a process if we're going to be around a while. */
1063 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1064 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1065 		    NULL, 0) == 0) {
1066 			spa->spa_proc_state = SPA_PROC_CREATED;
1067 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1068 				cv_wait(&spa->spa_proc_cv,
1069 				    &spa->spa_proc_lock);
1070 			}
1071 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1072 			ASSERT(spa->spa_proc != &p0);
1073 			ASSERT(spa->spa_did != 0);
1074 		} else {
1075 #ifdef _KERNEL
1076 			cmn_err(CE_WARN,
1077 			    "Couldn't create process for zfs pool \"%s\"\n",
1078 			    spa->spa_name);
1079 #endif
1080 		}
1081 	}
1082 	mutex_exit(&spa->spa_proc_lock);
1083 
1084 	/* If we didn't create a process, we need to create our taskqs. */
1085 	if (spa->spa_proc == &p0) {
1086 		spa_create_zio_taskqs(spa);
1087 	}
1088 
1089 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1090 	    offsetof(vdev_t, vdev_config_dirty_node));
1091 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1092 	    offsetof(objset_t, os_evicting_node));
1093 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1094 	    offsetof(vdev_t, vdev_state_dirty_node));
1095 
1096 	txg_list_create(&spa->spa_vdev_txg_list,
1097 	    offsetof(struct vdev, vdev_txg_node));
1098 
1099 	avl_create(&spa->spa_errlist_scrub,
1100 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1101 	    offsetof(spa_error_entry_t, se_avl));
1102 	avl_create(&spa->spa_errlist_last,
1103 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1104 	    offsetof(spa_error_entry_t, se_avl));
1105 }
1106 
1107 /*
1108  * Opposite of spa_activate().
1109  */
1110 static void
1111 spa_deactivate(spa_t *spa)
1112 {
1113 	ASSERT(spa->spa_sync_on == B_FALSE);
1114 	ASSERT(spa->spa_dsl_pool == NULL);
1115 	ASSERT(spa->spa_root_vdev == NULL);
1116 	ASSERT(spa->spa_async_zio_root == NULL);
1117 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1118 
1119 	spa_evicting_os_wait(spa);
1120 
1121 	txg_list_destroy(&spa->spa_vdev_txg_list);
1122 
1123 	list_destroy(&spa->spa_config_dirty_list);
1124 	list_destroy(&spa->spa_evicting_os_list);
1125 	list_destroy(&spa->spa_state_dirty_list);
1126 
1127 	for (int t = 0; t < ZIO_TYPES; t++) {
1128 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1129 			spa_taskqs_fini(spa, t, q);
1130 		}
1131 	}
1132 
1133 	metaslab_class_destroy(spa->spa_normal_class);
1134 	spa->spa_normal_class = NULL;
1135 
1136 	metaslab_class_destroy(spa->spa_log_class);
1137 	spa->spa_log_class = NULL;
1138 
1139 	/*
1140 	 * If this was part of an import or the open otherwise failed, we may
1141 	 * still have errors left in the queues.  Empty them just in case.
1142 	 */
1143 	spa_errlog_drain(spa);
1144 
1145 	avl_destroy(&spa->spa_errlist_scrub);
1146 	avl_destroy(&spa->spa_errlist_last);
1147 
1148 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1149 
1150 	mutex_enter(&spa->spa_proc_lock);
1151 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1152 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1153 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1154 		cv_broadcast(&spa->spa_proc_cv);
1155 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1156 			ASSERT(spa->spa_proc != &p0);
1157 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1158 		}
1159 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1160 		spa->spa_proc_state = SPA_PROC_NONE;
1161 	}
1162 	ASSERT(spa->spa_proc == &p0);
1163 	mutex_exit(&spa->spa_proc_lock);
1164 
1165 	/*
1166 	 * We want to make sure spa_thread() has actually exited the ZFS
1167 	 * module, so that the module can't be unloaded out from underneath
1168 	 * it.
1169 	 */
1170 	if (spa->spa_did != 0) {
1171 		thread_join(spa->spa_did);
1172 		spa->spa_did = 0;
1173 	}
1174 }
1175 
1176 /*
1177  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1178  * will create all the necessary vdevs in the appropriate layout, with each vdev
1179  * in the CLOSED state.  This will prep the pool before open/creation/import.
1180  * All vdev validation is done by the vdev_alloc() routine.
1181  */
1182 static int
1183 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1184     uint_t id, int atype)
1185 {
1186 	nvlist_t **child;
1187 	uint_t children;
1188 	int error;
1189 
1190 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1191 		return (error);
1192 
1193 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1194 		return (0);
1195 
1196 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1197 	    &child, &children);
1198 
1199 	if (error == ENOENT)
1200 		return (0);
1201 
1202 	if (error) {
1203 		vdev_free(*vdp);
1204 		*vdp = NULL;
1205 		return (SET_ERROR(EINVAL));
1206 	}
1207 
1208 	for (int c = 0; c < children; c++) {
1209 		vdev_t *vd;
1210 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1211 		    atype)) != 0) {
1212 			vdev_free(*vdp);
1213 			*vdp = NULL;
1214 			return (error);
1215 		}
1216 	}
1217 
1218 	ASSERT(*vdp != NULL);
1219 
1220 	return (0);
1221 }
1222 
1223 /*
1224  * Opposite of spa_load().
1225  */
1226 static void
1227 spa_unload(spa_t *spa)
1228 {
1229 	int i;
1230 
1231 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1232 
1233 	/*
1234 	 * Stop async tasks.
1235 	 */
1236 	spa_async_suspend(spa);
1237 
1238 	/*
1239 	 * Stop syncing.
1240 	 */
1241 	if (spa->spa_sync_on) {
1242 		txg_sync_stop(spa->spa_dsl_pool);
1243 		spa->spa_sync_on = B_FALSE;
1244 	}
1245 
1246 	/*
1247 	 * Wait for any outstanding async I/O to complete.
1248 	 */
1249 	if (spa->spa_async_zio_root != NULL) {
1250 		for (int i = 0; i < max_ncpus; i++)
1251 			(void) zio_wait(spa->spa_async_zio_root[i]);
1252 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1253 		spa->spa_async_zio_root = NULL;
1254 	}
1255 
1256 	bpobj_close(&spa->spa_deferred_bpobj);
1257 
1258 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1259 
1260 	/*
1261 	 * Close all vdevs.
1262 	 */
1263 	if (spa->spa_root_vdev)
1264 		vdev_free(spa->spa_root_vdev);
1265 	ASSERT(spa->spa_root_vdev == NULL);
1266 
1267 	/*
1268 	 * Close the dsl pool.
1269 	 */
1270 	if (spa->spa_dsl_pool) {
1271 		dsl_pool_close(spa->spa_dsl_pool);
1272 		spa->spa_dsl_pool = NULL;
1273 		spa->spa_meta_objset = NULL;
1274 	}
1275 
1276 	ddt_unload(spa);
1277 
1278 
1279 	/*
1280 	 * Drop and purge level 2 cache
1281 	 */
1282 	spa_l2cache_drop(spa);
1283 
1284 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1285 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1286 	if (spa->spa_spares.sav_vdevs) {
1287 		kmem_free(spa->spa_spares.sav_vdevs,
1288 		    spa->spa_spares.sav_count * sizeof (void *));
1289 		spa->spa_spares.sav_vdevs = NULL;
1290 	}
1291 	if (spa->spa_spares.sav_config) {
1292 		nvlist_free(spa->spa_spares.sav_config);
1293 		spa->spa_spares.sav_config = NULL;
1294 	}
1295 	spa->spa_spares.sav_count = 0;
1296 
1297 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1298 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1299 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1300 	}
1301 	if (spa->spa_l2cache.sav_vdevs) {
1302 		kmem_free(spa->spa_l2cache.sav_vdevs,
1303 		    spa->spa_l2cache.sav_count * sizeof (void *));
1304 		spa->spa_l2cache.sav_vdevs = NULL;
1305 	}
1306 	if (spa->spa_l2cache.sav_config) {
1307 		nvlist_free(spa->spa_l2cache.sav_config);
1308 		spa->spa_l2cache.sav_config = NULL;
1309 	}
1310 	spa->spa_l2cache.sav_count = 0;
1311 
1312 	spa->spa_async_suspended = 0;
1313 
1314 	if (spa->spa_comment != NULL) {
1315 		spa_strfree(spa->spa_comment);
1316 		spa->spa_comment = NULL;
1317 	}
1318 
1319 	spa_config_exit(spa, SCL_ALL, FTAG);
1320 }
1321 
1322 /*
1323  * Load (or re-load) the current list of vdevs describing the active spares for
1324  * this pool.  When this is called, we have some form of basic information in
1325  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1326  * then re-generate a more complete list including status information.
1327  */
1328 static void
1329 spa_load_spares(spa_t *spa)
1330 {
1331 	nvlist_t **spares;
1332 	uint_t nspares;
1333 	int i;
1334 	vdev_t *vd, *tvd;
1335 
1336 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1337 
1338 	/*
1339 	 * First, close and free any existing spare vdevs.
1340 	 */
1341 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1342 		vd = spa->spa_spares.sav_vdevs[i];
1343 
1344 		/* Undo the call to spa_activate() below */
1345 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1346 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1347 			spa_spare_remove(tvd);
1348 		vdev_close(vd);
1349 		vdev_free(vd);
1350 	}
1351 
1352 	if (spa->spa_spares.sav_vdevs)
1353 		kmem_free(spa->spa_spares.sav_vdevs,
1354 		    spa->spa_spares.sav_count * sizeof (void *));
1355 
1356 	if (spa->spa_spares.sav_config == NULL)
1357 		nspares = 0;
1358 	else
1359 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1360 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1361 
1362 	spa->spa_spares.sav_count = (int)nspares;
1363 	spa->spa_spares.sav_vdevs = NULL;
1364 
1365 	if (nspares == 0)
1366 		return;
1367 
1368 	/*
1369 	 * Construct the array of vdevs, opening them to get status in the
1370 	 * process.   For each spare, there is potentially two different vdev_t
1371 	 * structures associated with it: one in the list of spares (used only
1372 	 * for basic validation purposes) and one in the active vdev
1373 	 * configuration (if it's spared in).  During this phase we open and
1374 	 * validate each vdev on the spare list.  If the vdev also exists in the
1375 	 * active configuration, then we also mark this vdev as an active spare.
1376 	 */
1377 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1378 	    KM_SLEEP);
1379 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1380 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1381 		    VDEV_ALLOC_SPARE) == 0);
1382 		ASSERT(vd != NULL);
1383 
1384 		spa->spa_spares.sav_vdevs[i] = vd;
1385 
1386 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1387 		    B_FALSE)) != NULL) {
1388 			if (!tvd->vdev_isspare)
1389 				spa_spare_add(tvd);
1390 
1391 			/*
1392 			 * We only mark the spare active if we were successfully
1393 			 * able to load the vdev.  Otherwise, importing a pool
1394 			 * with a bad active spare would result in strange
1395 			 * behavior, because multiple pool would think the spare
1396 			 * is actively in use.
1397 			 *
1398 			 * There is a vulnerability here to an equally bizarre
1399 			 * circumstance, where a dead active spare is later
1400 			 * brought back to life (onlined or otherwise).  Given
1401 			 * the rarity of this scenario, and the extra complexity
1402 			 * it adds, we ignore the possibility.
1403 			 */
1404 			if (!vdev_is_dead(tvd))
1405 				spa_spare_activate(tvd);
1406 		}
1407 
1408 		vd->vdev_top = vd;
1409 		vd->vdev_aux = &spa->spa_spares;
1410 
1411 		if (vdev_open(vd) != 0)
1412 			continue;
1413 
1414 		if (vdev_validate_aux(vd) == 0)
1415 			spa_spare_add(vd);
1416 	}
1417 
1418 	/*
1419 	 * Recompute the stashed list of spares, with status information
1420 	 * this time.
1421 	 */
1422 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1423 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1424 
1425 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1426 	    KM_SLEEP);
1427 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1428 		spares[i] = vdev_config_generate(spa,
1429 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1430 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1431 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1432 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1433 		nvlist_free(spares[i]);
1434 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1435 }
1436 
1437 /*
1438  * Load (or re-load) the current list of vdevs describing the active l2cache for
1439  * this pool.  When this is called, we have some form of basic information in
1440  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1441  * then re-generate a more complete list including status information.
1442  * Devices which are already active have their details maintained, and are
1443  * not re-opened.
1444  */
1445 static void
1446 spa_load_l2cache(spa_t *spa)
1447 {
1448 	nvlist_t **l2cache;
1449 	uint_t nl2cache;
1450 	int i, j, oldnvdevs;
1451 	uint64_t guid;
1452 	vdev_t *vd, **oldvdevs, **newvdevs;
1453 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1454 
1455 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1456 
1457 	if (sav->sav_config != NULL) {
1458 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1459 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1460 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1461 	} else {
1462 		nl2cache = 0;
1463 		newvdevs = NULL;
1464 	}
1465 
1466 	oldvdevs = sav->sav_vdevs;
1467 	oldnvdevs = sav->sav_count;
1468 	sav->sav_vdevs = NULL;
1469 	sav->sav_count = 0;
1470 
1471 	/*
1472 	 * Process new nvlist of vdevs.
1473 	 */
1474 	for (i = 0; i < nl2cache; i++) {
1475 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1476 		    &guid) == 0);
1477 
1478 		newvdevs[i] = NULL;
1479 		for (j = 0; j < oldnvdevs; j++) {
1480 			vd = oldvdevs[j];
1481 			if (vd != NULL && guid == vd->vdev_guid) {
1482 				/*
1483 				 * Retain previous vdev for add/remove ops.
1484 				 */
1485 				newvdevs[i] = vd;
1486 				oldvdevs[j] = NULL;
1487 				break;
1488 			}
1489 		}
1490 
1491 		if (newvdevs[i] == NULL) {
1492 			/*
1493 			 * Create new vdev
1494 			 */
1495 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1496 			    VDEV_ALLOC_L2CACHE) == 0);
1497 			ASSERT(vd != NULL);
1498 			newvdevs[i] = vd;
1499 
1500 			/*
1501 			 * Commit this vdev as an l2cache device,
1502 			 * even if it fails to open.
1503 			 */
1504 			spa_l2cache_add(vd);
1505 
1506 			vd->vdev_top = vd;
1507 			vd->vdev_aux = sav;
1508 
1509 			spa_l2cache_activate(vd);
1510 
1511 			if (vdev_open(vd) != 0)
1512 				continue;
1513 
1514 			(void) vdev_validate_aux(vd);
1515 
1516 			if (!vdev_is_dead(vd))
1517 				l2arc_add_vdev(spa, vd);
1518 		}
1519 	}
1520 
1521 	/*
1522 	 * Purge vdevs that were dropped
1523 	 */
1524 	for (i = 0; i < oldnvdevs; i++) {
1525 		uint64_t pool;
1526 
1527 		vd = oldvdevs[i];
1528 		if (vd != NULL) {
1529 			ASSERT(vd->vdev_isl2cache);
1530 
1531 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1532 			    pool != 0ULL && l2arc_vdev_present(vd))
1533 				l2arc_remove_vdev(vd);
1534 			vdev_clear_stats(vd);
1535 			vdev_free(vd);
1536 		}
1537 	}
1538 
1539 	if (oldvdevs)
1540 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1541 
1542 	if (sav->sav_config == NULL)
1543 		goto out;
1544 
1545 	sav->sav_vdevs = newvdevs;
1546 	sav->sav_count = (int)nl2cache;
1547 
1548 	/*
1549 	 * Recompute the stashed list of l2cache devices, with status
1550 	 * information this time.
1551 	 */
1552 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1553 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1554 
1555 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1556 	for (i = 0; i < sav->sav_count; i++)
1557 		l2cache[i] = vdev_config_generate(spa,
1558 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1559 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1560 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1561 out:
1562 	for (i = 0; i < sav->sav_count; i++)
1563 		nvlist_free(l2cache[i]);
1564 	if (sav->sav_count)
1565 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1566 }
1567 
1568 static int
1569 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1570 {
1571 	dmu_buf_t *db;
1572 	char *packed = NULL;
1573 	size_t nvsize = 0;
1574 	int error;
1575 	*value = NULL;
1576 
1577 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1578 	if (error != 0)
1579 		return (error);
1580 
1581 	nvsize = *(uint64_t *)db->db_data;
1582 	dmu_buf_rele(db, FTAG);
1583 
1584 	packed = kmem_alloc(nvsize, KM_SLEEP);
1585 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1586 	    DMU_READ_PREFETCH);
1587 	if (error == 0)
1588 		error = nvlist_unpack(packed, nvsize, value, 0);
1589 	kmem_free(packed, nvsize);
1590 
1591 	return (error);
1592 }
1593 
1594 /*
1595  * Checks to see if the given vdev could not be opened, in which case we post a
1596  * sysevent to notify the autoreplace code that the device has been removed.
1597  */
1598 static void
1599 spa_check_removed(vdev_t *vd)
1600 {
1601 	for (int c = 0; c < vd->vdev_children; c++)
1602 		spa_check_removed(vd->vdev_child[c]);
1603 
1604 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1605 	    !vd->vdev_ishole) {
1606 		zfs_post_autoreplace(vd->vdev_spa, vd);
1607 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1608 	}
1609 }
1610 
1611 static void
1612 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1613 {
1614 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1615 
1616 	vd->vdev_top_zap = mvd->vdev_top_zap;
1617 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1618 
1619 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1620 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1621 	}
1622 }
1623 
1624 /*
1625  * Validate the current config against the MOS config
1626  */
1627 static boolean_t
1628 spa_config_valid(spa_t *spa, nvlist_t *config)
1629 {
1630 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1631 	nvlist_t *nv;
1632 
1633 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1634 
1635 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1636 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1637 
1638 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1639 
1640 	/*
1641 	 * If we're doing a normal import, then build up any additional
1642 	 * diagnostic information about missing devices in this config.
1643 	 * We'll pass this up to the user for further processing.
1644 	 */
1645 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1646 		nvlist_t **child, *nv;
1647 		uint64_t idx = 0;
1648 
1649 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1650 		    KM_SLEEP);
1651 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1652 
1653 		for (int c = 0; c < rvd->vdev_children; c++) {
1654 			vdev_t *tvd = rvd->vdev_child[c];
1655 			vdev_t *mtvd  = mrvd->vdev_child[c];
1656 
1657 			if (tvd->vdev_ops == &vdev_missing_ops &&
1658 			    mtvd->vdev_ops != &vdev_missing_ops &&
1659 			    mtvd->vdev_islog)
1660 				child[idx++] = vdev_config_generate(spa, mtvd,
1661 				    B_FALSE, 0);
1662 		}
1663 
1664 		if (idx) {
1665 			VERIFY(nvlist_add_nvlist_array(nv,
1666 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1667 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1668 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1669 
1670 			for (int i = 0; i < idx; i++)
1671 				nvlist_free(child[i]);
1672 		}
1673 		nvlist_free(nv);
1674 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1675 	}
1676 
1677 	/*
1678 	 * Compare the root vdev tree with the information we have
1679 	 * from the MOS config (mrvd). Check each top-level vdev
1680 	 * with the corresponding MOS config top-level (mtvd).
1681 	 */
1682 	for (int c = 0; c < rvd->vdev_children; c++) {
1683 		vdev_t *tvd = rvd->vdev_child[c];
1684 		vdev_t *mtvd  = mrvd->vdev_child[c];
1685 
1686 		/*
1687 		 * Resolve any "missing" vdevs in the current configuration.
1688 		 * If we find that the MOS config has more accurate information
1689 		 * about the top-level vdev then use that vdev instead.
1690 		 */
1691 		if (tvd->vdev_ops == &vdev_missing_ops &&
1692 		    mtvd->vdev_ops != &vdev_missing_ops) {
1693 
1694 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1695 				continue;
1696 
1697 			/*
1698 			 * Device specific actions.
1699 			 */
1700 			if (mtvd->vdev_islog) {
1701 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1702 			} else {
1703 				/*
1704 				 * XXX - once we have 'readonly' pool
1705 				 * support we should be able to handle
1706 				 * missing data devices by transitioning
1707 				 * the pool to readonly.
1708 				 */
1709 				continue;
1710 			}
1711 
1712 			/*
1713 			 * Swap the missing vdev with the data we were
1714 			 * able to obtain from the MOS config.
1715 			 */
1716 			vdev_remove_child(rvd, tvd);
1717 			vdev_remove_child(mrvd, mtvd);
1718 
1719 			vdev_add_child(rvd, mtvd);
1720 			vdev_add_child(mrvd, tvd);
1721 
1722 			spa_config_exit(spa, SCL_ALL, FTAG);
1723 			vdev_load(mtvd);
1724 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1725 
1726 			vdev_reopen(rvd);
1727 		} else {
1728 			if (mtvd->vdev_islog) {
1729 				/*
1730 				 * Load the slog device's state from the MOS
1731 				 * config since it's possible that the label
1732 				 * does not contain the most up-to-date
1733 				 * information.
1734 				 */
1735 				vdev_load_log_state(tvd, mtvd);
1736 				vdev_reopen(tvd);
1737 			}
1738 
1739 			/*
1740 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1741 			 */
1742 			spa_config_valid_zaps(tvd, mtvd);
1743 		}
1744 	}
1745 
1746 	vdev_free(mrvd);
1747 	spa_config_exit(spa, SCL_ALL, FTAG);
1748 
1749 	/*
1750 	 * Ensure we were able to validate the config.
1751 	 */
1752 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1753 }
1754 
1755 /*
1756  * Check for missing log devices
1757  */
1758 static boolean_t
1759 spa_check_logs(spa_t *spa)
1760 {
1761 	boolean_t rv = B_FALSE;
1762 	dsl_pool_t *dp = spa_get_dsl(spa);
1763 
1764 	switch (spa->spa_log_state) {
1765 	case SPA_LOG_MISSING:
1766 		/* need to recheck in case slog has been restored */
1767 	case SPA_LOG_UNKNOWN:
1768 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1769 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1770 		if (rv)
1771 			spa_set_log_state(spa, SPA_LOG_MISSING);
1772 		break;
1773 	}
1774 	return (rv);
1775 }
1776 
1777 static boolean_t
1778 spa_passivate_log(spa_t *spa)
1779 {
1780 	vdev_t *rvd = spa->spa_root_vdev;
1781 	boolean_t slog_found = B_FALSE;
1782 
1783 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1784 
1785 	if (!spa_has_slogs(spa))
1786 		return (B_FALSE);
1787 
1788 	for (int c = 0; c < rvd->vdev_children; c++) {
1789 		vdev_t *tvd = rvd->vdev_child[c];
1790 		metaslab_group_t *mg = tvd->vdev_mg;
1791 
1792 		if (tvd->vdev_islog) {
1793 			metaslab_group_passivate(mg);
1794 			slog_found = B_TRUE;
1795 		}
1796 	}
1797 
1798 	return (slog_found);
1799 }
1800 
1801 static void
1802 spa_activate_log(spa_t *spa)
1803 {
1804 	vdev_t *rvd = spa->spa_root_vdev;
1805 
1806 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1807 
1808 	for (int c = 0; c < rvd->vdev_children; c++) {
1809 		vdev_t *tvd = rvd->vdev_child[c];
1810 		metaslab_group_t *mg = tvd->vdev_mg;
1811 
1812 		if (tvd->vdev_islog)
1813 			metaslab_group_activate(mg);
1814 	}
1815 }
1816 
1817 int
1818 spa_offline_log(spa_t *spa)
1819 {
1820 	int error;
1821 
1822 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1823 	    NULL, DS_FIND_CHILDREN);
1824 	if (error == 0) {
1825 		/*
1826 		 * We successfully offlined the log device, sync out the
1827 		 * current txg so that the "stubby" block can be removed
1828 		 * by zil_sync().
1829 		 */
1830 		txg_wait_synced(spa->spa_dsl_pool, 0);
1831 	}
1832 	return (error);
1833 }
1834 
1835 static void
1836 spa_aux_check_removed(spa_aux_vdev_t *sav)
1837 {
1838 	for (int i = 0; i < sav->sav_count; i++)
1839 		spa_check_removed(sav->sav_vdevs[i]);
1840 }
1841 
1842 void
1843 spa_claim_notify(zio_t *zio)
1844 {
1845 	spa_t *spa = zio->io_spa;
1846 
1847 	if (zio->io_error)
1848 		return;
1849 
1850 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1851 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1852 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1853 	mutex_exit(&spa->spa_props_lock);
1854 }
1855 
1856 typedef struct spa_load_error {
1857 	uint64_t	sle_meta_count;
1858 	uint64_t	sle_data_count;
1859 } spa_load_error_t;
1860 
1861 static void
1862 spa_load_verify_done(zio_t *zio)
1863 {
1864 	blkptr_t *bp = zio->io_bp;
1865 	spa_load_error_t *sle = zio->io_private;
1866 	dmu_object_type_t type = BP_GET_TYPE(bp);
1867 	int error = zio->io_error;
1868 	spa_t *spa = zio->io_spa;
1869 
1870 	if (error) {
1871 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1872 		    type != DMU_OT_INTENT_LOG)
1873 			atomic_inc_64(&sle->sle_meta_count);
1874 		else
1875 			atomic_inc_64(&sle->sle_data_count);
1876 	}
1877 	zio_data_buf_free(zio->io_data, zio->io_size);
1878 
1879 	mutex_enter(&spa->spa_scrub_lock);
1880 	spa->spa_scrub_inflight--;
1881 	cv_broadcast(&spa->spa_scrub_io_cv);
1882 	mutex_exit(&spa->spa_scrub_lock);
1883 }
1884 
1885 /*
1886  * Maximum number of concurrent scrub i/os to create while verifying
1887  * a pool while importing it.
1888  */
1889 int spa_load_verify_maxinflight = 10000;
1890 boolean_t spa_load_verify_metadata = B_TRUE;
1891 boolean_t spa_load_verify_data = B_TRUE;
1892 
1893 /*ARGSUSED*/
1894 static int
1895 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1896     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1897 {
1898 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1899 		return (0);
1900 	/*
1901 	 * Note: normally this routine will not be called if
1902 	 * spa_load_verify_metadata is not set.  However, it may be useful
1903 	 * to manually set the flag after the traversal has begun.
1904 	 */
1905 	if (!spa_load_verify_metadata)
1906 		return (0);
1907 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1908 		return (0);
1909 
1910 	zio_t *rio = arg;
1911 	size_t size = BP_GET_PSIZE(bp);
1912 	void *data = zio_data_buf_alloc(size);
1913 
1914 	mutex_enter(&spa->spa_scrub_lock);
1915 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1916 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1917 	spa->spa_scrub_inflight++;
1918 	mutex_exit(&spa->spa_scrub_lock);
1919 
1920 	zio_nowait(zio_read(rio, spa, bp, data, size,
1921 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1922 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1923 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1924 	return (0);
1925 }
1926 
1927 /* ARGSUSED */
1928 int
1929 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1930 {
1931 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1932 		return (SET_ERROR(ENAMETOOLONG));
1933 
1934 	return (0);
1935 }
1936 
1937 static int
1938 spa_load_verify(spa_t *spa)
1939 {
1940 	zio_t *rio;
1941 	spa_load_error_t sle = { 0 };
1942 	zpool_rewind_policy_t policy;
1943 	boolean_t verify_ok = B_FALSE;
1944 	int error = 0;
1945 
1946 	zpool_get_rewind_policy(spa->spa_config, &policy);
1947 
1948 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1949 		return (0);
1950 
1951 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1952 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
1953 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1954 	    DS_FIND_CHILDREN);
1955 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1956 	if (error != 0)
1957 		return (error);
1958 
1959 	rio = zio_root(spa, NULL, &sle,
1960 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1961 
1962 	if (spa_load_verify_metadata) {
1963 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1964 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1965 		    spa_load_verify_cb, rio);
1966 	}
1967 
1968 	(void) zio_wait(rio);
1969 
1970 	spa->spa_load_meta_errors = sle.sle_meta_count;
1971 	spa->spa_load_data_errors = sle.sle_data_count;
1972 
1973 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1974 	    sle.sle_data_count <= policy.zrp_maxdata) {
1975 		int64_t loss = 0;
1976 
1977 		verify_ok = B_TRUE;
1978 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1979 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1980 
1981 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1982 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1983 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1984 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1985 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1986 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1987 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1988 	} else {
1989 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1990 	}
1991 
1992 	if (error) {
1993 		if (error != ENXIO && error != EIO)
1994 			error = SET_ERROR(EIO);
1995 		return (error);
1996 	}
1997 
1998 	return (verify_ok ? 0 : EIO);
1999 }
2000 
2001 /*
2002  * Find a value in the pool props object.
2003  */
2004 static void
2005 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2006 {
2007 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2008 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2009 }
2010 
2011 /*
2012  * Find a value in the pool directory object.
2013  */
2014 static int
2015 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2016 {
2017 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2018 	    name, sizeof (uint64_t), 1, val));
2019 }
2020 
2021 static int
2022 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2023 {
2024 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2025 	return (err);
2026 }
2027 
2028 /*
2029  * Fix up config after a partly-completed split.  This is done with the
2030  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2031  * pool have that entry in their config, but only the splitting one contains
2032  * a list of all the guids of the vdevs that are being split off.
2033  *
2034  * This function determines what to do with that list: either rejoin
2035  * all the disks to the pool, or complete the splitting process.  To attempt
2036  * the rejoin, each disk that is offlined is marked online again, and
2037  * we do a reopen() call.  If the vdev label for every disk that was
2038  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2039  * then we call vdev_split() on each disk, and complete the split.
2040  *
2041  * Otherwise we leave the config alone, with all the vdevs in place in
2042  * the original pool.
2043  */
2044 static void
2045 spa_try_repair(spa_t *spa, nvlist_t *config)
2046 {
2047 	uint_t extracted;
2048 	uint64_t *glist;
2049 	uint_t i, gcount;
2050 	nvlist_t *nvl;
2051 	vdev_t **vd;
2052 	boolean_t attempt_reopen;
2053 
2054 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2055 		return;
2056 
2057 	/* check that the config is complete */
2058 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2059 	    &glist, &gcount) != 0)
2060 		return;
2061 
2062 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2063 
2064 	/* attempt to online all the vdevs & validate */
2065 	attempt_reopen = B_TRUE;
2066 	for (i = 0; i < gcount; i++) {
2067 		if (glist[i] == 0)	/* vdev is hole */
2068 			continue;
2069 
2070 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2071 		if (vd[i] == NULL) {
2072 			/*
2073 			 * Don't bother attempting to reopen the disks;
2074 			 * just do the split.
2075 			 */
2076 			attempt_reopen = B_FALSE;
2077 		} else {
2078 			/* attempt to re-online it */
2079 			vd[i]->vdev_offline = B_FALSE;
2080 		}
2081 	}
2082 
2083 	if (attempt_reopen) {
2084 		vdev_reopen(spa->spa_root_vdev);
2085 
2086 		/* check each device to see what state it's in */
2087 		for (extracted = 0, i = 0; i < gcount; i++) {
2088 			if (vd[i] != NULL &&
2089 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2090 				break;
2091 			++extracted;
2092 		}
2093 	}
2094 
2095 	/*
2096 	 * If every disk has been moved to the new pool, or if we never
2097 	 * even attempted to look at them, then we split them off for
2098 	 * good.
2099 	 */
2100 	if (!attempt_reopen || gcount == extracted) {
2101 		for (i = 0; i < gcount; i++)
2102 			if (vd[i] != NULL)
2103 				vdev_split(vd[i]);
2104 		vdev_reopen(spa->spa_root_vdev);
2105 	}
2106 
2107 	kmem_free(vd, gcount * sizeof (vdev_t *));
2108 }
2109 
2110 static int
2111 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2112     boolean_t mosconfig)
2113 {
2114 	nvlist_t *config = spa->spa_config;
2115 	char *ereport = FM_EREPORT_ZFS_POOL;
2116 	char *comment;
2117 	int error;
2118 	uint64_t pool_guid;
2119 	nvlist_t *nvl;
2120 
2121 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2122 		return (SET_ERROR(EINVAL));
2123 
2124 	ASSERT(spa->spa_comment == NULL);
2125 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2126 		spa->spa_comment = spa_strdup(comment);
2127 
2128 	/*
2129 	 * Versioning wasn't explicitly added to the label until later, so if
2130 	 * it's not present treat it as the initial version.
2131 	 */
2132 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2133 	    &spa->spa_ubsync.ub_version) != 0)
2134 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2135 
2136 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2137 	    &spa->spa_config_txg);
2138 
2139 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2140 	    spa_guid_exists(pool_guid, 0)) {
2141 		error = SET_ERROR(EEXIST);
2142 	} else {
2143 		spa->spa_config_guid = pool_guid;
2144 
2145 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2146 		    &nvl) == 0) {
2147 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2148 			    KM_SLEEP) == 0);
2149 		}
2150 
2151 		nvlist_free(spa->spa_load_info);
2152 		spa->spa_load_info = fnvlist_alloc();
2153 
2154 		gethrestime(&spa->spa_loaded_ts);
2155 		error = spa_load_impl(spa, pool_guid, config, state, type,
2156 		    mosconfig, &ereport);
2157 	}
2158 
2159 	/*
2160 	 * Don't count references from objsets that are already closed
2161 	 * and are making their way through the eviction process.
2162 	 */
2163 	spa_evicting_os_wait(spa);
2164 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2165 	if (error) {
2166 		if (error != EEXIST) {
2167 			spa->spa_loaded_ts.tv_sec = 0;
2168 			spa->spa_loaded_ts.tv_nsec = 0;
2169 		}
2170 		if (error != EBADF) {
2171 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2172 		}
2173 	}
2174 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2175 	spa->spa_ena = 0;
2176 
2177 	return (error);
2178 }
2179 
2180 /*
2181  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2182  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2183  * spa's per-vdev ZAP list.
2184  */
2185 static uint64_t
2186 vdev_count_verify_zaps(vdev_t *vd)
2187 {
2188 	spa_t *spa = vd->vdev_spa;
2189 	uint64_t total = 0;
2190 	if (vd->vdev_top_zap != 0) {
2191 		total++;
2192 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2193 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2194 	}
2195 	if (vd->vdev_leaf_zap != 0) {
2196 		total++;
2197 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2198 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2199 	}
2200 
2201 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2202 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2203 	}
2204 
2205 	return (total);
2206 }
2207 
2208 /*
2209  * Load an existing storage pool, using the pool's builtin spa_config as a
2210  * source of configuration information.
2211  */
2212 static int
2213 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2214     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2215     char **ereport)
2216 {
2217 	int error = 0;
2218 	nvlist_t *nvroot = NULL;
2219 	nvlist_t *label;
2220 	vdev_t *rvd;
2221 	uberblock_t *ub = &spa->spa_uberblock;
2222 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2223 	int orig_mode = spa->spa_mode;
2224 	int parse;
2225 	uint64_t obj;
2226 	boolean_t missing_feat_write = B_FALSE;
2227 
2228 	/*
2229 	 * If this is an untrusted config, access the pool in read-only mode.
2230 	 * This prevents things like resilvering recently removed devices.
2231 	 */
2232 	if (!mosconfig)
2233 		spa->spa_mode = FREAD;
2234 
2235 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2236 
2237 	spa->spa_load_state = state;
2238 
2239 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2240 		return (SET_ERROR(EINVAL));
2241 
2242 	parse = (type == SPA_IMPORT_EXISTING ?
2243 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2244 
2245 	/*
2246 	 * Create "The Godfather" zio to hold all async IOs
2247 	 */
2248 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2249 	    KM_SLEEP);
2250 	for (int i = 0; i < max_ncpus; i++) {
2251 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2252 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2253 		    ZIO_FLAG_GODFATHER);
2254 	}
2255 
2256 	/*
2257 	 * Parse the configuration into a vdev tree.  We explicitly set the
2258 	 * value that will be returned by spa_version() since parsing the
2259 	 * configuration requires knowing the version number.
2260 	 */
2261 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2262 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2263 	spa_config_exit(spa, SCL_ALL, FTAG);
2264 
2265 	if (error != 0)
2266 		return (error);
2267 
2268 	ASSERT(spa->spa_root_vdev == rvd);
2269 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2270 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2271 
2272 	if (type != SPA_IMPORT_ASSEMBLE) {
2273 		ASSERT(spa_guid(spa) == pool_guid);
2274 	}
2275 
2276 	/*
2277 	 * Try to open all vdevs, loading each label in the process.
2278 	 */
2279 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2280 	error = vdev_open(rvd);
2281 	spa_config_exit(spa, SCL_ALL, FTAG);
2282 	if (error != 0)
2283 		return (error);
2284 
2285 	/*
2286 	 * We need to validate the vdev labels against the configuration that
2287 	 * we have in hand, which is dependent on the setting of mosconfig. If
2288 	 * mosconfig is true then we're validating the vdev labels based on
2289 	 * that config.  Otherwise, we're validating against the cached config
2290 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2291 	 * later we will recursively call spa_load() and validate against
2292 	 * the vdev config.
2293 	 *
2294 	 * If we're assembling a new pool that's been split off from an
2295 	 * existing pool, the labels haven't yet been updated so we skip
2296 	 * validation for now.
2297 	 */
2298 	if (type != SPA_IMPORT_ASSEMBLE) {
2299 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2300 		error = vdev_validate(rvd, mosconfig);
2301 		spa_config_exit(spa, SCL_ALL, FTAG);
2302 
2303 		if (error != 0)
2304 			return (error);
2305 
2306 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2307 			return (SET_ERROR(ENXIO));
2308 	}
2309 
2310 	/*
2311 	 * Find the best uberblock.
2312 	 */
2313 	vdev_uberblock_load(rvd, ub, &label);
2314 
2315 	/*
2316 	 * If we weren't able to find a single valid uberblock, return failure.
2317 	 */
2318 	if (ub->ub_txg == 0) {
2319 		nvlist_free(label);
2320 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2321 	}
2322 
2323 	/*
2324 	 * If the pool has an unsupported version we can't open it.
2325 	 */
2326 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2327 		nvlist_free(label);
2328 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2329 	}
2330 
2331 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2332 		nvlist_t *features;
2333 
2334 		/*
2335 		 * If we weren't able to find what's necessary for reading the
2336 		 * MOS in the label, return failure.
2337 		 */
2338 		if (label == NULL || nvlist_lookup_nvlist(label,
2339 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2340 			nvlist_free(label);
2341 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2342 			    ENXIO));
2343 		}
2344 
2345 		/*
2346 		 * Update our in-core representation with the definitive values
2347 		 * from the label.
2348 		 */
2349 		nvlist_free(spa->spa_label_features);
2350 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2351 	}
2352 
2353 	nvlist_free(label);
2354 
2355 	/*
2356 	 * Look through entries in the label nvlist's features_for_read. If
2357 	 * there is a feature listed there which we don't understand then we
2358 	 * cannot open a pool.
2359 	 */
2360 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2361 		nvlist_t *unsup_feat;
2362 
2363 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2364 		    0);
2365 
2366 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2367 		    NULL); nvp != NULL;
2368 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2369 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2370 				VERIFY(nvlist_add_string(unsup_feat,
2371 				    nvpair_name(nvp), "") == 0);
2372 			}
2373 		}
2374 
2375 		if (!nvlist_empty(unsup_feat)) {
2376 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2377 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2378 			nvlist_free(unsup_feat);
2379 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2380 			    ENOTSUP));
2381 		}
2382 
2383 		nvlist_free(unsup_feat);
2384 	}
2385 
2386 	/*
2387 	 * If the vdev guid sum doesn't match the uberblock, we have an
2388 	 * incomplete configuration.  We first check to see if the pool
2389 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2390 	 * If it is, defer the vdev_guid_sum check till later so we
2391 	 * can handle missing vdevs.
2392 	 */
2393 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2394 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2395 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2396 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2397 
2398 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2399 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2400 		spa_try_repair(spa, config);
2401 		spa_config_exit(spa, SCL_ALL, FTAG);
2402 		nvlist_free(spa->spa_config_splitting);
2403 		spa->spa_config_splitting = NULL;
2404 	}
2405 
2406 	/*
2407 	 * Initialize internal SPA structures.
2408 	 */
2409 	spa->spa_state = POOL_STATE_ACTIVE;
2410 	spa->spa_ubsync = spa->spa_uberblock;
2411 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2412 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2413 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2414 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2415 	spa->spa_claim_max_txg = spa->spa_first_txg;
2416 	spa->spa_prev_software_version = ub->ub_software_version;
2417 
2418 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2419 	if (error)
2420 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2422 
2423 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2424 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2425 
2426 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2427 		boolean_t missing_feat_read = B_FALSE;
2428 		nvlist_t *unsup_feat, *enabled_feat;
2429 
2430 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2431 		    &spa->spa_feat_for_read_obj) != 0) {
2432 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2433 		}
2434 
2435 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2436 		    &spa->spa_feat_for_write_obj) != 0) {
2437 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2438 		}
2439 
2440 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2441 		    &spa->spa_feat_desc_obj) != 0) {
2442 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443 		}
2444 
2445 		enabled_feat = fnvlist_alloc();
2446 		unsup_feat = fnvlist_alloc();
2447 
2448 		if (!spa_features_check(spa, B_FALSE,
2449 		    unsup_feat, enabled_feat))
2450 			missing_feat_read = B_TRUE;
2451 
2452 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2453 			if (!spa_features_check(spa, B_TRUE,
2454 			    unsup_feat, enabled_feat)) {
2455 				missing_feat_write = B_TRUE;
2456 			}
2457 		}
2458 
2459 		fnvlist_add_nvlist(spa->spa_load_info,
2460 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2461 
2462 		if (!nvlist_empty(unsup_feat)) {
2463 			fnvlist_add_nvlist(spa->spa_load_info,
2464 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2465 		}
2466 
2467 		fnvlist_free(enabled_feat);
2468 		fnvlist_free(unsup_feat);
2469 
2470 		if (!missing_feat_read) {
2471 			fnvlist_add_boolean(spa->spa_load_info,
2472 			    ZPOOL_CONFIG_CAN_RDONLY);
2473 		}
2474 
2475 		/*
2476 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2477 		 * twofold: to determine whether the pool is available for
2478 		 * import in read-write mode and (if it is not) whether the
2479 		 * pool is available for import in read-only mode. If the pool
2480 		 * is available for import in read-write mode, it is displayed
2481 		 * as available in userland; if it is not available for import
2482 		 * in read-only mode, it is displayed as unavailable in
2483 		 * userland. If the pool is available for import in read-only
2484 		 * mode but not read-write mode, it is displayed as unavailable
2485 		 * in userland with a special note that the pool is actually
2486 		 * available for open in read-only mode.
2487 		 *
2488 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2489 		 * missing a feature for write, we must first determine whether
2490 		 * the pool can be opened read-only before returning to
2491 		 * userland in order to know whether to display the
2492 		 * abovementioned note.
2493 		 */
2494 		if (missing_feat_read || (missing_feat_write &&
2495 		    spa_writeable(spa))) {
2496 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2497 			    ENOTSUP));
2498 		}
2499 
2500 		/*
2501 		 * Load refcounts for ZFS features from disk into an in-memory
2502 		 * cache during SPA initialization.
2503 		 */
2504 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2505 			uint64_t refcount;
2506 
2507 			error = feature_get_refcount_from_disk(spa,
2508 			    &spa_feature_table[i], &refcount);
2509 			if (error == 0) {
2510 				spa->spa_feat_refcount_cache[i] = refcount;
2511 			} else if (error == ENOTSUP) {
2512 				spa->spa_feat_refcount_cache[i] =
2513 				    SPA_FEATURE_DISABLED;
2514 			} else {
2515 				return (spa_vdev_err(rvd,
2516 				    VDEV_AUX_CORRUPT_DATA, EIO));
2517 			}
2518 		}
2519 	}
2520 
2521 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2522 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2523 		    &spa->spa_feat_enabled_txg_obj) != 0)
2524 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2525 	}
2526 
2527 	spa->spa_is_initializing = B_TRUE;
2528 	error = dsl_pool_open(spa->spa_dsl_pool);
2529 	spa->spa_is_initializing = B_FALSE;
2530 	if (error != 0)
2531 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2532 
2533 	if (!mosconfig) {
2534 		uint64_t hostid;
2535 		nvlist_t *policy = NULL, *nvconfig;
2536 
2537 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2538 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2539 
2540 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2541 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2542 			char *hostname;
2543 			unsigned long myhostid = 0;
2544 
2545 			VERIFY(nvlist_lookup_string(nvconfig,
2546 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2547 
2548 #ifdef	_KERNEL
2549 			myhostid = zone_get_hostid(NULL);
2550 #else	/* _KERNEL */
2551 			/*
2552 			 * We're emulating the system's hostid in userland, so
2553 			 * we can't use zone_get_hostid().
2554 			 */
2555 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2556 #endif	/* _KERNEL */
2557 			if (hostid != 0 && myhostid != 0 &&
2558 			    hostid != myhostid) {
2559 				nvlist_free(nvconfig);
2560 				cmn_err(CE_WARN, "pool '%s' could not be "
2561 				    "loaded as it was last accessed by "
2562 				    "another system (host: %s hostid: 0x%lx). "
2563 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2564 				    spa_name(spa), hostname,
2565 				    (unsigned long)hostid);
2566 				return (SET_ERROR(EBADF));
2567 			}
2568 		}
2569 		if (nvlist_lookup_nvlist(spa->spa_config,
2570 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2571 			VERIFY(nvlist_add_nvlist(nvconfig,
2572 			    ZPOOL_REWIND_POLICY, policy) == 0);
2573 
2574 		spa_config_set(spa, nvconfig);
2575 		spa_unload(spa);
2576 		spa_deactivate(spa);
2577 		spa_activate(spa, orig_mode);
2578 
2579 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2580 	}
2581 
2582 	/* Grab the secret checksum salt from the MOS. */
2583 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2584 	    DMU_POOL_CHECKSUM_SALT, 1,
2585 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2586 	    spa->spa_cksum_salt.zcs_bytes);
2587 	if (error == ENOENT) {
2588 		/* Generate a new salt for subsequent use */
2589 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2590 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2591 	} else if (error != 0) {
2592 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2593 	}
2594 
2595 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2596 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2598 	if (error != 0)
2599 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2600 
2601 	/*
2602 	 * Load the bit that tells us to use the new accounting function
2603 	 * (raid-z deflation).  If we have an older pool, this will not
2604 	 * be present.
2605 	 */
2606 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2607 	if (error != 0 && error != ENOENT)
2608 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2609 
2610 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2611 	    &spa->spa_creation_version);
2612 	if (error != 0 && error != ENOENT)
2613 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2614 
2615 	/*
2616 	 * Load the persistent error log.  If we have an older pool, this will
2617 	 * not be present.
2618 	 */
2619 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2620 	if (error != 0 && error != ENOENT)
2621 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2622 
2623 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2624 	    &spa->spa_errlog_scrub);
2625 	if (error != 0 && error != ENOENT)
2626 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2627 
2628 	/*
2629 	 * Load the history object.  If we have an older pool, this
2630 	 * will not be present.
2631 	 */
2632 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2633 	if (error != 0 && error != ENOENT)
2634 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2635 
2636 	/*
2637 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2638 	 * be present; in this case, defer its creation to a later time to
2639 	 * avoid dirtying the MOS this early / out of sync context. See
2640 	 * spa_sync_config_object.
2641 	 */
2642 
2643 	/* The sentinel is only available in the MOS config. */
2644 	nvlist_t *mos_config;
2645 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2646 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2647 
2648 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2649 	    &spa->spa_all_vdev_zaps);
2650 
2651 	if (error != ENOENT && error != 0) {
2652 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2653 	} else if (error == 0 && !nvlist_exists(mos_config,
2654 	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2655 		/*
2656 		 * An older version of ZFS overwrote the sentinel value, so
2657 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2658 		 * destruction to later; see spa_sync_config_object.
2659 		 */
2660 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2661 		/*
2662 		 * We're assuming that no vdevs have had their ZAPs created
2663 		 * before this. Better be sure of it.
2664 		 */
2665 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2666 	}
2667 	nvlist_free(mos_config);
2668 
2669 	/*
2670 	 * If we're assembling the pool from the split-off vdevs of
2671 	 * an existing pool, we don't want to attach the spares & cache
2672 	 * devices.
2673 	 */
2674 
2675 	/*
2676 	 * Load any hot spares for this pool.
2677 	 */
2678 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2679 	if (error != 0 && error != ENOENT)
2680 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2681 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2682 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2683 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2684 		    &spa->spa_spares.sav_config) != 0)
2685 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2686 
2687 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2688 		spa_load_spares(spa);
2689 		spa_config_exit(spa, SCL_ALL, FTAG);
2690 	} else if (error == 0) {
2691 		spa->spa_spares.sav_sync = B_TRUE;
2692 	}
2693 
2694 	/*
2695 	 * Load any level 2 ARC devices for this pool.
2696 	 */
2697 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2698 	    &spa->spa_l2cache.sav_object);
2699 	if (error != 0 && error != ENOENT)
2700 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2701 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2702 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2703 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2704 		    &spa->spa_l2cache.sav_config) != 0)
2705 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2706 
2707 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2708 		spa_load_l2cache(spa);
2709 		spa_config_exit(spa, SCL_ALL, FTAG);
2710 	} else if (error == 0) {
2711 		spa->spa_l2cache.sav_sync = B_TRUE;
2712 	}
2713 
2714 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2715 
2716 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2717 	if (error && error != ENOENT)
2718 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2719 
2720 	if (error == 0) {
2721 		uint64_t autoreplace;
2722 
2723 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2724 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2725 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2726 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2727 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2728 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2729 		    &spa->spa_dedup_ditto);
2730 
2731 		spa->spa_autoreplace = (autoreplace != 0);
2732 	}
2733 
2734 	/*
2735 	 * If the 'autoreplace' property is set, then post a resource notifying
2736 	 * the ZFS DE that it should not issue any faults for unopenable
2737 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2738 	 * unopenable vdevs so that the normal autoreplace handler can take
2739 	 * over.
2740 	 */
2741 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2742 		spa_check_removed(spa->spa_root_vdev);
2743 		/*
2744 		 * For the import case, this is done in spa_import(), because
2745 		 * at this point we're using the spare definitions from
2746 		 * the MOS config, not necessarily from the userland config.
2747 		 */
2748 		if (state != SPA_LOAD_IMPORT) {
2749 			spa_aux_check_removed(&spa->spa_spares);
2750 			spa_aux_check_removed(&spa->spa_l2cache);
2751 		}
2752 	}
2753 
2754 	/*
2755 	 * Load the vdev state for all toplevel vdevs.
2756 	 */
2757 	vdev_load(rvd);
2758 
2759 	/*
2760 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2761 	 */
2762 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2763 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2764 	spa_config_exit(spa, SCL_ALL, FTAG);
2765 
2766 	/*
2767 	 * Load the DDTs (dedup tables).
2768 	 */
2769 	error = ddt_load(spa);
2770 	if (error != 0)
2771 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2772 
2773 	spa_update_dspace(spa);
2774 
2775 	/*
2776 	 * Validate the config, using the MOS config to fill in any
2777 	 * information which might be missing.  If we fail to validate
2778 	 * the config then declare the pool unfit for use. If we're
2779 	 * assembling a pool from a split, the log is not transferred
2780 	 * over.
2781 	 */
2782 	if (type != SPA_IMPORT_ASSEMBLE) {
2783 		nvlist_t *nvconfig;
2784 
2785 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2786 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2787 
2788 		if (!spa_config_valid(spa, nvconfig)) {
2789 			nvlist_free(nvconfig);
2790 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2791 			    ENXIO));
2792 		}
2793 		nvlist_free(nvconfig);
2794 
2795 		/*
2796 		 * Now that we've validated the config, check the state of the
2797 		 * root vdev.  If it can't be opened, it indicates one or
2798 		 * more toplevel vdevs are faulted.
2799 		 */
2800 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2801 			return (SET_ERROR(ENXIO));
2802 
2803 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2804 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2805 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2806 		}
2807 	}
2808 
2809 	if (missing_feat_write) {
2810 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2811 
2812 		/*
2813 		 * At this point, we know that we can open the pool in
2814 		 * read-only mode but not read-write mode. We now have enough
2815 		 * information and can return to userland.
2816 		 */
2817 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2818 	}
2819 
2820 	/*
2821 	 * We've successfully opened the pool, verify that we're ready
2822 	 * to start pushing transactions.
2823 	 */
2824 	if (state != SPA_LOAD_TRYIMPORT) {
2825 		if (error = spa_load_verify(spa))
2826 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2827 			    error));
2828 	}
2829 
2830 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2831 	    spa->spa_load_max_txg == UINT64_MAX)) {
2832 		dmu_tx_t *tx;
2833 		int need_update = B_FALSE;
2834 		dsl_pool_t *dp = spa_get_dsl(spa);
2835 
2836 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2837 
2838 		/*
2839 		 * Claim log blocks that haven't been committed yet.
2840 		 * This must all happen in a single txg.
2841 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2842 		 * invoked from zil_claim_log_block()'s i/o done callback.
2843 		 * Price of rollback is that we abandon the log.
2844 		 */
2845 		spa->spa_claiming = B_TRUE;
2846 
2847 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2848 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2849 		    zil_claim, tx, DS_FIND_CHILDREN);
2850 		dmu_tx_commit(tx);
2851 
2852 		spa->spa_claiming = B_FALSE;
2853 
2854 		spa_set_log_state(spa, SPA_LOG_GOOD);
2855 		spa->spa_sync_on = B_TRUE;
2856 		txg_sync_start(spa->spa_dsl_pool);
2857 
2858 		/*
2859 		 * Wait for all claims to sync.  We sync up to the highest
2860 		 * claimed log block birth time so that claimed log blocks
2861 		 * don't appear to be from the future.  spa_claim_max_txg
2862 		 * will have been set for us by either zil_check_log_chain()
2863 		 * (invoked from spa_check_logs()) or zil_claim() above.
2864 		 */
2865 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2866 
2867 		/*
2868 		 * If the config cache is stale, or we have uninitialized
2869 		 * metaslabs (see spa_vdev_add()), then update the config.
2870 		 *
2871 		 * If this is a verbatim import, trust the current
2872 		 * in-core spa_config and update the disk labels.
2873 		 */
2874 		if (config_cache_txg != spa->spa_config_txg ||
2875 		    state == SPA_LOAD_IMPORT ||
2876 		    state == SPA_LOAD_RECOVER ||
2877 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2878 			need_update = B_TRUE;
2879 
2880 		for (int c = 0; c < rvd->vdev_children; c++)
2881 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2882 				need_update = B_TRUE;
2883 
2884 		/*
2885 		 * Update the config cache asychronously in case we're the
2886 		 * root pool, in which case the config cache isn't writable yet.
2887 		 */
2888 		if (need_update)
2889 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2890 
2891 		/*
2892 		 * Check all DTLs to see if anything needs resilvering.
2893 		 */
2894 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2895 		    vdev_resilver_needed(rvd, NULL, NULL))
2896 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2897 
2898 		/*
2899 		 * Log the fact that we booted up (so that we can detect if
2900 		 * we rebooted in the middle of an operation).
2901 		 */
2902 		spa_history_log_version(spa, "open");
2903 
2904 		/*
2905 		 * Delete any inconsistent datasets.
2906 		 */
2907 		(void) dmu_objset_find(spa_name(spa),
2908 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2909 
2910 		/*
2911 		 * Clean up any stale temporary dataset userrefs.
2912 		 */
2913 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2914 	}
2915 
2916 	return (0);
2917 }
2918 
2919 static int
2920 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2921 {
2922 	int mode = spa->spa_mode;
2923 
2924 	spa_unload(spa);
2925 	spa_deactivate(spa);
2926 
2927 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2928 
2929 	spa_activate(spa, mode);
2930 	spa_async_suspend(spa);
2931 
2932 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2933 }
2934 
2935 /*
2936  * If spa_load() fails this function will try loading prior txg's. If
2937  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2938  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2939  * function will not rewind the pool and will return the same error as
2940  * spa_load().
2941  */
2942 static int
2943 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2944     uint64_t max_request, int rewind_flags)
2945 {
2946 	nvlist_t *loadinfo = NULL;
2947 	nvlist_t *config = NULL;
2948 	int load_error, rewind_error;
2949 	uint64_t safe_rewind_txg;
2950 	uint64_t min_txg;
2951 
2952 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2953 		spa->spa_load_max_txg = spa->spa_load_txg;
2954 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2955 	} else {
2956 		spa->spa_load_max_txg = max_request;
2957 		if (max_request != UINT64_MAX)
2958 			spa->spa_extreme_rewind = B_TRUE;
2959 	}
2960 
2961 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2962 	    mosconfig);
2963 	if (load_error == 0)
2964 		return (0);
2965 
2966 	if (spa->spa_root_vdev != NULL)
2967 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2968 
2969 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2970 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2971 
2972 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2973 		nvlist_free(config);
2974 		return (load_error);
2975 	}
2976 
2977 	if (state == SPA_LOAD_RECOVER) {
2978 		/* Price of rolling back is discarding txgs, including log */
2979 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2980 	} else {
2981 		/*
2982 		 * If we aren't rolling back save the load info from our first
2983 		 * import attempt so that we can restore it after attempting
2984 		 * to rewind.
2985 		 */
2986 		loadinfo = spa->spa_load_info;
2987 		spa->spa_load_info = fnvlist_alloc();
2988 	}
2989 
2990 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2991 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2992 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2993 	    TXG_INITIAL : safe_rewind_txg;
2994 
2995 	/*
2996 	 * Continue as long as we're finding errors, we're still within
2997 	 * the acceptable rewind range, and we're still finding uberblocks
2998 	 */
2999 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3000 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3001 		if (spa->spa_load_max_txg < safe_rewind_txg)
3002 			spa->spa_extreme_rewind = B_TRUE;
3003 		rewind_error = spa_load_retry(spa, state, mosconfig);
3004 	}
3005 
3006 	spa->spa_extreme_rewind = B_FALSE;
3007 	spa->spa_load_max_txg = UINT64_MAX;
3008 
3009 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3010 		spa_config_set(spa, config);
3011 
3012 	if (state == SPA_LOAD_RECOVER) {
3013 		ASSERT3P(loadinfo, ==, NULL);
3014 		return (rewind_error);
3015 	} else {
3016 		/* Store the rewind info as part of the initial load info */
3017 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3018 		    spa->spa_load_info);
3019 
3020 		/* Restore the initial load info */
3021 		fnvlist_free(spa->spa_load_info);
3022 		spa->spa_load_info = loadinfo;
3023 
3024 		return (load_error);
3025 	}
3026 }
3027 
3028 /*
3029  * Pool Open/Import
3030  *
3031  * The import case is identical to an open except that the configuration is sent
3032  * down from userland, instead of grabbed from the configuration cache.  For the
3033  * case of an open, the pool configuration will exist in the
3034  * POOL_STATE_UNINITIALIZED state.
3035  *
3036  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3037  * the same time open the pool, without having to keep around the spa_t in some
3038  * ambiguous state.
3039  */
3040 static int
3041 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3042     nvlist_t **config)
3043 {
3044 	spa_t *spa;
3045 	spa_load_state_t state = SPA_LOAD_OPEN;
3046 	int error;
3047 	int locked = B_FALSE;
3048 
3049 	*spapp = NULL;
3050 
3051 	/*
3052 	 * As disgusting as this is, we need to support recursive calls to this
3053 	 * function because dsl_dir_open() is called during spa_load(), and ends
3054 	 * up calling spa_open() again.  The real fix is to figure out how to
3055 	 * avoid dsl_dir_open() calling this in the first place.
3056 	 */
3057 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3058 		mutex_enter(&spa_namespace_lock);
3059 		locked = B_TRUE;
3060 	}
3061 
3062 	if ((spa = spa_lookup(pool)) == NULL) {
3063 		if (locked)
3064 			mutex_exit(&spa_namespace_lock);
3065 		return (SET_ERROR(ENOENT));
3066 	}
3067 
3068 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3069 		zpool_rewind_policy_t policy;
3070 
3071 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3072 		    &policy);
3073 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3074 			state = SPA_LOAD_RECOVER;
3075 
3076 		spa_activate(spa, spa_mode_global);
3077 
3078 		if (state != SPA_LOAD_RECOVER)
3079 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3080 
3081 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3082 		    policy.zrp_request);
3083 
3084 		if (error == EBADF) {
3085 			/*
3086 			 * If vdev_validate() returns failure (indicated by
3087 			 * EBADF), it indicates that one of the vdevs indicates
3088 			 * that the pool has been exported or destroyed.  If
3089 			 * this is the case, the config cache is out of sync and
3090 			 * we should remove the pool from the namespace.
3091 			 */
3092 			spa_unload(spa);
3093 			spa_deactivate(spa);
3094 			spa_config_sync(spa, B_TRUE, B_TRUE);
3095 			spa_remove(spa);
3096 			if (locked)
3097 				mutex_exit(&spa_namespace_lock);
3098 			return (SET_ERROR(ENOENT));
3099 		}
3100 
3101 		if (error) {
3102 			/*
3103 			 * We can't open the pool, but we still have useful
3104 			 * information: the state of each vdev after the
3105 			 * attempted vdev_open().  Return this to the user.
3106 			 */
3107 			if (config != NULL && spa->spa_config) {
3108 				VERIFY(nvlist_dup(spa->spa_config, config,
3109 				    KM_SLEEP) == 0);
3110 				VERIFY(nvlist_add_nvlist(*config,
3111 				    ZPOOL_CONFIG_LOAD_INFO,
3112 				    spa->spa_load_info) == 0);
3113 			}
3114 			spa_unload(spa);
3115 			spa_deactivate(spa);
3116 			spa->spa_last_open_failed = error;
3117 			if (locked)
3118 				mutex_exit(&spa_namespace_lock);
3119 			*spapp = NULL;
3120 			return (error);
3121 		}
3122 	}
3123 
3124 	spa_open_ref(spa, tag);
3125 
3126 	if (config != NULL)
3127 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3128 
3129 	/*
3130 	 * If we've recovered the pool, pass back any information we
3131 	 * gathered while doing the load.
3132 	 */
3133 	if (state == SPA_LOAD_RECOVER) {
3134 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3135 		    spa->spa_load_info) == 0);
3136 	}
3137 
3138 	if (locked) {
3139 		spa->spa_last_open_failed = 0;
3140 		spa->spa_last_ubsync_txg = 0;
3141 		spa->spa_load_txg = 0;
3142 		mutex_exit(&spa_namespace_lock);
3143 	}
3144 
3145 	*spapp = spa;
3146 
3147 	return (0);
3148 }
3149 
3150 int
3151 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3152     nvlist_t **config)
3153 {
3154 	return (spa_open_common(name, spapp, tag, policy, config));
3155 }
3156 
3157 int
3158 spa_open(const char *name, spa_t **spapp, void *tag)
3159 {
3160 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3161 }
3162 
3163 /*
3164  * Lookup the given spa_t, incrementing the inject count in the process,
3165  * preventing it from being exported or destroyed.
3166  */
3167 spa_t *
3168 spa_inject_addref(char *name)
3169 {
3170 	spa_t *spa;
3171 
3172 	mutex_enter(&spa_namespace_lock);
3173 	if ((spa = spa_lookup(name)) == NULL) {
3174 		mutex_exit(&spa_namespace_lock);
3175 		return (NULL);
3176 	}
3177 	spa->spa_inject_ref++;
3178 	mutex_exit(&spa_namespace_lock);
3179 
3180 	return (spa);
3181 }
3182 
3183 void
3184 spa_inject_delref(spa_t *spa)
3185 {
3186 	mutex_enter(&spa_namespace_lock);
3187 	spa->spa_inject_ref--;
3188 	mutex_exit(&spa_namespace_lock);
3189 }
3190 
3191 /*
3192  * Add spares device information to the nvlist.
3193  */
3194 static void
3195 spa_add_spares(spa_t *spa, nvlist_t *config)
3196 {
3197 	nvlist_t **spares;
3198 	uint_t i, nspares;
3199 	nvlist_t *nvroot;
3200 	uint64_t guid;
3201 	vdev_stat_t *vs;
3202 	uint_t vsc;
3203 	uint64_t pool;
3204 
3205 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3206 
3207 	if (spa->spa_spares.sav_count == 0)
3208 		return;
3209 
3210 	VERIFY(nvlist_lookup_nvlist(config,
3211 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3212 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3213 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3214 	if (nspares != 0) {
3215 		VERIFY(nvlist_add_nvlist_array(nvroot,
3216 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3217 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3218 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3219 
3220 		/*
3221 		 * Go through and find any spares which have since been
3222 		 * repurposed as an active spare.  If this is the case, update
3223 		 * their status appropriately.
3224 		 */
3225 		for (i = 0; i < nspares; i++) {
3226 			VERIFY(nvlist_lookup_uint64(spares[i],
3227 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3228 			if (spa_spare_exists(guid, &pool, NULL) &&
3229 			    pool != 0ULL) {
3230 				VERIFY(nvlist_lookup_uint64_array(
3231 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3232 				    (uint64_t **)&vs, &vsc) == 0);
3233 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3234 				vs->vs_aux = VDEV_AUX_SPARED;
3235 			}
3236 		}
3237 	}
3238 }
3239 
3240 /*
3241  * Add l2cache device information to the nvlist, including vdev stats.
3242  */
3243 static void
3244 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3245 {
3246 	nvlist_t **l2cache;
3247 	uint_t i, j, nl2cache;
3248 	nvlist_t *nvroot;
3249 	uint64_t guid;
3250 	vdev_t *vd;
3251 	vdev_stat_t *vs;
3252 	uint_t vsc;
3253 
3254 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3255 
3256 	if (spa->spa_l2cache.sav_count == 0)
3257 		return;
3258 
3259 	VERIFY(nvlist_lookup_nvlist(config,
3260 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3261 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3262 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3263 	if (nl2cache != 0) {
3264 		VERIFY(nvlist_add_nvlist_array(nvroot,
3265 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3266 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3267 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3268 
3269 		/*
3270 		 * Update level 2 cache device stats.
3271 		 */
3272 
3273 		for (i = 0; i < nl2cache; i++) {
3274 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3275 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3276 
3277 			vd = NULL;
3278 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3279 				if (guid ==
3280 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3281 					vd = spa->spa_l2cache.sav_vdevs[j];
3282 					break;
3283 				}
3284 			}
3285 			ASSERT(vd != NULL);
3286 
3287 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3288 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3289 			    == 0);
3290 			vdev_get_stats(vd, vs);
3291 		}
3292 	}
3293 }
3294 
3295 static void
3296 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3297 {
3298 	nvlist_t *features;
3299 	zap_cursor_t zc;
3300 	zap_attribute_t za;
3301 
3302 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3303 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3304 
3305 	if (spa->spa_feat_for_read_obj != 0) {
3306 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3307 		    spa->spa_feat_for_read_obj);
3308 		    zap_cursor_retrieve(&zc, &za) == 0;
3309 		    zap_cursor_advance(&zc)) {
3310 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3311 			    za.za_num_integers == 1);
3312 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3313 			    za.za_first_integer));
3314 		}
3315 		zap_cursor_fini(&zc);
3316 	}
3317 
3318 	if (spa->spa_feat_for_write_obj != 0) {
3319 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3320 		    spa->spa_feat_for_write_obj);
3321 		    zap_cursor_retrieve(&zc, &za) == 0;
3322 		    zap_cursor_advance(&zc)) {
3323 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3324 			    za.za_num_integers == 1);
3325 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3326 			    za.za_first_integer));
3327 		}
3328 		zap_cursor_fini(&zc);
3329 	}
3330 
3331 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3332 	    features) == 0);
3333 	nvlist_free(features);
3334 }
3335 
3336 int
3337 spa_get_stats(const char *name, nvlist_t **config,
3338     char *altroot, size_t buflen)
3339 {
3340 	int error;
3341 	spa_t *spa;
3342 
3343 	*config = NULL;
3344 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3345 
3346 	if (spa != NULL) {
3347 		/*
3348 		 * This still leaves a window of inconsistency where the spares
3349 		 * or l2cache devices could change and the config would be
3350 		 * self-inconsistent.
3351 		 */
3352 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3353 
3354 		if (*config != NULL) {
3355 			uint64_t loadtimes[2];
3356 
3357 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3358 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3359 			VERIFY(nvlist_add_uint64_array(*config,
3360 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3361 
3362 			VERIFY(nvlist_add_uint64(*config,
3363 			    ZPOOL_CONFIG_ERRCOUNT,
3364 			    spa_get_errlog_size(spa)) == 0);
3365 
3366 			if (spa_suspended(spa))
3367 				VERIFY(nvlist_add_uint64(*config,
3368 				    ZPOOL_CONFIG_SUSPENDED,
3369 				    spa->spa_failmode) == 0);
3370 
3371 			spa_add_spares(spa, *config);
3372 			spa_add_l2cache(spa, *config);
3373 			spa_add_feature_stats(spa, *config);
3374 		}
3375 	}
3376 
3377 	/*
3378 	 * We want to get the alternate root even for faulted pools, so we cheat
3379 	 * and call spa_lookup() directly.
3380 	 */
3381 	if (altroot) {
3382 		if (spa == NULL) {
3383 			mutex_enter(&spa_namespace_lock);
3384 			spa = spa_lookup(name);
3385 			if (spa)
3386 				spa_altroot(spa, altroot, buflen);
3387 			else
3388 				altroot[0] = '\0';
3389 			spa = NULL;
3390 			mutex_exit(&spa_namespace_lock);
3391 		} else {
3392 			spa_altroot(spa, altroot, buflen);
3393 		}
3394 	}
3395 
3396 	if (spa != NULL) {
3397 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3398 		spa_close(spa, FTAG);
3399 	}
3400 
3401 	return (error);
3402 }
3403 
3404 /*
3405  * Validate that the auxiliary device array is well formed.  We must have an
3406  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3407  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3408  * specified, as long as they are well-formed.
3409  */
3410 static int
3411 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3412     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3413     vdev_labeltype_t label)
3414 {
3415 	nvlist_t **dev;
3416 	uint_t i, ndev;
3417 	vdev_t *vd;
3418 	int error;
3419 
3420 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3421 
3422 	/*
3423 	 * It's acceptable to have no devs specified.
3424 	 */
3425 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3426 		return (0);
3427 
3428 	if (ndev == 0)
3429 		return (SET_ERROR(EINVAL));
3430 
3431 	/*
3432 	 * Make sure the pool is formatted with a version that supports this
3433 	 * device type.
3434 	 */
3435 	if (spa_version(spa) < version)
3436 		return (SET_ERROR(ENOTSUP));
3437 
3438 	/*
3439 	 * Set the pending device list so we correctly handle device in-use
3440 	 * checking.
3441 	 */
3442 	sav->sav_pending = dev;
3443 	sav->sav_npending = ndev;
3444 
3445 	for (i = 0; i < ndev; i++) {
3446 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3447 		    mode)) != 0)
3448 			goto out;
3449 
3450 		if (!vd->vdev_ops->vdev_op_leaf) {
3451 			vdev_free(vd);
3452 			error = SET_ERROR(EINVAL);
3453 			goto out;
3454 		}
3455 
3456 		/*
3457 		 * The L2ARC currently only supports disk devices in
3458 		 * kernel context.  For user-level testing, we allow it.
3459 		 */
3460 #ifdef _KERNEL
3461 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3462 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3463 			error = SET_ERROR(ENOTBLK);
3464 			vdev_free(vd);
3465 			goto out;
3466 		}
3467 #endif
3468 		vd->vdev_top = vd;
3469 
3470 		if ((error = vdev_open(vd)) == 0 &&
3471 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3472 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3473 			    vd->vdev_guid) == 0);
3474 		}
3475 
3476 		vdev_free(vd);
3477 
3478 		if (error &&
3479 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3480 			goto out;
3481 		else
3482 			error = 0;
3483 	}
3484 
3485 out:
3486 	sav->sav_pending = NULL;
3487 	sav->sav_npending = 0;
3488 	return (error);
3489 }
3490 
3491 static int
3492 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3493 {
3494 	int error;
3495 
3496 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3497 
3498 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3499 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3500 	    VDEV_LABEL_SPARE)) != 0) {
3501 		return (error);
3502 	}
3503 
3504 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3505 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3506 	    VDEV_LABEL_L2CACHE));
3507 }
3508 
3509 static void
3510 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3511     const char *config)
3512 {
3513 	int i;
3514 
3515 	if (sav->sav_config != NULL) {
3516 		nvlist_t **olddevs;
3517 		uint_t oldndevs;
3518 		nvlist_t **newdevs;
3519 
3520 		/*
3521 		 * Generate new dev list by concatentating with the
3522 		 * current dev list.
3523 		 */
3524 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3525 		    &olddevs, &oldndevs) == 0);
3526 
3527 		newdevs = kmem_alloc(sizeof (void *) *
3528 		    (ndevs + oldndevs), KM_SLEEP);
3529 		for (i = 0; i < oldndevs; i++)
3530 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3531 			    KM_SLEEP) == 0);
3532 		for (i = 0; i < ndevs; i++)
3533 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3534 			    KM_SLEEP) == 0);
3535 
3536 		VERIFY(nvlist_remove(sav->sav_config, config,
3537 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3538 
3539 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3540 		    config, newdevs, ndevs + oldndevs) == 0);
3541 		for (i = 0; i < oldndevs + ndevs; i++)
3542 			nvlist_free(newdevs[i]);
3543 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3544 	} else {
3545 		/*
3546 		 * Generate a new dev list.
3547 		 */
3548 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3549 		    KM_SLEEP) == 0);
3550 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3551 		    devs, ndevs) == 0);
3552 	}
3553 }
3554 
3555 /*
3556  * Stop and drop level 2 ARC devices
3557  */
3558 void
3559 spa_l2cache_drop(spa_t *spa)
3560 {
3561 	vdev_t *vd;
3562 	int i;
3563 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3564 
3565 	for (i = 0; i < sav->sav_count; i++) {
3566 		uint64_t pool;
3567 
3568 		vd = sav->sav_vdevs[i];
3569 		ASSERT(vd != NULL);
3570 
3571 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3572 		    pool != 0ULL && l2arc_vdev_present(vd))
3573 			l2arc_remove_vdev(vd);
3574 	}
3575 }
3576 
3577 /*
3578  * Pool Creation
3579  */
3580 int
3581 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3582     nvlist_t *zplprops)
3583 {
3584 	spa_t *spa;
3585 	char *altroot = NULL;
3586 	vdev_t *rvd;
3587 	dsl_pool_t *dp;
3588 	dmu_tx_t *tx;
3589 	int error = 0;
3590 	uint64_t txg = TXG_INITIAL;
3591 	nvlist_t **spares, **l2cache;
3592 	uint_t nspares, nl2cache;
3593 	uint64_t version, obj;
3594 	boolean_t has_features;
3595 
3596 	/*
3597 	 * If this pool already exists, return failure.
3598 	 */
3599 	mutex_enter(&spa_namespace_lock);
3600 	if (spa_lookup(pool) != NULL) {
3601 		mutex_exit(&spa_namespace_lock);
3602 		return (SET_ERROR(EEXIST));
3603 	}
3604 
3605 	/*
3606 	 * Allocate a new spa_t structure.
3607 	 */
3608 	(void) nvlist_lookup_string(props,
3609 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3610 	spa = spa_add(pool, NULL, altroot);
3611 	spa_activate(spa, spa_mode_global);
3612 
3613 	if (props && (error = spa_prop_validate(spa, props))) {
3614 		spa_deactivate(spa);
3615 		spa_remove(spa);
3616 		mutex_exit(&spa_namespace_lock);
3617 		return (error);
3618 	}
3619 
3620 	has_features = B_FALSE;
3621 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3622 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3623 		if (zpool_prop_feature(nvpair_name(elem)))
3624 			has_features = B_TRUE;
3625 	}
3626 
3627 	if (has_features || nvlist_lookup_uint64(props,
3628 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3629 		version = SPA_VERSION;
3630 	}
3631 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3632 
3633 	spa->spa_first_txg = txg;
3634 	spa->spa_uberblock.ub_txg = txg - 1;
3635 	spa->spa_uberblock.ub_version = version;
3636 	spa->spa_ubsync = spa->spa_uberblock;
3637 
3638 	/*
3639 	 * Create "The Godfather" zio to hold all async IOs
3640 	 */
3641 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3642 	    KM_SLEEP);
3643 	for (int i = 0; i < max_ncpus; i++) {
3644 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3645 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3646 		    ZIO_FLAG_GODFATHER);
3647 	}
3648 
3649 	/*
3650 	 * Create the root vdev.
3651 	 */
3652 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3653 
3654 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3655 
3656 	ASSERT(error != 0 || rvd != NULL);
3657 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3658 
3659 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3660 		error = SET_ERROR(EINVAL);
3661 
3662 	if (error == 0 &&
3663 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3664 	    (error = spa_validate_aux(spa, nvroot, txg,
3665 	    VDEV_ALLOC_ADD)) == 0) {
3666 		for (int c = 0; c < rvd->vdev_children; c++) {
3667 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3668 			vdev_expand(rvd->vdev_child[c], txg);
3669 		}
3670 	}
3671 
3672 	spa_config_exit(spa, SCL_ALL, FTAG);
3673 
3674 	if (error != 0) {
3675 		spa_unload(spa);
3676 		spa_deactivate(spa);
3677 		spa_remove(spa);
3678 		mutex_exit(&spa_namespace_lock);
3679 		return (error);
3680 	}
3681 
3682 	/*
3683 	 * Get the list of spares, if specified.
3684 	 */
3685 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3686 	    &spares, &nspares) == 0) {
3687 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3688 		    KM_SLEEP) == 0);
3689 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3690 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3691 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3692 		spa_load_spares(spa);
3693 		spa_config_exit(spa, SCL_ALL, FTAG);
3694 		spa->spa_spares.sav_sync = B_TRUE;
3695 	}
3696 
3697 	/*
3698 	 * Get the list of level 2 cache devices, if specified.
3699 	 */
3700 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3701 	    &l2cache, &nl2cache) == 0) {
3702 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3703 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3704 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3705 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3706 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3707 		spa_load_l2cache(spa);
3708 		spa_config_exit(spa, SCL_ALL, FTAG);
3709 		spa->spa_l2cache.sav_sync = B_TRUE;
3710 	}
3711 
3712 	spa->spa_is_initializing = B_TRUE;
3713 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3714 	spa->spa_meta_objset = dp->dp_meta_objset;
3715 	spa->spa_is_initializing = B_FALSE;
3716 
3717 	/*
3718 	 * Create DDTs (dedup tables).
3719 	 */
3720 	ddt_create(spa);
3721 
3722 	spa_update_dspace(spa);
3723 
3724 	tx = dmu_tx_create_assigned(dp, txg);
3725 
3726 	/*
3727 	 * Create the pool config object.
3728 	 */
3729 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3730 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3731 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3732 
3733 	if (zap_add(spa->spa_meta_objset,
3734 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3735 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3736 		cmn_err(CE_PANIC, "failed to add pool config");
3737 	}
3738 
3739 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3740 		spa_feature_create_zap_objects(spa, tx);
3741 
3742 	if (zap_add(spa->spa_meta_objset,
3743 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3744 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3745 		cmn_err(CE_PANIC, "failed to add pool version");
3746 	}
3747 
3748 	/* Newly created pools with the right version are always deflated. */
3749 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3750 		spa->spa_deflate = TRUE;
3751 		if (zap_add(spa->spa_meta_objset,
3752 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3753 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3754 			cmn_err(CE_PANIC, "failed to add deflate");
3755 		}
3756 	}
3757 
3758 	/*
3759 	 * Create the deferred-free bpobj.  Turn off compression
3760 	 * because sync-to-convergence takes longer if the blocksize
3761 	 * keeps changing.
3762 	 */
3763 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3764 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3765 	    ZIO_COMPRESS_OFF, tx);
3766 	if (zap_add(spa->spa_meta_objset,
3767 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3768 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3769 		cmn_err(CE_PANIC, "failed to add bpobj");
3770 	}
3771 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3772 	    spa->spa_meta_objset, obj));
3773 
3774 	/*
3775 	 * Create the pool's history object.
3776 	 */
3777 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3778 		spa_history_create_obj(spa, tx);
3779 
3780 	/*
3781 	 * Generate some random noise for salted checksums to operate on.
3782 	 */
3783 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3784 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3785 
3786 	/*
3787 	 * Set pool properties.
3788 	 */
3789 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3790 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3791 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3792 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3793 
3794 	if (props != NULL) {
3795 		spa_configfile_set(spa, props, B_FALSE);
3796 		spa_sync_props(props, tx);
3797 	}
3798 
3799 	dmu_tx_commit(tx);
3800 
3801 	spa->spa_sync_on = B_TRUE;
3802 	txg_sync_start(spa->spa_dsl_pool);
3803 
3804 	/*
3805 	 * We explicitly wait for the first transaction to complete so that our
3806 	 * bean counters are appropriately updated.
3807 	 */
3808 	txg_wait_synced(spa->spa_dsl_pool, txg);
3809 
3810 	spa_config_sync(spa, B_FALSE, B_TRUE);
3811 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3812 
3813 	spa_history_log_version(spa, "create");
3814 
3815 	/*
3816 	 * Don't count references from objsets that are already closed
3817 	 * and are making their way through the eviction process.
3818 	 */
3819 	spa_evicting_os_wait(spa);
3820 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3821 
3822 	mutex_exit(&spa_namespace_lock);
3823 
3824 	return (0);
3825 }
3826 
3827 #ifdef _KERNEL
3828 /*
3829  * Get the root pool information from the root disk, then import the root pool
3830  * during the system boot up time.
3831  */
3832 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3833 
3834 static nvlist_t *
3835 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3836 {
3837 	nvlist_t *config;
3838 	nvlist_t *nvtop, *nvroot;
3839 	uint64_t pgid;
3840 
3841 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3842 		return (NULL);
3843 
3844 	/*
3845 	 * Add this top-level vdev to the child array.
3846 	 */
3847 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3848 	    &nvtop) == 0);
3849 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3850 	    &pgid) == 0);
3851 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3852 
3853 	/*
3854 	 * Put this pool's top-level vdevs into a root vdev.
3855 	 */
3856 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3857 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3858 	    VDEV_TYPE_ROOT) == 0);
3859 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3860 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3861 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3862 	    &nvtop, 1) == 0);
3863 
3864 	/*
3865 	 * Replace the existing vdev_tree with the new root vdev in
3866 	 * this pool's configuration (remove the old, add the new).
3867 	 */
3868 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3869 	nvlist_free(nvroot);
3870 	return (config);
3871 }
3872 
3873 /*
3874  * Walk the vdev tree and see if we can find a device with "better"
3875  * configuration. A configuration is "better" if the label on that
3876  * device has a more recent txg.
3877  */
3878 static void
3879 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3880 {
3881 	for (int c = 0; c < vd->vdev_children; c++)
3882 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3883 
3884 	if (vd->vdev_ops->vdev_op_leaf) {
3885 		nvlist_t *label;
3886 		uint64_t label_txg;
3887 
3888 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3889 		    &label) != 0)
3890 			return;
3891 
3892 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3893 		    &label_txg) == 0);
3894 
3895 		/*
3896 		 * Do we have a better boot device?
3897 		 */
3898 		if (label_txg > *txg) {
3899 			*txg = label_txg;
3900 			*avd = vd;
3901 		}
3902 		nvlist_free(label);
3903 	}
3904 }
3905 
3906 /*
3907  * Import a root pool.
3908  *
3909  * For x86. devpath_list will consist of devid and/or physpath name of
3910  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3911  * The GRUB "findroot" command will return the vdev we should boot.
3912  *
3913  * For Sparc, devpath_list consists the physpath name of the booting device
3914  * no matter the rootpool is a single device pool or a mirrored pool.
3915  * e.g.
3916  *	"/pci@1f,0/ide@d/disk@0,0:a"
3917  */
3918 int
3919 spa_import_rootpool(char *devpath, char *devid)
3920 {
3921 	spa_t *spa;
3922 	vdev_t *rvd, *bvd, *avd = NULL;
3923 	nvlist_t *config, *nvtop;
3924 	uint64_t guid, txg;
3925 	char *pname;
3926 	int error;
3927 
3928 	/*
3929 	 * Read the label from the boot device and generate a configuration.
3930 	 */
3931 	config = spa_generate_rootconf(devpath, devid, &guid);
3932 #if defined(_OBP) && defined(_KERNEL)
3933 	if (config == NULL) {
3934 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3935 			/* iscsi boot */
3936 			get_iscsi_bootpath_phy(devpath);
3937 			config = spa_generate_rootconf(devpath, devid, &guid);
3938 		}
3939 	}
3940 #endif
3941 	if (config == NULL) {
3942 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3943 		    devpath);
3944 		return (SET_ERROR(EIO));
3945 	}
3946 
3947 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3948 	    &pname) == 0);
3949 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3950 
3951 	mutex_enter(&spa_namespace_lock);
3952 	if ((spa = spa_lookup(pname)) != NULL) {
3953 		/*
3954 		 * Remove the existing root pool from the namespace so that we
3955 		 * can replace it with the correct config we just read in.
3956 		 */
3957 		spa_remove(spa);
3958 	}
3959 
3960 	spa = spa_add(pname, config, NULL);
3961 	spa->spa_is_root = B_TRUE;
3962 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3963 
3964 	/*
3965 	 * Build up a vdev tree based on the boot device's label config.
3966 	 */
3967 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3968 	    &nvtop) == 0);
3969 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3970 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3971 	    VDEV_ALLOC_ROOTPOOL);
3972 	spa_config_exit(spa, SCL_ALL, FTAG);
3973 	if (error) {
3974 		mutex_exit(&spa_namespace_lock);
3975 		nvlist_free(config);
3976 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3977 		    pname);
3978 		return (error);
3979 	}
3980 
3981 	/*
3982 	 * Get the boot vdev.
3983 	 */
3984 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3985 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3986 		    (u_longlong_t)guid);
3987 		error = SET_ERROR(ENOENT);
3988 		goto out;
3989 	}
3990 
3991 	/*
3992 	 * Determine if there is a better boot device.
3993 	 */
3994 	avd = bvd;
3995 	spa_alt_rootvdev(rvd, &avd, &txg);
3996 	if (avd != bvd) {
3997 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3998 		    "try booting from '%s'", avd->vdev_path);
3999 		error = SET_ERROR(EINVAL);
4000 		goto out;
4001 	}
4002 
4003 	/*
4004 	 * If the boot device is part of a spare vdev then ensure that
4005 	 * we're booting off the active spare.
4006 	 */
4007 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4008 	    !bvd->vdev_isspare) {
4009 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4010 		    "try booting from '%s'",
4011 		    bvd->vdev_parent->
4012 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4013 		error = SET_ERROR(EINVAL);
4014 		goto out;
4015 	}
4016 
4017 	error = 0;
4018 out:
4019 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4020 	vdev_free(rvd);
4021 	spa_config_exit(spa, SCL_ALL, FTAG);
4022 	mutex_exit(&spa_namespace_lock);
4023 
4024 	nvlist_free(config);
4025 	return (error);
4026 }
4027 
4028 #endif
4029 
4030 /*
4031  * Import a non-root pool into the system.
4032  */
4033 int
4034 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4035 {
4036 	spa_t *spa;
4037 	char *altroot = NULL;
4038 	spa_load_state_t state = SPA_LOAD_IMPORT;
4039 	zpool_rewind_policy_t policy;
4040 	uint64_t mode = spa_mode_global;
4041 	uint64_t readonly = B_FALSE;
4042 	int error;
4043 	nvlist_t *nvroot;
4044 	nvlist_t **spares, **l2cache;
4045 	uint_t nspares, nl2cache;
4046 
4047 	/*
4048 	 * If a pool with this name exists, return failure.
4049 	 */
4050 	mutex_enter(&spa_namespace_lock);
4051 	if (spa_lookup(pool) != NULL) {
4052 		mutex_exit(&spa_namespace_lock);
4053 		return (SET_ERROR(EEXIST));
4054 	}
4055 
4056 	/*
4057 	 * Create and initialize the spa structure.
4058 	 */
4059 	(void) nvlist_lookup_string(props,
4060 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4061 	(void) nvlist_lookup_uint64(props,
4062 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4063 	if (readonly)
4064 		mode = FREAD;
4065 	spa = spa_add(pool, config, altroot);
4066 	spa->spa_import_flags = flags;
4067 
4068 	/*
4069 	 * Verbatim import - Take a pool and insert it into the namespace
4070 	 * as if it had been loaded at boot.
4071 	 */
4072 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4073 		if (props != NULL)
4074 			spa_configfile_set(spa, props, B_FALSE);
4075 
4076 		spa_config_sync(spa, B_FALSE, B_TRUE);
4077 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4078 
4079 		mutex_exit(&spa_namespace_lock);
4080 		return (0);
4081 	}
4082 
4083 	spa_activate(spa, mode);
4084 
4085 	/*
4086 	 * Don't start async tasks until we know everything is healthy.
4087 	 */
4088 	spa_async_suspend(spa);
4089 
4090 	zpool_get_rewind_policy(config, &policy);
4091 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4092 		state = SPA_LOAD_RECOVER;
4093 
4094 	/*
4095 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4096 	 * because the user-supplied config is actually the one to trust when
4097 	 * doing an import.
4098 	 */
4099 	if (state != SPA_LOAD_RECOVER)
4100 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4101 
4102 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4103 	    policy.zrp_request);
4104 
4105 	/*
4106 	 * Propagate anything learned while loading the pool and pass it
4107 	 * back to caller (i.e. rewind info, missing devices, etc).
4108 	 */
4109 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4110 	    spa->spa_load_info) == 0);
4111 
4112 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4113 	/*
4114 	 * Toss any existing sparelist, as it doesn't have any validity
4115 	 * anymore, and conflicts with spa_has_spare().
4116 	 */
4117 	if (spa->spa_spares.sav_config) {
4118 		nvlist_free(spa->spa_spares.sav_config);
4119 		spa->spa_spares.sav_config = NULL;
4120 		spa_load_spares(spa);
4121 	}
4122 	if (spa->spa_l2cache.sav_config) {
4123 		nvlist_free(spa->spa_l2cache.sav_config);
4124 		spa->spa_l2cache.sav_config = NULL;
4125 		spa_load_l2cache(spa);
4126 	}
4127 
4128 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4129 	    &nvroot) == 0);
4130 	if (error == 0)
4131 		error = spa_validate_aux(spa, nvroot, -1ULL,
4132 		    VDEV_ALLOC_SPARE);
4133 	if (error == 0)
4134 		error = spa_validate_aux(spa, nvroot, -1ULL,
4135 		    VDEV_ALLOC_L2CACHE);
4136 	spa_config_exit(spa, SCL_ALL, FTAG);
4137 
4138 	if (props != NULL)
4139 		spa_configfile_set(spa, props, B_FALSE);
4140 
4141 	if (error != 0 || (props && spa_writeable(spa) &&
4142 	    (error = spa_prop_set(spa, props)))) {
4143 		spa_unload(spa);
4144 		spa_deactivate(spa);
4145 		spa_remove(spa);
4146 		mutex_exit(&spa_namespace_lock);
4147 		return (error);
4148 	}
4149 
4150 	spa_async_resume(spa);
4151 
4152 	/*
4153 	 * Override any spares and level 2 cache devices as specified by
4154 	 * the user, as these may have correct device names/devids, etc.
4155 	 */
4156 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4157 	    &spares, &nspares) == 0) {
4158 		if (spa->spa_spares.sav_config)
4159 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4160 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4161 		else
4162 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4163 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4164 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4165 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4166 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4167 		spa_load_spares(spa);
4168 		spa_config_exit(spa, SCL_ALL, FTAG);
4169 		spa->spa_spares.sav_sync = B_TRUE;
4170 	}
4171 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4172 	    &l2cache, &nl2cache) == 0) {
4173 		if (spa->spa_l2cache.sav_config)
4174 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4175 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4176 		else
4177 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4178 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4179 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4180 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4181 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4182 		spa_load_l2cache(spa);
4183 		spa_config_exit(spa, SCL_ALL, FTAG);
4184 		spa->spa_l2cache.sav_sync = B_TRUE;
4185 	}
4186 
4187 	/*
4188 	 * Check for any removed devices.
4189 	 */
4190 	if (spa->spa_autoreplace) {
4191 		spa_aux_check_removed(&spa->spa_spares);
4192 		spa_aux_check_removed(&spa->spa_l2cache);
4193 	}
4194 
4195 	if (spa_writeable(spa)) {
4196 		/*
4197 		 * Update the config cache to include the newly-imported pool.
4198 		 */
4199 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4200 	}
4201 
4202 	/*
4203 	 * It's possible that the pool was expanded while it was exported.
4204 	 * We kick off an async task to handle this for us.
4205 	 */
4206 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4207 
4208 	spa_history_log_version(spa, "import");
4209 
4210 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4211 
4212 	mutex_exit(&spa_namespace_lock);
4213 
4214 	return (0);
4215 }
4216 
4217 nvlist_t *
4218 spa_tryimport(nvlist_t *tryconfig)
4219 {
4220 	nvlist_t *config = NULL;
4221 	char *poolname;
4222 	spa_t *spa;
4223 	uint64_t state;
4224 	int error;
4225 
4226 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4227 		return (NULL);
4228 
4229 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4230 		return (NULL);
4231 
4232 	/*
4233 	 * Create and initialize the spa structure.
4234 	 */
4235 	mutex_enter(&spa_namespace_lock);
4236 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4237 	spa_activate(spa, FREAD);
4238 
4239 	/*
4240 	 * Pass off the heavy lifting to spa_load().
4241 	 * Pass TRUE for mosconfig because the user-supplied config
4242 	 * is actually the one to trust when doing an import.
4243 	 */
4244 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4245 
4246 	/*
4247 	 * If 'tryconfig' was at least parsable, return the current config.
4248 	 */
4249 	if (spa->spa_root_vdev != NULL) {
4250 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4251 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4252 		    poolname) == 0);
4253 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4254 		    state) == 0);
4255 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4256 		    spa->spa_uberblock.ub_timestamp) == 0);
4257 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4258 		    spa->spa_load_info) == 0);
4259 
4260 		/*
4261 		 * If the bootfs property exists on this pool then we
4262 		 * copy it out so that external consumers can tell which
4263 		 * pools are bootable.
4264 		 */
4265 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4266 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4267 
4268 			/*
4269 			 * We have to play games with the name since the
4270 			 * pool was opened as TRYIMPORT_NAME.
4271 			 */
4272 			if (dsl_dsobj_to_dsname(spa_name(spa),
4273 			    spa->spa_bootfs, tmpname) == 0) {
4274 				char *cp;
4275 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4276 
4277 				cp = strchr(tmpname, '/');
4278 				if (cp == NULL) {
4279 					(void) strlcpy(dsname, tmpname,
4280 					    MAXPATHLEN);
4281 				} else {
4282 					(void) snprintf(dsname, MAXPATHLEN,
4283 					    "%s/%s", poolname, ++cp);
4284 				}
4285 				VERIFY(nvlist_add_string(config,
4286 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4287 				kmem_free(dsname, MAXPATHLEN);
4288 			}
4289 			kmem_free(tmpname, MAXPATHLEN);
4290 		}
4291 
4292 		/*
4293 		 * Add the list of hot spares and level 2 cache devices.
4294 		 */
4295 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4296 		spa_add_spares(spa, config);
4297 		spa_add_l2cache(spa, config);
4298 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4299 	}
4300 
4301 	spa_unload(spa);
4302 	spa_deactivate(spa);
4303 	spa_remove(spa);
4304 	mutex_exit(&spa_namespace_lock);
4305 
4306 	return (config);
4307 }
4308 
4309 /*
4310  * Pool export/destroy
4311  *
4312  * The act of destroying or exporting a pool is very simple.  We make sure there
4313  * is no more pending I/O and any references to the pool are gone.  Then, we
4314  * update the pool state and sync all the labels to disk, removing the
4315  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4316  * we don't sync the labels or remove the configuration cache.
4317  */
4318 static int
4319 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4320     boolean_t force, boolean_t hardforce)
4321 {
4322 	spa_t *spa;
4323 
4324 	if (oldconfig)
4325 		*oldconfig = NULL;
4326 
4327 	if (!(spa_mode_global & FWRITE))
4328 		return (SET_ERROR(EROFS));
4329 
4330 	mutex_enter(&spa_namespace_lock);
4331 	if ((spa = spa_lookup(pool)) == NULL) {
4332 		mutex_exit(&spa_namespace_lock);
4333 		return (SET_ERROR(ENOENT));
4334 	}
4335 
4336 	/*
4337 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4338 	 * reacquire the namespace lock, and see if we can export.
4339 	 */
4340 	spa_open_ref(spa, FTAG);
4341 	mutex_exit(&spa_namespace_lock);
4342 	spa_async_suspend(spa);
4343 	mutex_enter(&spa_namespace_lock);
4344 	spa_close(spa, FTAG);
4345 
4346 	/*
4347 	 * The pool will be in core if it's openable,
4348 	 * in which case we can modify its state.
4349 	 */
4350 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4351 		/*
4352 		 * Objsets may be open only because they're dirty, so we
4353 		 * have to force it to sync before checking spa_refcnt.
4354 		 */
4355 		txg_wait_synced(spa->spa_dsl_pool, 0);
4356 		spa_evicting_os_wait(spa);
4357 
4358 		/*
4359 		 * A pool cannot be exported or destroyed if there are active
4360 		 * references.  If we are resetting a pool, allow references by
4361 		 * fault injection handlers.
4362 		 */
4363 		if (!spa_refcount_zero(spa) ||
4364 		    (spa->spa_inject_ref != 0 &&
4365 		    new_state != POOL_STATE_UNINITIALIZED)) {
4366 			spa_async_resume(spa);
4367 			mutex_exit(&spa_namespace_lock);
4368 			return (SET_ERROR(EBUSY));
4369 		}
4370 
4371 		/*
4372 		 * A pool cannot be exported if it has an active shared spare.
4373 		 * This is to prevent other pools stealing the active spare
4374 		 * from an exported pool. At user's own will, such pool can
4375 		 * be forcedly exported.
4376 		 */
4377 		if (!force && new_state == POOL_STATE_EXPORTED &&
4378 		    spa_has_active_shared_spare(spa)) {
4379 			spa_async_resume(spa);
4380 			mutex_exit(&spa_namespace_lock);
4381 			return (SET_ERROR(EXDEV));
4382 		}
4383 
4384 		/*
4385 		 * We want this to be reflected on every label,
4386 		 * so mark them all dirty.  spa_unload() will do the
4387 		 * final sync that pushes these changes out.
4388 		 */
4389 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4390 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4391 			spa->spa_state = new_state;
4392 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4393 			    TXG_DEFER_SIZE + 1;
4394 			vdev_config_dirty(spa->spa_root_vdev);
4395 			spa_config_exit(spa, SCL_ALL, FTAG);
4396 		}
4397 	}
4398 
4399 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4400 
4401 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4402 		spa_unload(spa);
4403 		spa_deactivate(spa);
4404 	}
4405 
4406 	if (oldconfig && spa->spa_config)
4407 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4408 
4409 	if (new_state != POOL_STATE_UNINITIALIZED) {
4410 		if (!hardforce)
4411 			spa_config_sync(spa, B_TRUE, B_TRUE);
4412 		spa_remove(spa);
4413 	}
4414 	mutex_exit(&spa_namespace_lock);
4415 
4416 	return (0);
4417 }
4418 
4419 /*
4420  * Destroy a storage pool.
4421  */
4422 int
4423 spa_destroy(char *pool)
4424 {
4425 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4426 	    B_FALSE, B_FALSE));
4427 }
4428 
4429 /*
4430  * Export a storage pool.
4431  */
4432 int
4433 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4434     boolean_t hardforce)
4435 {
4436 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4437 	    force, hardforce));
4438 }
4439 
4440 /*
4441  * Similar to spa_export(), this unloads the spa_t without actually removing it
4442  * from the namespace in any way.
4443  */
4444 int
4445 spa_reset(char *pool)
4446 {
4447 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4448 	    B_FALSE, B_FALSE));
4449 }
4450 
4451 /*
4452  * ==========================================================================
4453  * Device manipulation
4454  * ==========================================================================
4455  */
4456 
4457 /*
4458  * Add a device to a storage pool.
4459  */
4460 int
4461 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4462 {
4463 	uint64_t txg, id;
4464 	int error;
4465 	vdev_t *rvd = spa->spa_root_vdev;
4466 	vdev_t *vd, *tvd;
4467 	nvlist_t **spares, **l2cache;
4468 	uint_t nspares, nl2cache;
4469 
4470 	ASSERT(spa_writeable(spa));
4471 
4472 	txg = spa_vdev_enter(spa);
4473 
4474 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4475 	    VDEV_ALLOC_ADD)) != 0)
4476 		return (spa_vdev_exit(spa, NULL, txg, error));
4477 
4478 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4479 
4480 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4481 	    &nspares) != 0)
4482 		nspares = 0;
4483 
4484 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4485 	    &nl2cache) != 0)
4486 		nl2cache = 0;
4487 
4488 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4489 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4490 
4491 	if (vd->vdev_children != 0 &&
4492 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4493 		return (spa_vdev_exit(spa, vd, txg, error));
4494 
4495 	/*
4496 	 * We must validate the spares and l2cache devices after checking the
4497 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4498 	 */
4499 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4500 		return (spa_vdev_exit(spa, vd, txg, error));
4501 
4502 	/*
4503 	 * Transfer each new top-level vdev from vd to rvd.
4504 	 */
4505 	for (int c = 0; c < vd->vdev_children; c++) {
4506 
4507 		/*
4508 		 * Set the vdev id to the first hole, if one exists.
4509 		 */
4510 		for (id = 0; id < rvd->vdev_children; id++) {
4511 			if (rvd->vdev_child[id]->vdev_ishole) {
4512 				vdev_free(rvd->vdev_child[id]);
4513 				break;
4514 			}
4515 		}
4516 		tvd = vd->vdev_child[c];
4517 		vdev_remove_child(vd, tvd);
4518 		tvd->vdev_id = id;
4519 		vdev_add_child(rvd, tvd);
4520 		vdev_config_dirty(tvd);
4521 	}
4522 
4523 	if (nspares != 0) {
4524 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4525 		    ZPOOL_CONFIG_SPARES);
4526 		spa_load_spares(spa);
4527 		spa->spa_spares.sav_sync = B_TRUE;
4528 	}
4529 
4530 	if (nl2cache != 0) {
4531 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4532 		    ZPOOL_CONFIG_L2CACHE);
4533 		spa_load_l2cache(spa);
4534 		spa->spa_l2cache.sav_sync = B_TRUE;
4535 	}
4536 
4537 	/*
4538 	 * We have to be careful when adding new vdevs to an existing pool.
4539 	 * If other threads start allocating from these vdevs before we
4540 	 * sync the config cache, and we lose power, then upon reboot we may
4541 	 * fail to open the pool because there are DVAs that the config cache
4542 	 * can't translate.  Therefore, we first add the vdevs without
4543 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4544 	 * and then let spa_config_update() initialize the new metaslabs.
4545 	 *
4546 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4547 	 * if we lose power at any point in this sequence, the remaining
4548 	 * steps will be completed the next time we load the pool.
4549 	 */
4550 	(void) spa_vdev_exit(spa, vd, txg, 0);
4551 
4552 	mutex_enter(&spa_namespace_lock);
4553 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4554 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4555 	mutex_exit(&spa_namespace_lock);
4556 
4557 	return (0);
4558 }
4559 
4560 /*
4561  * Attach a device to a mirror.  The arguments are the path to any device
4562  * in the mirror, and the nvroot for the new device.  If the path specifies
4563  * a device that is not mirrored, we automatically insert the mirror vdev.
4564  *
4565  * If 'replacing' is specified, the new device is intended to replace the
4566  * existing device; in this case the two devices are made into their own
4567  * mirror using the 'replacing' vdev, which is functionally identical to
4568  * the mirror vdev (it actually reuses all the same ops) but has a few
4569  * extra rules: you can't attach to it after it's been created, and upon
4570  * completion of resilvering, the first disk (the one being replaced)
4571  * is automatically detached.
4572  */
4573 int
4574 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4575 {
4576 	uint64_t txg, dtl_max_txg;
4577 	vdev_t *rvd = spa->spa_root_vdev;
4578 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4579 	vdev_ops_t *pvops;
4580 	char *oldvdpath, *newvdpath;
4581 	int newvd_isspare;
4582 	int error;
4583 
4584 	ASSERT(spa_writeable(spa));
4585 
4586 	txg = spa_vdev_enter(spa);
4587 
4588 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4589 
4590 	if (oldvd == NULL)
4591 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4592 
4593 	if (!oldvd->vdev_ops->vdev_op_leaf)
4594 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4595 
4596 	pvd = oldvd->vdev_parent;
4597 
4598 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4599 	    VDEV_ALLOC_ATTACH)) != 0)
4600 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4601 
4602 	if (newrootvd->vdev_children != 1)
4603 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4604 
4605 	newvd = newrootvd->vdev_child[0];
4606 
4607 	if (!newvd->vdev_ops->vdev_op_leaf)
4608 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4609 
4610 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4611 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4612 
4613 	/*
4614 	 * Spares can't replace logs
4615 	 */
4616 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4617 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4618 
4619 	if (!replacing) {
4620 		/*
4621 		 * For attach, the only allowable parent is a mirror or the root
4622 		 * vdev.
4623 		 */
4624 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4625 		    pvd->vdev_ops != &vdev_root_ops)
4626 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4627 
4628 		pvops = &vdev_mirror_ops;
4629 	} else {
4630 		/*
4631 		 * Active hot spares can only be replaced by inactive hot
4632 		 * spares.
4633 		 */
4634 		if (pvd->vdev_ops == &vdev_spare_ops &&
4635 		    oldvd->vdev_isspare &&
4636 		    !spa_has_spare(spa, newvd->vdev_guid))
4637 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4638 
4639 		/*
4640 		 * If the source is a hot spare, and the parent isn't already a
4641 		 * spare, then we want to create a new hot spare.  Otherwise, we
4642 		 * want to create a replacing vdev.  The user is not allowed to
4643 		 * attach to a spared vdev child unless the 'isspare' state is
4644 		 * the same (spare replaces spare, non-spare replaces
4645 		 * non-spare).
4646 		 */
4647 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4648 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4649 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4650 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4651 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4652 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4653 		}
4654 
4655 		if (newvd->vdev_isspare)
4656 			pvops = &vdev_spare_ops;
4657 		else
4658 			pvops = &vdev_replacing_ops;
4659 	}
4660 
4661 	/*
4662 	 * Make sure the new device is big enough.
4663 	 */
4664 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4665 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4666 
4667 	/*
4668 	 * The new device cannot have a higher alignment requirement
4669 	 * than the top-level vdev.
4670 	 */
4671 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4672 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4673 
4674 	/*
4675 	 * If this is an in-place replacement, update oldvd's path and devid
4676 	 * to make it distinguishable from newvd, and unopenable from now on.
4677 	 */
4678 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4679 		spa_strfree(oldvd->vdev_path);
4680 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4681 		    KM_SLEEP);
4682 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4683 		    newvd->vdev_path, "old");
4684 		if (oldvd->vdev_devid != NULL) {
4685 			spa_strfree(oldvd->vdev_devid);
4686 			oldvd->vdev_devid = NULL;
4687 		}
4688 	}
4689 
4690 	/* mark the device being resilvered */
4691 	newvd->vdev_resilver_txg = txg;
4692 
4693 	/*
4694 	 * If the parent is not a mirror, or if we're replacing, insert the new
4695 	 * mirror/replacing/spare vdev above oldvd.
4696 	 */
4697 	if (pvd->vdev_ops != pvops)
4698 		pvd = vdev_add_parent(oldvd, pvops);
4699 
4700 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4701 	ASSERT(pvd->vdev_ops == pvops);
4702 	ASSERT(oldvd->vdev_parent == pvd);
4703 
4704 	/*
4705 	 * Extract the new device from its root and add it to pvd.
4706 	 */
4707 	vdev_remove_child(newrootvd, newvd);
4708 	newvd->vdev_id = pvd->vdev_children;
4709 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4710 	vdev_add_child(pvd, newvd);
4711 
4712 	tvd = newvd->vdev_top;
4713 	ASSERT(pvd->vdev_top == tvd);
4714 	ASSERT(tvd->vdev_parent == rvd);
4715 
4716 	vdev_config_dirty(tvd);
4717 
4718 	/*
4719 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4720 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4721 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4722 	 */
4723 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4724 
4725 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4726 	    dtl_max_txg - TXG_INITIAL);
4727 
4728 	if (newvd->vdev_isspare) {
4729 		spa_spare_activate(newvd);
4730 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4731 	}
4732 
4733 	oldvdpath = spa_strdup(oldvd->vdev_path);
4734 	newvdpath = spa_strdup(newvd->vdev_path);
4735 	newvd_isspare = newvd->vdev_isspare;
4736 
4737 	/*
4738 	 * Mark newvd's DTL dirty in this txg.
4739 	 */
4740 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4741 
4742 	/*
4743 	 * Schedule the resilver to restart in the future. We do this to
4744 	 * ensure that dmu_sync-ed blocks have been stitched into the
4745 	 * respective datasets.
4746 	 */
4747 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4748 
4749 	if (spa->spa_bootfs)
4750 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4751 
4752 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4753 
4754 	/*
4755 	 * Commit the config
4756 	 */
4757 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4758 
4759 	spa_history_log_internal(spa, "vdev attach", NULL,
4760 	    "%s vdev=%s %s vdev=%s",
4761 	    replacing && newvd_isspare ? "spare in" :
4762 	    replacing ? "replace" : "attach", newvdpath,
4763 	    replacing ? "for" : "to", oldvdpath);
4764 
4765 	spa_strfree(oldvdpath);
4766 	spa_strfree(newvdpath);
4767 
4768 	return (0);
4769 }
4770 
4771 /*
4772  * Detach a device from a mirror or replacing vdev.
4773  *
4774  * If 'replace_done' is specified, only detach if the parent
4775  * is a replacing vdev.
4776  */
4777 int
4778 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4779 {
4780 	uint64_t txg;
4781 	int error;
4782 	vdev_t *rvd = spa->spa_root_vdev;
4783 	vdev_t *vd, *pvd, *cvd, *tvd;
4784 	boolean_t unspare = B_FALSE;
4785 	uint64_t unspare_guid = 0;
4786 	char *vdpath;
4787 
4788 	ASSERT(spa_writeable(spa));
4789 
4790 	txg = spa_vdev_enter(spa);
4791 
4792 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4793 
4794 	if (vd == NULL)
4795 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4796 
4797 	if (!vd->vdev_ops->vdev_op_leaf)
4798 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4799 
4800 	pvd = vd->vdev_parent;
4801 
4802 	/*
4803 	 * If the parent/child relationship is not as expected, don't do it.
4804 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4805 	 * vdev that's replacing B with C.  The user's intent in replacing
4806 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4807 	 * the replace by detaching C, the expected behavior is to end up
4808 	 * M(A,B).  But suppose that right after deciding to detach C,
4809 	 * the replacement of B completes.  We would have M(A,C), and then
4810 	 * ask to detach C, which would leave us with just A -- not what
4811 	 * the user wanted.  To prevent this, we make sure that the
4812 	 * parent/child relationship hasn't changed -- in this example,
4813 	 * that C's parent is still the replacing vdev R.
4814 	 */
4815 	if (pvd->vdev_guid != pguid && pguid != 0)
4816 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4817 
4818 	/*
4819 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4820 	 */
4821 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4822 	    pvd->vdev_ops != &vdev_spare_ops)
4823 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4824 
4825 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4826 	    spa_version(spa) >= SPA_VERSION_SPARES);
4827 
4828 	/*
4829 	 * Only mirror, replacing, and spare vdevs support detach.
4830 	 */
4831 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4832 	    pvd->vdev_ops != &vdev_mirror_ops &&
4833 	    pvd->vdev_ops != &vdev_spare_ops)
4834 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4835 
4836 	/*
4837 	 * If this device has the only valid copy of some data,
4838 	 * we cannot safely detach it.
4839 	 */
4840 	if (vdev_dtl_required(vd))
4841 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4842 
4843 	ASSERT(pvd->vdev_children >= 2);
4844 
4845 	/*
4846 	 * If we are detaching the second disk from a replacing vdev, then
4847 	 * check to see if we changed the original vdev's path to have "/old"
4848 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4849 	 */
4850 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4851 	    vd->vdev_path != NULL) {
4852 		size_t len = strlen(vd->vdev_path);
4853 
4854 		for (int c = 0; c < pvd->vdev_children; c++) {
4855 			cvd = pvd->vdev_child[c];
4856 
4857 			if (cvd == vd || cvd->vdev_path == NULL)
4858 				continue;
4859 
4860 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4861 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4862 				spa_strfree(cvd->vdev_path);
4863 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4864 				break;
4865 			}
4866 		}
4867 	}
4868 
4869 	/*
4870 	 * If we are detaching the original disk from a spare, then it implies
4871 	 * that the spare should become a real disk, and be removed from the
4872 	 * active spare list for the pool.
4873 	 */
4874 	if (pvd->vdev_ops == &vdev_spare_ops &&
4875 	    vd->vdev_id == 0 &&
4876 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4877 		unspare = B_TRUE;
4878 
4879 	/*
4880 	 * Erase the disk labels so the disk can be used for other things.
4881 	 * This must be done after all other error cases are handled,
4882 	 * but before we disembowel vd (so we can still do I/O to it).
4883 	 * But if we can't do it, don't treat the error as fatal --
4884 	 * it may be that the unwritability of the disk is the reason
4885 	 * it's being detached!
4886 	 */
4887 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4888 
4889 	/*
4890 	 * Remove vd from its parent and compact the parent's children.
4891 	 */
4892 	vdev_remove_child(pvd, vd);
4893 	vdev_compact_children(pvd);
4894 
4895 	/*
4896 	 * Remember one of the remaining children so we can get tvd below.
4897 	 */
4898 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4899 
4900 	/*
4901 	 * If we need to remove the remaining child from the list of hot spares,
4902 	 * do it now, marking the vdev as no longer a spare in the process.
4903 	 * We must do this before vdev_remove_parent(), because that can
4904 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4905 	 * reason, we must remove the spare now, in the same txg as the detach;
4906 	 * otherwise someone could attach a new sibling, change the GUID, and
4907 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4908 	 */
4909 	if (unspare) {
4910 		ASSERT(cvd->vdev_isspare);
4911 		spa_spare_remove(cvd);
4912 		unspare_guid = cvd->vdev_guid;
4913 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4914 		cvd->vdev_unspare = B_TRUE;
4915 	}
4916 
4917 	/*
4918 	 * If the parent mirror/replacing vdev only has one child,
4919 	 * the parent is no longer needed.  Remove it from the tree.
4920 	 */
4921 	if (pvd->vdev_children == 1) {
4922 		if (pvd->vdev_ops == &vdev_spare_ops)
4923 			cvd->vdev_unspare = B_FALSE;
4924 		vdev_remove_parent(cvd);
4925 	}
4926 
4927 
4928 	/*
4929 	 * We don't set tvd until now because the parent we just removed
4930 	 * may have been the previous top-level vdev.
4931 	 */
4932 	tvd = cvd->vdev_top;
4933 	ASSERT(tvd->vdev_parent == rvd);
4934 
4935 	/*
4936 	 * Reevaluate the parent vdev state.
4937 	 */
4938 	vdev_propagate_state(cvd);
4939 
4940 	/*
4941 	 * If the 'autoexpand' property is set on the pool then automatically
4942 	 * try to expand the size of the pool. For example if the device we
4943 	 * just detached was smaller than the others, it may be possible to
4944 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4945 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4946 	 */
4947 	if (spa->spa_autoexpand) {
4948 		vdev_reopen(tvd);
4949 		vdev_expand(tvd, txg);
4950 	}
4951 
4952 	vdev_config_dirty(tvd);
4953 
4954 	/*
4955 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4956 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4957 	 * But first make sure we're not on any *other* txg's DTL list, to
4958 	 * prevent vd from being accessed after it's freed.
4959 	 */
4960 	vdpath = spa_strdup(vd->vdev_path);
4961 	for (int t = 0; t < TXG_SIZE; t++)
4962 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4963 	vd->vdev_detached = B_TRUE;
4964 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4965 
4966 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4967 
4968 	/* hang on to the spa before we release the lock */
4969 	spa_open_ref(spa, FTAG);
4970 
4971 	error = spa_vdev_exit(spa, vd, txg, 0);
4972 
4973 	spa_history_log_internal(spa, "detach", NULL,
4974 	    "vdev=%s", vdpath);
4975 	spa_strfree(vdpath);
4976 
4977 	/*
4978 	 * If this was the removal of the original device in a hot spare vdev,
4979 	 * then we want to go through and remove the device from the hot spare
4980 	 * list of every other pool.
4981 	 */
4982 	if (unspare) {
4983 		spa_t *altspa = NULL;
4984 
4985 		mutex_enter(&spa_namespace_lock);
4986 		while ((altspa = spa_next(altspa)) != NULL) {
4987 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4988 			    altspa == spa)
4989 				continue;
4990 
4991 			spa_open_ref(altspa, FTAG);
4992 			mutex_exit(&spa_namespace_lock);
4993 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4994 			mutex_enter(&spa_namespace_lock);
4995 			spa_close(altspa, FTAG);
4996 		}
4997 		mutex_exit(&spa_namespace_lock);
4998 
4999 		/* search the rest of the vdevs for spares to remove */
5000 		spa_vdev_resilver_done(spa);
5001 	}
5002 
5003 	/* all done with the spa; OK to release */
5004 	mutex_enter(&spa_namespace_lock);
5005 	spa_close(spa, FTAG);
5006 	mutex_exit(&spa_namespace_lock);
5007 
5008 	return (error);
5009 }
5010 
5011 /*
5012  * Split a set of devices from their mirrors, and create a new pool from them.
5013  */
5014 int
5015 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5016     nvlist_t *props, boolean_t exp)
5017 {
5018 	int error = 0;
5019 	uint64_t txg, *glist;
5020 	spa_t *newspa;
5021 	uint_t c, children, lastlog;
5022 	nvlist_t **child, *nvl, *tmp;
5023 	dmu_tx_t *tx;
5024 	char *altroot = NULL;
5025 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5026 	boolean_t activate_slog;
5027 
5028 	ASSERT(spa_writeable(spa));
5029 
5030 	txg = spa_vdev_enter(spa);
5031 
5032 	/* clear the log and flush everything up to now */
5033 	activate_slog = spa_passivate_log(spa);
5034 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5035 	error = spa_offline_log(spa);
5036 	txg = spa_vdev_config_enter(spa);
5037 
5038 	if (activate_slog)
5039 		spa_activate_log(spa);
5040 
5041 	if (error != 0)
5042 		return (spa_vdev_exit(spa, NULL, txg, error));
5043 
5044 	/* check new spa name before going any further */
5045 	if (spa_lookup(newname) != NULL)
5046 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5047 
5048 	/*
5049 	 * scan through all the children to ensure they're all mirrors
5050 	 */
5051 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5052 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5053 	    &children) != 0)
5054 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5055 
5056 	/* first, check to ensure we've got the right child count */
5057 	rvd = spa->spa_root_vdev;
5058 	lastlog = 0;
5059 	for (c = 0; c < rvd->vdev_children; c++) {
5060 		vdev_t *vd = rvd->vdev_child[c];
5061 
5062 		/* don't count the holes & logs as children */
5063 		if (vd->vdev_islog || vd->vdev_ishole) {
5064 			if (lastlog == 0)
5065 				lastlog = c;
5066 			continue;
5067 		}
5068 
5069 		lastlog = 0;
5070 	}
5071 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5072 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5073 
5074 	/* next, ensure no spare or cache devices are part of the split */
5075 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5076 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5077 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5078 
5079 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5080 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5081 
5082 	/* then, loop over each vdev and validate it */
5083 	for (c = 0; c < children; c++) {
5084 		uint64_t is_hole = 0;
5085 
5086 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5087 		    &is_hole);
5088 
5089 		if (is_hole != 0) {
5090 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5091 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5092 				continue;
5093 			} else {
5094 				error = SET_ERROR(EINVAL);
5095 				break;
5096 			}
5097 		}
5098 
5099 		/* which disk is going to be split? */
5100 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5101 		    &glist[c]) != 0) {
5102 			error = SET_ERROR(EINVAL);
5103 			break;
5104 		}
5105 
5106 		/* look it up in the spa */
5107 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5108 		if (vml[c] == NULL) {
5109 			error = SET_ERROR(ENODEV);
5110 			break;
5111 		}
5112 
5113 		/* make sure there's nothing stopping the split */
5114 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5115 		    vml[c]->vdev_islog ||
5116 		    vml[c]->vdev_ishole ||
5117 		    vml[c]->vdev_isspare ||
5118 		    vml[c]->vdev_isl2cache ||
5119 		    !vdev_writeable(vml[c]) ||
5120 		    vml[c]->vdev_children != 0 ||
5121 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5122 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5123 			error = SET_ERROR(EINVAL);
5124 			break;
5125 		}
5126 
5127 		if (vdev_dtl_required(vml[c])) {
5128 			error = SET_ERROR(EBUSY);
5129 			break;
5130 		}
5131 
5132 		/* we need certain info from the top level */
5133 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5134 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5135 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5136 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5137 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5138 		    vml[c]->vdev_top->vdev_asize) == 0);
5139 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5140 		    vml[c]->vdev_top->vdev_ashift) == 0);
5141 
5142 		/* transfer per-vdev ZAPs */
5143 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5144 		VERIFY0(nvlist_add_uint64(child[c],
5145 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5146 
5147 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5148 		VERIFY0(nvlist_add_uint64(child[c],
5149 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5150 		    vml[c]->vdev_parent->vdev_top_zap));
5151 	}
5152 
5153 	if (error != 0) {
5154 		kmem_free(vml, children * sizeof (vdev_t *));
5155 		kmem_free(glist, children * sizeof (uint64_t));
5156 		return (spa_vdev_exit(spa, NULL, txg, error));
5157 	}
5158 
5159 	/* stop writers from using the disks */
5160 	for (c = 0; c < children; c++) {
5161 		if (vml[c] != NULL)
5162 			vml[c]->vdev_offline = B_TRUE;
5163 	}
5164 	vdev_reopen(spa->spa_root_vdev);
5165 
5166 	/*
5167 	 * Temporarily record the splitting vdevs in the spa config.  This
5168 	 * will disappear once the config is regenerated.
5169 	 */
5170 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5171 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5172 	    glist, children) == 0);
5173 	kmem_free(glist, children * sizeof (uint64_t));
5174 
5175 	mutex_enter(&spa->spa_props_lock);
5176 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5177 	    nvl) == 0);
5178 	mutex_exit(&spa->spa_props_lock);
5179 	spa->spa_config_splitting = nvl;
5180 	vdev_config_dirty(spa->spa_root_vdev);
5181 
5182 	/* configure and create the new pool */
5183 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5184 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5185 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5186 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5187 	    spa_version(spa)) == 0);
5188 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5189 	    spa->spa_config_txg) == 0);
5190 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5191 	    spa_generate_guid(NULL)) == 0);
5192 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5193 	(void) nvlist_lookup_string(props,
5194 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5195 
5196 	/* add the new pool to the namespace */
5197 	newspa = spa_add(newname, config, altroot);
5198 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5199 	newspa->spa_config_txg = spa->spa_config_txg;
5200 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5201 
5202 	/* release the spa config lock, retaining the namespace lock */
5203 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5204 
5205 	if (zio_injection_enabled)
5206 		zio_handle_panic_injection(spa, FTAG, 1);
5207 
5208 	spa_activate(newspa, spa_mode_global);
5209 	spa_async_suspend(newspa);
5210 
5211 	/* create the new pool from the disks of the original pool */
5212 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5213 	if (error)
5214 		goto out;
5215 
5216 	/* if that worked, generate a real config for the new pool */
5217 	if (newspa->spa_root_vdev != NULL) {
5218 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5219 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5220 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5221 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5222 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5223 		    B_TRUE));
5224 	}
5225 
5226 	/* set the props */
5227 	if (props != NULL) {
5228 		spa_configfile_set(newspa, props, B_FALSE);
5229 		error = spa_prop_set(newspa, props);
5230 		if (error)
5231 			goto out;
5232 	}
5233 
5234 	/* flush everything */
5235 	txg = spa_vdev_config_enter(newspa);
5236 	vdev_config_dirty(newspa->spa_root_vdev);
5237 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5238 
5239 	if (zio_injection_enabled)
5240 		zio_handle_panic_injection(spa, FTAG, 2);
5241 
5242 	spa_async_resume(newspa);
5243 
5244 	/* finally, update the original pool's config */
5245 	txg = spa_vdev_config_enter(spa);
5246 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5247 	error = dmu_tx_assign(tx, TXG_WAIT);
5248 	if (error != 0)
5249 		dmu_tx_abort(tx);
5250 	for (c = 0; c < children; c++) {
5251 		if (vml[c] != NULL) {
5252 			vdev_split(vml[c]);
5253 			if (error == 0)
5254 				spa_history_log_internal(spa, "detach", tx,
5255 				    "vdev=%s", vml[c]->vdev_path);
5256 
5257 			vdev_free(vml[c]);
5258 		}
5259 	}
5260 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5261 	vdev_config_dirty(spa->spa_root_vdev);
5262 	spa->spa_config_splitting = NULL;
5263 	nvlist_free(nvl);
5264 	if (error == 0)
5265 		dmu_tx_commit(tx);
5266 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5267 
5268 	if (zio_injection_enabled)
5269 		zio_handle_panic_injection(spa, FTAG, 3);
5270 
5271 	/* split is complete; log a history record */
5272 	spa_history_log_internal(newspa, "split", NULL,
5273 	    "from pool %s", spa_name(spa));
5274 
5275 	kmem_free(vml, children * sizeof (vdev_t *));
5276 
5277 	/* if we're not going to mount the filesystems in userland, export */
5278 	if (exp)
5279 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5280 		    B_FALSE, B_FALSE);
5281 
5282 	return (error);
5283 
5284 out:
5285 	spa_unload(newspa);
5286 	spa_deactivate(newspa);
5287 	spa_remove(newspa);
5288 
5289 	txg = spa_vdev_config_enter(spa);
5290 
5291 	/* re-online all offlined disks */
5292 	for (c = 0; c < children; c++) {
5293 		if (vml[c] != NULL)
5294 			vml[c]->vdev_offline = B_FALSE;
5295 	}
5296 	vdev_reopen(spa->spa_root_vdev);
5297 
5298 	nvlist_free(spa->spa_config_splitting);
5299 	spa->spa_config_splitting = NULL;
5300 	(void) spa_vdev_exit(spa, NULL, txg, error);
5301 
5302 	kmem_free(vml, children * sizeof (vdev_t *));
5303 	return (error);
5304 }
5305 
5306 static nvlist_t *
5307 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5308 {
5309 	for (int i = 0; i < count; i++) {
5310 		uint64_t guid;
5311 
5312 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5313 		    &guid) == 0);
5314 
5315 		if (guid == target_guid)
5316 			return (nvpp[i]);
5317 	}
5318 
5319 	return (NULL);
5320 }
5321 
5322 static void
5323 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5324 	nvlist_t *dev_to_remove)
5325 {
5326 	nvlist_t **newdev = NULL;
5327 
5328 	if (count > 1)
5329 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5330 
5331 	for (int i = 0, j = 0; i < count; i++) {
5332 		if (dev[i] == dev_to_remove)
5333 			continue;
5334 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5335 	}
5336 
5337 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5338 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5339 
5340 	for (int i = 0; i < count - 1; i++)
5341 		nvlist_free(newdev[i]);
5342 
5343 	if (count > 1)
5344 		kmem_free(newdev, (count - 1) * sizeof (void *));
5345 }
5346 
5347 /*
5348  * Evacuate the device.
5349  */
5350 static int
5351 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5352 {
5353 	uint64_t txg;
5354 	int error = 0;
5355 
5356 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5357 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5358 	ASSERT(vd == vd->vdev_top);
5359 
5360 	/*
5361 	 * Evacuate the device.  We don't hold the config lock as writer
5362 	 * since we need to do I/O but we do keep the
5363 	 * spa_namespace_lock held.  Once this completes the device
5364 	 * should no longer have any blocks allocated on it.
5365 	 */
5366 	if (vd->vdev_islog) {
5367 		if (vd->vdev_stat.vs_alloc != 0)
5368 			error = spa_offline_log(spa);
5369 	} else {
5370 		error = SET_ERROR(ENOTSUP);
5371 	}
5372 
5373 	if (error)
5374 		return (error);
5375 
5376 	/*
5377 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5378 	 * associated with this vdev, and wait for these changes to sync.
5379 	 */
5380 	ASSERT0(vd->vdev_stat.vs_alloc);
5381 	txg = spa_vdev_config_enter(spa);
5382 	vd->vdev_removing = B_TRUE;
5383 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5384 	vdev_config_dirty(vd);
5385 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5386 
5387 	return (0);
5388 }
5389 
5390 /*
5391  * Complete the removal by cleaning up the namespace.
5392  */
5393 static void
5394 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5395 {
5396 	vdev_t *rvd = spa->spa_root_vdev;
5397 	uint64_t id = vd->vdev_id;
5398 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5399 
5400 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5401 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5402 	ASSERT(vd == vd->vdev_top);
5403 
5404 	/*
5405 	 * Only remove any devices which are empty.
5406 	 */
5407 	if (vd->vdev_stat.vs_alloc != 0)
5408 		return;
5409 
5410 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5411 
5412 	if (list_link_active(&vd->vdev_state_dirty_node))
5413 		vdev_state_clean(vd);
5414 	if (list_link_active(&vd->vdev_config_dirty_node))
5415 		vdev_config_clean(vd);
5416 
5417 	vdev_free(vd);
5418 
5419 	if (last_vdev) {
5420 		vdev_compact_children(rvd);
5421 	} else {
5422 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5423 		vdev_add_child(rvd, vd);
5424 	}
5425 	vdev_config_dirty(rvd);
5426 
5427 	/*
5428 	 * Reassess the health of our root vdev.
5429 	 */
5430 	vdev_reopen(rvd);
5431 }
5432 
5433 /*
5434  * Remove a device from the pool -
5435  *
5436  * Removing a device from the vdev namespace requires several steps
5437  * and can take a significant amount of time.  As a result we use
5438  * the spa_vdev_config_[enter/exit] functions which allow us to
5439  * grab and release the spa_config_lock while still holding the namespace
5440  * lock.  During each step the configuration is synced out.
5441  *
5442  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5443  * devices.
5444  */
5445 int
5446 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5447 {
5448 	vdev_t *vd;
5449 	metaslab_group_t *mg;
5450 	nvlist_t **spares, **l2cache, *nv;
5451 	uint64_t txg = 0;
5452 	uint_t nspares, nl2cache;
5453 	int error = 0;
5454 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5455 
5456 	ASSERT(spa_writeable(spa));
5457 
5458 	if (!locked)
5459 		txg = spa_vdev_enter(spa);
5460 
5461 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5462 
5463 	if (spa->spa_spares.sav_vdevs != NULL &&
5464 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5465 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5466 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5467 		/*
5468 		 * Only remove the hot spare if it's not currently in use
5469 		 * in this pool.
5470 		 */
5471 		if (vd == NULL || unspare) {
5472 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5473 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5474 			spa_load_spares(spa);
5475 			spa->spa_spares.sav_sync = B_TRUE;
5476 		} else {
5477 			error = SET_ERROR(EBUSY);
5478 		}
5479 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5480 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5481 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5482 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5483 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5484 		/*
5485 		 * Cache devices can always be removed.
5486 		 */
5487 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5488 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5489 		spa_load_l2cache(spa);
5490 		spa->spa_l2cache.sav_sync = B_TRUE;
5491 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5492 	} else if (vd != NULL && vd->vdev_islog) {
5493 		ASSERT(!locked);
5494 		ASSERT(vd == vd->vdev_top);
5495 
5496 		mg = vd->vdev_mg;
5497 
5498 		/*
5499 		 * Stop allocating from this vdev.
5500 		 */
5501 		metaslab_group_passivate(mg);
5502 
5503 		/*
5504 		 * Wait for the youngest allocations and frees to sync,
5505 		 * and then wait for the deferral of those frees to finish.
5506 		 */
5507 		spa_vdev_config_exit(spa, NULL,
5508 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5509 
5510 		/*
5511 		 * Attempt to evacuate the vdev.
5512 		 */
5513 		error = spa_vdev_remove_evacuate(spa, vd);
5514 
5515 		txg = spa_vdev_config_enter(spa);
5516 
5517 		/*
5518 		 * If we couldn't evacuate the vdev, unwind.
5519 		 */
5520 		if (error) {
5521 			metaslab_group_activate(mg);
5522 			return (spa_vdev_exit(spa, NULL, txg, error));
5523 		}
5524 
5525 		/*
5526 		 * Clean up the vdev namespace.
5527 		 */
5528 		spa_vdev_remove_from_namespace(spa, vd);
5529 
5530 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5531 	} else if (vd != NULL) {
5532 		/*
5533 		 * Normal vdevs cannot be removed (yet).
5534 		 */
5535 		error = SET_ERROR(ENOTSUP);
5536 	} else {
5537 		/*
5538 		 * There is no vdev of any kind with the specified guid.
5539 		 */
5540 		error = SET_ERROR(ENOENT);
5541 	}
5542 
5543 	if (!locked)
5544 		error = spa_vdev_exit(spa, NULL, txg, error);
5545 
5546 	return (error);
5547 }
5548 
5549 /*
5550  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5551  * currently spared, so we can detach it.
5552  */
5553 static vdev_t *
5554 spa_vdev_resilver_done_hunt(vdev_t *vd)
5555 {
5556 	vdev_t *newvd, *oldvd;
5557 
5558 	for (int c = 0; c < vd->vdev_children; c++) {
5559 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5560 		if (oldvd != NULL)
5561 			return (oldvd);
5562 	}
5563 
5564 	/*
5565 	 * Check for a completed replacement.  We always consider the first
5566 	 * vdev in the list to be the oldest vdev, and the last one to be
5567 	 * the newest (see spa_vdev_attach() for how that works).  In
5568 	 * the case where the newest vdev is faulted, we will not automatically
5569 	 * remove it after a resilver completes.  This is OK as it will require
5570 	 * user intervention to determine which disk the admin wishes to keep.
5571 	 */
5572 	if (vd->vdev_ops == &vdev_replacing_ops) {
5573 		ASSERT(vd->vdev_children > 1);
5574 
5575 		newvd = vd->vdev_child[vd->vdev_children - 1];
5576 		oldvd = vd->vdev_child[0];
5577 
5578 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5579 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5580 		    !vdev_dtl_required(oldvd))
5581 			return (oldvd);
5582 	}
5583 
5584 	/*
5585 	 * Check for a completed resilver with the 'unspare' flag set.
5586 	 */
5587 	if (vd->vdev_ops == &vdev_spare_ops) {
5588 		vdev_t *first = vd->vdev_child[0];
5589 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5590 
5591 		if (last->vdev_unspare) {
5592 			oldvd = first;
5593 			newvd = last;
5594 		} else if (first->vdev_unspare) {
5595 			oldvd = last;
5596 			newvd = first;
5597 		} else {
5598 			oldvd = NULL;
5599 		}
5600 
5601 		if (oldvd != NULL &&
5602 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5603 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5604 		    !vdev_dtl_required(oldvd))
5605 			return (oldvd);
5606 
5607 		/*
5608 		 * If there are more than two spares attached to a disk,
5609 		 * and those spares are not required, then we want to
5610 		 * attempt to free them up now so that they can be used
5611 		 * by other pools.  Once we're back down to a single
5612 		 * disk+spare, we stop removing them.
5613 		 */
5614 		if (vd->vdev_children > 2) {
5615 			newvd = vd->vdev_child[1];
5616 
5617 			if (newvd->vdev_isspare && last->vdev_isspare &&
5618 			    vdev_dtl_empty(last, DTL_MISSING) &&
5619 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5620 			    !vdev_dtl_required(newvd))
5621 				return (newvd);
5622 		}
5623 	}
5624 
5625 	return (NULL);
5626 }
5627 
5628 static void
5629 spa_vdev_resilver_done(spa_t *spa)
5630 {
5631 	vdev_t *vd, *pvd, *ppvd;
5632 	uint64_t guid, sguid, pguid, ppguid;
5633 
5634 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5635 
5636 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5637 		pvd = vd->vdev_parent;
5638 		ppvd = pvd->vdev_parent;
5639 		guid = vd->vdev_guid;
5640 		pguid = pvd->vdev_guid;
5641 		ppguid = ppvd->vdev_guid;
5642 		sguid = 0;
5643 		/*
5644 		 * If we have just finished replacing a hot spared device, then
5645 		 * we need to detach the parent's first child (the original hot
5646 		 * spare) as well.
5647 		 */
5648 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5649 		    ppvd->vdev_children == 2) {
5650 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5651 			sguid = ppvd->vdev_child[1]->vdev_guid;
5652 		}
5653 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5654 
5655 		spa_config_exit(spa, SCL_ALL, FTAG);
5656 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5657 			return;
5658 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5659 			return;
5660 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5661 	}
5662 
5663 	spa_config_exit(spa, SCL_ALL, FTAG);
5664 }
5665 
5666 /*
5667  * Update the stored path or FRU for this vdev.
5668  */
5669 int
5670 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5671     boolean_t ispath)
5672 {
5673 	vdev_t *vd;
5674 	boolean_t sync = B_FALSE;
5675 
5676 	ASSERT(spa_writeable(spa));
5677 
5678 	spa_vdev_state_enter(spa, SCL_ALL);
5679 
5680 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5681 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5682 
5683 	if (!vd->vdev_ops->vdev_op_leaf)
5684 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5685 
5686 	if (ispath) {
5687 		if (strcmp(value, vd->vdev_path) != 0) {
5688 			spa_strfree(vd->vdev_path);
5689 			vd->vdev_path = spa_strdup(value);
5690 			sync = B_TRUE;
5691 		}
5692 	} else {
5693 		if (vd->vdev_fru == NULL) {
5694 			vd->vdev_fru = spa_strdup(value);
5695 			sync = B_TRUE;
5696 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5697 			spa_strfree(vd->vdev_fru);
5698 			vd->vdev_fru = spa_strdup(value);
5699 			sync = B_TRUE;
5700 		}
5701 	}
5702 
5703 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5704 }
5705 
5706 int
5707 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5708 {
5709 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5710 }
5711 
5712 int
5713 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5714 {
5715 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5716 }
5717 
5718 /*
5719  * ==========================================================================
5720  * SPA Scanning
5721  * ==========================================================================
5722  */
5723 
5724 int
5725 spa_scan_stop(spa_t *spa)
5726 {
5727 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5728 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5729 		return (SET_ERROR(EBUSY));
5730 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5731 }
5732 
5733 int
5734 spa_scan(spa_t *spa, pool_scan_func_t func)
5735 {
5736 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5737 
5738 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5739 		return (SET_ERROR(ENOTSUP));
5740 
5741 	/*
5742 	 * If a resilver was requested, but there is no DTL on a
5743 	 * writeable leaf device, we have nothing to do.
5744 	 */
5745 	if (func == POOL_SCAN_RESILVER &&
5746 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5747 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5748 		return (0);
5749 	}
5750 
5751 	return (dsl_scan(spa->spa_dsl_pool, func));
5752 }
5753 
5754 /*
5755  * ==========================================================================
5756  * SPA async task processing
5757  * ==========================================================================
5758  */
5759 
5760 static void
5761 spa_async_remove(spa_t *spa, vdev_t *vd)
5762 {
5763 	if (vd->vdev_remove_wanted) {
5764 		vd->vdev_remove_wanted = B_FALSE;
5765 		vd->vdev_delayed_close = B_FALSE;
5766 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5767 
5768 		/*
5769 		 * We want to clear the stats, but we don't want to do a full
5770 		 * vdev_clear() as that will cause us to throw away
5771 		 * degraded/faulted state as well as attempt to reopen the
5772 		 * device, all of which is a waste.
5773 		 */
5774 		vd->vdev_stat.vs_read_errors = 0;
5775 		vd->vdev_stat.vs_write_errors = 0;
5776 		vd->vdev_stat.vs_checksum_errors = 0;
5777 
5778 		vdev_state_dirty(vd->vdev_top);
5779 	}
5780 
5781 	for (int c = 0; c < vd->vdev_children; c++)
5782 		spa_async_remove(spa, vd->vdev_child[c]);
5783 }
5784 
5785 static void
5786 spa_async_probe(spa_t *spa, vdev_t *vd)
5787 {
5788 	if (vd->vdev_probe_wanted) {
5789 		vd->vdev_probe_wanted = B_FALSE;
5790 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5791 	}
5792 
5793 	for (int c = 0; c < vd->vdev_children; c++)
5794 		spa_async_probe(spa, vd->vdev_child[c]);
5795 }
5796 
5797 static void
5798 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5799 {
5800 	sysevent_id_t eid;
5801 	nvlist_t *attr;
5802 	char *physpath;
5803 
5804 	if (!spa->spa_autoexpand)
5805 		return;
5806 
5807 	for (int c = 0; c < vd->vdev_children; c++) {
5808 		vdev_t *cvd = vd->vdev_child[c];
5809 		spa_async_autoexpand(spa, cvd);
5810 	}
5811 
5812 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5813 		return;
5814 
5815 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5816 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5817 
5818 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5819 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5820 
5821 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5822 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5823 
5824 	nvlist_free(attr);
5825 	kmem_free(physpath, MAXPATHLEN);
5826 }
5827 
5828 static void
5829 spa_async_thread(spa_t *spa)
5830 {
5831 	int tasks;
5832 
5833 	ASSERT(spa->spa_sync_on);
5834 
5835 	mutex_enter(&spa->spa_async_lock);
5836 	tasks = spa->spa_async_tasks;
5837 	spa->spa_async_tasks = 0;
5838 	mutex_exit(&spa->spa_async_lock);
5839 
5840 	/*
5841 	 * See if the config needs to be updated.
5842 	 */
5843 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5844 		uint64_t old_space, new_space;
5845 
5846 		mutex_enter(&spa_namespace_lock);
5847 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5848 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5849 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5850 		mutex_exit(&spa_namespace_lock);
5851 
5852 		/*
5853 		 * If the pool grew as a result of the config update,
5854 		 * then log an internal history event.
5855 		 */
5856 		if (new_space != old_space) {
5857 			spa_history_log_internal(spa, "vdev online", NULL,
5858 			    "pool '%s' size: %llu(+%llu)",
5859 			    spa_name(spa), new_space, new_space - old_space);
5860 		}
5861 	}
5862 
5863 	/*
5864 	 * See if any devices need to be marked REMOVED.
5865 	 */
5866 	if (tasks & SPA_ASYNC_REMOVE) {
5867 		spa_vdev_state_enter(spa, SCL_NONE);
5868 		spa_async_remove(spa, spa->spa_root_vdev);
5869 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5870 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5871 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5872 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5873 		(void) spa_vdev_state_exit(spa, NULL, 0);
5874 	}
5875 
5876 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5877 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5878 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5879 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5880 	}
5881 
5882 	/*
5883 	 * See if any devices need to be probed.
5884 	 */
5885 	if (tasks & SPA_ASYNC_PROBE) {
5886 		spa_vdev_state_enter(spa, SCL_NONE);
5887 		spa_async_probe(spa, spa->spa_root_vdev);
5888 		(void) spa_vdev_state_exit(spa, NULL, 0);
5889 	}
5890 
5891 	/*
5892 	 * If any devices are done replacing, detach them.
5893 	 */
5894 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5895 		spa_vdev_resilver_done(spa);
5896 
5897 	/*
5898 	 * Kick off a resilver.
5899 	 */
5900 	if (tasks & SPA_ASYNC_RESILVER)
5901 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5902 
5903 	/*
5904 	 * Let the world know that we're done.
5905 	 */
5906 	mutex_enter(&spa->spa_async_lock);
5907 	spa->spa_async_thread = NULL;
5908 	cv_broadcast(&spa->spa_async_cv);
5909 	mutex_exit(&spa->spa_async_lock);
5910 	thread_exit();
5911 }
5912 
5913 void
5914 spa_async_suspend(spa_t *spa)
5915 {
5916 	mutex_enter(&spa->spa_async_lock);
5917 	spa->spa_async_suspended++;
5918 	while (spa->spa_async_thread != NULL)
5919 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5920 	mutex_exit(&spa->spa_async_lock);
5921 }
5922 
5923 void
5924 spa_async_resume(spa_t *spa)
5925 {
5926 	mutex_enter(&spa->spa_async_lock);
5927 	ASSERT(spa->spa_async_suspended != 0);
5928 	spa->spa_async_suspended--;
5929 	mutex_exit(&spa->spa_async_lock);
5930 }
5931 
5932 static boolean_t
5933 spa_async_tasks_pending(spa_t *spa)
5934 {
5935 	uint_t non_config_tasks;
5936 	uint_t config_task;
5937 	boolean_t config_task_suspended;
5938 
5939 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5940 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5941 	if (spa->spa_ccw_fail_time == 0) {
5942 		config_task_suspended = B_FALSE;
5943 	} else {
5944 		config_task_suspended =
5945 		    (gethrtime() - spa->spa_ccw_fail_time) <
5946 		    (zfs_ccw_retry_interval * NANOSEC);
5947 	}
5948 
5949 	return (non_config_tasks || (config_task && !config_task_suspended));
5950 }
5951 
5952 static void
5953 spa_async_dispatch(spa_t *spa)
5954 {
5955 	mutex_enter(&spa->spa_async_lock);
5956 	if (spa_async_tasks_pending(spa) &&
5957 	    !spa->spa_async_suspended &&
5958 	    spa->spa_async_thread == NULL &&
5959 	    rootdir != NULL)
5960 		spa->spa_async_thread = thread_create(NULL, 0,
5961 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5962 	mutex_exit(&spa->spa_async_lock);
5963 }
5964 
5965 void
5966 spa_async_request(spa_t *spa, int task)
5967 {
5968 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5969 	mutex_enter(&spa->spa_async_lock);
5970 	spa->spa_async_tasks |= task;
5971 	mutex_exit(&spa->spa_async_lock);
5972 }
5973 
5974 /*
5975  * ==========================================================================
5976  * SPA syncing routines
5977  * ==========================================================================
5978  */
5979 
5980 static int
5981 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5982 {
5983 	bpobj_t *bpo = arg;
5984 	bpobj_enqueue(bpo, bp, tx);
5985 	return (0);
5986 }
5987 
5988 static int
5989 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5990 {
5991 	zio_t *zio = arg;
5992 
5993 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5994 	    zio->io_flags));
5995 	return (0);
5996 }
5997 
5998 /*
5999  * Note: this simple function is not inlined to make it easier to dtrace the
6000  * amount of time spent syncing frees.
6001  */
6002 static void
6003 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6004 {
6005 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6006 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6007 	VERIFY(zio_wait(zio) == 0);
6008 }
6009 
6010 /*
6011  * Note: this simple function is not inlined to make it easier to dtrace the
6012  * amount of time spent syncing deferred frees.
6013  */
6014 static void
6015 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6016 {
6017 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6018 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6019 	    spa_free_sync_cb, zio, tx), ==, 0);
6020 	VERIFY0(zio_wait(zio));
6021 }
6022 
6023 
6024 static void
6025 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6026 {
6027 	char *packed = NULL;
6028 	size_t bufsize;
6029 	size_t nvsize = 0;
6030 	dmu_buf_t *db;
6031 
6032 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6033 
6034 	/*
6035 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6036 	 * information.  This avoids the dmu_buf_will_dirty() path and
6037 	 * saves us a pre-read to get data we don't actually care about.
6038 	 */
6039 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6040 	packed = kmem_alloc(bufsize, KM_SLEEP);
6041 
6042 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6043 	    KM_SLEEP) == 0);
6044 	bzero(packed + nvsize, bufsize - nvsize);
6045 
6046 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6047 
6048 	kmem_free(packed, bufsize);
6049 
6050 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6051 	dmu_buf_will_dirty(db, tx);
6052 	*(uint64_t *)db->db_data = nvsize;
6053 	dmu_buf_rele(db, FTAG);
6054 }
6055 
6056 static void
6057 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6058     const char *config, const char *entry)
6059 {
6060 	nvlist_t *nvroot;
6061 	nvlist_t **list;
6062 	int i;
6063 
6064 	if (!sav->sav_sync)
6065 		return;
6066 
6067 	/*
6068 	 * Update the MOS nvlist describing the list of available devices.
6069 	 * spa_validate_aux() will have already made sure this nvlist is
6070 	 * valid and the vdevs are labeled appropriately.
6071 	 */
6072 	if (sav->sav_object == 0) {
6073 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6074 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6075 		    sizeof (uint64_t), tx);
6076 		VERIFY(zap_update(spa->spa_meta_objset,
6077 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6078 		    &sav->sav_object, tx) == 0);
6079 	}
6080 
6081 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6082 	if (sav->sav_count == 0) {
6083 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6084 	} else {
6085 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6086 		for (i = 0; i < sav->sav_count; i++)
6087 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6088 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6089 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6090 		    sav->sav_count) == 0);
6091 		for (i = 0; i < sav->sav_count; i++)
6092 			nvlist_free(list[i]);
6093 		kmem_free(list, sav->sav_count * sizeof (void *));
6094 	}
6095 
6096 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6097 	nvlist_free(nvroot);
6098 
6099 	sav->sav_sync = B_FALSE;
6100 }
6101 
6102 /*
6103  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6104  * The all-vdev ZAP must be empty.
6105  */
6106 static void
6107 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6108 {
6109 	spa_t *spa = vd->vdev_spa;
6110 	if (vd->vdev_top_zap != 0) {
6111 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6112 		    vd->vdev_top_zap, tx));
6113 	}
6114 	if (vd->vdev_leaf_zap != 0) {
6115 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6116 		    vd->vdev_leaf_zap, tx));
6117 	}
6118 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6119 		spa_avz_build(vd->vdev_child[i], avz, tx);
6120 	}
6121 }
6122 
6123 static void
6124 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6125 {
6126 	nvlist_t *config;
6127 
6128 	/*
6129 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6130 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6131 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6132 	 * need to rebuild the AVZ although the config may not be dirty.
6133 	 */
6134 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6135 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6136 		return;
6137 
6138 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6139 
6140 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6141 	    spa->spa_all_vdev_zaps != 0);
6142 
6143 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6144 		/* Make and build the new AVZ */
6145 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6146 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6147 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6148 
6149 		/* Diff old AVZ with new one */
6150 		zap_cursor_t zc;
6151 		zap_attribute_t za;
6152 
6153 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6154 		    spa->spa_all_vdev_zaps);
6155 		    zap_cursor_retrieve(&zc, &za) == 0;
6156 		    zap_cursor_advance(&zc)) {
6157 			uint64_t vdzap = za.za_first_integer;
6158 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6159 			    vdzap) == ENOENT) {
6160 				/*
6161 				 * ZAP is listed in old AVZ but not in new one;
6162 				 * destroy it
6163 				 */
6164 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6165 				    tx));
6166 			}
6167 		}
6168 
6169 		zap_cursor_fini(&zc);
6170 
6171 		/* Destroy the old AVZ */
6172 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6173 		    spa->spa_all_vdev_zaps, tx));
6174 
6175 		/* Replace the old AVZ in the dir obj with the new one */
6176 		VERIFY0(zap_update(spa->spa_meta_objset,
6177 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6178 		    sizeof (new_avz), 1, &new_avz, tx));
6179 
6180 		spa->spa_all_vdev_zaps = new_avz;
6181 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6182 		zap_cursor_t zc;
6183 		zap_attribute_t za;
6184 
6185 		/* Walk through the AVZ and destroy all listed ZAPs */
6186 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6187 		    spa->spa_all_vdev_zaps);
6188 		    zap_cursor_retrieve(&zc, &za) == 0;
6189 		    zap_cursor_advance(&zc)) {
6190 			uint64_t zap = za.za_first_integer;
6191 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6192 		}
6193 
6194 		zap_cursor_fini(&zc);
6195 
6196 		/* Destroy and unlink the AVZ itself */
6197 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6198 		    spa->spa_all_vdev_zaps, tx));
6199 		VERIFY0(zap_remove(spa->spa_meta_objset,
6200 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6201 		spa->spa_all_vdev_zaps = 0;
6202 	}
6203 
6204 	if (spa->spa_all_vdev_zaps == 0) {
6205 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6206 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6207 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6208 	}
6209 	spa->spa_avz_action = AVZ_ACTION_NONE;
6210 
6211 	/* Create ZAPs for vdevs that don't have them. */
6212 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6213 
6214 	config = spa_config_generate(spa, spa->spa_root_vdev,
6215 	    dmu_tx_get_txg(tx), B_FALSE);
6216 
6217 	/*
6218 	 * If we're upgrading the spa version then make sure that
6219 	 * the config object gets updated with the correct version.
6220 	 */
6221 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6222 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6223 		    spa->spa_uberblock.ub_version);
6224 
6225 	spa_config_exit(spa, SCL_STATE, FTAG);
6226 
6227 	nvlist_free(spa->spa_config_syncing);
6228 	spa->spa_config_syncing = config;
6229 
6230 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6231 }
6232 
6233 static void
6234 spa_sync_version(void *arg, dmu_tx_t *tx)
6235 {
6236 	uint64_t *versionp = arg;
6237 	uint64_t version = *versionp;
6238 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6239 
6240 	/*
6241 	 * Setting the version is special cased when first creating the pool.
6242 	 */
6243 	ASSERT(tx->tx_txg != TXG_INITIAL);
6244 
6245 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6246 	ASSERT(version >= spa_version(spa));
6247 
6248 	spa->spa_uberblock.ub_version = version;
6249 	vdev_config_dirty(spa->spa_root_vdev);
6250 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6251 }
6252 
6253 /*
6254  * Set zpool properties.
6255  */
6256 static void
6257 spa_sync_props(void *arg, dmu_tx_t *tx)
6258 {
6259 	nvlist_t *nvp = arg;
6260 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6261 	objset_t *mos = spa->spa_meta_objset;
6262 	nvpair_t *elem = NULL;
6263 
6264 	mutex_enter(&spa->spa_props_lock);
6265 
6266 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6267 		uint64_t intval;
6268 		char *strval, *fname;
6269 		zpool_prop_t prop;
6270 		const char *propname;
6271 		zprop_type_t proptype;
6272 		spa_feature_t fid;
6273 
6274 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6275 		case ZPROP_INVAL:
6276 			/*
6277 			 * We checked this earlier in spa_prop_validate().
6278 			 */
6279 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6280 
6281 			fname = strchr(nvpair_name(elem), '@') + 1;
6282 			VERIFY0(zfeature_lookup_name(fname, &fid));
6283 
6284 			spa_feature_enable(spa, fid, tx);
6285 			spa_history_log_internal(spa, "set", tx,
6286 			    "%s=enabled", nvpair_name(elem));
6287 			break;
6288 
6289 		case ZPOOL_PROP_VERSION:
6290 			intval = fnvpair_value_uint64(elem);
6291 			/*
6292 			 * The version is synced seperatly before other
6293 			 * properties and should be correct by now.
6294 			 */
6295 			ASSERT3U(spa_version(spa), >=, intval);
6296 			break;
6297 
6298 		case ZPOOL_PROP_ALTROOT:
6299 			/*
6300 			 * 'altroot' is a non-persistent property. It should
6301 			 * have been set temporarily at creation or import time.
6302 			 */
6303 			ASSERT(spa->spa_root != NULL);
6304 			break;
6305 
6306 		case ZPOOL_PROP_READONLY:
6307 		case ZPOOL_PROP_CACHEFILE:
6308 			/*
6309 			 * 'readonly' and 'cachefile' are also non-persisitent
6310 			 * properties.
6311 			 */
6312 			break;
6313 		case ZPOOL_PROP_COMMENT:
6314 			strval = fnvpair_value_string(elem);
6315 			if (spa->spa_comment != NULL)
6316 				spa_strfree(spa->spa_comment);
6317 			spa->spa_comment = spa_strdup(strval);
6318 			/*
6319 			 * We need to dirty the configuration on all the vdevs
6320 			 * so that their labels get updated.  It's unnecessary
6321 			 * to do this for pool creation since the vdev's
6322 			 * configuratoin has already been dirtied.
6323 			 */
6324 			if (tx->tx_txg != TXG_INITIAL)
6325 				vdev_config_dirty(spa->spa_root_vdev);
6326 			spa_history_log_internal(spa, "set", tx,
6327 			    "%s=%s", nvpair_name(elem), strval);
6328 			break;
6329 		default:
6330 			/*
6331 			 * Set pool property values in the poolprops mos object.
6332 			 */
6333 			if (spa->spa_pool_props_object == 0) {
6334 				spa->spa_pool_props_object =
6335 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6336 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6337 				    tx);
6338 			}
6339 
6340 			/* normalize the property name */
6341 			propname = zpool_prop_to_name(prop);
6342 			proptype = zpool_prop_get_type(prop);
6343 
6344 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6345 				ASSERT(proptype == PROP_TYPE_STRING);
6346 				strval = fnvpair_value_string(elem);
6347 				VERIFY0(zap_update(mos,
6348 				    spa->spa_pool_props_object, propname,
6349 				    1, strlen(strval) + 1, strval, tx));
6350 				spa_history_log_internal(spa, "set", tx,
6351 				    "%s=%s", nvpair_name(elem), strval);
6352 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6353 				intval = fnvpair_value_uint64(elem);
6354 
6355 				if (proptype == PROP_TYPE_INDEX) {
6356 					const char *unused;
6357 					VERIFY0(zpool_prop_index_to_string(
6358 					    prop, intval, &unused));
6359 				}
6360 				VERIFY0(zap_update(mos,
6361 				    spa->spa_pool_props_object, propname,
6362 				    8, 1, &intval, tx));
6363 				spa_history_log_internal(spa, "set", tx,
6364 				    "%s=%lld", nvpair_name(elem), intval);
6365 			} else {
6366 				ASSERT(0); /* not allowed */
6367 			}
6368 
6369 			switch (prop) {
6370 			case ZPOOL_PROP_DELEGATION:
6371 				spa->spa_delegation = intval;
6372 				break;
6373 			case ZPOOL_PROP_BOOTFS:
6374 				spa->spa_bootfs = intval;
6375 				break;
6376 			case ZPOOL_PROP_FAILUREMODE:
6377 				spa->spa_failmode = intval;
6378 				break;
6379 			case ZPOOL_PROP_AUTOEXPAND:
6380 				spa->spa_autoexpand = intval;
6381 				if (tx->tx_txg != TXG_INITIAL)
6382 					spa_async_request(spa,
6383 					    SPA_ASYNC_AUTOEXPAND);
6384 				break;
6385 			case ZPOOL_PROP_DEDUPDITTO:
6386 				spa->spa_dedup_ditto = intval;
6387 				break;
6388 			default:
6389 				break;
6390 			}
6391 		}
6392 
6393 	}
6394 
6395 	mutex_exit(&spa->spa_props_lock);
6396 }
6397 
6398 /*
6399  * Perform one-time upgrade on-disk changes.  spa_version() does not
6400  * reflect the new version this txg, so there must be no changes this
6401  * txg to anything that the upgrade code depends on after it executes.
6402  * Therefore this must be called after dsl_pool_sync() does the sync
6403  * tasks.
6404  */
6405 static void
6406 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6407 {
6408 	dsl_pool_t *dp = spa->spa_dsl_pool;
6409 
6410 	ASSERT(spa->spa_sync_pass == 1);
6411 
6412 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6413 
6414 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6415 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6416 		dsl_pool_create_origin(dp, tx);
6417 
6418 		/* Keeping the origin open increases spa_minref */
6419 		spa->spa_minref += 3;
6420 	}
6421 
6422 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6423 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6424 		dsl_pool_upgrade_clones(dp, tx);
6425 	}
6426 
6427 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6428 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6429 		dsl_pool_upgrade_dir_clones(dp, tx);
6430 
6431 		/* Keeping the freedir open increases spa_minref */
6432 		spa->spa_minref += 3;
6433 	}
6434 
6435 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6436 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6437 		spa_feature_create_zap_objects(spa, tx);
6438 	}
6439 
6440 	/*
6441 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6442 	 * when possibility to use lz4 compression for metadata was added
6443 	 * Old pools that have this feature enabled must be upgraded to have
6444 	 * this feature active
6445 	 */
6446 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6447 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6448 		    SPA_FEATURE_LZ4_COMPRESS);
6449 		boolean_t lz4_ac = spa_feature_is_active(spa,
6450 		    SPA_FEATURE_LZ4_COMPRESS);
6451 
6452 		if (lz4_en && !lz4_ac)
6453 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6454 	}
6455 
6456 	/*
6457 	 * If we haven't written the salt, do so now.  Note that the
6458 	 * feature may not be activated yet, but that's fine since
6459 	 * the presence of this ZAP entry is backwards compatible.
6460 	 */
6461 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6462 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6463 		VERIFY0(zap_add(spa->spa_meta_objset,
6464 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6465 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6466 		    spa->spa_cksum_salt.zcs_bytes, tx));
6467 	}
6468 
6469 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6470 }
6471 
6472 /*
6473  * Sync the specified transaction group.  New blocks may be dirtied as
6474  * part of the process, so we iterate until it converges.
6475  */
6476 void
6477 spa_sync(spa_t *spa, uint64_t txg)
6478 {
6479 	dsl_pool_t *dp = spa->spa_dsl_pool;
6480 	objset_t *mos = spa->spa_meta_objset;
6481 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6482 	vdev_t *rvd = spa->spa_root_vdev;
6483 	vdev_t *vd;
6484 	dmu_tx_t *tx;
6485 	int error;
6486 
6487 	VERIFY(spa_writeable(spa));
6488 
6489 	/*
6490 	 * Lock out configuration changes.
6491 	 */
6492 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6493 
6494 	spa->spa_syncing_txg = txg;
6495 	spa->spa_sync_pass = 0;
6496 
6497 	/*
6498 	 * If there are any pending vdev state changes, convert them
6499 	 * into config changes that go out with this transaction group.
6500 	 */
6501 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6502 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6503 		/*
6504 		 * We need the write lock here because, for aux vdevs,
6505 		 * calling vdev_config_dirty() modifies sav_config.
6506 		 * This is ugly and will become unnecessary when we
6507 		 * eliminate the aux vdev wart by integrating all vdevs
6508 		 * into the root vdev tree.
6509 		 */
6510 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6511 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6512 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6513 			vdev_state_clean(vd);
6514 			vdev_config_dirty(vd);
6515 		}
6516 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6517 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6518 	}
6519 	spa_config_exit(spa, SCL_STATE, FTAG);
6520 
6521 	tx = dmu_tx_create_assigned(dp, txg);
6522 
6523 	spa->spa_sync_starttime = gethrtime();
6524 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6525 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6526 
6527 	/*
6528 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6529 	 * set spa_deflate if we have no raid-z vdevs.
6530 	 */
6531 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6532 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6533 		int i;
6534 
6535 		for (i = 0; i < rvd->vdev_children; i++) {
6536 			vd = rvd->vdev_child[i];
6537 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6538 				break;
6539 		}
6540 		if (i == rvd->vdev_children) {
6541 			spa->spa_deflate = TRUE;
6542 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6543 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6544 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6545 		}
6546 	}
6547 
6548 	/*
6549 	 * Iterate to convergence.
6550 	 */
6551 	do {
6552 		int pass = ++spa->spa_sync_pass;
6553 
6554 		spa_sync_config_object(spa, tx);
6555 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6556 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6557 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6558 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6559 		spa_errlog_sync(spa, txg);
6560 		dsl_pool_sync(dp, txg);
6561 
6562 		if (pass < zfs_sync_pass_deferred_free) {
6563 			spa_sync_frees(spa, free_bpl, tx);
6564 		} else {
6565 			/*
6566 			 * We can not defer frees in pass 1, because
6567 			 * we sync the deferred frees later in pass 1.
6568 			 */
6569 			ASSERT3U(pass, >, 1);
6570 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6571 			    &spa->spa_deferred_bpobj, tx);
6572 		}
6573 
6574 		ddt_sync(spa, txg);
6575 		dsl_scan_sync(dp, tx);
6576 
6577 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6578 			vdev_sync(vd, txg);
6579 
6580 		if (pass == 1) {
6581 			spa_sync_upgrades(spa, tx);
6582 			ASSERT3U(txg, >=,
6583 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6584 			/*
6585 			 * Note: We need to check if the MOS is dirty
6586 			 * because we could have marked the MOS dirty
6587 			 * without updating the uberblock (e.g. if we
6588 			 * have sync tasks but no dirty user data).  We
6589 			 * need to check the uberblock's rootbp because
6590 			 * it is updated if we have synced out dirty
6591 			 * data (though in this case the MOS will most
6592 			 * likely also be dirty due to second order
6593 			 * effects, we don't want to rely on that here).
6594 			 */
6595 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6596 			    !dmu_objset_is_dirty(mos, txg)) {
6597 				/*
6598 				 * Nothing changed on the first pass,
6599 				 * therefore this TXG is a no-op.  Avoid
6600 				 * syncing deferred frees, so that we
6601 				 * can keep this TXG as a no-op.
6602 				 */
6603 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6604 				    txg));
6605 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6606 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6607 				break;
6608 			}
6609 			spa_sync_deferred_frees(spa, tx);
6610 		}
6611 
6612 	} while (dmu_objset_is_dirty(mos, txg));
6613 
6614 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
6615 		/*
6616 		 * Make sure that the number of ZAPs for all the vdevs matches
6617 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
6618 		 * called if the config is dirty; otherwise there may be
6619 		 * outstanding AVZ operations that weren't completed in
6620 		 * spa_sync_config_object.
6621 		 */
6622 		uint64_t all_vdev_zap_entry_count;
6623 		ASSERT0(zap_count(spa->spa_meta_objset,
6624 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6625 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6626 		    all_vdev_zap_entry_count);
6627 	}
6628 
6629 	/*
6630 	 * Rewrite the vdev configuration (which includes the uberblock)
6631 	 * to commit the transaction group.
6632 	 *
6633 	 * If there are no dirty vdevs, we sync the uberblock to a few
6634 	 * random top-level vdevs that are known to be visible in the
6635 	 * config cache (see spa_vdev_add() for a complete description).
6636 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6637 	 */
6638 	for (;;) {
6639 		/*
6640 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6641 		 * while we're attempting to write the vdev labels.
6642 		 */
6643 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6644 
6645 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6646 			vdev_t *svd[SPA_DVAS_PER_BP];
6647 			int svdcount = 0;
6648 			int children = rvd->vdev_children;
6649 			int c0 = spa_get_random(children);
6650 
6651 			for (int c = 0; c < children; c++) {
6652 				vd = rvd->vdev_child[(c0 + c) % children];
6653 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6654 					continue;
6655 				svd[svdcount++] = vd;
6656 				if (svdcount == SPA_DVAS_PER_BP)
6657 					break;
6658 			}
6659 			error = vdev_config_sync(svd, svdcount, txg);
6660 		} else {
6661 			error = vdev_config_sync(rvd->vdev_child,
6662 			    rvd->vdev_children, txg);
6663 		}
6664 
6665 		if (error == 0)
6666 			spa->spa_last_synced_guid = rvd->vdev_guid;
6667 
6668 		spa_config_exit(spa, SCL_STATE, FTAG);
6669 
6670 		if (error == 0)
6671 			break;
6672 		zio_suspend(spa, NULL);
6673 		zio_resume_wait(spa);
6674 	}
6675 	dmu_tx_commit(tx);
6676 
6677 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6678 
6679 	/*
6680 	 * Clear the dirty config list.
6681 	 */
6682 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6683 		vdev_config_clean(vd);
6684 
6685 	/*
6686 	 * Now that the new config has synced transactionally,
6687 	 * let it become visible to the config cache.
6688 	 */
6689 	if (spa->spa_config_syncing != NULL) {
6690 		spa_config_set(spa, spa->spa_config_syncing);
6691 		spa->spa_config_txg = txg;
6692 		spa->spa_config_syncing = NULL;
6693 	}
6694 
6695 	spa->spa_ubsync = spa->spa_uberblock;
6696 
6697 	dsl_pool_sync_done(dp, txg);
6698 
6699 	/*
6700 	 * Update usable space statistics.
6701 	 */
6702 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6703 		vdev_sync_done(vd, txg);
6704 
6705 	spa_update_dspace(spa);
6706 
6707 	/*
6708 	 * It had better be the case that we didn't dirty anything
6709 	 * since vdev_config_sync().
6710 	 */
6711 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6712 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6713 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6714 
6715 	spa->spa_sync_pass = 0;
6716 
6717 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6718 
6719 	spa_handle_ignored_writes(spa);
6720 
6721 	/*
6722 	 * If any async tasks have been requested, kick them off.
6723 	 */
6724 	spa_async_dispatch(spa);
6725 }
6726 
6727 /*
6728  * Sync all pools.  We don't want to hold the namespace lock across these
6729  * operations, so we take a reference on the spa_t and drop the lock during the
6730  * sync.
6731  */
6732 void
6733 spa_sync_allpools(void)
6734 {
6735 	spa_t *spa = NULL;
6736 	mutex_enter(&spa_namespace_lock);
6737 	while ((spa = spa_next(spa)) != NULL) {
6738 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6739 		    !spa_writeable(spa) || spa_suspended(spa))
6740 			continue;
6741 		spa_open_ref(spa, FTAG);
6742 		mutex_exit(&spa_namespace_lock);
6743 		txg_wait_synced(spa_get_dsl(spa), 0);
6744 		mutex_enter(&spa_namespace_lock);
6745 		spa_close(spa, FTAG);
6746 	}
6747 	mutex_exit(&spa_namespace_lock);
6748 }
6749 
6750 /*
6751  * ==========================================================================
6752  * Miscellaneous routines
6753  * ==========================================================================
6754  */
6755 
6756 /*
6757  * Remove all pools in the system.
6758  */
6759 void
6760 spa_evict_all(void)
6761 {
6762 	spa_t *spa;
6763 
6764 	/*
6765 	 * Remove all cached state.  All pools should be closed now,
6766 	 * so every spa in the AVL tree should be unreferenced.
6767 	 */
6768 	mutex_enter(&spa_namespace_lock);
6769 	while ((spa = spa_next(NULL)) != NULL) {
6770 		/*
6771 		 * Stop async tasks.  The async thread may need to detach
6772 		 * a device that's been replaced, which requires grabbing
6773 		 * spa_namespace_lock, so we must drop it here.
6774 		 */
6775 		spa_open_ref(spa, FTAG);
6776 		mutex_exit(&spa_namespace_lock);
6777 		spa_async_suspend(spa);
6778 		mutex_enter(&spa_namespace_lock);
6779 		spa_close(spa, FTAG);
6780 
6781 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6782 			spa_unload(spa);
6783 			spa_deactivate(spa);
6784 		}
6785 		spa_remove(spa);
6786 	}
6787 	mutex_exit(&spa_namespace_lock);
6788 }
6789 
6790 vdev_t *
6791 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6792 {
6793 	vdev_t *vd;
6794 	int i;
6795 
6796 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6797 		return (vd);
6798 
6799 	if (aux) {
6800 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6801 			vd = spa->spa_l2cache.sav_vdevs[i];
6802 			if (vd->vdev_guid == guid)
6803 				return (vd);
6804 		}
6805 
6806 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6807 			vd = spa->spa_spares.sav_vdevs[i];
6808 			if (vd->vdev_guid == guid)
6809 				return (vd);
6810 		}
6811 	}
6812 
6813 	return (NULL);
6814 }
6815 
6816 void
6817 spa_upgrade(spa_t *spa, uint64_t version)
6818 {
6819 	ASSERT(spa_writeable(spa));
6820 
6821 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6822 
6823 	/*
6824 	 * This should only be called for a non-faulted pool, and since a
6825 	 * future version would result in an unopenable pool, this shouldn't be
6826 	 * possible.
6827 	 */
6828 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6829 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6830 
6831 	spa->spa_uberblock.ub_version = version;
6832 	vdev_config_dirty(spa->spa_root_vdev);
6833 
6834 	spa_config_exit(spa, SCL_ALL, FTAG);
6835 
6836 	txg_wait_synced(spa_get_dsl(spa), 0);
6837 }
6838 
6839 boolean_t
6840 spa_has_spare(spa_t *spa, uint64_t guid)
6841 {
6842 	int i;
6843 	uint64_t spareguid;
6844 	spa_aux_vdev_t *sav = &spa->spa_spares;
6845 
6846 	for (i = 0; i < sav->sav_count; i++)
6847 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6848 			return (B_TRUE);
6849 
6850 	for (i = 0; i < sav->sav_npending; i++) {
6851 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6852 		    &spareguid) == 0 && spareguid == guid)
6853 			return (B_TRUE);
6854 	}
6855 
6856 	return (B_FALSE);
6857 }
6858 
6859 /*
6860  * Check if a pool has an active shared spare device.
6861  * Note: reference count of an active spare is 2, as a spare and as a replace
6862  */
6863 static boolean_t
6864 spa_has_active_shared_spare(spa_t *spa)
6865 {
6866 	int i, refcnt;
6867 	uint64_t pool;
6868 	spa_aux_vdev_t *sav = &spa->spa_spares;
6869 
6870 	for (i = 0; i < sav->sav_count; i++) {
6871 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6872 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6873 		    refcnt > 2)
6874 			return (B_TRUE);
6875 	}
6876 
6877 	return (B_FALSE);
6878 }
6879 
6880 /*
6881  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6882  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6883  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6884  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6885  * or zdb as real changes.
6886  */
6887 void
6888 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6889 {
6890 #ifdef _KERNEL
6891 	sysevent_t		*ev;
6892 	sysevent_attr_list_t	*attr = NULL;
6893 	sysevent_value_t	value;
6894 	sysevent_id_t		eid;
6895 
6896 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6897 	    SE_SLEEP);
6898 
6899 	value.value_type = SE_DATA_TYPE_STRING;
6900 	value.value.sv_string = spa_name(spa);
6901 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6902 		goto done;
6903 
6904 	value.value_type = SE_DATA_TYPE_UINT64;
6905 	value.value.sv_uint64 = spa_guid(spa);
6906 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6907 		goto done;
6908 
6909 	if (vd) {
6910 		value.value_type = SE_DATA_TYPE_UINT64;
6911 		value.value.sv_uint64 = vd->vdev_guid;
6912 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6913 		    SE_SLEEP) != 0)
6914 			goto done;
6915 
6916 		if (vd->vdev_path) {
6917 			value.value_type = SE_DATA_TYPE_STRING;
6918 			value.value.sv_string = vd->vdev_path;
6919 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6920 			    &value, SE_SLEEP) != 0)
6921 				goto done;
6922 		}
6923 	}
6924 
6925 	if (sysevent_attach_attributes(ev, attr) != 0)
6926 		goto done;
6927 	attr = NULL;
6928 
6929 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6930 
6931 done:
6932 	if (attr)
6933 		sysevent_free_attr(attr);
6934 	sysevent_free(ev);
6935 #endif
6936 }
6937