1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 */ 30 31 /* 32 * SPA: Storage Pool Allocator 33 * 34 * This file contains all the routines used when modifying on-disk SPA state. 35 * This includes opening, importing, destroying, exporting a pool, and syncing a 36 * pool. 37 */ 38 39 #include <sys/zfs_context.h> 40 #include <sys/fm/fs/zfs.h> 41 #include <sys/spa_impl.h> 42 #include <sys/zio.h> 43 #include <sys/zio_checksum.h> 44 #include <sys/dmu.h> 45 #include <sys/dmu_tx.h> 46 #include <sys/zap.h> 47 #include <sys/zil.h> 48 #include <sys/ddt.h> 49 #include <sys/vdev_impl.h> 50 #include <sys/metaslab.h> 51 #include <sys/metaslab_impl.h> 52 #include <sys/uberblock_impl.h> 53 #include <sys/txg.h> 54 #include <sys/avl.h> 55 #include <sys/dmu_traverse.h> 56 #include <sys/dmu_objset.h> 57 #include <sys/unique.h> 58 #include <sys/dsl_pool.h> 59 #include <sys/dsl_dataset.h> 60 #include <sys/dsl_dir.h> 61 #include <sys/dsl_prop.h> 62 #include <sys/dsl_synctask.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/arc.h> 65 #include <sys/callb.h> 66 #include <sys/systeminfo.h> 67 #include <sys/spa_boot.h> 68 #include <sys/zfs_ioctl.h> 69 #include <sys/dsl_scan.h> 70 #include <sys/zfeature.h> 71 #include <sys/dsl_destroy.h> 72 73 #ifdef _KERNEL 74 #include <sys/bootprops.h> 75 #include <sys/callb.h> 76 #include <sys/cpupart.h> 77 #include <sys/pool.h> 78 #include <sys/sysdc.h> 79 #include <sys/zone.h> 80 #endif /* _KERNEL */ 81 82 #include "zfs_prop.h" 83 #include "zfs_comutil.h" 84 85 /* 86 * The interval, in seconds, at which failed configuration cache file writes 87 * should be retried. 88 */ 89 static int zfs_ccw_retry_interval = 300; 90 91 typedef enum zti_modes { 92 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 93 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 94 ZTI_MODE_NULL, /* don't create a taskq */ 95 ZTI_NMODES 96 } zti_modes_t; 97 98 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 99 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 100 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 101 102 #define ZTI_N(n) ZTI_P(n, 1) 103 #define ZTI_ONE ZTI_N(1) 104 105 typedef struct zio_taskq_info { 106 zti_modes_t zti_mode; 107 uint_t zti_value; 108 uint_t zti_count; 109 } zio_taskq_info_t; 110 111 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 112 "issue", "issue_high", "intr", "intr_high" 113 }; 114 115 /* 116 * This table defines the taskq settings for each ZFS I/O type. When 117 * initializing a pool, we use this table to create an appropriately sized 118 * taskq. Some operations are low volume and therefore have a small, static 119 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 120 * macros. Other operations process a large amount of data; the ZTI_BATCH 121 * macro causes us to create a taskq oriented for throughput. Some operations 122 * are so high frequency and short-lived that the taskq itself can become a a 123 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 124 * additional degree of parallelism specified by the number of threads per- 125 * taskq and the number of taskqs; when dispatching an event in this case, the 126 * particular taskq is chosen at random. 127 * 128 * The different taskq priorities are to handle the different contexts (issue 129 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 130 * need to be handled with minimum delay. 131 */ 132 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 133 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 134 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 135 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 136 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 137 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 138 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 139 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 140 }; 141 142 static void spa_sync_version(void *arg, dmu_tx_t *tx); 143 static void spa_sync_props(void *arg, dmu_tx_t *tx); 144 static boolean_t spa_has_active_shared_spare(spa_t *spa); 145 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 146 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 147 char **ereport); 148 static void spa_vdev_resilver_done(spa_t *spa); 149 150 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 151 id_t zio_taskq_psrset_bind = PS_NONE; 152 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 153 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 154 155 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 156 extern int zfs_sync_pass_deferred_free; 157 158 /* 159 * This (illegal) pool name is used when temporarily importing a spa_t in order 160 * to get the vdev stats associated with the imported devices. 161 */ 162 #define TRYIMPORT_NAME "$import" 163 164 /* 165 * ========================================================================== 166 * SPA properties routines 167 * ========================================================================== 168 */ 169 170 /* 171 * Add a (source=src, propname=propval) list to an nvlist. 172 */ 173 static void 174 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 175 uint64_t intval, zprop_source_t src) 176 { 177 const char *propname = zpool_prop_to_name(prop); 178 nvlist_t *propval; 179 180 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 181 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 182 183 if (strval != NULL) 184 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 185 else 186 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 187 188 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 189 nvlist_free(propval); 190 } 191 192 /* 193 * Get property values from the spa configuration. 194 */ 195 static void 196 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 197 { 198 vdev_t *rvd = spa->spa_root_vdev; 199 dsl_pool_t *pool = spa->spa_dsl_pool; 200 uint64_t size, alloc, cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 metaslab_class_t *mc = spa_normal_class(spa); 204 205 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 206 207 if (rvd != NULL) { 208 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 209 size = metaslab_class_get_space(spa_normal_class(spa)); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 213 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 214 size - alloc, src); 215 216 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 217 metaslab_class_fragmentation(mc), src); 218 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 219 metaslab_class_expandable_space(mc), src); 220 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 221 (spa_mode(spa) == FREAD), src); 222 223 cap = (size == 0) ? 0 : (alloc * 100 / size); 224 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 225 226 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 227 ddt_get_pool_dedup_ratio(spa), src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 230 rvd->vdev_state, src); 231 232 version = spa_version(spa); 233 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 234 src = ZPROP_SRC_DEFAULT; 235 else 236 src = ZPROP_SRC_LOCAL; 237 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 238 } 239 240 if (pool != NULL) { 241 /* 242 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 243 * when opening pools before this version freedir will be NULL. 244 */ 245 if (pool->dp_free_dir != NULL) { 246 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 247 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 248 src); 249 } else { 250 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 251 NULL, 0, src); 252 } 253 254 if (pool->dp_leak_dir != NULL) { 255 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 256 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 257 src); 258 } else { 259 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 260 NULL, 0, src); 261 } 262 } 263 264 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 265 266 if (spa->spa_comment != NULL) { 267 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 268 0, ZPROP_SRC_LOCAL); 269 } 270 271 if (spa->spa_root != NULL) 272 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 273 0, ZPROP_SRC_LOCAL); 274 275 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 276 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 277 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 278 } else { 279 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 280 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 281 } 282 283 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 284 if (dp->scd_path == NULL) { 285 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 286 "none", 0, ZPROP_SRC_LOCAL); 287 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 288 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 289 dp->scd_path, 0, ZPROP_SRC_LOCAL); 290 } 291 } 292 } 293 294 /* 295 * Get zpool property values. 296 */ 297 int 298 spa_prop_get(spa_t *spa, nvlist_t **nvp) 299 { 300 objset_t *mos = spa->spa_meta_objset; 301 zap_cursor_t zc; 302 zap_attribute_t za; 303 int err; 304 305 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 306 307 mutex_enter(&spa->spa_props_lock); 308 309 /* 310 * Get properties from the spa config. 311 */ 312 spa_prop_get_config(spa, nvp); 313 314 /* If no pool property object, no more prop to get. */ 315 if (mos == NULL || spa->spa_pool_props_object == 0) { 316 mutex_exit(&spa->spa_props_lock); 317 return (0); 318 } 319 320 /* 321 * Get properties from the MOS pool property object. 322 */ 323 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 324 (err = zap_cursor_retrieve(&zc, &za)) == 0; 325 zap_cursor_advance(&zc)) { 326 uint64_t intval = 0; 327 char *strval = NULL; 328 zprop_source_t src = ZPROP_SRC_DEFAULT; 329 zpool_prop_t prop; 330 331 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 332 continue; 333 334 switch (za.za_integer_length) { 335 case 8: 336 /* integer property */ 337 if (za.za_first_integer != 338 zpool_prop_default_numeric(prop)) 339 src = ZPROP_SRC_LOCAL; 340 341 if (prop == ZPOOL_PROP_BOOTFS) { 342 dsl_pool_t *dp; 343 dsl_dataset_t *ds = NULL; 344 345 dp = spa_get_dsl(spa); 346 dsl_pool_config_enter(dp, FTAG); 347 if (err = dsl_dataset_hold_obj(dp, 348 za.za_first_integer, FTAG, &ds)) { 349 dsl_pool_config_exit(dp, FTAG); 350 break; 351 } 352 353 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 354 KM_SLEEP); 355 dsl_dataset_name(ds, strval); 356 dsl_dataset_rele(ds, FTAG); 357 dsl_pool_config_exit(dp, FTAG); 358 } else { 359 strval = NULL; 360 intval = za.za_first_integer; 361 } 362 363 spa_prop_add_list(*nvp, prop, strval, intval, src); 364 365 if (strval != NULL) 366 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 367 368 break; 369 370 case 1: 371 /* string property */ 372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 373 err = zap_lookup(mos, spa->spa_pool_props_object, 374 za.za_name, 1, za.za_num_integers, strval); 375 if (err) { 376 kmem_free(strval, za.za_num_integers); 377 break; 378 } 379 spa_prop_add_list(*nvp, prop, strval, 0, src); 380 kmem_free(strval, za.za_num_integers); 381 break; 382 383 default: 384 break; 385 } 386 } 387 zap_cursor_fini(&zc); 388 mutex_exit(&spa->spa_props_lock); 389 out: 390 if (err && err != ENOENT) { 391 nvlist_free(*nvp); 392 *nvp = NULL; 393 return (err); 394 } 395 396 return (0); 397 } 398 399 /* 400 * Validate the given pool properties nvlist and modify the list 401 * for the property values to be set. 402 */ 403 static int 404 spa_prop_validate(spa_t *spa, nvlist_t *props) 405 { 406 nvpair_t *elem; 407 int error = 0, reset_bootfs = 0; 408 uint64_t objnum = 0; 409 boolean_t has_feature = B_FALSE; 410 411 elem = NULL; 412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 413 uint64_t intval; 414 char *strval, *slash, *check, *fname; 415 const char *propname = nvpair_name(elem); 416 zpool_prop_t prop = zpool_name_to_prop(propname); 417 418 switch (prop) { 419 case ZPROP_INVAL: 420 if (!zpool_prop_feature(propname)) { 421 error = SET_ERROR(EINVAL); 422 break; 423 } 424 425 /* 426 * Sanitize the input. 427 */ 428 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 429 error = SET_ERROR(EINVAL); 430 break; 431 } 432 433 if (nvpair_value_uint64(elem, &intval) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 if (intval != 0) { 439 error = SET_ERROR(EINVAL); 440 break; 441 } 442 443 fname = strchr(propname, '@') + 1; 444 if (zfeature_lookup_name(fname, NULL) != 0) { 445 error = SET_ERROR(EINVAL); 446 break; 447 } 448 449 has_feature = B_TRUE; 450 break; 451 452 case ZPOOL_PROP_VERSION: 453 error = nvpair_value_uint64(elem, &intval); 454 if (!error && 455 (intval < spa_version(spa) || 456 intval > SPA_VERSION_BEFORE_FEATURES || 457 has_feature)) 458 error = SET_ERROR(EINVAL); 459 break; 460 461 case ZPOOL_PROP_DELEGATION: 462 case ZPOOL_PROP_AUTOREPLACE: 463 case ZPOOL_PROP_LISTSNAPS: 464 case ZPOOL_PROP_AUTOEXPAND: 465 error = nvpair_value_uint64(elem, &intval); 466 if (!error && intval > 1) 467 error = SET_ERROR(EINVAL); 468 break; 469 470 case ZPOOL_PROP_BOOTFS: 471 /* 472 * If the pool version is less than SPA_VERSION_BOOTFS, 473 * or the pool is still being created (version == 0), 474 * the bootfs property cannot be set. 475 */ 476 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 477 error = SET_ERROR(ENOTSUP); 478 break; 479 } 480 481 /* 482 * Make sure the vdev config is bootable 483 */ 484 if (!vdev_is_bootable(spa->spa_root_vdev)) { 485 error = SET_ERROR(ENOTSUP); 486 break; 487 } 488 489 reset_bootfs = 1; 490 491 error = nvpair_value_string(elem, &strval); 492 493 if (!error) { 494 objset_t *os; 495 uint64_t propval; 496 497 if (strval == NULL || strval[0] == '\0') { 498 objnum = zpool_prop_default_numeric( 499 ZPOOL_PROP_BOOTFS); 500 break; 501 } 502 503 if (error = dmu_objset_hold(strval, FTAG, &os)) 504 break; 505 506 /* 507 * Must be ZPL, and its property settings 508 * must be supported by GRUB (compression 509 * is not gzip, and large blocks are not used). 510 */ 511 512 if (dmu_objset_type(os) != DMU_OST_ZFS) { 513 error = SET_ERROR(ENOTSUP); 514 } else if ((error = 515 dsl_prop_get_int_ds(dmu_objset_ds(os), 516 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 517 &propval)) == 0 && 518 !BOOTFS_COMPRESS_VALID(propval)) { 519 error = SET_ERROR(ENOTSUP); 520 } else if ((error = 521 dsl_prop_get_int_ds(dmu_objset_ds(os), 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), 523 &propval)) == 0 && 524 propval > SPA_OLD_MAXBLOCKSIZE) { 525 error = SET_ERROR(ENOTSUP); 526 } else { 527 objnum = dmu_objset_id(os); 528 } 529 dmu_objset_rele(os, FTAG); 530 } 531 break; 532 533 case ZPOOL_PROP_FAILUREMODE: 534 error = nvpair_value_uint64(elem, &intval); 535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 536 intval > ZIO_FAILURE_MODE_PANIC)) 537 error = SET_ERROR(EINVAL); 538 539 /* 540 * This is a special case which only occurs when 541 * the pool has completely failed. This allows 542 * the user to change the in-core failmode property 543 * without syncing it out to disk (I/Os might 544 * currently be blocked). We do this by returning 545 * EIO to the caller (spa_prop_set) to trick it 546 * into thinking we encountered a property validation 547 * error. 548 */ 549 if (!error && spa_suspended(spa)) { 550 spa->spa_failmode = intval; 551 error = SET_ERROR(EIO); 552 } 553 break; 554 555 case ZPOOL_PROP_CACHEFILE: 556 if ((error = nvpair_value_string(elem, &strval)) != 0) 557 break; 558 559 if (strval[0] == '\0') 560 break; 561 562 if (strcmp(strval, "none") == 0) 563 break; 564 565 if (strval[0] != '/') { 566 error = SET_ERROR(EINVAL); 567 break; 568 } 569 570 slash = strrchr(strval, '/'); 571 ASSERT(slash != NULL); 572 573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 574 strcmp(slash, "/..") == 0) 575 error = SET_ERROR(EINVAL); 576 break; 577 578 case ZPOOL_PROP_COMMENT: 579 if ((error = nvpair_value_string(elem, &strval)) != 0) 580 break; 581 for (check = strval; *check != '\0'; check++) { 582 /* 583 * The kernel doesn't have an easy isprint() 584 * check. For this kernel check, we merely 585 * check ASCII apart from DEL. Fix this if 586 * there is an easy-to-use kernel isprint(). 587 */ 588 if (*check >= 0x7f) { 589 error = SET_ERROR(EINVAL); 590 break; 591 } 592 } 593 if (strlen(strval) > ZPROP_MAX_COMMENT) 594 error = E2BIG; 595 break; 596 597 case ZPOOL_PROP_DEDUPDITTO: 598 if (spa_version(spa) < SPA_VERSION_DEDUP) 599 error = SET_ERROR(ENOTSUP); 600 else 601 error = nvpair_value_uint64(elem, &intval); 602 if (error == 0 && 603 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 604 error = SET_ERROR(EINVAL); 605 break; 606 } 607 608 if (error) 609 break; 610 } 611 612 if (!error && reset_bootfs) { 613 error = nvlist_remove(props, 614 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 615 616 if (!error) { 617 error = nvlist_add_uint64(props, 618 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 619 } 620 } 621 622 return (error); 623 } 624 625 void 626 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 627 { 628 char *cachefile; 629 spa_config_dirent_t *dp; 630 631 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 632 &cachefile) != 0) 633 return; 634 635 dp = kmem_alloc(sizeof (spa_config_dirent_t), 636 KM_SLEEP); 637 638 if (cachefile[0] == '\0') 639 dp->scd_path = spa_strdup(spa_config_path); 640 else if (strcmp(cachefile, "none") == 0) 641 dp->scd_path = NULL; 642 else 643 dp->scd_path = spa_strdup(cachefile); 644 645 list_insert_head(&spa->spa_config_list, dp); 646 if (need_sync) 647 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 648 } 649 650 int 651 spa_prop_set(spa_t *spa, nvlist_t *nvp) 652 { 653 int error; 654 nvpair_t *elem = NULL; 655 boolean_t need_sync = B_FALSE; 656 657 if ((error = spa_prop_validate(spa, nvp)) != 0) 658 return (error); 659 660 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 661 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 662 663 if (prop == ZPOOL_PROP_CACHEFILE || 664 prop == ZPOOL_PROP_ALTROOT || 665 prop == ZPOOL_PROP_READONLY) 666 continue; 667 668 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 669 uint64_t ver; 670 671 if (prop == ZPOOL_PROP_VERSION) { 672 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 673 } else { 674 ASSERT(zpool_prop_feature(nvpair_name(elem))); 675 ver = SPA_VERSION_FEATURES; 676 need_sync = B_TRUE; 677 } 678 679 /* Save time if the version is already set. */ 680 if (ver == spa_version(spa)) 681 continue; 682 683 /* 684 * In addition to the pool directory object, we might 685 * create the pool properties object, the features for 686 * read object, the features for write object, or the 687 * feature descriptions object. 688 */ 689 error = dsl_sync_task(spa->spa_name, NULL, 690 spa_sync_version, &ver, 691 6, ZFS_SPACE_CHECK_RESERVED); 692 if (error) 693 return (error); 694 continue; 695 } 696 697 need_sync = B_TRUE; 698 break; 699 } 700 701 if (need_sync) { 702 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 703 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 704 } 705 706 return (0); 707 } 708 709 /* 710 * If the bootfs property value is dsobj, clear it. 711 */ 712 void 713 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 714 { 715 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 716 VERIFY(zap_remove(spa->spa_meta_objset, 717 spa->spa_pool_props_object, 718 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 719 spa->spa_bootfs = 0; 720 } 721 } 722 723 /*ARGSUSED*/ 724 static int 725 spa_change_guid_check(void *arg, dmu_tx_t *tx) 726 { 727 uint64_t *newguid = arg; 728 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 729 vdev_t *rvd = spa->spa_root_vdev; 730 uint64_t vdev_state; 731 732 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 733 vdev_state = rvd->vdev_state; 734 spa_config_exit(spa, SCL_STATE, FTAG); 735 736 if (vdev_state != VDEV_STATE_HEALTHY) 737 return (SET_ERROR(ENXIO)); 738 739 ASSERT3U(spa_guid(spa), !=, *newguid); 740 741 return (0); 742 } 743 744 static void 745 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 746 { 747 uint64_t *newguid = arg; 748 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 749 uint64_t oldguid; 750 vdev_t *rvd = spa->spa_root_vdev; 751 752 oldguid = spa_guid(spa); 753 754 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 755 rvd->vdev_guid = *newguid; 756 rvd->vdev_guid_sum += (*newguid - oldguid); 757 vdev_config_dirty(rvd); 758 spa_config_exit(spa, SCL_STATE, FTAG); 759 760 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 761 oldguid, *newguid); 762 } 763 764 /* 765 * Change the GUID for the pool. This is done so that we can later 766 * re-import a pool built from a clone of our own vdevs. We will modify 767 * the root vdev's guid, our own pool guid, and then mark all of our 768 * vdevs dirty. Note that we must make sure that all our vdevs are 769 * online when we do this, or else any vdevs that weren't present 770 * would be orphaned from our pool. We are also going to issue a 771 * sysevent to update any watchers. 772 */ 773 int 774 spa_change_guid(spa_t *spa) 775 { 776 int error; 777 uint64_t guid; 778 779 mutex_enter(&spa->spa_vdev_top_lock); 780 mutex_enter(&spa_namespace_lock); 781 guid = spa_generate_guid(NULL); 782 783 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 784 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 785 786 if (error == 0) { 787 spa_config_sync(spa, B_FALSE, B_TRUE); 788 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 789 } 790 791 mutex_exit(&spa_namespace_lock); 792 mutex_exit(&spa->spa_vdev_top_lock); 793 794 return (error); 795 } 796 797 /* 798 * ========================================================================== 799 * SPA state manipulation (open/create/destroy/import/export) 800 * ========================================================================== 801 */ 802 803 static int 804 spa_error_entry_compare(const void *a, const void *b) 805 { 806 spa_error_entry_t *sa = (spa_error_entry_t *)a; 807 spa_error_entry_t *sb = (spa_error_entry_t *)b; 808 int ret; 809 810 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 811 sizeof (zbookmark_phys_t)); 812 813 if (ret < 0) 814 return (-1); 815 else if (ret > 0) 816 return (1); 817 else 818 return (0); 819 } 820 821 /* 822 * Utility function which retrieves copies of the current logs and 823 * re-initializes them in the process. 824 */ 825 void 826 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 827 { 828 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 829 830 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 831 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 832 833 avl_create(&spa->spa_errlist_scrub, 834 spa_error_entry_compare, sizeof (spa_error_entry_t), 835 offsetof(spa_error_entry_t, se_avl)); 836 avl_create(&spa->spa_errlist_last, 837 spa_error_entry_compare, sizeof (spa_error_entry_t), 838 offsetof(spa_error_entry_t, se_avl)); 839 } 840 841 static void 842 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 843 { 844 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 845 enum zti_modes mode = ztip->zti_mode; 846 uint_t value = ztip->zti_value; 847 uint_t count = ztip->zti_count; 848 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 849 char name[32]; 850 uint_t flags = 0; 851 boolean_t batch = B_FALSE; 852 853 if (mode == ZTI_MODE_NULL) { 854 tqs->stqs_count = 0; 855 tqs->stqs_taskq = NULL; 856 return; 857 } 858 859 ASSERT3U(count, >, 0); 860 861 tqs->stqs_count = count; 862 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 863 864 switch (mode) { 865 case ZTI_MODE_FIXED: 866 ASSERT3U(value, >=, 1); 867 value = MAX(value, 1); 868 break; 869 870 case ZTI_MODE_BATCH: 871 batch = B_TRUE; 872 flags |= TASKQ_THREADS_CPU_PCT; 873 value = zio_taskq_batch_pct; 874 break; 875 876 default: 877 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 878 "spa_activate()", 879 zio_type_name[t], zio_taskq_types[q], mode, value); 880 break; 881 } 882 883 for (uint_t i = 0; i < count; i++) { 884 taskq_t *tq; 885 886 if (count > 1) { 887 (void) snprintf(name, sizeof (name), "%s_%s_%u", 888 zio_type_name[t], zio_taskq_types[q], i); 889 } else { 890 (void) snprintf(name, sizeof (name), "%s_%s", 891 zio_type_name[t], zio_taskq_types[q]); 892 } 893 894 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 895 if (batch) 896 flags |= TASKQ_DC_BATCH; 897 898 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 899 spa->spa_proc, zio_taskq_basedc, flags); 900 } else { 901 pri_t pri = maxclsyspri; 902 /* 903 * The write issue taskq can be extremely CPU 904 * intensive. Run it at slightly lower priority 905 * than the other taskqs. 906 */ 907 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 908 pri--; 909 910 tq = taskq_create_proc(name, value, pri, 50, 911 INT_MAX, spa->spa_proc, flags); 912 } 913 914 tqs->stqs_taskq[i] = tq; 915 } 916 } 917 918 static void 919 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 920 { 921 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 922 923 if (tqs->stqs_taskq == NULL) { 924 ASSERT0(tqs->stqs_count); 925 return; 926 } 927 928 for (uint_t i = 0; i < tqs->stqs_count; i++) { 929 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 930 taskq_destroy(tqs->stqs_taskq[i]); 931 } 932 933 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 934 tqs->stqs_taskq = NULL; 935 } 936 937 /* 938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 939 * Note that a type may have multiple discrete taskqs to avoid lock contention 940 * on the taskq itself. In that case we choose which taskq at random by using 941 * the low bits of gethrtime(). 942 */ 943 void 944 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 945 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 946 { 947 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 948 taskq_t *tq; 949 950 ASSERT3P(tqs->stqs_taskq, !=, NULL); 951 ASSERT3U(tqs->stqs_count, !=, 0); 952 953 if (tqs->stqs_count == 1) { 954 tq = tqs->stqs_taskq[0]; 955 } else { 956 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 957 } 958 959 taskq_dispatch_ent(tq, func, arg, flags, ent); 960 } 961 962 static void 963 spa_create_zio_taskqs(spa_t *spa) 964 { 965 for (int t = 0; t < ZIO_TYPES; t++) { 966 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 967 spa_taskqs_init(spa, t, q); 968 } 969 } 970 } 971 972 #ifdef _KERNEL 973 static void 974 spa_thread(void *arg) 975 { 976 callb_cpr_t cprinfo; 977 978 spa_t *spa = arg; 979 user_t *pu = PTOU(curproc); 980 981 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 982 spa->spa_name); 983 984 ASSERT(curproc != &p0); 985 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 986 "zpool-%s", spa->spa_name); 987 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 988 989 /* bind this thread to the requested psrset */ 990 if (zio_taskq_psrset_bind != PS_NONE) { 991 pool_lock(); 992 mutex_enter(&cpu_lock); 993 mutex_enter(&pidlock); 994 mutex_enter(&curproc->p_lock); 995 996 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 997 0, NULL, NULL) == 0) { 998 curthread->t_bind_pset = zio_taskq_psrset_bind; 999 } else { 1000 cmn_err(CE_WARN, 1001 "Couldn't bind process for zfs pool \"%s\" to " 1002 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1003 } 1004 1005 mutex_exit(&curproc->p_lock); 1006 mutex_exit(&pidlock); 1007 mutex_exit(&cpu_lock); 1008 pool_unlock(); 1009 } 1010 1011 if (zio_taskq_sysdc) { 1012 sysdc_thread_enter(curthread, 100, 0); 1013 } 1014 1015 spa->spa_proc = curproc; 1016 spa->spa_did = curthread->t_did; 1017 1018 spa_create_zio_taskqs(spa); 1019 1020 mutex_enter(&spa->spa_proc_lock); 1021 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1022 1023 spa->spa_proc_state = SPA_PROC_ACTIVE; 1024 cv_broadcast(&spa->spa_proc_cv); 1025 1026 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1027 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1028 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1029 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1030 1031 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1032 spa->spa_proc_state = SPA_PROC_GONE; 1033 spa->spa_proc = &p0; 1034 cv_broadcast(&spa->spa_proc_cv); 1035 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1036 1037 mutex_enter(&curproc->p_lock); 1038 lwp_exit(); 1039 } 1040 #endif 1041 1042 /* 1043 * Activate an uninitialized pool. 1044 */ 1045 static void 1046 spa_activate(spa_t *spa, int mode) 1047 { 1048 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1049 1050 spa->spa_state = POOL_STATE_ACTIVE; 1051 spa->spa_mode = mode; 1052 1053 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1054 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1055 1056 /* Try to create a covering process */ 1057 mutex_enter(&spa->spa_proc_lock); 1058 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1059 ASSERT(spa->spa_proc == &p0); 1060 spa->spa_did = 0; 1061 1062 /* Only create a process if we're going to be around a while. */ 1063 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1064 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1065 NULL, 0) == 0) { 1066 spa->spa_proc_state = SPA_PROC_CREATED; 1067 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1068 cv_wait(&spa->spa_proc_cv, 1069 &spa->spa_proc_lock); 1070 } 1071 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1072 ASSERT(spa->spa_proc != &p0); 1073 ASSERT(spa->spa_did != 0); 1074 } else { 1075 #ifdef _KERNEL 1076 cmn_err(CE_WARN, 1077 "Couldn't create process for zfs pool \"%s\"\n", 1078 spa->spa_name); 1079 #endif 1080 } 1081 } 1082 mutex_exit(&spa->spa_proc_lock); 1083 1084 /* If we didn't create a process, we need to create our taskqs. */ 1085 if (spa->spa_proc == &p0) { 1086 spa_create_zio_taskqs(spa); 1087 } 1088 1089 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1090 offsetof(vdev_t, vdev_config_dirty_node)); 1091 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1092 offsetof(objset_t, os_evicting_node)); 1093 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1094 offsetof(vdev_t, vdev_state_dirty_node)); 1095 1096 txg_list_create(&spa->spa_vdev_txg_list, 1097 offsetof(struct vdev, vdev_txg_node)); 1098 1099 avl_create(&spa->spa_errlist_scrub, 1100 spa_error_entry_compare, sizeof (spa_error_entry_t), 1101 offsetof(spa_error_entry_t, se_avl)); 1102 avl_create(&spa->spa_errlist_last, 1103 spa_error_entry_compare, sizeof (spa_error_entry_t), 1104 offsetof(spa_error_entry_t, se_avl)); 1105 } 1106 1107 /* 1108 * Opposite of spa_activate(). 1109 */ 1110 static void 1111 spa_deactivate(spa_t *spa) 1112 { 1113 ASSERT(spa->spa_sync_on == B_FALSE); 1114 ASSERT(spa->spa_dsl_pool == NULL); 1115 ASSERT(spa->spa_root_vdev == NULL); 1116 ASSERT(spa->spa_async_zio_root == NULL); 1117 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1118 1119 spa_evicting_os_wait(spa); 1120 1121 txg_list_destroy(&spa->spa_vdev_txg_list); 1122 1123 list_destroy(&spa->spa_config_dirty_list); 1124 list_destroy(&spa->spa_evicting_os_list); 1125 list_destroy(&spa->spa_state_dirty_list); 1126 1127 for (int t = 0; t < ZIO_TYPES; t++) { 1128 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1129 spa_taskqs_fini(spa, t, q); 1130 } 1131 } 1132 1133 metaslab_class_destroy(spa->spa_normal_class); 1134 spa->spa_normal_class = NULL; 1135 1136 metaslab_class_destroy(spa->spa_log_class); 1137 spa->spa_log_class = NULL; 1138 1139 /* 1140 * If this was part of an import or the open otherwise failed, we may 1141 * still have errors left in the queues. Empty them just in case. 1142 */ 1143 spa_errlog_drain(spa); 1144 1145 avl_destroy(&spa->spa_errlist_scrub); 1146 avl_destroy(&spa->spa_errlist_last); 1147 1148 spa->spa_state = POOL_STATE_UNINITIALIZED; 1149 1150 mutex_enter(&spa->spa_proc_lock); 1151 if (spa->spa_proc_state != SPA_PROC_NONE) { 1152 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1153 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1154 cv_broadcast(&spa->spa_proc_cv); 1155 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1156 ASSERT(spa->spa_proc != &p0); 1157 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1158 } 1159 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1160 spa->spa_proc_state = SPA_PROC_NONE; 1161 } 1162 ASSERT(spa->spa_proc == &p0); 1163 mutex_exit(&spa->spa_proc_lock); 1164 1165 /* 1166 * We want to make sure spa_thread() has actually exited the ZFS 1167 * module, so that the module can't be unloaded out from underneath 1168 * it. 1169 */ 1170 if (spa->spa_did != 0) { 1171 thread_join(spa->spa_did); 1172 spa->spa_did = 0; 1173 } 1174 } 1175 1176 /* 1177 * Verify a pool configuration, and construct the vdev tree appropriately. This 1178 * will create all the necessary vdevs in the appropriate layout, with each vdev 1179 * in the CLOSED state. This will prep the pool before open/creation/import. 1180 * All vdev validation is done by the vdev_alloc() routine. 1181 */ 1182 static int 1183 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1184 uint_t id, int atype) 1185 { 1186 nvlist_t **child; 1187 uint_t children; 1188 int error; 1189 1190 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1191 return (error); 1192 1193 if ((*vdp)->vdev_ops->vdev_op_leaf) 1194 return (0); 1195 1196 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1197 &child, &children); 1198 1199 if (error == ENOENT) 1200 return (0); 1201 1202 if (error) { 1203 vdev_free(*vdp); 1204 *vdp = NULL; 1205 return (SET_ERROR(EINVAL)); 1206 } 1207 1208 for (int c = 0; c < children; c++) { 1209 vdev_t *vd; 1210 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1211 atype)) != 0) { 1212 vdev_free(*vdp); 1213 *vdp = NULL; 1214 return (error); 1215 } 1216 } 1217 1218 ASSERT(*vdp != NULL); 1219 1220 return (0); 1221 } 1222 1223 /* 1224 * Opposite of spa_load(). 1225 */ 1226 static void 1227 spa_unload(spa_t *spa) 1228 { 1229 int i; 1230 1231 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1232 1233 /* 1234 * Stop async tasks. 1235 */ 1236 spa_async_suspend(spa); 1237 1238 /* 1239 * Stop syncing. 1240 */ 1241 if (spa->spa_sync_on) { 1242 txg_sync_stop(spa->spa_dsl_pool); 1243 spa->spa_sync_on = B_FALSE; 1244 } 1245 1246 /* 1247 * Wait for any outstanding async I/O to complete. 1248 */ 1249 if (spa->spa_async_zio_root != NULL) { 1250 for (int i = 0; i < max_ncpus; i++) 1251 (void) zio_wait(spa->spa_async_zio_root[i]); 1252 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1253 spa->spa_async_zio_root = NULL; 1254 } 1255 1256 bpobj_close(&spa->spa_deferred_bpobj); 1257 1258 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1259 1260 /* 1261 * Close all vdevs. 1262 */ 1263 if (spa->spa_root_vdev) 1264 vdev_free(spa->spa_root_vdev); 1265 ASSERT(spa->spa_root_vdev == NULL); 1266 1267 /* 1268 * Close the dsl pool. 1269 */ 1270 if (spa->spa_dsl_pool) { 1271 dsl_pool_close(spa->spa_dsl_pool); 1272 spa->spa_dsl_pool = NULL; 1273 spa->spa_meta_objset = NULL; 1274 } 1275 1276 ddt_unload(spa); 1277 1278 1279 /* 1280 * Drop and purge level 2 cache 1281 */ 1282 spa_l2cache_drop(spa); 1283 1284 for (i = 0; i < spa->spa_spares.sav_count; i++) 1285 vdev_free(spa->spa_spares.sav_vdevs[i]); 1286 if (spa->spa_spares.sav_vdevs) { 1287 kmem_free(spa->spa_spares.sav_vdevs, 1288 spa->spa_spares.sav_count * sizeof (void *)); 1289 spa->spa_spares.sav_vdevs = NULL; 1290 } 1291 if (spa->spa_spares.sav_config) { 1292 nvlist_free(spa->spa_spares.sav_config); 1293 spa->spa_spares.sav_config = NULL; 1294 } 1295 spa->spa_spares.sav_count = 0; 1296 1297 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1298 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1299 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1300 } 1301 if (spa->spa_l2cache.sav_vdevs) { 1302 kmem_free(spa->spa_l2cache.sav_vdevs, 1303 spa->spa_l2cache.sav_count * sizeof (void *)); 1304 spa->spa_l2cache.sav_vdevs = NULL; 1305 } 1306 if (spa->spa_l2cache.sav_config) { 1307 nvlist_free(spa->spa_l2cache.sav_config); 1308 spa->spa_l2cache.sav_config = NULL; 1309 } 1310 spa->spa_l2cache.sav_count = 0; 1311 1312 spa->spa_async_suspended = 0; 1313 1314 if (spa->spa_comment != NULL) { 1315 spa_strfree(spa->spa_comment); 1316 spa->spa_comment = NULL; 1317 } 1318 1319 spa_config_exit(spa, SCL_ALL, FTAG); 1320 } 1321 1322 /* 1323 * Load (or re-load) the current list of vdevs describing the active spares for 1324 * this pool. When this is called, we have some form of basic information in 1325 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1326 * then re-generate a more complete list including status information. 1327 */ 1328 static void 1329 spa_load_spares(spa_t *spa) 1330 { 1331 nvlist_t **spares; 1332 uint_t nspares; 1333 int i; 1334 vdev_t *vd, *tvd; 1335 1336 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1337 1338 /* 1339 * First, close and free any existing spare vdevs. 1340 */ 1341 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1342 vd = spa->spa_spares.sav_vdevs[i]; 1343 1344 /* Undo the call to spa_activate() below */ 1345 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1346 B_FALSE)) != NULL && tvd->vdev_isspare) 1347 spa_spare_remove(tvd); 1348 vdev_close(vd); 1349 vdev_free(vd); 1350 } 1351 1352 if (spa->spa_spares.sav_vdevs) 1353 kmem_free(spa->spa_spares.sav_vdevs, 1354 spa->spa_spares.sav_count * sizeof (void *)); 1355 1356 if (spa->spa_spares.sav_config == NULL) 1357 nspares = 0; 1358 else 1359 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1360 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1361 1362 spa->spa_spares.sav_count = (int)nspares; 1363 spa->spa_spares.sav_vdevs = NULL; 1364 1365 if (nspares == 0) 1366 return; 1367 1368 /* 1369 * Construct the array of vdevs, opening them to get status in the 1370 * process. For each spare, there is potentially two different vdev_t 1371 * structures associated with it: one in the list of spares (used only 1372 * for basic validation purposes) and one in the active vdev 1373 * configuration (if it's spared in). During this phase we open and 1374 * validate each vdev on the spare list. If the vdev also exists in the 1375 * active configuration, then we also mark this vdev as an active spare. 1376 */ 1377 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1378 KM_SLEEP); 1379 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1380 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1381 VDEV_ALLOC_SPARE) == 0); 1382 ASSERT(vd != NULL); 1383 1384 spa->spa_spares.sav_vdevs[i] = vd; 1385 1386 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1387 B_FALSE)) != NULL) { 1388 if (!tvd->vdev_isspare) 1389 spa_spare_add(tvd); 1390 1391 /* 1392 * We only mark the spare active if we were successfully 1393 * able to load the vdev. Otherwise, importing a pool 1394 * with a bad active spare would result in strange 1395 * behavior, because multiple pool would think the spare 1396 * is actively in use. 1397 * 1398 * There is a vulnerability here to an equally bizarre 1399 * circumstance, where a dead active spare is later 1400 * brought back to life (onlined or otherwise). Given 1401 * the rarity of this scenario, and the extra complexity 1402 * it adds, we ignore the possibility. 1403 */ 1404 if (!vdev_is_dead(tvd)) 1405 spa_spare_activate(tvd); 1406 } 1407 1408 vd->vdev_top = vd; 1409 vd->vdev_aux = &spa->spa_spares; 1410 1411 if (vdev_open(vd) != 0) 1412 continue; 1413 1414 if (vdev_validate_aux(vd) == 0) 1415 spa_spare_add(vd); 1416 } 1417 1418 /* 1419 * Recompute the stashed list of spares, with status information 1420 * this time. 1421 */ 1422 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1423 DATA_TYPE_NVLIST_ARRAY) == 0); 1424 1425 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1426 KM_SLEEP); 1427 for (i = 0; i < spa->spa_spares.sav_count; i++) 1428 spares[i] = vdev_config_generate(spa, 1429 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1430 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1431 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1432 for (i = 0; i < spa->spa_spares.sav_count; i++) 1433 nvlist_free(spares[i]); 1434 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1435 } 1436 1437 /* 1438 * Load (or re-load) the current list of vdevs describing the active l2cache for 1439 * this pool. When this is called, we have some form of basic information in 1440 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1441 * then re-generate a more complete list including status information. 1442 * Devices which are already active have their details maintained, and are 1443 * not re-opened. 1444 */ 1445 static void 1446 spa_load_l2cache(spa_t *spa) 1447 { 1448 nvlist_t **l2cache; 1449 uint_t nl2cache; 1450 int i, j, oldnvdevs; 1451 uint64_t guid; 1452 vdev_t *vd, **oldvdevs, **newvdevs; 1453 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1454 1455 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1456 1457 if (sav->sav_config != NULL) { 1458 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1459 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1460 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1461 } else { 1462 nl2cache = 0; 1463 newvdevs = NULL; 1464 } 1465 1466 oldvdevs = sav->sav_vdevs; 1467 oldnvdevs = sav->sav_count; 1468 sav->sav_vdevs = NULL; 1469 sav->sav_count = 0; 1470 1471 /* 1472 * Process new nvlist of vdevs. 1473 */ 1474 for (i = 0; i < nl2cache; i++) { 1475 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1476 &guid) == 0); 1477 1478 newvdevs[i] = NULL; 1479 for (j = 0; j < oldnvdevs; j++) { 1480 vd = oldvdevs[j]; 1481 if (vd != NULL && guid == vd->vdev_guid) { 1482 /* 1483 * Retain previous vdev for add/remove ops. 1484 */ 1485 newvdevs[i] = vd; 1486 oldvdevs[j] = NULL; 1487 break; 1488 } 1489 } 1490 1491 if (newvdevs[i] == NULL) { 1492 /* 1493 * Create new vdev 1494 */ 1495 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1496 VDEV_ALLOC_L2CACHE) == 0); 1497 ASSERT(vd != NULL); 1498 newvdevs[i] = vd; 1499 1500 /* 1501 * Commit this vdev as an l2cache device, 1502 * even if it fails to open. 1503 */ 1504 spa_l2cache_add(vd); 1505 1506 vd->vdev_top = vd; 1507 vd->vdev_aux = sav; 1508 1509 spa_l2cache_activate(vd); 1510 1511 if (vdev_open(vd) != 0) 1512 continue; 1513 1514 (void) vdev_validate_aux(vd); 1515 1516 if (!vdev_is_dead(vd)) 1517 l2arc_add_vdev(spa, vd); 1518 } 1519 } 1520 1521 /* 1522 * Purge vdevs that were dropped 1523 */ 1524 for (i = 0; i < oldnvdevs; i++) { 1525 uint64_t pool; 1526 1527 vd = oldvdevs[i]; 1528 if (vd != NULL) { 1529 ASSERT(vd->vdev_isl2cache); 1530 1531 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1532 pool != 0ULL && l2arc_vdev_present(vd)) 1533 l2arc_remove_vdev(vd); 1534 vdev_clear_stats(vd); 1535 vdev_free(vd); 1536 } 1537 } 1538 1539 if (oldvdevs) 1540 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1541 1542 if (sav->sav_config == NULL) 1543 goto out; 1544 1545 sav->sav_vdevs = newvdevs; 1546 sav->sav_count = (int)nl2cache; 1547 1548 /* 1549 * Recompute the stashed list of l2cache devices, with status 1550 * information this time. 1551 */ 1552 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1553 DATA_TYPE_NVLIST_ARRAY) == 0); 1554 1555 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1556 for (i = 0; i < sav->sav_count; i++) 1557 l2cache[i] = vdev_config_generate(spa, 1558 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1559 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1560 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1561 out: 1562 for (i = 0; i < sav->sav_count; i++) 1563 nvlist_free(l2cache[i]); 1564 if (sav->sav_count) 1565 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1566 } 1567 1568 static int 1569 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1570 { 1571 dmu_buf_t *db; 1572 char *packed = NULL; 1573 size_t nvsize = 0; 1574 int error; 1575 *value = NULL; 1576 1577 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1578 if (error != 0) 1579 return (error); 1580 1581 nvsize = *(uint64_t *)db->db_data; 1582 dmu_buf_rele(db, FTAG); 1583 1584 packed = kmem_alloc(nvsize, KM_SLEEP); 1585 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1586 DMU_READ_PREFETCH); 1587 if (error == 0) 1588 error = nvlist_unpack(packed, nvsize, value, 0); 1589 kmem_free(packed, nvsize); 1590 1591 return (error); 1592 } 1593 1594 /* 1595 * Checks to see if the given vdev could not be opened, in which case we post a 1596 * sysevent to notify the autoreplace code that the device has been removed. 1597 */ 1598 static void 1599 spa_check_removed(vdev_t *vd) 1600 { 1601 for (int c = 0; c < vd->vdev_children; c++) 1602 spa_check_removed(vd->vdev_child[c]); 1603 1604 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1605 !vd->vdev_ishole) { 1606 zfs_post_autoreplace(vd->vdev_spa, vd); 1607 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1608 } 1609 } 1610 1611 static void 1612 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd) 1613 { 1614 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children); 1615 1616 vd->vdev_top_zap = mvd->vdev_top_zap; 1617 vd->vdev_leaf_zap = mvd->vdev_leaf_zap; 1618 1619 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1620 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]); 1621 } 1622 } 1623 1624 /* 1625 * Validate the current config against the MOS config 1626 */ 1627 static boolean_t 1628 spa_config_valid(spa_t *spa, nvlist_t *config) 1629 { 1630 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1631 nvlist_t *nv; 1632 1633 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1634 1635 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1636 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1637 1638 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1639 1640 /* 1641 * If we're doing a normal import, then build up any additional 1642 * diagnostic information about missing devices in this config. 1643 * We'll pass this up to the user for further processing. 1644 */ 1645 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1646 nvlist_t **child, *nv; 1647 uint64_t idx = 0; 1648 1649 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1650 KM_SLEEP); 1651 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1652 1653 for (int c = 0; c < rvd->vdev_children; c++) { 1654 vdev_t *tvd = rvd->vdev_child[c]; 1655 vdev_t *mtvd = mrvd->vdev_child[c]; 1656 1657 if (tvd->vdev_ops == &vdev_missing_ops && 1658 mtvd->vdev_ops != &vdev_missing_ops && 1659 mtvd->vdev_islog) 1660 child[idx++] = vdev_config_generate(spa, mtvd, 1661 B_FALSE, 0); 1662 } 1663 1664 if (idx) { 1665 VERIFY(nvlist_add_nvlist_array(nv, 1666 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1667 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1668 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1669 1670 for (int i = 0; i < idx; i++) 1671 nvlist_free(child[i]); 1672 } 1673 nvlist_free(nv); 1674 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1675 } 1676 1677 /* 1678 * Compare the root vdev tree with the information we have 1679 * from the MOS config (mrvd). Check each top-level vdev 1680 * with the corresponding MOS config top-level (mtvd). 1681 */ 1682 for (int c = 0; c < rvd->vdev_children; c++) { 1683 vdev_t *tvd = rvd->vdev_child[c]; 1684 vdev_t *mtvd = mrvd->vdev_child[c]; 1685 1686 /* 1687 * Resolve any "missing" vdevs in the current configuration. 1688 * If we find that the MOS config has more accurate information 1689 * about the top-level vdev then use that vdev instead. 1690 */ 1691 if (tvd->vdev_ops == &vdev_missing_ops && 1692 mtvd->vdev_ops != &vdev_missing_ops) { 1693 1694 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1695 continue; 1696 1697 /* 1698 * Device specific actions. 1699 */ 1700 if (mtvd->vdev_islog) { 1701 spa_set_log_state(spa, SPA_LOG_CLEAR); 1702 } else { 1703 /* 1704 * XXX - once we have 'readonly' pool 1705 * support we should be able to handle 1706 * missing data devices by transitioning 1707 * the pool to readonly. 1708 */ 1709 continue; 1710 } 1711 1712 /* 1713 * Swap the missing vdev with the data we were 1714 * able to obtain from the MOS config. 1715 */ 1716 vdev_remove_child(rvd, tvd); 1717 vdev_remove_child(mrvd, mtvd); 1718 1719 vdev_add_child(rvd, mtvd); 1720 vdev_add_child(mrvd, tvd); 1721 1722 spa_config_exit(spa, SCL_ALL, FTAG); 1723 vdev_load(mtvd); 1724 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1725 1726 vdev_reopen(rvd); 1727 } else { 1728 if (mtvd->vdev_islog) { 1729 /* 1730 * Load the slog device's state from the MOS 1731 * config since it's possible that the label 1732 * does not contain the most up-to-date 1733 * information. 1734 */ 1735 vdev_load_log_state(tvd, mtvd); 1736 vdev_reopen(tvd); 1737 } 1738 1739 /* 1740 * Per-vdev ZAP info is stored exclusively in the MOS. 1741 */ 1742 spa_config_valid_zaps(tvd, mtvd); 1743 } 1744 } 1745 1746 vdev_free(mrvd); 1747 spa_config_exit(spa, SCL_ALL, FTAG); 1748 1749 /* 1750 * Ensure we were able to validate the config. 1751 */ 1752 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1753 } 1754 1755 /* 1756 * Check for missing log devices 1757 */ 1758 static boolean_t 1759 spa_check_logs(spa_t *spa) 1760 { 1761 boolean_t rv = B_FALSE; 1762 dsl_pool_t *dp = spa_get_dsl(spa); 1763 1764 switch (spa->spa_log_state) { 1765 case SPA_LOG_MISSING: 1766 /* need to recheck in case slog has been restored */ 1767 case SPA_LOG_UNKNOWN: 1768 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1769 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1770 if (rv) 1771 spa_set_log_state(spa, SPA_LOG_MISSING); 1772 break; 1773 } 1774 return (rv); 1775 } 1776 1777 static boolean_t 1778 spa_passivate_log(spa_t *spa) 1779 { 1780 vdev_t *rvd = spa->spa_root_vdev; 1781 boolean_t slog_found = B_FALSE; 1782 1783 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1784 1785 if (!spa_has_slogs(spa)) 1786 return (B_FALSE); 1787 1788 for (int c = 0; c < rvd->vdev_children; c++) { 1789 vdev_t *tvd = rvd->vdev_child[c]; 1790 metaslab_group_t *mg = tvd->vdev_mg; 1791 1792 if (tvd->vdev_islog) { 1793 metaslab_group_passivate(mg); 1794 slog_found = B_TRUE; 1795 } 1796 } 1797 1798 return (slog_found); 1799 } 1800 1801 static void 1802 spa_activate_log(spa_t *spa) 1803 { 1804 vdev_t *rvd = spa->spa_root_vdev; 1805 1806 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1807 1808 for (int c = 0; c < rvd->vdev_children; c++) { 1809 vdev_t *tvd = rvd->vdev_child[c]; 1810 metaslab_group_t *mg = tvd->vdev_mg; 1811 1812 if (tvd->vdev_islog) 1813 metaslab_group_activate(mg); 1814 } 1815 } 1816 1817 int 1818 spa_offline_log(spa_t *spa) 1819 { 1820 int error; 1821 1822 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1823 NULL, DS_FIND_CHILDREN); 1824 if (error == 0) { 1825 /* 1826 * We successfully offlined the log device, sync out the 1827 * current txg so that the "stubby" block can be removed 1828 * by zil_sync(). 1829 */ 1830 txg_wait_synced(spa->spa_dsl_pool, 0); 1831 } 1832 return (error); 1833 } 1834 1835 static void 1836 spa_aux_check_removed(spa_aux_vdev_t *sav) 1837 { 1838 for (int i = 0; i < sav->sav_count; i++) 1839 spa_check_removed(sav->sav_vdevs[i]); 1840 } 1841 1842 void 1843 spa_claim_notify(zio_t *zio) 1844 { 1845 spa_t *spa = zio->io_spa; 1846 1847 if (zio->io_error) 1848 return; 1849 1850 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1851 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1852 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1853 mutex_exit(&spa->spa_props_lock); 1854 } 1855 1856 typedef struct spa_load_error { 1857 uint64_t sle_meta_count; 1858 uint64_t sle_data_count; 1859 } spa_load_error_t; 1860 1861 static void 1862 spa_load_verify_done(zio_t *zio) 1863 { 1864 blkptr_t *bp = zio->io_bp; 1865 spa_load_error_t *sle = zio->io_private; 1866 dmu_object_type_t type = BP_GET_TYPE(bp); 1867 int error = zio->io_error; 1868 spa_t *spa = zio->io_spa; 1869 1870 if (error) { 1871 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1872 type != DMU_OT_INTENT_LOG) 1873 atomic_inc_64(&sle->sle_meta_count); 1874 else 1875 atomic_inc_64(&sle->sle_data_count); 1876 } 1877 zio_data_buf_free(zio->io_data, zio->io_size); 1878 1879 mutex_enter(&spa->spa_scrub_lock); 1880 spa->spa_scrub_inflight--; 1881 cv_broadcast(&spa->spa_scrub_io_cv); 1882 mutex_exit(&spa->spa_scrub_lock); 1883 } 1884 1885 /* 1886 * Maximum number of concurrent scrub i/os to create while verifying 1887 * a pool while importing it. 1888 */ 1889 int spa_load_verify_maxinflight = 10000; 1890 boolean_t spa_load_verify_metadata = B_TRUE; 1891 boolean_t spa_load_verify_data = B_TRUE; 1892 1893 /*ARGSUSED*/ 1894 static int 1895 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1896 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1897 { 1898 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1899 return (0); 1900 /* 1901 * Note: normally this routine will not be called if 1902 * spa_load_verify_metadata is not set. However, it may be useful 1903 * to manually set the flag after the traversal has begun. 1904 */ 1905 if (!spa_load_verify_metadata) 1906 return (0); 1907 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1908 return (0); 1909 1910 zio_t *rio = arg; 1911 size_t size = BP_GET_PSIZE(bp); 1912 void *data = zio_data_buf_alloc(size); 1913 1914 mutex_enter(&spa->spa_scrub_lock); 1915 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1916 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1917 spa->spa_scrub_inflight++; 1918 mutex_exit(&spa->spa_scrub_lock); 1919 1920 zio_nowait(zio_read(rio, spa, bp, data, size, 1921 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1922 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1923 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1924 return (0); 1925 } 1926 1927 /* ARGSUSED */ 1928 int 1929 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1930 { 1931 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 1932 return (SET_ERROR(ENAMETOOLONG)); 1933 1934 return (0); 1935 } 1936 1937 static int 1938 spa_load_verify(spa_t *spa) 1939 { 1940 zio_t *rio; 1941 spa_load_error_t sle = { 0 }; 1942 zpool_rewind_policy_t policy; 1943 boolean_t verify_ok = B_FALSE; 1944 int error = 0; 1945 1946 zpool_get_rewind_policy(spa->spa_config, &policy); 1947 1948 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1949 return (0); 1950 1951 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 1952 error = dmu_objset_find_dp(spa->spa_dsl_pool, 1953 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 1954 DS_FIND_CHILDREN); 1955 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 1956 if (error != 0) 1957 return (error); 1958 1959 rio = zio_root(spa, NULL, &sle, 1960 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1961 1962 if (spa_load_verify_metadata) { 1963 error = traverse_pool(spa, spa->spa_verify_min_txg, 1964 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1965 spa_load_verify_cb, rio); 1966 } 1967 1968 (void) zio_wait(rio); 1969 1970 spa->spa_load_meta_errors = sle.sle_meta_count; 1971 spa->spa_load_data_errors = sle.sle_data_count; 1972 1973 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1974 sle.sle_data_count <= policy.zrp_maxdata) { 1975 int64_t loss = 0; 1976 1977 verify_ok = B_TRUE; 1978 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1979 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1980 1981 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1982 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1983 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1984 VERIFY(nvlist_add_int64(spa->spa_load_info, 1985 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1986 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1987 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1988 } else { 1989 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1990 } 1991 1992 if (error) { 1993 if (error != ENXIO && error != EIO) 1994 error = SET_ERROR(EIO); 1995 return (error); 1996 } 1997 1998 return (verify_ok ? 0 : EIO); 1999 } 2000 2001 /* 2002 * Find a value in the pool props object. 2003 */ 2004 static void 2005 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2006 { 2007 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2008 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2009 } 2010 2011 /* 2012 * Find a value in the pool directory object. 2013 */ 2014 static int 2015 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 2016 { 2017 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2018 name, sizeof (uint64_t), 1, val)); 2019 } 2020 2021 static int 2022 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2023 { 2024 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2025 return (err); 2026 } 2027 2028 /* 2029 * Fix up config after a partly-completed split. This is done with the 2030 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2031 * pool have that entry in their config, but only the splitting one contains 2032 * a list of all the guids of the vdevs that are being split off. 2033 * 2034 * This function determines what to do with that list: either rejoin 2035 * all the disks to the pool, or complete the splitting process. To attempt 2036 * the rejoin, each disk that is offlined is marked online again, and 2037 * we do a reopen() call. If the vdev label for every disk that was 2038 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2039 * then we call vdev_split() on each disk, and complete the split. 2040 * 2041 * Otherwise we leave the config alone, with all the vdevs in place in 2042 * the original pool. 2043 */ 2044 static void 2045 spa_try_repair(spa_t *spa, nvlist_t *config) 2046 { 2047 uint_t extracted; 2048 uint64_t *glist; 2049 uint_t i, gcount; 2050 nvlist_t *nvl; 2051 vdev_t **vd; 2052 boolean_t attempt_reopen; 2053 2054 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2055 return; 2056 2057 /* check that the config is complete */ 2058 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2059 &glist, &gcount) != 0) 2060 return; 2061 2062 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2063 2064 /* attempt to online all the vdevs & validate */ 2065 attempt_reopen = B_TRUE; 2066 for (i = 0; i < gcount; i++) { 2067 if (glist[i] == 0) /* vdev is hole */ 2068 continue; 2069 2070 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2071 if (vd[i] == NULL) { 2072 /* 2073 * Don't bother attempting to reopen the disks; 2074 * just do the split. 2075 */ 2076 attempt_reopen = B_FALSE; 2077 } else { 2078 /* attempt to re-online it */ 2079 vd[i]->vdev_offline = B_FALSE; 2080 } 2081 } 2082 2083 if (attempt_reopen) { 2084 vdev_reopen(spa->spa_root_vdev); 2085 2086 /* check each device to see what state it's in */ 2087 for (extracted = 0, i = 0; i < gcount; i++) { 2088 if (vd[i] != NULL && 2089 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2090 break; 2091 ++extracted; 2092 } 2093 } 2094 2095 /* 2096 * If every disk has been moved to the new pool, or if we never 2097 * even attempted to look at them, then we split them off for 2098 * good. 2099 */ 2100 if (!attempt_reopen || gcount == extracted) { 2101 for (i = 0; i < gcount; i++) 2102 if (vd[i] != NULL) 2103 vdev_split(vd[i]); 2104 vdev_reopen(spa->spa_root_vdev); 2105 } 2106 2107 kmem_free(vd, gcount * sizeof (vdev_t *)); 2108 } 2109 2110 static int 2111 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2112 boolean_t mosconfig) 2113 { 2114 nvlist_t *config = spa->spa_config; 2115 char *ereport = FM_EREPORT_ZFS_POOL; 2116 char *comment; 2117 int error; 2118 uint64_t pool_guid; 2119 nvlist_t *nvl; 2120 2121 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2122 return (SET_ERROR(EINVAL)); 2123 2124 ASSERT(spa->spa_comment == NULL); 2125 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2126 spa->spa_comment = spa_strdup(comment); 2127 2128 /* 2129 * Versioning wasn't explicitly added to the label until later, so if 2130 * it's not present treat it as the initial version. 2131 */ 2132 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2133 &spa->spa_ubsync.ub_version) != 0) 2134 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2135 2136 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2137 &spa->spa_config_txg); 2138 2139 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2140 spa_guid_exists(pool_guid, 0)) { 2141 error = SET_ERROR(EEXIST); 2142 } else { 2143 spa->spa_config_guid = pool_guid; 2144 2145 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2146 &nvl) == 0) { 2147 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2148 KM_SLEEP) == 0); 2149 } 2150 2151 nvlist_free(spa->spa_load_info); 2152 spa->spa_load_info = fnvlist_alloc(); 2153 2154 gethrestime(&spa->spa_loaded_ts); 2155 error = spa_load_impl(spa, pool_guid, config, state, type, 2156 mosconfig, &ereport); 2157 } 2158 2159 /* 2160 * Don't count references from objsets that are already closed 2161 * and are making their way through the eviction process. 2162 */ 2163 spa_evicting_os_wait(spa); 2164 spa->spa_minref = refcount_count(&spa->spa_refcount); 2165 if (error) { 2166 if (error != EEXIST) { 2167 spa->spa_loaded_ts.tv_sec = 0; 2168 spa->spa_loaded_ts.tv_nsec = 0; 2169 } 2170 if (error != EBADF) { 2171 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2172 } 2173 } 2174 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2175 spa->spa_ena = 0; 2176 2177 return (error); 2178 } 2179 2180 /* 2181 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2182 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2183 * spa's per-vdev ZAP list. 2184 */ 2185 static uint64_t 2186 vdev_count_verify_zaps(vdev_t *vd) 2187 { 2188 spa_t *spa = vd->vdev_spa; 2189 uint64_t total = 0; 2190 if (vd->vdev_top_zap != 0) { 2191 total++; 2192 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2193 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2194 } 2195 if (vd->vdev_leaf_zap != 0) { 2196 total++; 2197 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2198 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2199 } 2200 2201 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2202 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2203 } 2204 2205 return (total); 2206 } 2207 2208 /* 2209 * Load an existing storage pool, using the pool's builtin spa_config as a 2210 * source of configuration information. 2211 */ 2212 static int 2213 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2214 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2215 char **ereport) 2216 { 2217 int error = 0; 2218 nvlist_t *nvroot = NULL; 2219 nvlist_t *label; 2220 vdev_t *rvd; 2221 uberblock_t *ub = &spa->spa_uberblock; 2222 uint64_t children, config_cache_txg = spa->spa_config_txg; 2223 int orig_mode = spa->spa_mode; 2224 int parse; 2225 uint64_t obj; 2226 boolean_t missing_feat_write = B_FALSE; 2227 2228 /* 2229 * If this is an untrusted config, access the pool in read-only mode. 2230 * This prevents things like resilvering recently removed devices. 2231 */ 2232 if (!mosconfig) 2233 spa->spa_mode = FREAD; 2234 2235 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2236 2237 spa->spa_load_state = state; 2238 2239 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2240 return (SET_ERROR(EINVAL)); 2241 2242 parse = (type == SPA_IMPORT_EXISTING ? 2243 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2244 2245 /* 2246 * Create "The Godfather" zio to hold all async IOs 2247 */ 2248 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2249 KM_SLEEP); 2250 for (int i = 0; i < max_ncpus; i++) { 2251 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2252 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2253 ZIO_FLAG_GODFATHER); 2254 } 2255 2256 /* 2257 * Parse the configuration into a vdev tree. We explicitly set the 2258 * value that will be returned by spa_version() since parsing the 2259 * configuration requires knowing the version number. 2260 */ 2261 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2262 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2263 spa_config_exit(spa, SCL_ALL, FTAG); 2264 2265 if (error != 0) 2266 return (error); 2267 2268 ASSERT(spa->spa_root_vdev == rvd); 2269 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2270 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2271 2272 if (type != SPA_IMPORT_ASSEMBLE) { 2273 ASSERT(spa_guid(spa) == pool_guid); 2274 } 2275 2276 /* 2277 * Try to open all vdevs, loading each label in the process. 2278 */ 2279 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2280 error = vdev_open(rvd); 2281 spa_config_exit(spa, SCL_ALL, FTAG); 2282 if (error != 0) 2283 return (error); 2284 2285 /* 2286 * We need to validate the vdev labels against the configuration that 2287 * we have in hand, which is dependent on the setting of mosconfig. If 2288 * mosconfig is true then we're validating the vdev labels based on 2289 * that config. Otherwise, we're validating against the cached config 2290 * (zpool.cache) that was read when we loaded the zfs module, and then 2291 * later we will recursively call spa_load() and validate against 2292 * the vdev config. 2293 * 2294 * If we're assembling a new pool that's been split off from an 2295 * existing pool, the labels haven't yet been updated so we skip 2296 * validation for now. 2297 */ 2298 if (type != SPA_IMPORT_ASSEMBLE) { 2299 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2300 error = vdev_validate(rvd, mosconfig); 2301 spa_config_exit(spa, SCL_ALL, FTAG); 2302 2303 if (error != 0) 2304 return (error); 2305 2306 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2307 return (SET_ERROR(ENXIO)); 2308 } 2309 2310 /* 2311 * Find the best uberblock. 2312 */ 2313 vdev_uberblock_load(rvd, ub, &label); 2314 2315 /* 2316 * If we weren't able to find a single valid uberblock, return failure. 2317 */ 2318 if (ub->ub_txg == 0) { 2319 nvlist_free(label); 2320 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2321 } 2322 2323 /* 2324 * If the pool has an unsupported version we can't open it. 2325 */ 2326 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2327 nvlist_free(label); 2328 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2329 } 2330 2331 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2332 nvlist_t *features; 2333 2334 /* 2335 * If we weren't able to find what's necessary for reading the 2336 * MOS in the label, return failure. 2337 */ 2338 if (label == NULL || nvlist_lookup_nvlist(label, 2339 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2340 nvlist_free(label); 2341 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2342 ENXIO)); 2343 } 2344 2345 /* 2346 * Update our in-core representation with the definitive values 2347 * from the label. 2348 */ 2349 nvlist_free(spa->spa_label_features); 2350 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2351 } 2352 2353 nvlist_free(label); 2354 2355 /* 2356 * Look through entries in the label nvlist's features_for_read. If 2357 * there is a feature listed there which we don't understand then we 2358 * cannot open a pool. 2359 */ 2360 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2361 nvlist_t *unsup_feat; 2362 2363 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2364 0); 2365 2366 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2367 NULL); nvp != NULL; 2368 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2369 if (!zfeature_is_supported(nvpair_name(nvp))) { 2370 VERIFY(nvlist_add_string(unsup_feat, 2371 nvpair_name(nvp), "") == 0); 2372 } 2373 } 2374 2375 if (!nvlist_empty(unsup_feat)) { 2376 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2377 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2378 nvlist_free(unsup_feat); 2379 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2380 ENOTSUP)); 2381 } 2382 2383 nvlist_free(unsup_feat); 2384 } 2385 2386 /* 2387 * If the vdev guid sum doesn't match the uberblock, we have an 2388 * incomplete configuration. We first check to see if the pool 2389 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2390 * If it is, defer the vdev_guid_sum check till later so we 2391 * can handle missing vdevs. 2392 */ 2393 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2394 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2395 rvd->vdev_guid_sum != ub->ub_guid_sum) 2396 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2397 2398 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2399 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2400 spa_try_repair(spa, config); 2401 spa_config_exit(spa, SCL_ALL, FTAG); 2402 nvlist_free(spa->spa_config_splitting); 2403 spa->spa_config_splitting = NULL; 2404 } 2405 2406 /* 2407 * Initialize internal SPA structures. 2408 */ 2409 spa->spa_state = POOL_STATE_ACTIVE; 2410 spa->spa_ubsync = spa->spa_uberblock; 2411 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2412 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2413 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2414 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2415 spa->spa_claim_max_txg = spa->spa_first_txg; 2416 spa->spa_prev_software_version = ub->ub_software_version; 2417 2418 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2419 if (error) 2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2421 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2422 2423 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2424 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2425 2426 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2427 boolean_t missing_feat_read = B_FALSE; 2428 nvlist_t *unsup_feat, *enabled_feat; 2429 2430 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2431 &spa->spa_feat_for_read_obj) != 0) { 2432 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2433 } 2434 2435 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2436 &spa->spa_feat_for_write_obj) != 0) { 2437 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2438 } 2439 2440 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2441 &spa->spa_feat_desc_obj) != 0) { 2442 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2443 } 2444 2445 enabled_feat = fnvlist_alloc(); 2446 unsup_feat = fnvlist_alloc(); 2447 2448 if (!spa_features_check(spa, B_FALSE, 2449 unsup_feat, enabled_feat)) 2450 missing_feat_read = B_TRUE; 2451 2452 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2453 if (!spa_features_check(spa, B_TRUE, 2454 unsup_feat, enabled_feat)) { 2455 missing_feat_write = B_TRUE; 2456 } 2457 } 2458 2459 fnvlist_add_nvlist(spa->spa_load_info, 2460 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2461 2462 if (!nvlist_empty(unsup_feat)) { 2463 fnvlist_add_nvlist(spa->spa_load_info, 2464 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2465 } 2466 2467 fnvlist_free(enabled_feat); 2468 fnvlist_free(unsup_feat); 2469 2470 if (!missing_feat_read) { 2471 fnvlist_add_boolean(spa->spa_load_info, 2472 ZPOOL_CONFIG_CAN_RDONLY); 2473 } 2474 2475 /* 2476 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2477 * twofold: to determine whether the pool is available for 2478 * import in read-write mode and (if it is not) whether the 2479 * pool is available for import in read-only mode. If the pool 2480 * is available for import in read-write mode, it is displayed 2481 * as available in userland; if it is not available for import 2482 * in read-only mode, it is displayed as unavailable in 2483 * userland. If the pool is available for import in read-only 2484 * mode but not read-write mode, it is displayed as unavailable 2485 * in userland with a special note that the pool is actually 2486 * available for open in read-only mode. 2487 * 2488 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2489 * missing a feature for write, we must first determine whether 2490 * the pool can be opened read-only before returning to 2491 * userland in order to know whether to display the 2492 * abovementioned note. 2493 */ 2494 if (missing_feat_read || (missing_feat_write && 2495 spa_writeable(spa))) { 2496 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2497 ENOTSUP)); 2498 } 2499 2500 /* 2501 * Load refcounts for ZFS features from disk into an in-memory 2502 * cache during SPA initialization. 2503 */ 2504 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2505 uint64_t refcount; 2506 2507 error = feature_get_refcount_from_disk(spa, 2508 &spa_feature_table[i], &refcount); 2509 if (error == 0) { 2510 spa->spa_feat_refcount_cache[i] = refcount; 2511 } else if (error == ENOTSUP) { 2512 spa->spa_feat_refcount_cache[i] = 2513 SPA_FEATURE_DISABLED; 2514 } else { 2515 return (spa_vdev_err(rvd, 2516 VDEV_AUX_CORRUPT_DATA, EIO)); 2517 } 2518 } 2519 } 2520 2521 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2522 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2523 &spa->spa_feat_enabled_txg_obj) != 0) 2524 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2525 } 2526 2527 spa->spa_is_initializing = B_TRUE; 2528 error = dsl_pool_open(spa->spa_dsl_pool); 2529 spa->spa_is_initializing = B_FALSE; 2530 if (error != 0) 2531 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2532 2533 if (!mosconfig) { 2534 uint64_t hostid; 2535 nvlist_t *policy = NULL, *nvconfig; 2536 2537 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2538 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2539 2540 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2541 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2542 char *hostname; 2543 unsigned long myhostid = 0; 2544 2545 VERIFY(nvlist_lookup_string(nvconfig, 2546 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2547 2548 #ifdef _KERNEL 2549 myhostid = zone_get_hostid(NULL); 2550 #else /* _KERNEL */ 2551 /* 2552 * We're emulating the system's hostid in userland, so 2553 * we can't use zone_get_hostid(). 2554 */ 2555 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2556 #endif /* _KERNEL */ 2557 if (hostid != 0 && myhostid != 0 && 2558 hostid != myhostid) { 2559 nvlist_free(nvconfig); 2560 cmn_err(CE_WARN, "pool '%s' could not be " 2561 "loaded as it was last accessed by " 2562 "another system (host: %s hostid: 0x%lx). " 2563 "See: http://illumos.org/msg/ZFS-8000-EY", 2564 spa_name(spa), hostname, 2565 (unsigned long)hostid); 2566 return (SET_ERROR(EBADF)); 2567 } 2568 } 2569 if (nvlist_lookup_nvlist(spa->spa_config, 2570 ZPOOL_REWIND_POLICY, &policy) == 0) 2571 VERIFY(nvlist_add_nvlist(nvconfig, 2572 ZPOOL_REWIND_POLICY, policy) == 0); 2573 2574 spa_config_set(spa, nvconfig); 2575 spa_unload(spa); 2576 spa_deactivate(spa); 2577 spa_activate(spa, orig_mode); 2578 2579 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2580 } 2581 2582 /* Grab the secret checksum salt from the MOS. */ 2583 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2584 DMU_POOL_CHECKSUM_SALT, 1, 2585 sizeof (spa->spa_cksum_salt.zcs_bytes), 2586 spa->spa_cksum_salt.zcs_bytes); 2587 if (error == ENOENT) { 2588 /* Generate a new salt for subsequent use */ 2589 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 2590 sizeof (spa->spa_cksum_salt.zcs_bytes)); 2591 } else if (error != 0) { 2592 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2593 } 2594 2595 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2596 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2597 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2598 if (error != 0) 2599 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2600 2601 /* 2602 * Load the bit that tells us to use the new accounting function 2603 * (raid-z deflation). If we have an older pool, this will not 2604 * be present. 2605 */ 2606 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2607 if (error != 0 && error != ENOENT) 2608 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2609 2610 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2611 &spa->spa_creation_version); 2612 if (error != 0 && error != ENOENT) 2613 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2614 2615 /* 2616 * Load the persistent error log. If we have an older pool, this will 2617 * not be present. 2618 */ 2619 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2620 if (error != 0 && error != ENOENT) 2621 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2622 2623 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2624 &spa->spa_errlog_scrub); 2625 if (error != 0 && error != ENOENT) 2626 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2627 2628 /* 2629 * Load the history object. If we have an older pool, this 2630 * will not be present. 2631 */ 2632 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2633 if (error != 0 && error != ENOENT) 2634 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2635 2636 /* 2637 * Load the per-vdev ZAP map. If we have an older pool, this will not 2638 * be present; in this case, defer its creation to a later time to 2639 * avoid dirtying the MOS this early / out of sync context. See 2640 * spa_sync_config_object. 2641 */ 2642 2643 /* The sentinel is only available in the MOS config. */ 2644 nvlist_t *mos_config; 2645 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) 2646 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2647 2648 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 2649 &spa->spa_all_vdev_zaps); 2650 2651 if (error != ENOENT && error != 0) { 2652 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2653 } else if (error == 0 && !nvlist_exists(mos_config, 2654 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 2655 /* 2656 * An older version of ZFS overwrote the sentinel value, so 2657 * we have orphaned per-vdev ZAPs in the MOS. Defer their 2658 * destruction to later; see spa_sync_config_object. 2659 */ 2660 spa->spa_avz_action = AVZ_ACTION_DESTROY; 2661 /* 2662 * We're assuming that no vdevs have had their ZAPs created 2663 * before this. Better be sure of it. 2664 */ 2665 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 2666 } 2667 nvlist_free(mos_config); 2668 2669 /* 2670 * If we're assembling the pool from the split-off vdevs of 2671 * an existing pool, we don't want to attach the spares & cache 2672 * devices. 2673 */ 2674 2675 /* 2676 * Load any hot spares for this pool. 2677 */ 2678 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2679 if (error != 0 && error != ENOENT) 2680 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2681 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2682 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2683 if (load_nvlist(spa, spa->spa_spares.sav_object, 2684 &spa->spa_spares.sav_config) != 0) 2685 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2686 2687 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2688 spa_load_spares(spa); 2689 spa_config_exit(spa, SCL_ALL, FTAG); 2690 } else if (error == 0) { 2691 spa->spa_spares.sav_sync = B_TRUE; 2692 } 2693 2694 /* 2695 * Load any level 2 ARC devices for this pool. 2696 */ 2697 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2698 &spa->spa_l2cache.sav_object); 2699 if (error != 0 && error != ENOENT) 2700 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2701 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2702 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2703 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2704 &spa->spa_l2cache.sav_config) != 0) 2705 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2706 2707 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2708 spa_load_l2cache(spa); 2709 spa_config_exit(spa, SCL_ALL, FTAG); 2710 } else if (error == 0) { 2711 spa->spa_l2cache.sav_sync = B_TRUE; 2712 } 2713 2714 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2715 2716 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2717 if (error && error != ENOENT) 2718 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2719 2720 if (error == 0) { 2721 uint64_t autoreplace; 2722 2723 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2724 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2725 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2726 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2727 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2728 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2729 &spa->spa_dedup_ditto); 2730 2731 spa->spa_autoreplace = (autoreplace != 0); 2732 } 2733 2734 /* 2735 * If the 'autoreplace' property is set, then post a resource notifying 2736 * the ZFS DE that it should not issue any faults for unopenable 2737 * devices. We also iterate over the vdevs, and post a sysevent for any 2738 * unopenable vdevs so that the normal autoreplace handler can take 2739 * over. 2740 */ 2741 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2742 spa_check_removed(spa->spa_root_vdev); 2743 /* 2744 * For the import case, this is done in spa_import(), because 2745 * at this point we're using the spare definitions from 2746 * the MOS config, not necessarily from the userland config. 2747 */ 2748 if (state != SPA_LOAD_IMPORT) { 2749 spa_aux_check_removed(&spa->spa_spares); 2750 spa_aux_check_removed(&spa->spa_l2cache); 2751 } 2752 } 2753 2754 /* 2755 * Load the vdev state for all toplevel vdevs. 2756 */ 2757 vdev_load(rvd); 2758 2759 /* 2760 * Propagate the leaf DTLs we just loaded all the way up the tree. 2761 */ 2762 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2763 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2764 spa_config_exit(spa, SCL_ALL, FTAG); 2765 2766 /* 2767 * Load the DDTs (dedup tables). 2768 */ 2769 error = ddt_load(spa); 2770 if (error != 0) 2771 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2772 2773 spa_update_dspace(spa); 2774 2775 /* 2776 * Validate the config, using the MOS config to fill in any 2777 * information which might be missing. If we fail to validate 2778 * the config then declare the pool unfit for use. If we're 2779 * assembling a pool from a split, the log is not transferred 2780 * over. 2781 */ 2782 if (type != SPA_IMPORT_ASSEMBLE) { 2783 nvlist_t *nvconfig; 2784 2785 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2786 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2787 2788 if (!spa_config_valid(spa, nvconfig)) { 2789 nvlist_free(nvconfig); 2790 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2791 ENXIO)); 2792 } 2793 nvlist_free(nvconfig); 2794 2795 /* 2796 * Now that we've validated the config, check the state of the 2797 * root vdev. If it can't be opened, it indicates one or 2798 * more toplevel vdevs are faulted. 2799 */ 2800 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2801 return (SET_ERROR(ENXIO)); 2802 2803 if (spa_writeable(spa) && spa_check_logs(spa)) { 2804 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2805 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2806 } 2807 } 2808 2809 if (missing_feat_write) { 2810 ASSERT(state == SPA_LOAD_TRYIMPORT); 2811 2812 /* 2813 * At this point, we know that we can open the pool in 2814 * read-only mode but not read-write mode. We now have enough 2815 * information and can return to userland. 2816 */ 2817 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2818 } 2819 2820 /* 2821 * We've successfully opened the pool, verify that we're ready 2822 * to start pushing transactions. 2823 */ 2824 if (state != SPA_LOAD_TRYIMPORT) { 2825 if (error = spa_load_verify(spa)) 2826 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2827 error)); 2828 } 2829 2830 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2831 spa->spa_load_max_txg == UINT64_MAX)) { 2832 dmu_tx_t *tx; 2833 int need_update = B_FALSE; 2834 dsl_pool_t *dp = spa_get_dsl(spa); 2835 2836 ASSERT(state != SPA_LOAD_TRYIMPORT); 2837 2838 /* 2839 * Claim log blocks that haven't been committed yet. 2840 * This must all happen in a single txg. 2841 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2842 * invoked from zil_claim_log_block()'s i/o done callback. 2843 * Price of rollback is that we abandon the log. 2844 */ 2845 spa->spa_claiming = B_TRUE; 2846 2847 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 2848 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2849 zil_claim, tx, DS_FIND_CHILDREN); 2850 dmu_tx_commit(tx); 2851 2852 spa->spa_claiming = B_FALSE; 2853 2854 spa_set_log_state(spa, SPA_LOG_GOOD); 2855 spa->spa_sync_on = B_TRUE; 2856 txg_sync_start(spa->spa_dsl_pool); 2857 2858 /* 2859 * Wait for all claims to sync. We sync up to the highest 2860 * claimed log block birth time so that claimed log blocks 2861 * don't appear to be from the future. spa_claim_max_txg 2862 * will have been set for us by either zil_check_log_chain() 2863 * (invoked from spa_check_logs()) or zil_claim() above. 2864 */ 2865 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2866 2867 /* 2868 * If the config cache is stale, or we have uninitialized 2869 * metaslabs (see spa_vdev_add()), then update the config. 2870 * 2871 * If this is a verbatim import, trust the current 2872 * in-core spa_config and update the disk labels. 2873 */ 2874 if (config_cache_txg != spa->spa_config_txg || 2875 state == SPA_LOAD_IMPORT || 2876 state == SPA_LOAD_RECOVER || 2877 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2878 need_update = B_TRUE; 2879 2880 for (int c = 0; c < rvd->vdev_children; c++) 2881 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2882 need_update = B_TRUE; 2883 2884 /* 2885 * Update the config cache asychronously in case we're the 2886 * root pool, in which case the config cache isn't writable yet. 2887 */ 2888 if (need_update) 2889 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2890 2891 /* 2892 * Check all DTLs to see if anything needs resilvering. 2893 */ 2894 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2895 vdev_resilver_needed(rvd, NULL, NULL)) 2896 spa_async_request(spa, SPA_ASYNC_RESILVER); 2897 2898 /* 2899 * Log the fact that we booted up (so that we can detect if 2900 * we rebooted in the middle of an operation). 2901 */ 2902 spa_history_log_version(spa, "open"); 2903 2904 /* 2905 * Delete any inconsistent datasets. 2906 */ 2907 (void) dmu_objset_find(spa_name(spa), 2908 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2909 2910 /* 2911 * Clean up any stale temporary dataset userrefs. 2912 */ 2913 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2914 } 2915 2916 return (0); 2917 } 2918 2919 static int 2920 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2921 { 2922 int mode = spa->spa_mode; 2923 2924 spa_unload(spa); 2925 spa_deactivate(spa); 2926 2927 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2928 2929 spa_activate(spa, mode); 2930 spa_async_suspend(spa); 2931 2932 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2933 } 2934 2935 /* 2936 * If spa_load() fails this function will try loading prior txg's. If 2937 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2938 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2939 * function will not rewind the pool and will return the same error as 2940 * spa_load(). 2941 */ 2942 static int 2943 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2944 uint64_t max_request, int rewind_flags) 2945 { 2946 nvlist_t *loadinfo = NULL; 2947 nvlist_t *config = NULL; 2948 int load_error, rewind_error; 2949 uint64_t safe_rewind_txg; 2950 uint64_t min_txg; 2951 2952 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2953 spa->spa_load_max_txg = spa->spa_load_txg; 2954 spa_set_log_state(spa, SPA_LOG_CLEAR); 2955 } else { 2956 spa->spa_load_max_txg = max_request; 2957 if (max_request != UINT64_MAX) 2958 spa->spa_extreme_rewind = B_TRUE; 2959 } 2960 2961 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2962 mosconfig); 2963 if (load_error == 0) 2964 return (0); 2965 2966 if (spa->spa_root_vdev != NULL) 2967 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2968 2969 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2970 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2971 2972 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2973 nvlist_free(config); 2974 return (load_error); 2975 } 2976 2977 if (state == SPA_LOAD_RECOVER) { 2978 /* Price of rolling back is discarding txgs, including log */ 2979 spa_set_log_state(spa, SPA_LOG_CLEAR); 2980 } else { 2981 /* 2982 * If we aren't rolling back save the load info from our first 2983 * import attempt so that we can restore it after attempting 2984 * to rewind. 2985 */ 2986 loadinfo = spa->spa_load_info; 2987 spa->spa_load_info = fnvlist_alloc(); 2988 } 2989 2990 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2991 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2992 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2993 TXG_INITIAL : safe_rewind_txg; 2994 2995 /* 2996 * Continue as long as we're finding errors, we're still within 2997 * the acceptable rewind range, and we're still finding uberblocks 2998 */ 2999 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 3000 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 3001 if (spa->spa_load_max_txg < safe_rewind_txg) 3002 spa->spa_extreme_rewind = B_TRUE; 3003 rewind_error = spa_load_retry(spa, state, mosconfig); 3004 } 3005 3006 spa->spa_extreme_rewind = B_FALSE; 3007 spa->spa_load_max_txg = UINT64_MAX; 3008 3009 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 3010 spa_config_set(spa, config); 3011 3012 if (state == SPA_LOAD_RECOVER) { 3013 ASSERT3P(loadinfo, ==, NULL); 3014 return (rewind_error); 3015 } else { 3016 /* Store the rewind info as part of the initial load info */ 3017 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 3018 spa->spa_load_info); 3019 3020 /* Restore the initial load info */ 3021 fnvlist_free(spa->spa_load_info); 3022 spa->spa_load_info = loadinfo; 3023 3024 return (load_error); 3025 } 3026 } 3027 3028 /* 3029 * Pool Open/Import 3030 * 3031 * The import case is identical to an open except that the configuration is sent 3032 * down from userland, instead of grabbed from the configuration cache. For the 3033 * case of an open, the pool configuration will exist in the 3034 * POOL_STATE_UNINITIALIZED state. 3035 * 3036 * The stats information (gen/count/ustats) is used to gather vdev statistics at 3037 * the same time open the pool, without having to keep around the spa_t in some 3038 * ambiguous state. 3039 */ 3040 static int 3041 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 3042 nvlist_t **config) 3043 { 3044 spa_t *spa; 3045 spa_load_state_t state = SPA_LOAD_OPEN; 3046 int error; 3047 int locked = B_FALSE; 3048 3049 *spapp = NULL; 3050 3051 /* 3052 * As disgusting as this is, we need to support recursive calls to this 3053 * function because dsl_dir_open() is called during spa_load(), and ends 3054 * up calling spa_open() again. The real fix is to figure out how to 3055 * avoid dsl_dir_open() calling this in the first place. 3056 */ 3057 if (mutex_owner(&spa_namespace_lock) != curthread) { 3058 mutex_enter(&spa_namespace_lock); 3059 locked = B_TRUE; 3060 } 3061 3062 if ((spa = spa_lookup(pool)) == NULL) { 3063 if (locked) 3064 mutex_exit(&spa_namespace_lock); 3065 return (SET_ERROR(ENOENT)); 3066 } 3067 3068 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 3069 zpool_rewind_policy_t policy; 3070 3071 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 3072 &policy); 3073 if (policy.zrp_request & ZPOOL_DO_REWIND) 3074 state = SPA_LOAD_RECOVER; 3075 3076 spa_activate(spa, spa_mode_global); 3077 3078 if (state != SPA_LOAD_RECOVER) 3079 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3080 3081 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 3082 policy.zrp_request); 3083 3084 if (error == EBADF) { 3085 /* 3086 * If vdev_validate() returns failure (indicated by 3087 * EBADF), it indicates that one of the vdevs indicates 3088 * that the pool has been exported or destroyed. If 3089 * this is the case, the config cache is out of sync and 3090 * we should remove the pool from the namespace. 3091 */ 3092 spa_unload(spa); 3093 spa_deactivate(spa); 3094 spa_config_sync(spa, B_TRUE, B_TRUE); 3095 spa_remove(spa); 3096 if (locked) 3097 mutex_exit(&spa_namespace_lock); 3098 return (SET_ERROR(ENOENT)); 3099 } 3100 3101 if (error) { 3102 /* 3103 * We can't open the pool, but we still have useful 3104 * information: the state of each vdev after the 3105 * attempted vdev_open(). Return this to the user. 3106 */ 3107 if (config != NULL && spa->spa_config) { 3108 VERIFY(nvlist_dup(spa->spa_config, config, 3109 KM_SLEEP) == 0); 3110 VERIFY(nvlist_add_nvlist(*config, 3111 ZPOOL_CONFIG_LOAD_INFO, 3112 spa->spa_load_info) == 0); 3113 } 3114 spa_unload(spa); 3115 spa_deactivate(spa); 3116 spa->spa_last_open_failed = error; 3117 if (locked) 3118 mutex_exit(&spa_namespace_lock); 3119 *spapp = NULL; 3120 return (error); 3121 } 3122 } 3123 3124 spa_open_ref(spa, tag); 3125 3126 if (config != NULL) 3127 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3128 3129 /* 3130 * If we've recovered the pool, pass back any information we 3131 * gathered while doing the load. 3132 */ 3133 if (state == SPA_LOAD_RECOVER) { 3134 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 3135 spa->spa_load_info) == 0); 3136 } 3137 3138 if (locked) { 3139 spa->spa_last_open_failed = 0; 3140 spa->spa_last_ubsync_txg = 0; 3141 spa->spa_load_txg = 0; 3142 mutex_exit(&spa_namespace_lock); 3143 } 3144 3145 *spapp = spa; 3146 3147 return (0); 3148 } 3149 3150 int 3151 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 3152 nvlist_t **config) 3153 { 3154 return (spa_open_common(name, spapp, tag, policy, config)); 3155 } 3156 3157 int 3158 spa_open(const char *name, spa_t **spapp, void *tag) 3159 { 3160 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3161 } 3162 3163 /* 3164 * Lookup the given spa_t, incrementing the inject count in the process, 3165 * preventing it from being exported or destroyed. 3166 */ 3167 spa_t * 3168 spa_inject_addref(char *name) 3169 { 3170 spa_t *spa; 3171 3172 mutex_enter(&spa_namespace_lock); 3173 if ((spa = spa_lookup(name)) == NULL) { 3174 mutex_exit(&spa_namespace_lock); 3175 return (NULL); 3176 } 3177 spa->spa_inject_ref++; 3178 mutex_exit(&spa_namespace_lock); 3179 3180 return (spa); 3181 } 3182 3183 void 3184 spa_inject_delref(spa_t *spa) 3185 { 3186 mutex_enter(&spa_namespace_lock); 3187 spa->spa_inject_ref--; 3188 mutex_exit(&spa_namespace_lock); 3189 } 3190 3191 /* 3192 * Add spares device information to the nvlist. 3193 */ 3194 static void 3195 spa_add_spares(spa_t *spa, nvlist_t *config) 3196 { 3197 nvlist_t **spares; 3198 uint_t i, nspares; 3199 nvlist_t *nvroot; 3200 uint64_t guid; 3201 vdev_stat_t *vs; 3202 uint_t vsc; 3203 uint64_t pool; 3204 3205 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3206 3207 if (spa->spa_spares.sav_count == 0) 3208 return; 3209 3210 VERIFY(nvlist_lookup_nvlist(config, 3211 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3212 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3213 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3214 if (nspares != 0) { 3215 VERIFY(nvlist_add_nvlist_array(nvroot, 3216 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3217 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3218 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3219 3220 /* 3221 * Go through and find any spares which have since been 3222 * repurposed as an active spare. If this is the case, update 3223 * their status appropriately. 3224 */ 3225 for (i = 0; i < nspares; i++) { 3226 VERIFY(nvlist_lookup_uint64(spares[i], 3227 ZPOOL_CONFIG_GUID, &guid) == 0); 3228 if (spa_spare_exists(guid, &pool, NULL) && 3229 pool != 0ULL) { 3230 VERIFY(nvlist_lookup_uint64_array( 3231 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3232 (uint64_t **)&vs, &vsc) == 0); 3233 vs->vs_state = VDEV_STATE_CANT_OPEN; 3234 vs->vs_aux = VDEV_AUX_SPARED; 3235 } 3236 } 3237 } 3238 } 3239 3240 /* 3241 * Add l2cache device information to the nvlist, including vdev stats. 3242 */ 3243 static void 3244 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3245 { 3246 nvlist_t **l2cache; 3247 uint_t i, j, nl2cache; 3248 nvlist_t *nvroot; 3249 uint64_t guid; 3250 vdev_t *vd; 3251 vdev_stat_t *vs; 3252 uint_t vsc; 3253 3254 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3255 3256 if (spa->spa_l2cache.sav_count == 0) 3257 return; 3258 3259 VERIFY(nvlist_lookup_nvlist(config, 3260 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3261 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3262 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3263 if (nl2cache != 0) { 3264 VERIFY(nvlist_add_nvlist_array(nvroot, 3265 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3266 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3267 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3268 3269 /* 3270 * Update level 2 cache device stats. 3271 */ 3272 3273 for (i = 0; i < nl2cache; i++) { 3274 VERIFY(nvlist_lookup_uint64(l2cache[i], 3275 ZPOOL_CONFIG_GUID, &guid) == 0); 3276 3277 vd = NULL; 3278 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3279 if (guid == 3280 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3281 vd = spa->spa_l2cache.sav_vdevs[j]; 3282 break; 3283 } 3284 } 3285 ASSERT(vd != NULL); 3286 3287 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3288 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3289 == 0); 3290 vdev_get_stats(vd, vs); 3291 } 3292 } 3293 } 3294 3295 static void 3296 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3297 { 3298 nvlist_t *features; 3299 zap_cursor_t zc; 3300 zap_attribute_t za; 3301 3302 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3303 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3304 3305 if (spa->spa_feat_for_read_obj != 0) { 3306 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3307 spa->spa_feat_for_read_obj); 3308 zap_cursor_retrieve(&zc, &za) == 0; 3309 zap_cursor_advance(&zc)) { 3310 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3311 za.za_num_integers == 1); 3312 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3313 za.za_first_integer)); 3314 } 3315 zap_cursor_fini(&zc); 3316 } 3317 3318 if (spa->spa_feat_for_write_obj != 0) { 3319 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3320 spa->spa_feat_for_write_obj); 3321 zap_cursor_retrieve(&zc, &za) == 0; 3322 zap_cursor_advance(&zc)) { 3323 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3324 za.za_num_integers == 1); 3325 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3326 za.za_first_integer)); 3327 } 3328 zap_cursor_fini(&zc); 3329 } 3330 3331 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3332 features) == 0); 3333 nvlist_free(features); 3334 } 3335 3336 int 3337 spa_get_stats(const char *name, nvlist_t **config, 3338 char *altroot, size_t buflen) 3339 { 3340 int error; 3341 spa_t *spa; 3342 3343 *config = NULL; 3344 error = spa_open_common(name, &spa, FTAG, NULL, config); 3345 3346 if (spa != NULL) { 3347 /* 3348 * This still leaves a window of inconsistency where the spares 3349 * or l2cache devices could change and the config would be 3350 * self-inconsistent. 3351 */ 3352 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3353 3354 if (*config != NULL) { 3355 uint64_t loadtimes[2]; 3356 3357 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3358 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3359 VERIFY(nvlist_add_uint64_array(*config, 3360 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3361 3362 VERIFY(nvlist_add_uint64(*config, 3363 ZPOOL_CONFIG_ERRCOUNT, 3364 spa_get_errlog_size(spa)) == 0); 3365 3366 if (spa_suspended(spa)) 3367 VERIFY(nvlist_add_uint64(*config, 3368 ZPOOL_CONFIG_SUSPENDED, 3369 spa->spa_failmode) == 0); 3370 3371 spa_add_spares(spa, *config); 3372 spa_add_l2cache(spa, *config); 3373 spa_add_feature_stats(spa, *config); 3374 } 3375 } 3376 3377 /* 3378 * We want to get the alternate root even for faulted pools, so we cheat 3379 * and call spa_lookup() directly. 3380 */ 3381 if (altroot) { 3382 if (spa == NULL) { 3383 mutex_enter(&spa_namespace_lock); 3384 spa = spa_lookup(name); 3385 if (spa) 3386 spa_altroot(spa, altroot, buflen); 3387 else 3388 altroot[0] = '\0'; 3389 spa = NULL; 3390 mutex_exit(&spa_namespace_lock); 3391 } else { 3392 spa_altroot(spa, altroot, buflen); 3393 } 3394 } 3395 3396 if (spa != NULL) { 3397 spa_config_exit(spa, SCL_CONFIG, FTAG); 3398 spa_close(spa, FTAG); 3399 } 3400 3401 return (error); 3402 } 3403 3404 /* 3405 * Validate that the auxiliary device array is well formed. We must have an 3406 * array of nvlists, each which describes a valid leaf vdev. If this is an 3407 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3408 * specified, as long as they are well-formed. 3409 */ 3410 static int 3411 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3412 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3413 vdev_labeltype_t label) 3414 { 3415 nvlist_t **dev; 3416 uint_t i, ndev; 3417 vdev_t *vd; 3418 int error; 3419 3420 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3421 3422 /* 3423 * It's acceptable to have no devs specified. 3424 */ 3425 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3426 return (0); 3427 3428 if (ndev == 0) 3429 return (SET_ERROR(EINVAL)); 3430 3431 /* 3432 * Make sure the pool is formatted with a version that supports this 3433 * device type. 3434 */ 3435 if (spa_version(spa) < version) 3436 return (SET_ERROR(ENOTSUP)); 3437 3438 /* 3439 * Set the pending device list so we correctly handle device in-use 3440 * checking. 3441 */ 3442 sav->sav_pending = dev; 3443 sav->sav_npending = ndev; 3444 3445 for (i = 0; i < ndev; i++) { 3446 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3447 mode)) != 0) 3448 goto out; 3449 3450 if (!vd->vdev_ops->vdev_op_leaf) { 3451 vdev_free(vd); 3452 error = SET_ERROR(EINVAL); 3453 goto out; 3454 } 3455 3456 /* 3457 * The L2ARC currently only supports disk devices in 3458 * kernel context. For user-level testing, we allow it. 3459 */ 3460 #ifdef _KERNEL 3461 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3462 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3463 error = SET_ERROR(ENOTBLK); 3464 vdev_free(vd); 3465 goto out; 3466 } 3467 #endif 3468 vd->vdev_top = vd; 3469 3470 if ((error = vdev_open(vd)) == 0 && 3471 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3472 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3473 vd->vdev_guid) == 0); 3474 } 3475 3476 vdev_free(vd); 3477 3478 if (error && 3479 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3480 goto out; 3481 else 3482 error = 0; 3483 } 3484 3485 out: 3486 sav->sav_pending = NULL; 3487 sav->sav_npending = 0; 3488 return (error); 3489 } 3490 3491 static int 3492 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3493 { 3494 int error; 3495 3496 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3497 3498 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3499 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3500 VDEV_LABEL_SPARE)) != 0) { 3501 return (error); 3502 } 3503 3504 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3505 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3506 VDEV_LABEL_L2CACHE)); 3507 } 3508 3509 static void 3510 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3511 const char *config) 3512 { 3513 int i; 3514 3515 if (sav->sav_config != NULL) { 3516 nvlist_t **olddevs; 3517 uint_t oldndevs; 3518 nvlist_t **newdevs; 3519 3520 /* 3521 * Generate new dev list by concatentating with the 3522 * current dev list. 3523 */ 3524 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3525 &olddevs, &oldndevs) == 0); 3526 3527 newdevs = kmem_alloc(sizeof (void *) * 3528 (ndevs + oldndevs), KM_SLEEP); 3529 for (i = 0; i < oldndevs; i++) 3530 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3531 KM_SLEEP) == 0); 3532 for (i = 0; i < ndevs; i++) 3533 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3534 KM_SLEEP) == 0); 3535 3536 VERIFY(nvlist_remove(sav->sav_config, config, 3537 DATA_TYPE_NVLIST_ARRAY) == 0); 3538 3539 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3540 config, newdevs, ndevs + oldndevs) == 0); 3541 for (i = 0; i < oldndevs + ndevs; i++) 3542 nvlist_free(newdevs[i]); 3543 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3544 } else { 3545 /* 3546 * Generate a new dev list. 3547 */ 3548 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3549 KM_SLEEP) == 0); 3550 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3551 devs, ndevs) == 0); 3552 } 3553 } 3554 3555 /* 3556 * Stop and drop level 2 ARC devices 3557 */ 3558 void 3559 spa_l2cache_drop(spa_t *spa) 3560 { 3561 vdev_t *vd; 3562 int i; 3563 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3564 3565 for (i = 0; i < sav->sav_count; i++) { 3566 uint64_t pool; 3567 3568 vd = sav->sav_vdevs[i]; 3569 ASSERT(vd != NULL); 3570 3571 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3572 pool != 0ULL && l2arc_vdev_present(vd)) 3573 l2arc_remove_vdev(vd); 3574 } 3575 } 3576 3577 /* 3578 * Pool Creation 3579 */ 3580 int 3581 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3582 nvlist_t *zplprops) 3583 { 3584 spa_t *spa; 3585 char *altroot = NULL; 3586 vdev_t *rvd; 3587 dsl_pool_t *dp; 3588 dmu_tx_t *tx; 3589 int error = 0; 3590 uint64_t txg = TXG_INITIAL; 3591 nvlist_t **spares, **l2cache; 3592 uint_t nspares, nl2cache; 3593 uint64_t version, obj; 3594 boolean_t has_features; 3595 3596 /* 3597 * If this pool already exists, return failure. 3598 */ 3599 mutex_enter(&spa_namespace_lock); 3600 if (spa_lookup(pool) != NULL) { 3601 mutex_exit(&spa_namespace_lock); 3602 return (SET_ERROR(EEXIST)); 3603 } 3604 3605 /* 3606 * Allocate a new spa_t structure. 3607 */ 3608 (void) nvlist_lookup_string(props, 3609 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3610 spa = spa_add(pool, NULL, altroot); 3611 spa_activate(spa, spa_mode_global); 3612 3613 if (props && (error = spa_prop_validate(spa, props))) { 3614 spa_deactivate(spa); 3615 spa_remove(spa); 3616 mutex_exit(&spa_namespace_lock); 3617 return (error); 3618 } 3619 3620 has_features = B_FALSE; 3621 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3622 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3623 if (zpool_prop_feature(nvpair_name(elem))) 3624 has_features = B_TRUE; 3625 } 3626 3627 if (has_features || nvlist_lookup_uint64(props, 3628 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3629 version = SPA_VERSION; 3630 } 3631 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3632 3633 spa->spa_first_txg = txg; 3634 spa->spa_uberblock.ub_txg = txg - 1; 3635 spa->spa_uberblock.ub_version = version; 3636 spa->spa_ubsync = spa->spa_uberblock; 3637 3638 /* 3639 * Create "The Godfather" zio to hold all async IOs 3640 */ 3641 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3642 KM_SLEEP); 3643 for (int i = 0; i < max_ncpus; i++) { 3644 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3645 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3646 ZIO_FLAG_GODFATHER); 3647 } 3648 3649 /* 3650 * Create the root vdev. 3651 */ 3652 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3653 3654 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3655 3656 ASSERT(error != 0 || rvd != NULL); 3657 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3658 3659 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3660 error = SET_ERROR(EINVAL); 3661 3662 if (error == 0 && 3663 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3664 (error = spa_validate_aux(spa, nvroot, txg, 3665 VDEV_ALLOC_ADD)) == 0) { 3666 for (int c = 0; c < rvd->vdev_children; c++) { 3667 vdev_metaslab_set_size(rvd->vdev_child[c]); 3668 vdev_expand(rvd->vdev_child[c], txg); 3669 } 3670 } 3671 3672 spa_config_exit(spa, SCL_ALL, FTAG); 3673 3674 if (error != 0) { 3675 spa_unload(spa); 3676 spa_deactivate(spa); 3677 spa_remove(spa); 3678 mutex_exit(&spa_namespace_lock); 3679 return (error); 3680 } 3681 3682 /* 3683 * Get the list of spares, if specified. 3684 */ 3685 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3686 &spares, &nspares) == 0) { 3687 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3688 KM_SLEEP) == 0); 3689 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3690 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3691 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3692 spa_load_spares(spa); 3693 spa_config_exit(spa, SCL_ALL, FTAG); 3694 spa->spa_spares.sav_sync = B_TRUE; 3695 } 3696 3697 /* 3698 * Get the list of level 2 cache devices, if specified. 3699 */ 3700 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3701 &l2cache, &nl2cache) == 0) { 3702 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3703 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3704 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3705 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3706 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3707 spa_load_l2cache(spa); 3708 spa_config_exit(spa, SCL_ALL, FTAG); 3709 spa->spa_l2cache.sav_sync = B_TRUE; 3710 } 3711 3712 spa->spa_is_initializing = B_TRUE; 3713 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3714 spa->spa_meta_objset = dp->dp_meta_objset; 3715 spa->spa_is_initializing = B_FALSE; 3716 3717 /* 3718 * Create DDTs (dedup tables). 3719 */ 3720 ddt_create(spa); 3721 3722 spa_update_dspace(spa); 3723 3724 tx = dmu_tx_create_assigned(dp, txg); 3725 3726 /* 3727 * Create the pool config object. 3728 */ 3729 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3730 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3731 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3732 3733 if (zap_add(spa->spa_meta_objset, 3734 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3735 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3736 cmn_err(CE_PANIC, "failed to add pool config"); 3737 } 3738 3739 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3740 spa_feature_create_zap_objects(spa, tx); 3741 3742 if (zap_add(spa->spa_meta_objset, 3743 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3744 sizeof (uint64_t), 1, &version, tx) != 0) { 3745 cmn_err(CE_PANIC, "failed to add pool version"); 3746 } 3747 3748 /* Newly created pools with the right version are always deflated. */ 3749 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3750 spa->spa_deflate = TRUE; 3751 if (zap_add(spa->spa_meta_objset, 3752 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3753 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3754 cmn_err(CE_PANIC, "failed to add deflate"); 3755 } 3756 } 3757 3758 /* 3759 * Create the deferred-free bpobj. Turn off compression 3760 * because sync-to-convergence takes longer if the blocksize 3761 * keeps changing. 3762 */ 3763 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3764 dmu_object_set_compress(spa->spa_meta_objset, obj, 3765 ZIO_COMPRESS_OFF, tx); 3766 if (zap_add(spa->spa_meta_objset, 3767 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3768 sizeof (uint64_t), 1, &obj, tx) != 0) { 3769 cmn_err(CE_PANIC, "failed to add bpobj"); 3770 } 3771 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3772 spa->spa_meta_objset, obj)); 3773 3774 /* 3775 * Create the pool's history object. 3776 */ 3777 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3778 spa_history_create_obj(spa, tx); 3779 3780 /* 3781 * Generate some random noise for salted checksums to operate on. 3782 */ 3783 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3784 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3785 3786 /* 3787 * Set pool properties. 3788 */ 3789 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3790 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3791 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3792 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3793 3794 if (props != NULL) { 3795 spa_configfile_set(spa, props, B_FALSE); 3796 spa_sync_props(props, tx); 3797 } 3798 3799 dmu_tx_commit(tx); 3800 3801 spa->spa_sync_on = B_TRUE; 3802 txg_sync_start(spa->spa_dsl_pool); 3803 3804 /* 3805 * We explicitly wait for the first transaction to complete so that our 3806 * bean counters are appropriately updated. 3807 */ 3808 txg_wait_synced(spa->spa_dsl_pool, txg); 3809 3810 spa_config_sync(spa, B_FALSE, B_TRUE); 3811 spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE); 3812 3813 spa_history_log_version(spa, "create"); 3814 3815 /* 3816 * Don't count references from objsets that are already closed 3817 * and are making their way through the eviction process. 3818 */ 3819 spa_evicting_os_wait(spa); 3820 spa->spa_minref = refcount_count(&spa->spa_refcount); 3821 3822 mutex_exit(&spa_namespace_lock); 3823 3824 return (0); 3825 } 3826 3827 #ifdef _KERNEL 3828 /* 3829 * Get the root pool information from the root disk, then import the root pool 3830 * during the system boot up time. 3831 */ 3832 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3833 3834 static nvlist_t * 3835 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3836 { 3837 nvlist_t *config; 3838 nvlist_t *nvtop, *nvroot; 3839 uint64_t pgid; 3840 3841 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3842 return (NULL); 3843 3844 /* 3845 * Add this top-level vdev to the child array. 3846 */ 3847 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3848 &nvtop) == 0); 3849 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3850 &pgid) == 0); 3851 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3852 3853 /* 3854 * Put this pool's top-level vdevs into a root vdev. 3855 */ 3856 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3857 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3858 VDEV_TYPE_ROOT) == 0); 3859 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3860 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3861 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3862 &nvtop, 1) == 0); 3863 3864 /* 3865 * Replace the existing vdev_tree with the new root vdev in 3866 * this pool's configuration (remove the old, add the new). 3867 */ 3868 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3869 nvlist_free(nvroot); 3870 return (config); 3871 } 3872 3873 /* 3874 * Walk the vdev tree and see if we can find a device with "better" 3875 * configuration. A configuration is "better" if the label on that 3876 * device has a more recent txg. 3877 */ 3878 static void 3879 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3880 { 3881 for (int c = 0; c < vd->vdev_children; c++) 3882 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3883 3884 if (vd->vdev_ops->vdev_op_leaf) { 3885 nvlist_t *label; 3886 uint64_t label_txg; 3887 3888 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3889 &label) != 0) 3890 return; 3891 3892 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3893 &label_txg) == 0); 3894 3895 /* 3896 * Do we have a better boot device? 3897 */ 3898 if (label_txg > *txg) { 3899 *txg = label_txg; 3900 *avd = vd; 3901 } 3902 nvlist_free(label); 3903 } 3904 } 3905 3906 /* 3907 * Import a root pool. 3908 * 3909 * For x86. devpath_list will consist of devid and/or physpath name of 3910 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3911 * The GRUB "findroot" command will return the vdev we should boot. 3912 * 3913 * For Sparc, devpath_list consists the physpath name of the booting device 3914 * no matter the rootpool is a single device pool or a mirrored pool. 3915 * e.g. 3916 * "/pci@1f,0/ide@d/disk@0,0:a" 3917 */ 3918 int 3919 spa_import_rootpool(char *devpath, char *devid) 3920 { 3921 spa_t *spa; 3922 vdev_t *rvd, *bvd, *avd = NULL; 3923 nvlist_t *config, *nvtop; 3924 uint64_t guid, txg; 3925 char *pname; 3926 int error; 3927 3928 /* 3929 * Read the label from the boot device and generate a configuration. 3930 */ 3931 config = spa_generate_rootconf(devpath, devid, &guid); 3932 #if defined(_OBP) && defined(_KERNEL) 3933 if (config == NULL) { 3934 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3935 /* iscsi boot */ 3936 get_iscsi_bootpath_phy(devpath); 3937 config = spa_generate_rootconf(devpath, devid, &guid); 3938 } 3939 } 3940 #endif 3941 if (config == NULL) { 3942 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3943 devpath); 3944 return (SET_ERROR(EIO)); 3945 } 3946 3947 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3948 &pname) == 0); 3949 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3950 3951 mutex_enter(&spa_namespace_lock); 3952 if ((spa = spa_lookup(pname)) != NULL) { 3953 /* 3954 * Remove the existing root pool from the namespace so that we 3955 * can replace it with the correct config we just read in. 3956 */ 3957 spa_remove(spa); 3958 } 3959 3960 spa = spa_add(pname, config, NULL); 3961 spa->spa_is_root = B_TRUE; 3962 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3963 3964 /* 3965 * Build up a vdev tree based on the boot device's label config. 3966 */ 3967 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3968 &nvtop) == 0); 3969 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3970 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3971 VDEV_ALLOC_ROOTPOOL); 3972 spa_config_exit(spa, SCL_ALL, FTAG); 3973 if (error) { 3974 mutex_exit(&spa_namespace_lock); 3975 nvlist_free(config); 3976 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3977 pname); 3978 return (error); 3979 } 3980 3981 /* 3982 * Get the boot vdev. 3983 */ 3984 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3985 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3986 (u_longlong_t)guid); 3987 error = SET_ERROR(ENOENT); 3988 goto out; 3989 } 3990 3991 /* 3992 * Determine if there is a better boot device. 3993 */ 3994 avd = bvd; 3995 spa_alt_rootvdev(rvd, &avd, &txg); 3996 if (avd != bvd) { 3997 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3998 "try booting from '%s'", avd->vdev_path); 3999 error = SET_ERROR(EINVAL); 4000 goto out; 4001 } 4002 4003 /* 4004 * If the boot device is part of a spare vdev then ensure that 4005 * we're booting off the active spare. 4006 */ 4007 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 4008 !bvd->vdev_isspare) { 4009 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 4010 "try booting from '%s'", 4011 bvd->vdev_parent-> 4012 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 4013 error = SET_ERROR(EINVAL); 4014 goto out; 4015 } 4016 4017 error = 0; 4018 out: 4019 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4020 vdev_free(rvd); 4021 spa_config_exit(spa, SCL_ALL, FTAG); 4022 mutex_exit(&spa_namespace_lock); 4023 4024 nvlist_free(config); 4025 return (error); 4026 } 4027 4028 #endif 4029 4030 /* 4031 * Import a non-root pool into the system. 4032 */ 4033 int 4034 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 4035 { 4036 spa_t *spa; 4037 char *altroot = NULL; 4038 spa_load_state_t state = SPA_LOAD_IMPORT; 4039 zpool_rewind_policy_t policy; 4040 uint64_t mode = spa_mode_global; 4041 uint64_t readonly = B_FALSE; 4042 int error; 4043 nvlist_t *nvroot; 4044 nvlist_t **spares, **l2cache; 4045 uint_t nspares, nl2cache; 4046 4047 /* 4048 * If a pool with this name exists, return failure. 4049 */ 4050 mutex_enter(&spa_namespace_lock); 4051 if (spa_lookup(pool) != NULL) { 4052 mutex_exit(&spa_namespace_lock); 4053 return (SET_ERROR(EEXIST)); 4054 } 4055 4056 /* 4057 * Create and initialize the spa structure. 4058 */ 4059 (void) nvlist_lookup_string(props, 4060 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4061 (void) nvlist_lookup_uint64(props, 4062 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 4063 if (readonly) 4064 mode = FREAD; 4065 spa = spa_add(pool, config, altroot); 4066 spa->spa_import_flags = flags; 4067 4068 /* 4069 * Verbatim import - Take a pool and insert it into the namespace 4070 * as if it had been loaded at boot. 4071 */ 4072 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 4073 if (props != NULL) 4074 spa_configfile_set(spa, props, B_FALSE); 4075 4076 spa_config_sync(spa, B_FALSE, B_TRUE); 4077 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4078 4079 mutex_exit(&spa_namespace_lock); 4080 return (0); 4081 } 4082 4083 spa_activate(spa, mode); 4084 4085 /* 4086 * Don't start async tasks until we know everything is healthy. 4087 */ 4088 spa_async_suspend(spa); 4089 4090 zpool_get_rewind_policy(config, &policy); 4091 if (policy.zrp_request & ZPOOL_DO_REWIND) 4092 state = SPA_LOAD_RECOVER; 4093 4094 /* 4095 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 4096 * because the user-supplied config is actually the one to trust when 4097 * doing an import. 4098 */ 4099 if (state != SPA_LOAD_RECOVER) 4100 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4101 4102 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 4103 policy.zrp_request); 4104 4105 /* 4106 * Propagate anything learned while loading the pool and pass it 4107 * back to caller (i.e. rewind info, missing devices, etc). 4108 */ 4109 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4110 spa->spa_load_info) == 0); 4111 4112 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4113 /* 4114 * Toss any existing sparelist, as it doesn't have any validity 4115 * anymore, and conflicts with spa_has_spare(). 4116 */ 4117 if (spa->spa_spares.sav_config) { 4118 nvlist_free(spa->spa_spares.sav_config); 4119 spa->spa_spares.sav_config = NULL; 4120 spa_load_spares(spa); 4121 } 4122 if (spa->spa_l2cache.sav_config) { 4123 nvlist_free(spa->spa_l2cache.sav_config); 4124 spa->spa_l2cache.sav_config = NULL; 4125 spa_load_l2cache(spa); 4126 } 4127 4128 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4129 &nvroot) == 0); 4130 if (error == 0) 4131 error = spa_validate_aux(spa, nvroot, -1ULL, 4132 VDEV_ALLOC_SPARE); 4133 if (error == 0) 4134 error = spa_validate_aux(spa, nvroot, -1ULL, 4135 VDEV_ALLOC_L2CACHE); 4136 spa_config_exit(spa, SCL_ALL, FTAG); 4137 4138 if (props != NULL) 4139 spa_configfile_set(spa, props, B_FALSE); 4140 4141 if (error != 0 || (props && spa_writeable(spa) && 4142 (error = spa_prop_set(spa, props)))) { 4143 spa_unload(spa); 4144 spa_deactivate(spa); 4145 spa_remove(spa); 4146 mutex_exit(&spa_namespace_lock); 4147 return (error); 4148 } 4149 4150 spa_async_resume(spa); 4151 4152 /* 4153 * Override any spares and level 2 cache devices as specified by 4154 * the user, as these may have correct device names/devids, etc. 4155 */ 4156 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4157 &spares, &nspares) == 0) { 4158 if (spa->spa_spares.sav_config) 4159 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 4160 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 4161 else 4162 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 4163 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4164 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4165 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4166 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4167 spa_load_spares(spa); 4168 spa_config_exit(spa, SCL_ALL, FTAG); 4169 spa->spa_spares.sav_sync = B_TRUE; 4170 } 4171 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4172 &l2cache, &nl2cache) == 0) { 4173 if (spa->spa_l2cache.sav_config) 4174 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4175 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4176 else 4177 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4178 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4179 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4180 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4181 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4182 spa_load_l2cache(spa); 4183 spa_config_exit(spa, SCL_ALL, FTAG); 4184 spa->spa_l2cache.sav_sync = B_TRUE; 4185 } 4186 4187 /* 4188 * Check for any removed devices. 4189 */ 4190 if (spa->spa_autoreplace) { 4191 spa_aux_check_removed(&spa->spa_spares); 4192 spa_aux_check_removed(&spa->spa_l2cache); 4193 } 4194 4195 if (spa_writeable(spa)) { 4196 /* 4197 * Update the config cache to include the newly-imported pool. 4198 */ 4199 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4200 } 4201 4202 /* 4203 * It's possible that the pool was expanded while it was exported. 4204 * We kick off an async task to handle this for us. 4205 */ 4206 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4207 4208 spa_history_log_version(spa, "import"); 4209 4210 spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT); 4211 4212 mutex_exit(&spa_namespace_lock); 4213 4214 return (0); 4215 } 4216 4217 nvlist_t * 4218 spa_tryimport(nvlist_t *tryconfig) 4219 { 4220 nvlist_t *config = NULL; 4221 char *poolname; 4222 spa_t *spa; 4223 uint64_t state; 4224 int error; 4225 4226 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4227 return (NULL); 4228 4229 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4230 return (NULL); 4231 4232 /* 4233 * Create and initialize the spa structure. 4234 */ 4235 mutex_enter(&spa_namespace_lock); 4236 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4237 spa_activate(spa, FREAD); 4238 4239 /* 4240 * Pass off the heavy lifting to spa_load(). 4241 * Pass TRUE for mosconfig because the user-supplied config 4242 * is actually the one to trust when doing an import. 4243 */ 4244 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4245 4246 /* 4247 * If 'tryconfig' was at least parsable, return the current config. 4248 */ 4249 if (spa->spa_root_vdev != NULL) { 4250 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4251 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4252 poolname) == 0); 4253 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4254 state) == 0); 4255 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4256 spa->spa_uberblock.ub_timestamp) == 0); 4257 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4258 spa->spa_load_info) == 0); 4259 4260 /* 4261 * If the bootfs property exists on this pool then we 4262 * copy it out so that external consumers can tell which 4263 * pools are bootable. 4264 */ 4265 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4266 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4267 4268 /* 4269 * We have to play games with the name since the 4270 * pool was opened as TRYIMPORT_NAME. 4271 */ 4272 if (dsl_dsobj_to_dsname(spa_name(spa), 4273 spa->spa_bootfs, tmpname) == 0) { 4274 char *cp; 4275 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4276 4277 cp = strchr(tmpname, '/'); 4278 if (cp == NULL) { 4279 (void) strlcpy(dsname, tmpname, 4280 MAXPATHLEN); 4281 } else { 4282 (void) snprintf(dsname, MAXPATHLEN, 4283 "%s/%s", poolname, ++cp); 4284 } 4285 VERIFY(nvlist_add_string(config, 4286 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4287 kmem_free(dsname, MAXPATHLEN); 4288 } 4289 kmem_free(tmpname, MAXPATHLEN); 4290 } 4291 4292 /* 4293 * Add the list of hot spares and level 2 cache devices. 4294 */ 4295 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4296 spa_add_spares(spa, config); 4297 spa_add_l2cache(spa, config); 4298 spa_config_exit(spa, SCL_CONFIG, FTAG); 4299 } 4300 4301 spa_unload(spa); 4302 spa_deactivate(spa); 4303 spa_remove(spa); 4304 mutex_exit(&spa_namespace_lock); 4305 4306 return (config); 4307 } 4308 4309 /* 4310 * Pool export/destroy 4311 * 4312 * The act of destroying or exporting a pool is very simple. We make sure there 4313 * is no more pending I/O and any references to the pool are gone. Then, we 4314 * update the pool state and sync all the labels to disk, removing the 4315 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4316 * we don't sync the labels or remove the configuration cache. 4317 */ 4318 static int 4319 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4320 boolean_t force, boolean_t hardforce) 4321 { 4322 spa_t *spa; 4323 4324 if (oldconfig) 4325 *oldconfig = NULL; 4326 4327 if (!(spa_mode_global & FWRITE)) 4328 return (SET_ERROR(EROFS)); 4329 4330 mutex_enter(&spa_namespace_lock); 4331 if ((spa = spa_lookup(pool)) == NULL) { 4332 mutex_exit(&spa_namespace_lock); 4333 return (SET_ERROR(ENOENT)); 4334 } 4335 4336 /* 4337 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4338 * reacquire the namespace lock, and see if we can export. 4339 */ 4340 spa_open_ref(spa, FTAG); 4341 mutex_exit(&spa_namespace_lock); 4342 spa_async_suspend(spa); 4343 mutex_enter(&spa_namespace_lock); 4344 spa_close(spa, FTAG); 4345 4346 /* 4347 * The pool will be in core if it's openable, 4348 * in which case we can modify its state. 4349 */ 4350 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4351 /* 4352 * Objsets may be open only because they're dirty, so we 4353 * have to force it to sync before checking spa_refcnt. 4354 */ 4355 txg_wait_synced(spa->spa_dsl_pool, 0); 4356 spa_evicting_os_wait(spa); 4357 4358 /* 4359 * A pool cannot be exported or destroyed if there are active 4360 * references. If we are resetting a pool, allow references by 4361 * fault injection handlers. 4362 */ 4363 if (!spa_refcount_zero(spa) || 4364 (spa->spa_inject_ref != 0 && 4365 new_state != POOL_STATE_UNINITIALIZED)) { 4366 spa_async_resume(spa); 4367 mutex_exit(&spa_namespace_lock); 4368 return (SET_ERROR(EBUSY)); 4369 } 4370 4371 /* 4372 * A pool cannot be exported if it has an active shared spare. 4373 * This is to prevent other pools stealing the active spare 4374 * from an exported pool. At user's own will, such pool can 4375 * be forcedly exported. 4376 */ 4377 if (!force && new_state == POOL_STATE_EXPORTED && 4378 spa_has_active_shared_spare(spa)) { 4379 spa_async_resume(spa); 4380 mutex_exit(&spa_namespace_lock); 4381 return (SET_ERROR(EXDEV)); 4382 } 4383 4384 /* 4385 * We want this to be reflected on every label, 4386 * so mark them all dirty. spa_unload() will do the 4387 * final sync that pushes these changes out. 4388 */ 4389 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4390 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4391 spa->spa_state = new_state; 4392 spa->spa_final_txg = spa_last_synced_txg(spa) + 4393 TXG_DEFER_SIZE + 1; 4394 vdev_config_dirty(spa->spa_root_vdev); 4395 spa_config_exit(spa, SCL_ALL, FTAG); 4396 } 4397 } 4398 4399 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4400 4401 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4402 spa_unload(spa); 4403 spa_deactivate(spa); 4404 } 4405 4406 if (oldconfig && spa->spa_config) 4407 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4408 4409 if (new_state != POOL_STATE_UNINITIALIZED) { 4410 if (!hardforce) 4411 spa_config_sync(spa, B_TRUE, B_TRUE); 4412 spa_remove(spa); 4413 } 4414 mutex_exit(&spa_namespace_lock); 4415 4416 return (0); 4417 } 4418 4419 /* 4420 * Destroy a storage pool. 4421 */ 4422 int 4423 spa_destroy(char *pool) 4424 { 4425 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4426 B_FALSE, B_FALSE)); 4427 } 4428 4429 /* 4430 * Export a storage pool. 4431 */ 4432 int 4433 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4434 boolean_t hardforce) 4435 { 4436 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4437 force, hardforce)); 4438 } 4439 4440 /* 4441 * Similar to spa_export(), this unloads the spa_t without actually removing it 4442 * from the namespace in any way. 4443 */ 4444 int 4445 spa_reset(char *pool) 4446 { 4447 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4448 B_FALSE, B_FALSE)); 4449 } 4450 4451 /* 4452 * ========================================================================== 4453 * Device manipulation 4454 * ========================================================================== 4455 */ 4456 4457 /* 4458 * Add a device to a storage pool. 4459 */ 4460 int 4461 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4462 { 4463 uint64_t txg, id; 4464 int error; 4465 vdev_t *rvd = spa->spa_root_vdev; 4466 vdev_t *vd, *tvd; 4467 nvlist_t **spares, **l2cache; 4468 uint_t nspares, nl2cache; 4469 4470 ASSERT(spa_writeable(spa)); 4471 4472 txg = spa_vdev_enter(spa); 4473 4474 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4475 VDEV_ALLOC_ADD)) != 0) 4476 return (spa_vdev_exit(spa, NULL, txg, error)); 4477 4478 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4479 4480 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4481 &nspares) != 0) 4482 nspares = 0; 4483 4484 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4485 &nl2cache) != 0) 4486 nl2cache = 0; 4487 4488 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4489 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4490 4491 if (vd->vdev_children != 0 && 4492 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4493 return (spa_vdev_exit(spa, vd, txg, error)); 4494 4495 /* 4496 * We must validate the spares and l2cache devices after checking the 4497 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4498 */ 4499 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4500 return (spa_vdev_exit(spa, vd, txg, error)); 4501 4502 /* 4503 * Transfer each new top-level vdev from vd to rvd. 4504 */ 4505 for (int c = 0; c < vd->vdev_children; c++) { 4506 4507 /* 4508 * Set the vdev id to the first hole, if one exists. 4509 */ 4510 for (id = 0; id < rvd->vdev_children; id++) { 4511 if (rvd->vdev_child[id]->vdev_ishole) { 4512 vdev_free(rvd->vdev_child[id]); 4513 break; 4514 } 4515 } 4516 tvd = vd->vdev_child[c]; 4517 vdev_remove_child(vd, tvd); 4518 tvd->vdev_id = id; 4519 vdev_add_child(rvd, tvd); 4520 vdev_config_dirty(tvd); 4521 } 4522 4523 if (nspares != 0) { 4524 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4525 ZPOOL_CONFIG_SPARES); 4526 spa_load_spares(spa); 4527 spa->spa_spares.sav_sync = B_TRUE; 4528 } 4529 4530 if (nl2cache != 0) { 4531 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4532 ZPOOL_CONFIG_L2CACHE); 4533 spa_load_l2cache(spa); 4534 spa->spa_l2cache.sav_sync = B_TRUE; 4535 } 4536 4537 /* 4538 * We have to be careful when adding new vdevs to an existing pool. 4539 * If other threads start allocating from these vdevs before we 4540 * sync the config cache, and we lose power, then upon reboot we may 4541 * fail to open the pool because there are DVAs that the config cache 4542 * can't translate. Therefore, we first add the vdevs without 4543 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4544 * and then let spa_config_update() initialize the new metaslabs. 4545 * 4546 * spa_load() checks for added-but-not-initialized vdevs, so that 4547 * if we lose power at any point in this sequence, the remaining 4548 * steps will be completed the next time we load the pool. 4549 */ 4550 (void) spa_vdev_exit(spa, vd, txg, 0); 4551 4552 mutex_enter(&spa_namespace_lock); 4553 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4554 spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD); 4555 mutex_exit(&spa_namespace_lock); 4556 4557 return (0); 4558 } 4559 4560 /* 4561 * Attach a device to a mirror. The arguments are the path to any device 4562 * in the mirror, and the nvroot for the new device. If the path specifies 4563 * a device that is not mirrored, we automatically insert the mirror vdev. 4564 * 4565 * If 'replacing' is specified, the new device is intended to replace the 4566 * existing device; in this case the two devices are made into their own 4567 * mirror using the 'replacing' vdev, which is functionally identical to 4568 * the mirror vdev (it actually reuses all the same ops) but has a few 4569 * extra rules: you can't attach to it after it's been created, and upon 4570 * completion of resilvering, the first disk (the one being replaced) 4571 * is automatically detached. 4572 */ 4573 int 4574 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4575 { 4576 uint64_t txg, dtl_max_txg; 4577 vdev_t *rvd = spa->spa_root_vdev; 4578 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4579 vdev_ops_t *pvops; 4580 char *oldvdpath, *newvdpath; 4581 int newvd_isspare; 4582 int error; 4583 4584 ASSERT(spa_writeable(spa)); 4585 4586 txg = spa_vdev_enter(spa); 4587 4588 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4589 4590 if (oldvd == NULL) 4591 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4592 4593 if (!oldvd->vdev_ops->vdev_op_leaf) 4594 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4595 4596 pvd = oldvd->vdev_parent; 4597 4598 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4599 VDEV_ALLOC_ATTACH)) != 0) 4600 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4601 4602 if (newrootvd->vdev_children != 1) 4603 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4604 4605 newvd = newrootvd->vdev_child[0]; 4606 4607 if (!newvd->vdev_ops->vdev_op_leaf) 4608 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4609 4610 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4611 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4612 4613 /* 4614 * Spares can't replace logs 4615 */ 4616 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4617 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4618 4619 if (!replacing) { 4620 /* 4621 * For attach, the only allowable parent is a mirror or the root 4622 * vdev. 4623 */ 4624 if (pvd->vdev_ops != &vdev_mirror_ops && 4625 pvd->vdev_ops != &vdev_root_ops) 4626 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4627 4628 pvops = &vdev_mirror_ops; 4629 } else { 4630 /* 4631 * Active hot spares can only be replaced by inactive hot 4632 * spares. 4633 */ 4634 if (pvd->vdev_ops == &vdev_spare_ops && 4635 oldvd->vdev_isspare && 4636 !spa_has_spare(spa, newvd->vdev_guid)) 4637 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4638 4639 /* 4640 * If the source is a hot spare, and the parent isn't already a 4641 * spare, then we want to create a new hot spare. Otherwise, we 4642 * want to create a replacing vdev. The user is not allowed to 4643 * attach to a spared vdev child unless the 'isspare' state is 4644 * the same (spare replaces spare, non-spare replaces 4645 * non-spare). 4646 */ 4647 if (pvd->vdev_ops == &vdev_replacing_ops && 4648 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4649 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4650 } else if (pvd->vdev_ops == &vdev_spare_ops && 4651 newvd->vdev_isspare != oldvd->vdev_isspare) { 4652 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4653 } 4654 4655 if (newvd->vdev_isspare) 4656 pvops = &vdev_spare_ops; 4657 else 4658 pvops = &vdev_replacing_ops; 4659 } 4660 4661 /* 4662 * Make sure the new device is big enough. 4663 */ 4664 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4665 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4666 4667 /* 4668 * The new device cannot have a higher alignment requirement 4669 * than the top-level vdev. 4670 */ 4671 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4672 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4673 4674 /* 4675 * If this is an in-place replacement, update oldvd's path and devid 4676 * to make it distinguishable from newvd, and unopenable from now on. 4677 */ 4678 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4679 spa_strfree(oldvd->vdev_path); 4680 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4681 KM_SLEEP); 4682 (void) sprintf(oldvd->vdev_path, "%s/%s", 4683 newvd->vdev_path, "old"); 4684 if (oldvd->vdev_devid != NULL) { 4685 spa_strfree(oldvd->vdev_devid); 4686 oldvd->vdev_devid = NULL; 4687 } 4688 } 4689 4690 /* mark the device being resilvered */ 4691 newvd->vdev_resilver_txg = txg; 4692 4693 /* 4694 * If the parent is not a mirror, or if we're replacing, insert the new 4695 * mirror/replacing/spare vdev above oldvd. 4696 */ 4697 if (pvd->vdev_ops != pvops) 4698 pvd = vdev_add_parent(oldvd, pvops); 4699 4700 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4701 ASSERT(pvd->vdev_ops == pvops); 4702 ASSERT(oldvd->vdev_parent == pvd); 4703 4704 /* 4705 * Extract the new device from its root and add it to pvd. 4706 */ 4707 vdev_remove_child(newrootvd, newvd); 4708 newvd->vdev_id = pvd->vdev_children; 4709 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4710 vdev_add_child(pvd, newvd); 4711 4712 tvd = newvd->vdev_top; 4713 ASSERT(pvd->vdev_top == tvd); 4714 ASSERT(tvd->vdev_parent == rvd); 4715 4716 vdev_config_dirty(tvd); 4717 4718 /* 4719 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4720 * for any dmu_sync-ed blocks. It will propagate upward when 4721 * spa_vdev_exit() calls vdev_dtl_reassess(). 4722 */ 4723 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4724 4725 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4726 dtl_max_txg - TXG_INITIAL); 4727 4728 if (newvd->vdev_isspare) { 4729 spa_spare_activate(newvd); 4730 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4731 } 4732 4733 oldvdpath = spa_strdup(oldvd->vdev_path); 4734 newvdpath = spa_strdup(newvd->vdev_path); 4735 newvd_isspare = newvd->vdev_isspare; 4736 4737 /* 4738 * Mark newvd's DTL dirty in this txg. 4739 */ 4740 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4741 4742 /* 4743 * Schedule the resilver to restart in the future. We do this to 4744 * ensure that dmu_sync-ed blocks have been stitched into the 4745 * respective datasets. 4746 */ 4747 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4748 4749 if (spa->spa_bootfs) 4750 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4751 4752 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH); 4753 4754 /* 4755 * Commit the config 4756 */ 4757 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4758 4759 spa_history_log_internal(spa, "vdev attach", NULL, 4760 "%s vdev=%s %s vdev=%s", 4761 replacing && newvd_isspare ? "spare in" : 4762 replacing ? "replace" : "attach", newvdpath, 4763 replacing ? "for" : "to", oldvdpath); 4764 4765 spa_strfree(oldvdpath); 4766 spa_strfree(newvdpath); 4767 4768 return (0); 4769 } 4770 4771 /* 4772 * Detach a device from a mirror or replacing vdev. 4773 * 4774 * If 'replace_done' is specified, only detach if the parent 4775 * is a replacing vdev. 4776 */ 4777 int 4778 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4779 { 4780 uint64_t txg; 4781 int error; 4782 vdev_t *rvd = spa->spa_root_vdev; 4783 vdev_t *vd, *pvd, *cvd, *tvd; 4784 boolean_t unspare = B_FALSE; 4785 uint64_t unspare_guid = 0; 4786 char *vdpath; 4787 4788 ASSERT(spa_writeable(spa)); 4789 4790 txg = spa_vdev_enter(spa); 4791 4792 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4793 4794 if (vd == NULL) 4795 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4796 4797 if (!vd->vdev_ops->vdev_op_leaf) 4798 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4799 4800 pvd = vd->vdev_parent; 4801 4802 /* 4803 * If the parent/child relationship is not as expected, don't do it. 4804 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4805 * vdev that's replacing B with C. The user's intent in replacing 4806 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4807 * the replace by detaching C, the expected behavior is to end up 4808 * M(A,B). But suppose that right after deciding to detach C, 4809 * the replacement of B completes. We would have M(A,C), and then 4810 * ask to detach C, which would leave us with just A -- not what 4811 * the user wanted. To prevent this, we make sure that the 4812 * parent/child relationship hasn't changed -- in this example, 4813 * that C's parent is still the replacing vdev R. 4814 */ 4815 if (pvd->vdev_guid != pguid && pguid != 0) 4816 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4817 4818 /* 4819 * Only 'replacing' or 'spare' vdevs can be replaced. 4820 */ 4821 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4822 pvd->vdev_ops != &vdev_spare_ops) 4823 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4824 4825 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4826 spa_version(spa) >= SPA_VERSION_SPARES); 4827 4828 /* 4829 * Only mirror, replacing, and spare vdevs support detach. 4830 */ 4831 if (pvd->vdev_ops != &vdev_replacing_ops && 4832 pvd->vdev_ops != &vdev_mirror_ops && 4833 pvd->vdev_ops != &vdev_spare_ops) 4834 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4835 4836 /* 4837 * If this device has the only valid copy of some data, 4838 * we cannot safely detach it. 4839 */ 4840 if (vdev_dtl_required(vd)) 4841 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4842 4843 ASSERT(pvd->vdev_children >= 2); 4844 4845 /* 4846 * If we are detaching the second disk from a replacing vdev, then 4847 * check to see if we changed the original vdev's path to have "/old" 4848 * at the end in spa_vdev_attach(). If so, undo that change now. 4849 */ 4850 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4851 vd->vdev_path != NULL) { 4852 size_t len = strlen(vd->vdev_path); 4853 4854 for (int c = 0; c < pvd->vdev_children; c++) { 4855 cvd = pvd->vdev_child[c]; 4856 4857 if (cvd == vd || cvd->vdev_path == NULL) 4858 continue; 4859 4860 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4861 strcmp(cvd->vdev_path + len, "/old") == 0) { 4862 spa_strfree(cvd->vdev_path); 4863 cvd->vdev_path = spa_strdup(vd->vdev_path); 4864 break; 4865 } 4866 } 4867 } 4868 4869 /* 4870 * If we are detaching the original disk from a spare, then it implies 4871 * that the spare should become a real disk, and be removed from the 4872 * active spare list for the pool. 4873 */ 4874 if (pvd->vdev_ops == &vdev_spare_ops && 4875 vd->vdev_id == 0 && 4876 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4877 unspare = B_TRUE; 4878 4879 /* 4880 * Erase the disk labels so the disk can be used for other things. 4881 * This must be done after all other error cases are handled, 4882 * but before we disembowel vd (so we can still do I/O to it). 4883 * But if we can't do it, don't treat the error as fatal -- 4884 * it may be that the unwritability of the disk is the reason 4885 * it's being detached! 4886 */ 4887 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4888 4889 /* 4890 * Remove vd from its parent and compact the parent's children. 4891 */ 4892 vdev_remove_child(pvd, vd); 4893 vdev_compact_children(pvd); 4894 4895 /* 4896 * Remember one of the remaining children so we can get tvd below. 4897 */ 4898 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4899 4900 /* 4901 * If we need to remove the remaining child from the list of hot spares, 4902 * do it now, marking the vdev as no longer a spare in the process. 4903 * We must do this before vdev_remove_parent(), because that can 4904 * change the GUID if it creates a new toplevel GUID. For a similar 4905 * reason, we must remove the spare now, in the same txg as the detach; 4906 * otherwise someone could attach a new sibling, change the GUID, and 4907 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4908 */ 4909 if (unspare) { 4910 ASSERT(cvd->vdev_isspare); 4911 spa_spare_remove(cvd); 4912 unspare_guid = cvd->vdev_guid; 4913 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4914 cvd->vdev_unspare = B_TRUE; 4915 } 4916 4917 /* 4918 * If the parent mirror/replacing vdev only has one child, 4919 * the parent is no longer needed. Remove it from the tree. 4920 */ 4921 if (pvd->vdev_children == 1) { 4922 if (pvd->vdev_ops == &vdev_spare_ops) 4923 cvd->vdev_unspare = B_FALSE; 4924 vdev_remove_parent(cvd); 4925 } 4926 4927 4928 /* 4929 * We don't set tvd until now because the parent we just removed 4930 * may have been the previous top-level vdev. 4931 */ 4932 tvd = cvd->vdev_top; 4933 ASSERT(tvd->vdev_parent == rvd); 4934 4935 /* 4936 * Reevaluate the parent vdev state. 4937 */ 4938 vdev_propagate_state(cvd); 4939 4940 /* 4941 * If the 'autoexpand' property is set on the pool then automatically 4942 * try to expand the size of the pool. For example if the device we 4943 * just detached was smaller than the others, it may be possible to 4944 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4945 * first so that we can obtain the updated sizes of the leaf vdevs. 4946 */ 4947 if (spa->spa_autoexpand) { 4948 vdev_reopen(tvd); 4949 vdev_expand(tvd, txg); 4950 } 4951 4952 vdev_config_dirty(tvd); 4953 4954 /* 4955 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4956 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4957 * But first make sure we're not on any *other* txg's DTL list, to 4958 * prevent vd from being accessed after it's freed. 4959 */ 4960 vdpath = spa_strdup(vd->vdev_path); 4961 for (int t = 0; t < TXG_SIZE; t++) 4962 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4963 vd->vdev_detached = B_TRUE; 4964 vdev_dirty(tvd, VDD_DTL, vd, txg); 4965 4966 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4967 4968 /* hang on to the spa before we release the lock */ 4969 spa_open_ref(spa, FTAG); 4970 4971 error = spa_vdev_exit(spa, vd, txg, 0); 4972 4973 spa_history_log_internal(spa, "detach", NULL, 4974 "vdev=%s", vdpath); 4975 spa_strfree(vdpath); 4976 4977 /* 4978 * If this was the removal of the original device in a hot spare vdev, 4979 * then we want to go through and remove the device from the hot spare 4980 * list of every other pool. 4981 */ 4982 if (unspare) { 4983 spa_t *altspa = NULL; 4984 4985 mutex_enter(&spa_namespace_lock); 4986 while ((altspa = spa_next(altspa)) != NULL) { 4987 if (altspa->spa_state != POOL_STATE_ACTIVE || 4988 altspa == spa) 4989 continue; 4990 4991 spa_open_ref(altspa, FTAG); 4992 mutex_exit(&spa_namespace_lock); 4993 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4994 mutex_enter(&spa_namespace_lock); 4995 spa_close(altspa, FTAG); 4996 } 4997 mutex_exit(&spa_namespace_lock); 4998 4999 /* search the rest of the vdevs for spares to remove */ 5000 spa_vdev_resilver_done(spa); 5001 } 5002 5003 /* all done with the spa; OK to release */ 5004 mutex_enter(&spa_namespace_lock); 5005 spa_close(spa, FTAG); 5006 mutex_exit(&spa_namespace_lock); 5007 5008 return (error); 5009 } 5010 5011 /* 5012 * Split a set of devices from their mirrors, and create a new pool from them. 5013 */ 5014 int 5015 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 5016 nvlist_t *props, boolean_t exp) 5017 { 5018 int error = 0; 5019 uint64_t txg, *glist; 5020 spa_t *newspa; 5021 uint_t c, children, lastlog; 5022 nvlist_t **child, *nvl, *tmp; 5023 dmu_tx_t *tx; 5024 char *altroot = NULL; 5025 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 5026 boolean_t activate_slog; 5027 5028 ASSERT(spa_writeable(spa)); 5029 5030 txg = spa_vdev_enter(spa); 5031 5032 /* clear the log and flush everything up to now */ 5033 activate_slog = spa_passivate_log(spa); 5034 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5035 error = spa_offline_log(spa); 5036 txg = spa_vdev_config_enter(spa); 5037 5038 if (activate_slog) 5039 spa_activate_log(spa); 5040 5041 if (error != 0) 5042 return (spa_vdev_exit(spa, NULL, txg, error)); 5043 5044 /* check new spa name before going any further */ 5045 if (spa_lookup(newname) != NULL) 5046 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 5047 5048 /* 5049 * scan through all the children to ensure they're all mirrors 5050 */ 5051 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 5052 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 5053 &children) != 0) 5054 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5055 5056 /* first, check to ensure we've got the right child count */ 5057 rvd = spa->spa_root_vdev; 5058 lastlog = 0; 5059 for (c = 0; c < rvd->vdev_children; c++) { 5060 vdev_t *vd = rvd->vdev_child[c]; 5061 5062 /* don't count the holes & logs as children */ 5063 if (vd->vdev_islog || vd->vdev_ishole) { 5064 if (lastlog == 0) 5065 lastlog = c; 5066 continue; 5067 } 5068 5069 lastlog = 0; 5070 } 5071 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 5072 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5073 5074 /* next, ensure no spare or cache devices are part of the split */ 5075 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 5076 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 5077 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5078 5079 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 5080 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 5081 5082 /* then, loop over each vdev and validate it */ 5083 for (c = 0; c < children; c++) { 5084 uint64_t is_hole = 0; 5085 5086 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 5087 &is_hole); 5088 5089 if (is_hole != 0) { 5090 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 5091 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 5092 continue; 5093 } else { 5094 error = SET_ERROR(EINVAL); 5095 break; 5096 } 5097 } 5098 5099 /* which disk is going to be split? */ 5100 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 5101 &glist[c]) != 0) { 5102 error = SET_ERROR(EINVAL); 5103 break; 5104 } 5105 5106 /* look it up in the spa */ 5107 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 5108 if (vml[c] == NULL) { 5109 error = SET_ERROR(ENODEV); 5110 break; 5111 } 5112 5113 /* make sure there's nothing stopping the split */ 5114 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 5115 vml[c]->vdev_islog || 5116 vml[c]->vdev_ishole || 5117 vml[c]->vdev_isspare || 5118 vml[c]->vdev_isl2cache || 5119 !vdev_writeable(vml[c]) || 5120 vml[c]->vdev_children != 0 || 5121 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 5122 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 5123 error = SET_ERROR(EINVAL); 5124 break; 5125 } 5126 5127 if (vdev_dtl_required(vml[c])) { 5128 error = SET_ERROR(EBUSY); 5129 break; 5130 } 5131 5132 /* we need certain info from the top level */ 5133 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 5134 vml[c]->vdev_top->vdev_ms_array) == 0); 5135 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 5136 vml[c]->vdev_top->vdev_ms_shift) == 0); 5137 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 5138 vml[c]->vdev_top->vdev_asize) == 0); 5139 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 5140 vml[c]->vdev_top->vdev_ashift) == 0); 5141 5142 /* transfer per-vdev ZAPs */ 5143 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 5144 VERIFY0(nvlist_add_uint64(child[c], 5145 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 5146 5147 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 5148 VERIFY0(nvlist_add_uint64(child[c], 5149 ZPOOL_CONFIG_VDEV_TOP_ZAP, 5150 vml[c]->vdev_parent->vdev_top_zap)); 5151 } 5152 5153 if (error != 0) { 5154 kmem_free(vml, children * sizeof (vdev_t *)); 5155 kmem_free(glist, children * sizeof (uint64_t)); 5156 return (spa_vdev_exit(spa, NULL, txg, error)); 5157 } 5158 5159 /* stop writers from using the disks */ 5160 for (c = 0; c < children; c++) { 5161 if (vml[c] != NULL) 5162 vml[c]->vdev_offline = B_TRUE; 5163 } 5164 vdev_reopen(spa->spa_root_vdev); 5165 5166 /* 5167 * Temporarily record the splitting vdevs in the spa config. This 5168 * will disappear once the config is regenerated. 5169 */ 5170 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5171 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 5172 glist, children) == 0); 5173 kmem_free(glist, children * sizeof (uint64_t)); 5174 5175 mutex_enter(&spa->spa_props_lock); 5176 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 5177 nvl) == 0); 5178 mutex_exit(&spa->spa_props_lock); 5179 spa->spa_config_splitting = nvl; 5180 vdev_config_dirty(spa->spa_root_vdev); 5181 5182 /* configure and create the new pool */ 5183 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 5184 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5185 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 5186 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5187 spa_version(spa)) == 0); 5188 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 5189 spa->spa_config_txg) == 0); 5190 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 5191 spa_generate_guid(NULL)) == 0); 5192 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 5193 (void) nvlist_lookup_string(props, 5194 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5195 5196 /* add the new pool to the namespace */ 5197 newspa = spa_add(newname, config, altroot); 5198 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 5199 newspa->spa_config_txg = spa->spa_config_txg; 5200 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5201 5202 /* release the spa config lock, retaining the namespace lock */ 5203 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5204 5205 if (zio_injection_enabled) 5206 zio_handle_panic_injection(spa, FTAG, 1); 5207 5208 spa_activate(newspa, spa_mode_global); 5209 spa_async_suspend(newspa); 5210 5211 /* create the new pool from the disks of the original pool */ 5212 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5213 if (error) 5214 goto out; 5215 5216 /* if that worked, generate a real config for the new pool */ 5217 if (newspa->spa_root_vdev != NULL) { 5218 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5219 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5220 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5221 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5222 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5223 B_TRUE)); 5224 } 5225 5226 /* set the props */ 5227 if (props != NULL) { 5228 spa_configfile_set(newspa, props, B_FALSE); 5229 error = spa_prop_set(newspa, props); 5230 if (error) 5231 goto out; 5232 } 5233 5234 /* flush everything */ 5235 txg = spa_vdev_config_enter(newspa); 5236 vdev_config_dirty(newspa->spa_root_vdev); 5237 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5238 5239 if (zio_injection_enabled) 5240 zio_handle_panic_injection(spa, FTAG, 2); 5241 5242 spa_async_resume(newspa); 5243 5244 /* finally, update the original pool's config */ 5245 txg = spa_vdev_config_enter(spa); 5246 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5247 error = dmu_tx_assign(tx, TXG_WAIT); 5248 if (error != 0) 5249 dmu_tx_abort(tx); 5250 for (c = 0; c < children; c++) { 5251 if (vml[c] != NULL) { 5252 vdev_split(vml[c]); 5253 if (error == 0) 5254 spa_history_log_internal(spa, "detach", tx, 5255 "vdev=%s", vml[c]->vdev_path); 5256 5257 vdev_free(vml[c]); 5258 } 5259 } 5260 spa->spa_avz_action = AVZ_ACTION_REBUILD; 5261 vdev_config_dirty(spa->spa_root_vdev); 5262 spa->spa_config_splitting = NULL; 5263 nvlist_free(nvl); 5264 if (error == 0) 5265 dmu_tx_commit(tx); 5266 (void) spa_vdev_exit(spa, NULL, txg, 0); 5267 5268 if (zio_injection_enabled) 5269 zio_handle_panic_injection(spa, FTAG, 3); 5270 5271 /* split is complete; log a history record */ 5272 spa_history_log_internal(newspa, "split", NULL, 5273 "from pool %s", spa_name(spa)); 5274 5275 kmem_free(vml, children * sizeof (vdev_t *)); 5276 5277 /* if we're not going to mount the filesystems in userland, export */ 5278 if (exp) 5279 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5280 B_FALSE, B_FALSE); 5281 5282 return (error); 5283 5284 out: 5285 spa_unload(newspa); 5286 spa_deactivate(newspa); 5287 spa_remove(newspa); 5288 5289 txg = spa_vdev_config_enter(spa); 5290 5291 /* re-online all offlined disks */ 5292 for (c = 0; c < children; c++) { 5293 if (vml[c] != NULL) 5294 vml[c]->vdev_offline = B_FALSE; 5295 } 5296 vdev_reopen(spa->spa_root_vdev); 5297 5298 nvlist_free(spa->spa_config_splitting); 5299 spa->spa_config_splitting = NULL; 5300 (void) spa_vdev_exit(spa, NULL, txg, error); 5301 5302 kmem_free(vml, children * sizeof (vdev_t *)); 5303 return (error); 5304 } 5305 5306 static nvlist_t * 5307 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5308 { 5309 for (int i = 0; i < count; i++) { 5310 uint64_t guid; 5311 5312 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5313 &guid) == 0); 5314 5315 if (guid == target_guid) 5316 return (nvpp[i]); 5317 } 5318 5319 return (NULL); 5320 } 5321 5322 static void 5323 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5324 nvlist_t *dev_to_remove) 5325 { 5326 nvlist_t **newdev = NULL; 5327 5328 if (count > 1) 5329 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5330 5331 for (int i = 0, j = 0; i < count; i++) { 5332 if (dev[i] == dev_to_remove) 5333 continue; 5334 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5335 } 5336 5337 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5338 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5339 5340 for (int i = 0; i < count - 1; i++) 5341 nvlist_free(newdev[i]); 5342 5343 if (count > 1) 5344 kmem_free(newdev, (count - 1) * sizeof (void *)); 5345 } 5346 5347 /* 5348 * Evacuate the device. 5349 */ 5350 static int 5351 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5352 { 5353 uint64_t txg; 5354 int error = 0; 5355 5356 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5357 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5358 ASSERT(vd == vd->vdev_top); 5359 5360 /* 5361 * Evacuate the device. We don't hold the config lock as writer 5362 * since we need to do I/O but we do keep the 5363 * spa_namespace_lock held. Once this completes the device 5364 * should no longer have any blocks allocated on it. 5365 */ 5366 if (vd->vdev_islog) { 5367 if (vd->vdev_stat.vs_alloc != 0) 5368 error = spa_offline_log(spa); 5369 } else { 5370 error = SET_ERROR(ENOTSUP); 5371 } 5372 5373 if (error) 5374 return (error); 5375 5376 /* 5377 * The evacuation succeeded. Remove any remaining MOS metadata 5378 * associated with this vdev, and wait for these changes to sync. 5379 */ 5380 ASSERT0(vd->vdev_stat.vs_alloc); 5381 txg = spa_vdev_config_enter(spa); 5382 vd->vdev_removing = B_TRUE; 5383 vdev_dirty_leaves(vd, VDD_DTL, txg); 5384 vdev_config_dirty(vd); 5385 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5386 5387 return (0); 5388 } 5389 5390 /* 5391 * Complete the removal by cleaning up the namespace. 5392 */ 5393 static void 5394 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5395 { 5396 vdev_t *rvd = spa->spa_root_vdev; 5397 uint64_t id = vd->vdev_id; 5398 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5399 5400 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5401 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5402 ASSERT(vd == vd->vdev_top); 5403 5404 /* 5405 * Only remove any devices which are empty. 5406 */ 5407 if (vd->vdev_stat.vs_alloc != 0) 5408 return; 5409 5410 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5411 5412 if (list_link_active(&vd->vdev_state_dirty_node)) 5413 vdev_state_clean(vd); 5414 if (list_link_active(&vd->vdev_config_dirty_node)) 5415 vdev_config_clean(vd); 5416 5417 vdev_free(vd); 5418 5419 if (last_vdev) { 5420 vdev_compact_children(rvd); 5421 } else { 5422 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5423 vdev_add_child(rvd, vd); 5424 } 5425 vdev_config_dirty(rvd); 5426 5427 /* 5428 * Reassess the health of our root vdev. 5429 */ 5430 vdev_reopen(rvd); 5431 } 5432 5433 /* 5434 * Remove a device from the pool - 5435 * 5436 * Removing a device from the vdev namespace requires several steps 5437 * and can take a significant amount of time. As a result we use 5438 * the spa_vdev_config_[enter/exit] functions which allow us to 5439 * grab and release the spa_config_lock while still holding the namespace 5440 * lock. During each step the configuration is synced out. 5441 * 5442 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5443 * devices. 5444 */ 5445 int 5446 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5447 { 5448 vdev_t *vd; 5449 metaslab_group_t *mg; 5450 nvlist_t **spares, **l2cache, *nv; 5451 uint64_t txg = 0; 5452 uint_t nspares, nl2cache; 5453 int error = 0; 5454 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5455 5456 ASSERT(spa_writeable(spa)); 5457 5458 if (!locked) 5459 txg = spa_vdev_enter(spa); 5460 5461 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5462 5463 if (spa->spa_spares.sav_vdevs != NULL && 5464 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5465 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5466 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5467 /* 5468 * Only remove the hot spare if it's not currently in use 5469 * in this pool. 5470 */ 5471 if (vd == NULL || unspare) { 5472 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5473 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5474 spa_load_spares(spa); 5475 spa->spa_spares.sav_sync = B_TRUE; 5476 } else { 5477 error = SET_ERROR(EBUSY); 5478 } 5479 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5480 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5481 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5482 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5483 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5484 /* 5485 * Cache devices can always be removed. 5486 */ 5487 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5488 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5489 spa_load_l2cache(spa); 5490 spa->spa_l2cache.sav_sync = B_TRUE; 5491 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX); 5492 } else if (vd != NULL && vd->vdev_islog) { 5493 ASSERT(!locked); 5494 ASSERT(vd == vd->vdev_top); 5495 5496 mg = vd->vdev_mg; 5497 5498 /* 5499 * Stop allocating from this vdev. 5500 */ 5501 metaslab_group_passivate(mg); 5502 5503 /* 5504 * Wait for the youngest allocations and frees to sync, 5505 * and then wait for the deferral of those frees to finish. 5506 */ 5507 spa_vdev_config_exit(spa, NULL, 5508 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5509 5510 /* 5511 * Attempt to evacuate the vdev. 5512 */ 5513 error = spa_vdev_remove_evacuate(spa, vd); 5514 5515 txg = spa_vdev_config_enter(spa); 5516 5517 /* 5518 * If we couldn't evacuate the vdev, unwind. 5519 */ 5520 if (error) { 5521 metaslab_group_activate(mg); 5522 return (spa_vdev_exit(spa, NULL, txg, error)); 5523 } 5524 5525 /* 5526 * Clean up the vdev namespace. 5527 */ 5528 spa_vdev_remove_from_namespace(spa, vd); 5529 5530 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV); 5531 } else if (vd != NULL) { 5532 /* 5533 * Normal vdevs cannot be removed (yet). 5534 */ 5535 error = SET_ERROR(ENOTSUP); 5536 } else { 5537 /* 5538 * There is no vdev of any kind with the specified guid. 5539 */ 5540 error = SET_ERROR(ENOENT); 5541 } 5542 5543 if (!locked) 5544 error = spa_vdev_exit(spa, NULL, txg, error); 5545 5546 return (error); 5547 } 5548 5549 /* 5550 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5551 * currently spared, so we can detach it. 5552 */ 5553 static vdev_t * 5554 spa_vdev_resilver_done_hunt(vdev_t *vd) 5555 { 5556 vdev_t *newvd, *oldvd; 5557 5558 for (int c = 0; c < vd->vdev_children; c++) { 5559 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5560 if (oldvd != NULL) 5561 return (oldvd); 5562 } 5563 5564 /* 5565 * Check for a completed replacement. We always consider the first 5566 * vdev in the list to be the oldest vdev, and the last one to be 5567 * the newest (see spa_vdev_attach() for how that works). In 5568 * the case where the newest vdev is faulted, we will not automatically 5569 * remove it after a resilver completes. This is OK as it will require 5570 * user intervention to determine which disk the admin wishes to keep. 5571 */ 5572 if (vd->vdev_ops == &vdev_replacing_ops) { 5573 ASSERT(vd->vdev_children > 1); 5574 5575 newvd = vd->vdev_child[vd->vdev_children - 1]; 5576 oldvd = vd->vdev_child[0]; 5577 5578 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5579 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5580 !vdev_dtl_required(oldvd)) 5581 return (oldvd); 5582 } 5583 5584 /* 5585 * Check for a completed resilver with the 'unspare' flag set. 5586 */ 5587 if (vd->vdev_ops == &vdev_spare_ops) { 5588 vdev_t *first = vd->vdev_child[0]; 5589 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5590 5591 if (last->vdev_unspare) { 5592 oldvd = first; 5593 newvd = last; 5594 } else if (first->vdev_unspare) { 5595 oldvd = last; 5596 newvd = first; 5597 } else { 5598 oldvd = NULL; 5599 } 5600 5601 if (oldvd != NULL && 5602 vdev_dtl_empty(newvd, DTL_MISSING) && 5603 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5604 !vdev_dtl_required(oldvd)) 5605 return (oldvd); 5606 5607 /* 5608 * If there are more than two spares attached to a disk, 5609 * and those spares are not required, then we want to 5610 * attempt to free them up now so that they can be used 5611 * by other pools. Once we're back down to a single 5612 * disk+spare, we stop removing them. 5613 */ 5614 if (vd->vdev_children > 2) { 5615 newvd = vd->vdev_child[1]; 5616 5617 if (newvd->vdev_isspare && last->vdev_isspare && 5618 vdev_dtl_empty(last, DTL_MISSING) && 5619 vdev_dtl_empty(last, DTL_OUTAGE) && 5620 !vdev_dtl_required(newvd)) 5621 return (newvd); 5622 } 5623 } 5624 5625 return (NULL); 5626 } 5627 5628 static void 5629 spa_vdev_resilver_done(spa_t *spa) 5630 { 5631 vdev_t *vd, *pvd, *ppvd; 5632 uint64_t guid, sguid, pguid, ppguid; 5633 5634 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5635 5636 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5637 pvd = vd->vdev_parent; 5638 ppvd = pvd->vdev_parent; 5639 guid = vd->vdev_guid; 5640 pguid = pvd->vdev_guid; 5641 ppguid = ppvd->vdev_guid; 5642 sguid = 0; 5643 /* 5644 * If we have just finished replacing a hot spared device, then 5645 * we need to detach the parent's first child (the original hot 5646 * spare) as well. 5647 */ 5648 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5649 ppvd->vdev_children == 2) { 5650 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5651 sguid = ppvd->vdev_child[1]->vdev_guid; 5652 } 5653 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5654 5655 spa_config_exit(spa, SCL_ALL, FTAG); 5656 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5657 return; 5658 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5659 return; 5660 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5661 } 5662 5663 spa_config_exit(spa, SCL_ALL, FTAG); 5664 } 5665 5666 /* 5667 * Update the stored path or FRU for this vdev. 5668 */ 5669 int 5670 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5671 boolean_t ispath) 5672 { 5673 vdev_t *vd; 5674 boolean_t sync = B_FALSE; 5675 5676 ASSERT(spa_writeable(spa)); 5677 5678 spa_vdev_state_enter(spa, SCL_ALL); 5679 5680 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5681 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5682 5683 if (!vd->vdev_ops->vdev_op_leaf) 5684 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5685 5686 if (ispath) { 5687 if (strcmp(value, vd->vdev_path) != 0) { 5688 spa_strfree(vd->vdev_path); 5689 vd->vdev_path = spa_strdup(value); 5690 sync = B_TRUE; 5691 } 5692 } else { 5693 if (vd->vdev_fru == NULL) { 5694 vd->vdev_fru = spa_strdup(value); 5695 sync = B_TRUE; 5696 } else if (strcmp(value, vd->vdev_fru) != 0) { 5697 spa_strfree(vd->vdev_fru); 5698 vd->vdev_fru = spa_strdup(value); 5699 sync = B_TRUE; 5700 } 5701 } 5702 5703 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5704 } 5705 5706 int 5707 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5708 { 5709 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5710 } 5711 5712 int 5713 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5714 { 5715 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5716 } 5717 5718 /* 5719 * ========================================================================== 5720 * SPA Scanning 5721 * ========================================================================== 5722 */ 5723 5724 int 5725 spa_scan_stop(spa_t *spa) 5726 { 5727 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5728 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5729 return (SET_ERROR(EBUSY)); 5730 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5731 } 5732 5733 int 5734 spa_scan(spa_t *spa, pool_scan_func_t func) 5735 { 5736 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5737 5738 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5739 return (SET_ERROR(ENOTSUP)); 5740 5741 /* 5742 * If a resilver was requested, but there is no DTL on a 5743 * writeable leaf device, we have nothing to do. 5744 */ 5745 if (func == POOL_SCAN_RESILVER && 5746 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5747 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5748 return (0); 5749 } 5750 5751 return (dsl_scan(spa->spa_dsl_pool, func)); 5752 } 5753 5754 /* 5755 * ========================================================================== 5756 * SPA async task processing 5757 * ========================================================================== 5758 */ 5759 5760 static void 5761 spa_async_remove(spa_t *spa, vdev_t *vd) 5762 { 5763 if (vd->vdev_remove_wanted) { 5764 vd->vdev_remove_wanted = B_FALSE; 5765 vd->vdev_delayed_close = B_FALSE; 5766 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5767 5768 /* 5769 * We want to clear the stats, but we don't want to do a full 5770 * vdev_clear() as that will cause us to throw away 5771 * degraded/faulted state as well as attempt to reopen the 5772 * device, all of which is a waste. 5773 */ 5774 vd->vdev_stat.vs_read_errors = 0; 5775 vd->vdev_stat.vs_write_errors = 0; 5776 vd->vdev_stat.vs_checksum_errors = 0; 5777 5778 vdev_state_dirty(vd->vdev_top); 5779 } 5780 5781 for (int c = 0; c < vd->vdev_children; c++) 5782 spa_async_remove(spa, vd->vdev_child[c]); 5783 } 5784 5785 static void 5786 spa_async_probe(spa_t *spa, vdev_t *vd) 5787 { 5788 if (vd->vdev_probe_wanted) { 5789 vd->vdev_probe_wanted = B_FALSE; 5790 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5791 } 5792 5793 for (int c = 0; c < vd->vdev_children; c++) 5794 spa_async_probe(spa, vd->vdev_child[c]); 5795 } 5796 5797 static void 5798 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5799 { 5800 sysevent_id_t eid; 5801 nvlist_t *attr; 5802 char *physpath; 5803 5804 if (!spa->spa_autoexpand) 5805 return; 5806 5807 for (int c = 0; c < vd->vdev_children; c++) { 5808 vdev_t *cvd = vd->vdev_child[c]; 5809 spa_async_autoexpand(spa, cvd); 5810 } 5811 5812 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5813 return; 5814 5815 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5816 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5817 5818 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5819 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5820 5821 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5822 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5823 5824 nvlist_free(attr); 5825 kmem_free(physpath, MAXPATHLEN); 5826 } 5827 5828 static void 5829 spa_async_thread(spa_t *spa) 5830 { 5831 int tasks; 5832 5833 ASSERT(spa->spa_sync_on); 5834 5835 mutex_enter(&spa->spa_async_lock); 5836 tasks = spa->spa_async_tasks; 5837 spa->spa_async_tasks = 0; 5838 mutex_exit(&spa->spa_async_lock); 5839 5840 /* 5841 * See if the config needs to be updated. 5842 */ 5843 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5844 uint64_t old_space, new_space; 5845 5846 mutex_enter(&spa_namespace_lock); 5847 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5848 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5849 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5850 mutex_exit(&spa_namespace_lock); 5851 5852 /* 5853 * If the pool grew as a result of the config update, 5854 * then log an internal history event. 5855 */ 5856 if (new_space != old_space) { 5857 spa_history_log_internal(spa, "vdev online", NULL, 5858 "pool '%s' size: %llu(+%llu)", 5859 spa_name(spa), new_space, new_space - old_space); 5860 } 5861 } 5862 5863 /* 5864 * See if any devices need to be marked REMOVED. 5865 */ 5866 if (tasks & SPA_ASYNC_REMOVE) { 5867 spa_vdev_state_enter(spa, SCL_NONE); 5868 spa_async_remove(spa, spa->spa_root_vdev); 5869 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5870 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5871 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5872 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5873 (void) spa_vdev_state_exit(spa, NULL, 0); 5874 } 5875 5876 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5877 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5878 spa_async_autoexpand(spa, spa->spa_root_vdev); 5879 spa_config_exit(spa, SCL_CONFIG, FTAG); 5880 } 5881 5882 /* 5883 * See if any devices need to be probed. 5884 */ 5885 if (tasks & SPA_ASYNC_PROBE) { 5886 spa_vdev_state_enter(spa, SCL_NONE); 5887 spa_async_probe(spa, spa->spa_root_vdev); 5888 (void) spa_vdev_state_exit(spa, NULL, 0); 5889 } 5890 5891 /* 5892 * If any devices are done replacing, detach them. 5893 */ 5894 if (tasks & SPA_ASYNC_RESILVER_DONE) 5895 spa_vdev_resilver_done(spa); 5896 5897 /* 5898 * Kick off a resilver. 5899 */ 5900 if (tasks & SPA_ASYNC_RESILVER) 5901 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5902 5903 /* 5904 * Let the world know that we're done. 5905 */ 5906 mutex_enter(&spa->spa_async_lock); 5907 spa->spa_async_thread = NULL; 5908 cv_broadcast(&spa->spa_async_cv); 5909 mutex_exit(&spa->spa_async_lock); 5910 thread_exit(); 5911 } 5912 5913 void 5914 spa_async_suspend(spa_t *spa) 5915 { 5916 mutex_enter(&spa->spa_async_lock); 5917 spa->spa_async_suspended++; 5918 while (spa->spa_async_thread != NULL) 5919 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5920 mutex_exit(&spa->spa_async_lock); 5921 } 5922 5923 void 5924 spa_async_resume(spa_t *spa) 5925 { 5926 mutex_enter(&spa->spa_async_lock); 5927 ASSERT(spa->spa_async_suspended != 0); 5928 spa->spa_async_suspended--; 5929 mutex_exit(&spa->spa_async_lock); 5930 } 5931 5932 static boolean_t 5933 spa_async_tasks_pending(spa_t *spa) 5934 { 5935 uint_t non_config_tasks; 5936 uint_t config_task; 5937 boolean_t config_task_suspended; 5938 5939 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5940 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5941 if (spa->spa_ccw_fail_time == 0) { 5942 config_task_suspended = B_FALSE; 5943 } else { 5944 config_task_suspended = 5945 (gethrtime() - spa->spa_ccw_fail_time) < 5946 (zfs_ccw_retry_interval * NANOSEC); 5947 } 5948 5949 return (non_config_tasks || (config_task && !config_task_suspended)); 5950 } 5951 5952 static void 5953 spa_async_dispatch(spa_t *spa) 5954 { 5955 mutex_enter(&spa->spa_async_lock); 5956 if (spa_async_tasks_pending(spa) && 5957 !spa->spa_async_suspended && 5958 spa->spa_async_thread == NULL && 5959 rootdir != NULL) 5960 spa->spa_async_thread = thread_create(NULL, 0, 5961 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5962 mutex_exit(&spa->spa_async_lock); 5963 } 5964 5965 void 5966 spa_async_request(spa_t *spa, int task) 5967 { 5968 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5969 mutex_enter(&spa->spa_async_lock); 5970 spa->spa_async_tasks |= task; 5971 mutex_exit(&spa->spa_async_lock); 5972 } 5973 5974 /* 5975 * ========================================================================== 5976 * SPA syncing routines 5977 * ========================================================================== 5978 */ 5979 5980 static int 5981 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5982 { 5983 bpobj_t *bpo = arg; 5984 bpobj_enqueue(bpo, bp, tx); 5985 return (0); 5986 } 5987 5988 static int 5989 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5990 { 5991 zio_t *zio = arg; 5992 5993 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5994 zio->io_flags)); 5995 return (0); 5996 } 5997 5998 /* 5999 * Note: this simple function is not inlined to make it easier to dtrace the 6000 * amount of time spent syncing frees. 6001 */ 6002 static void 6003 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 6004 { 6005 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6006 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 6007 VERIFY(zio_wait(zio) == 0); 6008 } 6009 6010 /* 6011 * Note: this simple function is not inlined to make it easier to dtrace the 6012 * amount of time spent syncing deferred frees. 6013 */ 6014 static void 6015 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 6016 { 6017 zio_t *zio = zio_root(spa, NULL, NULL, 0); 6018 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 6019 spa_free_sync_cb, zio, tx), ==, 0); 6020 VERIFY0(zio_wait(zio)); 6021 } 6022 6023 6024 static void 6025 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 6026 { 6027 char *packed = NULL; 6028 size_t bufsize; 6029 size_t nvsize = 0; 6030 dmu_buf_t *db; 6031 6032 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 6033 6034 /* 6035 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 6036 * information. This avoids the dmu_buf_will_dirty() path and 6037 * saves us a pre-read to get data we don't actually care about. 6038 */ 6039 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 6040 packed = kmem_alloc(bufsize, KM_SLEEP); 6041 6042 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 6043 KM_SLEEP) == 0); 6044 bzero(packed + nvsize, bufsize - nvsize); 6045 6046 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 6047 6048 kmem_free(packed, bufsize); 6049 6050 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 6051 dmu_buf_will_dirty(db, tx); 6052 *(uint64_t *)db->db_data = nvsize; 6053 dmu_buf_rele(db, FTAG); 6054 } 6055 6056 static void 6057 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 6058 const char *config, const char *entry) 6059 { 6060 nvlist_t *nvroot; 6061 nvlist_t **list; 6062 int i; 6063 6064 if (!sav->sav_sync) 6065 return; 6066 6067 /* 6068 * Update the MOS nvlist describing the list of available devices. 6069 * spa_validate_aux() will have already made sure this nvlist is 6070 * valid and the vdevs are labeled appropriately. 6071 */ 6072 if (sav->sav_object == 0) { 6073 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 6074 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 6075 sizeof (uint64_t), tx); 6076 VERIFY(zap_update(spa->spa_meta_objset, 6077 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 6078 &sav->sav_object, tx) == 0); 6079 } 6080 6081 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6082 if (sav->sav_count == 0) { 6083 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 6084 } else { 6085 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 6086 for (i = 0; i < sav->sav_count; i++) 6087 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 6088 B_FALSE, VDEV_CONFIG_L2CACHE); 6089 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 6090 sav->sav_count) == 0); 6091 for (i = 0; i < sav->sav_count; i++) 6092 nvlist_free(list[i]); 6093 kmem_free(list, sav->sav_count * sizeof (void *)); 6094 } 6095 6096 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 6097 nvlist_free(nvroot); 6098 6099 sav->sav_sync = B_FALSE; 6100 } 6101 6102 /* 6103 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 6104 * The all-vdev ZAP must be empty. 6105 */ 6106 static void 6107 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 6108 { 6109 spa_t *spa = vd->vdev_spa; 6110 if (vd->vdev_top_zap != 0) { 6111 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6112 vd->vdev_top_zap, tx)); 6113 } 6114 if (vd->vdev_leaf_zap != 0) { 6115 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 6116 vd->vdev_leaf_zap, tx)); 6117 } 6118 for (uint64_t i = 0; i < vd->vdev_children; i++) { 6119 spa_avz_build(vd->vdev_child[i], avz, tx); 6120 } 6121 } 6122 6123 static void 6124 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 6125 { 6126 nvlist_t *config; 6127 6128 /* 6129 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 6130 * its config may not be dirty but we still need to build per-vdev ZAPs. 6131 * Similarly, if the pool is being assembled (e.g. after a split), we 6132 * need to rebuild the AVZ although the config may not be dirty. 6133 */ 6134 if (list_is_empty(&spa->spa_config_dirty_list) && 6135 spa->spa_avz_action == AVZ_ACTION_NONE) 6136 return; 6137 6138 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6139 6140 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 6141 spa->spa_all_vdev_zaps != 0); 6142 6143 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 6144 /* Make and build the new AVZ */ 6145 uint64_t new_avz = zap_create(spa->spa_meta_objset, 6146 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 6147 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 6148 6149 /* Diff old AVZ with new one */ 6150 zap_cursor_t zc; 6151 zap_attribute_t za; 6152 6153 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6154 spa->spa_all_vdev_zaps); 6155 zap_cursor_retrieve(&zc, &za) == 0; 6156 zap_cursor_advance(&zc)) { 6157 uint64_t vdzap = za.za_first_integer; 6158 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 6159 vdzap) == ENOENT) { 6160 /* 6161 * ZAP is listed in old AVZ but not in new one; 6162 * destroy it 6163 */ 6164 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 6165 tx)); 6166 } 6167 } 6168 6169 zap_cursor_fini(&zc); 6170 6171 /* Destroy the old AVZ */ 6172 VERIFY0(zap_destroy(spa->spa_meta_objset, 6173 spa->spa_all_vdev_zaps, tx)); 6174 6175 /* Replace the old AVZ in the dir obj with the new one */ 6176 VERIFY0(zap_update(spa->spa_meta_objset, 6177 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 6178 sizeof (new_avz), 1, &new_avz, tx)); 6179 6180 spa->spa_all_vdev_zaps = new_avz; 6181 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 6182 zap_cursor_t zc; 6183 zap_attribute_t za; 6184 6185 /* Walk through the AVZ and destroy all listed ZAPs */ 6186 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6187 spa->spa_all_vdev_zaps); 6188 zap_cursor_retrieve(&zc, &za) == 0; 6189 zap_cursor_advance(&zc)) { 6190 uint64_t zap = za.za_first_integer; 6191 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 6192 } 6193 6194 zap_cursor_fini(&zc); 6195 6196 /* Destroy and unlink the AVZ itself */ 6197 VERIFY0(zap_destroy(spa->spa_meta_objset, 6198 spa->spa_all_vdev_zaps, tx)); 6199 VERIFY0(zap_remove(spa->spa_meta_objset, 6200 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 6201 spa->spa_all_vdev_zaps = 0; 6202 } 6203 6204 if (spa->spa_all_vdev_zaps == 0) { 6205 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 6206 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 6207 DMU_POOL_VDEV_ZAP_MAP, tx); 6208 } 6209 spa->spa_avz_action = AVZ_ACTION_NONE; 6210 6211 /* Create ZAPs for vdevs that don't have them. */ 6212 vdev_construct_zaps(spa->spa_root_vdev, tx); 6213 6214 config = spa_config_generate(spa, spa->spa_root_vdev, 6215 dmu_tx_get_txg(tx), B_FALSE); 6216 6217 /* 6218 * If we're upgrading the spa version then make sure that 6219 * the config object gets updated with the correct version. 6220 */ 6221 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 6222 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6223 spa->spa_uberblock.ub_version); 6224 6225 spa_config_exit(spa, SCL_STATE, FTAG); 6226 6227 nvlist_free(spa->spa_config_syncing); 6228 spa->spa_config_syncing = config; 6229 6230 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 6231 } 6232 6233 static void 6234 spa_sync_version(void *arg, dmu_tx_t *tx) 6235 { 6236 uint64_t *versionp = arg; 6237 uint64_t version = *versionp; 6238 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6239 6240 /* 6241 * Setting the version is special cased when first creating the pool. 6242 */ 6243 ASSERT(tx->tx_txg != TXG_INITIAL); 6244 6245 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6246 ASSERT(version >= spa_version(spa)); 6247 6248 spa->spa_uberblock.ub_version = version; 6249 vdev_config_dirty(spa->spa_root_vdev); 6250 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 6251 } 6252 6253 /* 6254 * Set zpool properties. 6255 */ 6256 static void 6257 spa_sync_props(void *arg, dmu_tx_t *tx) 6258 { 6259 nvlist_t *nvp = arg; 6260 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6261 objset_t *mos = spa->spa_meta_objset; 6262 nvpair_t *elem = NULL; 6263 6264 mutex_enter(&spa->spa_props_lock); 6265 6266 while ((elem = nvlist_next_nvpair(nvp, elem))) { 6267 uint64_t intval; 6268 char *strval, *fname; 6269 zpool_prop_t prop; 6270 const char *propname; 6271 zprop_type_t proptype; 6272 spa_feature_t fid; 6273 6274 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 6275 case ZPROP_INVAL: 6276 /* 6277 * We checked this earlier in spa_prop_validate(). 6278 */ 6279 ASSERT(zpool_prop_feature(nvpair_name(elem))); 6280 6281 fname = strchr(nvpair_name(elem), '@') + 1; 6282 VERIFY0(zfeature_lookup_name(fname, &fid)); 6283 6284 spa_feature_enable(spa, fid, tx); 6285 spa_history_log_internal(spa, "set", tx, 6286 "%s=enabled", nvpair_name(elem)); 6287 break; 6288 6289 case ZPOOL_PROP_VERSION: 6290 intval = fnvpair_value_uint64(elem); 6291 /* 6292 * The version is synced seperatly before other 6293 * properties and should be correct by now. 6294 */ 6295 ASSERT3U(spa_version(spa), >=, intval); 6296 break; 6297 6298 case ZPOOL_PROP_ALTROOT: 6299 /* 6300 * 'altroot' is a non-persistent property. It should 6301 * have been set temporarily at creation or import time. 6302 */ 6303 ASSERT(spa->spa_root != NULL); 6304 break; 6305 6306 case ZPOOL_PROP_READONLY: 6307 case ZPOOL_PROP_CACHEFILE: 6308 /* 6309 * 'readonly' and 'cachefile' are also non-persisitent 6310 * properties. 6311 */ 6312 break; 6313 case ZPOOL_PROP_COMMENT: 6314 strval = fnvpair_value_string(elem); 6315 if (spa->spa_comment != NULL) 6316 spa_strfree(spa->spa_comment); 6317 spa->spa_comment = spa_strdup(strval); 6318 /* 6319 * We need to dirty the configuration on all the vdevs 6320 * so that their labels get updated. It's unnecessary 6321 * to do this for pool creation since the vdev's 6322 * configuratoin has already been dirtied. 6323 */ 6324 if (tx->tx_txg != TXG_INITIAL) 6325 vdev_config_dirty(spa->spa_root_vdev); 6326 spa_history_log_internal(spa, "set", tx, 6327 "%s=%s", nvpair_name(elem), strval); 6328 break; 6329 default: 6330 /* 6331 * Set pool property values in the poolprops mos object. 6332 */ 6333 if (spa->spa_pool_props_object == 0) { 6334 spa->spa_pool_props_object = 6335 zap_create_link(mos, DMU_OT_POOL_PROPS, 6336 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6337 tx); 6338 } 6339 6340 /* normalize the property name */ 6341 propname = zpool_prop_to_name(prop); 6342 proptype = zpool_prop_get_type(prop); 6343 6344 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6345 ASSERT(proptype == PROP_TYPE_STRING); 6346 strval = fnvpair_value_string(elem); 6347 VERIFY0(zap_update(mos, 6348 spa->spa_pool_props_object, propname, 6349 1, strlen(strval) + 1, strval, tx)); 6350 spa_history_log_internal(spa, "set", tx, 6351 "%s=%s", nvpair_name(elem), strval); 6352 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6353 intval = fnvpair_value_uint64(elem); 6354 6355 if (proptype == PROP_TYPE_INDEX) { 6356 const char *unused; 6357 VERIFY0(zpool_prop_index_to_string( 6358 prop, intval, &unused)); 6359 } 6360 VERIFY0(zap_update(mos, 6361 spa->spa_pool_props_object, propname, 6362 8, 1, &intval, tx)); 6363 spa_history_log_internal(spa, "set", tx, 6364 "%s=%lld", nvpair_name(elem), intval); 6365 } else { 6366 ASSERT(0); /* not allowed */ 6367 } 6368 6369 switch (prop) { 6370 case ZPOOL_PROP_DELEGATION: 6371 spa->spa_delegation = intval; 6372 break; 6373 case ZPOOL_PROP_BOOTFS: 6374 spa->spa_bootfs = intval; 6375 break; 6376 case ZPOOL_PROP_FAILUREMODE: 6377 spa->spa_failmode = intval; 6378 break; 6379 case ZPOOL_PROP_AUTOEXPAND: 6380 spa->spa_autoexpand = intval; 6381 if (tx->tx_txg != TXG_INITIAL) 6382 spa_async_request(spa, 6383 SPA_ASYNC_AUTOEXPAND); 6384 break; 6385 case ZPOOL_PROP_DEDUPDITTO: 6386 spa->spa_dedup_ditto = intval; 6387 break; 6388 default: 6389 break; 6390 } 6391 } 6392 6393 } 6394 6395 mutex_exit(&spa->spa_props_lock); 6396 } 6397 6398 /* 6399 * Perform one-time upgrade on-disk changes. spa_version() does not 6400 * reflect the new version this txg, so there must be no changes this 6401 * txg to anything that the upgrade code depends on after it executes. 6402 * Therefore this must be called after dsl_pool_sync() does the sync 6403 * tasks. 6404 */ 6405 static void 6406 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6407 { 6408 dsl_pool_t *dp = spa->spa_dsl_pool; 6409 6410 ASSERT(spa->spa_sync_pass == 1); 6411 6412 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6413 6414 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6415 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6416 dsl_pool_create_origin(dp, tx); 6417 6418 /* Keeping the origin open increases spa_minref */ 6419 spa->spa_minref += 3; 6420 } 6421 6422 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6423 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6424 dsl_pool_upgrade_clones(dp, tx); 6425 } 6426 6427 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6428 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6429 dsl_pool_upgrade_dir_clones(dp, tx); 6430 6431 /* Keeping the freedir open increases spa_minref */ 6432 spa->spa_minref += 3; 6433 } 6434 6435 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6436 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6437 spa_feature_create_zap_objects(spa, tx); 6438 } 6439 6440 /* 6441 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6442 * when possibility to use lz4 compression for metadata was added 6443 * Old pools that have this feature enabled must be upgraded to have 6444 * this feature active 6445 */ 6446 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6447 boolean_t lz4_en = spa_feature_is_enabled(spa, 6448 SPA_FEATURE_LZ4_COMPRESS); 6449 boolean_t lz4_ac = spa_feature_is_active(spa, 6450 SPA_FEATURE_LZ4_COMPRESS); 6451 6452 if (lz4_en && !lz4_ac) 6453 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6454 } 6455 6456 /* 6457 * If we haven't written the salt, do so now. Note that the 6458 * feature may not be activated yet, but that's fine since 6459 * the presence of this ZAP entry is backwards compatible. 6460 */ 6461 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 6462 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 6463 VERIFY0(zap_add(spa->spa_meta_objset, 6464 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 6465 sizeof (spa->spa_cksum_salt.zcs_bytes), 6466 spa->spa_cksum_salt.zcs_bytes, tx)); 6467 } 6468 6469 rrw_exit(&dp->dp_config_rwlock, FTAG); 6470 } 6471 6472 /* 6473 * Sync the specified transaction group. New blocks may be dirtied as 6474 * part of the process, so we iterate until it converges. 6475 */ 6476 void 6477 spa_sync(spa_t *spa, uint64_t txg) 6478 { 6479 dsl_pool_t *dp = spa->spa_dsl_pool; 6480 objset_t *mos = spa->spa_meta_objset; 6481 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6482 vdev_t *rvd = spa->spa_root_vdev; 6483 vdev_t *vd; 6484 dmu_tx_t *tx; 6485 int error; 6486 6487 VERIFY(spa_writeable(spa)); 6488 6489 /* 6490 * Lock out configuration changes. 6491 */ 6492 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6493 6494 spa->spa_syncing_txg = txg; 6495 spa->spa_sync_pass = 0; 6496 6497 /* 6498 * If there are any pending vdev state changes, convert them 6499 * into config changes that go out with this transaction group. 6500 */ 6501 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6502 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6503 /* 6504 * We need the write lock here because, for aux vdevs, 6505 * calling vdev_config_dirty() modifies sav_config. 6506 * This is ugly and will become unnecessary when we 6507 * eliminate the aux vdev wart by integrating all vdevs 6508 * into the root vdev tree. 6509 */ 6510 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6511 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6512 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6513 vdev_state_clean(vd); 6514 vdev_config_dirty(vd); 6515 } 6516 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6517 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6518 } 6519 spa_config_exit(spa, SCL_STATE, FTAG); 6520 6521 tx = dmu_tx_create_assigned(dp, txg); 6522 6523 spa->spa_sync_starttime = gethrtime(); 6524 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6525 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6526 6527 /* 6528 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6529 * set spa_deflate if we have no raid-z vdevs. 6530 */ 6531 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6532 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6533 int i; 6534 6535 for (i = 0; i < rvd->vdev_children; i++) { 6536 vd = rvd->vdev_child[i]; 6537 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6538 break; 6539 } 6540 if (i == rvd->vdev_children) { 6541 spa->spa_deflate = TRUE; 6542 VERIFY(0 == zap_add(spa->spa_meta_objset, 6543 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6544 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6545 } 6546 } 6547 6548 /* 6549 * Iterate to convergence. 6550 */ 6551 do { 6552 int pass = ++spa->spa_sync_pass; 6553 6554 spa_sync_config_object(spa, tx); 6555 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6556 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6557 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6558 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6559 spa_errlog_sync(spa, txg); 6560 dsl_pool_sync(dp, txg); 6561 6562 if (pass < zfs_sync_pass_deferred_free) { 6563 spa_sync_frees(spa, free_bpl, tx); 6564 } else { 6565 /* 6566 * We can not defer frees in pass 1, because 6567 * we sync the deferred frees later in pass 1. 6568 */ 6569 ASSERT3U(pass, >, 1); 6570 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6571 &spa->spa_deferred_bpobj, tx); 6572 } 6573 6574 ddt_sync(spa, txg); 6575 dsl_scan_sync(dp, tx); 6576 6577 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6578 vdev_sync(vd, txg); 6579 6580 if (pass == 1) { 6581 spa_sync_upgrades(spa, tx); 6582 ASSERT3U(txg, >=, 6583 spa->spa_uberblock.ub_rootbp.blk_birth); 6584 /* 6585 * Note: We need to check if the MOS is dirty 6586 * because we could have marked the MOS dirty 6587 * without updating the uberblock (e.g. if we 6588 * have sync tasks but no dirty user data). We 6589 * need to check the uberblock's rootbp because 6590 * it is updated if we have synced out dirty 6591 * data (though in this case the MOS will most 6592 * likely also be dirty due to second order 6593 * effects, we don't want to rely on that here). 6594 */ 6595 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 6596 !dmu_objset_is_dirty(mos, txg)) { 6597 /* 6598 * Nothing changed on the first pass, 6599 * therefore this TXG is a no-op. Avoid 6600 * syncing deferred frees, so that we 6601 * can keep this TXG as a no-op. 6602 */ 6603 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 6604 txg)); 6605 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6606 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 6607 break; 6608 } 6609 spa_sync_deferred_frees(spa, tx); 6610 } 6611 6612 } while (dmu_objset_is_dirty(mos, txg)); 6613 6614 if (!list_is_empty(&spa->spa_config_dirty_list)) { 6615 /* 6616 * Make sure that the number of ZAPs for all the vdevs matches 6617 * the number of ZAPs in the per-vdev ZAP list. This only gets 6618 * called if the config is dirty; otherwise there may be 6619 * outstanding AVZ operations that weren't completed in 6620 * spa_sync_config_object. 6621 */ 6622 uint64_t all_vdev_zap_entry_count; 6623 ASSERT0(zap_count(spa->spa_meta_objset, 6624 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 6625 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 6626 all_vdev_zap_entry_count); 6627 } 6628 6629 /* 6630 * Rewrite the vdev configuration (which includes the uberblock) 6631 * to commit the transaction group. 6632 * 6633 * If there are no dirty vdevs, we sync the uberblock to a few 6634 * random top-level vdevs that are known to be visible in the 6635 * config cache (see spa_vdev_add() for a complete description). 6636 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6637 */ 6638 for (;;) { 6639 /* 6640 * We hold SCL_STATE to prevent vdev open/close/etc. 6641 * while we're attempting to write the vdev labels. 6642 */ 6643 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6644 6645 if (list_is_empty(&spa->spa_config_dirty_list)) { 6646 vdev_t *svd[SPA_DVAS_PER_BP]; 6647 int svdcount = 0; 6648 int children = rvd->vdev_children; 6649 int c0 = spa_get_random(children); 6650 6651 for (int c = 0; c < children; c++) { 6652 vd = rvd->vdev_child[(c0 + c) % children]; 6653 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6654 continue; 6655 svd[svdcount++] = vd; 6656 if (svdcount == SPA_DVAS_PER_BP) 6657 break; 6658 } 6659 error = vdev_config_sync(svd, svdcount, txg); 6660 } else { 6661 error = vdev_config_sync(rvd->vdev_child, 6662 rvd->vdev_children, txg); 6663 } 6664 6665 if (error == 0) 6666 spa->spa_last_synced_guid = rvd->vdev_guid; 6667 6668 spa_config_exit(spa, SCL_STATE, FTAG); 6669 6670 if (error == 0) 6671 break; 6672 zio_suspend(spa, NULL); 6673 zio_resume_wait(spa); 6674 } 6675 dmu_tx_commit(tx); 6676 6677 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6678 6679 /* 6680 * Clear the dirty config list. 6681 */ 6682 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6683 vdev_config_clean(vd); 6684 6685 /* 6686 * Now that the new config has synced transactionally, 6687 * let it become visible to the config cache. 6688 */ 6689 if (spa->spa_config_syncing != NULL) { 6690 spa_config_set(spa, spa->spa_config_syncing); 6691 spa->spa_config_txg = txg; 6692 spa->spa_config_syncing = NULL; 6693 } 6694 6695 spa->spa_ubsync = spa->spa_uberblock; 6696 6697 dsl_pool_sync_done(dp, txg); 6698 6699 /* 6700 * Update usable space statistics. 6701 */ 6702 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6703 vdev_sync_done(vd, txg); 6704 6705 spa_update_dspace(spa); 6706 6707 /* 6708 * It had better be the case that we didn't dirty anything 6709 * since vdev_config_sync(). 6710 */ 6711 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6712 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6713 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6714 6715 spa->spa_sync_pass = 0; 6716 6717 spa_config_exit(spa, SCL_CONFIG, FTAG); 6718 6719 spa_handle_ignored_writes(spa); 6720 6721 /* 6722 * If any async tasks have been requested, kick them off. 6723 */ 6724 spa_async_dispatch(spa); 6725 } 6726 6727 /* 6728 * Sync all pools. We don't want to hold the namespace lock across these 6729 * operations, so we take a reference on the spa_t and drop the lock during the 6730 * sync. 6731 */ 6732 void 6733 spa_sync_allpools(void) 6734 { 6735 spa_t *spa = NULL; 6736 mutex_enter(&spa_namespace_lock); 6737 while ((spa = spa_next(spa)) != NULL) { 6738 if (spa_state(spa) != POOL_STATE_ACTIVE || 6739 !spa_writeable(spa) || spa_suspended(spa)) 6740 continue; 6741 spa_open_ref(spa, FTAG); 6742 mutex_exit(&spa_namespace_lock); 6743 txg_wait_synced(spa_get_dsl(spa), 0); 6744 mutex_enter(&spa_namespace_lock); 6745 spa_close(spa, FTAG); 6746 } 6747 mutex_exit(&spa_namespace_lock); 6748 } 6749 6750 /* 6751 * ========================================================================== 6752 * Miscellaneous routines 6753 * ========================================================================== 6754 */ 6755 6756 /* 6757 * Remove all pools in the system. 6758 */ 6759 void 6760 spa_evict_all(void) 6761 { 6762 spa_t *spa; 6763 6764 /* 6765 * Remove all cached state. All pools should be closed now, 6766 * so every spa in the AVL tree should be unreferenced. 6767 */ 6768 mutex_enter(&spa_namespace_lock); 6769 while ((spa = spa_next(NULL)) != NULL) { 6770 /* 6771 * Stop async tasks. The async thread may need to detach 6772 * a device that's been replaced, which requires grabbing 6773 * spa_namespace_lock, so we must drop it here. 6774 */ 6775 spa_open_ref(spa, FTAG); 6776 mutex_exit(&spa_namespace_lock); 6777 spa_async_suspend(spa); 6778 mutex_enter(&spa_namespace_lock); 6779 spa_close(spa, FTAG); 6780 6781 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6782 spa_unload(spa); 6783 spa_deactivate(spa); 6784 } 6785 spa_remove(spa); 6786 } 6787 mutex_exit(&spa_namespace_lock); 6788 } 6789 6790 vdev_t * 6791 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6792 { 6793 vdev_t *vd; 6794 int i; 6795 6796 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6797 return (vd); 6798 6799 if (aux) { 6800 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6801 vd = spa->spa_l2cache.sav_vdevs[i]; 6802 if (vd->vdev_guid == guid) 6803 return (vd); 6804 } 6805 6806 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6807 vd = spa->spa_spares.sav_vdevs[i]; 6808 if (vd->vdev_guid == guid) 6809 return (vd); 6810 } 6811 } 6812 6813 return (NULL); 6814 } 6815 6816 void 6817 spa_upgrade(spa_t *spa, uint64_t version) 6818 { 6819 ASSERT(spa_writeable(spa)); 6820 6821 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6822 6823 /* 6824 * This should only be called for a non-faulted pool, and since a 6825 * future version would result in an unopenable pool, this shouldn't be 6826 * possible. 6827 */ 6828 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6829 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6830 6831 spa->spa_uberblock.ub_version = version; 6832 vdev_config_dirty(spa->spa_root_vdev); 6833 6834 spa_config_exit(spa, SCL_ALL, FTAG); 6835 6836 txg_wait_synced(spa_get_dsl(spa), 0); 6837 } 6838 6839 boolean_t 6840 spa_has_spare(spa_t *spa, uint64_t guid) 6841 { 6842 int i; 6843 uint64_t spareguid; 6844 spa_aux_vdev_t *sav = &spa->spa_spares; 6845 6846 for (i = 0; i < sav->sav_count; i++) 6847 if (sav->sav_vdevs[i]->vdev_guid == guid) 6848 return (B_TRUE); 6849 6850 for (i = 0; i < sav->sav_npending; i++) { 6851 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6852 &spareguid) == 0 && spareguid == guid) 6853 return (B_TRUE); 6854 } 6855 6856 return (B_FALSE); 6857 } 6858 6859 /* 6860 * Check if a pool has an active shared spare device. 6861 * Note: reference count of an active spare is 2, as a spare and as a replace 6862 */ 6863 static boolean_t 6864 spa_has_active_shared_spare(spa_t *spa) 6865 { 6866 int i, refcnt; 6867 uint64_t pool; 6868 spa_aux_vdev_t *sav = &spa->spa_spares; 6869 6870 for (i = 0; i < sav->sav_count; i++) { 6871 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6872 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6873 refcnt > 2) 6874 return (B_TRUE); 6875 } 6876 6877 return (B_FALSE); 6878 } 6879 6880 /* 6881 * Post a sysevent corresponding to the given event. The 'name' must be one of 6882 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6883 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6884 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6885 * or zdb as real changes. 6886 */ 6887 void 6888 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6889 { 6890 #ifdef _KERNEL 6891 sysevent_t *ev; 6892 sysevent_attr_list_t *attr = NULL; 6893 sysevent_value_t value; 6894 sysevent_id_t eid; 6895 6896 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6897 SE_SLEEP); 6898 6899 value.value_type = SE_DATA_TYPE_STRING; 6900 value.value.sv_string = spa_name(spa); 6901 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6902 goto done; 6903 6904 value.value_type = SE_DATA_TYPE_UINT64; 6905 value.value.sv_uint64 = spa_guid(spa); 6906 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6907 goto done; 6908 6909 if (vd) { 6910 value.value_type = SE_DATA_TYPE_UINT64; 6911 value.value.sv_uint64 = vd->vdev_guid; 6912 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6913 SE_SLEEP) != 0) 6914 goto done; 6915 6916 if (vd->vdev_path) { 6917 value.value_type = SE_DATA_TYPE_STRING; 6918 value.value.sv_string = vd->vdev_path; 6919 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6920 &value, SE_SLEEP) != 0) 6921 goto done; 6922 } 6923 } 6924 6925 if (sysevent_attach_attributes(ev, attr) != 0) 6926 goto done; 6927 attr = NULL; 6928 6929 (void) log_sysevent(ev, SE_SLEEP, &eid); 6930 6931 done: 6932 if (attr) 6933 sysevent_free_attr(attr); 6934 sysevent_free(ev); 6935 #endif 6936 } 6937