xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 0a554e9f2c0d440dc40a97fae2d18f1d428ca786)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
31  * Copyright 2019 Joyent, Inc.
32  * Copyright (c) 2017, Intel Corporation.
33  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34  * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
35  */
36 
37 /*
38  * SPA: Storage Pool Allocator
39  *
40  * This file contains all the routines used when modifying on-disk SPA state.
41  * This includes opening, importing, destroying, exporting a pool, and syncing a
42  * pool.
43  */
44 
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/metaslab.h>
62 #include <sys/metaslab_impl.h>
63 #include <sys/mmp.h>
64 #include <sys/uberblock_impl.h>
65 #include <sys/txg.h>
66 #include <sys/avl.h>
67 #include <sys/bpobj.h>
68 #include <sys/dmu_traverse.h>
69 #include <sys/dmu_objset.h>
70 #include <sys/unique.h>
71 #include <sys/dsl_pool.h>
72 #include <sys/dsl_dataset.h>
73 #include <sys/dsl_dir.h>
74 #include <sys/dsl_prop.h>
75 #include <sys/dsl_synctask.h>
76 #include <sys/fs/zfs.h>
77 #include <sys/arc.h>
78 #include <sys/callb.h>
79 #include <sys/systeminfo.h>
80 #include <sys/spa_boot.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/dsl_scan.h>
83 #include <sys/zfeature.h>
84 #include <sys/dsl_destroy.h>
85 #include <sys/abd.h>
86 
87 #ifdef	_KERNEL
88 #include <sys/bootprops.h>
89 #include <sys/callb.h>
90 #include <sys/cpupart.h>
91 #include <sys/pool.h>
92 #include <sys/sysdc.h>
93 #include <sys/zone.h>
94 #endif	/* _KERNEL */
95 
96 #include "zfs_prop.h"
97 #include "zfs_comutil.h"
98 
99 /*
100  * The interval, in seconds, at which failed configuration cache file writes
101  * should be retried.
102  */
103 int zfs_ccw_retry_interval = 300;
104 
105 typedef enum zti_modes {
106 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
107 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
108 	ZTI_MODE_NULL,			/* don't create a taskq */
109 	ZTI_NMODES
110 } zti_modes_t;
111 
112 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
113 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
114 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
115 
116 #define	ZTI_N(n)	ZTI_P(n, 1)
117 #define	ZTI_ONE		ZTI_N(1)
118 
119 typedef struct zio_taskq_info {
120 	zti_modes_t zti_mode;
121 	uint_t zti_value;
122 	uint_t zti_count;
123 } zio_taskq_info_t;
124 
125 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
126 	"issue", "issue_high", "intr", "intr_high"
127 };
128 
129 /*
130  * This table defines the taskq settings for each ZFS I/O type. When
131  * initializing a pool, we use this table to create an appropriately sized
132  * taskq. Some operations are low volume and therefore have a small, static
133  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
134  * macros. Other operations process a large amount of data; the ZTI_BATCH
135  * macro causes us to create a taskq oriented for throughput. Some operations
136  * are so high frequency and short-lived that the taskq itself can become a
137  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
138  * additional degree of parallelism specified by the number of threads per-
139  * taskq and the number of taskqs; when dispatching an event in this case, the
140  * particular taskq is chosen at random.
141  *
142  * The different taskq priorities are to handle the different contexts (issue
143  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
144  * need to be handled with minimum delay.
145  */
146 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
147 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
148 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
149 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
150 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
151 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
152 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
153 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
154 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
155 };
156 
157 static void spa_sync_version(void *arg, dmu_tx_t *tx);
158 static void spa_sync_props(void *arg, dmu_tx_t *tx);
159 static boolean_t spa_has_active_shared_spare(spa_t *spa);
160 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
161 static void spa_vdev_resilver_done(spa_t *spa);
162 
163 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
164 id_t		zio_taskq_psrset_bind = PS_NONE;
165 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
166 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
167 
168 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
169 extern int	zfs_sync_pass_deferred_free;
170 
171 /*
172  * Report any spa_load_verify errors found, but do not fail spa_load.
173  * This is used by zdb to analyze non-idle pools.
174  */
175 boolean_t	spa_load_verify_dryrun = B_FALSE;
176 
177 /*
178  * This (illegal) pool name is used when temporarily importing a spa_t in order
179  * to get the vdev stats associated with the imported devices.
180  */
181 #define	TRYIMPORT_NAME	"$import"
182 
183 /*
184  * For debugging purposes: print out vdev tree during pool import.
185  */
186 boolean_t	spa_load_print_vdev_tree = B_FALSE;
187 
188 /*
189  * A non-zero value for zfs_max_missing_tvds means that we allow importing
190  * pools with missing top-level vdevs. This is strictly intended for advanced
191  * pool recovery cases since missing data is almost inevitable. Pools with
192  * missing devices can only be imported read-only for safety reasons, and their
193  * fail-mode will be automatically set to "continue".
194  *
195  * With 1 missing vdev we should be able to import the pool and mount all
196  * datasets. User data that was not modified after the missing device has been
197  * added should be recoverable. This means that snapshots created prior to the
198  * addition of that device should be completely intact.
199  *
200  * With 2 missing vdevs, some datasets may fail to mount since there are
201  * dataset statistics that are stored as regular metadata. Some data might be
202  * recoverable if those vdevs were added recently.
203  *
204  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
205  * may be missing entirely. Chances of data recovery are very low. Note that
206  * there are also risks of performing an inadvertent rewind as we might be
207  * missing all the vdevs with the latest uberblocks.
208  */
209 uint64_t	zfs_max_missing_tvds = 0;
210 
211 /*
212  * The parameters below are similar to zfs_max_missing_tvds but are only
213  * intended for a preliminary open of the pool with an untrusted config which
214  * might be incomplete or out-dated.
215  *
216  * We are more tolerant for pools opened from a cachefile since we could have
217  * an out-dated cachefile where a device removal was not registered.
218  * We could have set the limit arbitrarily high but in the case where devices
219  * are really missing we would want to return the proper error codes; we chose
220  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
221  * and we get a chance to retrieve the trusted config.
222  */
223 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
224 
225 /*
226  * In the case where config was assembled by scanning device paths (/dev/dsks
227  * by default) we are less tolerant since all the existing devices should have
228  * been detected and we want spa_load to return the right error codes.
229  */
230 uint64_t	zfs_max_missing_tvds_scan = 0;
231 
232 /*
233  * Interval in seconds at which to poll spare vdevs for health.
234  * Setting this to zero disables spare polling.
235  * Set to three hours by default.
236  */
237 uint_t		spa_spare_poll_interval_seconds = 60 * 60 * 3;
238 
239 /*
240  * Debugging aid that pauses spa_sync() towards the end.
241  */
242 boolean_t	zfs_pause_spa_sync = B_FALSE;
243 
244 /*
245  * ==========================================================================
246  * SPA properties routines
247  * ==========================================================================
248  */
249 
250 /*
251  * Add a (source=src, propname=propval) list to an nvlist.
252  */
253 static void
254 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
255     uint64_t intval, zprop_source_t src)
256 {
257 	const char *propname = zpool_prop_to_name(prop);
258 	nvlist_t *propval;
259 
260 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
261 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
262 
263 	if (strval != NULL)
264 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
265 	else
266 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
267 
268 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
269 	nvlist_free(propval);
270 }
271 
272 /*
273  * Get property values from the spa configuration.
274  */
275 static void
276 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
277 {
278 	vdev_t *rvd = spa->spa_root_vdev;
279 	dsl_pool_t *pool = spa->spa_dsl_pool;
280 	uint64_t size, alloc, cap, version;
281 	zprop_source_t src = ZPROP_SRC_NONE;
282 	spa_config_dirent_t *dp;
283 	metaslab_class_t *mc = spa_normal_class(spa);
284 
285 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
286 
287 	if (rvd != NULL) {
288 		alloc = metaslab_class_get_alloc(mc);
289 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
290 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
291 
292 		size = metaslab_class_get_space(mc);
293 		size += metaslab_class_get_space(spa_special_class(spa));
294 		size += metaslab_class_get_space(spa_dedup_class(spa));
295 
296 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
297 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
298 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
299 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
300 		    size - alloc, src);
301 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
302 		    spa->spa_checkpoint_info.sci_dspace, src);
303 
304 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
305 		    metaslab_class_fragmentation(mc), src);
306 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
307 		    metaslab_class_expandable_space(mc), src);
308 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
309 		    (spa_mode(spa) == FREAD), src);
310 
311 		cap = (size == 0) ? 0 : (alloc * 100 / size);
312 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
313 
314 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
315 		    ddt_get_pool_dedup_ratio(spa), src);
316 
317 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
318 		    rvd->vdev_state, src);
319 
320 		version = spa_version(spa);
321 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
322 			src = ZPROP_SRC_DEFAULT;
323 		else
324 			src = ZPROP_SRC_LOCAL;
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
326 	}
327 
328 	if (pool != NULL) {
329 		/*
330 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
331 		 * when opening pools before this version freedir will be NULL.
332 		 */
333 		if (pool->dp_free_dir != NULL) {
334 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
335 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
336 			    src);
337 		} else {
338 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
339 			    NULL, 0, src);
340 		}
341 
342 		if (pool->dp_leak_dir != NULL) {
343 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
344 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
345 			    src);
346 		} else {
347 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
348 			    NULL, 0, src);
349 		}
350 	}
351 
352 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
353 
354 	if (spa->spa_comment != NULL) {
355 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
356 		    0, ZPROP_SRC_LOCAL);
357 	}
358 
359 	if (spa->spa_root != NULL)
360 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
361 		    0, ZPROP_SRC_LOCAL);
362 
363 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
364 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
365 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
366 	} else {
367 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
368 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
369 	}
370 
371 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
372 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
373 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
374 	} else {
375 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
376 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
377 	}
378 
379 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
380 		if (dp->scd_path == NULL) {
381 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
382 			    "none", 0, ZPROP_SRC_LOCAL);
383 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
384 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
385 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
386 		}
387 	}
388 }
389 
390 /*
391  * Get zpool property values.
392  */
393 int
394 spa_prop_get(spa_t *spa, nvlist_t **nvp)
395 {
396 	objset_t *mos = spa->spa_meta_objset;
397 	zap_cursor_t zc;
398 	zap_attribute_t za;
399 	int err;
400 
401 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
402 
403 	mutex_enter(&spa->spa_props_lock);
404 
405 	/*
406 	 * Get properties from the spa config.
407 	 */
408 	spa_prop_get_config(spa, nvp);
409 
410 	/* If no pool property object, no more prop to get. */
411 	if (mos == NULL || spa->spa_pool_props_object == 0) {
412 		mutex_exit(&spa->spa_props_lock);
413 		return (0);
414 	}
415 
416 	/*
417 	 * Get properties from the MOS pool property object.
418 	 */
419 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
420 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
421 	    zap_cursor_advance(&zc)) {
422 		uint64_t intval = 0;
423 		char *strval = NULL;
424 		zprop_source_t src = ZPROP_SRC_DEFAULT;
425 		zpool_prop_t prop;
426 
427 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
428 			continue;
429 
430 		switch (za.za_integer_length) {
431 		case 8:
432 			/* integer property */
433 			if (za.za_first_integer !=
434 			    zpool_prop_default_numeric(prop))
435 				src = ZPROP_SRC_LOCAL;
436 
437 			if (prop == ZPOOL_PROP_BOOTFS) {
438 				dsl_pool_t *dp;
439 				dsl_dataset_t *ds = NULL;
440 
441 				dp = spa_get_dsl(spa);
442 				dsl_pool_config_enter(dp, FTAG);
443 				err = dsl_dataset_hold_obj(dp,
444 				    za.za_first_integer, FTAG, &ds);
445 				if (err != 0) {
446 					dsl_pool_config_exit(dp, FTAG);
447 					break;
448 				}
449 
450 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
451 				    KM_SLEEP);
452 				dsl_dataset_name(ds, strval);
453 				dsl_dataset_rele(ds, FTAG);
454 				dsl_pool_config_exit(dp, FTAG);
455 			} else {
456 				strval = NULL;
457 				intval = za.za_first_integer;
458 			}
459 
460 			spa_prop_add_list(*nvp, prop, strval, intval, src);
461 
462 			if (strval != NULL)
463 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
464 
465 			break;
466 
467 		case 1:
468 			/* string property */
469 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
470 			err = zap_lookup(mos, spa->spa_pool_props_object,
471 			    za.za_name, 1, za.za_num_integers, strval);
472 			if (err) {
473 				kmem_free(strval, za.za_num_integers);
474 				break;
475 			}
476 			spa_prop_add_list(*nvp, prop, strval, 0, src);
477 			kmem_free(strval, za.za_num_integers);
478 			break;
479 
480 		default:
481 			break;
482 		}
483 	}
484 	zap_cursor_fini(&zc);
485 	mutex_exit(&spa->spa_props_lock);
486 out:
487 	if (err && err != ENOENT) {
488 		nvlist_free(*nvp);
489 		*nvp = NULL;
490 		return (err);
491 	}
492 
493 	return (0);
494 }
495 
496 /*
497  * Validate the given pool properties nvlist and modify the list
498  * for the property values to be set.
499  */
500 static int
501 spa_prop_validate(spa_t *spa, nvlist_t *props)
502 {
503 	nvpair_t *elem;
504 	int error = 0, reset_bootfs = 0;
505 	uint64_t objnum = 0;
506 	boolean_t has_feature = B_FALSE;
507 
508 	elem = NULL;
509 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
510 		uint64_t intval;
511 		char *strval, *slash, *check, *fname;
512 		const char *propname = nvpair_name(elem);
513 		zpool_prop_t prop = zpool_name_to_prop(propname);
514 
515 		switch (prop) {
516 		case ZPOOL_PROP_INVAL:
517 			if (!zpool_prop_feature(propname)) {
518 				error = SET_ERROR(EINVAL);
519 				break;
520 			}
521 
522 			/*
523 			 * Sanitize the input.
524 			 */
525 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
526 				error = SET_ERROR(EINVAL);
527 				break;
528 			}
529 
530 			if (nvpair_value_uint64(elem, &intval) != 0) {
531 				error = SET_ERROR(EINVAL);
532 				break;
533 			}
534 
535 			if (intval != 0) {
536 				error = SET_ERROR(EINVAL);
537 				break;
538 			}
539 
540 			fname = strchr(propname, '@') + 1;
541 			if (zfeature_lookup_name(fname, NULL) != 0) {
542 				error = SET_ERROR(EINVAL);
543 				break;
544 			}
545 
546 			has_feature = B_TRUE;
547 			break;
548 
549 		case ZPOOL_PROP_VERSION:
550 			error = nvpair_value_uint64(elem, &intval);
551 			if (!error &&
552 			    (intval < spa_version(spa) ||
553 			    intval > SPA_VERSION_BEFORE_FEATURES ||
554 			    has_feature))
555 				error = SET_ERROR(EINVAL);
556 			break;
557 
558 		case ZPOOL_PROP_DELEGATION:
559 		case ZPOOL_PROP_AUTOREPLACE:
560 		case ZPOOL_PROP_LISTSNAPS:
561 		case ZPOOL_PROP_AUTOEXPAND:
562 		case ZPOOL_PROP_AUTOTRIM:
563 			error = nvpair_value_uint64(elem, &intval);
564 			if (!error && intval > 1)
565 				error = SET_ERROR(EINVAL);
566 			break;
567 
568 		case ZPOOL_PROP_MULTIHOST:
569 			error = nvpair_value_uint64(elem, &intval);
570 			if (!error && intval > 1)
571 				error = SET_ERROR(EINVAL);
572 
573 			if (!error && !spa_get_hostid())
574 				error = SET_ERROR(ENOTSUP);
575 
576 			break;
577 
578 		case ZPOOL_PROP_BOOTFS:
579 			/*
580 			 * If the pool version is less than SPA_VERSION_BOOTFS,
581 			 * or the pool is still being created (version == 0),
582 			 * the bootfs property cannot be set.
583 			 */
584 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
585 				error = SET_ERROR(ENOTSUP);
586 				break;
587 			}
588 
589 			/*
590 			 * Make sure the vdev config is bootable
591 			 */
592 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
593 				error = SET_ERROR(ENOTSUP);
594 				break;
595 			}
596 
597 			reset_bootfs = 1;
598 
599 			error = nvpair_value_string(elem, &strval);
600 
601 			if (!error) {
602 				objset_t *os;
603 				uint64_t propval;
604 
605 				if (strval == NULL || strval[0] == '\0') {
606 					objnum = zpool_prop_default_numeric(
607 					    ZPOOL_PROP_BOOTFS);
608 					break;
609 				}
610 
611 				error = dmu_objset_hold(strval, FTAG, &os);
612 				if (error != 0)
613 					break;
614 
615 				/*
616 				 * Must be ZPL, and its property settings
617 				 * must be supported.
618 				 */
619 
620 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
621 					error = SET_ERROR(ENOTSUP);
622 				} else if ((error =
623 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
624 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
625 				    &propval)) == 0 &&
626 				    !BOOTFS_COMPRESS_VALID(propval)) {
627 					error = SET_ERROR(ENOTSUP);
628 				} else {
629 					objnum = dmu_objset_id(os);
630 				}
631 				dmu_objset_rele(os, FTAG);
632 			}
633 			break;
634 
635 		case ZPOOL_PROP_FAILUREMODE:
636 			error = nvpair_value_uint64(elem, &intval);
637 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
638 			    intval > ZIO_FAILURE_MODE_PANIC))
639 				error = SET_ERROR(EINVAL);
640 
641 			/*
642 			 * This is a special case which only occurs when
643 			 * the pool has completely failed. This allows
644 			 * the user to change the in-core failmode property
645 			 * without syncing it out to disk (I/Os might
646 			 * currently be blocked). We do this by returning
647 			 * EIO to the caller (spa_prop_set) to trick it
648 			 * into thinking we encountered a property validation
649 			 * error.
650 			 */
651 			if (!error && spa_suspended(spa)) {
652 				spa->spa_failmode = intval;
653 				error = SET_ERROR(EIO);
654 			}
655 			break;
656 
657 		case ZPOOL_PROP_CACHEFILE:
658 			if ((error = nvpair_value_string(elem, &strval)) != 0)
659 				break;
660 
661 			if (strval[0] == '\0')
662 				break;
663 
664 			if (strcmp(strval, "none") == 0)
665 				break;
666 
667 			if (strval[0] != '/') {
668 				error = SET_ERROR(EINVAL);
669 				break;
670 			}
671 
672 			slash = strrchr(strval, '/');
673 			ASSERT(slash != NULL);
674 
675 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
676 			    strcmp(slash, "/..") == 0)
677 				error = SET_ERROR(EINVAL);
678 			break;
679 
680 		case ZPOOL_PROP_COMMENT:
681 			if ((error = nvpair_value_string(elem, &strval)) != 0)
682 				break;
683 			for (check = strval; *check != '\0'; check++) {
684 				/*
685 				 * The kernel doesn't have an easy isprint()
686 				 * check.  For this kernel check, we merely
687 				 * check ASCII apart from DEL.  Fix this if
688 				 * there is an easy-to-use kernel isprint().
689 				 */
690 				if (*check >= 0x7f) {
691 					error = SET_ERROR(EINVAL);
692 					break;
693 				}
694 			}
695 			if (strlen(strval) > ZPROP_MAX_COMMENT)
696 				error = E2BIG;
697 			break;
698 
699 		case ZPOOL_PROP_DEDUPDITTO:
700 			if (spa_version(spa) < SPA_VERSION_DEDUP)
701 				error = SET_ERROR(ENOTSUP);
702 			else
703 				error = nvpair_value_uint64(elem, &intval);
704 			if (error == 0 &&
705 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
706 				error = SET_ERROR(EINVAL);
707 			break;
708 		}
709 
710 		if (error)
711 			break;
712 	}
713 
714 	if (!error && reset_bootfs) {
715 		error = nvlist_remove(props,
716 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
717 
718 		if (!error) {
719 			error = nvlist_add_uint64(props,
720 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
721 		}
722 	}
723 
724 	return (error);
725 }
726 
727 void
728 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
729 {
730 	char *cachefile;
731 	spa_config_dirent_t *dp;
732 
733 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
734 	    &cachefile) != 0)
735 		return;
736 
737 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
738 	    KM_SLEEP);
739 
740 	if (cachefile[0] == '\0')
741 		dp->scd_path = spa_strdup(spa_config_path);
742 	else if (strcmp(cachefile, "none") == 0)
743 		dp->scd_path = NULL;
744 	else
745 		dp->scd_path = spa_strdup(cachefile);
746 
747 	list_insert_head(&spa->spa_config_list, dp);
748 	if (need_sync)
749 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
750 }
751 
752 int
753 spa_prop_set(spa_t *spa, nvlist_t *nvp)
754 {
755 	int error;
756 	nvpair_t *elem = NULL;
757 	boolean_t need_sync = B_FALSE;
758 
759 	if ((error = spa_prop_validate(spa, nvp)) != 0)
760 		return (error);
761 
762 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
763 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
764 
765 		if (prop == ZPOOL_PROP_CACHEFILE ||
766 		    prop == ZPOOL_PROP_ALTROOT ||
767 		    prop == ZPOOL_PROP_READONLY)
768 			continue;
769 
770 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
771 			uint64_t ver;
772 
773 			if (prop == ZPOOL_PROP_VERSION) {
774 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
775 			} else {
776 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
777 				ver = SPA_VERSION_FEATURES;
778 				need_sync = B_TRUE;
779 			}
780 
781 			/* Save time if the version is already set. */
782 			if (ver == spa_version(spa))
783 				continue;
784 
785 			/*
786 			 * In addition to the pool directory object, we might
787 			 * create the pool properties object, the features for
788 			 * read object, the features for write object, or the
789 			 * feature descriptions object.
790 			 */
791 			error = dsl_sync_task(spa->spa_name, NULL,
792 			    spa_sync_version, &ver,
793 			    6, ZFS_SPACE_CHECK_RESERVED);
794 			if (error)
795 				return (error);
796 			continue;
797 		}
798 
799 		need_sync = B_TRUE;
800 		break;
801 	}
802 
803 	if (need_sync) {
804 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
805 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
806 	}
807 
808 	return (0);
809 }
810 
811 /*
812  * If the bootfs property value is dsobj, clear it.
813  */
814 void
815 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
816 {
817 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
818 		VERIFY(zap_remove(spa->spa_meta_objset,
819 		    spa->spa_pool_props_object,
820 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
821 		spa->spa_bootfs = 0;
822 	}
823 }
824 
825 /*ARGSUSED*/
826 static int
827 spa_change_guid_check(void *arg, dmu_tx_t *tx)
828 {
829 	uint64_t *newguid = arg;
830 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
831 	vdev_t *rvd = spa->spa_root_vdev;
832 	uint64_t vdev_state;
833 
834 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
835 		int error = (spa_has_checkpoint(spa)) ?
836 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
837 		return (SET_ERROR(error));
838 	}
839 
840 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
841 	vdev_state = rvd->vdev_state;
842 	spa_config_exit(spa, SCL_STATE, FTAG);
843 
844 	if (vdev_state != VDEV_STATE_HEALTHY)
845 		return (SET_ERROR(ENXIO));
846 
847 	ASSERT3U(spa_guid(spa), !=, *newguid);
848 
849 	return (0);
850 }
851 
852 static void
853 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
854 {
855 	uint64_t *newguid = arg;
856 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
857 	uint64_t oldguid;
858 	vdev_t *rvd = spa->spa_root_vdev;
859 
860 	oldguid = spa_guid(spa);
861 
862 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
863 	rvd->vdev_guid = *newguid;
864 	rvd->vdev_guid_sum += (*newguid - oldguid);
865 	vdev_config_dirty(rvd);
866 	spa_config_exit(spa, SCL_STATE, FTAG);
867 
868 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
869 	    oldguid, *newguid);
870 }
871 
872 /*
873  * Change the GUID for the pool.  This is done so that we can later
874  * re-import a pool built from a clone of our own vdevs.  We will modify
875  * the root vdev's guid, our own pool guid, and then mark all of our
876  * vdevs dirty.  Note that we must make sure that all our vdevs are
877  * online when we do this, or else any vdevs that weren't present
878  * would be orphaned from our pool.  We are also going to issue a
879  * sysevent to update any watchers.
880  */
881 int
882 spa_change_guid(spa_t *spa)
883 {
884 	int error;
885 	uint64_t guid;
886 
887 	mutex_enter(&spa->spa_vdev_top_lock);
888 	mutex_enter(&spa_namespace_lock);
889 	guid = spa_generate_guid(NULL);
890 
891 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
892 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
893 
894 	if (error == 0) {
895 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
896 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
897 	}
898 
899 	mutex_exit(&spa_namespace_lock);
900 	mutex_exit(&spa->spa_vdev_top_lock);
901 
902 	return (error);
903 }
904 
905 /*
906  * ==========================================================================
907  * SPA state manipulation (open/create/destroy/import/export)
908  * ==========================================================================
909  */
910 
911 static int
912 spa_error_entry_compare(const void *a, const void *b)
913 {
914 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
915 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
916 	int ret;
917 
918 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
919 	    sizeof (zbookmark_phys_t));
920 
921 	return (TREE_ISIGN(ret));
922 }
923 
924 /*
925  * Utility function which retrieves copies of the current logs and
926  * re-initializes them in the process.
927  */
928 void
929 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
930 {
931 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
932 
933 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
934 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
935 
936 	avl_create(&spa->spa_errlist_scrub,
937 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
938 	    offsetof(spa_error_entry_t, se_avl));
939 	avl_create(&spa->spa_errlist_last,
940 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
941 	    offsetof(spa_error_entry_t, se_avl));
942 }
943 
944 static void
945 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
946 {
947 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
948 	enum zti_modes mode = ztip->zti_mode;
949 	uint_t value = ztip->zti_value;
950 	uint_t count = ztip->zti_count;
951 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
952 	char name[32];
953 	uint_t flags = 0;
954 	boolean_t batch = B_FALSE;
955 
956 	if (mode == ZTI_MODE_NULL) {
957 		tqs->stqs_count = 0;
958 		tqs->stqs_taskq = NULL;
959 		return;
960 	}
961 
962 	ASSERT3U(count, >, 0);
963 
964 	tqs->stqs_count = count;
965 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
966 
967 	switch (mode) {
968 	case ZTI_MODE_FIXED:
969 		ASSERT3U(value, >=, 1);
970 		value = MAX(value, 1);
971 		break;
972 
973 	case ZTI_MODE_BATCH:
974 		batch = B_TRUE;
975 		flags |= TASKQ_THREADS_CPU_PCT;
976 		value = zio_taskq_batch_pct;
977 		break;
978 
979 	default:
980 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
981 		    "spa_activate()",
982 		    zio_type_name[t], zio_taskq_types[q], mode, value);
983 		break;
984 	}
985 
986 	for (uint_t i = 0; i < count; i++) {
987 		taskq_t *tq;
988 
989 		if (count > 1) {
990 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
991 			    zio_type_name[t], zio_taskq_types[q], i);
992 		} else {
993 			(void) snprintf(name, sizeof (name), "%s_%s",
994 			    zio_type_name[t], zio_taskq_types[q]);
995 		}
996 
997 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
998 			if (batch)
999 				flags |= TASKQ_DC_BATCH;
1000 
1001 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1002 			    spa->spa_proc, zio_taskq_basedc, flags);
1003 		} else {
1004 			pri_t pri = maxclsyspri;
1005 			/*
1006 			 * The write issue taskq can be extremely CPU
1007 			 * intensive.  Run it at slightly lower priority
1008 			 * than the other taskqs.
1009 			 */
1010 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1011 				pri--;
1012 
1013 			tq = taskq_create_proc(name, value, pri, 50,
1014 			    INT_MAX, spa->spa_proc, flags);
1015 		}
1016 
1017 		tqs->stqs_taskq[i] = tq;
1018 	}
1019 }
1020 
1021 static void
1022 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1023 {
1024 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1025 
1026 	if (tqs->stqs_taskq == NULL) {
1027 		ASSERT0(tqs->stqs_count);
1028 		return;
1029 	}
1030 
1031 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1032 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1033 		taskq_destroy(tqs->stqs_taskq[i]);
1034 	}
1035 
1036 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1037 	tqs->stqs_taskq = NULL;
1038 }
1039 
1040 /*
1041  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1042  * Note that a type may have multiple discrete taskqs to avoid lock contention
1043  * on the taskq itself. In that case we choose which taskq at random by using
1044  * the low bits of gethrtime().
1045  */
1046 void
1047 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1048     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1049 {
1050 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1051 	taskq_t *tq;
1052 
1053 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1054 	ASSERT3U(tqs->stqs_count, !=, 0);
1055 
1056 	if (tqs->stqs_count == 1) {
1057 		tq = tqs->stqs_taskq[0];
1058 	} else {
1059 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1060 	}
1061 
1062 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1063 }
1064 
1065 static void
1066 spa_create_zio_taskqs(spa_t *spa)
1067 {
1068 	for (int t = 0; t < ZIO_TYPES; t++) {
1069 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1070 			spa_taskqs_init(spa, t, q);
1071 		}
1072 	}
1073 }
1074 
1075 #ifdef _KERNEL
1076 static void
1077 spa_thread(void *arg)
1078 {
1079 	callb_cpr_t cprinfo;
1080 
1081 	spa_t *spa = arg;
1082 	user_t *pu = PTOU(curproc);
1083 
1084 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1085 	    spa->spa_name);
1086 
1087 	ASSERT(curproc != &p0);
1088 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1089 	    "zpool-%s", spa->spa_name);
1090 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1091 
1092 	/* bind this thread to the requested psrset */
1093 	if (zio_taskq_psrset_bind != PS_NONE) {
1094 		pool_lock();
1095 		mutex_enter(&cpu_lock);
1096 		mutex_enter(&pidlock);
1097 		mutex_enter(&curproc->p_lock);
1098 
1099 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1100 		    0, NULL, NULL) == 0)  {
1101 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1102 		} else {
1103 			cmn_err(CE_WARN,
1104 			    "Couldn't bind process for zfs pool \"%s\" to "
1105 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1106 		}
1107 
1108 		mutex_exit(&curproc->p_lock);
1109 		mutex_exit(&pidlock);
1110 		mutex_exit(&cpu_lock);
1111 		pool_unlock();
1112 	}
1113 
1114 	if (zio_taskq_sysdc) {
1115 		sysdc_thread_enter(curthread, 100, 0);
1116 	}
1117 
1118 	spa->spa_proc = curproc;
1119 	spa->spa_did = curthread->t_did;
1120 
1121 	spa_create_zio_taskqs(spa);
1122 
1123 	mutex_enter(&spa->spa_proc_lock);
1124 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1125 
1126 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1127 	cv_broadcast(&spa->spa_proc_cv);
1128 
1129 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1130 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1131 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1133 
1134 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1135 	spa->spa_proc_state = SPA_PROC_GONE;
1136 	spa->spa_proc = &p0;
1137 	cv_broadcast(&spa->spa_proc_cv);
1138 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1139 
1140 	mutex_enter(&curproc->p_lock);
1141 	lwp_exit();
1142 }
1143 #endif
1144 
1145 /*
1146  * Activate an uninitialized pool.
1147  */
1148 static void
1149 spa_activate(spa_t *spa, int mode)
1150 {
1151 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1152 
1153 	spa->spa_state = POOL_STATE_ACTIVE;
1154 	spa->spa_mode = mode;
1155 
1156 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1157 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1158 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1159 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1160 
1161 	/* Try to create a covering process */
1162 	mutex_enter(&spa->spa_proc_lock);
1163 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1164 	ASSERT(spa->spa_proc == &p0);
1165 	spa->spa_did = 0;
1166 
1167 	/* Only create a process if we're going to be around a while. */
1168 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1169 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1170 		    NULL, 0) == 0) {
1171 			spa->spa_proc_state = SPA_PROC_CREATED;
1172 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1173 				cv_wait(&spa->spa_proc_cv,
1174 				    &spa->spa_proc_lock);
1175 			}
1176 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1177 			ASSERT(spa->spa_proc != &p0);
1178 			ASSERT(spa->spa_did != 0);
1179 		} else {
1180 #ifdef _KERNEL
1181 			cmn_err(CE_WARN,
1182 			    "Couldn't create process for zfs pool \"%s\"\n",
1183 			    spa->spa_name);
1184 #endif
1185 		}
1186 	}
1187 	mutex_exit(&spa->spa_proc_lock);
1188 
1189 	/* If we didn't create a process, we need to create our taskqs. */
1190 	if (spa->spa_proc == &p0) {
1191 		spa_create_zio_taskqs(spa);
1192 	}
1193 
1194 	for (size_t i = 0; i < TXG_SIZE; i++) {
1195 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1196 		    ZIO_FLAG_CANFAIL);
1197 	}
1198 
1199 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1200 	    offsetof(vdev_t, vdev_config_dirty_node));
1201 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1202 	    offsetof(objset_t, os_evicting_node));
1203 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1204 	    offsetof(vdev_t, vdev_state_dirty_node));
1205 
1206 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1207 	    offsetof(struct vdev, vdev_txg_node));
1208 
1209 	avl_create(&spa->spa_errlist_scrub,
1210 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1211 	    offsetof(spa_error_entry_t, se_avl));
1212 	avl_create(&spa->spa_errlist_last,
1213 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1214 	    offsetof(spa_error_entry_t, se_avl));
1215 
1216 	spa_keystore_init(&spa->spa_keystore);
1217 
1218 	/*
1219 	 * The taskq to upgrade datasets in this pool. Currently used by
1220 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1221 	 */
1222 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1223 	    minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1224 }
1225 
1226 /*
1227  * Opposite of spa_activate().
1228  */
1229 static void
1230 spa_deactivate(spa_t *spa)
1231 {
1232 	ASSERT(spa->spa_sync_on == B_FALSE);
1233 	ASSERT(spa->spa_dsl_pool == NULL);
1234 	ASSERT(spa->spa_root_vdev == NULL);
1235 	ASSERT(spa->spa_async_zio_root == NULL);
1236 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1237 
1238 	spa_evicting_os_wait(spa);
1239 
1240 	if (spa->spa_upgrade_taskq) {
1241 		taskq_destroy(spa->spa_upgrade_taskq);
1242 		spa->spa_upgrade_taskq = NULL;
1243 	}
1244 
1245 	txg_list_destroy(&spa->spa_vdev_txg_list);
1246 
1247 	list_destroy(&spa->spa_config_dirty_list);
1248 	list_destroy(&spa->spa_evicting_os_list);
1249 	list_destroy(&spa->spa_state_dirty_list);
1250 
1251 	for (int t = 0; t < ZIO_TYPES; t++) {
1252 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1253 			spa_taskqs_fini(spa, t, q);
1254 		}
1255 	}
1256 
1257 	for (size_t i = 0; i < TXG_SIZE; i++) {
1258 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1259 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1260 		spa->spa_txg_zio[i] = NULL;
1261 	}
1262 
1263 	metaslab_class_destroy(spa->spa_normal_class);
1264 	spa->spa_normal_class = NULL;
1265 
1266 	metaslab_class_destroy(spa->spa_log_class);
1267 	spa->spa_log_class = NULL;
1268 
1269 	metaslab_class_destroy(spa->spa_special_class);
1270 	spa->spa_special_class = NULL;
1271 
1272 	metaslab_class_destroy(spa->spa_dedup_class);
1273 	spa->spa_dedup_class = NULL;
1274 
1275 	/*
1276 	 * If this was part of an import or the open otherwise failed, we may
1277 	 * still have errors left in the queues.  Empty them just in case.
1278 	 */
1279 	spa_errlog_drain(spa);
1280 	avl_destroy(&spa->spa_errlist_scrub);
1281 	avl_destroy(&spa->spa_errlist_last);
1282 
1283 	spa_keystore_fini(&spa->spa_keystore);
1284 
1285 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1286 
1287 	mutex_enter(&spa->spa_proc_lock);
1288 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1289 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1290 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1291 		cv_broadcast(&spa->spa_proc_cv);
1292 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1293 			ASSERT(spa->spa_proc != &p0);
1294 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1295 		}
1296 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1297 		spa->spa_proc_state = SPA_PROC_NONE;
1298 	}
1299 	ASSERT(spa->spa_proc == &p0);
1300 	mutex_exit(&spa->spa_proc_lock);
1301 
1302 	/*
1303 	 * We want to make sure spa_thread() has actually exited the ZFS
1304 	 * module, so that the module can't be unloaded out from underneath
1305 	 * it.
1306 	 */
1307 	if (spa->spa_did != 0) {
1308 		thread_join(spa->spa_did);
1309 		spa->spa_did = 0;
1310 	}
1311 }
1312 
1313 /*
1314  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1315  * will create all the necessary vdevs in the appropriate layout, with each vdev
1316  * in the CLOSED state.  This will prep the pool before open/creation/import.
1317  * All vdev validation is done by the vdev_alloc() routine.
1318  */
1319 static int
1320 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1321     uint_t id, int atype)
1322 {
1323 	nvlist_t **child;
1324 	uint_t children;
1325 	int error;
1326 
1327 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1328 		return (error);
1329 
1330 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1331 		return (0);
1332 
1333 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1334 	    &child, &children);
1335 
1336 	if (error == ENOENT)
1337 		return (0);
1338 
1339 	if (error) {
1340 		vdev_free(*vdp);
1341 		*vdp = NULL;
1342 		return (SET_ERROR(EINVAL));
1343 	}
1344 
1345 	for (int c = 0; c < children; c++) {
1346 		vdev_t *vd;
1347 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1348 		    atype)) != 0) {
1349 			vdev_free(*vdp);
1350 			*vdp = NULL;
1351 			return (error);
1352 		}
1353 	}
1354 
1355 	ASSERT(*vdp != NULL);
1356 
1357 	return (0);
1358 }
1359 
1360 static boolean_t
1361 spa_should_flush_logs_on_unload(spa_t *spa)
1362 {
1363 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1364 		return (B_FALSE);
1365 
1366 	if (!spa_writeable(spa))
1367 		return (B_FALSE);
1368 
1369 	if (!spa->spa_sync_on)
1370 		return (B_FALSE);
1371 
1372 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1373 		return (B_FALSE);
1374 
1375 	if (zfs_keep_log_spacemaps_at_export)
1376 		return (B_FALSE);
1377 
1378 	return (B_TRUE);
1379 }
1380 
1381 /*
1382  * Opens a transaction that will set the flag that will instruct
1383  * spa_sync to attempt to flush all the metaslabs for that txg.
1384  */
1385 static void
1386 spa_unload_log_sm_flush_all(spa_t *spa)
1387 {
1388 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1389 
1390 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1391 
1392 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1393 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1394 
1395 	dmu_tx_commit(tx);
1396 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1397 }
1398 
1399 static void
1400 spa_unload_log_sm_metadata(spa_t *spa)
1401 {
1402 	void *cookie = NULL;
1403 	spa_log_sm_t *sls;
1404 
1405 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1406 	    &cookie)) != NULL) {
1407 		VERIFY0(sls->sls_mscount);
1408 		kmem_free(sls, sizeof (spa_log_sm_t));
1409 	}
1410 
1411 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1412 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1413 		VERIFY0(e->lse_mscount);
1414 		list_remove(&spa->spa_log_summary, e);
1415 		kmem_free(e, sizeof (log_summary_entry_t));
1416 	}
1417 
1418 	spa->spa_unflushed_stats.sus_nblocks = 0;
1419 	spa->spa_unflushed_stats.sus_memused = 0;
1420 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1421 }
1422 
1423 /*
1424  * Opposite of spa_load().
1425  */
1426 static void
1427 spa_unload(spa_t *spa)
1428 {
1429 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1430 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1431 
1432 	spa_import_progress_remove(spa);
1433 	spa_load_note(spa, "UNLOADING");
1434 
1435 	/*
1436 	 * If the log space map feature is enabled and the pool is getting
1437 	 * exported (but not destroyed), we want to spend some time flushing
1438 	 * as many metaslabs as we can in an attempt to destroy log space
1439 	 * maps and save import time.
1440 	 */
1441 	if (spa_should_flush_logs_on_unload(spa))
1442 		spa_unload_log_sm_flush_all(spa);
1443 
1444 	/*
1445 	 * Stop async tasks.
1446 	 */
1447 	spa_async_suspend(spa);
1448 
1449 	if (spa->spa_root_vdev) {
1450 		vdev_t *root_vdev = spa->spa_root_vdev;
1451 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1452 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1453 		vdev_autotrim_stop_all(spa);
1454 	}
1455 
1456 	/*
1457 	 * Stop syncing.
1458 	 */
1459 	if (spa->spa_sync_on) {
1460 		txg_sync_stop(spa->spa_dsl_pool);
1461 		spa->spa_sync_on = B_FALSE;
1462 	}
1463 
1464 	/*
1465 	 * This ensures that there is no async metaslab prefetching
1466 	 * while we attempt to unload the spa.
1467 	 */
1468 	if (spa->spa_root_vdev != NULL) {
1469 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1470 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1471 			if (vc->vdev_mg != NULL)
1472 				taskq_wait(vc->vdev_mg->mg_taskq);
1473 		}
1474 	}
1475 
1476 	if (spa->spa_mmp.mmp_thread)
1477 		mmp_thread_stop(spa);
1478 
1479 	/*
1480 	 * Wait for any outstanding async I/O to complete.
1481 	 */
1482 	if (spa->spa_async_zio_root != NULL) {
1483 		for (int i = 0; i < max_ncpus; i++)
1484 			(void) zio_wait(spa->spa_async_zio_root[i]);
1485 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1486 		spa->spa_async_zio_root = NULL;
1487 	}
1488 
1489 	if (spa->spa_vdev_removal != NULL) {
1490 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1491 		spa->spa_vdev_removal = NULL;
1492 	}
1493 
1494 	if (spa->spa_condense_zthr != NULL) {
1495 		zthr_destroy(spa->spa_condense_zthr);
1496 		spa->spa_condense_zthr = NULL;
1497 	}
1498 
1499 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1500 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1501 		spa->spa_checkpoint_discard_zthr = NULL;
1502 	}
1503 
1504 	spa_condense_fini(spa);
1505 
1506 	bpobj_close(&spa->spa_deferred_bpobj);
1507 
1508 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1509 
1510 	/*
1511 	 * Close all vdevs.
1512 	 */
1513 	if (spa->spa_root_vdev)
1514 		vdev_free(spa->spa_root_vdev);
1515 	ASSERT(spa->spa_root_vdev == NULL);
1516 
1517 	/*
1518 	 * Close the dsl pool.
1519 	 */
1520 	if (spa->spa_dsl_pool) {
1521 		dsl_pool_close(spa->spa_dsl_pool);
1522 		spa->spa_dsl_pool = NULL;
1523 		spa->spa_meta_objset = NULL;
1524 	}
1525 
1526 	ddt_unload(spa);
1527 	spa_unload_log_sm_metadata(spa);
1528 
1529 	/*
1530 	 * Drop and purge level 2 cache
1531 	 */
1532 	spa_l2cache_drop(spa);
1533 
1534 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1535 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1536 	if (spa->spa_spares.sav_vdevs) {
1537 		kmem_free(spa->spa_spares.sav_vdevs,
1538 		    spa->spa_spares.sav_count * sizeof (void *));
1539 		spa->spa_spares.sav_vdevs = NULL;
1540 	}
1541 	if (spa->spa_spares.sav_config) {
1542 		nvlist_free(spa->spa_spares.sav_config);
1543 		spa->spa_spares.sav_config = NULL;
1544 	}
1545 	spa->spa_spares.sav_count = 0;
1546 
1547 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1548 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1549 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1550 	}
1551 	if (spa->spa_l2cache.sav_vdevs) {
1552 		kmem_free(spa->spa_l2cache.sav_vdevs,
1553 		    spa->spa_l2cache.sav_count * sizeof (void *));
1554 		spa->spa_l2cache.sav_vdevs = NULL;
1555 	}
1556 	if (spa->spa_l2cache.sav_config) {
1557 		nvlist_free(spa->spa_l2cache.sav_config);
1558 		spa->spa_l2cache.sav_config = NULL;
1559 	}
1560 	spa->spa_l2cache.sav_count = 0;
1561 
1562 	spa->spa_async_suspended = 0;
1563 
1564 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1565 
1566 	if (spa->spa_comment != NULL) {
1567 		spa_strfree(spa->spa_comment);
1568 		spa->spa_comment = NULL;
1569 	}
1570 
1571 	spa_config_exit(spa, SCL_ALL, spa);
1572 }
1573 
1574 /*
1575  * Load (or re-load) the current list of vdevs describing the active spares for
1576  * this pool.  When this is called, we have some form of basic information in
1577  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1578  * then re-generate a more complete list including status information.
1579  */
1580 void
1581 spa_load_spares(spa_t *spa)
1582 {
1583 	nvlist_t **spares;
1584 	uint_t nspares;
1585 	int i;
1586 	vdev_t *vd, *tvd;
1587 
1588 #ifndef _KERNEL
1589 	/*
1590 	 * zdb opens both the current state of the pool and the
1591 	 * checkpointed state (if present), with a different spa_t.
1592 	 *
1593 	 * As spare vdevs are shared among open pools, we skip loading
1594 	 * them when we load the checkpointed state of the pool.
1595 	 */
1596 	if (!spa_writeable(spa))
1597 		return;
1598 #endif
1599 
1600 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1601 
1602 	/*
1603 	 * First, close and free any existing spare vdevs.
1604 	 */
1605 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1606 		vd = spa->spa_spares.sav_vdevs[i];
1607 
1608 		/* Undo the call to spa_activate() below */
1609 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1610 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1611 			spa_spare_remove(tvd);
1612 		vdev_close(vd);
1613 		vdev_free(vd);
1614 	}
1615 
1616 	if (spa->spa_spares.sav_vdevs)
1617 		kmem_free(spa->spa_spares.sav_vdevs,
1618 		    spa->spa_spares.sav_count * sizeof (void *));
1619 
1620 	if (spa->spa_spares.sav_config == NULL)
1621 		nspares = 0;
1622 	else
1623 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1624 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1625 
1626 	spa->spa_spares.sav_count = (int)nspares;
1627 	spa->spa_spares.sav_vdevs = NULL;
1628 
1629 	if (nspares == 0)
1630 		return;
1631 
1632 	/*
1633 	 * Construct the array of vdevs, opening them to get status in the
1634 	 * process.   For each spare, there is potentially two different vdev_t
1635 	 * structures associated with it: one in the list of spares (used only
1636 	 * for basic validation purposes) and one in the active vdev
1637 	 * configuration (if it's spared in).  During this phase we open and
1638 	 * validate each vdev on the spare list.  If the vdev also exists in the
1639 	 * active configuration, then we also mark this vdev as an active spare.
1640 	 */
1641 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1642 	    KM_SLEEP);
1643 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1644 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1645 		    VDEV_ALLOC_SPARE) == 0);
1646 		ASSERT(vd != NULL);
1647 
1648 		spa->spa_spares.sav_vdevs[i] = vd;
1649 
1650 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1651 		    B_FALSE)) != NULL) {
1652 			if (!tvd->vdev_isspare)
1653 				spa_spare_add(tvd);
1654 
1655 			/*
1656 			 * We only mark the spare active if we were successfully
1657 			 * able to load the vdev.  Otherwise, importing a pool
1658 			 * with a bad active spare would result in strange
1659 			 * behavior, because multiple pool would think the spare
1660 			 * is actively in use.
1661 			 *
1662 			 * There is a vulnerability here to an equally bizarre
1663 			 * circumstance, where a dead active spare is later
1664 			 * brought back to life (onlined or otherwise).  Given
1665 			 * the rarity of this scenario, and the extra complexity
1666 			 * it adds, we ignore the possibility.
1667 			 */
1668 			if (!vdev_is_dead(tvd))
1669 				spa_spare_activate(tvd);
1670 		}
1671 
1672 		vd->vdev_top = vd;
1673 		vd->vdev_aux = &spa->spa_spares;
1674 
1675 		if (vdev_open(vd) != 0)
1676 			continue;
1677 
1678 		if (vdev_validate_aux(vd) == 0)
1679 			spa_spare_add(vd);
1680 	}
1681 
1682 	/*
1683 	 * Recompute the stashed list of spares, with status information
1684 	 * this time.
1685 	 */
1686 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1687 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1688 
1689 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1690 	    KM_SLEEP);
1691 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1692 		spares[i] = vdev_config_generate(spa,
1693 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1694 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1695 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1696 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1697 		nvlist_free(spares[i]);
1698 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1699 }
1700 
1701 /*
1702  * Load (or re-load) the current list of vdevs describing the active l2cache for
1703  * this pool.  When this is called, we have some form of basic information in
1704  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1705  * then re-generate a more complete list including status information.
1706  * Devices which are already active have their details maintained, and are
1707  * not re-opened.
1708  */
1709 void
1710 spa_load_l2cache(spa_t *spa)
1711 {
1712 	nvlist_t **l2cache;
1713 	uint_t nl2cache;
1714 	int i, j, oldnvdevs;
1715 	uint64_t guid;
1716 	vdev_t *vd, **oldvdevs, **newvdevs;
1717 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1718 
1719 #ifndef _KERNEL
1720 	/*
1721 	 * zdb opens both the current state of the pool and the
1722 	 * checkpointed state (if present), with a different spa_t.
1723 	 *
1724 	 * As L2 caches are part of the ARC which is shared among open
1725 	 * pools, we skip loading them when we load the checkpointed
1726 	 * state of the pool.
1727 	 */
1728 	if (!spa_writeable(spa))
1729 		return;
1730 #endif
1731 
1732 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1733 
1734 	if (sav->sav_config != NULL) {
1735 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1736 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1737 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1738 	} else {
1739 		nl2cache = 0;
1740 		newvdevs = NULL;
1741 	}
1742 
1743 	oldvdevs = sav->sav_vdevs;
1744 	oldnvdevs = sav->sav_count;
1745 	sav->sav_vdevs = NULL;
1746 	sav->sav_count = 0;
1747 
1748 	/*
1749 	 * Process new nvlist of vdevs.
1750 	 */
1751 	for (i = 0; i < nl2cache; i++) {
1752 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1753 		    &guid) == 0);
1754 
1755 		newvdevs[i] = NULL;
1756 		for (j = 0; j < oldnvdevs; j++) {
1757 			vd = oldvdevs[j];
1758 			if (vd != NULL && guid == vd->vdev_guid) {
1759 				/*
1760 				 * Retain previous vdev for add/remove ops.
1761 				 */
1762 				newvdevs[i] = vd;
1763 				oldvdevs[j] = NULL;
1764 				break;
1765 			}
1766 		}
1767 
1768 		if (newvdevs[i] == NULL) {
1769 			/*
1770 			 * Create new vdev
1771 			 */
1772 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1773 			    VDEV_ALLOC_L2CACHE) == 0);
1774 			ASSERT(vd != NULL);
1775 			newvdevs[i] = vd;
1776 
1777 			/*
1778 			 * Commit this vdev as an l2cache device,
1779 			 * even if it fails to open.
1780 			 */
1781 			spa_l2cache_add(vd);
1782 
1783 			vd->vdev_top = vd;
1784 			vd->vdev_aux = sav;
1785 
1786 			spa_l2cache_activate(vd);
1787 
1788 			if (vdev_open(vd) != 0)
1789 				continue;
1790 
1791 			(void) vdev_validate_aux(vd);
1792 
1793 			if (!vdev_is_dead(vd))
1794 				l2arc_add_vdev(spa, vd);
1795 		}
1796 	}
1797 
1798 	/*
1799 	 * Purge vdevs that were dropped
1800 	 */
1801 	for (i = 0; i < oldnvdevs; i++) {
1802 		uint64_t pool;
1803 
1804 		vd = oldvdevs[i];
1805 		if (vd != NULL) {
1806 			ASSERT(vd->vdev_isl2cache);
1807 
1808 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1809 			    pool != 0ULL && l2arc_vdev_present(vd))
1810 				l2arc_remove_vdev(vd);
1811 			vdev_clear_stats(vd);
1812 			vdev_free(vd);
1813 		}
1814 	}
1815 
1816 	if (oldvdevs)
1817 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1818 
1819 	if (sav->sav_config == NULL)
1820 		goto out;
1821 
1822 	sav->sav_vdevs = newvdevs;
1823 	sav->sav_count = (int)nl2cache;
1824 
1825 	/*
1826 	 * Recompute the stashed list of l2cache devices, with status
1827 	 * information this time.
1828 	 */
1829 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1830 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1831 
1832 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1833 	for (i = 0; i < sav->sav_count; i++)
1834 		l2cache[i] = vdev_config_generate(spa,
1835 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1836 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1837 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1838 out:
1839 	for (i = 0; i < sav->sav_count; i++)
1840 		nvlist_free(l2cache[i]);
1841 	if (sav->sav_count)
1842 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1843 }
1844 
1845 static int
1846 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1847 {
1848 	dmu_buf_t *db;
1849 	char *packed = NULL;
1850 	size_t nvsize = 0;
1851 	int error;
1852 	*value = NULL;
1853 
1854 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1855 	if (error != 0)
1856 		return (error);
1857 
1858 	nvsize = *(uint64_t *)db->db_data;
1859 	dmu_buf_rele(db, FTAG);
1860 
1861 	packed = kmem_alloc(nvsize, KM_SLEEP);
1862 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1863 	    DMU_READ_PREFETCH);
1864 	if (error == 0)
1865 		error = nvlist_unpack(packed, nvsize, value, 0);
1866 	kmem_free(packed, nvsize);
1867 
1868 	return (error);
1869 }
1870 
1871 /*
1872  * Concrete top-level vdevs that are not missing and are not logs. At every
1873  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1874  */
1875 static uint64_t
1876 spa_healthy_core_tvds(spa_t *spa)
1877 {
1878 	vdev_t *rvd = spa->spa_root_vdev;
1879 	uint64_t tvds = 0;
1880 
1881 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1882 		vdev_t *vd = rvd->vdev_child[i];
1883 		if (vd->vdev_islog)
1884 			continue;
1885 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1886 			tvds++;
1887 	}
1888 
1889 	return (tvds);
1890 }
1891 
1892 /*
1893  * Checks to see if the given vdev could not be opened, in which case we post a
1894  * sysevent to notify the autoreplace code that the device has been removed.
1895  */
1896 static void
1897 spa_check_removed(vdev_t *vd)
1898 {
1899 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1900 		spa_check_removed(vd->vdev_child[c]);
1901 
1902 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1903 	    vdev_is_concrete(vd)) {
1904 		zfs_post_autoreplace(vd->vdev_spa, vd);
1905 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1906 	}
1907 }
1908 
1909 static int
1910 spa_check_for_missing_logs(spa_t *spa)
1911 {
1912 	vdev_t *rvd = spa->spa_root_vdev;
1913 
1914 	/*
1915 	 * If we're doing a normal import, then build up any additional
1916 	 * diagnostic information about missing log devices.
1917 	 * We'll pass this up to the user for further processing.
1918 	 */
1919 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1920 		nvlist_t **child, *nv;
1921 		uint64_t idx = 0;
1922 
1923 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1924 		    KM_SLEEP);
1925 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1926 
1927 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1928 			vdev_t *tvd = rvd->vdev_child[c];
1929 
1930 			/*
1931 			 * We consider a device as missing only if it failed
1932 			 * to open (i.e. offline or faulted is not considered
1933 			 * as missing).
1934 			 */
1935 			if (tvd->vdev_islog &&
1936 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1937 				child[idx++] = vdev_config_generate(spa, tvd,
1938 				    B_FALSE, VDEV_CONFIG_MISSING);
1939 			}
1940 		}
1941 
1942 		if (idx > 0) {
1943 			fnvlist_add_nvlist_array(nv,
1944 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1945 			fnvlist_add_nvlist(spa->spa_load_info,
1946 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1947 
1948 			for (uint64_t i = 0; i < idx; i++)
1949 				nvlist_free(child[i]);
1950 		}
1951 		nvlist_free(nv);
1952 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1953 
1954 		if (idx > 0) {
1955 			spa_load_failed(spa, "some log devices are missing");
1956 			vdev_dbgmsg_print_tree(rvd, 2);
1957 			return (SET_ERROR(ENXIO));
1958 		}
1959 	} else {
1960 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1961 			vdev_t *tvd = rvd->vdev_child[c];
1962 
1963 			if (tvd->vdev_islog &&
1964 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1965 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1966 				spa_load_note(spa, "some log devices are "
1967 				    "missing, ZIL is dropped.");
1968 				vdev_dbgmsg_print_tree(rvd, 2);
1969 				break;
1970 			}
1971 		}
1972 	}
1973 
1974 	return (0);
1975 }
1976 
1977 /*
1978  * Check for missing log devices
1979  */
1980 static boolean_t
1981 spa_check_logs(spa_t *spa)
1982 {
1983 	boolean_t rv = B_FALSE;
1984 	dsl_pool_t *dp = spa_get_dsl(spa);
1985 
1986 	switch (spa->spa_log_state) {
1987 	case SPA_LOG_MISSING:
1988 		/* need to recheck in case slog has been restored */
1989 	case SPA_LOG_UNKNOWN:
1990 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1991 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1992 		if (rv)
1993 			spa_set_log_state(spa, SPA_LOG_MISSING);
1994 		break;
1995 	}
1996 	return (rv);
1997 }
1998 
1999 static boolean_t
2000 spa_passivate_log(spa_t *spa)
2001 {
2002 	vdev_t *rvd = spa->spa_root_vdev;
2003 	boolean_t slog_found = B_FALSE;
2004 
2005 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2006 
2007 	if (!spa_has_slogs(spa))
2008 		return (B_FALSE);
2009 
2010 	for (int c = 0; c < rvd->vdev_children; c++) {
2011 		vdev_t *tvd = rvd->vdev_child[c];
2012 		metaslab_group_t *mg = tvd->vdev_mg;
2013 
2014 		if (tvd->vdev_islog) {
2015 			metaslab_group_passivate(mg);
2016 			slog_found = B_TRUE;
2017 		}
2018 	}
2019 
2020 	return (slog_found);
2021 }
2022 
2023 static void
2024 spa_activate_log(spa_t *spa)
2025 {
2026 	vdev_t *rvd = spa->spa_root_vdev;
2027 
2028 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2029 
2030 	for (int c = 0; c < rvd->vdev_children; c++) {
2031 		vdev_t *tvd = rvd->vdev_child[c];
2032 		metaslab_group_t *mg = tvd->vdev_mg;
2033 
2034 		if (tvd->vdev_islog)
2035 			metaslab_group_activate(mg);
2036 	}
2037 }
2038 
2039 int
2040 spa_reset_logs(spa_t *spa)
2041 {
2042 	int error;
2043 
2044 	error = dmu_objset_find(spa_name(spa), zil_reset,
2045 	    NULL, DS_FIND_CHILDREN);
2046 	if (error == 0) {
2047 		/*
2048 		 * We successfully offlined the log device, sync out the
2049 		 * current txg so that the "stubby" block can be removed
2050 		 * by zil_sync().
2051 		 */
2052 		txg_wait_synced(spa->spa_dsl_pool, 0);
2053 	}
2054 	return (error);
2055 }
2056 
2057 static void
2058 spa_aux_check_removed(spa_aux_vdev_t *sav)
2059 {
2060 	for (int i = 0; i < sav->sav_count; i++)
2061 		spa_check_removed(sav->sav_vdevs[i]);
2062 }
2063 
2064 void
2065 spa_claim_notify(zio_t *zio)
2066 {
2067 	spa_t *spa = zio->io_spa;
2068 
2069 	if (zio->io_error)
2070 		return;
2071 
2072 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2073 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2074 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2075 	mutex_exit(&spa->spa_props_lock);
2076 }
2077 
2078 typedef struct spa_load_error {
2079 	uint64_t	sle_meta_count;
2080 	uint64_t	sle_data_count;
2081 } spa_load_error_t;
2082 
2083 static void
2084 spa_load_verify_done(zio_t *zio)
2085 {
2086 	blkptr_t *bp = zio->io_bp;
2087 	spa_load_error_t *sle = zio->io_private;
2088 	dmu_object_type_t type = BP_GET_TYPE(bp);
2089 	int error = zio->io_error;
2090 	spa_t *spa = zio->io_spa;
2091 
2092 	abd_free(zio->io_abd);
2093 	if (error) {
2094 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2095 		    type != DMU_OT_INTENT_LOG)
2096 			atomic_inc_64(&sle->sle_meta_count);
2097 		else
2098 			atomic_inc_64(&sle->sle_data_count);
2099 	}
2100 
2101 	mutex_enter(&spa->spa_scrub_lock);
2102 	spa->spa_load_verify_ios--;
2103 	cv_broadcast(&spa->spa_scrub_io_cv);
2104 	mutex_exit(&spa->spa_scrub_lock);
2105 }
2106 
2107 /*
2108  * Maximum number of concurrent scrub i/os to create while verifying
2109  * a pool while importing it.
2110  */
2111 int spa_load_verify_maxinflight = 10000;
2112 boolean_t spa_load_verify_metadata = B_TRUE;
2113 boolean_t spa_load_verify_data = B_TRUE;
2114 
2115 /*ARGSUSED*/
2116 static int
2117 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2118     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2119 {
2120 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2121 		return (0);
2122 	/*
2123 	 * Note: normally this routine will not be called if
2124 	 * spa_load_verify_metadata is not set.  However, it may be useful
2125 	 * to manually set the flag after the traversal has begun.
2126 	 */
2127 	if (!spa_load_verify_metadata)
2128 		return (0);
2129 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2130 		return (0);
2131 
2132 	zio_t *rio = arg;
2133 	size_t size = BP_GET_PSIZE(bp);
2134 
2135 	mutex_enter(&spa->spa_scrub_lock);
2136 	while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2137 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2138 	spa->spa_load_verify_ios++;
2139 	mutex_exit(&spa->spa_scrub_lock);
2140 
2141 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2142 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2143 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2144 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2145 	return (0);
2146 }
2147 
2148 /* ARGSUSED */
2149 int
2150 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2151 {
2152 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2153 		return (SET_ERROR(ENAMETOOLONG));
2154 
2155 	return (0);
2156 }
2157 
2158 static int
2159 spa_load_verify(spa_t *spa)
2160 {
2161 	zio_t *rio;
2162 	spa_load_error_t sle = { 0 };
2163 	zpool_load_policy_t policy;
2164 	boolean_t verify_ok = B_FALSE;
2165 	int error = 0;
2166 
2167 	zpool_get_load_policy(spa->spa_config, &policy);
2168 
2169 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2170 		return (0);
2171 
2172 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2173 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2174 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2175 	    DS_FIND_CHILDREN);
2176 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2177 	if (error != 0)
2178 		return (error);
2179 
2180 	rio = zio_root(spa, NULL, &sle,
2181 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2182 
2183 	if (spa_load_verify_metadata) {
2184 		if (spa->spa_extreme_rewind) {
2185 			spa_load_note(spa, "performing a complete scan of the "
2186 			    "pool since extreme rewind is on. This may take "
2187 			    "a very long time.\n  (spa_load_verify_data=%u, "
2188 			    "spa_load_verify_metadata=%u)",
2189 			    spa_load_verify_data, spa_load_verify_metadata);
2190 		}
2191 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2192 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2193 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2194 	}
2195 
2196 	(void) zio_wait(rio);
2197 
2198 	spa->spa_load_meta_errors = sle.sle_meta_count;
2199 	spa->spa_load_data_errors = sle.sle_data_count;
2200 
2201 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2202 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2203 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2204 		    (u_longlong_t)sle.sle_data_count);
2205 	}
2206 
2207 	if (spa_load_verify_dryrun ||
2208 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2209 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2210 		int64_t loss = 0;
2211 
2212 		verify_ok = B_TRUE;
2213 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2214 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2215 
2216 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2217 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2218 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2219 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2220 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2221 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2222 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2223 	} else {
2224 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2225 	}
2226 
2227 	if (spa_load_verify_dryrun)
2228 		return (0);
2229 
2230 	if (error) {
2231 		if (error != ENXIO && error != EIO)
2232 			error = SET_ERROR(EIO);
2233 		return (error);
2234 	}
2235 
2236 	return (verify_ok ? 0 : EIO);
2237 }
2238 
2239 /*
2240  * Find a value in the pool props object.
2241  */
2242 static void
2243 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2244 {
2245 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2246 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2247 }
2248 
2249 /*
2250  * Find a value in the pool directory object.
2251  */
2252 static int
2253 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2254 {
2255 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2256 	    name, sizeof (uint64_t), 1, val);
2257 
2258 	if (error != 0 && (error != ENOENT || log_enoent)) {
2259 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2260 		    "[error=%d]", name, error);
2261 	}
2262 
2263 	return (error);
2264 }
2265 
2266 static int
2267 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2268 {
2269 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2270 	return (SET_ERROR(err));
2271 }
2272 
2273 static void
2274 spa_spawn_aux_threads(spa_t *spa)
2275 {
2276 	ASSERT(spa_writeable(spa));
2277 
2278 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2279 
2280 	spa_start_indirect_condensing_thread(spa);
2281 
2282 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2283 	spa->spa_checkpoint_discard_zthr =
2284 	    zthr_create(spa_checkpoint_discard_thread_check,
2285 	    spa_checkpoint_discard_thread, spa);
2286 }
2287 
2288 /*
2289  * Fix up config after a partly-completed split.  This is done with the
2290  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2291  * pool have that entry in their config, but only the splitting one contains
2292  * a list of all the guids of the vdevs that are being split off.
2293  *
2294  * This function determines what to do with that list: either rejoin
2295  * all the disks to the pool, or complete the splitting process.  To attempt
2296  * the rejoin, each disk that is offlined is marked online again, and
2297  * we do a reopen() call.  If the vdev label for every disk that was
2298  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2299  * then we call vdev_split() on each disk, and complete the split.
2300  *
2301  * Otherwise we leave the config alone, with all the vdevs in place in
2302  * the original pool.
2303  */
2304 static void
2305 spa_try_repair(spa_t *spa, nvlist_t *config)
2306 {
2307 	uint_t extracted;
2308 	uint64_t *glist;
2309 	uint_t i, gcount;
2310 	nvlist_t *nvl;
2311 	vdev_t **vd;
2312 	boolean_t attempt_reopen;
2313 
2314 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2315 		return;
2316 
2317 	/* check that the config is complete */
2318 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2319 	    &glist, &gcount) != 0)
2320 		return;
2321 
2322 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2323 
2324 	/* attempt to online all the vdevs & validate */
2325 	attempt_reopen = B_TRUE;
2326 	for (i = 0; i < gcount; i++) {
2327 		if (glist[i] == 0)	/* vdev is hole */
2328 			continue;
2329 
2330 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2331 		if (vd[i] == NULL) {
2332 			/*
2333 			 * Don't bother attempting to reopen the disks;
2334 			 * just do the split.
2335 			 */
2336 			attempt_reopen = B_FALSE;
2337 		} else {
2338 			/* attempt to re-online it */
2339 			vd[i]->vdev_offline = B_FALSE;
2340 		}
2341 	}
2342 
2343 	if (attempt_reopen) {
2344 		vdev_reopen(spa->spa_root_vdev);
2345 
2346 		/* check each device to see what state it's in */
2347 		for (extracted = 0, i = 0; i < gcount; i++) {
2348 			if (vd[i] != NULL &&
2349 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2350 				break;
2351 			++extracted;
2352 		}
2353 	}
2354 
2355 	/*
2356 	 * If every disk has been moved to the new pool, or if we never
2357 	 * even attempted to look at them, then we split them off for
2358 	 * good.
2359 	 */
2360 	if (!attempt_reopen || gcount == extracted) {
2361 		for (i = 0; i < gcount; i++)
2362 			if (vd[i] != NULL)
2363 				vdev_split(vd[i]);
2364 		vdev_reopen(spa->spa_root_vdev);
2365 	}
2366 
2367 	kmem_free(vd, gcount * sizeof (vdev_t *));
2368 }
2369 
2370 static int
2371 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2372 {
2373 	char *ereport = FM_EREPORT_ZFS_POOL;
2374 	int error;
2375 
2376 	spa->spa_load_state = state;
2377 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2378 
2379 	gethrestime(&spa->spa_loaded_ts);
2380 	error = spa_load_impl(spa, type, &ereport);
2381 
2382 	/*
2383 	 * Don't count references from objsets that are already closed
2384 	 * and are making their way through the eviction process.
2385 	 */
2386 	spa_evicting_os_wait(spa);
2387 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2388 	if (error) {
2389 		if (error != EEXIST) {
2390 			spa->spa_loaded_ts.tv_sec = 0;
2391 			spa->spa_loaded_ts.tv_nsec = 0;
2392 		}
2393 		if (error != EBADF) {
2394 			(void) zfs_ereport_post(ereport, spa,
2395 			    NULL, NULL, NULL, 0, 0);
2396 		}
2397 	}
2398 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2399 	spa->spa_ena = 0;
2400 
2401 	(void) spa_import_progress_set_state(spa, spa_load_state(spa));
2402 
2403 	return (error);
2404 }
2405 
2406 /*
2407  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2408  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2409  * spa's per-vdev ZAP list.
2410  */
2411 static uint64_t
2412 vdev_count_verify_zaps(vdev_t *vd)
2413 {
2414 	spa_t *spa = vd->vdev_spa;
2415 	uint64_t total = 0;
2416 	if (vd->vdev_top_zap != 0) {
2417 		total++;
2418 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2419 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2420 	}
2421 	if (vd->vdev_leaf_zap != 0) {
2422 		total++;
2423 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2424 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2425 	}
2426 
2427 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2428 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2429 	}
2430 
2431 	return (total);
2432 }
2433 
2434 /*
2435  * Determine whether the activity check is required.
2436  */
2437 static boolean_t
2438 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2439     nvlist_t *config)
2440 {
2441 	uint64_t state = 0;
2442 	uint64_t hostid = 0;
2443 	uint64_t tryconfig_txg = 0;
2444 	uint64_t tryconfig_timestamp = 0;
2445 	uint16_t tryconfig_mmp_seq = 0;
2446 	nvlist_t *nvinfo;
2447 
2448 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2449 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2450 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2451 		    &tryconfig_txg);
2452 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2453 		    &tryconfig_timestamp);
2454 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2455 		    &tryconfig_mmp_seq);
2456 	}
2457 
2458 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2459 
2460 	/*
2461 	 * Disable the MMP activity check - This is used by zdb which
2462 	 * is intended to be used on potentially active pools.
2463 	 */
2464 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2465 		return (B_FALSE);
2466 
2467 	/*
2468 	 * Skip the activity check when the MMP feature is disabled.
2469 	 */
2470 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2471 		return (B_FALSE);
2472 
2473 	/*
2474 	 * If the tryconfig_ values are nonzero, they are the results of an
2475 	 * earlier tryimport.  If they all match the uberblock we just found,
2476 	 * then the pool has not changed and we return false so we do not test
2477 	 * a second time.
2478 	 */
2479 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2480 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2481 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
2482 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2483 		return (B_FALSE);
2484 
2485 	/*
2486 	 * Allow the activity check to be skipped when importing the pool
2487 	 * on the same host which last imported it.  Since the hostid from
2488 	 * configuration may be stale use the one read from the label.
2489 	 */
2490 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2491 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2492 
2493 	if (hostid == spa_get_hostid())
2494 		return (B_FALSE);
2495 
2496 	/*
2497 	 * Skip the activity test when the pool was cleanly exported.
2498 	 */
2499 	if (state != POOL_STATE_ACTIVE)
2500 		return (B_FALSE);
2501 
2502 	return (B_TRUE);
2503 }
2504 
2505 /*
2506  * Nanoseconds the activity check must watch for changes on-disk.
2507  */
2508 static uint64_t
2509 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2510 {
2511 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2512 	uint64_t multihost_interval = MSEC2NSEC(
2513 	    MMP_INTERVAL_OK(zfs_multihost_interval));
2514 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
2515 	    multihost_interval);
2516 
2517 	/*
2518 	 * Local tunables determine a minimum duration except for the case
2519 	 * where we know when the remote host will suspend the pool if MMP
2520 	 * writes do not land.
2521 	 *
2522 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
2523 	 * these cases and times.
2524 	 */
2525 
2526 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
2527 
2528 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2529 	    MMP_FAIL_INT(ub) > 0) {
2530 
2531 		/* MMP on remote host will suspend pool after failed writes */
2532 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
2533 		    MMP_IMPORT_SAFETY_FACTOR / 100;
2534 
2535 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
2536 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
2537 		    "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
2538 		    MMP_INTERVAL(ub), import_intervals);
2539 
2540 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2541 	    MMP_FAIL_INT(ub) == 0) {
2542 
2543 		/* MMP on remote host will never suspend pool */
2544 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
2545 		    ub->ub_mmp_delay) * import_intervals);
2546 
2547 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
2548 		    "mmp_interval=%llu ub_mmp_delay=%llu "
2549 		    "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
2550 		    ub->ub_mmp_delay, import_intervals);
2551 
2552 	} else if (MMP_VALID(ub)) {
2553 		/*
2554 		 * zfs-0.7 compatability case
2555 		 */
2556 
2557 		import_delay = MAX(import_delay, (multihost_interval +
2558 		    ub->ub_mmp_delay) * import_intervals);
2559 
2560 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
2561 		    "import_intervals=%u leaves=%u", import_delay,
2562 		    ub->ub_mmp_delay, import_intervals,
2563 		    vdev_count_leaves(spa));
2564 	} else {
2565 		/* Using local tunings is the only reasonable option */
2566 		zfs_dbgmsg("pool last imported on non-MMP aware "
2567 		    "host using import_delay=%llu multihost_interval=%llu "
2568 		    "import_intervals=%u", import_delay, multihost_interval,
2569 		    import_intervals);
2570 	}
2571 
2572 	return (import_delay);
2573 }
2574 
2575 /*
2576  * Perform the import activity check.  If the user canceled the import or
2577  * we detected activity then fail.
2578  */
2579 static int
2580 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2581 {
2582 	uint64_t txg = ub->ub_txg;
2583 	uint64_t timestamp = ub->ub_timestamp;
2584 	uint64_t mmp_config = ub->ub_mmp_config;
2585 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
2586 	uint64_t import_delay;
2587 	hrtime_t import_expire;
2588 	nvlist_t *mmp_label = NULL;
2589 	vdev_t *rvd = spa->spa_root_vdev;
2590 	kcondvar_t cv;
2591 	kmutex_t mtx;
2592 	int error = 0;
2593 
2594 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
2595 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2596 	mutex_enter(&mtx);
2597 
2598 	/*
2599 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2600 	 * during the earlier tryimport.  If the txg recorded there is 0 then
2601 	 * the pool is known to be active on another host.
2602 	 *
2603 	 * Otherwise, the pool might be in use on another host.  Check for
2604 	 * changes in the uberblocks on disk if necessary.
2605 	 */
2606 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2607 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2608 		    ZPOOL_CONFIG_LOAD_INFO);
2609 
2610 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2611 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2612 			vdev_uberblock_load(rvd, ub, &mmp_label);
2613 			error = SET_ERROR(EREMOTEIO);
2614 			goto out;
2615 		}
2616 	}
2617 
2618 	import_delay = spa_activity_check_duration(spa, ub);
2619 
2620 	/* Add a small random factor in case of simultaneous imports (0-25%) */
2621 	import_delay += import_delay * spa_get_random(250) / 1000;
2622 
2623 	import_expire = gethrtime() + import_delay;
2624 
2625 	while (gethrtime() < import_expire) {
2626 		(void) spa_import_progress_set_mmp_check(spa,
2627 		    NSEC2SEC(import_expire - gethrtime()));
2628 
2629 		vdev_uberblock_load(rvd, ub, &mmp_label);
2630 
2631 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
2632 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
2633 			zfs_dbgmsg("multihost activity detected "
2634 			    "txg %llu ub_txg  %llu "
2635 			    "timestamp %llu ub_timestamp  %llu "
2636 			    "mmp_config %#llx ub_mmp_config %#llx",
2637 			    txg, ub->ub_txg, timestamp, ub->ub_timestamp,
2638 			    mmp_config, ub->ub_mmp_config);
2639 
2640 			error = SET_ERROR(EREMOTEIO);
2641 			break;
2642 		}
2643 
2644 		if (mmp_label) {
2645 			nvlist_free(mmp_label);
2646 			mmp_label = NULL;
2647 		}
2648 
2649 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2650 		if (error != -1) {
2651 			error = SET_ERROR(EINTR);
2652 			break;
2653 		}
2654 		error = 0;
2655 	}
2656 
2657 out:
2658 	mutex_exit(&mtx);
2659 	mutex_destroy(&mtx);
2660 	cv_destroy(&cv);
2661 
2662 	/*
2663 	 * If the pool is determined to be active store the status in the
2664 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
2665 	 * available from configuration read from disk store them as well.
2666 	 * This allows 'zpool import' to generate a more useful message.
2667 	 *
2668 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
2669 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2670 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
2671 	 */
2672 	if (error == EREMOTEIO) {
2673 		char *hostname = "<unknown>";
2674 		uint64_t hostid = 0;
2675 
2676 		if (mmp_label) {
2677 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2678 				hostname = fnvlist_lookup_string(mmp_label,
2679 				    ZPOOL_CONFIG_HOSTNAME);
2680 				fnvlist_add_string(spa->spa_load_info,
2681 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2682 			}
2683 
2684 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2685 				hostid = fnvlist_lookup_uint64(mmp_label,
2686 				    ZPOOL_CONFIG_HOSTID);
2687 				fnvlist_add_uint64(spa->spa_load_info,
2688 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
2689 			}
2690 		}
2691 
2692 		fnvlist_add_uint64(spa->spa_load_info,
2693 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2694 		fnvlist_add_uint64(spa->spa_load_info,
2695 		    ZPOOL_CONFIG_MMP_TXG, 0);
2696 
2697 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2698 	}
2699 
2700 	if (mmp_label)
2701 		nvlist_free(mmp_label);
2702 
2703 	return (error);
2704 }
2705 
2706 static int
2707 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2708 {
2709 	uint64_t hostid;
2710 	char *hostname;
2711 	uint64_t myhostid = 0;
2712 
2713 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2714 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2715 		hostname = fnvlist_lookup_string(mos_config,
2716 		    ZPOOL_CONFIG_HOSTNAME);
2717 
2718 		myhostid = zone_get_hostid(NULL);
2719 
2720 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2721 			cmn_err(CE_WARN, "pool '%s' could not be "
2722 			    "loaded as it was last accessed by "
2723 			    "another system (host: %s hostid: 0x%llx). "
2724 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2725 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2726 			spa_load_failed(spa, "hostid verification failed: pool "
2727 			    "last accessed by host: %s (hostid: 0x%llx)",
2728 			    hostname, (u_longlong_t)hostid);
2729 			return (SET_ERROR(EBADF));
2730 		}
2731 	}
2732 
2733 	return (0);
2734 }
2735 
2736 static int
2737 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2738 {
2739 	int error = 0;
2740 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2741 	int parse;
2742 	vdev_t *rvd;
2743 	uint64_t pool_guid;
2744 	char *comment;
2745 
2746 	/*
2747 	 * Versioning wasn't explicitly added to the label until later, so if
2748 	 * it's not present treat it as the initial version.
2749 	 */
2750 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2751 	    &spa->spa_ubsync.ub_version) != 0)
2752 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2753 
2754 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2755 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2756 		    ZPOOL_CONFIG_POOL_GUID);
2757 		return (SET_ERROR(EINVAL));
2758 	}
2759 
2760 	/*
2761 	 * If we are doing an import, ensure that the pool is not already
2762 	 * imported by checking if its pool guid already exists in the
2763 	 * spa namespace.
2764 	 *
2765 	 * The only case that we allow an already imported pool to be
2766 	 * imported again, is when the pool is checkpointed and we want to
2767 	 * look at its checkpointed state from userland tools like zdb.
2768 	 */
2769 #ifdef _KERNEL
2770 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2771 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2772 	    spa_guid_exists(pool_guid, 0)) {
2773 #else
2774 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2775 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2776 	    spa_guid_exists(pool_guid, 0) &&
2777 	    !spa_importing_readonly_checkpoint(spa)) {
2778 #endif
2779 		spa_load_failed(spa, "a pool with guid %llu is already open",
2780 		    (u_longlong_t)pool_guid);
2781 		return (SET_ERROR(EEXIST));
2782 	}
2783 
2784 	spa->spa_config_guid = pool_guid;
2785 
2786 	nvlist_free(spa->spa_load_info);
2787 	spa->spa_load_info = fnvlist_alloc();
2788 
2789 	ASSERT(spa->spa_comment == NULL);
2790 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2791 		spa->spa_comment = spa_strdup(comment);
2792 
2793 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2794 	    &spa->spa_config_txg);
2795 
2796 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2797 		spa->spa_config_splitting = fnvlist_dup(nvl);
2798 
2799 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2800 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2801 		    ZPOOL_CONFIG_VDEV_TREE);
2802 		return (SET_ERROR(EINVAL));
2803 	}
2804 
2805 	/*
2806 	 * Create "The Godfather" zio to hold all async IOs
2807 	 */
2808 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2809 	    KM_SLEEP);
2810 	for (int i = 0; i < max_ncpus; i++) {
2811 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2812 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2813 		    ZIO_FLAG_GODFATHER);
2814 	}
2815 
2816 	/*
2817 	 * Parse the configuration into a vdev tree.  We explicitly set the
2818 	 * value that will be returned by spa_version() since parsing the
2819 	 * configuration requires knowing the version number.
2820 	 */
2821 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2822 	parse = (type == SPA_IMPORT_EXISTING ?
2823 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2824 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2825 	spa_config_exit(spa, SCL_ALL, FTAG);
2826 
2827 	if (error != 0) {
2828 		spa_load_failed(spa, "unable to parse config [error=%d]",
2829 		    error);
2830 		return (error);
2831 	}
2832 
2833 	ASSERT(spa->spa_root_vdev == rvd);
2834 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2835 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2836 
2837 	if (type != SPA_IMPORT_ASSEMBLE) {
2838 		ASSERT(spa_guid(spa) == pool_guid);
2839 	}
2840 
2841 	return (0);
2842 }
2843 
2844 /*
2845  * Recursively open all vdevs in the vdev tree. This function is called twice:
2846  * first with the untrusted config, then with the trusted config.
2847  */
2848 static int
2849 spa_ld_open_vdevs(spa_t *spa)
2850 {
2851 	int error = 0;
2852 
2853 	/*
2854 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2855 	 * missing/unopenable for the root vdev to be still considered openable.
2856 	 */
2857 	if (spa->spa_trust_config) {
2858 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2859 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2860 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2861 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2862 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2863 	} else {
2864 		spa->spa_missing_tvds_allowed = 0;
2865 	}
2866 
2867 	spa->spa_missing_tvds_allowed =
2868 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2869 
2870 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2871 	error = vdev_open(spa->spa_root_vdev);
2872 	spa_config_exit(spa, SCL_ALL, FTAG);
2873 
2874 	if (spa->spa_missing_tvds != 0) {
2875 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2876 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2877 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2878 			/*
2879 			 * Although theoretically we could allow users to open
2880 			 * incomplete pools in RW mode, we'd need to add a lot
2881 			 * of extra logic (e.g. adjust pool space to account
2882 			 * for missing vdevs).
2883 			 * This limitation also prevents users from accidentally
2884 			 * opening the pool in RW mode during data recovery and
2885 			 * damaging it further.
2886 			 */
2887 			spa_load_note(spa, "pools with missing top-level "
2888 			    "vdevs can only be opened in read-only mode.");
2889 			error = SET_ERROR(ENXIO);
2890 		} else {
2891 			spa_load_note(spa, "current settings allow for maximum "
2892 			    "%lld missing top-level vdevs at this stage.",
2893 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2894 		}
2895 	}
2896 	if (error != 0) {
2897 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2898 		    error);
2899 	}
2900 	if (spa->spa_missing_tvds != 0 || error != 0)
2901 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2902 
2903 	return (error);
2904 }
2905 
2906 /*
2907  * We need to validate the vdev labels against the configuration that
2908  * we have in hand. This function is called twice: first with an untrusted
2909  * config, then with a trusted config. The validation is more strict when the
2910  * config is trusted.
2911  */
2912 static int
2913 spa_ld_validate_vdevs(spa_t *spa)
2914 {
2915 	int error = 0;
2916 	vdev_t *rvd = spa->spa_root_vdev;
2917 
2918 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2919 	error = vdev_validate(rvd);
2920 	spa_config_exit(spa, SCL_ALL, FTAG);
2921 
2922 	if (error != 0) {
2923 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2924 		return (error);
2925 	}
2926 
2927 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2928 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2929 		    "some vdevs");
2930 		vdev_dbgmsg_print_tree(rvd, 2);
2931 		return (SET_ERROR(ENXIO));
2932 	}
2933 
2934 	return (0);
2935 }
2936 
2937 static void
2938 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2939 {
2940 	spa->spa_state = POOL_STATE_ACTIVE;
2941 	spa->spa_ubsync = spa->spa_uberblock;
2942 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2943 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2944 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2945 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2946 	spa->spa_claim_max_txg = spa->spa_first_txg;
2947 	spa->spa_prev_software_version = ub->ub_software_version;
2948 }
2949 
2950 static int
2951 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2952 {
2953 	vdev_t *rvd = spa->spa_root_vdev;
2954 	nvlist_t *label;
2955 	uberblock_t *ub = &spa->spa_uberblock;
2956 	boolean_t activity_check = B_FALSE;
2957 
2958 	/*
2959 	 * If we are opening the checkpointed state of the pool by
2960 	 * rewinding to it, at this point we will have written the
2961 	 * checkpointed uberblock to the vdev labels, so searching
2962 	 * the labels will find the right uberblock.  However, if
2963 	 * we are opening the checkpointed state read-only, we have
2964 	 * not modified the labels. Therefore, we must ignore the
2965 	 * labels and continue using the spa_uberblock that was set
2966 	 * by spa_ld_checkpoint_rewind.
2967 	 *
2968 	 * Note that it would be fine to ignore the labels when
2969 	 * rewinding (opening writeable) as well. However, if we
2970 	 * crash just after writing the labels, we will end up
2971 	 * searching the labels. Doing so in the common case means
2972 	 * that this code path gets exercised normally, rather than
2973 	 * just in the edge case.
2974 	 */
2975 	if (ub->ub_checkpoint_txg != 0 &&
2976 	    spa_importing_readonly_checkpoint(spa)) {
2977 		spa_ld_select_uberblock_done(spa, ub);
2978 		return (0);
2979 	}
2980 
2981 	/*
2982 	 * Find the best uberblock.
2983 	 */
2984 	vdev_uberblock_load(rvd, ub, &label);
2985 
2986 	/*
2987 	 * If we weren't able to find a single valid uberblock, return failure.
2988 	 */
2989 	if (ub->ub_txg == 0) {
2990 		nvlist_free(label);
2991 		spa_load_failed(spa, "no valid uberblock found");
2992 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2993 	}
2994 
2995 	if (spa->spa_load_max_txg != UINT64_MAX) {
2996 		(void) spa_import_progress_set_max_txg(spa,
2997 		    (u_longlong_t)spa->spa_load_max_txg);
2998 	}
2999 	spa_load_note(spa, "using uberblock with txg=%llu",
3000 	    (u_longlong_t)ub->ub_txg);
3001 
3002 	/*
3003 	 * For pools which have the multihost property on determine if the
3004 	 * pool is truly inactive and can be safely imported.  Prevent
3005 	 * hosts which don't have a hostid set from importing the pool.
3006 	 */
3007 	activity_check = spa_activity_check_required(spa, ub, label,
3008 	    spa->spa_config);
3009 	if (activity_check) {
3010 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3011 		    spa_get_hostid() == 0) {
3012 			nvlist_free(label);
3013 			fnvlist_add_uint64(spa->spa_load_info,
3014 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3015 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3016 		}
3017 
3018 		int error = spa_activity_check(spa, ub, spa->spa_config);
3019 		if (error) {
3020 			nvlist_free(label);
3021 			return (error);
3022 		}
3023 
3024 		fnvlist_add_uint64(spa->spa_load_info,
3025 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3026 		fnvlist_add_uint64(spa->spa_load_info,
3027 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3028 		fnvlist_add_uint16(spa->spa_load_info,
3029 		    ZPOOL_CONFIG_MMP_SEQ,
3030 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3031 	}
3032 
3033 	/*
3034 	 * If the pool has an unsupported version we can't open it.
3035 	 */
3036 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3037 		nvlist_free(label);
3038 		spa_load_failed(spa, "version %llu is not supported",
3039 		    (u_longlong_t)ub->ub_version);
3040 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3041 	}
3042 
3043 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3044 		nvlist_t *features;
3045 
3046 		/*
3047 		 * If we weren't able to find what's necessary for reading the
3048 		 * MOS in the label, return failure.
3049 		 */
3050 		if (label == NULL) {
3051 			spa_load_failed(spa, "label config unavailable");
3052 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3053 			    ENXIO));
3054 		}
3055 
3056 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3057 		    &features) != 0) {
3058 			nvlist_free(label);
3059 			spa_load_failed(spa, "invalid label: '%s' missing",
3060 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3061 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3062 			    ENXIO));
3063 		}
3064 
3065 		/*
3066 		 * Update our in-core representation with the definitive values
3067 		 * from the label.
3068 		 */
3069 		nvlist_free(spa->spa_label_features);
3070 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3071 	}
3072 
3073 	nvlist_free(label);
3074 
3075 	/*
3076 	 * Look through entries in the label nvlist's features_for_read. If
3077 	 * there is a feature listed there which we don't understand then we
3078 	 * cannot open a pool.
3079 	 */
3080 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3081 		nvlist_t *unsup_feat;
3082 
3083 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3084 		    0);
3085 
3086 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3087 		    NULL); nvp != NULL;
3088 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3089 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3090 				VERIFY(nvlist_add_string(unsup_feat,
3091 				    nvpair_name(nvp), "") == 0);
3092 			}
3093 		}
3094 
3095 		if (!nvlist_empty(unsup_feat)) {
3096 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3097 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3098 			nvlist_free(unsup_feat);
3099 			spa_load_failed(spa, "some features are unsupported");
3100 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3101 			    ENOTSUP));
3102 		}
3103 
3104 		nvlist_free(unsup_feat);
3105 	}
3106 
3107 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3108 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3109 		spa_try_repair(spa, spa->spa_config);
3110 		spa_config_exit(spa, SCL_ALL, FTAG);
3111 		nvlist_free(spa->spa_config_splitting);
3112 		spa->spa_config_splitting = NULL;
3113 	}
3114 
3115 	/*
3116 	 * Initialize internal SPA structures.
3117 	 */
3118 	spa_ld_select_uberblock_done(spa, ub);
3119 
3120 	return (0);
3121 }
3122 
3123 static int
3124 spa_ld_open_rootbp(spa_t *spa)
3125 {
3126 	int error = 0;
3127 	vdev_t *rvd = spa->spa_root_vdev;
3128 
3129 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3130 	if (error != 0) {
3131 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3132 		    "[error=%d]", error);
3133 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3134 	}
3135 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3136 
3137 	return (0);
3138 }
3139 
3140 static int
3141 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3142     boolean_t reloading)
3143 {
3144 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3145 	nvlist_t *nv, *mos_config, *policy;
3146 	int error = 0, copy_error;
3147 	uint64_t healthy_tvds, healthy_tvds_mos;
3148 	uint64_t mos_config_txg;
3149 
3150 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3151 	    != 0)
3152 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3153 
3154 	/*
3155 	 * If we're assembling a pool from a split, the config provided is
3156 	 * already trusted so there is nothing to do.
3157 	 */
3158 	if (type == SPA_IMPORT_ASSEMBLE)
3159 		return (0);
3160 
3161 	healthy_tvds = spa_healthy_core_tvds(spa);
3162 
3163 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3164 	    != 0) {
3165 		spa_load_failed(spa, "unable to retrieve MOS config");
3166 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3167 	}
3168 
3169 	/*
3170 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3171 	 * the verification here.
3172 	 */
3173 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3174 		error = spa_verify_host(spa, mos_config);
3175 		if (error != 0) {
3176 			nvlist_free(mos_config);
3177 			return (error);
3178 		}
3179 	}
3180 
3181 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3182 
3183 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3184 
3185 	/*
3186 	 * Build a new vdev tree from the trusted config
3187 	 */
3188 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3189 
3190 	/*
3191 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3192 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3193 	 * paths. We update the trusted MOS config with this information.
3194 	 * We first try to copy the paths with vdev_copy_path_strict, which
3195 	 * succeeds only when both configs have exactly the same vdev tree.
3196 	 * If that fails, we fall back to a more flexible method that has a
3197 	 * best effort policy.
3198 	 */
3199 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3200 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3201 		spa_load_note(spa, "provided vdev tree:");
3202 		vdev_dbgmsg_print_tree(rvd, 2);
3203 		spa_load_note(spa, "MOS vdev tree:");
3204 		vdev_dbgmsg_print_tree(mrvd, 2);
3205 	}
3206 	if (copy_error != 0) {
3207 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3208 		    "back to vdev_copy_path_relaxed");
3209 		vdev_copy_path_relaxed(rvd, mrvd);
3210 	}
3211 
3212 	vdev_close(rvd);
3213 	vdev_free(rvd);
3214 	spa->spa_root_vdev = mrvd;
3215 	rvd = mrvd;
3216 	spa_config_exit(spa, SCL_ALL, FTAG);
3217 
3218 	/*
3219 	 * We will use spa_config if we decide to reload the spa or if spa_load
3220 	 * fails and we rewind. We must thus regenerate the config using the
3221 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3222 	 * pass settings on how to load the pool and is not stored in the MOS.
3223 	 * We copy it over to our new, trusted config.
3224 	 */
3225 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3226 	    ZPOOL_CONFIG_POOL_TXG);
3227 	nvlist_free(mos_config);
3228 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3229 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3230 	    &policy) == 0)
3231 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3232 	spa_config_set(spa, mos_config);
3233 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3234 
3235 	/*
3236 	 * Now that we got the config from the MOS, we should be more strict
3237 	 * in checking blkptrs and can make assumptions about the consistency
3238 	 * of the vdev tree. spa_trust_config must be set to true before opening
3239 	 * vdevs in order for them to be writeable.
3240 	 */
3241 	spa->spa_trust_config = B_TRUE;
3242 
3243 	/*
3244 	 * Open and validate the new vdev tree
3245 	 */
3246 	error = spa_ld_open_vdevs(spa);
3247 	if (error != 0)
3248 		return (error);
3249 
3250 	error = spa_ld_validate_vdevs(spa);
3251 	if (error != 0)
3252 		return (error);
3253 
3254 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3255 		spa_load_note(spa, "final vdev tree:");
3256 		vdev_dbgmsg_print_tree(rvd, 2);
3257 	}
3258 
3259 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3260 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3261 		/*
3262 		 * Sanity check to make sure that we are indeed loading the
3263 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3264 		 * in the config provided and they happened to be the only ones
3265 		 * to have the latest uberblock, we could involuntarily perform
3266 		 * an extreme rewind.
3267 		 */
3268 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3269 		if (healthy_tvds_mos - healthy_tvds >=
3270 		    SPA_SYNC_MIN_VDEVS) {
3271 			spa_load_note(spa, "config provided misses too many "
3272 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3273 			    (u_longlong_t)healthy_tvds,
3274 			    (u_longlong_t)healthy_tvds_mos);
3275 			spa_load_note(spa, "vdev tree:");
3276 			vdev_dbgmsg_print_tree(rvd, 2);
3277 			if (reloading) {
3278 				spa_load_failed(spa, "config was already "
3279 				    "provided from MOS. Aborting.");
3280 				return (spa_vdev_err(rvd,
3281 				    VDEV_AUX_CORRUPT_DATA, EIO));
3282 			}
3283 			spa_load_note(spa, "spa must be reloaded using MOS "
3284 			    "config");
3285 			return (SET_ERROR(EAGAIN));
3286 		}
3287 	}
3288 
3289 	error = spa_check_for_missing_logs(spa);
3290 	if (error != 0)
3291 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3292 
3293 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3294 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3295 		    "guid sum (%llu != %llu)",
3296 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3297 		    (u_longlong_t)rvd->vdev_guid_sum);
3298 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3299 		    ENXIO));
3300 	}
3301 
3302 	return (0);
3303 }
3304 
3305 static int
3306 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3307 {
3308 	int error = 0;
3309 	vdev_t *rvd = spa->spa_root_vdev;
3310 
3311 	/*
3312 	 * Everything that we read before spa_remove_init() must be stored
3313 	 * on concreted vdevs.  Therefore we do this as early as possible.
3314 	 */
3315 	error = spa_remove_init(spa);
3316 	if (error != 0) {
3317 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3318 		    error);
3319 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3320 	}
3321 
3322 	/*
3323 	 * Retrieve information needed to condense indirect vdev mappings.
3324 	 */
3325 	error = spa_condense_init(spa);
3326 	if (error != 0) {
3327 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3328 		    error);
3329 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3330 	}
3331 
3332 	return (0);
3333 }
3334 
3335 static int
3336 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3337 {
3338 	int error = 0;
3339 	vdev_t *rvd = spa->spa_root_vdev;
3340 
3341 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3342 		boolean_t missing_feat_read = B_FALSE;
3343 		nvlist_t *unsup_feat, *enabled_feat;
3344 
3345 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3346 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3347 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3348 		}
3349 
3350 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3351 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3352 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3353 		}
3354 
3355 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3356 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3357 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3358 		}
3359 
3360 		enabled_feat = fnvlist_alloc();
3361 		unsup_feat = fnvlist_alloc();
3362 
3363 		if (!spa_features_check(spa, B_FALSE,
3364 		    unsup_feat, enabled_feat))
3365 			missing_feat_read = B_TRUE;
3366 
3367 		if (spa_writeable(spa) ||
3368 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3369 			if (!spa_features_check(spa, B_TRUE,
3370 			    unsup_feat, enabled_feat)) {
3371 				*missing_feat_writep = B_TRUE;
3372 			}
3373 		}
3374 
3375 		fnvlist_add_nvlist(spa->spa_load_info,
3376 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3377 
3378 		if (!nvlist_empty(unsup_feat)) {
3379 			fnvlist_add_nvlist(spa->spa_load_info,
3380 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3381 		}
3382 
3383 		fnvlist_free(enabled_feat);
3384 		fnvlist_free(unsup_feat);
3385 
3386 		if (!missing_feat_read) {
3387 			fnvlist_add_boolean(spa->spa_load_info,
3388 			    ZPOOL_CONFIG_CAN_RDONLY);
3389 		}
3390 
3391 		/*
3392 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3393 		 * twofold: to determine whether the pool is available for
3394 		 * import in read-write mode and (if it is not) whether the
3395 		 * pool is available for import in read-only mode. If the pool
3396 		 * is available for import in read-write mode, it is displayed
3397 		 * as available in userland; if it is not available for import
3398 		 * in read-only mode, it is displayed as unavailable in
3399 		 * userland. If the pool is available for import in read-only
3400 		 * mode but not read-write mode, it is displayed as unavailable
3401 		 * in userland with a special note that the pool is actually
3402 		 * available for open in read-only mode.
3403 		 *
3404 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3405 		 * missing a feature for write, we must first determine whether
3406 		 * the pool can be opened read-only before returning to
3407 		 * userland in order to know whether to display the
3408 		 * abovementioned note.
3409 		 */
3410 		if (missing_feat_read || (*missing_feat_writep &&
3411 		    spa_writeable(spa))) {
3412 			spa_load_failed(spa, "pool uses unsupported features");
3413 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3414 			    ENOTSUP));
3415 		}
3416 
3417 		/*
3418 		 * Load refcounts for ZFS features from disk into an in-memory
3419 		 * cache during SPA initialization.
3420 		 */
3421 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3422 			uint64_t refcount;
3423 
3424 			error = feature_get_refcount_from_disk(spa,
3425 			    &spa_feature_table[i], &refcount);
3426 			if (error == 0) {
3427 				spa->spa_feat_refcount_cache[i] = refcount;
3428 			} else if (error == ENOTSUP) {
3429 				spa->spa_feat_refcount_cache[i] =
3430 				    SPA_FEATURE_DISABLED;
3431 			} else {
3432 				spa_load_failed(spa, "error getting refcount "
3433 				    "for feature %s [error=%d]",
3434 				    spa_feature_table[i].fi_guid, error);
3435 				return (spa_vdev_err(rvd,
3436 				    VDEV_AUX_CORRUPT_DATA, EIO));
3437 			}
3438 		}
3439 	}
3440 
3441 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3442 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3443 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3444 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3445 	}
3446 
3447 	/*
3448 	 * Encryption was added before bookmark_v2, even though bookmark_v2
3449 	 * is now a dependency. If this pool has encryption enabled without
3450 	 * bookmark_v2, trigger an errata message.
3451 	 */
3452 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3453 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3454 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3455 	}
3456 
3457 	return (0);
3458 }
3459 
3460 static int
3461 spa_ld_load_special_directories(spa_t *spa)
3462 {
3463 	int error = 0;
3464 	vdev_t *rvd = spa->spa_root_vdev;
3465 
3466 	spa->spa_is_initializing = B_TRUE;
3467 	error = dsl_pool_open(spa->spa_dsl_pool);
3468 	spa->spa_is_initializing = B_FALSE;
3469 	if (error != 0) {
3470 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3471 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3472 	}
3473 
3474 	return (0);
3475 }
3476 
3477 static int
3478 spa_ld_get_props(spa_t *spa)
3479 {
3480 	int error = 0;
3481 	uint64_t obj;
3482 	vdev_t *rvd = spa->spa_root_vdev;
3483 
3484 	/* Grab the secret checksum salt from the MOS. */
3485 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3486 	    DMU_POOL_CHECKSUM_SALT, 1,
3487 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3488 	    spa->spa_cksum_salt.zcs_bytes);
3489 	if (error == ENOENT) {
3490 		/* Generate a new salt for subsequent use */
3491 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3492 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3493 	} else if (error != 0) {
3494 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3495 		    "MOS [error=%d]", error);
3496 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3497 	}
3498 
3499 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3500 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3501 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3502 	if (error != 0) {
3503 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3504 		    "[error=%d]", error);
3505 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3506 	}
3507 
3508 	/*
3509 	 * Load the bit that tells us to use the new accounting function
3510 	 * (raid-z deflation).  If we have an older pool, this will not
3511 	 * be present.
3512 	 */
3513 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3514 	if (error != 0 && error != ENOENT)
3515 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3516 
3517 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3518 	    &spa->spa_creation_version, B_FALSE);
3519 	if (error != 0 && error != ENOENT)
3520 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3521 
3522 	/*
3523 	 * Load the persistent error log.  If we have an older pool, this will
3524 	 * not be present.
3525 	 */
3526 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3527 	    B_FALSE);
3528 	if (error != 0 && error != ENOENT)
3529 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3530 
3531 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3532 	    &spa->spa_errlog_scrub, B_FALSE);
3533 	if (error != 0 && error != ENOENT)
3534 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3535 
3536 	/*
3537 	 * Load the history object.  If we have an older pool, this
3538 	 * will not be present.
3539 	 */
3540 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3541 	if (error != 0 && error != ENOENT)
3542 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3543 
3544 	/*
3545 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3546 	 * be present; in this case, defer its creation to a later time to
3547 	 * avoid dirtying the MOS this early / out of sync context. See
3548 	 * spa_sync_config_object.
3549 	 */
3550 
3551 	/* The sentinel is only available in the MOS config. */
3552 	nvlist_t *mos_config;
3553 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3554 		spa_load_failed(spa, "unable to retrieve MOS config");
3555 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3556 	}
3557 
3558 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3559 	    &spa->spa_all_vdev_zaps, B_FALSE);
3560 
3561 	if (error == ENOENT) {
3562 		VERIFY(!nvlist_exists(mos_config,
3563 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3564 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3565 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3566 	} else if (error != 0) {
3567 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3568 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3569 		/*
3570 		 * An older version of ZFS overwrote the sentinel value, so
3571 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3572 		 * destruction to later; see spa_sync_config_object.
3573 		 */
3574 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3575 		/*
3576 		 * We're assuming that no vdevs have had their ZAPs created
3577 		 * before this. Better be sure of it.
3578 		 */
3579 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3580 	}
3581 	nvlist_free(mos_config);
3582 
3583 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3584 
3585 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3586 	    B_FALSE);
3587 	if (error && error != ENOENT)
3588 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3589 
3590 	if (error == 0) {
3591 		uint64_t autoreplace;
3592 
3593 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3594 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3595 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3596 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3597 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3598 		spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize);
3599 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3600 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3601 		    &spa->spa_dedup_ditto);
3602 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
3603 		spa->spa_autoreplace = (autoreplace != 0);
3604 	}
3605 
3606 	/*
3607 	 * If we are importing a pool with missing top-level vdevs,
3608 	 * we enforce that the pool doesn't panic or get suspended on
3609 	 * error since the likelihood of missing data is extremely high.
3610 	 */
3611 	if (spa->spa_missing_tvds > 0 &&
3612 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3613 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3614 		spa_load_note(spa, "forcing failmode to 'continue' "
3615 		    "as some top level vdevs are missing");
3616 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3617 	}
3618 
3619 	return (0);
3620 }
3621 
3622 static int
3623 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3624 {
3625 	int error = 0;
3626 	vdev_t *rvd = spa->spa_root_vdev;
3627 
3628 	/*
3629 	 * If we're assembling the pool from the split-off vdevs of
3630 	 * an existing pool, we don't want to attach the spares & cache
3631 	 * devices.
3632 	 */
3633 
3634 	/*
3635 	 * Load any hot spares for this pool.
3636 	 */
3637 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3638 	    B_FALSE);
3639 	if (error != 0 && error != ENOENT)
3640 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3641 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3642 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3643 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3644 		    &spa->spa_spares.sav_config) != 0) {
3645 			spa_load_failed(spa, "error loading spares nvlist");
3646 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3647 		}
3648 
3649 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3650 		spa_load_spares(spa);
3651 		spa_config_exit(spa, SCL_ALL, FTAG);
3652 	} else if (error == 0) {
3653 		spa->spa_spares.sav_sync = B_TRUE;
3654 	}
3655 
3656 	/*
3657 	 * Load any level 2 ARC devices for this pool.
3658 	 */
3659 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3660 	    &spa->spa_l2cache.sav_object, B_FALSE);
3661 	if (error != 0 && error != ENOENT)
3662 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3663 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3664 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3665 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3666 		    &spa->spa_l2cache.sav_config) != 0) {
3667 			spa_load_failed(spa, "error loading l2cache nvlist");
3668 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3669 		}
3670 
3671 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3672 		spa_load_l2cache(spa);
3673 		spa_config_exit(spa, SCL_ALL, FTAG);
3674 	} else if (error == 0) {
3675 		spa->spa_l2cache.sav_sync = B_TRUE;
3676 	}
3677 
3678 	return (0);
3679 }
3680 
3681 static int
3682 spa_ld_load_vdev_metadata(spa_t *spa)
3683 {
3684 	int error = 0;
3685 	vdev_t *rvd = spa->spa_root_vdev;
3686 
3687 	/*
3688 	 * If the 'multihost' property is set, then never allow a pool to
3689 	 * be imported when the system hostid is zero.  The exception to
3690 	 * this rule is zdb which is always allowed to access pools.
3691 	 */
3692 	if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3693 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3694 		fnvlist_add_uint64(spa->spa_load_info,
3695 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3696 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3697 	}
3698 
3699 	/*
3700 	 * If the 'autoreplace' property is set, then post a resource notifying
3701 	 * the ZFS DE that it should not issue any faults for unopenable
3702 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3703 	 * unopenable vdevs so that the normal autoreplace handler can take
3704 	 * over.
3705 	 */
3706 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3707 		spa_check_removed(spa->spa_root_vdev);
3708 		/*
3709 		 * For the import case, this is done in spa_import(), because
3710 		 * at this point we're using the spare definitions from
3711 		 * the MOS config, not necessarily from the userland config.
3712 		 */
3713 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3714 			spa_aux_check_removed(&spa->spa_spares);
3715 			spa_aux_check_removed(&spa->spa_l2cache);
3716 		}
3717 	}
3718 
3719 	/*
3720 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3721 	 */
3722 	error = vdev_load(rvd);
3723 	if (error != 0) {
3724 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3725 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3726 	}
3727 
3728 	error = spa_ld_log_spacemaps(spa);
3729 	if (error != 0) {
3730 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
3731 		    error);
3732 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3733 	}
3734 
3735 	/*
3736 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3737 	 */
3738 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3739 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3740 	spa_config_exit(spa, SCL_ALL, FTAG);
3741 
3742 	return (0);
3743 }
3744 
3745 static int
3746 spa_ld_load_dedup_tables(spa_t *spa)
3747 {
3748 	int error = 0;
3749 	vdev_t *rvd = spa->spa_root_vdev;
3750 
3751 	error = ddt_load(spa);
3752 	if (error != 0) {
3753 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3754 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3755 	}
3756 
3757 	return (0);
3758 }
3759 
3760 static int
3761 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3762 {
3763 	vdev_t *rvd = spa->spa_root_vdev;
3764 
3765 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3766 		boolean_t missing = spa_check_logs(spa);
3767 		if (missing) {
3768 			if (spa->spa_missing_tvds != 0) {
3769 				spa_load_note(spa, "spa_check_logs failed "
3770 				    "so dropping the logs");
3771 			} else {
3772 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3773 				spa_load_failed(spa, "spa_check_logs failed");
3774 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3775 				    ENXIO));
3776 			}
3777 		}
3778 	}
3779 
3780 	return (0);
3781 }
3782 
3783 static int
3784 spa_ld_verify_pool_data(spa_t *spa)
3785 {
3786 	int error = 0;
3787 	vdev_t *rvd = spa->spa_root_vdev;
3788 
3789 	/*
3790 	 * We've successfully opened the pool, verify that we're ready
3791 	 * to start pushing transactions.
3792 	 */
3793 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3794 		error = spa_load_verify(spa);
3795 		if (error != 0) {
3796 			spa_load_failed(spa, "spa_load_verify failed "
3797 			    "[error=%d]", error);
3798 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3799 			    error));
3800 		}
3801 	}
3802 
3803 	return (0);
3804 }
3805 
3806 static void
3807 spa_ld_claim_log_blocks(spa_t *spa)
3808 {
3809 	dmu_tx_t *tx;
3810 	dsl_pool_t *dp = spa_get_dsl(spa);
3811 
3812 	/*
3813 	 * Claim log blocks that haven't been committed yet.
3814 	 * This must all happen in a single txg.
3815 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3816 	 * invoked from zil_claim_log_block()'s i/o done callback.
3817 	 * Price of rollback is that we abandon the log.
3818 	 */
3819 	spa->spa_claiming = B_TRUE;
3820 
3821 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3822 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3823 	    zil_claim, tx, DS_FIND_CHILDREN);
3824 	dmu_tx_commit(tx);
3825 
3826 	spa->spa_claiming = B_FALSE;
3827 
3828 	spa_set_log_state(spa, SPA_LOG_GOOD);
3829 }
3830 
3831 static void
3832 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3833     boolean_t update_config_cache)
3834 {
3835 	vdev_t *rvd = spa->spa_root_vdev;
3836 	int need_update = B_FALSE;
3837 
3838 	/*
3839 	 * If the config cache is stale, or we have uninitialized
3840 	 * metaslabs (see spa_vdev_add()), then update the config.
3841 	 *
3842 	 * If this is a verbatim import, trust the current
3843 	 * in-core spa_config and update the disk labels.
3844 	 */
3845 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3846 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3847 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3848 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3849 		need_update = B_TRUE;
3850 
3851 	for (int c = 0; c < rvd->vdev_children; c++)
3852 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3853 			need_update = B_TRUE;
3854 
3855 	/*
3856 	 * Update the config cache asychronously in case we're the
3857 	 * root pool, in which case the config cache isn't writable yet.
3858 	 */
3859 	if (need_update)
3860 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3861 }
3862 
3863 static void
3864 spa_ld_prepare_for_reload(spa_t *spa)
3865 {
3866 	int mode = spa->spa_mode;
3867 	int async_suspended = spa->spa_async_suspended;
3868 
3869 	spa_unload(spa);
3870 	spa_deactivate(spa);
3871 	spa_activate(spa, mode);
3872 
3873 	/*
3874 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3875 	 * spa_unload(). We want to restore it back to the original value before
3876 	 * returning as we might be calling spa_async_resume() later.
3877 	 */
3878 	spa->spa_async_suspended = async_suspended;
3879 }
3880 
3881 static int
3882 spa_ld_read_checkpoint_txg(spa_t *spa)
3883 {
3884 	uberblock_t checkpoint;
3885 	int error = 0;
3886 
3887 	ASSERT0(spa->spa_checkpoint_txg);
3888 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3889 
3890 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3891 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3892 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3893 
3894 	if (error == ENOENT)
3895 		return (0);
3896 
3897 	if (error != 0)
3898 		return (error);
3899 
3900 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3901 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3902 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3903 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3904 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3905 
3906 	return (0);
3907 }
3908 
3909 static int
3910 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3911 {
3912 	int error = 0;
3913 
3914 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3915 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3916 
3917 	/*
3918 	 * Never trust the config that is provided unless we are assembling
3919 	 * a pool following a split.
3920 	 * This means don't trust blkptrs and the vdev tree in general. This
3921 	 * also effectively puts the spa in read-only mode since
3922 	 * spa_writeable() checks for spa_trust_config to be true.
3923 	 * We will later load a trusted config from the MOS.
3924 	 */
3925 	if (type != SPA_IMPORT_ASSEMBLE)
3926 		spa->spa_trust_config = B_FALSE;
3927 
3928 	/*
3929 	 * Parse the config provided to create a vdev tree.
3930 	 */
3931 	error = spa_ld_parse_config(spa, type);
3932 	if (error != 0)
3933 		return (error);
3934 
3935 	spa_import_progress_add(spa);
3936 
3937 	/*
3938 	 * Now that we have the vdev tree, try to open each vdev. This involves
3939 	 * opening the underlying physical device, retrieving its geometry and
3940 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3941 	 * based on the success of those operations. After this we'll be ready
3942 	 * to read from the vdevs.
3943 	 */
3944 	error = spa_ld_open_vdevs(spa);
3945 	if (error != 0)
3946 		return (error);
3947 
3948 	/*
3949 	 * Read the label of each vdev and make sure that the GUIDs stored
3950 	 * there match the GUIDs in the config provided.
3951 	 * If we're assembling a new pool that's been split off from an
3952 	 * existing pool, the labels haven't yet been updated so we skip
3953 	 * validation for now.
3954 	 */
3955 	if (type != SPA_IMPORT_ASSEMBLE) {
3956 		error = spa_ld_validate_vdevs(spa);
3957 		if (error != 0)
3958 			return (error);
3959 	}
3960 
3961 	/*
3962 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3963 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3964 	 * get the list of features required to read blkptrs in the MOS from
3965 	 * the vdev label with the best uberblock and verify that our version
3966 	 * of zfs supports them all.
3967 	 */
3968 	error = spa_ld_select_uberblock(spa, type);
3969 	if (error != 0)
3970 		return (error);
3971 
3972 	/*
3973 	 * Pass that uberblock to the dsl_pool layer which will open the root
3974 	 * blkptr. This blkptr points to the latest version of the MOS and will
3975 	 * allow us to read its contents.
3976 	 */
3977 	error = spa_ld_open_rootbp(spa);
3978 	if (error != 0)
3979 		return (error);
3980 
3981 	return (0);
3982 }
3983 
3984 static int
3985 spa_ld_checkpoint_rewind(spa_t *spa)
3986 {
3987 	uberblock_t checkpoint;
3988 	int error = 0;
3989 
3990 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3991 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3992 
3993 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3994 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3995 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3996 
3997 	if (error != 0) {
3998 		spa_load_failed(spa, "unable to retrieve checkpointed "
3999 		    "uberblock from the MOS config [error=%d]", error);
4000 
4001 		if (error == ENOENT)
4002 			error = ZFS_ERR_NO_CHECKPOINT;
4003 
4004 		return (error);
4005 	}
4006 
4007 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4008 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4009 
4010 	/*
4011 	 * We need to update the txg and timestamp of the checkpointed
4012 	 * uberblock to be higher than the latest one. This ensures that
4013 	 * the checkpointed uberblock is selected if we were to close and
4014 	 * reopen the pool right after we've written it in the vdev labels.
4015 	 * (also see block comment in vdev_uberblock_compare)
4016 	 */
4017 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4018 	checkpoint.ub_timestamp = gethrestime_sec();
4019 
4020 	/*
4021 	 * Set current uberblock to be the checkpointed uberblock.
4022 	 */
4023 	spa->spa_uberblock = checkpoint;
4024 
4025 	/*
4026 	 * If we are doing a normal rewind, then the pool is open for
4027 	 * writing and we sync the "updated" checkpointed uberblock to
4028 	 * disk. Once this is done, we've basically rewound the whole
4029 	 * pool and there is no way back.
4030 	 *
4031 	 * There are cases when we don't want to attempt and sync the
4032 	 * checkpointed uberblock to disk because we are opening a
4033 	 * pool as read-only. Specifically, verifying the checkpointed
4034 	 * state with zdb, and importing the checkpointed state to get
4035 	 * a "preview" of its content.
4036 	 */
4037 	if (spa_writeable(spa)) {
4038 		vdev_t *rvd = spa->spa_root_vdev;
4039 
4040 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4041 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4042 		int svdcount = 0;
4043 		int children = rvd->vdev_children;
4044 		int c0 = spa_get_random(children);
4045 
4046 		for (int c = 0; c < children; c++) {
4047 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4048 
4049 			/* Stop when revisiting the first vdev */
4050 			if (c > 0 && svd[0] == vd)
4051 				break;
4052 
4053 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4054 			    !vdev_is_concrete(vd))
4055 				continue;
4056 
4057 			svd[svdcount++] = vd;
4058 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4059 				break;
4060 		}
4061 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4062 		if (error == 0)
4063 			spa->spa_last_synced_guid = rvd->vdev_guid;
4064 		spa_config_exit(spa, SCL_ALL, FTAG);
4065 
4066 		if (error != 0) {
4067 			spa_load_failed(spa, "failed to write checkpointed "
4068 			    "uberblock to the vdev labels [error=%d]", error);
4069 			return (error);
4070 		}
4071 	}
4072 
4073 	return (0);
4074 }
4075 
4076 static int
4077 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4078     boolean_t *update_config_cache)
4079 {
4080 	int error;
4081 
4082 	/*
4083 	 * Parse the config for pool, open and validate vdevs,
4084 	 * select an uberblock, and use that uberblock to open
4085 	 * the MOS.
4086 	 */
4087 	error = spa_ld_mos_init(spa, type);
4088 	if (error != 0)
4089 		return (error);
4090 
4091 	/*
4092 	 * Retrieve the trusted config stored in the MOS and use it to create
4093 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4094 	 */
4095 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4096 	if (error == EAGAIN) {
4097 		if (update_config_cache != NULL)
4098 			*update_config_cache = B_TRUE;
4099 
4100 		/*
4101 		 * Redo the loading process with the trusted config if it is
4102 		 * too different from the untrusted config.
4103 		 */
4104 		spa_ld_prepare_for_reload(spa);
4105 		spa_load_note(spa, "RELOADING");
4106 		error = spa_ld_mos_init(spa, type);
4107 		if (error != 0)
4108 			return (error);
4109 
4110 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4111 		if (error != 0)
4112 			return (error);
4113 
4114 	} else if (error != 0) {
4115 		return (error);
4116 	}
4117 
4118 	return (0);
4119 }
4120 
4121 /*
4122  * Load an existing storage pool, using the config provided. This config
4123  * describes which vdevs are part of the pool and is later validated against
4124  * partial configs present in each vdev's label and an entire copy of the
4125  * config stored in the MOS.
4126  */
4127 static int
4128 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4129 {
4130 	int error = 0;
4131 	boolean_t missing_feat_write = B_FALSE;
4132 	boolean_t checkpoint_rewind =
4133 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4134 	boolean_t update_config_cache = B_FALSE;
4135 
4136 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4137 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4138 
4139 	spa_load_note(spa, "LOADING");
4140 
4141 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4142 	if (error != 0)
4143 		return (error);
4144 
4145 	/*
4146 	 * If we are rewinding to the checkpoint then we need to repeat
4147 	 * everything we've done so far in this function but this time
4148 	 * selecting the checkpointed uberblock and using that to open
4149 	 * the MOS.
4150 	 */
4151 	if (checkpoint_rewind) {
4152 		/*
4153 		 * If we are rewinding to the checkpoint update config cache
4154 		 * anyway.
4155 		 */
4156 		update_config_cache = B_TRUE;
4157 
4158 		/*
4159 		 * Extract the checkpointed uberblock from the current MOS
4160 		 * and use this as the pool's uberblock from now on. If the
4161 		 * pool is imported as writeable we also write the checkpoint
4162 		 * uberblock to the labels, making the rewind permanent.
4163 		 */
4164 		error = spa_ld_checkpoint_rewind(spa);
4165 		if (error != 0)
4166 			return (error);
4167 
4168 		/*
4169 		 * Redo the loading process process again with the
4170 		 * checkpointed uberblock.
4171 		 */
4172 		spa_ld_prepare_for_reload(spa);
4173 		spa_load_note(spa, "LOADING checkpointed uberblock");
4174 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4175 		if (error != 0)
4176 			return (error);
4177 	}
4178 
4179 	/*
4180 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4181 	 */
4182 	error = spa_ld_read_checkpoint_txg(spa);
4183 	if (error != 0)
4184 		return (error);
4185 
4186 	/*
4187 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4188 	 * from the pool and their contents were re-mapped to other vdevs. Note
4189 	 * that everything that we read before this step must have been
4190 	 * rewritten on concrete vdevs after the last device removal was
4191 	 * initiated. Otherwise we could be reading from indirect vdevs before
4192 	 * we have loaded their mappings.
4193 	 */
4194 	error = spa_ld_open_indirect_vdev_metadata(spa);
4195 	if (error != 0)
4196 		return (error);
4197 
4198 	/*
4199 	 * Retrieve the full list of active features from the MOS and check if
4200 	 * they are all supported.
4201 	 */
4202 	error = spa_ld_check_features(spa, &missing_feat_write);
4203 	if (error != 0)
4204 		return (error);
4205 
4206 	/*
4207 	 * Load several special directories from the MOS needed by the dsl_pool
4208 	 * layer.
4209 	 */
4210 	error = spa_ld_load_special_directories(spa);
4211 	if (error != 0)
4212 		return (error);
4213 
4214 	/*
4215 	 * Retrieve pool properties from the MOS.
4216 	 */
4217 	error = spa_ld_get_props(spa);
4218 	if (error != 0)
4219 		return (error);
4220 
4221 	/*
4222 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4223 	 * and open them.
4224 	 */
4225 	error = spa_ld_open_aux_vdevs(spa, type);
4226 	if (error != 0)
4227 		return (error);
4228 
4229 	/*
4230 	 * Load the metadata for all vdevs. Also check if unopenable devices
4231 	 * should be autoreplaced.
4232 	 */
4233 	error = spa_ld_load_vdev_metadata(spa);
4234 	if (error != 0)
4235 		return (error);
4236 
4237 	error = spa_ld_load_dedup_tables(spa);
4238 	if (error != 0)
4239 		return (error);
4240 
4241 	/*
4242 	 * Verify the logs now to make sure we don't have any unexpected errors
4243 	 * when we claim log blocks later.
4244 	 */
4245 	error = spa_ld_verify_logs(spa, type, ereport);
4246 	if (error != 0)
4247 		return (error);
4248 
4249 	if (missing_feat_write) {
4250 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4251 
4252 		/*
4253 		 * At this point, we know that we can open the pool in
4254 		 * read-only mode but not read-write mode. We now have enough
4255 		 * information and can return to userland.
4256 		 */
4257 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4258 		    ENOTSUP));
4259 	}
4260 
4261 	/*
4262 	 * Traverse the last txgs to make sure the pool was left off in a safe
4263 	 * state. When performing an extreme rewind, we verify the whole pool,
4264 	 * which can take a very long time.
4265 	 */
4266 	error = spa_ld_verify_pool_data(spa);
4267 	if (error != 0)
4268 		return (error);
4269 
4270 	/*
4271 	 * Calculate the deflated space for the pool. This must be done before
4272 	 * we write anything to the pool because we'd need to update the space
4273 	 * accounting using the deflated sizes.
4274 	 */
4275 	spa_update_dspace(spa);
4276 
4277 	/*
4278 	 * We have now retrieved all the information we needed to open the
4279 	 * pool. If we are importing the pool in read-write mode, a few
4280 	 * additional steps must be performed to finish the import.
4281 	 */
4282 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4283 	    spa->spa_load_max_txg == UINT64_MAX)) {
4284 		uint64_t config_cache_txg = spa->spa_config_txg;
4285 
4286 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4287 
4288 		/*
4289 		 * In case of a checkpoint rewind, log the original txg
4290 		 * of the checkpointed uberblock.
4291 		 */
4292 		if (checkpoint_rewind) {
4293 			spa_history_log_internal(spa, "checkpoint rewind",
4294 			    NULL, "rewound state to txg=%llu",
4295 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4296 		}
4297 
4298 		/*
4299 		 * Traverse the ZIL and claim all blocks.
4300 		 */
4301 		spa_ld_claim_log_blocks(spa);
4302 
4303 		/*
4304 		 * Kick-off the syncing thread.
4305 		 */
4306 		spa->spa_sync_on = B_TRUE;
4307 		txg_sync_start(spa->spa_dsl_pool);
4308 		mmp_thread_start(spa);
4309 
4310 		/*
4311 		 * Wait for all claims to sync.  We sync up to the highest
4312 		 * claimed log block birth time so that claimed log blocks
4313 		 * don't appear to be from the future.  spa_claim_max_txg
4314 		 * will have been set for us by ZIL traversal operations
4315 		 * performed above.
4316 		 */
4317 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4318 
4319 		/*
4320 		 * Check if we need to request an update of the config. On the
4321 		 * next sync, we would update the config stored in vdev labels
4322 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4323 		 */
4324 		spa_ld_check_for_config_update(spa, config_cache_txg,
4325 		    update_config_cache);
4326 
4327 		/*
4328 		 * Check all DTLs to see if anything needs resilvering.
4329 		 */
4330 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4331 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4332 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4333 
4334 		/*
4335 		 * Log the fact that we booted up (so that we can detect if
4336 		 * we rebooted in the middle of an operation).
4337 		 */
4338 		spa_history_log_version(spa, "open");
4339 
4340 		spa_restart_removal(spa);
4341 		spa_spawn_aux_threads(spa);
4342 
4343 		/*
4344 		 * Delete any inconsistent datasets.
4345 		 *
4346 		 * Note:
4347 		 * Since we may be issuing deletes for clones here,
4348 		 * we make sure to do so after we've spawned all the
4349 		 * auxiliary threads above (from which the livelist
4350 		 * deletion zthr is part of).
4351 		 */
4352 		(void) dmu_objset_find(spa_name(spa),
4353 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4354 
4355 		/*
4356 		 * Clean up any stale temporary dataset userrefs.
4357 		 */
4358 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4359 
4360 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4361 		vdev_initialize_restart(spa->spa_root_vdev);
4362 		vdev_trim_restart(spa->spa_root_vdev);
4363 		vdev_autotrim_restart(spa);
4364 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4365 	}
4366 
4367 	spa_import_progress_remove(spa);
4368 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4369 
4370 	spa_load_note(spa, "LOADED");
4371 
4372 	return (0);
4373 }
4374 
4375 static int
4376 spa_load_retry(spa_t *spa, spa_load_state_t state)
4377 {
4378 	int mode = spa->spa_mode;
4379 
4380 	spa_unload(spa);
4381 	spa_deactivate(spa);
4382 
4383 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4384 
4385 	spa_activate(spa, mode);
4386 	spa_async_suspend(spa);
4387 
4388 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4389 	    (u_longlong_t)spa->spa_load_max_txg);
4390 
4391 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4392 }
4393 
4394 /*
4395  * If spa_load() fails this function will try loading prior txg's. If
4396  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4397  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4398  * function will not rewind the pool and will return the same error as
4399  * spa_load().
4400  */
4401 static int
4402 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4403     int rewind_flags)
4404 {
4405 	nvlist_t *loadinfo = NULL;
4406 	nvlist_t *config = NULL;
4407 	int load_error, rewind_error;
4408 	uint64_t safe_rewind_txg;
4409 	uint64_t min_txg;
4410 
4411 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4412 		spa->spa_load_max_txg = spa->spa_load_txg;
4413 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4414 	} else {
4415 		spa->spa_load_max_txg = max_request;
4416 		if (max_request != UINT64_MAX)
4417 			spa->spa_extreme_rewind = B_TRUE;
4418 	}
4419 
4420 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4421 	if (load_error == 0)
4422 		return (0);
4423 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4424 		/*
4425 		 * When attempting checkpoint-rewind on a pool with no
4426 		 * checkpoint, we should not attempt to load uberblocks
4427 		 * from previous txgs when spa_load fails.
4428 		 */
4429 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4430 		spa_import_progress_remove(spa);
4431 		return (load_error);
4432 	}
4433 
4434 	if (spa->spa_root_vdev != NULL)
4435 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4436 
4437 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4438 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4439 
4440 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4441 		nvlist_free(config);
4442 		spa_import_progress_remove(spa);
4443 		return (load_error);
4444 	}
4445 
4446 	if (state == SPA_LOAD_RECOVER) {
4447 		/* Price of rolling back is discarding txgs, including log */
4448 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4449 	} else {
4450 		/*
4451 		 * If we aren't rolling back save the load info from our first
4452 		 * import attempt so that we can restore it after attempting
4453 		 * to rewind.
4454 		 */
4455 		loadinfo = spa->spa_load_info;
4456 		spa->spa_load_info = fnvlist_alloc();
4457 	}
4458 
4459 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4460 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4461 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4462 	    TXG_INITIAL : safe_rewind_txg;
4463 
4464 	/*
4465 	 * Continue as long as we're finding errors, we're still within
4466 	 * the acceptable rewind range, and we're still finding uberblocks
4467 	 */
4468 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4469 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4470 		if (spa->spa_load_max_txg < safe_rewind_txg)
4471 			spa->spa_extreme_rewind = B_TRUE;
4472 		rewind_error = spa_load_retry(spa, state);
4473 	}
4474 
4475 	spa->spa_extreme_rewind = B_FALSE;
4476 	spa->spa_load_max_txg = UINT64_MAX;
4477 
4478 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4479 		spa_config_set(spa, config);
4480 	else
4481 		nvlist_free(config);
4482 
4483 	if (state == SPA_LOAD_RECOVER) {
4484 		ASSERT3P(loadinfo, ==, NULL);
4485 		spa_import_progress_remove(spa);
4486 		return (rewind_error);
4487 	} else {
4488 		/* Store the rewind info as part of the initial load info */
4489 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4490 		    spa->spa_load_info);
4491 
4492 		/* Restore the initial load info */
4493 		fnvlist_free(spa->spa_load_info);
4494 		spa->spa_load_info = loadinfo;
4495 
4496 		spa_import_progress_remove(spa);
4497 		return (load_error);
4498 	}
4499 }
4500 
4501 /*
4502  * Pool Open/Import
4503  *
4504  * The import case is identical to an open except that the configuration is sent
4505  * down from userland, instead of grabbed from the configuration cache.  For the
4506  * case of an open, the pool configuration will exist in the
4507  * POOL_STATE_UNINITIALIZED state.
4508  *
4509  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4510  * the same time open the pool, without having to keep around the spa_t in some
4511  * ambiguous state.
4512  */
4513 static int
4514 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4515     nvlist_t **config)
4516 {
4517 	spa_t *spa;
4518 	spa_load_state_t state = SPA_LOAD_OPEN;
4519 	int error;
4520 	int locked = B_FALSE;
4521 
4522 	*spapp = NULL;
4523 
4524 	/*
4525 	 * As disgusting as this is, we need to support recursive calls to this
4526 	 * function because dsl_dir_open() is called during spa_load(), and ends
4527 	 * up calling spa_open() again.  The real fix is to figure out how to
4528 	 * avoid dsl_dir_open() calling this in the first place.
4529 	 */
4530 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4531 		mutex_enter(&spa_namespace_lock);
4532 		locked = B_TRUE;
4533 	}
4534 
4535 	if ((spa = spa_lookup(pool)) == NULL) {
4536 		if (locked)
4537 			mutex_exit(&spa_namespace_lock);
4538 		return (SET_ERROR(ENOENT));
4539 	}
4540 
4541 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4542 		zpool_load_policy_t policy;
4543 
4544 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4545 		    &policy);
4546 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4547 			state = SPA_LOAD_RECOVER;
4548 
4549 		spa_activate(spa, spa_mode_global);
4550 
4551 		if (state != SPA_LOAD_RECOVER)
4552 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4553 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4554 
4555 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4556 		error = spa_load_best(spa, state, policy.zlp_txg,
4557 		    policy.zlp_rewind);
4558 
4559 		if (error == EBADF) {
4560 			/*
4561 			 * If vdev_validate() returns failure (indicated by
4562 			 * EBADF), it indicates that one of the vdevs indicates
4563 			 * that the pool has been exported or destroyed.  If
4564 			 * this is the case, the config cache is out of sync and
4565 			 * we should remove the pool from the namespace.
4566 			 */
4567 			spa_unload(spa);
4568 			spa_deactivate(spa);
4569 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4570 			spa_remove(spa);
4571 			if (locked)
4572 				mutex_exit(&spa_namespace_lock);
4573 			return (SET_ERROR(ENOENT));
4574 		}
4575 
4576 		if (error) {
4577 			/*
4578 			 * We can't open the pool, but we still have useful
4579 			 * information: the state of each vdev after the
4580 			 * attempted vdev_open().  Return this to the user.
4581 			 */
4582 			if (config != NULL && spa->spa_config) {
4583 				VERIFY(nvlist_dup(spa->spa_config, config,
4584 				    KM_SLEEP) == 0);
4585 				VERIFY(nvlist_add_nvlist(*config,
4586 				    ZPOOL_CONFIG_LOAD_INFO,
4587 				    spa->spa_load_info) == 0);
4588 			}
4589 			spa_unload(spa);
4590 			spa_deactivate(spa);
4591 			spa->spa_last_open_failed = error;
4592 			if (locked)
4593 				mutex_exit(&spa_namespace_lock);
4594 			*spapp = NULL;
4595 			return (error);
4596 		}
4597 	}
4598 
4599 	spa_open_ref(spa, tag);
4600 
4601 	if (config != NULL)
4602 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4603 
4604 	/*
4605 	 * If we've recovered the pool, pass back any information we
4606 	 * gathered while doing the load.
4607 	 */
4608 	if (state == SPA_LOAD_RECOVER) {
4609 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4610 		    spa->spa_load_info) == 0);
4611 	}
4612 
4613 	if (locked) {
4614 		spa->spa_last_open_failed = 0;
4615 		spa->spa_last_ubsync_txg = 0;
4616 		spa->spa_load_txg = 0;
4617 		mutex_exit(&spa_namespace_lock);
4618 	}
4619 
4620 	*spapp = spa;
4621 
4622 	return (0);
4623 }
4624 
4625 int
4626 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4627     nvlist_t **config)
4628 {
4629 	return (spa_open_common(name, spapp, tag, policy, config));
4630 }
4631 
4632 int
4633 spa_open(const char *name, spa_t **spapp, void *tag)
4634 {
4635 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4636 }
4637 
4638 /*
4639  * Lookup the given spa_t, incrementing the inject count in the process,
4640  * preventing it from being exported or destroyed.
4641  */
4642 spa_t *
4643 spa_inject_addref(char *name)
4644 {
4645 	spa_t *spa;
4646 
4647 	mutex_enter(&spa_namespace_lock);
4648 	if ((spa = spa_lookup(name)) == NULL) {
4649 		mutex_exit(&spa_namespace_lock);
4650 		return (NULL);
4651 	}
4652 	spa->spa_inject_ref++;
4653 	mutex_exit(&spa_namespace_lock);
4654 
4655 	return (spa);
4656 }
4657 
4658 void
4659 spa_inject_delref(spa_t *spa)
4660 {
4661 	mutex_enter(&spa_namespace_lock);
4662 	spa->spa_inject_ref--;
4663 	mutex_exit(&spa_namespace_lock);
4664 }
4665 
4666 /*
4667  * Add spares device information to the nvlist.
4668  */
4669 static void
4670 spa_add_spares(spa_t *spa, nvlist_t *config)
4671 {
4672 	nvlist_t **spares;
4673 	uint_t i, nspares;
4674 	nvlist_t *nvroot;
4675 	uint64_t guid;
4676 	vdev_stat_t *vs;
4677 	uint_t vsc;
4678 	uint64_t pool;
4679 
4680 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4681 
4682 	if (spa->spa_spares.sav_count == 0)
4683 		return;
4684 
4685 	VERIFY(nvlist_lookup_nvlist(config,
4686 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4687 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4688 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4689 	if (nspares != 0) {
4690 		VERIFY(nvlist_add_nvlist_array(nvroot,
4691 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4692 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4693 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4694 
4695 		/*
4696 		 * Go through and find any spares which have since been
4697 		 * repurposed as an active spare.  If this is the case, update
4698 		 * their status appropriately.
4699 		 */
4700 		for (i = 0; i < nspares; i++) {
4701 			VERIFY(nvlist_lookup_uint64(spares[i],
4702 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4703 			if (spa_spare_exists(guid, &pool, NULL) &&
4704 			    pool != 0ULL) {
4705 				VERIFY(nvlist_lookup_uint64_array(
4706 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4707 				    (uint64_t **)&vs, &vsc) == 0);
4708 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4709 				vs->vs_aux = VDEV_AUX_SPARED;
4710 			}
4711 		}
4712 	}
4713 }
4714 
4715 /*
4716  * Add l2cache device information to the nvlist, including vdev stats.
4717  */
4718 static void
4719 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4720 {
4721 	nvlist_t **l2cache;
4722 	uint_t i, j, nl2cache;
4723 	nvlist_t *nvroot;
4724 	uint64_t guid;
4725 	vdev_t *vd;
4726 	vdev_stat_t *vs;
4727 	uint_t vsc;
4728 
4729 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4730 
4731 	if (spa->spa_l2cache.sav_count == 0)
4732 		return;
4733 
4734 	VERIFY(nvlist_lookup_nvlist(config,
4735 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4736 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4737 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4738 	if (nl2cache != 0) {
4739 		VERIFY(nvlist_add_nvlist_array(nvroot,
4740 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4741 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4742 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4743 
4744 		/*
4745 		 * Update level 2 cache device stats.
4746 		 */
4747 
4748 		for (i = 0; i < nl2cache; i++) {
4749 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4750 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4751 
4752 			vd = NULL;
4753 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4754 				if (guid ==
4755 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4756 					vd = spa->spa_l2cache.sav_vdevs[j];
4757 					break;
4758 				}
4759 			}
4760 			ASSERT(vd != NULL);
4761 
4762 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4763 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4764 			    == 0);
4765 			vdev_get_stats(vd, vs);
4766 			vdev_config_generate_stats(vd, l2cache[i]);
4767 
4768 		}
4769 	}
4770 }
4771 
4772 static void
4773 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4774 {
4775 	nvlist_t *features;
4776 	zap_cursor_t zc;
4777 	zap_attribute_t za;
4778 
4779 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4780 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4781 
4782 	if (spa->spa_feat_for_read_obj != 0) {
4783 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4784 		    spa->spa_feat_for_read_obj);
4785 		    zap_cursor_retrieve(&zc, &za) == 0;
4786 		    zap_cursor_advance(&zc)) {
4787 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4788 			    za.za_num_integers == 1);
4789 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4790 			    za.za_first_integer));
4791 		}
4792 		zap_cursor_fini(&zc);
4793 	}
4794 
4795 	if (spa->spa_feat_for_write_obj != 0) {
4796 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4797 		    spa->spa_feat_for_write_obj);
4798 		    zap_cursor_retrieve(&zc, &za) == 0;
4799 		    zap_cursor_advance(&zc)) {
4800 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4801 			    za.za_num_integers == 1);
4802 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4803 			    za.za_first_integer));
4804 		}
4805 		zap_cursor_fini(&zc);
4806 	}
4807 
4808 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4809 	    features) == 0);
4810 	nvlist_free(features);
4811 }
4812 
4813 int
4814 spa_get_stats(const char *name, nvlist_t **config,
4815     char *altroot, size_t buflen)
4816 {
4817 	int error;
4818 	spa_t *spa;
4819 
4820 	*config = NULL;
4821 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4822 
4823 	if (spa != NULL) {
4824 		/*
4825 		 * This still leaves a window of inconsistency where the spares
4826 		 * or l2cache devices could change and the config would be
4827 		 * self-inconsistent.
4828 		 */
4829 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4830 
4831 		if (*config != NULL) {
4832 			uint64_t loadtimes[2];
4833 
4834 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4835 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4836 			VERIFY(nvlist_add_uint64_array(*config,
4837 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4838 
4839 			VERIFY(nvlist_add_uint64(*config,
4840 			    ZPOOL_CONFIG_ERRCOUNT,
4841 			    spa_get_errlog_size(spa)) == 0);
4842 
4843 			if (spa_suspended(spa)) {
4844 				VERIFY(nvlist_add_uint64(*config,
4845 				    ZPOOL_CONFIG_SUSPENDED,
4846 				    spa->spa_failmode) == 0);
4847 				VERIFY(nvlist_add_uint64(*config,
4848 				    ZPOOL_CONFIG_SUSPENDED_REASON,
4849 				    spa->spa_suspended) == 0);
4850 			}
4851 
4852 			spa_add_spares(spa, *config);
4853 			spa_add_l2cache(spa, *config);
4854 			spa_add_feature_stats(spa, *config);
4855 		}
4856 	}
4857 
4858 	/*
4859 	 * We want to get the alternate root even for faulted pools, so we cheat
4860 	 * and call spa_lookup() directly.
4861 	 */
4862 	if (altroot) {
4863 		if (spa == NULL) {
4864 			mutex_enter(&spa_namespace_lock);
4865 			spa = spa_lookup(name);
4866 			if (spa)
4867 				spa_altroot(spa, altroot, buflen);
4868 			else
4869 				altroot[0] = '\0';
4870 			spa = NULL;
4871 			mutex_exit(&spa_namespace_lock);
4872 		} else {
4873 			spa_altroot(spa, altroot, buflen);
4874 		}
4875 	}
4876 
4877 	if (spa != NULL) {
4878 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4879 		spa_close(spa, FTAG);
4880 	}
4881 
4882 	return (error);
4883 }
4884 
4885 /*
4886  * Validate that the auxiliary device array is well formed.  We must have an
4887  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4888  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4889  * specified, as long as they are well-formed.
4890  */
4891 static int
4892 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4893     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4894     vdev_labeltype_t label)
4895 {
4896 	nvlist_t **dev;
4897 	uint_t i, ndev;
4898 	vdev_t *vd;
4899 	int error;
4900 
4901 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4902 
4903 	/*
4904 	 * It's acceptable to have no devs specified.
4905 	 */
4906 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4907 		return (0);
4908 
4909 	if (ndev == 0)
4910 		return (SET_ERROR(EINVAL));
4911 
4912 	/*
4913 	 * Make sure the pool is formatted with a version that supports this
4914 	 * device type.
4915 	 */
4916 	if (spa_version(spa) < version)
4917 		return (SET_ERROR(ENOTSUP));
4918 
4919 	/*
4920 	 * Set the pending device list so we correctly handle device in-use
4921 	 * checking.
4922 	 */
4923 	sav->sav_pending = dev;
4924 	sav->sav_npending = ndev;
4925 
4926 	for (i = 0; i < ndev; i++) {
4927 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4928 		    mode)) != 0)
4929 			goto out;
4930 
4931 		if (!vd->vdev_ops->vdev_op_leaf) {
4932 			vdev_free(vd);
4933 			error = SET_ERROR(EINVAL);
4934 			goto out;
4935 		}
4936 
4937 		vd->vdev_top = vd;
4938 
4939 		if ((error = vdev_open(vd)) == 0 &&
4940 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4941 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4942 			    vd->vdev_guid) == 0);
4943 		}
4944 
4945 		vdev_free(vd);
4946 
4947 		if (error &&
4948 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4949 			goto out;
4950 		else
4951 			error = 0;
4952 	}
4953 
4954 out:
4955 	sav->sav_pending = NULL;
4956 	sav->sav_npending = 0;
4957 	return (error);
4958 }
4959 
4960 static int
4961 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4962 {
4963 	int error;
4964 
4965 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4966 
4967 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4968 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4969 	    VDEV_LABEL_SPARE)) != 0) {
4970 		return (error);
4971 	}
4972 
4973 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4974 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4975 	    VDEV_LABEL_L2CACHE));
4976 }
4977 
4978 static void
4979 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4980     const char *config)
4981 {
4982 	int i;
4983 
4984 	if (sav->sav_config != NULL) {
4985 		nvlist_t **olddevs;
4986 		uint_t oldndevs;
4987 		nvlist_t **newdevs;
4988 
4989 		/*
4990 		 * Generate new dev list by concatentating with the
4991 		 * current dev list.
4992 		 */
4993 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4994 		    &olddevs, &oldndevs) == 0);
4995 
4996 		newdevs = kmem_alloc(sizeof (void *) *
4997 		    (ndevs + oldndevs), KM_SLEEP);
4998 		for (i = 0; i < oldndevs; i++)
4999 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5000 			    KM_SLEEP) == 0);
5001 		for (i = 0; i < ndevs; i++)
5002 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5003 			    KM_SLEEP) == 0);
5004 
5005 		VERIFY(nvlist_remove(sav->sav_config, config,
5006 		    DATA_TYPE_NVLIST_ARRAY) == 0);
5007 
5008 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5009 		    config, newdevs, ndevs + oldndevs) == 0);
5010 		for (i = 0; i < oldndevs + ndevs; i++)
5011 			nvlist_free(newdevs[i]);
5012 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5013 	} else {
5014 		/*
5015 		 * Generate a new dev list.
5016 		 */
5017 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5018 		    KM_SLEEP) == 0);
5019 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5020 		    devs, ndevs) == 0);
5021 	}
5022 }
5023 
5024 /*
5025  * Stop and drop level 2 ARC devices
5026  */
5027 void
5028 spa_l2cache_drop(spa_t *spa)
5029 {
5030 	vdev_t *vd;
5031 	int i;
5032 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5033 
5034 	for (i = 0; i < sav->sav_count; i++) {
5035 		uint64_t pool;
5036 
5037 		vd = sav->sav_vdevs[i];
5038 		ASSERT(vd != NULL);
5039 
5040 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5041 		    pool != 0ULL && l2arc_vdev_present(vd))
5042 			l2arc_remove_vdev(vd);
5043 	}
5044 }
5045 
5046 /*
5047  * Verify encryption parameters for spa creation. If we are encrypting, we must
5048  * have the encryption feature flag enabled.
5049  */
5050 static int
5051 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5052     boolean_t has_encryption)
5053 {
5054 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5055 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5056 	    !has_encryption)
5057 		return (SET_ERROR(ENOTSUP));
5058 
5059 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5060 }
5061 
5062 /*
5063  * Pool Creation
5064  */
5065 int
5066 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5067     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5068 {
5069 	spa_t *spa;
5070 	char *altroot = NULL;
5071 	vdev_t *rvd;
5072 	dsl_pool_t *dp;
5073 	dmu_tx_t *tx;
5074 	int error = 0;
5075 	uint64_t txg = TXG_INITIAL;
5076 	nvlist_t **spares, **l2cache;
5077 	uint_t nspares, nl2cache;
5078 	uint64_t version, obj;
5079 	boolean_t has_features;
5080 	char *poolname;
5081 	nvlist_t *nvl;
5082 	boolean_t has_encryption;
5083 	spa_feature_t feat;
5084 	char *feat_name;
5085 
5086 	if (props == NULL ||
5087 	    nvlist_lookup_string(props,
5088 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
5089 		poolname = (char *)pool;
5090 
5091 	/*
5092 	 * If this pool already exists, return failure.
5093 	 */
5094 	mutex_enter(&spa_namespace_lock);
5095 	if (spa_lookup(poolname) != NULL) {
5096 		mutex_exit(&spa_namespace_lock);
5097 		return (SET_ERROR(EEXIST));
5098 	}
5099 
5100 	/*
5101 	 * Allocate a new spa_t structure.
5102 	 */
5103 	nvl = fnvlist_alloc();
5104 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5105 	(void) nvlist_lookup_string(props,
5106 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5107 	spa = spa_add(poolname, nvl, altroot);
5108 	fnvlist_free(nvl);
5109 	spa_activate(spa, spa_mode_global);
5110 
5111 	if (props && (error = spa_prop_validate(spa, props))) {
5112 		spa_deactivate(spa);
5113 		spa_remove(spa);
5114 		mutex_exit(&spa_namespace_lock);
5115 		return (error);
5116 	}
5117 
5118 	/*
5119 	 * Temporary pool names should never be written to disk.
5120 	 */
5121 	if (poolname != pool)
5122 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5123 
5124 	has_features = B_FALSE;
5125 	has_encryption = B_FALSE;
5126 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5127 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5128 		if (zpool_prop_feature(nvpair_name(elem))) {
5129 			has_features = B_TRUE;
5130 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5131 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5132 			if (feat == SPA_FEATURE_ENCRYPTION)
5133 				has_encryption = B_TRUE;
5134 		}
5135 	}
5136 
5137 	/* verify encryption params, if they were provided */
5138 	if (dcp != NULL) {
5139 		error = spa_create_check_encryption_params(dcp, has_encryption);
5140 		if (error != 0) {
5141 			spa_deactivate(spa);
5142 			spa_remove(spa);
5143 			mutex_exit(&spa_namespace_lock);
5144 			return (error);
5145 		}
5146 	}
5147 
5148 	if (has_features || nvlist_lookup_uint64(props,
5149 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5150 		version = SPA_VERSION;
5151 	}
5152 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5153 
5154 	spa->spa_first_txg = txg;
5155 	spa->spa_uberblock.ub_txg = txg - 1;
5156 	spa->spa_uberblock.ub_version = version;
5157 	spa->spa_ubsync = spa->spa_uberblock;
5158 	spa->spa_load_state = SPA_LOAD_CREATE;
5159 	spa->spa_removing_phys.sr_state = DSS_NONE;
5160 	spa->spa_removing_phys.sr_removing_vdev = -1;
5161 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5162 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5163 
5164 	/*
5165 	 * Create "The Godfather" zio to hold all async IOs
5166 	 */
5167 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5168 	    KM_SLEEP);
5169 	for (int i = 0; i < max_ncpus; i++) {
5170 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5171 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5172 		    ZIO_FLAG_GODFATHER);
5173 	}
5174 
5175 	/*
5176 	 * Create the root vdev.
5177 	 */
5178 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5179 
5180 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5181 
5182 	ASSERT(error != 0 || rvd != NULL);
5183 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5184 
5185 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5186 		error = SET_ERROR(EINVAL);
5187 
5188 	if (error == 0 &&
5189 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5190 	    (error = spa_validate_aux(spa, nvroot, txg,
5191 	    VDEV_ALLOC_ADD)) == 0) {
5192 		/*
5193 		 * instantiate the metaslab groups (this will dirty the vdevs)
5194 		 * we can no longer error exit past this point
5195 		 */
5196 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5197 			vdev_t *vd = rvd->vdev_child[c];
5198 
5199 			vdev_metaslab_set_size(vd);
5200 			vdev_expand(vd, txg);
5201 		}
5202 	}
5203 
5204 	spa_config_exit(spa, SCL_ALL, FTAG);
5205 
5206 	if (error != 0) {
5207 		spa_unload(spa);
5208 		spa_deactivate(spa);
5209 		spa_remove(spa);
5210 		mutex_exit(&spa_namespace_lock);
5211 		return (error);
5212 	}
5213 
5214 	/*
5215 	 * Get the list of spares, if specified.
5216 	 */
5217 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5218 	    &spares, &nspares) == 0) {
5219 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5220 		    KM_SLEEP) == 0);
5221 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5222 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5223 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5224 		spa_load_spares(spa);
5225 		spa_config_exit(spa, SCL_ALL, FTAG);
5226 		spa->spa_spares.sav_sync = B_TRUE;
5227 	}
5228 
5229 	/*
5230 	 * Get the list of level 2 cache devices, if specified.
5231 	 */
5232 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5233 	    &l2cache, &nl2cache) == 0) {
5234 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5235 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5236 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5237 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5238 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5239 		spa_load_l2cache(spa);
5240 		spa_config_exit(spa, SCL_ALL, FTAG);
5241 		spa->spa_l2cache.sav_sync = B_TRUE;
5242 	}
5243 
5244 	spa->spa_is_initializing = B_TRUE;
5245 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5246 	spa->spa_is_initializing = B_FALSE;
5247 
5248 	/*
5249 	 * Create DDTs (dedup tables).
5250 	 */
5251 	ddt_create(spa);
5252 
5253 	spa_update_dspace(spa);
5254 
5255 	tx = dmu_tx_create_assigned(dp, txg);
5256 
5257 	/*
5258 	 * Create the pool config object.
5259 	 */
5260 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5261 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5262 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5263 
5264 	if (zap_add(spa->spa_meta_objset,
5265 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5266 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5267 		cmn_err(CE_PANIC, "failed to add pool config");
5268 	}
5269 
5270 	if (zap_add(spa->spa_meta_objset,
5271 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5272 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5273 		cmn_err(CE_PANIC, "failed to add pool version");
5274 	}
5275 
5276 	/* Newly created pools with the right version are always deflated. */
5277 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5278 		spa->spa_deflate = TRUE;
5279 		if (zap_add(spa->spa_meta_objset,
5280 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5281 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5282 			cmn_err(CE_PANIC, "failed to add deflate");
5283 		}
5284 	}
5285 
5286 	/*
5287 	 * Create the deferred-free bpobj.  Turn off compression
5288 	 * because sync-to-convergence takes longer if the blocksize
5289 	 * keeps changing.
5290 	 */
5291 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5292 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5293 	    ZIO_COMPRESS_OFF, tx);
5294 	if (zap_add(spa->spa_meta_objset,
5295 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5296 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5297 		cmn_err(CE_PANIC, "failed to add bpobj");
5298 	}
5299 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5300 	    spa->spa_meta_objset, obj));
5301 
5302 	/*
5303 	 * Create the pool's history object.
5304 	 */
5305 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
5306 		spa_history_create_obj(spa, tx);
5307 
5308 	/*
5309 	 * Generate some random noise for salted checksums to operate on.
5310 	 */
5311 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5312 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5313 
5314 	/*
5315 	 * Set pool properties.
5316 	 */
5317 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5318 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5319 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5320 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5321 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5322 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5323 
5324 	if (props != NULL) {
5325 		spa_configfile_set(spa, props, B_FALSE);
5326 		spa_sync_props(props, tx);
5327 	}
5328 
5329 	dmu_tx_commit(tx);
5330 
5331 	spa->spa_sync_on = B_TRUE;
5332 	txg_sync_start(spa->spa_dsl_pool);
5333 	mmp_thread_start(spa);
5334 
5335 	/*
5336 	 * We explicitly wait for the first transaction to complete so that our
5337 	 * bean counters are appropriately updated.
5338 	 */
5339 	txg_wait_synced(spa->spa_dsl_pool, txg);
5340 
5341 	spa_spawn_aux_threads(spa);
5342 
5343 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5344 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5345 
5346 	spa_history_log_version(spa, "create");
5347 
5348 	/*
5349 	 * Don't count references from objsets that are already closed
5350 	 * and are making their way through the eviction process.
5351 	 */
5352 	spa_evicting_os_wait(spa);
5353 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5354 	spa->spa_load_state = SPA_LOAD_NONE;
5355 
5356 	mutex_exit(&spa_namespace_lock);
5357 
5358 	return (0);
5359 }
5360 
5361 #ifdef _KERNEL
5362 /*
5363  * Get the root pool information from the root disk, then import the root pool
5364  * during the system boot up time.
5365  */
5366 static nvlist_t *
5367 spa_generate_rootconf(const char *devpath, const char *devid, uint64_t *guid,
5368     uint64_t pool_guid)
5369 {
5370 	nvlist_t *config;
5371 	nvlist_t *nvtop, *nvroot;
5372 	uint64_t pgid;
5373 
5374 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5375 		return (NULL);
5376 
5377 	/*
5378 	 * Add this top-level vdev to the child array.
5379 	 */
5380 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5381 	    &nvtop) == 0);
5382 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5383 	    &pgid) == 0);
5384 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5385 
5386 	if (pool_guid != 0 && pool_guid != pgid) {
5387 		/*
5388 		 * The boot loader provided a pool GUID, but it does not match
5389 		 * the one we found in the label.  Return failure so that we
5390 		 * can fall back to the full device scan.
5391 		 */
5392 		zfs_dbgmsg("spa_generate_rootconf: loader pool guid %llu != "
5393 		    "label pool guid %llu", (u_longlong_t)pool_guid,
5394 		    (u_longlong_t)pgid);
5395 		nvlist_free(config);
5396 		return (NULL);
5397 	}
5398 
5399 	/*
5400 	 * Put this pool's top-level vdevs into a root vdev.
5401 	 */
5402 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5403 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5404 	    VDEV_TYPE_ROOT) == 0);
5405 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5406 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5407 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5408 	    &nvtop, 1) == 0);
5409 
5410 	/*
5411 	 * Replace the existing vdev_tree with the new root vdev in
5412 	 * this pool's configuration (remove the old, add the new).
5413 	 */
5414 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5415 	nvlist_free(nvroot);
5416 	return (config);
5417 }
5418 
5419 /*
5420  * Walk the vdev tree and see if we can find a device with "better"
5421  * configuration. A configuration is "better" if the label on that
5422  * device has a more recent txg.
5423  */
5424 static void
5425 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5426 {
5427 	for (int c = 0; c < vd->vdev_children; c++)
5428 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5429 
5430 	if (vd->vdev_ops->vdev_op_leaf) {
5431 		nvlist_t *label;
5432 		uint64_t label_txg;
5433 
5434 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5435 		    &label) != 0)
5436 			return;
5437 
5438 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5439 		    &label_txg) == 0);
5440 
5441 		/*
5442 		 * Do we have a better boot device?
5443 		 */
5444 		if (label_txg > *txg) {
5445 			*txg = label_txg;
5446 			*avd = vd;
5447 		}
5448 		nvlist_free(label);
5449 	}
5450 }
5451 
5452 /*
5453  * Import a root pool.
5454  *
5455  * For x86. devpath_list will consist of devid and/or physpath name of
5456  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5457  * The GRUB "findroot" command will return the vdev we should boot.
5458  *
5459  * For Sparc, devpath_list consists the physpath name of the booting device
5460  * no matter the rootpool is a single device pool or a mirrored pool.
5461  * e.g.
5462  *	"/pci@1f,0/ide@d/disk@0,0:a"
5463  */
5464 int
5465 spa_import_rootpool(char *devpath, char *devid, uint64_t pool_guid,
5466     uint64_t vdev_guid)
5467 {
5468 	spa_t *spa;
5469 	vdev_t *rvd, *bvd, *avd = NULL;
5470 	nvlist_t *config, *nvtop;
5471 	uint64_t guid, txg;
5472 	char *pname;
5473 	int error;
5474 	const char *altdevpath = NULL;
5475 
5476 	/*
5477 	 * Read the label from the boot device and generate a configuration.
5478 	 */
5479 	config = spa_generate_rootconf(devpath, devid, &guid, pool_guid);
5480 #if defined(_OBP) && defined(_KERNEL)
5481 	if (config == NULL) {
5482 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5483 			/* iscsi boot */
5484 			get_iscsi_bootpath_phy(devpath);
5485 			config = spa_generate_rootconf(devpath, devid, &guid,
5486 			    pool_guid);
5487 		}
5488 	}
5489 #endif
5490 
5491 	/*
5492 	 * We were unable to import the pool using the /devices path or devid
5493 	 * provided by the boot loader.  This may be the case if the boot
5494 	 * device has been connected to a different location in the system, or
5495 	 * if a new boot environment has changed the driver used to access the
5496 	 * boot device.
5497 	 *
5498 	 * Attempt an exhaustive scan of all visible block devices to see if we
5499 	 * can locate an alternative /devices path with a label that matches
5500 	 * the expected pool and vdev GUID.
5501 	 */
5502 	if (config == NULL && (altdevpath =
5503 	    vdev_disk_preroot_lookup(pool_guid, vdev_guid)) != NULL) {
5504 		cmn_err(CE_NOTE, "Original /devices path (%s) not available; "
5505 		    "ZFS is trying an alternate path (%s)", devpath,
5506 		    altdevpath);
5507 		config = spa_generate_rootconf(altdevpath, NULL, &guid,
5508 		    pool_guid);
5509 	}
5510 
5511 	if (config == NULL) {
5512 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5513 		    devpath);
5514 		return (SET_ERROR(EIO));
5515 	}
5516 
5517 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5518 	    &pname) == 0);
5519 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5520 
5521 	mutex_enter(&spa_namespace_lock);
5522 	if ((spa = spa_lookup(pname)) != NULL) {
5523 		/*
5524 		 * Remove the existing root pool from the namespace so that we
5525 		 * can replace it with the correct config we just read in.
5526 		 */
5527 		spa_remove(spa);
5528 	}
5529 
5530 	spa = spa_add(pname, config, NULL);
5531 	spa->spa_is_root = B_TRUE;
5532 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5533 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5534 	    &spa->spa_ubsync.ub_version) != 0)
5535 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5536 
5537 	/*
5538 	 * Build up a vdev tree based on the boot device's label config.
5539 	 */
5540 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5541 	    &nvtop) == 0);
5542 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5543 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5544 	    VDEV_ALLOC_ROOTPOOL);
5545 	spa_config_exit(spa, SCL_ALL, FTAG);
5546 	if (error) {
5547 		mutex_exit(&spa_namespace_lock);
5548 		nvlist_free(config);
5549 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5550 		    pname);
5551 		return (error);
5552 	}
5553 
5554 	/*
5555 	 * Get the boot vdev.
5556 	 */
5557 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5558 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5559 		    (u_longlong_t)guid);
5560 		error = SET_ERROR(ENOENT);
5561 		goto out;
5562 	}
5563 
5564 	/*
5565 	 * Determine if there is a better boot device.
5566 	 */
5567 	avd = bvd;
5568 	spa_alt_rootvdev(rvd, &avd, &txg);
5569 	if (avd != bvd) {
5570 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5571 		    "try booting from '%s'", avd->vdev_path);
5572 		error = SET_ERROR(EINVAL);
5573 		goto out;
5574 	}
5575 
5576 	/*
5577 	 * If the boot device is part of a spare vdev then ensure that
5578 	 * we're booting off the active spare.
5579 	 */
5580 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5581 	    !bvd->vdev_isspare) {
5582 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5583 		    "try booting from '%s'",
5584 		    bvd->vdev_parent->
5585 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5586 		error = SET_ERROR(EINVAL);
5587 		goto out;
5588 	}
5589 
5590 	error = 0;
5591 out:
5592 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5593 	vdev_free(rvd);
5594 	spa_config_exit(spa, SCL_ALL, FTAG);
5595 	mutex_exit(&spa_namespace_lock);
5596 
5597 	nvlist_free(config);
5598 	return (error);
5599 }
5600 
5601 #endif
5602 
5603 /*
5604  * Import a non-root pool into the system.
5605  */
5606 int
5607 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5608 {
5609 	spa_t *spa;
5610 	char *altroot = NULL;
5611 	spa_load_state_t state = SPA_LOAD_IMPORT;
5612 	zpool_load_policy_t policy;
5613 	uint64_t mode = spa_mode_global;
5614 	uint64_t readonly = B_FALSE;
5615 	int error;
5616 	nvlist_t *nvroot;
5617 	nvlist_t **spares, **l2cache;
5618 	uint_t nspares, nl2cache;
5619 
5620 	/*
5621 	 * If a pool with this name exists, return failure.
5622 	 */
5623 	mutex_enter(&spa_namespace_lock);
5624 	if (spa_lookup(pool) != NULL) {
5625 		mutex_exit(&spa_namespace_lock);
5626 		return (SET_ERROR(EEXIST));
5627 	}
5628 
5629 	/*
5630 	 * Create and initialize the spa structure.
5631 	 */
5632 	(void) nvlist_lookup_string(props,
5633 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5634 	(void) nvlist_lookup_uint64(props,
5635 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5636 	if (readonly)
5637 		mode = FREAD;
5638 	spa = spa_add(pool, config, altroot);
5639 	spa->spa_import_flags = flags;
5640 
5641 	/*
5642 	 * Verbatim import - Take a pool and insert it into the namespace
5643 	 * as if it had been loaded at boot.
5644 	 */
5645 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5646 		if (props != NULL)
5647 			spa_configfile_set(spa, props, B_FALSE);
5648 
5649 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5650 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5651 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5652 		mutex_exit(&spa_namespace_lock);
5653 		return (0);
5654 	}
5655 
5656 	spa_activate(spa, mode);
5657 
5658 	/*
5659 	 * Don't start async tasks until we know everything is healthy.
5660 	 */
5661 	spa_async_suspend(spa);
5662 
5663 	zpool_get_load_policy(config, &policy);
5664 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5665 		state = SPA_LOAD_RECOVER;
5666 
5667 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5668 
5669 	if (state != SPA_LOAD_RECOVER) {
5670 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5671 		zfs_dbgmsg("spa_import: importing %s", pool);
5672 	} else {
5673 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5674 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5675 	}
5676 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5677 
5678 	/*
5679 	 * Propagate anything learned while loading the pool and pass it
5680 	 * back to caller (i.e. rewind info, missing devices, etc).
5681 	 */
5682 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5683 	    spa->spa_load_info) == 0);
5684 
5685 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5686 	/*
5687 	 * Toss any existing sparelist, as it doesn't have any validity
5688 	 * anymore, and conflicts with spa_has_spare().
5689 	 */
5690 	if (spa->spa_spares.sav_config) {
5691 		nvlist_free(spa->spa_spares.sav_config);
5692 		spa->spa_spares.sav_config = NULL;
5693 		spa_load_spares(spa);
5694 	}
5695 	if (spa->spa_l2cache.sav_config) {
5696 		nvlist_free(spa->spa_l2cache.sav_config);
5697 		spa->spa_l2cache.sav_config = NULL;
5698 		spa_load_l2cache(spa);
5699 	}
5700 
5701 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5702 	    &nvroot) == 0);
5703 	if (error == 0)
5704 		error = spa_validate_aux(spa, nvroot, -1ULL,
5705 		    VDEV_ALLOC_SPARE);
5706 	if (error == 0)
5707 		error = spa_validate_aux(spa, nvroot, -1ULL,
5708 		    VDEV_ALLOC_L2CACHE);
5709 	spa_config_exit(spa, SCL_ALL, FTAG);
5710 
5711 	if (props != NULL)
5712 		spa_configfile_set(spa, props, B_FALSE);
5713 
5714 	if (error != 0 || (props && spa_writeable(spa) &&
5715 	    (error = spa_prop_set(spa, props)))) {
5716 		spa_unload(spa);
5717 		spa_deactivate(spa);
5718 		spa_remove(spa);
5719 		mutex_exit(&spa_namespace_lock);
5720 		return (error);
5721 	}
5722 
5723 	spa_async_resume(spa);
5724 
5725 	/*
5726 	 * Override any spares and level 2 cache devices as specified by
5727 	 * the user, as these may have correct device names/devids, etc.
5728 	 */
5729 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5730 	    &spares, &nspares) == 0) {
5731 		if (spa->spa_spares.sav_config)
5732 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5733 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5734 		else
5735 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5736 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5737 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5738 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5739 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5740 		spa_load_spares(spa);
5741 		spa_config_exit(spa, SCL_ALL, FTAG);
5742 		spa->spa_spares.sav_sync = B_TRUE;
5743 	}
5744 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5745 	    &l2cache, &nl2cache) == 0) {
5746 		if (spa->spa_l2cache.sav_config)
5747 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5748 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5749 		else
5750 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5751 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5752 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5753 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5754 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5755 		spa_load_l2cache(spa);
5756 		spa_config_exit(spa, SCL_ALL, FTAG);
5757 		spa->spa_l2cache.sav_sync = B_TRUE;
5758 	}
5759 
5760 	/*
5761 	 * Check for any removed devices.
5762 	 */
5763 	if (spa->spa_autoreplace) {
5764 		spa_aux_check_removed(&spa->spa_spares);
5765 		spa_aux_check_removed(&spa->spa_l2cache);
5766 	}
5767 
5768 	if (spa_writeable(spa)) {
5769 		/*
5770 		 * Update the config cache to include the newly-imported pool.
5771 		 */
5772 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5773 	}
5774 
5775 	/*
5776 	 * It's possible that the pool was expanded while it was exported.
5777 	 * We kick off an async task to handle this for us.
5778 	 */
5779 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5780 
5781 	spa_history_log_version(spa, "import");
5782 
5783 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5784 
5785 	mutex_exit(&spa_namespace_lock);
5786 
5787 	return (0);
5788 }
5789 
5790 nvlist_t *
5791 spa_tryimport(nvlist_t *tryconfig)
5792 {
5793 	nvlist_t *config = NULL;
5794 	char *poolname, *cachefile;
5795 	spa_t *spa;
5796 	uint64_t state;
5797 	int error;
5798 	zpool_load_policy_t policy;
5799 
5800 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5801 		return (NULL);
5802 
5803 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5804 		return (NULL);
5805 
5806 	/*
5807 	 * Create and initialize the spa structure.
5808 	 */
5809 	mutex_enter(&spa_namespace_lock);
5810 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5811 	spa_activate(spa, FREAD);
5812 
5813 	/*
5814 	 * Rewind pool if a max txg was provided.
5815 	 */
5816 	zpool_get_load_policy(spa->spa_config, &policy);
5817 	if (policy.zlp_txg != UINT64_MAX) {
5818 		spa->spa_load_max_txg = policy.zlp_txg;
5819 		spa->spa_extreme_rewind = B_TRUE;
5820 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5821 		    poolname, (longlong_t)policy.zlp_txg);
5822 	} else {
5823 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5824 	}
5825 
5826 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5827 	    == 0) {
5828 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5829 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5830 	} else {
5831 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5832 	}
5833 
5834 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5835 
5836 	/*
5837 	 * If 'tryconfig' was at least parsable, return the current config.
5838 	 */
5839 	if (spa->spa_root_vdev != NULL) {
5840 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5841 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5842 		    poolname) == 0);
5843 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5844 		    state) == 0);
5845 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5846 		    spa->spa_uberblock.ub_timestamp) == 0);
5847 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5848 		    spa->spa_load_info) == 0);
5849 
5850 		/*
5851 		 * If the bootfs property exists on this pool then we
5852 		 * copy it out so that external consumers can tell which
5853 		 * pools are bootable.
5854 		 */
5855 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5856 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5857 
5858 			/*
5859 			 * We have to play games with the name since the
5860 			 * pool was opened as TRYIMPORT_NAME.
5861 			 */
5862 			if (dsl_dsobj_to_dsname(spa_name(spa),
5863 			    spa->spa_bootfs, tmpname) == 0) {
5864 				char *cp;
5865 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5866 
5867 				cp = strchr(tmpname, '/');
5868 				if (cp == NULL) {
5869 					(void) strlcpy(dsname, tmpname,
5870 					    MAXPATHLEN);
5871 				} else {
5872 					(void) snprintf(dsname, MAXPATHLEN,
5873 					    "%s/%s", poolname, ++cp);
5874 				}
5875 				VERIFY(nvlist_add_string(config,
5876 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5877 				kmem_free(dsname, MAXPATHLEN);
5878 			}
5879 			kmem_free(tmpname, MAXPATHLEN);
5880 		}
5881 
5882 		/*
5883 		 * Add the list of hot spares and level 2 cache devices.
5884 		 */
5885 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5886 		spa_add_spares(spa, config);
5887 		spa_add_l2cache(spa, config);
5888 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5889 	}
5890 
5891 	spa_unload(spa);
5892 	spa_deactivate(spa);
5893 	spa_remove(spa);
5894 	mutex_exit(&spa_namespace_lock);
5895 
5896 	return (config);
5897 }
5898 
5899 /*
5900  * Pool export/destroy
5901  *
5902  * The act of destroying or exporting a pool is very simple.  We make sure there
5903  * is no more pending I/O and any references to the pool are gone.  Then, we
5904  * update the pool state and sync all the labels to disk, removing the
5905  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5906  * we don't sync the labels or remove the configuration cache.
5907  */
5908 static int
5909 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5910     boolean_t force, boolean_t hardforce)
5911 {
5912 	spa_t *spa;
5913 
5914 	if (oldconfig)
5915 		*oldconfig = NULL;
5916 
5917 	if (!(spa_mode_global & FWRITE))
5918 		return (SET_ERROR(EROFS));
5919 
5920 	mutex_enter(&spa_namespace_lock);
5921 	if ((spa = spa_lookup(pool)) == NULL) {
5922 		mutex_exit(&spa_namespace_lock);
5923 		return (SET_ERROR(ENOENT));
5924 	}
5925 
5926 	/*
5927 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5928 	 * reacquire the namespace lock, and see if we can export.
5929 	 */
5930 	spa_open_ref(spa, FTAG);
5931 	mutex_exit(&spa_namespace_lock);
5932 	spa_async_suspend(spa);
5933 	mutex_enter(&spa_namespace_lock);
5934 	spa_close(spa, FTAG);
5935 
5936 	/*
5937 	 * The pool will be in core if it's openable,
5938 	 * in which case we can modify its state.
5939 	 */
5940 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5941 
5942 		/*
5943 		 * Objsets may be open only because they're dirty, so we
5944 		 * have to force it to sync before checking spa_refcnt.
5945 		 */
5946 		txg_wait_synced(spa->spa_dsl_pool, 0);
5947 		spa_evicting_os_wait(spa);
5948 
5949 		/*
5950 		 * A pool cannot be exported or destroyed if there are active
5951 		 * references.  If we are resetting a pool, allow references by
5952 		 * fault injection handlers.
5953 		 */
5954 		if (!spa_refcount_zero(spa) ||
5955 		    (spa->spa_inject_ref != 0 &&
5956 		    new_state != POOL_STATE_UNINITIALIZED)) {
5957 			spa_async_resume(spa);
5958 			mutex_exit(&spa_namespace_lock);
5959 			return (SET_ERROR(EBUSY));
5960 		}
5961 
5962 		/*
5963 		 * A pool cannot be exported if it has an active shared spare.
5964 		 * This is to prevent other pools stealing the active spare
5965 		 * from an exported pool. At user's own will, such pool can
5966 		 * be forcedly exported.
5967 		 */
5968 		if (!force && new_state == POOL_STATE_EXPORTED &&
5969 		    spa_has_active_shared_spare(spa)) {
5970 			spa_async_resume(spa);
5971 			mutex_exit(&spa_namespace_lock);
5972 			return (SET_ERROR(EXDEV));
5973 		}
5974 
5975 		/*
5976 		 * We're about to export or destroy this pool. Make sure
5977 		 * we stop all initialization and trim activity here before
5978 		 * we set the spa_final_txg. This will ensure that all
5979 		 * dirty data resulting from the initialization is
5980 		 * committed to disk before we unload the pool.
5981 		 */
5982 		if (spa->spa_root_vdev != NULL) {
5983 			vdev_t *rvd = spa->spa_root_vdev;
5984 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
5985 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
5986 			vdev_autotrim_stop_all(spa);
5987 		}
5988 
5989 		/*
5990 		 * We want this to be reflected on every label,
5991 		 * so mark them all dirty.  spa_unload() will do the
5992 		 * final sync that pushes these changes out.
5993 		 */
5994 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5995 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5996 			spa->spa_state = new_state;
5997 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5998 			    TXG_DEFER_SIZE + 1;
5999 			vdev_config_dirty(spa->spa_root_vdev);
6000 			spa_config_exit(spa, SCL_ALL, FTAG);
6001 		}
6002 	}
6003 
6004 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6005 
6006 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6007 		spa_unload(spa);
6008 		spa_deactivate(spa);
6009 	}
6010 
6011 	if (oldconfig && spa->spa_config)
6012 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6013 
6014 	if (new_state != POOL_STATE_UNINITIALIZED) {
6015 		if (!hardforce)
6016 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6017 		spa_remove(spa);
6018 	}
6019 	mutex_exit(&spa_namespace_lock);
6020 
6021 	return (0);
6022 }
6023 
6024 /*
6025  * Destroy a storage pool.
6026  */
6027 int
6028 spa_destroy(char *pool)
6029 {
6030 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6031 	    B_FALSE, B_FALSE));
6032 }
6033 
6034 /*
6035  * Export a storage pool.
6036  */
6037 int
6038 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
6039     boolean_t hardforce)
6040 {
6041 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6042 	    force, hardforce));
6043 }
6044 
6045 /*
6046  * Similar to spa_export(), this unloads the spa_t without actually removing it
6047  * from the namespace in any way.
6048  */
6049 int
6050 spa_reset(char *pool)
6051 {
6052 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6053 	    B_FALSE, B_FALSE));
6054 }
6055 
6056 /*
6057  * ==========================================================================
6058  * Device manipulation
6059  * ==========================================================================
6060  */
6061 
6062 /*
6063  * Add a device to a storage pool.
6064  */
6065 int
6066 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6067 {
6068 	uint64_t txg;
6069 	int error;
6070 	vdev_t *rvd = spa->spa_root_vdev;
6071 	vdev_t *vd, *tvd;
6072 	nvlist_t **spares, **l2cache;
6073 	uint_t nspares, nl2cache;
6074 
6075 	ASSERT(spa_writeable(spa));
6076 
6077 	txg = spa_vdev_enter(spa);
6078 
6079 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6080 	    VDEV_ALLOC_ADD)) != 0)
6081 		return (spa_vdev_exit(spa, NULL, txg, error));
6082 
6083 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6084 
6085 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6086 	    &nspares) != 0)
6087 		nspares = 0;
6088 
6089 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6090 	    &nl2cache) != 0)
6091 		nl2cache = 0;
6092 
6093 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6094 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6095 
6096 	if (vd->vdev_children != 0 &&
6097 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
6098 		return (spa_vdev_exit(spa, vd, txg, error));
6099 
6100 	/*
6101 	 * We must validate the spares and l2cache devices after checking the
6102 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6103 	 */
6104 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6105 		return (spa_vdev_exit(spa, vd, txg, error));
6106 
6107 	/*
6108 	 * If we are in the middle of a device removal, we can only add
6109 	 * devices which match the existing devices in the pool.
6110 	 * If we are in the middle of a removal, or have some indirect
6111 	 * vdevs, we can not add raidz toplevels.
6112 	 */
6113 	if (spa->spa_vdev_removal != NULL ||
6114 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6115 		for (int c = 0; c < vd->vdev_children; c++) {
6116 			tvd = vd->vdev_child[c];
6117 			if (spa->spa_vdev_removal != NULL &&
6118 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6119 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6120 			}
6121 			/* Fail if top level vdev is raidz */
6122 			if (tvd->vdev_ops == &vdev_raidz_ops) {
6123 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6124 			}
6125 			/*
6126 			 * Need the top level mirror to be
6127 			 * a mirror of leaf vdevs only
6128 			 */
6129 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6130 				for (uint64_t cid = 0;
6131 				    cid < tvd->vdev_children; cid++) {
6132 					vdev_t *cvd = tvd->vdev_child[cid];
6133 					if (!cvd->vdev_ops->vdev_op_leaf) {
6134 						return (spa_vdev_exit(spa, vd,
6135 						    txg, EINVAL));
6136 					}
6137 				}
6138 			}
6139 		}
6140 	}
6141 
6142 	for (int c = 0; c < vd->vdev_children; c++) {
6143 		tvd = vd->vdev_child[c];
6144 		vdev_remove_child(vd, tvd);
6145 		tvd->vdev_id = rvd->vdev_children;
6146 		vdev_add_child(rvd, tvd);
6147 		vdev_config_dirty(tvd);
6148 	}
6149 
6150 	if (nspares != 0) {
6151 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6152 		    ZPOOL_CONFIG_SPARES);
6153 		spa_load_spares(spa);
6154 		spa->spa_spares.sav_sync = B_TRUE;
6155 	}
6156 
6157 	if (nl2cache != 0) {
6158 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6159 		    ZPOOL_CONFIG_L2CACHE);
6160 		spa_load_l2cache(spa);
6161 		spa->spa_l2cache.sav_sync = B_TRUE;
6162 	}
6163 
6164 	/*
6165 	 * We have to be careful when adding new vdevs to an existing pool.
6166 	 * If other threads start allocating from these vdevs before we
6167 	 * sync the config cache, and we lose power, then upon reboot we may
6168 	 * fail to open the pool because there are DVAs that the config cache
6169 	 * can't translate.  Therefore, we first add the vdevs without
6170 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6171 	 * and then let spa_config_update() initialize the new metaslabs.
6172 	 *
6173 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6174 	 * if we lose power at any point in this sequence, the remaining
6175 	 * steps will be completed the next time we load the pool.
6176 	 */
6177 	(void) spa_vdev_exit(spa, vd, txg, 0);
6178 
6179 	mutex_enter(&spa_namespace_lock);
6180 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6181 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6182 	mutex_exit(&spa_namespace_lock);
6183 
6184 	return (0);
6185 }
6186 
6187 /*
6188  * Attach a device to a mirror.  The arguments are the path to any device
6189  * in the mirror, and the nvroot for the new device.  If the path specifies
6190  * a device that is not mirrored, we automatically insert the mirror vdev.
6191  *
6192  * If 'replacing' is specified, the new device is intended to replace the
6193  * existing device; in this case the two devices are made into their own
6194  * mirror using the 'replacing' vdev, which is functionally identical to
6195  * the mirror vdev (it actually reuses all the same ops) but has a few
6196  * extra rules: you can't attach to it after it's been created, and upon
6197  * completion of resilvering, the first disk (the one being replaced)
6198  * is automatically detached.
6199  */
6200 int
6201 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6202 {
6203 	uint64_t txg, dtl_max_txg;
6204 	vdev_t *rvd = spa->spa_root_vdev;
6205 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6206 	vdev_ops_t *pvops;
6207 	char *oldvdpath, *newvdpath;
6208 	int newvd_isspare;
6209 	int error;
6210 
6211 	ASSERT(spa_writeable(spa));
6212 
6213 	txg = spa_vdev_enter(spa);
6214 
6215 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6216 
6217 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6218 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6219 		error = (spa_has_checkpoint(spa)) ?
6220 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6221 		return (spa_vdev_exit(spa, NULL, txg, error));
6222 	}
6223 
6224 	if (spa->spa_vdev_removal != NULL)
6225 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6226 
6227 	if (oldvd == NULL)
6228 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6229 
6230 	if (!oldvd->vdev_ops->vdev_op_leaf)
6231 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6232 
6233 	pvd = oldvd->vdev_parent;
6234 
6235 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6236 	    VDEV_ALLOC_ATTACH)) != 0)
6237 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6238 
6239 	if (newrootvd->vdev_children != 1)
6240 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6241 
6242 	newvd = newrootvd->vdev_child[0];
6243 
6244 	if (!newvd->vdev_ops->vdev_op_leaf)
6245 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6246 
6247 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6248 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6249 
6250 	/*
6251 	 * Spares can't replace logs
6252 	 */
6253 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6254 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6255 
6256 	if (!replacing) {
6257 		/*
6258 		 * For attach, the only allowable parent is a mirror or the root
6259 		 * vdev.
6260 		 */
6261 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6262 		    pvd->vdev_ops != &vdev_root_ops)
6263 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6264 
6265 		pvops = &vdev_mirror_ops;
6266 	} else {
6267 		/*
6268 		 * Active hot spares can only be replaced by inactive hot
6269 		 * spares.
6270 		 */
6271 		if (pvd->vdev_ops == &vdev_spare_ops &&
6272 		    oldvd->vdev_isspare &&
6273 		    !spa_has_spare(spa, newvd->vdev_guid))
6274 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6275 
6276 		/*
6277 		 * If the source is a hot spare, and the parent isn't already a
6278 		 * spare, then we want to create a new hot spare.  Otherwise, we
6279 		 * want to create a replacing vdev.  The user is not allowed to
6280 		 * attach to a spared vdev child unless the 'isspare' state is
6281 		 * the same (spare replaces spare, non-spare replaces
6282 		 * non-spare).
6283 		 */
6284 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6285 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6286 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6287 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6288 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6289 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6290 		}
6291 
6292 		if (newvd->vdev_isspare)
6293 			pvops = &vdev_spare_ops;
6294 		else
6295 			pvops = &vdev_replacing_ops;
6296 	}
6297 
6298 	/*
6299 	 * Make sure the new device is big enough.
6300 	 */
6301 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6302 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6303 
6304 	/*
6305 	 * The new device cannot have a higher alignment requirement
6306 	 * than the top-level vdev.
6307 	 */
6308 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6309 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6310 
6311 	/*
6312 	 * If this is an in-place replacement, update oldvd's path and devid
6313 	 * to make it distinguishable from newvd, and unopenable from now on.
6314 	 */
6315 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6316 		spa_strfree(oldvd->vdev_path);
6317 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6318 		    KM_SLEEP);
6319 		(void) sprintf(oldvd->vdev_path, "%s/%s",
6320 		    newvd->vdev_path, "old");
6321 		if (oldvd->vdev_devid != NULL) {
6322 			spa_strfree(oldvd->vdev_devid);
6323 			oldvd->vdev_devid = NULL;
6324 		}
6325 	}
6326 
6327 	/* mark the device being resilvered */
6328 	newvd->vdev_resilver_txg = txg;
6329 
6330 	/*
6331 	 * If the parent is not a mirror, or if we're replacing, insert the new
6332 	 * mirror/replacing/spare vdev above oldvd.
6333 	 */
6334 	if (pvd->vdev_ops != pvops)
6335 		pvd = vdev_add_parent(oldvd, pvops);
6336 
6337 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6338 	ASSERT(pvd->vdev_ops == pvops);
6339 	ASSERT(oldvd->vdev_parent == pvd);
6340 
6341 	/*
6342 	 * Extract the new device from its root and add it to pvd.
6343 	 */
6344 	vdev_remove_child(newrootvd, newvd);
6345 	newvd->vdev_id = pvd->vdev_children;
6346 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6347 	vdev_add_child(pvd, newvd);
6348 
6349 	tvd = newvd->vdev_top;
6350 	ASSERT(pvd->vdev_top == tvd);
6351 	ASSERT(tvd->vdev_parent == rvd);
6352 
6353 	vdev_config_dirty(tvd);
6354 
6355 	/*
6356 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6357 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6358 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6359 	 */
6360 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6361 
6362 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6363 	    dtl_max_txg - TXG_INITIAL);
6364 
6365 	if (newvd->vdev_isspare) {
6366 		spa_spare_activate(newvd);
6367 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6368 	}
6369 
6370 	oldvdpath = spa_strdup(oldvd->vdev_path);
6371 	newvdpath = spa_strdup(newvd->vdev_path);
6372 	newvd_isspare = newvd->vdev_isspare;
6373 
6374 	/*
6375 	 * Mark newvd's DTL dirty in this txg.
6376 	 */
6377 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6378 
6379 	/*
6380 	 * Schedule the resilver to restart in the future. We do this to
6381 	 * ensure that dmu_sync-ed blocks have been stitched into the
6382 	 * respective datasets. We do not do this if resilvers have been
6383 	 * deferred.
6384 	 */
6385 	if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6386 	    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6387 		vdev_defer_resilver(newvd);
6388 	else
6389 		dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg);
6390 
6391 	if (spa->spa_bootfs)
6392 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6393 
6394 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6395 
6396 	/*
6397 	 * Commit the config
6398 	 */
6399 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6400 
6401 	spa_history_log_internal(spa, "vdev attach", NULL,
6402 	    "%s vdev=%s %s vdev=%s",
6403 	    replacing && newvd_isspare ? "spare in" :
6404 	    replacing ? "replace" : "attach", newvdpath,
6405 	    replacing ? "for" : "to", oldvdpath);
6406 
6407 	spa_strfree(oldvdpath);
6408 	spa_strfree(newvdpath);
6409 
6410 	return (0);
6411 }
6412 
6413 /*
6414  * Detach a device from a mirror or replacing vdev.
6415  *
6416  * If 'replace_done' is specified, only detach if the parent
6417  * is a replacing vdev.
6418  */
6419 int
6420 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6421 {
6422 	uint64_t txg;
6423 	int error;
6424 	vdev_t *rvd = spa->spa_root_vdev;
6425 	vdev_t *vd, *pvd, *cvd, *tvd;
6426 	boolean_t unspare = B_FALSE;
6427 	uint64_t unspare_guid = 0;
6428 	char *vdpath;
6429 
6430 	ASSERT(spa_writeable(spa));
6431 
6432 	txg = spa_vdev_enter(spa);
6433 
6434 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6435 
6436 	/*
6437 	 * Besides being called directly from the userland through the
6438 	 * ioctl interface, spa_vdev_detach() can be potentially called
6439 	 * at the end of spa_vdev_resilver_done().
6440 	 *
6441 	 * In the regular case, when we have a checkpoint this shouldn't
6442 	 * happen as we never empty the DTLs of a vdev during the scrub
6443 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6444 	 * should never get here when we have a checkpoint.
6445 	 *
6446 	 * That said, even in a case when we checkpoint the pool exactly
6447 	 * as spa_vdev_resilver_done() calls this function everything
6448 	 * should be fine as the resilver will return right away.
6449 	 */
6450 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6451 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6452 		error = (spa_has_checkpoint(spa)) ?
6453 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6454 		return (spa_vdev_exit(spa, NULL, txg, error));
6455 	}
6456 
6457 	if (vd == NULL)
6458 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6459 
6460 	if (!vd->vdev_ops->vdev_op_leaf)
6461 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6462 
6463 	pvd = vd->vdev_parent;
6464 
6465 	/*
6466 	 * If the parent/child relationship is not as expected, don't do it.
6467 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6468 	 * vdev that's replacing B with C.  The user's intent in replacing
6469 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6470 	 * the replace by detaching C, the expected behavior is to end up
6471 	 * M(A,B).  But suppose that right after deciding to detach C,
6472 	 * the replacement of B completes.  We would have M(A,C), and then
6473 	 * ask to detach C, which would leave us with just A -- not what
6474 	 * the user wanted.  To prevent this, we make sure that the
6475 	 * parent/child relationship hasn't changed -- in this example,
6476 	 * that C's parent is still the replacing vdev R.
6477 	 */
6478 	if (pvd->vdev_guid != pguid && pguid != 0)
6479 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6480 
6481 	/*
6482 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6483 	 */
6484 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6485 	    pvd->vdev_ops != &vdev_spare_ops)
6486 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6487 
6488 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6489 	    spa_version(spa) >= SPA_VERSION_SPARES);
6490 
6491 	/*
6492 	 * Only mirror, replacing, and spare vdevs support detach.
6493 	 */
6494 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6495 	    pvd->vdev_ops != &vdev_mirror_ops &&
6496 	    pvd->vdev_ops != &vdev_spare_ops)
6497 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6498 
6499 	/*
6500 	 * If this device has the only valid copy of some data,
6501 	 * we cannot safely detach it.
6502 	 */
6503 	if (vdev_dtl_required(vd))
6504 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6505 
6506 	ASSERT(pvd->vdev_children >= 2);
6507 
6508 	/*
6509 	 * If we are detaching the second disk from a replacing vdev, then
6510 	 * check to see if we changed the original vdev's path to have "/old"
6511 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6512 	 */
6513 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6514 	    vd->vdev_path != NULL) {
6515 		size_t len = strlen(vd->vdev_path);
6516 
6517 		for (int c = 0; c < pvd->vdev_children; c++) {
6518 			cvd = pvd->vdev_child[c];
6519 
6520 			if (cvd == vd || cvd->vdev_path == NULL)
6521 				continue;
6522 
6523 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6524 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6525 				spa_strfree(cvd->vdev_path);
6526 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6527 				break;
6528 			}
6529 		}
6530 	}
6531 
6532 	/*
6533 	 * If we are detaching the original disk from a spare, then it implies
6534 	 * that the spare should become a real disk, and be removed from the
6535 	 * active spare list for the pool.
6536 	 */
6537 	if (pvd->vdev_ops == &vdev_spare_ops &&
6538 	    vd->vdev_id == 0 &&
6539 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6540 		unspare = B_TRUE;
6541 
6542 	/*
6543 	 * Erase the disk labels so the disk can be used for other things.
6544 	 * This must be done after all other error cases are handled,
6545 	 * but before we disembowel vd (so we can still do I/O to it).
6546 	 * But if we can't do it, don't treat the error as fatal --
6547 	 * it may be that the unwritability of the disk is the reason
6548 	 * it's being detached!
6549 	 */
6550 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6551 
6552 	/*
6553 	 * Remove vd from its parent and compact the parent's children.
6554 	 */
6555 	vdev_remove_child(pvd, vd);
6556 	vdev_compact_children(pvd);
6557 
6558 	/*
6559 	 * Remember one of the remaining children so we can get tvd below.
6560 	 */
6561 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6562 
6563 	/*
6564 	 * If we need to remove the remaining child from the list of hot spares,
6565 	 * do it now, marking the vdev as no longer a spare in the process.
6566 	 * We must do this before vdev_remove_parent(), because that can
6567 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6568 	 * reason, we must remove the spare now, in the same txg as the detach;
6569 	 * otherwise someone could attach a new sibling, change the GUID, and
6570 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6571 	 */
6572 	if (unspare) {
6573 		ASSERT(cvd->vdev_isspare);
6574 		spa_spare_remove(cvd);
6575 		unspare_guid = cvd->vdev_guid;
6576 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6577 		cvd->vdev_unspare = B_TRUE;
6578 	}
6579 
6580 	/*
6581 	 * If the parent mirror/replacing vdev only has one child,
6582 	 * the parent is no longer needed.  Remove it from the tree.
6583 	 */
6584 	if (pvd->vdev_children == 1) {
6585 		if (pvd->vdev_ops == &vdev_spare_ops)
6586 			cvd->vdev_unspare = B_FALSE;
6587 		vdev_remove_parent(cvd);
6588 	}
6589 
6590 	/*
6591 	 * We don't set tvd until now because the parent we just removed
6592 	 * may have been the previous top-level vdev.
6593 	 */
6594 	tvd = cvd->vdev_top;
6595 	ASSERT(tvd->vdev_parent == rvd);
6596 
6597 	/*
6598 	 * Reevaluate the parent vdev state.
6599 	 */
6600 	vdev_propagate_state(cvd);
6601 
6602 	/*
6603 	 * If the 'autoexpand' property is set on the pool then automatically
6604 	 * try to expand the size of the pool. For example if the device we
6605 	 * just detached was smaller than the others, it may be possible to
6606 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6607 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6608 	 */
6609 	if (spa->spa_autoexpand) {
6610 		vdev_reopen(tvd);
6611 		vdev_expand(tvd, txg);
6612 	}
6613 
6614 	vdev_config_dirty(tvd);
6615 
6616 	/*
6617 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6618 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6619 	 * But first make sure we're not on any *other* txg's DTL list, to
6620 	 * prevent vd from being accessed after it's freed.
6621 	 */
6622 	vdpath = spa_strdup(vd->vdev_path);
6623 	for (int t = 0; t < TXG_SIZE; t++)
6624 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6625 	vd->vdev_detached = B_TRUE;
6626 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6627 
6628 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6629 
6630 	/* hang on to the spa before we release the lock */
6631 	spa_open_ref(spa, FTAG);
6632 
6633 	error = spa_vdev_exit(spa, vd, txg, 0);
6634 
6635 	spa_history_log_internal(spa, "detach", NULL,
6636 	    "vdev=%s", vdpath);
6637 	spa_strfree(vdpath);
6638 
6639 	/*
6640 	 * If this was the removal of the original device in a hot spare vdev,
6641 	 * then we want to go through and remove the device from the hot spare
6642 	 * list of every other pool.
6643 	 */
6644 	if (unspare) {
6645 		spa_t *altspa = NULL;
6646 
6647 		mutex_enter(&spa_namespace_lock);
6648 		while ((altspa = spa_next(altspa)) != NULL) {
6649 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6650 			    altspa == spa)
6651 				continue;
6652 
6653 			spa_open_ref(altspa, FTAG);
6654 			mutex_exit(&spa_namespace_lock);
6655 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6656 			mutex_enter(&spa_namespace_lock);
6657 			spa_close(altspa, FTAG);
6658 		}
6659 		mutex_exit(&spa_namespace_lock);
6660 
6661 		/* search the rest of the vdevs for spares to remove */
6662 		spa_vdev_resilver_done(spa);
6663 	}
6664 
6665 	/* all done with the spa; OK to release */
6666 	mutex_enter(&spa_namespace_lock);
6667 	spa_close(spa, FTAG);
6668 	mutex_exit(&spa_namespace_lock);
6669 
6670 	return (error);
6671 }
6672 
6673 static int
6674 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6675     list_t *vd_list)
6676 {
6677 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6678 
6679 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6680 
6681 	/* Look up vdev and ensure it's a leaf. */
6682 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6683 	if (vd == NULL || vd->vdev_detached) {
6684 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6685 		return (SET_ERROR(ENODEV));
6686 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6687 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6688 		return (SET_ERROR(EINVAL));
6689 	} else if (!vdev_writeable(vd)) {
6690 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6691 		return (SET_ERROR(EROFS));
6692 	}
6693 	mutex_enter(&vd->vdev_initialize_lock);
6694 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6695 
6696 	/*
6697 	 * When we activate an initialize action we check to see
6698 	 * if the vdev_initialize_thread is NULL. We do this instead
6699 	 * of using the vdev_initialize_state since there might be
6700 	 * a previous initialization process which has completed but
6701 	 * the thread is not exited.
6702 	 */
6703 	if (cmd_type == POOL_INITIALIZE_START &&
6704 	    (vd->vdev_initialize_thread != NULL ||
6705 	    vd->vdev_top->vdev_removing)) {
6706 		mutex_exit(&vd->vdev_initialize_lock);
6707 		return (SET_ERROR(EBUSY));
6708 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6709 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6710 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6711 		mutex_exit(&vd->vdev_initialize_lock);
6712 		return (SET_ERROR(ESRCH));
6713 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6714 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6715 		mutex_exit(&vd->vdev_initialize_lock);
6716 		return (SET_ERROR(ESRCH));
6717 	}
6718 
6719 	switch (cmd_type) {
6720 	case POOL_INITIALIZE_START:
6721 		vdev_initialize(vd);
6722 		break;
6723 	case POOL_INITIALIZE_CANCEL:
6724 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6725 		break;
6726 	case POOL_INITIALIZE_SUSPEND:
6727 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6728 		break;
6729 	default:
6730 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6731 	}
6732 	mutex_exit(&vd->vdev_initialize_lock);
6733 
6734 	return (0);
6735 }
6736 
6737 int
6738 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6739     nvlist_t *vdev_errlist)
6740 {
6741 	int total_errors = 0;
6742 	list_t vd_list;
6743 
6744 	list_create(&vd_list, sizeof (vdev_t),
6745 	    offsetof(vdev_t, vdev_initialize_node));
6746 
6747 	/*
6748 	 * We hold the namespace lock through the whole function
6749 	 * to prevent any changes to the pool while we're starting or
6750 	 * stopping initialization. The config and state locks are held so that
6751 	 * we can properly assess the vdev state before we commit to
6752 	 * the initializing operation.
6753 	 */
6754 	mutex_enter(&spa_namespace_lock);
6755 
6756 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6757 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6758 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6759 
6760 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6761 		    &vd_list);
6762 		if (error != 0) {
6763 			char guid_as_str[MAXNAMELEN];
6764 
6765 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6766 			    "%llu", (unsigned long long)vdev_guid);
6767 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6768 			total_errors++;
6769 		}
6770 	}
6771 
6772 	/* Wait for all initialize threads to stop. */
6773 	vdev_initialize_stop_wait(spa, &vd_list);
6774 
6775 	/* Sync out the initializing state */
6776 	txg_wait_synced(spa->spa_dsl_pool, 0);
6777 	mutex_exit(&spa_namespace_lock);
6778 
6779 	list_destroy(&vd_list);
6780 
6781 	return (total_errors);
6782 }
6783 
6784 static int
6785 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6786     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
6787 {
6788 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6789 
6790 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6791 
6792 	/* Look up vdev and ensure it's a leaf. */
6793 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6794 	if (vd == NULL || vd->vdev_detached) {
6795 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6796 		return (SET_ERROR(ENODEV));
6797 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6798 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6799 		return (SET_ERROR(EINVAL));
6800 	} else if (!vdev_writeable(vd)) {
6801 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6802 		return (SET_ERROR(EROFS));
6803 	} else if (!vd->vdev_has_trim) {
6804 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6805 		return (SET_ERROR(EOPNOTSUPP));
6806 	} else if (secure && !vd->vdev_has_securetrim) {
6807 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6808 		return (SET_ERROR(EOPNOTSUPP));
6809 	}
6810 	mutex_enter(&vd->vdev_trim_lock);
6811 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6812 
6813 	/*
6814 	 * When we activate a TRIM action we check to see if the
6815 	 * vdev_trim_thread is NULL. We do this instead of using the
6816 	 * vdev_trim_state since there might be a previous TRIM process
6817 	 * which has completed but the thread is not exited.
6818 	 */
6819 	if (cmd_type == POOL_TRIM_START &&
6820 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
6821 		mutex_exit(&vd->vdev_trim_lock);
6822 		return (SET_ERROR(EBUSY));
6823 	} else if (cmd_type == POOL_TRIM_CANCEL &&
6824 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
6825 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
6826 		mutex_exit(&vd->vdev_trim_lock);
6827 		return (SET_ERROR(ESRCH));
6828 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
6829 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
6830 		mutex_exit(&vd->vdev_trim_lock);
6831 		return (SET_ERROR(ESRCH));
6832 	}
6833 
6834 	switch (cmd_type) {
6835 	case POOL_TRIM_START:
6836 		vdev_trim(vd, rate, partial, secure);
6837 		break;
6838 	case POOL_TRIM_CANCEL:
6839 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
6840 		break;
6841 	case POOL_TRIM_SUSPEND:
6842 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
6843 		break;
6844 	default:
6845 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6846 	}
6847 	mutex_exit(&vd->vdev_trim_lock);
6848 
6849 	return (0);
6850 }
6851 
6852 /*
6853  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
6854  * TRIM threads for each child vdev.  These threads pass over all of the free
6855  * space in the vdev's metaslabs and issues TRIM commands for that space.
6856  */
6857 int
6858 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
6859     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
6860 {
6861 	int total_errors = 0;
6862 	list_t vd_list;
6863 
6864 	list_create(&vd_list, sizeof (vdev_t),
6865 	    offsetof(vdev_t, vdev_trim_node));
6866 
6867 	/*
6868 	 * We hold the namespace lock through the whole function
6869 	 * to prevent any changes to the pool while we're starting or
6870 	 * stopping TRIM. The config and state locks are held so that
6871 	 * we can properly assess the vdev state before we commit to
6872 	 * the TRIM operation.
6873 	 */
6874 	mutex_enter(&spa_namespace_lock);
6875 
6876 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6877 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6878 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
6879 
6880 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
6881 		    rate, partial, secure, &vd_list);
6882 		if (error != 0) {
6883 			char guid_as_str[MAXNAMELEN];
6884 
6885 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
6886 			    "%llu", (unsigned long long)vdev_guid);
6887 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6888 			total_errors++;
6889 		}
6890 	}
6891 
6892 	/* Wait for all TRIM threads to stop. */
6893 	vdev_trim_stop_wait(spa, &vd_list);
6894 
6895 	/* Sync out the TRIM state */
6896 	txg_wait_synced(spa->spa_dsl_pool, 0);
6897 	mutex_exit(&spa_namespace_lock);
6898 
6899 	list_destroy(&vd_list);
6900 
6901 	return (total_errors);
6902 }
6903 
6904 /*
6905  * Split a set of devices from their mirrors, and create a new pool from them.
6906  */
6907 int
6908 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6909     nvlist_t *props, boolean_t exp)
6910 {
6911 	int error = 0;
6912 	uint64_t txg, *glist;
6913 	spa_t *newspa;
6914 	uint_t c, children, lastlog;
6915 	nvlist_t **child, *nvl, *tmp;
6916 	dmu_tx_t *tx;
6917 	char *altroot = NULL;
6918 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6919 	boolean_t activate_slog;
6920 
6921 	ASSERT(spa_writeable(spa));
6922 
6923 	txg = spa_vdev_enter(spa);
6924 
6925 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6926 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6927 		error = (spa_has_checkpoint(spa)) ?
6928 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6929 		return (spa_vdev_exit(spa, NULL, txg, error));
6930 	}
6931 
6932 	/* clear the log and flush everything up to now */
6933 	activate_slog = spa_passivate_log(spa);
6934 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6935 	error = spa_reset_logs(spa);
6936 	txg = spa_vdev_config_enter(spa);
6937 
6938 	if (activate_slog)
6939 		spa_activate_log(spa);
6940 
6941 	if (error != 0)
6942 		return (spa_vdev_exit(spa, NULL, txg, error));
6943 
6944 	/* check new spa name before going any further */
6945 	if (spa_lookup(newname) != NULL)
6946 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6947 
6948 	/*
6949 	 * scan through all the children to ensure they're all mirrors
6950 	 */
6951 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6952 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6953 	    &children) != 0)
6954 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6955 
6956 	/* first, check to ensure we've got the right child count */
6957 	rvd = spa->spa_root_vdev;
6958 	lastlog = 0;
6959 	for (c = 0; c < rvd->vdev_children; c++) {
6960 		vdev_t *vd = rvd->vdev_child[c];
6961 
6962 		/* don't count the holes & logs as children */
6963 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6964 			if (lastlog == 0)
6965 				lastlog = c;
6966 			continue;
6967 		}
6968 
6969 		lastlog = 0;
6970 	}
6971 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6972 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6973 
6974 	/* next, ensure no spare or cache devices are part of the split */
6975 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6976 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6977 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6978 
6979 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6980 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6981 
6982 	/* then, loop over each vdev and validate it */
6983 	for (c = 0; c < children; c++) {
6984 		uint64_t is_hole = 0;
6985 
6986 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6987 		    &is_hole);
6988 
6989 		if (is_hole != 0) {
6990 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6991 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6992 				continue;
6993 			} else {
6994 				error = SET_ERROR(EINVAL);
6995 				break;
6996 			}
6997 		}
6998 
6999 		/* which disk is going to be split? */
7000 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7001 		    &glist[c]) != 0) {
7002 			error = SET_ERROR(EINVAL);
7003 			break;
7004 		}
7005 
7006 		/* look it up in the spa */
7007 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7008 		if (vml[c] == NULL) {
7009 			error = SET_ERROR(ENODEV);
7010 			break;
7011 		}
7012 
7013 		/* make sure there's nothing stopping the split */
7014 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7015 		    vml[c]->vdev_islog ||
7016 		    !vdev_is_concrete(vml[c]) ||
7017 		    vml[c]->vdev_isspare ||
7018 		    vml[c]->vdev_isl2cache ||
7019 		    !vdev_writeable(vml[c]) ||
7020 		    vml[c]->vdev_children != 0 ||
7021 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7022 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7023 			error = SET_ERROR(EINVAL);
7024 			break;
7025 		}
7026 
7027 		if (vdev_dtl_required(vml[c])) {
7028 			error = SET_ERROR(EBUSY);
7029 			break;
7030 		}
7031 
7032 		/* we need certain info from the top level */
7033 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7034 		    vml[c]->vdev_top->vdev_ms_array) == 0);
7035 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7036 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
7037 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7038 		    vml[c]->vdev_top->vdev_asize) == 0);
7039 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7040 		    vml[c]->vdev_top->vdev_ashift) == 0);
7041 
7042 		/* transfer per-vdev ZAPs */
7043 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7044 		VERIFY0(nvlist_add_uint64(child[c],
7045 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7046 
7047 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7048 		VERIFY0(nvlist_add_uint64(child[c],
7049 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7050 		    vml[c]->vdev_parent->vdev_top_zap));
7051 	}
7052 
7053 	if (error != 0) {
7054 		kmem_free(vml, children * sizeof (vdev_t *));
7055 		kmem_free(glist, children * sizeof (uint64_t));
7056 		return (spa_vdev_exit(spa, NULL, txg, error));
7057 	}
7058 
7059 	/* stop writers from using the disks */
7060 	for (c = 0; c < children; c++) {
7061 		if (vml[c] != NULL)
7062 			vml[c]->vdev_offline = B_TRUE;
7063 	}
7064 	vdev_reopen(spa->spa_root_vdev);
7065 
7066 	/*
7067 	 * Temporarily record the splitting vdevs in the spa config.  This
7068 	 * will disappear once the config is regenerated.
7069 	 */
7070 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7071 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7072 	    glist, children) == 0);
7073 	kmem_free(glist, children * sizeof (uint64_t));
7074 
7075 	mutex_enter(&spa->spa_props_lock);
7076 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7077 	    nvl) == 0);
7078 	mutex_exit(&spa->spa_props_lock);
7079 	spa->spa_config_splitting = nvl;
7080 	vdev_config_dirty(spa->spa_root_vdev);
7081 
7082 	/* configure and create the new pool */
7083 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7084 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7085 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7086 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7087 	    spa_version(spa)) == 0);
7088 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7089 	    spa->spa_config_txg) == 0);
7090 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7091 	    spa_generate_guid(NULL)) == 0);
7092 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7093 	(void) nvlist_lookup_string(props,
7094 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7095 
7096 	/* add the new pool to the namespace */
7097 	newspa = spa_add(newname, config, altroot);
7098 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7099 	newspa->spa_config_txg = spa->spa_config_txg;
7100 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7101 
7102 	/* release the spa config lock, retaining the namespace lock */
7103 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7104 
7105 	if (zio_injection_enabled)
7106 		zio_handle_panic_injection(spa, FTAG, 1);
7107 
7108 	spa_activate(newspa, spa_mode_global);
7109 	spa_async_suspend(newspa);
7110 
7111 	/*
7112 	 * Temporarily stop the initializing and TRIM activity.  We set the
7113 	 * state to ACTIVE so that we know to resume initializing or TRIM
7114 	 * once the split has completed.
7115 	 */
7116 	list_t vd_initialize_list;
7117 	list_create(&vd_initialize_list, sizeof (vdev_t),
7118 	    offsetof(vdev_t, vdev_initialize_node));
7119 
7120 	list_t vd_trim_list;
7121 	list_create(&vd_trim_list, sizeof (vdev_t),
7122 	    offsetof(vdev_t, vdev_trim_node));
7123 
7124 	for (c = 0; c < children; c++) {
7125 		if (vml[c] != NULL) {
7126 			mutex_enter(&vml[c]->vdev_initialize_lock);
7127 			vdev_initialize_stop(vml[c],
7128 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7129 			mutex_exit(&vml[c]->vdev_initialize_lock);
7130 
7131 			mutex_enter(&vml[c]->vdev_trim_lock);
7132 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7133 			mutex_exit(&vml[c]->vdev_trim_lock);
7134 		}
7135 	}
7136 
7137 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7138 	vdev_trim_stop_wait(spa, &vd_trim_list);
7139 
7140 	list_destroy(&vd_initialize_list);
7141 	list_destroy(&vd_trim_list);
7142 
7143 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7144 
7145 	/* create the new pool from the disks of the original pool */
7146 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7147 	if (error)
7148 		goto out;
7149 
7150 	/* if that worked, generate a real config for the new pool */
7151 	if (newspa->spa_root_vdev != NULL) {
7152 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7153 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7154 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7155 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7156 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7157 		    B_TRUE));
7158 	}
7159 
7160 	/* set the props */
7161 	if (props != NULL) {
7162 		spa_configfile_set(newspa, props, B_FALSE);
7163 		error = spa_prop_set(newspa, props);
7164 		if (error)
7165 			goto out;
7166 	}
7167 
7168 	/* flush everything */
7169 	txg = spa_vdev_config_enter(newspa);
7170 	vdev_config_dirty(newspa->spa_root_vdev);
7171 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7172 
7173 	if (zio_injection_enabled)
7174 		zio_handle_panic_injection(spa, FTAG, 2);
7175 
7176 	spa_async_resume(newspa);
7177 
7178 	/* finally, update the original pool's config */
7179 	txg = spa_vdev_config_enter(spa);
7180 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7181 	error = dmu_tx_assign(tx, TXG_WAIT);
7182 	if (error != 0)
7183 		dmu_tx_abort(tx);
7184 	for (c = 0; c < children; c++) {
7185 		if (vml[c] != NULL) {
7186 			vdev_split(vml[c]);
7187 			if (error == 0)
7188 				spa_history_log_internal(spa, "detach", tx,
7189 				    "vdev=%s", vml[c]->vdev_path);
7190 
7191 			vdev_free(vml[c]);
7192 		}
7193 	}
7194 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7195 	vdev_config_dirty(spa->spa_root_vdev);
7196 	spa->spa_config_splitting = NULL;
7197 	nvlist_free(nvl);
7198 	if (error == 0)
7199 		dmu_tx_commit(tx);
7200 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7201 
7202 	if (zio_injection_enabled)
7203 		zio_handle_panic_injection(spa, FTAG, 3);
7204 
7205 	/* split is complete; log a history record */
7206 	spa_history_log_internal(newspa, "split", NULL,
7207 	    "from pool %s", spa_name(spa));
7208 
7209 	kmem_free(vml, children * sizeof (vdev_t *));
7210 
7211 	/* if we're not going to mount the filesystems in userland, export */
7212 	if (exp)
7213 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7214 		    B_FALSE, B_FALSE);
7215 
7216 	return (error);
7217 
7218 out:
7219 	spa_unload(newspa);
7220 	spa_deactivate(newspa);
7221 	spa_remove(newspa);
7222 
7223 	txg = spa_vdev_config_enter(spa);
7224 
7225 	/* re-online all offlined disks */
7226 	for (c = 0; c < children; c++) {
7227 		if (vml[c] != NULL)
7228 			vml[c]->vdev_offline = B_FALSE;
7229 	}
7230 
7231 	/* restart initializing or trimming disks as necessary */
7232 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7233 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7234 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7235 
7236 	vdev_reopen(spa->spa_root_vdev);
7237 
7238 	nvlist_free(spa->spa_config_splitting);
7239 	spa->spa_config_splitting = NULL;
7240 	(void) spa_vdev_exit(spa, NULL, txg, error);
7241 
7242 	kmem_free(vml, children * sizeof (vdev_t *));
7243 	return (error);
7244 }
7245 
7246 /*
7247  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7248  * currently spared, so we can detach it.
7249  */
7250 static vdev_t *
7251 spa_vdev_resilver_done_hunt(vdev_t *vd)
7252 {
7253 	vdev_t *newvd, *oldvd;
7254 
7255 	for (int c = 0; c < vd->vdev_children; c++) {
7256 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7257 		if (oldvd != NULL)
7258 			return (oldvd);
7259 	}
7260 
7261 	/*
7262 	 * Check for a completed replacement.  We always consider the first
7263 	 * vdev in the list to be the oldest vdev, and the last one to be
7264 	 * the newest (see spa_vdev_attach() for how that works).  In
7265 	 * the case where the newest vdev is faulted, we will not automatically
7266 	 * remove it after a resilver completes.  This is OK as it will require
7267 	 * user intervention to determine which disk the admin wishes to keep.
7268 	 */
7269 	if (vd->vdev_ops == &vdev_replacing_ops) {
7270 		ASSERT(vd->vdev_children > 1);
7271 
7272 		newvd = vd->vdev_child[vd->vdev_children - 1];
7273 		oldvd = vd->vdev_child[0];
7274 
7275 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7276 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7277 		    !vdev_dtl_required(oldvd))
7278 			return (oldvd);
7279 	}
7280 
7281 	/*
7282 	 * Check for a completed resilver with the 'unspare' flag set.
7283 	 * Also potentially update faulted state.
7284 	 */
7285 	if (vd->vdev_ops == &vdev_spare_ops) {
7286 		vdev_t *first = vd->vdev_child[0];
7287 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7288 
7289 		if (last->vdev_unspare) {
7290 			oldvd = first;
7291 			newvd = last;
7292 		} else if (first->vdev_unspare) {
7293 			oldvd = last;
7294 			newvd = first;
7295 		} else {
7296 			oldvd = NULL;
7297 		}
7298 
7299 		if (oldvd != NULL &&
7300 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7301 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7302 		    !vdev_dtl_required(oldvd))
7303 			return (oldvd);
7304 
7305 		vdev_propagate_state(vd);
7306 
7307 		/*
7308 		 * If there are more than two spares attached to a disk,
7309 		 * and those spares are not required, then we want to
7310 		 * attempt to free them up now so that they can be used
7311 		 * by other pools.  Once we're back down to a single
7312 		 * disk+spare, we stop removing them.
7313 		 */
7314 		if (vd->vdev_children > 2) {
7315 			newvd = vd->vdev_child[1];
7316 
7317 			if (newvd->vdev_isspare && last->vdev_isspare &&
7318 			    vdev_dtl_empty(last, DTL_MISSING) &&
7319 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7320 			    !vdev_dtl_required(newvd))
7321 				return (newvd);
7322 		}
7323 	}
7324 
7325 	return (NULL);
7326 }
7327 
7328 static void
7329 spa_vdev_resilver_done(spa_t *spa)
7330 {
7331 	vdev_t *vd, *pvd, *ppvd;
7332 	uint64_t guid, sguid, pguid, ppguid;
7333 
7334 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7335 
7336 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7337 		pvd = vd->vdev_parent;
7338 		ppvd = pvd->vdev_parent;
7339 		guid = vd->vdev_guid;
7340 		pguid = pvd->vdev_guid;
7341 		ppguid = ppvd->vdev_guid;
7342 		sguid = 0;
7343 		/*
7344 		 * If we have just finished replacing a hot spared device, then
7345 		 * we need to detach the parent's first child (the original hot
7346 		 * spare) as well.
7347 		 */
7348 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7349 		    ppvd->vdev_children == 2) {
7350 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7351 			sguid = ppvd->vdev_child[1]->vdev_guid;
7352 		}
7353 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7354 
7355 		spa_config_exit(spa, SCL_ALL, FTAG);
7356 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7357 			return;
7358 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7359 			return;
7360 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7361 	}
7362 
7363 	spa_config_exit(spa, SCL_ALL, FTAG);
7364 }
7365 
7366 /*
7367  * Update the stored path or FRU for this vdev.
7368  */
7369 int
7370 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7371     boolean_t ispath)
7372 {
7373 	vdev_t *vd;
7374 	boolean_t sync = B_FALSE;
7375 
7376 	ASSERT(spa_writeable(spa));
7377 
7378 	spa_vdev_state_enter(spa, SCL_ALL);
7379 
7380 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7381 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7382 
7383 	if (!vd->vdev_ops->vdev_op_leaf)
7384 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7385 
7386 	if (ispath) {
7387 		if (strcmp(value, vd->vdev_path) != 0) {
7388 			spa_strfree(vd->vdev_path);
7389 			vd->vdev_path = spa_strdup(value);
7390 			sync = B_TRUE;
7391 		}
7392 	} else {
7393 		if (vd->vdev_fru == NULL) {
7394 			vd->vdev_fru = spa_strdup(value);
7395 			sync = B_TRUE;
7396 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7397 			spa_strfree(vd->vdev_fru);
7398 			vd->vdev_fru = spa_strdup(value);
7399 			sync = B_TRUE;
7400 		}
7401 	}
7402 
7403 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7404 }
7405 
7406 int
7407 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7408 {
7409 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7410 }
7411 
7412 int
7413 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7414 {
7415 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7416 }
7417 
7418 /*
7419  * ==========================================================================
7420  * SPA Scanning
7421  * ==========================================================================
7422  */
7423 int
7424 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7425 {
7426 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7427 
7428 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7429 		return (SET_ERROR(EBUSY));
7430 
7431 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7432 }
7433 
7434 int
7435 spa_scan_stop(spa_t *spa)
7436 {
7437 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7438 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7439 		return (SET_ERROR(EBUSY));
7440 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7441 }
7442 
7443 int
7444 spa_scan(spa_t *spa, pool_scan_func_t func)
7445 {
7446 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7447 
7448 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7449 		return (SET_ERROR(ENOTSUP));
7450 
7451 	if (func == POOL_SCAN_RESILVER &&
7452 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7453 		return (SET_ERROR(ENOTSUP));
7454 
7455 	/*
7456 	 * If a resilver was requested, but there is no DTL on a
7457 	 * writeable leaf device, we have nothing to do.
7458 	 */
7459 	if (func == POOL_SCAN_RESILVER &&
7460 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7461 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7462 		return (0);
7463 	}
7464 
7465 	return (dsl_scan(spa->spa_dsl_pool, func));
7466 }
7467 
7468 /*
7469  * ==========================================================================
7470  * SPA async task processing
7471  * ==========================================================================
7472  */
7473 
7474 static void
7475 spa_async_remove(spa_t *spa, vdev_t *vd)
7476 {
7477 	if (vd->vdev_remove_wanted) {
7478 		vd->vdev_remove_wanted = B_FALSE;
7479 		vd->vdev_delayed_close = B_FALSE;
7480 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7481 
7482 		/*
7483 		 * We want to clear the stats, but we don't want to do a full
7484 		 * vdev_clear() as that will cause us to throw away
7485 		 * degraded/faulted state as well as attempt to reopen the
7486 		 * device, all of which is a waste.
7487 		 */
7488 		vd->vdev_stat.vs_read_errors = 0;
7489 		vd->vdev_stat.vs_write_errors = 0;
7490 		vd->vdev_stat.vs_checksum_errors = 0;
7491 
7492 		vdev_state_dirty(vd->vdev_top);
7493 	}
7494 
7495 	for (int c = 0; c < vd->vdev_children; c++)
7496 		spa_async_remove(spa, vd->vdev_child[c]);
7497 }
7498 
7499 static void
7500 spa_async_probe(spa_t *spa, vdev_t *vd)
7501 {
7502 	if (vd->vdev_probe_wanted) {
7503 		vd->vdev_probe_wanted = B_FALSE;
7504 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7505 	}
7506 
7507 	for (int c = 0; c < vd->vdev_children; c++)
7508 		spa_async_probe(spa, vd->vdev_child[c]);
7509 }
7510 
7511 static void
7512 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7513 {
7514 	sysevent_id_t eid;
7515 	nvlist_t *attr;
7516 	char *physpath;
7517 
7518 	if (!spa->spa_autoexpand)
7519 		return;
7520 
7521 	for (int c = 0; c < vd->vdev_children; c++) {
7522 		vdev_t *cvd = vd->vdev_child[c];
7523 		spa_async_autoexpand(spa, cvd);
7524 	}
7525 
7526 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7527 		return;
7528 
7529 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7530 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7531 
7532 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7533 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
7534 
7535 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7536 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
7537 
7538 	nvlist_free(attr);
7539 	kmem_free(physpath, MAXPATHLEN);
7540 }
7541 
7542 static void
7543 spa_async_thread(void *arg)
7544 {
7545 	spa_t *spa = (spa_t *)arg;
7546 	dsl_pool_t *dp = spa->spa_dsl_pool;
7547 	int tasks;
7548 
7549 	ASSERT(spa->spa_sync_on);
7550 
7551 	mutex_enter(&spa->spa_async_lock);
7552 	tasks = spa->spa_async_tasks;
7553 	spa->spa_async_tasks = 0;
7554 	mutex_exit(&spa->spa_async_lock);
7555 
7556 	/*
7557 	 * See if the config needs to be updated.
7558 	 */
7559 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7560 		uint64_t old_space, new_space;
7561 
7562 		mutex_enter(&spa_namespace_lock);
7563 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7564 		old_space += metaslab_class_get_space(spa_special_class(spa));
7565 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
7566 
7567 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7568 
7569 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7570 		new_space += metaslab_class_get_space(spa_special_class(spa));
7571 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
7572 		mutex_exit(&spa_namespace_lock);
7573 
7574 		/*
7575 		 * If the pool grew as a result of the config update,
7576 		 * then log an internal history event.
7577 		 */
7578 		if (new_space != old_space) {
7579 			spa_history_log_internal(spa, "vdev online", NULL,
7580 			    "pool '%s' size: %llu(+%llu)",
7581 			    spa_name(spa), new_space, new_space - old_space);
7582 		}
7583 	}
7584 
7585 	/*
7586 	 * See if any devices need to be marked REMOVED.
7587 	 */
7588 	if (tasks & SPA_ASYNC_REMOVE) {
7589 		spa_vdev_state_enter(spa, SCL_NONE);
7590 		spa_async_remove(spa, spa->spa_root_vdev);
7591 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7592 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7593 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7594 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7595 		(void) spa_vdev_state_exit(spa, NULL, 0);
7596 	}
7597 
7598 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7599 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7600 		spa_async_autoexpand(spa, spa->spa_root_vdev);
7601 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7602 	}
7603 
7604 	/*
7605 	 * See if any devices need to be probed.
7606 	 */
7607 	if (tasks & SPA_ASYNC_PROBE) {
7608 		spa_vdev_state_enter(spa, SCL_NONE);
7609 		spa_async_probe(spa, spa->spa_root_vdev);
7610 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7611 			spa_async_probe(spa, spa->spa_spares.sav_vdevs[i]);
7612 		(void) spa_vdev_state_exit(spa, NULL, 0);
7613 	}
7614 
7615 	/*
7616 	 * If any devices are done replacing, detach them.
7617 	 */
7618 	if (tasks & SPA_ASYNC_RESILVER_DONE)
7619 		spa_vdev_resilver_done(spa);
7620 
7621 	/*
7622 	 * Kick off a resilver.
7623 	 */
7624 	if (tasks & SPA_ASYNC_RESILVER &&
7625 	    (!dsl_scan_resilvering(dp) ||
7626 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7627 		dsl_scan_restart_resilver(dp, 0);
7628 
7629 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7630 		mutex_enter(&spa_namespace_lock);
7631 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7632 		vdev_initialize_restart(spa->spa_root_vdev);
7633 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7634 		mutex_exit(&spa_namespace_lock);
7635 	}
7636 
7637 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
7638 		mutex_enter(&spa_namespace_lock);
7639 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7640 		vdev_trim_restart(spa->spa_root_vdev);
7641 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7642 		mutex_exit(&spa_namespace_lock);
7643 	}
7644 
7645 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
7646 		mutex_enter(&spa_namespace_lock);
7647 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7648 		vdev_autotrim_restart(spa);
7649 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7650 		mutex_exit(&spa_namespace_lock);
7651 	}
7652 
7653 	/*
7654 	 * Kick off L2 cache rebuilding.
7655 	 */
7656 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
7657 		mutex_enter(&spa_namespace_lock);
7658 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
7659 		l2arc_spa_rebuild_start(spa);
7660 		spa_config_exit(spa, SCL_L2ARC, FTAG);
7661 		mutex_exit(&spa_namespace_lock);
7662 	}
7663 
7664 	/*
7665 	 * Let the world know that we're done.
7666 	 */
7667 	mutex_enter(&spa->spa_async_lock);
7668 	spa->spa_async_thread = NULL;
7669 	cv_broadcast(&spa->spa_async_cv);
7670 	mutex_exit(&spa->spa_async_lock);
7671 	thread_exit();
7672 }
7673 
7674 void
7675 spa_async_suspend(spa_t *spa)
7676 {
7677 	mutex_enter(&spa->spa_async_lock);
7678 	spa->spa_async_suspended++;
7679 	while (spa->spa_async_thread != NULL)
7680 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7681 	mutex_exit(&spa->spa_async_lock);
7682 
7683 	spa_vdev_remove_suspend(spa);
7684 
7685 	zthr_t *condense_thread = spa->spa_condense_zthr;
7686 	if (condense_thread != NULL)
7687 		zthr_cancel(condense_thread);
7688 
7689 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7690 	if (discard_thread != NULL)
7691 		zthr_cancel(discard_thread);
7692 }
7693 
7694 void
7695 spa_async_resume(spa_t *spa)
7696 {
7697 	mutex_enter(&spa->spa_async_lock);
7698 	ASSERT(spa->spa_async_suspended != 0);
7699 	spa->spa_async_suspended--;
7700 	mutex_exit(&spa->spa_async_lock);
7701 	spa_restart_removal(spa);
7702 
7703 	zthr_t *condense_thread = spa->spa_condense_zthr;
7704 	if (condense_thread != NULL)
7705 		zthr_resume(condense_thread);
7706 
7707 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7708 	if (discard_thread != NULL)
7709 		zthr_resume(discard_thread);
7710 }
7711 
7712 static boolean_t
7713 spa_async_tasks_pending(spa_t *spa)
7714 {
7715 	uint_t non_config_tasks;
7716 	uint_t config_task;
7717 	boolean_t config_task_suspended;
7718 
7719 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7720 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7721 	if (spa->spa_ccw_fail_time == 0) {
7722 		config_task_suspended = B_FALSE;
7723 	} else {
7724 		config_task_suspended =
7725 		    (gethrtime() - spa->spa_ccw_fail_time) <
7726 		    (zfs_ccw_retry_interval * NANOSEC);
7727 	}
7728 
7729 	return (non_config_tasks || (config_task && !config_task_suspended));
7730 }
7731 
7732 static void
7733 spa_async_dispatch(spa_t *spa)
7734 {
7735 	mutex_enter(&spa->spa_async_lock);
7736 	if (spa_async_tasks_pending(spa) &&
7737 	    !spa->spa_async_suspended &&
7738 	    spa->spa_async_thread == NULL &&
7739 	    rootdir != NULL)
7740 		spa->spa_async_thread = thread_create(NULL, 0,
7741 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7742 	mutex_exit(&spa->spa_async_lock);
7743 }
7744 
7745 void
7746 spa_async_request(spa_t *spa, int task)
7747 {
7748 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7749 	mutex_enter(&spa->spa_async_lock);
7750 	spa->spa_async_tasks |= task;
7751 	mutex_exit(&spa->spa_async_lock);
7752 }
7753 
7754 int
7755 spa_async_tasks(spa_t *spa)
7756 {
7757 	return (spa->spa_async_tasks);
7758 }
7759 
7760 /*
7761  * ==========================================================================
7762  * SPA syncing routines
7763  * ==========================================================================
7764  */
7765 
7766 static int
7767 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7768 {
7769 	bpobj_t *bpo = arg;
7770 	bpobj_enqueue(bpo, bp, tx);
7771 	return (0);
7772 }
7773 
7774 static int
7775 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7776 {
7777 	zio_t *zio = arg;
7778 
7779 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7780 	    zio->io_flags));
7781 	return (0);
7782 }
7783 
7784 /*
7785  * Note: this simple function is not inlined to make it easier to dtrace the
7786  * amount of time spent syncing frees.
7787  */
7788 static void
7789 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7790 {
7791 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7792 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7793 	VERIFY(zio_wait(zio) == 0);
7794 }
7795 
7796 /*
7797  * Note: this simple function is not inlined to make it easier to dtrace the
7798  * amount of time spent syncing deferred frees.
7799  */
7800 static void
7801 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7802 {
7803 	if (spa_sync_pass(spa) != 1)
7804 		return;
7805 
7806 	/*
7807 	 * Note:
7808 	 * If the log space map feature is active, we stop deferring
7809 	 * frees to the next TXG and therefore running this function
7810 	 * would be considered a no-op as spa_deferred_bpobj should
7811 	 * not have any entries.
7812 	 *
7813 	 * That said we run this function anyway (instead of returning
7814 	 * immediately) for the edge-case scenario where we just
7815 	 * activated the log space map feature in this TXG but we have
7816 	 * deferred frees from the previous TXG.
7817 	 */
7818 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7819 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7820 	    spa_free_sync_cb, zio, tx), ==, 0);
7821 	VERIFY0(zio_wait(zio));
7822 }
7823 
7824 
7825 static void
7826 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7827 {
7828 	char *packed = NULL;
7829 	size_t bufsize;
7830 	size_t nvsize = 0;
7831 	dmu_buf_t *db;
7832 
7833 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7834 
7835 	/*
7836 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7837 	 * information.  This avoids the dmu_buf_will_dirty() path and
7838 	 * saves us a pre-read to get data we don't actually care about.
7839 	 */
7840 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7841 	packed = kmem_alloc(bufsize, KM_SLEEP);
7842 
7843 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7844 	    KM_SLEEP) == 0);
7845 	bzero(packed + nvsize, bufsize - nvsize);
7846 
7847 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7848 
7849 	kmem_free(packed, bufsize);
7850 
7851 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7852 	dmu_buf_will_dirty(db, tx);
7853 	*(uint64_t *)db->db_data = nvsize;
7854 	dmu_buf_rele(db, FTAG);
7855 }
7856 
7857 static void
7858 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7859     const char *config, const char *entry)
7860 {
7861 	nvlist_t *nvroot;
7862 	nvlist_t **list;
7863 	int i;
7864 
7865 	if (!sav->sav_sync)
7866 		return;
7867 
7868 	/*
7869 	 * Update the MOS nvlist describing the list of available devices.
7870 	 * spa_validate_aux() will have already made sure this nvlist is
7871 	 * valid and the vdevs are labeled appropriately.
7872 	 */
7873 	if (sav->sav_object == 0) {
7874 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7875 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7876 		    sizeof (uint64_t), tx);
7877 		VERIFY(zap_update(spa->spa_meta_objset,
7878 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7879 		    &sav->sav_object, tx) == 0);
7880 	}
7881 
7882 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7883 	if (sav->sav_count == 0) {
7884 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7885 	} else {
7886 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7887 		for (i = 0; i < sav->sav_count; i++)
7888 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7889 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7890 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7891 		    sav->sav_count) == 0);
7892 		for (i = 0; i < sav->sav_count; i++)
7893 			nvlist_free(list[i]);
7894 		kmem_free(list, sav->sav_count * sizeof (void *));
7895 	}
7896 
7897 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7898 	nvlist_free(nvroot);
7899 
7900 	sav->sav_sync = B_FALSE;
7901 }
7902 
7903 /*
7904  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7905  * The all-vdev ZAP must be empty.
7906  */
7907 static void
7908 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7909 {
7910 	spa_t *spa = vd->vdev_spa;
7911 	if (vd->vdev_top_zap != 0) {
7912 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7913 		    vd->vdev_top_zap, tx));
7914 	}
7915 	if (vd->vdev_leaf_zap != 0) {
7916 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7917 		    vd->vdev_leaf_zap, tx));
7918 	}
7919 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7920 		spa_avz_build(vd->vdev_child[i], avz, tx);
7921 	}
7922 }
7923 
7924 static void
7925 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7926 {
7927 	nvlist_t *config;
7928 
7929 	/*
7930 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7931 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7932 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7933 	 * need to rebuild the AVZ although the config may not be dirty.
7934 	 */
7935 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7936 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7937 		return;
7938 
7939 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7940 
7941 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7942 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7943 	    spa->spa_all_vdev_zaps != 0);
7944 
7945 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7946 		/* Make and build the new AVZ */
7947 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7948 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7949 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7950 
7951 		/* Diff old AVZ with new one */
7952 		zap_cursor_t zc;
7953 		zap_attribute_t za;
7954 
7955 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7956 		    spa->spa_all_vdev_zaps);
7957 		    zap_cursor_retrieve(&zc, &za) == 0;
7958 		    zap_cursor_advance(&zc)) {
7959 			uint64_t vdzap = za.za_first_integer;
7960 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7961 			    vdzap) == ENOENT) {
7962 				/*
7963 				 * ZAP is listed in old AVZ but not in new one;
7964 				 * destroy it
7965 				 */
7966 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7967 				    tx));
7968 			}
7969 		}
7970 
7971 		zap_cursor_fini(&zc);
7972 
7973 		/* Destroy the old AVZ */
7974 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7975 		    spa->spa_all_vdev_zaps, tx));
7976 
7977 		/* Replace the old AVZ in the dir obj with the new one */
7978 		VERIFY0(zap_update(spa->spa_meta_objset,
7979 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7980 		    sizeof (new_avz), 1, &new_avz, tx));
7981 
7982 		spa->spa_all_vdev_zaps = new_avz;
7983 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7984 		zap_cursor_t zc;
7985 		zap_attribute_t za;
7986 
7987 		/* Walk through the AVZ and destroy all listed ZAPs */
7988 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7989 		    spa->spa_all_vdev_zaps);
7990 		    zap_cursor_retrieve(&zc, &za) == 0;
7991 		    zap_cursor_advance(&zc)) {
7992 			uint64_t zap = za.za_first_integer;
7993 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7994 		}
7995 
7996 		zap_cursor_fini(&zc);
7997 
7998 		/* Destroy and unlink the AVZ itself */
7999 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8000 		    spa->spa_all_vdev_zaps, tx));
8001 		VERIFY0(zap_remove(spa->spa_meta_objset,
8002 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8003 		spa->spa_all_vdev_zaps = 0;
8004 	}
8005 
8006 	if (spa->spa_all_vdev_zaps == 0) {
8007 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8008 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8009 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8010 	}
8011 	spa->spa_avz_action = AVZ_ACTION_NONE;
8012 
8013 	/* Create ZAPs for vdevs that don't have them. */
8014 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8015 
8016 	config = spa_config_generate(spa, spa->spa_root_vdev,
8017 	    dmu_tx_get_txg(tx), B_FALSE);
8018 
8019 	/*
8020 	 * If we're upgrading the spa version then make sure that
8021 	 * the config object gets updated with the correct version.
8022 	 */
8023 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8024 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8025 		    spa->spa_uberblock.ub_version);
8026 
8027 	spa_config_exit(spa, SCL_STATE, FTAG);
8028 
8029 	nvlist_free(spa->spa_config_syncing);
8030 	spa->spa_config_syncing = config;
8031 
8032 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8033 }
8034 
8035 static void
8036 spa_sync_version(void *arg, dmu_tx_t *tx)
8037 {
8038 	uint64_t *versionp = arg;
8039 	uint64_t version = *versionp;
8040 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8041 
8042 	/*
8043 	 * Setting the version is special cased when first creating the pool.
8044 	 */
8045 	ASSERT(tx->tx_txg != TXG_INITIAL);
8046 
8047 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8048 	ASSERT(version >= spa_version(spa));
8049 
8050 	spa->spa_uberblock.ub_version = version;
8051 	vdev_config_dirty(spa->spa_root_vdev);
8052 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
8053 }
8054 
8055 /*
8056  * Set zpool properties.
8057  */
8058 static void
8059 spa_sync_props(void *arg, dmu_tx_t *tx)
8060 {
8061 	nvlist_t *nvp = arg;
8062 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8063 	objset_t *mos = spa->spa_meta_objset;
8064 	nvpair_t *elem = NULL;
8065 
8066 	mutex_enter(&spa->spa_props_lock);
8067 
8068 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8069 		uint64_t intval;
8070 		char *strval, *fname;
8071 		zpool_prop_t prop;
8072 		const char *propname;
8073 		zprop_type_t proptype;
8074 		spa_feature_t fid;
8075 
8076 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8077 		case ZPOOL_PROP_INVAL:
8078 			/*
8079 			 * We checked this earlier in spa_prop_validate().
8080 			 */
8081 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8082 
8083 			fname = strchr(nvpair_name(elem), '@') + 1;
8084 			VERIFY0(zfeature_lookup_name(fname, &fid));
8085 
8086 			spa_feature_enable(spa, fid, tx);
8087 			spa_history_log_internal(spa, "set", tx,
8088 			    "%s=enabled", nvpair_name(elem));
8089 			break;
8090 
8091 		case ZPOOL_PROP_VERSION:
8092 			intval = fnvpair_value_uint64(elem);
8093 			/*
8094 			 * The version is synced seperatly before other
8095 			 * properties and should be correct by now.
8096 			 */
8097 			ASSERT3U(spa_version(spa), >=, intval);
8098 			break;
8099 
8100 		case ZPOOL_PROP_ALTROOT:
8101 			/*
8102 			 * 'altroot' is a non-persistent property. It should
8103 			 * have been set temporarily at creation or import time.
8104 			 */
8105 			ASSERT(spa->spa_root != NULL);
8106 			break;
8107 
8108 		case ZPOOL_PROP_READONLY:
8109 		case ZPOOL_PROP_CACHEFILE:
8110 			/*
8111 			 * 'readonly' and 'cachefile' are also non-persisitent
8112 			 * properties.
8113 			 */
8114 			break;
8115 		case ZPOOL_PROP_COMMENT:
8116 			strval = fnvpair_value_string(elem);
8117 			if (spa->spa_comment != NULL)
8118 				spa_strfree(spa->spa_comment);
8119 			spa->spa_comment = spa_strdup(strval);
8120 			/*
8121 			 * We need to dirty the configuration on all the vdevs
8122 			 * so that their labels get updated.  It's unnecessary
8123 			 * to do this for pool creation since the vdev's
8124 			 * configuratoin has already been dirtied.
8125 			 */
8126 			if (tx->tx_txg != TXG_INITIAL)
8127 				vdev_config_dirty(spa->spa_root_vdev);
8128 			spa_history_log_internal(spa, "set", tx,
8129 			    "%s=%s", nvpair_name(elem), strval);
8130 			break;
8131 		default:
8132 			/*
8133 			 * Set pool property values in the poolprops mos object.
8134 			 */
8135 			if (spa->spa_pool_props_object == 0) {
8136 				spa->spa_pool_props_object =
8137 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8138 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8139 				    tx);
8140 			}
8141 
8142 			/* normalize the property name */
8143 			propname = zpool_prop_to_name(prop);
8144 			proptype = zpool_prop_get_type(prop);
8145 
8146 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8147 				ASSERT(proptype == PROP_TYPE_STRING);
8148 				strval = fnvpair_value_string(elem);
8149 				VERIFY0(zap_update(mos,
8150 				    spa->spa_pool_props_object, propname,
8151 				    1, strlen(strval) + 1, strval, tx));
8152 				spa_history_log_internal(spa, "set", tx,
8153 				    "%s=%s", nvpair_name(elem), strval);
8154 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8155 				intval = fnvpair_value_uint64(elem);
8156 
8157 				if (proptype == PROP_TYPE_INDEX) {
8158 					const char *unused;
8159 					VERIFY0(zpool_prop_index_to_string(
8160 					    prop, intval, &unused));
8161 				}
8162 				VERIFY0(zap_update(mos,
8163 				    spa->spa_pool_props_object, propname,
8164 				    8, 1, &intval, tx));
8165 				spa_history_log_internal(spa, "set", tx,
8166 				    "%s=%lld", nvpair_name(elem), intval);
8167 			} else {
8168 				ASSERT(0); /* not allowed */
8169 			}
8170 
8171 			switch (prop) {
8172 			case ZPOOL_PROP_DELEGATION:
8173 				spa->spa_delegation = intval;
8174 				break;
8175 			case ZPOOL_PROP_BOOTFS:
8176 				spa->spa_bootfs = intval;
8177 				break;
8178 			case ZPOOL_PROP_FAILUREMODE:
8179 				spa->spa_failmode = intval;
8180 				break;
8181 			case ZPOOL_PROP_AUTOTRIM:
8182 				spa->spa_autotrim = intval;
8183 				spa_async_request(spa,
8184 				    SPA_ASYNC_AUTOTRIM_RESTART);
8185 				break;
8186 			case ZPOOL_PROP_AUTOEXPAND:
8187 				spa->spa_autoexpand = intval;
8188 				if (tx->tx_txg != TXG_INITIAL)
8189 					spa_async_request(spa,
8190 					    SPA_ASYNC_AUTOEXPAND);
8191 				break;
8192 			case ZPOOL_PROP_MULTIHOST:
8193 				spa->spa_multihost = intval;
8194 				break;
8195 			case ZPOOL_PROP_DEDUPDITTO:
8196 				spa->spa_dedup_ditto = intval;
8197 				break;
8198 			default:
8199 				break;
8200 			}
8201 		}
8202 
8203 	}
8204 
8205 	mutex_exit(&spa->spa_props_lock);
8206 }
8207 
8208 /*
8209  * Perform one-time upgrade on-disk changes.  spa_version() does not
8210  * reflect the new version this txg, so there must be no changes this
8211  * txg to anything that the upgrade code depends on after it executes.
8212  * Therefore this must be called after dsl_pool_sync() does the sync
8213  * tasks.
8214  */
8215 static void
8216 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8217 {
8218 	if (spa_sync_pass(spa) != 1)
8219 		return;
8220 
8221 	dsl_pool_t *dp = spa->spa_dsl_pool;
8222 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8223 
8224 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8225 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8226 		dsl_pool_create_origin(dp, tx);
8227 
8228 		/* Keeping the origin open increases spa_minref */
8229 		spa->spa_minref += 3;
8230 	}
8231 
8232 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8233 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8234 		dsl_pool_upgrade_clones(dp, tx);
8235 	}
8236 
8237 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8238 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8239 		dsl_pool_upgrade_dir_clones(dp, tx);
8240 
8241 		/* Keeping the freedir open increases spa_minref */
8242 		spa->spa_minref += 3;
8243 	}
8244 
8245 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8246 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8247 		spa_feature_create_zap_objects(spa, tx);
8248 	}
8249 
8250 	/*
8251 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8252 	 * when possibility to use lz4 compression for metadata was added
8253 	 * Old pools that have this feature enabled must be upgraded to have
8254 	 * this feature active
8255 	 */
8256 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8257 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8258 		    SPA_FEATURE_LZ4_COMPRESS);
8259 		boolean_t lz4_ac = spa_feature_is_active(spa,
8260 		    SPA_FEATURE_LZ4_COMPRESS);
8261 
8262 		if (lz4_en && !lz4_ac)
8263 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8264 	}
8265 
8266 	/*
8267 	 * If we haven't written the salt, do so now.  Note that the
8268 	 * feature may not be activated yet, but that's fine since
8269 	 * the presence of this ZAP entry is backwards compatible.
8270 	 */
8271 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8272 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8273 		VERIFY0(zap_add(spa->spa_meta_objset,
8274 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8275 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8276 		    spa->spa_cksum_salt.zcs_bytes, tx));
8277 	}
8278 
8279 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8280 }
8281 
8282 static void
8283 vdev_indirect_state_sync_verify(vdev_t *vd)
8284 {
8285 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
8286 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
8287 
8288 	if (vd->vdev_ops == &vdev_indirect_ops) {
8289 		ASSERT(vim != NULL);
8290 		ASSERT(vib != NULL);
8291 	}
8292 
8293 	if (vdev_obsolete_sm_object(vd) != 0) {
8294 		ASSERT(vd->vdev_obsolete_sm != NULL);
8295 		ASSERT(vd->vdev_removing ||
8296 		    vd->vdev_ops == &vdev_indirect_ops);
8297 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8298 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8299 
8300 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
8301 		    space_map_object(vd->vdev_obsolete_sm));
8302 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8303 		    space_map_allocated(vd->vdev_obsolete_sm));
8304 	}
8305 	ASSERT(vd->vdev_obsolete_segments != NULL);
8306 
8307 	/*
8308 	 * Since frees / remaps to an indirect vdev can only
8309 	 * happen in syncing context, the obsolete segments
8310 	 * tree must be empty when we start syncing.
8311 	 */
8312 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8313 }
8314 
8315 /*
8316  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8317  * async write queue depth in case it changed. The max queue depth will
8318  * not change in the middle of syncing out this txg.
8319  */
8320 static void
8321 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8322 {
8323 	ASSERT(spa_writeable(spa));
8324 
8325 	vdev_t *rvd = spa->spa_root_vdev;
8326 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8327 	    zfs_vdev_queue_depth_pct / 100;
8328 	metaslab_class_t *normal = spa_normal_class(spa);
8329 	metaslab_class_t *special = spa_special_class(spa);
8330 	metaslab_class_t *dedup = spa_dedup_class(spa);
8331 
8332 	uint64_t slots_per_allocator = 0;
8333 	for (int c = 0; c < rvd->vdev_children; c++) {
8334 		vdev_t *tvd = rvd->vdev_child[c];
8335 
8336 		metaslab_group_t *mg = tvd->vdev_mg;
8337 		if (mg == NULL || !metaslab_group_initialized(mg))
8338 			continue;
8339 
8340 		metaslab_class_t *mc = mg->mg_class;
8341 		if (mc != normal && mc != special && mc != dedup)
8342 			continue;
8343 
8344 		/*
8345 		 * It is safe to do a lock-free check here because only async
8346 		 * allocations look at mg_max_alloc_queue_depth, and async
8347 		 * allocations all happen from spa_sync().
8348 		 */
8349 		for (int i = 0; i < spa->spa_alloc_count; i++)
8350 			ASSERT0(zfs_refcount_count(
8351 			    &(mg->mg_alloc_queue_depth[i])));
8352 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8353 
8354 		for (int i = 0; i < spa->spa_alloc_count; i++) {
8355 			mg->mg_cur_max_alloc_queue_depth[i] =
8356 			    zfs_vdev_def_queue_depth;
8357 		}
8358 		slots_per_allocator += zfs_vdev_def_queue_depth;
8359 	}
8360 
8361 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8362 		ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8363 		ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8364 		ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8365 		normal->mc_alloc_max_slots[i] = slots_per_allocator;
8366 		special->mc_alloc_max_slots[i] = slots_per_allocator;
8367 		dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8368 	}
8369 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8370 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8371 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8372 }
8373 
8374 static void
8375 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8376 {
8377 	ASSERT(spa_writeable(spa));
8378 
8379 	vdev_t *rvd = spa->spa_root_vdev;
8380 	for (int c = 0; c < rvd->vdev_children; c++) {
8381 		vdev_t *vd = rvd->vdev_child[c];
8382 		vdev_indirect_state_sync_verify(vd);
8383 
8384 		if (vdev_indirect_should_condense(vd)) {
8385 			spa_condense_indirect_start_sync(vd, tx);
8386 			break;
8387 		}
8388 	}
8389 }
8390 
8391 static void
8392 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8393 {
8394 	objset_t *mos = spa->spa_meta_objset;
8395 	dsl_pool_t *dp = spa->spa_dsl_pool;
8396 	uint64_t txg = tx->tx_txg;
8397 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8398 
8399 	do {
8400 		int pass = ++spa->spa_sync_pass;
8401 
8402 		spa_sync_config_object(spa, tx);
8403 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8404 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8405 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8406 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8407 		spa_errlog_sync(spa, txg);
8408 		dsl_pool_sync(dp, txg);
8409 
8410 		if (pass < zfs_sync_pass_deferred_free ||
8411 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8412 			/*
8413 			 * If the log space map feature is active we don't
8414 			 * care about deferred frees and the deferred bpobj
8415 			 * as the log space map should effectively have the
8416 			 * same results (i.e. appending only to one object).
8417 			 */
8418 			spa_sync_frees(spa, free_bpl, tx);
8419 		} else {
8420 			/*
8421 			 * We can not defer frees in pass 1, because
8422 			 * we sync the deferred frees later in pass 1.
8423 			 */
8424 			ASSERT3U(pass, >, 1);
8425 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
8426 			    &spa->spa_deferred_bpobj, tx);
8427 		}
8428 
8429 		ddt_sync(spa, txg);
8430 		dsl_scan_sync(dp, tx);
8431 		svr_sync(spa, tx);
8432 		spa_sync_upgrades(spa, tx);
8433 
8434 		spa_flush_metaslabs(spa, tx);
8435 
8436 		vdev_t *vd = NULL;
8437 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8438 		    != NULL)
8439 			vdev_sync(vd, txg);
8440 
8441 		/*
8442 		 * Note: We need to check if the MOS is dirty because we could
8443 		 * have marked the MOS dirty without updating the uberblock
8444 		 * (e.g. if we have sync tasks but no dirty user data). We need
8445 		 * to check the uberblock's rootbp because it is updated if we
8446 		 * have synced out dirty data (though in this case the MOS will
8447 		 * most likely also be dirty due to second order effects, we
8448 		 * don't want to rely on that here).
8449 		 */
8450 		if (pass == 1 &&
8451 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8452 		    !dmu_objset_is_dirty(mos, txg)) {
8453 			/*
8454 			 * Nothing changed on the first pass, therefore this
8455 			 * TXG is a no-op. Avoid syncing deferred frees, so
8456 			 * that we can keep this TXG as a no-op.
8457 			 */
8458 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8459 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8460 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8461 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8462 			break;
8463 		}
8464 
8465 		spa_sync_deferred_frees(spa, tx);
8466 	} while (dmu_objset_is_dirty(mos, txg));
8467 }
8468 
8469 /*
8470  * Rewrite the vdev configuration (which includes the uberblock) to
8471  * commit the transaction group.
8472  *
8473  * If there are no dirty vdevs, we sync the uberblock to a few random
8474  * top-level vdevs that are known to be visible in the config cache
8475  * (see spa_vdev_add() for a complete description). If there *are* dirty
8476  * vdevs, sync the uberblock to all vdevs.
8477  */
8478 static void
8479 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8480 {
8481 	vdev_t *rvd = spa->spa_root_vdev;
8482 	uint64_t txg = tx->tx_txg;
8483 
8484 	for (;;) {
8485 		int error = 0;
8486 
8487 		/*
8488 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8489 		 * while we're attempting to write the vdev labels.
8490 		 */
8491 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8492 
8493 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8494 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8495 			int svdcount = 0;
8496 			int children = rvd->vdev_children;
8497 			int c0 = spa_get_random(children);
8498 
8499 			for (int c = 0; c < children; c++) {
8500 				vdev_t *vd =
8501 				    rvd->vdev_child[(c0 + c) % children];
8502 
8503 				/* Stop when revisiting the first vdev */
8504 				if (c > 0 && svd[0] == vd)
8505 					break;
8506 
8507 				if (vd->vdev_ms_array == 0 ||
8508 				    vd->vdev_islog ||
8509 				    !vdev_is_concrete(vd))
8510 					continue;
8511 
8512 				svd[svdcount++] = vd;
8513 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8514 					break;
8515 			}
8516 			error = vdev_config_sync(svd, svdcount, txg);
8517 		} else {
8518 			error = vdev_config_sync(rvd->vdev_child,
8519 			    rvd->vdev_children, txg);
8520 		}
8521 
8522 		if (error == 0)
8523 			spa->spa_last_synced_guid = rvd->vdev_guid;
8524 
8525 		spa_config_exit(spa, SCL_STATE, FTAG);
8526 
8527 		if (error == 0)
8528 			break;
8529 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8530 		zio_resume_wait(spa);
8531 	}
8532 }
8533 
8534 /*
8535  * Sync the specified transaction group.  New blocks may be dirtied as
8536  * part of the process, so we iterate until it converges.
8537  */
8538 void
8539 spa_sync(spa_t *spa, uint64_t txg)
8540 {
8541 	vdev_t *vd = NULL;
8542 
8543 	VERIFY(spa_writeable(spa));
8544 
8545 	/*
8546 	 * Wait for i/os issued in open context that need to complete
8547 	 * before this txg syncs.
8548 	 */
8549 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8550 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8551 	    ZIO_FLAG_CANFAIL);
8552 
8553 	/*
8554 	 * Lock out configuration changes.
8555 	 */
8556 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8557 
8558 	spa->spa_syncing_txg = txg;
8559 	spa->spa_sync_pass = 0;
8560 
8561 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8562 		mutex_enter(&spa->spa_alloc_locks[i]);
8563 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8564 		mutex_exit(&spa->spa_alloc_locks[i]);
8565 	}
8566 
8567 	/*
8568 	 * If there are any pending vdev state changes, convert them
8569 	 * into config changes that go out with this transaction group.
8570 	 */
8571 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8572 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
8573 		/*
8574 		 * We need the write lock here because, for aux vdevs,
8575 		 * calling vdev_config_dirty() modifies sav_config.
8576 		 * This is ugly and will become unnecessary when we
8577 		 * eliminate the aux vdev wart by integrating all vdevs
8578 		 * into the root vdev tree.
8579 		 */
8580 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8581 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8582 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8583 			vdev_state_clean(vd);
8584 			vdev_config_dirty(vd);
8585 		}
8586 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8587 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8588 	}
8589 	spa_config_exit(spa, SCL_STATE, FTAG);
8590 
8591 	dsl_pool_t *dp = spa->spa_dsl_pool;
8592 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8593 
8594 	spa->spa_sync_starttime = gethrtime();
8595 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
8596 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
8597 
8598 	/*
8599 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8600 	 * set spa_deflate if we have no raid-z vdevs.
8601 	 */
8602 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8603 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8604 		vdev_t *rvd = spa->spa_root_vdev;
8605 
8606 		int i;
8607 		for (i = 0; i < rvd->vdev_children; i++) {
8608 			vd = rvd->vdev_child[i];
8609 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8610 				break;
8611 		}
8612 		if (i == rvd->vdev_children) {
8613 			spa->spa_deflate = TRUE;
8614 			VERIFY0(zap_add(spa->spa_meta_objset,
8615 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8616 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8617 		}
8618 	}
8619 
8620 	spa_sync_adjust_vdev_max_queue_depth(spa);
8621 
8622 	spa_sync_condense_indirect(spa, tx);
8623 
8624 	spa_sync_iterate_to_convergence(spa, tx);
8625 
8626 #ifdef ZFS_DEBUG
8627 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
8628 		/*
8629 		 * Make sure that the number of ZAPs for all the vdevs matches
8630 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
8631 		 * called if the config is dirty; otherwise there may be
8632 		 * outstanding AVZ operations that weren't completed in
8633 		 * spa_sync_config_object.
8634 		 */
8635 		uint64_t all_vdev_zap_entry_count;
8636 		ASSERT0(zap_count(spa->spa_meta_objset,
8637 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8638 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8639 		    all_vdev_zap_entry_count);
8640 	}
8641 #endif
8642 
8643 	if (spa->spa_vdev_removal != NULL) {
8644 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8645 	}
8646 
8647 	spa_sync_rewrite_vdev_config(spa, tx);
8648 	dmu_tx_commit(tx);
8649 
8650 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8651 
8652 	/*
8653 	 * Clear the dirty config list.
8654 	 */
8655 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8656 		vdev_config_clean(vd);
8657 
8658 	/*
8659 	 * Now that the new config has synced transactionally,
8660 	 * let it become visible to the config cache.
8661 	 */
8662 	if (spa->spa_config_syncing != NULL) {
8663 		spa_config_set(spa, spa->spa_config_syncing);
8664 		spa->spa_config_txg = txg;
8665 		spa->spa_config_syncing = NULL;
8666 	}
8667 
8668 	dsl_pool_sync_done(dp, txg);
8669 
8670 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8671 		mutex_enter(&spa->spa_alloc_locks[i]);
8672 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8673 		mutex_exit(&spa->spa_alloc_locks[i]);
8674 	}
8675 
8676 	/*
8677 	 * Update usable space statistics.
8678 	 */
8679 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8680 	    != NULL)
8681 		vdev_sync_done(vd, txg);
8682 
8683 	metaslab_class_evict_old(spa->spa_normal_class, txg);
8684 	metaslab_class_evict_old(spa->spa_log_class, txg);
8685 
8686 	spa_sync_close_syncing_log_sm(spa);
8687 
8688 	spa_update_dspace(spa);
8689 
8690 	/*
8691 	 * It had better be the case that we didn't dirty anything
8692 	 * since vdev_config_sync().
8693 	 */
8694 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8695 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8696 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8697 
8698 	while (zfs_pause_spa_sync)
8699 		delay(1);
8700 
8701 	spa->spa_sync_pass = 0;
8702 
8703 	/*
8704 	 * Update the last synced uberblock here. We want to do this at
8705 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8706 	 * will be guaranteed that all the processing associated with
8707 	 * that txg has been completed.
8708 	 */
8709 	spa->spa_ubsync = spa->spa_uberblock;
8710 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8711 
8712 	spa_handle_ignored_writes(spa);
8713 
8714 	/* Mark unused spares as needing a health check. */
8715 	if (spa_spare_poll_interval_seconds != 0 &&
8716 	    NSEC2SEC(gethrtime() - spa->spa_spares_last_polled) >
8717 	    spa_spare_poll_interval_seconds) {
8718 		spa_spare_poll(spa);
8719 		spa->spa_spares_last_polled = gethrtime();
8720 	}
8721 
8722 	/*
8723 	 * If any async tasks have been requested, kick them off.
8724 	 */
8725 	spa_async_dispatch(spa);
8726 }
8727 
8728 /*
8729  * Sync all pools.  We don't want to hold the namespace lock across these
8730  * operations, so we take a reference on the spa_t and drop the lock during the
8731  * sync.
8732  */
8733 void
8734 spa_sync_allpools(void)
8735 {
8736 	spa_t *spa = NULL;
8737 	mutex_enter(&spa_namespace_lock);
8738 	while ((spa = spa_next(spa)) != NULL) {
8739 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8740 		    !spa_writeable(spa) || spa_suspended(spa))
8741 			continue;
8742 		spa_open_ref(spa, FTAG);
8743 		mutex_exit(&spa_namespace_lock);
8744 		txg_wait_synced(spa_get_dsl(spa), 0);
8745 		mutex_enter(&spa_namespace_lock);
8746 		spa_close(spa, FTAG);
8747 	}
8748 	mutex_exit(&spa_namespace_lock);
8749 }
8750 
8751 /*
8752  * ==========================================================================
8753  * Miscellaneous routines
8754  * ==========================================================================
8755  */
8756 
8757 /*
8758  * Remove all pools in the system.
8759  */
8760 void
8761 spa_evict_all(void)
8762 {
8763 	spa_t *spa;
8764 
8765 	/*
8766 	 * Remove all cached state.  All pools should be closed now,
8767 	 * so every spa in the AVL tree should be unreferenced.
8768 	 */
8769 	mutex_enter(&spa_namespace_lock);
8770 	while ((spa = spa_next(NULL)) != NULL) {
8771 		/*
8772 		 * Stop async tasks.  The async thread may need to detach
8773 		 * a device that's been replaced, which requires grabbing
8774 		 * spa_namespace_lock, so we must drop it here.
8775 		 */
8776 		spa_open_ref(spa, FTAG);
8777 		mutex_exit(&spa_namespace_lock);
8778 		spa_async_suspend(spa);
8779 		mutex_enter(&spa_namespace_lock);
8780 		spa_close(spa, FTAG);
8781 
8782 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8783 			spa_unload(spa);
8784 			spa_deactivate(spa);
8785 		}
8786 		spa_remove(spa);
8787 	}
8788 	mutex_exit(&spa_namespace_lock);
8789 }
8790 
8791 vdev_t *
8792 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8793 {
8794 	vdev_t *vd;
8795 	int i;
8796 
8797 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8798 		return (vd);
8799 
8800 	if (aux) {
8801 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8802 			vd = spa->spa_l2cache.sav_vdevs[i];
8803 			if (vd->vdev_guid == guid)
8804 				return (vd);
8805 		}
8806 
8807 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8808 			vd = spa->spa_spares.sav_vdevs[i];
8809 			if (vd->vdev_guid == guid)
8810 				return (vd);
8811 		}
8812 	}
8813 
8814 	return (NULL);
8815 }
8816 
8817 void
8818 spa_upgrade(spa_t *spa, uint64_t version)
8819 {
8820 	ASSERT(spa_writeable(spa));
8821 
8822 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8823 
8824 	/*
8825 	 * This should only be called for a non-faulted pool, and since a
8826 	 * future version would result in an unopenable pool, this shouldn't be
8827 	 * possible.
8828 	 */
8829 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8830 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8831 
8832 	spa->spa_uberblock.ub_version = version;
8833 	vdev_config_dirty(spa->spa_root_vdev);
8834 
8835 	spa_config_exit(spa, SCL_ALL, FTAG);
8836 
8837 	txg_wait_synced(spa_get_dsl(spa), 0);
8838 }
8839 
8840 boolean_t
8841 spa_has_spare(spa_t *spa, uint64_t guid)
8842 {
8843 	int i;
8844 	uint64_t spareguid;
8845 	spa_aux_vdev_t *sav = &spa->spa_spares;
8846 
8847 	for (i = 0; i < sav->sav_count; i++)
8848 		if (sav->sav_vdevs[i]->vdev_guid == guid)
8849 			return (B_TRUE);
8850 
8851 	for (i = 0; i < sav->sav_npending; i++) {
8852 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8853 		    &spareguid) == 0 && spareguid == guid)
8854 			return (B_TRUE);
8855 	}
8856 
8857 	return (B_FALSE);
8858 }
8859 
8860 /*
8861  * Check if a pool has an active shared spare device.
8862  * Note: reference count of an active spare is 2, as a spare and as a replace
8863  */
8864 static boolean_t
8865 spa_has_active_shared_spare(spa_t *spa)
8866 {
8867 	int i, refcnt;
8868 	uint64_t pool;
8869 	spa_aux_vdev_t *sav = &spa->spa_spares;
8870 
8871 	for (i = 0; i < sav->sav_count; i++) {
8872 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8873 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8874 		    refcnt > 2)
8875 			return (B_TRUE);
8876 	}
8877 
8878 	return (B_FALSE);
8879 }
8880 
8881 uint64_t
8882 spa_total_metaslabs(spa_t *spa)
8883 {
8884 	vdev_t *rvd = spa->spa_root_vdev;
8885 	uint64_t m = 0;
8886 
8887 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
8888 		vdev_t *vd = rvd->vdev_child[c];
8889 		if (!vdev_is_concrete(vd))
8890 			continue;
8891 		m += vd->vdev_ms_count;
8892 	}
8893 	return (m);
8894 }
8895 
8896 sysevent_t *
8897 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8898 {
8899 	sysevent_t		*ev = NULL;
8900 #ifdef _KERNEL
8901 	sysevent_attr_list_t	*attr = NULL;
8902 	sysevent_value_t	value;
8903 
8904 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8905 	    SE_SLEEP);
8906 	ASSERT(ev != NULL);
8907 
8908 	value.value_type = SE_DATA_TYPE_STRING;
8909 	value.value.sv_string = spa_name(spa);
8910 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8911 		goto done;
8912 
8913 	value.value_type = SE_DATA_TYPE_UINT64;
8914 	value.value.sv_uint64 = spa_guid(spa);
8915 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8916 		goto done;
8917 
8918 	if (vd) {
8919 		value.value_type = SE_DATA_TYPE_UINT64;
8920 		value.value.sv_uint64 = vd->vdev_guid;
8921 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8922 		    SE_SLEEP) != 0)
8923 			goto done;
8924 
8925 		if (vd->vdev_path) {
8926 			value.value_type = SE_DATA_TYPE_STRING;
8927 			value.value.sv_string = vd->vdev_path;
8928 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8929 			    &value, SE_SLEEP) != 0)
8930 				goto done;
8931 		}
8932 	}
8933 
8934 	if (hist_nvl != NULL) {
8935 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8936 	}
8937 
8938 	if (sysevent_attach_attributes(ev, attr) != 0)
8939 		goto done;
8940 	attr = NULL;
8941 
8942 done:
8943 	if (attr)
8944 		sysevent_free_attr(attr);
8945 
8946 #endif
8947 	return (ev);
8948 }
8949 
8950 void
8951 spa_event_post(sysevent_t *ev)
8952 {
8953 #ifdef _KERNEL
8954 	sysevent_id_t		eid;
8955 
8956 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8957 	sysevent_free(ev);
8958 #endif
8959 }
8960 
8961 void
8962 spa_event_discard(sysevent_t *ev)
8963 {
8964 #ifdef _KERNEL
8965 	sysevent_free(ev);
8966 #endif
8967 }
8968 
8969 /*
8970  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8971  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8972  * filled in from the spa and (optionally) the vdev and history nvl.  This
8973  * doesn't do anything in the userland libzpool, as we don't want consumers to
8974  * misinterpret ztest or zdb as real changes.
8975  */
8976 void
8977 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8978 {
8979 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8980 }
8981