1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright 2018 Joyent, Inc. 31 * Copyright (c) 2017 Datto Inc. 32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 33 */ 34 35 /* 36 * SPA: Storage Pool Allocator 37 * 38 * This file contains all the routines used when modifying on-disk SPA state. 39 * This includes opening, importing, destroying, exporting a pool, and syncing a 40 * pool. 41 */ 42 43 #include <sys/zfs_context.h> 44 #include <sys/fm/fs/zfs.h> 45 #include <sys/spa_impl.h> 46 #include <sys/zio.h> 47 #include <sys/zio_checksum.h> 48 #include <sys/dmu.h> 49 #include <sys/dmu_tx.h> 50 #include <sys/zap.h> 51 #include <sys/zil.h> 52 #include <sys/ddt.h> 53 #include <sys/vdev_impl.h> 54 #include <sys/vdev_removal.h> 55 #include <sys/vdev_indirect_mapping.h> 56 #include <sys/vdev_indirect_births.h> 57 #include <sys/vdev_initialize.h> 58 #include <sys/metaslab.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/uberblock_impl.h> 61 #include <sys/txg.h> 62 #include <sys/avl.h> 63 #include <sys/bpobj.h> 64 #include <sys/dmu_traverse.h> 65 #include <sys/dmu_objset.h> 66 #include <sys/unique.h> 67 #include <sys/dsl_pool.h> 68 #include <sys/dsl_dataset.h> 69 #include <sys/dsl_dir.h> 70 #include <sys/dsl_prop.h> 71 #include <sys/dsl_synctask.h> 72 #include <sys/fs/zfs.h> 73 #include <sys/arc.h> 74 #include <sys/callb.h> 75 #include <sys/systeminfo.h> 76 #include <sys/spa_boot.h> 77 #include <sys/zfs_ioctl.h> 78 #include <sys/dsl_scan.h> 79 #include <sys/zfeature.h> 80 #include <sys/dsl_destroy.h> 81 #include <sys/abd.h> 82 83 #ifdef _KERNEL 84 #include <sys/bootprops.h> 85 #include <sys/callb.h> 86 #include <sys/cpupart.h> 87 #include <sys/pool.h> 88 #include <sys/sysdc.h> 89 #include <sys/zone.h> 90 #endif /* _KERNEL */ 91 92 #include "zfs_prop.h" 93 #include "zfs_comutil.h" 94 95 /* 96 * The interval, in seconds, at which failed configuration cache file writes 97 * should be retried. 98 */ 99 int zfs_ccw_retry_interval = 300; 100 101 typedef enum zti_modes { 102 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 103 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 104 ZTI_MODE_NULL, /* don't create a taskq */ 105 ZTI_NMODES 106 } zti_modes_t; 107 108 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 109 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 110 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 111 112 #define ZTI_N(n) ZTI_P(n, 1) 113 #define ZTI_ONE ZTI_N(1) 114 115 typedef struct zio_taskq_info { 116 zti_modes_t zti_mode; 117 uint_t zti_value; 118 uint_t zti_count; 119 } zio_taskq_info_t; 120 121 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 122 "issue", "issue_high", "intr", "intr_high" 123 }; 124 125 /* 126 * This table defines the taskq settings for each ZFS I/O type. When 127 * initializing a pool, we use this table to create an appropriately sized 128 * taskq. Some operations are low volume and therefore have a small, static 129 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 130 * macros. Other operations process a large amount of data; the ZTI_BATCH 131 * macro causes us to create a taskq oriented for throughput. Some operations 132 * are so high frequency and short-lived that the taskq itself can become a a 133 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 134 * additional degree of parallelism specified by the number of threads per- 135 * taskq and the number of taskqs; when dispatching an event in this case, the 136 * particular taskq is chosen at random. 137 * 138 * The different taskq priorities are to handle the different contexts (issue 139 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 140 * need to be handled with minimum delay. 141 */ 142 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 143 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 144 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 145 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 146 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 147 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 148 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 149 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 150 }; 151 152 static void spa_sync_version(void *arg, dmu_tx_t *tx); 153 static void spa_sync_props(void *arg, dmu_tx_t *tx); 154 static boolean_t spa_has_active_shared_spare(spa_t *spa); 155 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); 156 static void spa_vdev_resilver_done(spa_t *spa); 157 158 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 159 id_t zio_taskq_psrset_bind = PS_NONE; 160 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 161 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 162 163 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 164 extern int zfs_sync_pass_deferred_free; 165 166 /* 167 * Report any spa_load_verify errors found, but do not fail spa_load. 168 * This is used by zdb to analyze non-idle pools. 169 */ 170 boolean_t spa_load_verify_dryrun = B_FALSE; 171 172 /* 173 * This (illegal) pool name is used when temporarily importing a spa_t in order 174 * to get the vdev stats associated with the imported devices. 175 */ 176 #define TRYIMPORT_NAME "$import" 177 178 /* 179 * For debugging purposes: print out vdev tree during pool import. 180 */ 181 boolean_t spa_load_print_vdev_tree = B_FALSE; 182 183 /* 184 * A non-zero value for zfs_max_missing_tvds means that we allow importing 185 * pools with missing top-level vdevs. This is strictly intended for advanced 186 * pool recovery cases since missing data is almost inevitable. Pools with 187 * missing devices can only be imported read-only for safety reasons, and their 188 * fail-mode will be automatically set to "continue". 189 * 190 * With 1 missing vdev we should be able to import the pool and mount all 191 * datasets. User data that was not modified after the missing device has been 192 * added should be recoverable. This means that snapshots created prior to the 193 * addition of that device should be completely intact. 194 * 195 * With 2 missing vdevs, some datasets may fail to mount since there are 196 * dataset statistics that are stored as regular metadata. Some data might be 197 * recoverable if those vdevs were added recently. 198 * 199 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 200 * may be missing entirely. Chances of data recovery are very low. Note that 201 * there are also risks of performing an inadvertent rewind as we might be 202 * missing all the vdevs with the latest uberblocks. 203 */ 204 uint64_t zfs_max_missing_tvds = 0; 205 206 /* 207 * The parameters below are similar to zfs_max_missing_tvds but are only 208 * intended for a preliminary open of the pool with an untrusted config which 209 * might be incomplete or out-dated. 210 * 211 * We are more tolerant for pools opened from a cachefile since we could have 212 * an out-dated cachefile where a device removal was not registered. 213 * We could have set the limit arbitrarily high but in the case where devices 214 * are really missing we would want to return the proper error codes; we chose 215 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 216 * and we get a chance to retrieve the trusted config. 217 */ 218 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 219 220 /* 221 * In the case where config was assembled by scanning device paths (/dev/dsks 222 * by default) we are less tolerant since all the existing devices should have 223 * been detected and we want spa_load to return the right error codes. 224 */ 225 uint64_t zfs_max_missing_tvds_scan = 0; 226 227 /* 228 * Debugging aid that pauses spa_sync() towards the end. 229 */ 230 boolean_t zfs_pause_spa_sync = B_FALSE; 231 232 /* 233 * ========================================================================== 234 * SPA properties routines 235 * ========================================================================== 236 */ 237 238 /* 239 * Add a (source=src, propname=propval) list to an nvlist. 240 */ 241 static void 242 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 243 uint64_t intval, zprop_source_t src) 244 { 245 const char *propname = zpool_prop_to_name(prop); 246 nvlist_t *propval; 247 248 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 249 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 250 251 if (strval != NULL) 252 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 253 else 254 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 255 256 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 257 nvlist_free(propval); 258 } 259 260 /* 261 * Get property values from the spa configuration. 262 */ 263 static void 264 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 265 { 266 vdev_t *rvd = spa->spa_root_vdev; 267 dsl_pool_t *pool = spa->spa_dsl_pool; 268 uint64_t size, alloc, cap, version; 269 zprop_source_t src = ZPROP_SRC_NONE; 270 spa_config_dirent_t *dp; 271 metaslab_class_t *mc = spa_normal_class(spa); 272 273 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 274 275 if (rvd != NULL) { 276 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 277 size = metaslab_class_get_space(spa_normal_class(spa)); 278 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 279 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 280 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 281 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 282 size - alloc, src); 283 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 284 spa->spa_checkpoint_info.sci_dspace, src); 285 286 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 287 metaslab_class_fragmentation(mc), src); 288 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 289 metaslab_class_expandable_space(mc), src); 290 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 291 (spa_mode(spa) == FREAD), src); 292 293 cap = (size == 0) ? 0 : (alloc * 100 / size); 294 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 295 296 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 297 ddt_get_pool_dedup_ratio(spa), src); 298 299 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 300 rvd->vdev_state, src); 301 302 version = spa_version(spa); 303 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 304 src = ZPROP_SRC_DEFAULT; 305 else 306 src = ZPROP_SRC_LOCAL; 307 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 308 } 309 310 if (pool != NULL) { 311 /* 312 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 313 * when opening pools before this version freedir will be NULL. 314 */ 315 if (pool->dp_free_dir != NULL) { 316 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 317 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 318 src); 319 } else { 320 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 321 NULL, 0, src); 322 } 323 324 if (pool->dp_leak_dir != NULL) { 325 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 326 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 327 src); 328 } else { 329 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 330 NULL, 0, src); 331 } 332 } 333 334 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 335 336 if (spa->spa_comment != NULL) { 337 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 338 0, ZPROP_SRC_LOCAL); 339 } 340 341 if (spa->spa_root != NULL) 342 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 343 0, ZPROP_SRC_LOCAL); 344 345 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 346 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 347 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 348 } else { 349 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 350 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 351 } 352 353 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 354 if (dp->scd_path == NULL) { 355 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 356 "none", 0, ZPROP_SRC_LOCAL); 357 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 358 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 359 dp->scd_path, 0, ZPROP_SRC_LOCAL); 360 } 361 } 362 } 363 364 /* 365 * Get zpool property values. 366 */ 367 int 368 spa_prop_get(spa_t *spa, nvlist_t **nvp) 369 { 370 objset_t *mos = spa->spa_meta_objset; 371 zap_cursor_t zc; 372 zap_attribute_t za; 373 int err; 374 375 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 376 377 mutex_enter(&spa->spa_props_lock); 378 379 /* 380 * Get properties from the spa config. 381 */ 382 spa_prop_get_config(spa, nvp); 383 384 /* If no pool property object, no more prop to get. */ 385 if (mos == NULL || spa->spa_pool_props_object == 0) { 386 mutex_exit(&spa->spa_props_lock); 387 return (0); 388 } 389 390 /* 391 * Get properties from the MOS pool property object. 392 */ 393 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 394 (err = zap_cursor_retrieve(&zc, &za)) == 0; 395 zap_cursor_advance(&zc)) { 396 uint64_t intval = 0; 397 char *strval = NULL; 398 zprop_source_t src = ZPROP_SRC_DEFAULT; 399 zpool_prop_t prop; 400 401 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 402 continue; 403 404 switch (za.za_integer_length) { 405 case 8: 406 /* integer property */ 407 if (za.za_first_integer != 408 zpool_prop_default_numeric(prop)) 409 src = ZPROP_SRC_LOCAL; 410 411 if (prop == ZPOOL_PROP_BOOTFS) { 412 dsl_pool_t *dp; 413 dsl_dataset_t *ds = NULL; 414 415 dp = spa_get_dsl(spa); 416 dsl_pool_config_enter(dp, FTAG); 417 err = dsl_dataset_hold_obj(dp, 418 za.za_first_integer, FTAG, &ds); 419 if (err != 0) { 420 dsl_pool_config_exit(dp, FTAG); 421 break; 422 } 423 424 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 425 KM_SLEEP); 426 dsl_dataset_name(ds, strval); 427 dsl_dataset_rele(ds, FTAG); 428 dsl_pool_config_exit(dp, FTAG); 429 } else { 430 strval = NULL; 431 intval = za.za_first_integer; 432 } 433 434 spa_prop_add_list(*nvp, prop, strval, intval, src); 435 436 if (strval != NULL) 437 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 438 439 break; 440 441 case 1: 442 /* string property */ 443 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 444 err = zap_lookup(mos, spa->spa_pool_props_object, 445 za.za_name, 1, za.za_num_integers, strval); 446 if (err) { 447 kmem_free(strval, za.za_num_integers); 448 break; 449 } 450 spa_prop_add_list(*nvp, prop, strval, 0, src); 451 kmem_free(strval, za.za_num_integers); 452 break; 453 454 default: 455 break; 456 } 457 } 458 zap_cursor_fini(&zc); 459 mutex_exit(&spa->spa_props_lock); 460 out: 461 if (err && err != ENOENT) { 462 nvlist_free(*nvp); 463 *nvp = NULL; 464 return (err); 465 } 466 467 return (0); 468 } 469 470 /* 471 * Validate the given pool properties nvlist and modify the list 472 * for the property values to be set. 473 */ 474 static int 475 spa_prop_validate(spa_t *spa, nvlist_t *props) 476 { 477 nvpair_t *elem; 478 int error = 0, reset_bootfs = 0; 479 uint64_t objnum = 0; 480 boolean_t has_feature = B_FALSE; 481 482 elem = NULL; 483 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 484 uint64_t intval; 485 char *strval, *slash, *check, *fname; 486 const char *propname = nvpair_name(elem); 487 zpool_prop_t prop = zpool_name_to_prop(propname); 488 489 switch (prop) { 490 case ZPOOL_PROP_INVAL: 491 if (!zpool_prop_feature(propname)) { 492 error = SET_ERROR(EINVAL); 493 break; 494 } 495 496 /* 497 * Sanitize the input. 498 */ 499 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 500 error = SET_ERROR(EINVAL); 501 break; 502 } 503 504 if (nvpair_value_uint64(elem, &intval) != 0) { 505 error = SET_ERROR(EINVAL); 506 break; 507 } 508 509 if (intval != 0) { 510 error = SET_ERROR(EINVAL); 511 break; 512 } 513 514 fname = strchr(propname, '@') + 1; 515 if (zfeature_lookup_name(fname, NULL) != 0) { 516 error = SET_ERROR(EINVAL); 517 break; 518 } 519 520 has_feature = B_TRUE; 521 break; 522 523 case ZPOOL_PROP_VERSION: 524 error = nvpair_value_uint64(elem, &intval); 525 if (!error && 526 (intval < spa_version(spa) || 527 intval > SPA_VERSION_BEFORE_FEATURES || 528 has_feature)) 529 error = SET_ERROR(EINVAL); 530 break; 531 532 case ZPOOL_PROP_DELEGATION: 533 case ZPOOL_PROP_AUTOREPLACE: 534 case ZPOOL_PROP_LISTSNAPS: 535 case ZPOOL_PROP_AUTOEXPAND: 536 error = nvpair_value_uint64(elem, &intval); 537 if (!error && intval > 1) 538 error = SET_ERROR(EINVAL); 539 break; 540 541 case ZPOOL_PROP_BOOTFS: 542 /* 543 * If the pool version is less than SPA_VERSION_BOOTFS, 544 * or the pool is still being created (version == 0), 545 * the bootfs property cannot be set. 546 */ 547 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 548 error = SET_ERROR(ENOTSUP); 549 break; 550 } 551 552 /* 553 * Make sure the vdev config is bootable 554 */ 555 if (!vdev_is_bootable(spa->spa_root_vdev)) { 556 error = SET_ERROR(ENOTSUP); 557 break; 558 } 559 560 reset_bootfs = 1; 561 562 error = nvpair_value_string(elem, &strval); 563 564 if (!error) { 565 objset_t *os; 566 uint64_t propval; 567 568 if (strval == NULL || strval[0] == '\0') { 569 objnum = zpool_prop_default_numeric( 570 ZPOOL_PROP_BOOTFS); 571 break; 572 } 573 574 error = dmu_objset_hold(strval, FTAG, &os); 575 if (error != 0) 576 break; 577 578 /* 579 * Must be ZPL, and its property settings 580 * must be supported by GRUB (compression 581 * is not gzip, and large blocks are not used). 582 */ 583 584 if (dmu_objset_type(os) != DMU_OST_ZFS) { 585 error = SET_ERROR(ENOTSUP); 586 } else if ((error = 587 dsl_prop_get_int_ds(dmu_objset_ds(os), 588 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 589 &propval)) == 0 && 590 !BOOTFS_COMPRESS_VALID(propval)) { 591 error = SET_ERROR(ENOTSUP); 592 } else { 593 objnum = dmu_objset_id(os); 594 } 595 dmu_objset_rele(os, FTAG); 596 } 597 break; 598 599 case ZPOOL_PROP_FAILUREMODE: 600 error = nvpair_value_uint64(elem, &intval); 601 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 602 intval > ZIO_FAILURE_MODE_PANIC)) 603 error = SET_ERROR(EINVAL); 604 605 /* 606 * This is a special case which only occurs when 607 * the pool has completely failed. This allows 608 * the user to change the in-core failmode property 609 * without syncing it out to disk (I/Os might 610 * currently be blocked). We do this by returning 611 * EIO to the caller (spa_prop_set) to trick it 612 * into thinking we encountered a property validation 613 * error. 614 */ 615 if (!error && spa_suspended(spa)) { 616 spa->spa_failmode = intval; 617 error = SET_ERROR(EIO); 618 } 619 break; 620 621 case ZPOOL_PROP_CACHEFILE: 622 if ((error = nvpair_value_string(elem, &strval)) != 0) 623 break; 624 625 if (strval[0] == '\0') 626 break; 627 628 if (strcmp(strval, "none") == 0) 629 break; 630 631 if (strval[0] != '/') { 632 error = SET_ERROR(EINVAL); 633 break; 634 } 635 636 slash = strrchr(strval, '/'); 637 ASSERT(slash != NULL); 638 639 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 640 strcmp(slash, "/..") == 0) 641 error = SET_ERROR(EINVAL); 642 break; 643 644 case ZPOOL_PROP_COMMENT: 645 if ((error = nvpair_value_string(elem, &strval)) != 0) 646 break; 647 for (check = strval; *check != '\0'; check++) { 648 /* 649 * The kernel doesn't have an easy isprint() 650 * check. For this kernel check, we merely 651 * check ASCII apart from DEL. Fix this if 652 * there is an easy-to-use kernel isprint(). 653 */ 654 if (*check >= 0x7f) { 655 error = SET_ERROR(EINVAL); 656 break; 657 } 658 } 659 if (strlen(strval) > ZPROP_MAX_COMMENT) 660 error = E2BIG; 661 break; 662 663 case ZPOOL_PROP_DEDUPDITTO: 664 if (spa_version(spa) < SPA_VERSION_DEDUP) 665 error = SET_ERROR(ENOTSUP); 666 else 667 error = nvpair_value_uint64(elem, &intval); 668 if (error == 0 && 669 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 670 error = SET_ERROR(EINVAL); 671 break; 672 } 673 674 if (error) 675 break; 676 } 677 678 if (!error && reset_bootfs) { 679 error = nvlist_remove(props, 680 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 681 682 if (!error) { 683 error = nvlist_add_uint64(props, 684 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 685 } 686 } 687 688 return (error); 689 } 690 691 void 692 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 693 { 694 char *cachefile; 695 spa_config_dirent_t *dp; 696 697 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 698 &cachefile) != 0) 699 return; 700 701 dp = kmem_alloc(sizeof (spa_config_dirent_t), 702 KM_SLEEP); 703 704 if (cachefile[0] == '\0') 705 dp->scd_path = spa_strdup(spa_config_path); 706 else if (strcmp(cachefile, "none") == 0) 707 dp->scd_path = NULL; 708 else 709 dp->scd_path = spa_strdup(cachefile); 710 711 list_insert_head(&spa->spa_config_list, dp); 712 if (need_sync) 713 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 714 } 715 716 int 717 spa_prop_set(spa_t *spa, nvlist_t *nvp) 718 { 719 int error; 720 nvpair_t *elem = NULL; 721 boolean_t need_sync = B_FALSE; 722 723 if ((error = spa_prop_validate(spa, nvp)) != 0) 724 return (error); 725 726 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 727 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 728 729 if (prop == ZPOOL_PROP_CACHEFILE || 730 prop == ZPOOL_PROP_ALTROOT || 731 prop == ZPOOL_PROP_READONLY) 732 continue; 733 734 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 735 uint64_t ver; 736 737 if (prop == ZPOOL_PROP_VERSION) { 738 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 739 } else { 740 ASSERT(zpool_prop_feature(nvpair_name(elem))); 741 ver = SPA_VERSION_FEATURES; 742 need_sync = B_TRUE; 743 } 744 745 /* Save time if the version is already set. */ 746 if (ver == spa_version(spa)) 747 continue; 748 749 /* 750 * In addition to the pool directory object, we might 751 * create the pool properties object, the features for 752 * read object, the features for write object, or the 753 * feature descriptions object. 754 */ 755 error = dsl_sync_task(spa->spa_name, NULL, 756 spa_sync_version, &ver, 757 6, ZFS_SPACE_CHECK_RESERVED); 758 if (error) 759 return (error); 760 continue; 761 } 762 763 need_sync = B_TRUE; 764 break; 765 } 766 767 if (need_sync) { 768 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 769 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 770 } 771 772 return (0); 773 } 774 775 /* 776 * If the bootfs property value is dsobj, clear it. 777 */ 778 void 779 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 780 { 781 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 782 VERIFY(zap_remove(spa->spa_meta_objset, 783 spa->spa_pool_props_object, 784 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 785 spa->spa_bootfs = 0; 786 } 787 } 788 789 /*ARGSUSED*/ 790 static int 791 spa_change_guid_check(void *arg, dmu_tx_t *tx) 792 { 793 uint64_t *newguid = arg; 794 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 795 vdev_t *rvd = spa->spa_root_vdev; 796 uint64_t vdev_state; 797 798 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 799 int error = (spa_has_checkpoint(spa)) ? 800 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 801 return (SET_ERROR(error)); 802 } 803 804 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 805 vdev_state = rvd->vdev_state; 806 spa_config_exit(spa, SCL_STATE, FTAG); 807 808 if (vdev_state != VDEV_STATE_HEALTHY) 809 return (SET_ERROR(ENXIO)); 810 811 ASSERT3U(spa_guid(spa), !=, *newguid); 812 813 return (0); 814 } 815 816 static void 817 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 818 { 819 uint64_t *newguid = arg; 820 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 821 uint64_t oldguid; 822 vdev_t *rvd = spa->spa_root_vdev; 823 824 oldguid = spa_guid(spa); 825 826 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 827 rvd->vdev_guid = *newguid; 828 rvd->vdev_guid_sum += (*newguid - oldguid); 829 vdev_config_dirty(rvd); 830 spa_config_exit(spa, SCL_STATE, FTAG); 831 832 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 833 oldguid, *newguid); 834 } 835 836 /* 837 * Change the GUID for the pool. This is done so that we can later 838 * re-import a pool built from a clone of our own vdevs. We will modify 839 * the root vdev's guid, our own pool guid, and then mark all of our 840 * vdevs dirty. Note that we must make sure that all our vdevs are 841 * online when we do this, or else any vdevs that weren't present 842 * would be orphaned from our pool. We are also going to issue a 843 * sysevent to update any watchers. 844 */ 845 int 846 spa_change_guid(spa_t *spa) 847 { 848 int error; 849 uint64_t guid; 850 851 mutex_enter(&spa->spa_vdev_top_lock); 852 mutex_enter(&spa_namespace_lock); 853 guid = spa_generate_guid(NULL); 854 855 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 856 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 857 858 if (error == 0) { 859 spa_write_cachefile(spa, B_FALSE, B_TRUE); 860 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 861 } 862 863 mutex_exit(&spa_namespace_lock); 864 mutex_exit(&spa->spa_vdev_top_lock); 865 866 return (error); 867 } 868 869 /* 870 * ========================================================================== 871 * SPA state manipulation (open/create/destroy/import/export) 872 * ========================================================================== 873 */ 874 875 static int 876 spa_error_entry_compare(const void *a, const void *b) 877 { 878 spa_error_entry_t *sa = (spa_error_entry_t *)a; 879 spa_error_entry_t *sb = (spa_error_entry_t *)b; 880 int ret; 881 882 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 883 sizeof (zbookmark_phys_t)); 884 885 if (ret < 0) 886 return (-1); 887 else if (ret > 0) 888 return (1); 889 else 890 return (0); 891 } 892 893 /* 894 * Utility function which retrieves copies of the current logs and 895 * re-initializes them in the process. 896 */ 897 void 898 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 899 { 900 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 901 902 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 903 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 904 905 avl_create(&spa->spa_errlist_scrub, 906 spa_error_entry_compare, sizeof (spa_error_entry_t), 907 offsetof(spa_error_entry_t, se_avl)); 908 avl_create(&spa->spa_errlist_last, 909 spa_error_entry_compare, sizeof (spa_error_entry_t), 910 offsetof(spa_error_entry_t, se_avl)); 911 } 912 913 static void 914 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 915 { 916 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 917 enum zti_modes mode = ztip->zti_mode; 918 uint_t value = ztip->zti_value; 919 uint_t count = ztip->zti_count; 920 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 921 char name[32]; 922 uint_t flags = 0; 923 boolean_t batch = B_FALSE; 924 925 if (mode == ZTI_MODE_NULL) { 926 tqs->stqs_count = 0; 927 tqs->stqs_taskq = NULL; 928 return; 929 } 930 931 ASSERT3U(count, >, 0); 932 933 tqs->stqs_count = count; 934 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 935 936 switch (mode) { 937 case ZTI_MODE_FIXED: 938 ASSERT3U(value, >=, 1); 939 value = MAX(value, 1); 940 break; 941 942 case ZTI_MODE_BATCH: 943 batch = B_TRUE; 944 flags |= TASKQ_THREADS_CPU_PCT; 945 value = zio_taskq_batch_pct; 946 break; 947 948 default: 949 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 950 "spa_activate()", 951 zio_type_name[t], zio_taskq_types[q], mode, value); 952 break; 953 } 954 955 for (uint_t i = 0; i < count; i++) { 956 taskq_t *tq; 957 958 if (count > 1) { 959 (void) snprintf(name, sizeof (name), "%s_%s_%u", 960 zio_type_name[t], zio_taskq_types[q], i); 961 } else { 962 (void) snprintf(name, sizeof (name), "%s_%s", 963 zio_type_name[t], zio_taskq_types[q]); 964 } 965 966 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 967 if (batch) 968 flags |= TASKQ_DC_BATCH; 969 970 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 971 spa->spa_proc, zio_taskq_basedc, flags); 972 } else { 973 pri_t pri = maxclsyspri; 974 /* 975 * The write issue taskq can be extremely CPU 976 * intensive. Run it at slightly lower priority 977 * than the other taskqs. 978 */ 979 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 980 pri--; 981 982 tq = taskq_create_proc(name, value, pri, 50, 983 INT_MAX, spa->spa_proc, flags); 984 } 985 986 tqs->stqs_taskq[i] = tq; 987 } 988 } 989 990 static void 991 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 992 { 993 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 994 995 if (tqs->stqs_taskq == NULL) { 996 ASSERT0(tqs->stqs_count); 997 return; 998 } 999 1000 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1001 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1002 taskq_destroy(tqs->stqs_taskq[i]); 1003 } 1004 1005 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1006 tqs->stqs_taskq = NULL; 1007 } 1008 1009 /* 1010 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1011 * Note that a type may have multiple discrete taskqs to avoid lock contention 1012 * on the taskq itself. In that case we choose which taskq at random by using 1013 * the low bits of gethrtime(). 1014 */ 1015 void 1016 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1017 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1018 { 1019 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1020 taskq_t *tq; 1021 1022 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1023 ASSERT3U(tqs->stqs_count, !=, 0); 1024 1025 if (tqs->stqs_count == 1) { 1026 tq = tqs->stqs_taskq[0]; 1027 } else { 1028 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 1029 } 1030 1031 taskq_dispatch_ent(tq, func, arg, flags, ent); 1032 } 1033 1034 static void 1035 spa_create_zio_taskqs(spa_t *spa) 1036 { 1037 for (int t = 0; t < ZIO_TYPES; t++) { 1038 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1039 spa_taskqs_init(spa, t, q); 1040 } 1041 } 1042 } 1043 1044 #ifdef _KERNEL 1045 static void 1046 spa_thread(void *arg) 1047 { 1048 callb_cpr_t cprinfo; 1049 1050 spa_t *spa = arg; 1051 user_t *pu = PTOU(curproc); 1052 1053 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1054 spa->spa_name); 1055 1056 ASSERT(curproc != &p0); 1057 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1058 "zpool-%s", spa->spa_name); 1059 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1060 1061 /* bind this thread to the requested psrset */ 1062 if (zio_taskq_psrset_bind != PS_NONE) { 1063 pool_lock(); 1064 mutex_enter(&cpu_lock); 1065 mutex_enter(&pidlock); 1066 mutex_enter(&curproc->p_lock); 1067 1068 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1069 0, NULL, NULL) == 0) { 1070 curthread->t_bind_pset = zio_taskq_psrset_bind; 1071 } else { 1072 cmn_err(CE_WARN, 1073 "Couldn't bind process for zfs pool \"%s\" to " 1074 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1075 } 1076 1077 mutex_exit(&curproc->p_lock); 1078 mutex_exit(&pidlock); 1079 mutex_exit(&cpu_lock); 1080 pool_unlock(); 1081 } 1082 1083 if (zio_taskq_sysdc) { 1084 sysdc_thread_enter(curthread, 100, 0); 1085 } 1086 1087 spa->spa_proc = curproc; 1088 spa->spa_did = curthread->t_did; 1089 1090 spa_create_zio_taskqs(spa); 1091 1092 mutex_enter(&spa->spa_proc_lock); 1093 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1094 1095 spa->spa_proc_state = SPA_PROC_ACTIVE; 1096 cv_broadcast(&spa->spa_proc_cv); 1097 1098 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1099 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1100 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1101 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1102 1103 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1104 spa->spa_proc_state = SPA_PROC_GONE; 1105 spa->spa_proc = &p0; 1106 cv_broadcast(&spa->spa_proc_cv); 1107 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1108 1109 mutex_enter(&curproc->p_lock); 1110 lwp_exit(); 1111 } 1112 #endif 1113 1114 /* 1115 * Activate an uninitialized pool. 1116 */ 1117 static void 1118 spa_activate(spa_t *spa, int mode) 1119 { 1120 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1121 1122 spa->spa_state = POOL_STATE_ACTIVE; 1123 spa->spa_mode = mode; 1124 1125 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1126 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1127 1128 /* Try to create a covering process */ 1129 mutex_enter(&spa->spa_proc_lock); 1130 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1131 ASSERT(spa->spa_proc == &p0); 1132 spa->spa_did = 0; 1133 1134 /* Only create a process if we're going to be around a while. */ 1135 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1136 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1137 NULL, 0) == 0) { 1138 spa->spa_proc_state = SPA_PROC_CREATED; 1139 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1140 cv_wait(&spa->spa_proc_cv, 1141 &spa->spa_proc_lock); 1142 } 1143 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1144 ASSERT(spa->spa_proc != &p0); 1145 ASSERT(spa->spa_did != 0); 1146 } else { 1147 #ifdef _KERNEL 1148 cmn_err(CE_WARN, 1149 "Couldn't create process for zfs pool \"%s\"\n", 1150 spa->spa_name); 1151 #endif 1152 } 1153 } 1154 mutex_exit(&spa->spa_proc_lock); 1155 1156 /* If we didn't create a process, we need to create our taskqs. */ 1157 if (spa->spa_proc == &p0) { 1158 spa_create_zio_taskqs(spa); 1159 } 1160 1161 for (size_t i = 0; i < TXG_SIZE; i++) { 1162 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1163 ZIO_FLAG_CANFAIL); 1164 } 1165 1166 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1167 offsetof(vdev_t, vdev_config_dirty_node)); 1168 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1169 offsetof(objset_t, os_evicting_node)); 1170 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1171 offsetof(vdev_t, vdev_state_dirty_node)); 1172 1173 txg_list_create(&spa->spa_vdev_txg_list, spa, 1174 offsetof(struct vdev, vdev_txg_node)); 1175 1176 avl_create(&spa->spa_errlist_scrub, 1177 spa_error_entry_compare, sizeof (spa_error_entry_t), 1178 offsetof(spa_error_entry_t, se_avl)); 1179 avl_create(&spa->spa_errlist_last, 1180 spa_error_entry_compare, sizeof (spa_error_entry_t), 1181 offsetof(spa_error_entry_t, se_avl)); 1182 } 1183 1184 /* 1185 * Opposite of spa_activate(). 1186 */ 1187 static void 1188 spa_deactivate(spa_t *spa) 1189 { 1190 ASSERT(spa->spa_sync_on == B_FALSE); 1191 ASSERT(spa->spa_dsl_pool == NULL); 1192 ASSERT(spa->spa_root_vdev == NULL); 1193 ASSERT(spa->spa_async_zio_root == NULL); 1194 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1195 1196 spa_evicting_os_wait(spa); 1197 1198 txg_list_destroy(&spa->spa_vdev_txg_list); 1199 1200 list_destroy(&spa->spa_config_dirty_list); 1201 list_destroy(&spa->spa_evicting_os_list); 1202 list_destroy(&spa->spa_state_dirty_list); 1203 1204 for (int t = 0; t < ZIO_TYPES; t++) { 1205 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1206 spa_taskqs_fini(spa, t, q); 1207 } 1208 } 1209 1210 for (size_t i = 0; i < TXG_SIZE; i++) { 1211 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1212 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1213 spa->spa_txg_zio[i] = NULL; 1214 } 1215 1216 metaslab_class_destroy(spa->spa_normal_class); 1217 spa->spa_normal_class = NULL; 1218 1219 metaslab_class_destroy(spa->spa_log_class); 1220 spa->spa_log_class = NULL; 1221 1222 /* 1223 * If this was part of an import or the open otherwise failed, we may 1224 * still have errors left in the queues. Empty them just in case. 1225 */ 1226 spa_errlog_drain(spa); 1227 1228 avl_destroy(&spa->spa_errlist_scrub); 1229 avl_destroy(&spa->spa_errlist_last); 1230 1231 spa->spa_state = POOL_STATE_UNINITIALIZED; 1232 1233 mutex_enter(&spa->spa_proc_lock); 1234 if (spa->spa_proc_state != SPA_PROC_NONE) { 1235 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1236 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1237 cv_broadcast(&spa->spa_proc_cv); 1238 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1239 ASSERT(spa->spa_proc != &p0); 1240 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1241 } 1242 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1243 spa->spa_proc_state = SPA_PROC_NONE; 1244 } 1245 ASSERT(spa->spa_proc == &p0); 1246 mutex_exit(&spa->spa_proc_lock); 1247 1248 /* 1249 * We want to make sure spa_thread() has actually exited the ZFS 1250 * module, so that the module can't be unloaded out from underneath 1251 * it. 1252 */ 1253 if (spa->spa_did != 0) { 1254 thread_join(spa->spa_did); 1255 spa->spa_did = 0; 1256 } 1257 } 1258 1259 /* 1260 * Verify a pool configuration, and construct the vdev tree appropriately. This 1261 * will create all the necessary vdevs in the appropriate layout, with each vdev 1262 * in the CLOSED state. This will prep the pool before open/creation/import. 1263 * All vdev validation is done by the vdev_alloc() routine. 1264 */ 1265 static int 1266 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1267 uint_t id, int atype) 1268 { 1269 nvlist_t **child; 1270 uint_t children; 1271 int error; 1272 1273 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1274 return (error); 1275 1276 if ((*vdp)->vdev_ops->vdev_op_leaf) 1277 return (0); 1278 1279 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1280 &child, &children); 1281 1282 if (error == ENOENT) 1283 return (0); 1284 1285 if (error) { 1286 vdev_free(*vdp); 1287 *vdp = NULL; 1288 return (SET_ERROR(EINVAL)); 1289 } 1290 1291 for (int c = 0; c < children; c++) { 1292 vdev_t *vd; 1293 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1294 atype)) != 0) { 1295 vdev_free(*vdp); 1296 *vdp = NULL; 1297 return (error); 1298 } 1299 } 1300 1301 ASSERT(*vdp != NULL); 1302 1303 return (0); 1304 } 1305 1306 /* 1307 * Opposite of spa_load(). 1308 */ 1309 static void 1310 spa_unload(spa_t *spa) 1311 { 1312 int i; 1313 1314 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1315 1316 spa_load_note(spa, "UNLOADING"); 1317 1318 /* 1319 * Stop async tasks. 1320 */ 1321 spa_async_suspend(spa); 1322 1323 if (spa->spa_root_vdev) { 1324 vdev_initialize_stop_all(spa->spa_root_vdev, 1325 VDEV_INITIALIZE_ACTIVE); 1326 } 1327 1328 /* 1329 * Stop syncing. 1330 */ 1331 if (spa->spa_sync_on) { 1332 txg_sync_stop(spa->spa_dsl_pool); 1333 spa->spa_sync_on = B_FALSE; 1334 } 1335 1336 /* 1337 * Even though vdev_free() also calls vdev_metaslab_fini, we need 1338 * to call it earlier, before we wait for async i/o to complete. 1339 * This ensures that there is no async metaslab prefetching, by 1340 * calling taskq_wait(mg_taskq). 1341 */ 1342 if (spa->spa_root_vdev != NULL) { 1343 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1344 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) 1345 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]); 1346 spa_config_exit(spa, SCL_ALL, spa); 1347 } 1348 1349 /* 1350 * Wait for any outstanding async I/O to complete. 1351 */ 1352 if (spa->spa_async_zio_root != NULL) { 1353 for (int i = 0; i < max_ncpus; i++) 1354 (void) zio_wait(spa->spa_async_zio_root[i]); 1355 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1356 spa->spa_async_zio_root = NULL; 1357 } 1358 1359 if (spa->spa_vdev_removal != NULL) { 1360 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1361 spa->spa_vdev_removal = NULL; 1362 } 1363 1364 if (spa->spa_condense_zthr != NULL) { 1365 ASSERT(!zthr_isrunning(spa->spa_condense_zthr)); 1366 zthr_destroy(spa->spa_condense_zthr); 1367 spa->spa_condense_zthr = NULL; 1368 } 1369 1370 if (spa->spa_checkpoint_discard_zthr != NULL) { 1371 ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr)); 1372 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1373 spa->spa_checkpoint_discard_zthr = NULL; 1374 } 1375 1376 spa_condense_fini(spa); 1377 1378 bpobj_close(&spa->spa_deferred_bpobj); 1379 1380 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1381 1382 /* 1383 * Close all vdevs. 1384 */ 1385 if (spa->spa_root_vdev) 1386 vdev_free(spa->spa_root_vdev); 1387 ASSERT(spa->spa_root_vdev == NULL); 1388 1389 /* 1390 * Close the dsl pool. 1391 */ 1392 if (spa->spa_dsl_pool) { 1393 dsl_pool_close(spa->spa_dsl_pool); 1394 spa->spa_dsl_pool = NULL; 1395 spa->spa_meta_objset = NULL; 1396 } 1397 1398 ddt_unload(spa); 1399 1400 /* 1401 * Drop and purge level 2 cache 1402 */ 1403 spa_l2cache_drop(spa); 1404 1405 for (i = 0; i < spa->spa_spares.sav_count; i++) 1406 vdev_free(spa->spa_spares.sav_vdevs[i]); 1407 if (spa->spa_spares.sav_vdevs) { 1408 kmem_free(spa->spa_spares.sav_vdevs, 1409 spa->spa_spares.sav_count * sizeof (void *)); 1410 spa->spa_spares.sav_vdevs = NULL; 1411 } 1412 if (spa->spa_spares.sav_config) { 1413 nvlist_free(spa->spa_spares.sav_config); 1414 spa->spa_spares.sav_config = NULL; 1415 } 1416 spa->spa_spares.sav_count = 0; 1417 1418 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1419 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1420 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1421 } 1422 if (spa->spa_l2cache.sav_vdevs) { 1423 kmem_free(spa->spa_l2cache.sav_vdevs, 1424 spa->spa_l2cache.sav_count * sizeof (void *)); 1425 spa->spa_l2cache.sav_vdevs = NULL; 1426 } 1427 if (spa->spa_l2cache.sav_config) { 1428 nvlist_free(spa->spa_l2cache.sav_config); 1429 spa->spa_l2cache.sav_config = NULL; 1430 } 1431 spa->spa_l2cache.sav_count = 0; 1432 1433 spa->spa_async_suspended = 0; 1434 1435 spa->spa_indirect_vdevs_loaded = B_FALSE; 1436 1437 if (spa->spa_comment != NULL) { 1438 spa_strfree(spa->spa_comment); 1439 spa->spa_comment = NULL; 1440 } 1441 1442 spa_config_exit(spa, SCL_ALL, spa); 1443 } 1444 1445 /* 1446 * Load (or re-load) the current list of vdevs describing the active spares for 1447 * this pool. When this is called, we have some form of basic information in 1448 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1449 * then re-generate a more complete list including status information. 1450 */ 1451 void 1452 spa_load_spares(spa_t *spa) 1453 { 1454 nvlist_t **spares; 1455 uint_t nspares; 1456 int i; 1457 vdev_t *vd, *tvd; 1458 1459 #ifndef _KERNEL 1460 /* 1461 * zdb opens both the current state of the pool and the 1462 * checkpointed state (if present), with a different spa_t. 1463 * 1464 * As spare vdevs are shared among open pools, we skip loading 1465 * them when we load the checkpointed state of the pool. 1466 */ 1467 if (!spa_writeable(spa)) 1468 return; 1469 #endif 1470 1471 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1472 1473 /* 1474 * First, close and free any existing spare vdevs. 1475 */ 1476 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1477 vd = spa->spa_spares.sav_vdevs[i]; 1478 1479 /* Undo the call to spa_activate() below */ 1480 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1481 B_FALSE)) != NULL && tvd->vdev_isspare) 1482 spa_spare_remove(tvd); 1483 vdev_close(vd); 1484 vdev_free(vd); 1485 } 1486 1487 if (spa->spa_spares.sav_vdevs) 1488 kmem_free(spa->spa_spares.sav_vdevs, 1489 spa->spa_spares.sav_count * sizeof (void *)); 1490 1491 if (spa->spa_spares.sav_config == NULL) 1492 nspares = 0; 1493 else 1494 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1495 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1496 1497 spa->spa_spares.sav_count = (int)nspares; 1498 spa->spa_spares.sav_vdevs = NULL; 1499 1500 if (nspares == 0) 1501 return; 1502 1503 /* 1504 * Construct the array of vdevs, opening them to get status in the 1505 * process. For each spare, there is potentially two different vdev_t 1506 * structures associated with it: one in the list of spares (used only 1507 * for basic validation purposes) and one in the active vdev 1508 * configuration (if it's spared in). During this phase we open and 1509 * validate each vdev on the spare list. If the vdev also exists in the 1510 * active configuration, then we also mark this vdev as an active spare. 1511 */ 1512 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1513 KM_SLEEP); 1514 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1515 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1516 VDEV_ALLOC_SPARE) == 0); 1517 ASSERT(vd != NULL); 1518 1519 spa->spa_spares.sav_vdevs[i] = vd; 1520 1521 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1522 B_FALSE)) != NULL) { 1523 if (!tvd->vdev_isspare) 1524 spa_spare_add(tvd); 1525 1526 /* 1527 * We only mark the spare active if we were successfully 1528 * able to load the vdev. Otherwise, importing a pool 1529 * with a bad active spare would result in strange 1530 * behavior, because multiple pool would think the spare 1531 * is actively in use. 1532 * 1533 * There is a vulnerability here to an equally bizarre 1534 * circumstance, where a dead active spare is later 1535 * brought back to life (onlined or otherwise). Given 1536 * the rarity of this scenario, and the extra complexity 1537 * it adds, we ignore the possibility. 1538 */ 1539 if (!vdev_is_dead(tvd)) 1540 spa_spare_activate(tvd); 1541 } 1542 1543 vd->vdev_top = vd; 1544 vd->vdev_aux = &spa->spa_spares; 1545 1546 if (vdev_open(vd) != 0) 1547 continue; 1548 1549 if (vdev_validate_aux(vd) == 0) 1550 spa_spare_add(vd); 1551 } 1552 1553 /* 1554 * Recompute the stashed list of spares, with status information 1555 * this time. 1556 */ 1557 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1558 DATA_TYPE_NVLIST_ARRAY) == 0); 1559 1560 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1561 KM_SLEEP); 1562 for (i = 0; i < spa->spa_spares.sav_count; i++) 1563 spares[i] = vdev_config_generate(spa, 1564 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1565 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1566 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1567 for (i = 0; i < spa->spa_spares.sav_count; i++) 1568 nvlist_free(spares[i]); 1569 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1570 } 1571 1572 /* 1573 * Load (or re-load) the current list of vdevs describing the active l2cache for 1574 * this pool. When this is called, we have some form of basic information in 1575 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1576 * then re-generate a more complete list including status information. 1577 * Devices which are already active have their details maintained, and are 1578 * not re-opened. 1579 */ 1580 void 1581 spa_load_l2cache(spa_t *spa) 1582 { 1583 nvlist_t **l2cache; 1584 uint_t nl2cache; 1585 int i, j, oldnvdevs; 1586 uint64_t guid; 1587 vdev_t *vd, **oldvdevs, **newvdevs; 1588 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1589 1590 #ifndef _KERNEL 1591 /* 1592 * zdb opens both the current state of the pool and the 1593 * checkpointed state (if present), with a different spa_t. 1594 * 1595 * As L2 caches are part of the ARC which is shared among open 1596 * pools, we skip loading them when we load the checkpointed 1597 * state of the pool. 1598 */ 1599 if (!spa_writeable(spa)) 1600 return; 1601 #endif 1602 1603 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1604 1605 if (sav->sav_config != NULL) { 1606 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1607 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1608 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1609 } else { 1610 nl2cache = 0; 1611 newvdevs = NULL; 1612 } 1613 1614 oldvdevs = sav->sav_vdevs; 1615 oldnvdevs = sav->sav_count; 1616 sav->sav_vdevs = NULL; 1617 sav->sav_count = 0; 1618 1619 /* 1620 * Process new nvlist of vdevs. 1621 */ 1622 for (i = 0; i < nl2cache; i++) { 1623 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1624 &guid) == 0); 1625 1626 newvdevs[i] = NULL; 1627 for (j = 0; j < oldnvdevs; j++) { 1628 vd = oldvdevs[j]; 1629 if (vd != NULL && guid == vd->vdev_guid) { 1630 /* 1631 * Retain previous vdev for add/remove ops. 1632 */ 1633 newvdevs[i] = vd; 1634 oldvdevs[j] = NULL; 1635 break; 1636 } 1637 } 1638 1639 if (newvdevs[i] == NULL) { 1640 /* 1641 * Create new vdev 1642 */ 1643 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1644 VDEV_ALLOC_L2CACHE) == 0); 1645 ASSERT(vd != NULL); 1646 newvdevs[i] = vd; 1647 1648 /* 1649 * Commit this vdev as an l2cache device, 1650 * even if it fails to open. 1651 */ 1652 spa_l2cache_add(vd); 1653 1654 vd->vdev_top = vd; 1655 vd->vdev_aux = sav; 1656 1657 spa_l2cache_activate(vd); 1658 1659 if (vdev_open(vd) != 0) 1660 continue; 1661 1662 (void) vdev_validate_aux(vd); 1663 1664 if (!vdev_is_dead(vd)) 1665 l2arc_add_vdev(spa, vd); 1666 } 1667 } 1668 1669 /* 1670 * Purge vdevs that were dropped 1671 */ 1672 for (i = 0; i < oldnvdevs; i++) { 1673 uint64_t pool; 1674 1675 vd = oldvdevs[i]; 1676 if (vd != NULL) { 1677 ASSERT(vd->vdev_isl2cache); 1678 1679 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1680 pool != 0ULL && l2arc_vdev_present(vd)) 1681 l2arc_remove_vdev(vd); 1682 vdev_clear_stats(vd); 1683 vdev_free(vd); 1684 } 1685 } 1686 1687 if (oldvdevs) 1688 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1689 1690 if (sav->sav_config == NULL) 1691 goto out; 1692 1693 sav->sav_vdevs = newvdevs; 1694 sav->sav_count = (int)nl2cache; 1695 1696 /* 1697 * Recompute the stashed list of l2cache devices, with status 1698 * information this time. 1699 */ 1700 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1701 DATA_TYPE_NVLIST_ARRAY) == 0); 1702 1703 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1704 for (i = 0; i < sav->sav_count; i++) 1705 l2cache[i] = vdev_config_generate(spa, 1706 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1707 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1708 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1709 out: 1710 for (i = 0; i < sav->sav_count; i++) 1711 nvlist_free(l2cache[i]); 1712 if (sav->sav_count) 1713 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1714 } 1715 1716 static int 1717 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1718 { 1719 dmu_buf_t *db; 1720 char *packed = NULL; 1721 size_t nvsize = 0; 1722 int error; 1723 *value = NULL; 1724 1725 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1726 if (error != 0) 1727 return (error); 1728 1729 nvsize = *(uint64_t *)db->db_data; 1730 dmu_buf_rele(db, FTAG); 1731 1732 packed = kmem_alloc(nvsize, KM_SLEEP); 1733 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1734 DMU_READ_PREFETCH); 1735 if (error == 0) 1736 error = nvlist_unpack(packed, nvsize, value, 0); 1737 kmem_free(packed, nvsize); 1738 1739 return (error); 1740 } 1741 1742 /* 1743 * Concrete top-level vdevs that are not missing and are not logs. At every 1744 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 1745 */ 1746 static uint64_t 1747 spa_healthy_core_tvds(spa_t *spa) 1748 { 1749 vdev_t *rvd = spa->spa_root_vdev; 1750 uint64_t tvds = 0; 1751 1752 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1753 vdev_t *vd = rvd->vdev_child[i]; 1754 if (vd->vdev_islog) 1755 continue; 1756 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 1757 tvds++; 1758 } 1759 1760 return (tvds); 1761 } 1762 1763 /* 1764 * Checks to see if the given vdev could not be opened, in which case we post a 1765 * sysevent to notify the autoreplace code that the device has been removed. 1766 */ 1767 static void 1768 spa_check_removed(vdev_t *vd) 1769 { 1770 for (uint64_t c = 0; c < vd->vdev_children; c++) 1771 spa_check_removed(vd->vdev_child[c]); 1772 1773 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1774 vdev_is_concrete(vd)) { 1775 zfs_post_autoreplace(vd->vdev_spa, vd); 1776 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 1777 } 1778 } 1779 1780 static int 1781 spa_check_for_missing_logs(spa_t *spa) 1782 { 1783 vdev_t *rvd = spa->spa_root_vdev; 1784 1785 /* 1786 * If we're doing a normal import, then build up any additional 1787 * diagnostic information about missing log devices. 1788 * We'll pass this up to the user for further processing. 1789 */ 1790 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1791 nvlist_t **child, *nv; 1792 uint64_t idx = 0; 1793 1794 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1795 KM_SLEEP); 1796 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1797 1798 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1799 vdev_t *tvd = rvd->vdev_child[c]; 1800 1801 /* 1802 * We consider a device as missing only if it failed 1803 * to open (i.e. offline or faulted is not considered 1804 * as missing). 1805 */ 1806 if (tvd->vdev_islog && 1807 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1808 child[idx++] = vdev_config_generate(spa, tvd, 1809 B_FALSE, VDEV_CONFIG_MISSING); 1810 } 1811 } 1812 1813 if (idx > 0) { 1814 fnvlist_add_nvlist_array(nv, 1815 ZPOOL_CONFIG_CHILDREN, child, idx); 1816 fnvlist_add_nvlist(spa->spa_load_info, 1817 ZPOOL_CONFIG_MISSING_DEVICES, nv); 1818 1819 for (uint64_t i = 0; i < idx; i++) 1820 nvlist_free(child[i]); 1821 } 1822 nvlist_free(nv); 1823 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1824 1825 if (idx > 0) { 1826 spa_load_failed(spa, "some log devices are missing"); 1827 vdev_dbgmsg_print_tree(rvd, 2); 1828 return (SET_ERROR(ENXIO)); 1829 } 1830 } else { 1831 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 1832 vdev_t *tvd = rvd->vdev_child[c]; 1833 1834 if (tvd->vdev_islog && 1835 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 1836 spa_set_log_state(spa, SPA_LOG_CLEAR); 1837 spa_load_note(spa, "some log devices are " 1838 "missing, ZIL is dropped."); 1839 vdev_dbgmsg_print_tree(rvd, 2); 1840 break; 1841 } 1842 } 1843 } 1844 1845 return (0); 1846 } 1847 1848 /* 1849 * Check for missing log devices 1850 */ 1851 static boolean_t 1852 spa_check_logs(spa_t *spa) 1853 { 1854 boolean_t rv = B_FALSE; 1855 dsl_pool_t *dp = spa_get_dsl(spa); 1856 1857 switch (spa->spa_log_state) { 1858 case SPA_LOG_MISSING: 1859 /* need to recheck in case slog has been restored */ 1860 case SPA_LOG_UNKNOWN: 1861 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1862 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 1863 if (rv) 1864 spa_set_log_state(spa, SPA_LOG_MISSING); 1865 break; 1866 } 1867 return (rv); 1868 } 1869 1870 static boolean_t 1871 spa_passivate_log(spa_t *spa) 1872 { 1873 vdev_t *rvd = spa->spa_root_vdev; 1874 boolean_t slog_found = B_FALSE; 1875 1876 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1877 1878 if (!spa_has_slogs(spa)) 1879 return (B_FALSE); 1880 1881 for (int c = 0; c < rvd->vdev_children; c++) { 1882 vdev_t *tvd = rvd->vdev_child[c]; 1883 metaslab_group_t *mg = tvd->vdev_mg; 1884 1885 if (tvd->vdev_islog) { 1886 metaslab_group_passivate(mg); 1887 slog_found = B_TRUE; 1888 } 1889 } 1890 1891 return (slog_found); 1892 } 1893 1894 static void 1895 spa_activate_log(spa_t *spa) 1896 { 1897 vdev_t *rvd = spa->spa_root_vdev; 1898 1899 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1900 1901 for (int c = 0; c < rvd->vdev_children; c++) { 1902 vdev_t *tvd = rvd->vdev_child[c]; 1903 metaslab_group_t *mg = tvd->vdev_mg; 1904 1905 if (tvd->vdev_islog) 1906 metaslab_group_activate(mg); 1907 } 1908 } 1909 1910 int 1911 spa_reset_logs(spa_t *spa) 1912 { 1913 int error; 1914 1915 error = dmu_objset_find(spa_name(spa), zil_reset, 1916 NULL, DS_FIND_CHILDREN); 1917 if (error == 0) { 1918 /* 1919 * We successfully offlined the log device, sync out the 1920 * current txg so that the "stubby" block can be removed 1921 * by zil_sync(). 1922 */ 1923 txg_wait_synced(spa->spa_dsl_pool, 0); 1924 } 1925 return (error); 1926 } 1927 1928 static void 1929 spa_aux_check_removed(spa_aux_vdev_t *sav) 1930 { 1931 for (int i = 0; i < sav->sav_count; i++) 1932 spa_check_removed(sav->sav_vdevs[i]); 1933 } 1934 1935 void 1936 spa_claim_notify(zio_t *zio) 1937 { 1938 spa_t *spa = zio->io_spa; 1939 1940 if (zio->io_error) 1941 return; 1942 1943 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1944 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1945 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1946 mutex_exit(&spa->spa_props_lock); 1947 } 1948 1949 typedef struct spa_load_error { 1950 uint64_t sle_meta_count; 1951 uint64_t sle_data_count; 1952 } spa_load_error_t; 1953 1954 static void 1955 spa_load_verify_done(zio_t *zio) 1956 { 1957 blkptr_t *bp = zio->io_bp; 1958 spa_load_error_t *sle = zio->io_private; 1959 dmu_object_type_t type = BP_GET_TYPE(bp); 1960 int error = zio->io_error; 1961 spa_t *spa = zio->io_spa; 1962 1963 abd_free(zio->io_abd); 1964 if (error) { 1965 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1966 type != DMU_OT_INTENT_LOG) 1967 atomic_inc_64(&sle->sle_meta_count); 1968 else 1969 atomic_inc_64(&sle->sle_data_count); 1970 } 1971 1972 mutex_enter(&spa->spa_scrub_lock); 1973 spa->spa_scrub_inflight--; 1974 cv_broadcast(&spa->spa_scrub_io_cv); 1975 mutex_exit(&spa->spa_scrub_lock); 1976 } 1977 1978 /* 1979 * Maximum number of concurrent scrub i/os to create while verifying 1980 * a pool while importing it. 1981 */ 1982 int spa_load_verify_maxinflight = 10000; 1983 boolean_t spa_load_verify_metadata = B_TRUE; 1984 boolean_t spa_load_verify_data = B_TRUE; 1985 1986 /*ARGSUSED*/ 1987 static int 1988 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1989 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1990 { 1991 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1992 return (0); 1993 /* 1994 * Note: normally this routine will not be called if 1995 * spa_load_verify_metadata is not set. However, it may be useful 1996 * to manually set the flag after the traversal has begun. 1997 */ 1998 if (!spa_load_verify_metadata) 1999 return (0); 2000 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 2001 return (0); 2002 2003 zio_t *rio = arg; 2004 size_t size = BP_GET_PSIZE(bp); 2005 2006 mutex_enter(&spa->spa_scrub_lock); 2007 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 2008 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2009 spa->spa_scrub_inflight++; 2010 mutex_exit(&spa->spa_scrub_lock); 2011 2012 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2013 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2014 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2015 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2016 return (0); 2017 } 2018 2019 /* ARGSUSED */ 2020 int 2021 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2022 { 2023 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2024 return (SET_ERROR(ENAMETOOLONG)); 2025 2026 return (0); 2027 } 2028 2029 static int 2030 spa_load_verify(spa_t *spa) 2031 { 2032 zio_t *rio; 2033 spa_load_error_t sle = { 0 }; 2034 zpool_load_policy_t policy; 2035 boolean_t verify_ok = B_FALSE; 2036 int error = 0; 2037 2038 zpool_get_load_policy(spa->spa_config, &policy); 2039 2040 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) 2041 return (0); 2042 2043 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2044 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2045 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2046 DS_FIND_CHILDREN); 2047 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2048 if (error != 0) 2049 return (error); 2050 2051 rio = zio_root(spa, NULL, &sle, 2052 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2053 2054 if (spa_load_verify_metadata) { 2055 if (spa->spa_extreme_rewind) { 2056 spa_load_note(spa, "performing a complete scan of the " 2057 "pool since extreme rewind is on. This may take " 2058 "a very long time.\n (spa_load_verify_data=%u, " 2059 "spa_load_verify_metadata=%u)", 2060 spa_load_verify_data, spa_load_verify_metadata); 2061 } 2062 error = traverse_pool(spa, spa->spa_verify_min_txg, 2063 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 2064 spa_load_verify_cb, rio); 2065 } 2066 2067 (void) zio_wait(rio); 2068 2069 spa->spa_load_meta_errors = sle.sle_meta_count; 2070 spa->spa_load_data_errors = sle.sle_data_count; 2071 2072 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2073 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2074 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2075 (u_longlong_t)sle.sle_data_count); 2076 } 2077 2078 if (spa_load_verify_dryrun || 2079 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2080 sle.sle_data_count <= policy.zlp_maxdata)) { 2081 int64_t loss = 0; 2082 2083 verify_ok = B_TRUE; 2084 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2085 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2086 2087 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2088 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2089 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2090 VERIFY(nvlist_add_int64(spa->spa_load_info, 2091 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2092 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2093 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2094 } else { 2095 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2096 } 2097 2098 if (spa_load_verify_dryrun) 2099 return (0); 2100 2101 if (error) { 2102 if (error != ENXIO && error != EIO) 2103 error = SET_ERROR(EIO); 2104 return (error); 2105 } 2106 2107 return (verify_ok ? 0 : EIO); 2108 } 2109 2110 /* 2111 * Find a value in the pool props object. 2112 */ 2113 static void 2114 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2115 { 2116 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2117 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2118 } 2119 2120 /* 2121 * Find a value in the pool directory object. 2122 */ 2123 static int 2124 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2125 { 2126 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2127 name, sizeof (uint64_t), 1, val); 2128 2129 if (error != 0 && (error != ENOENT || log_enoent)) { 2130 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2131 "[error=%d]", name, error); 2132 } 2133 2134 return (error); 2135 } 2136 2137 static int 2138 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2139 { 2140 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2141 return (SET_ERROR(err)); 2142 } 2143 2144 static void 2145 spa_spawn_aux_threads(spa_t *spa) 2146 { 2147 ASSERT(spa_writeable(spa)); 2148 2149 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2150 2151 spa_start_indirect_condensing_thread(spa); 2152 2153 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2154 spa->spa_checkpoint_discard_zthr = 2155 zthr_create(spa_checkpoint_discard_thread_check, 2156 spa_checkpoint_discard_thread, spa); 2157 } 2158 2159 /* 2160 * Fix up config after a partly-completed split. This is done with the 2161 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2162 * pool have that entry in their config, but only the splitting one contains 2163 * a list of all the guids of the vdevs that are being split off. 2164 * 2165 * This function determines what to do with that list: either rejoin 2166 * all the disks to the pool, or complete the splitting process. To attempt 2167 * the rejoin, each disk that is offlined is marked online again, and 2168 * we do a reopen() call. If the vdev label for every disk that was 2169 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2170 * then we call vdev_split() on each disk, and complete the split. 2171 * 2172 * Otherwise we leave the config alone, with all the vdevs in place in 2173 * the original pool. 2174 */ 2175 static void 2176 spa_try_repair(spa_t *spa, nvlist_t *config) 2177 { 2178 uint_t extracted; 2179 uint64_t *glist; 2180 uint_t i, gcount; 2181 nvlist_t *nvl; 2182 vdev_t **vd; 2183 boolean_t attempt_reopen; 2184 2185 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2186 return; 2187 2188 /* check that the config is complete */ 2189 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2190 &glist, &gcount) != 0) 2191 return; 2192 2193 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2194 2195 /* attempt to online all the vdevs & validate */ 2196 attempt_reopen = B_TRUE; 2197 for (i = 0; i < gcount; i++) { 2198 if (glist[i] == 0) /* vdev is hole */ 2199 continue; 2200 2201 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2202 if (vd[i] == NULL) { 2203 /* 2204 * Don't bother attempting to reopen the disks; 2205 * just do the split. 2206 */ 2207 attempt_reopen = B_FALSE; 2208 } else { 2209 /* attempt to re-online it */ 2210 vd[i]->vdev_offline = B_FALSE; 2211 } 2212 } 2213 2214 if (attempt_reopen) { 2215 vdev_reopen(spa->spa_root_vdev); 2216 2217 /* check each device to see what state it's in */ 2218 for (extracted = 0, i = 0; i < gcount; i++) { 2219 if (vd[i] != NULL && 2220 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2221 break; 2222 ++extracted; 2223 } 2224 } 2225 2226 /* 2227 * If every disk has been moved to the new pool, or if we never 2228 * even attempted to look at them, then we split them off for 2229 * good. 2230 */ 2231 if (!attempt_reopen || gcount == extracted) { 2232 for (i = 0; i < gcount; i++) 2233 if (vd[i] != NULL) 2234 vdev_split(vd[i]); 2235 vdev_reopen(spa->spa_root_vdev); 2236 } 2237 2238 kmem_free(vd, gcount * sizeof (vdev_t *)); 2239 } 2240 2241 static int 2242 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2243 { 2244 char *ereport = FM_EREPORT_ZFS_POOL; 2245 int error; 2246 2247 spa->spa_load_state = state; 2248 2249 gethrestime(&spa->spa_loaded_ts); 2250 error = spa_load_impl(spa, type, &ereport); 2251 2252 /* 2253 * Don't count references from objsets that are already closed 2254 * and are making their way through the eviction process. 2255 */ 2256 spa_evicting_os_wait(spa); 2257 spa->spa_minref = refcount_count(&spa->spa_refcount); 2258 if (error) { 2259 if (error != EEXIST) { 2260 spa->spa_loaded_ts.tv_sec = 0; 2261 spa->spa_loaded_ts.tv_nsec = 0; 2262 } 2263 if (error != EBADF) { 2264 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2265 } 2266 } 2267 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2268 spa->spa_ena = 0; 2269 2270 return (error); 2271 } 2272 2273 /* 2274 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2275 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2276 * spa's per-vdev ZAP list. 2277 */ 2278 static uint64_t 2279 vdev_count_verify_zaps(vdev_t *vd) 2280 { 2281 spa_t *spa = vd->vdev_spa; 2282 uint64_t total = 0; 2283 if (vd->vdev_top_zap != 0) { 2284 total++; 2285 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2286 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2287 } 2288 if (vd->vdev_leaf_zap != 0) { 2289 total++; 2290 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2291 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2292 } 2293 2294 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2295 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2296 } 2297 2298 return (total); 2299 } 2300 2301 static int 2302 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 2303 { 2304 uint64_t hostid; 2305 char *hostname; 2306 uint64_t myhostid = 0; 2307 2308 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 2309 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2310 hostname = fnvlist_lookup_string(mos_config, 2311 ZPOOL_CONFIG_HOSTNAME); 2312 2313 myhostid = zone_get_hostid(NULL); 2314 2315 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 2316 cmn_err(CE_WARN, "pool '%s' could not be " 2317 "loaded as it was last accessed by " 2318 "another system (host: %s hostid: 0x%llx). " 2319 "See: http://illumos.org/msg/ZFS-8000-EY", 2320 spa_name(spa), hostname, (u_longlong_t)hostid); 2321 spa_load_failed(spa, "hostid verification failed: pool " 2322 "last accessed by host: %s (hostid: 0x%llx)", 2323 hostname, (u_longlong_t)hostid); 2324 return (SET_ERROR(EBADF)); 2325 } 2326 } 2327 2328 return (0); 2329 } 2330 2331 static int 2332 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 2333 { 2334 int error = 0; 2335 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 2336 int parse; 2337 vdev_t *rvd; 2338 uint64_t pool_guid; 2339 char *comment; 2340 2341 /* 2342 * Versioning wasn't explicitly added to the label until later, so if 2343 * it's not present treat it as the initial version. 2344 */ 2345 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2346 &spa->spa_ubsync.ub_version) != 0) 2347 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2348 2349 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 2350 spa_load_failed(spa, "invalid config provided: '%s' missing", 2351 ZPOOL_CONFIG_POOL_GUID); 2352 return (SET_ERROR(EINVAL)); 2353 } 2354 2355 /* 2356 * If we are doing an import, ensure that the pool is not already 2357 * imported by checking if its pool guid already exists in the 2358 * spa namespace. 2359 * 2360 * The only case that we allow an already imported pool to be 2361 * imported again, is when the pool is checkpointed and we want to 2362 * look at its checkpointed state from userland tools like zdb. 2363 */ 2364 #ifdef _KERNEL 2365 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2366 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2367 spa_guid_exists(pool_guid, 0)) { 2368 #else 2369 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 2370 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 2371 spa_guid_exists(pool_guid, 0) && 2372 !spa_importing_readonly_checkpoint(spa)) { 2373 #endif 2374 spa_load_failed(spa, "a pool with guid %llu is already open", 2375 (u_longlong_t)pool_guid); 2376 return (SET_ERROR(EEXIST)); 2377 } 2378 2379 spa->spa_config_guid = pool_guid; 2380 2381 nvlist_free(spa->spa_load_info); 2382 spa->spa_load_info = fnvlist_alloc(); 2383 2384 ASSERT(spa->spa_comment == NULL); 2385 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2386 spa->spa_comment = spa_strdup(comment); 2387 2388 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2389 &spa->spa_config_txg); 2390 2391 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 2392 spa->spa_config_splitting = fnvlist_dup(nvl); 2393 2394 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 2395 spa_load_failed(spa, "invalid config provided: '%s' missing", 2396 ZPOOL_CONFIG_VDEV_TREE); 2397 return (SET_ERROR(EINVAL)); 2398 } 2399 2400 /* 2401 * Create "The Godfather" zio to hold all async IOs 2402 */ 2403 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 2404 KM_SLEEP); 2405 for (int i = 0; i < max_ncpus; i++) { 2406 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 2407 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2408 ZIO_FLAG_GODFATHER); 2409 } 2410 2411 /* 2412 * Parse the configuration into a vdev tree. We explicitly set the 2413 * value that will be returned by spa_version() since parsing the 2414 * configuration requires knowing the version number. 2415 */ 2416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2417 parse = (type == SPA_IMPORT_EXISTING ? 2418 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2419 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 2420 spa_config_exit(spa, SCL_ALL, FTAG); 2421 2422 if (error != 0) { 2423 spa_load_failed(spa, "unable to parse config [error=%d]", 2424 error); 2425 return (error); 2426 } 2427 2428 ASSERT(spa->spa_root_vdev == rvd); 2429 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 2430 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 2431 2432 if (type != SPA_IMPORT_ASSEMBLE) { 2433 ASSERT(spa_guid(spa) == pool_guid); 2434 } 2435 2436 return (0); 2437 } 2438 2439 /* 2440 * Recursively open all vdevs in the vdev tree. This function is called twice: 2441 * first with the untrusted config, then with the trusted config. 2442 */ 2443 static int 2444 spa_ld_open_vdevs(spa_t *spa) 2445 { 2446 int error = 0; 2447 2448 /* 2449 * spa_missing_tvds_allowed defines how many top-level vdevs can be 2450 * missing/unopenable for the root vdev to be still considered openable. 2451 */ 2452 if (spa->spa_trust_config) { 2453 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 2454 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 2455 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 2456 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 2457 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 2458 } else { 2459 spa->spa_missing_tvds_allowed = 0; 2460 } 2461 2462 spa->spa_missing_tvds_allowed = 2463 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 2464 2465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2466 error = vdev_open(spa->spa_root_vdev); 2467 spa_config_exit(spa, SCL_ALL, FTAG); 2468 2469 if (spa->spa_missing_tvds != 0) { 2470 spa_load_note(spa, "vdev tree has %lld missing top-level " 2471 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 2472 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) { 2473 /* 2474 * Although theoretically we could allow users to open 2475 * incomplete pools in RW mode, we'd need to add a lot 2476 * of extra logic (e.g. adjust pool space to account 2477 * for missing vdevs). 2478 * This limitation also prevents users from accidentally 2479 * opening the pool in RW mode during data recovery and 2480 * damaging it further. 2481 */ 2482 spa_load_note(spa, "pools with missing top-level " 2483 "vdevs can only be opened in read-only mode."); 2484 error = SET_ERROR(ENXIO); 2485 } else { 2486 spa_load_note(spa, "current settings allow for maximum " 2487 "%lld missing top-level vdevs at this stage.", 2488 (u_longlong_t)spa->spa_missing_tvds_allowed); 2489 } 2490 } 2491 if (error != 0) { 2492 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 2493 error); 2494 } 2495 if (spa->spa_missing_tvds != 0 || error != 0) 2496 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 2497 2498 return (error); 2499 } 2500 2501 /* 2502 * We need to validate the vdev labels against the configuration that 2503 * we have in hand. This function is called twice: first with an untrusted 2504 * config, then with a trusted config. The validation is more strict when the 2505 * config is trusted. 2506 */ 2507 static int 2508 spa_ld_validate_vdevs(spa_t *spa) 2509 { 2510 int error = 0; 2511 vdev_t *rvd = spa->spa_root_vdev; 2512 2513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2514 error = vdev_validate(rvd); 2515 spa_config_exit(spa, SCL_ALL, FTAG); 2516 2517 if (error != 0) { 2518 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 2519 return (error); 2520 } 2521 2522 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 2523 spa_load_failed(spa, "cannot open vdev tree after invalidating " 2524 "some vdevs"); 2525 vdev_dbgmsg_print_tree(rvd, 2); 2526 return (SET_ERROR(ENXIO)); 2527 } 2528 2529 return (0); 2530 } 2531 2532 static void 2533 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 2534 { 2535 spa->spa_state = POOL_STATE_ACTIVE; 2536 spa->spa_ubsync = spa->spa_uberblock; 2537 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2538 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2539 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2540 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2541 spa->spa_claim_max_txg = spa->spa_first_txg; 2542 spa->spa_prev_software_version = ub->ub_software_version; 2543 } 2544 2545 static int 2546 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 2547 { 2548 vdev_t *rvd = spa->spa_root_vdev; 2549 nvlist_t *label; 2550 uberblock_t *ub = &spa->spa_uberblock; 2551 2552 /* 2553 * If we are opening the checkpointed state of the pool by 2554 * rewinding to it, at this point we will have written the 2555 * checkpointed uberblock to the vdev labels, so searching 2556 * the labels will find the right uberblock. However, if 2557 * we are opening the checkpointed state read-only, we have 2558 * not modified the labels. Therefore, we must ignore the 2559 * labels and continue using the spa_uberblock that was set 2560 * by spa_ld_checkpoint_rewind. 2561 * 2562 * Note that it would be fine to ignore the labels when 2563 * rewinding (opening writeable) as well. However, if we 2564 * crash just after writing the labels, we will end up 2565 * searching the labels. Doing so in the common case means 2566 * that this code path gets exercised normally, rather than 2567 * just in the edge case. 2568 */ 2569 if (ub->ub_checkpoint_txg != 0 && 2570 spa_importing_readonly_checkpoint(spa)) { 2571 spa_ld_select_uberblock_done(spa, ub); 2572 return (0); 2573 } 2574 2575 /* 2576 * Find the best uberblock. 2577 */ 2578 vdev_uberblock_load(rvd, ub, &label); 2579 2580 /* 2581 * If we weren't able to find a single valid uberblock, return failure. 2582 */ 2583 if (ub->ub_txg == 0) { 2584 nvlist_free(label); 2585 spa_load_failed(spa, "no valid uberblock found"); 2586 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2587 } 2588 2589 spa_load_note(spa, "using uberblock with txg=%llu", 2590 (u_longlong_t)ub->ub_txg); 2591 2592 /* 2593 * If the pool has an unsupported version we can't open it. 2594 */ 2595 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2596 nvlist_free(label); 2597 spa_load_failed(spa, "version %llu is not supported", 2598 (u_longlong_t)ub->ub_version); 2599 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2600 } 2601 2602 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2603 nvlist_t *features; 2604 2605 /* 2606 * If we weren't able to find what's necessary for reading the 2607 * MOS in the label, return failure. 2608 */ 2609 if (label == NULL) { 2610 spa_load_failed(spa, "label config unavailable"); 2611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2612 ENXIO)); 2613 } 2614 2615 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 2616 &features) != 0) { 2617 nvlist_free(label); 2618 spa_load_failed(spa, "invalid label: '%s' missing", 2619 ZPOOL_CONFIG_FEATURES_FOR_READ); 2620 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2621 ENXIO)); 2622 } 2623 2624 /* 2625 * Update our in-core representation with the definitive values 2626 * from the label. 2627 */ 2628 nvlist_free(spa->spa_label_features); 2629 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2630 } 2631 2632 nvlist_free(label); 2633 2634 /* 2635 * Look through entries in the label nvlist's features_for_read. If 2636 * there is a feature listed there which we don't understand then we 2637 * cannot open a pool. 2638 */ 2639 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2640 nvlist_t *unsup_feat; 2641 2642 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2643 0); 2644 2645 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2646 NULL); nvp != NULL; 2647 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2648 if (!zfeature_is_supported(nvpair_name(nvp))) { 2649 VERIFY(nvlist_add_string(unsup_feat, 2650 nvpair_name(nvp), "") == 0); 2651 } 2652 } 2653 2654 if (!nvlist_empty(unsup_feat)) { 2655 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2656 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2657 nvlist_free(unsup_feat); 2658 spa_load_failed(spa, "some features are unsupported"); 2659 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2660 ENOTSUP)); 2661 } 2662 2663 nvlist_free(unsup_feat); 2664 } 2665 2666 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2667 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2668 spa_try_repair(spa, spa->spa_config); 2669 spa_config_exit(spa, SCL_ALL, FTAG); 2670 nvlist_free(spa->spa_config_splitting); 2671 spa->spa_config_splitting = NULL; 2672 } 2673 2674 /* 2675 * Initialize internal SPA structures. 2676 */ 2677 spa_ld_select_uberblock_done(spa, ub); 2678 2679 return (0); 2680 } 2681 2682 static int 2683 spa_ld_open_rootbp(spa_t *spa) 2684 { 2685 int error = 0; 2686 vdev_t *rvd = spa->spa_root_vdev; 2687 2688 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2689 if (error != 0) { 2690 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 2691 "[error=%d]", error); 2692 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2693 } 2694 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2695 2696 return (0); 2697 } 2698 2699 static int 2700 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 2701 boolean_t reloading) 2702 { 2703 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 2704 nvlist_t *nv, *mos_config, *policy; 2705 int error = 0, copy_error; 2706 uint64_t healthy_tvds, healthy_tvds_mos; 2707 uint64_t mos_config_txg; 2708 2709 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 2710 != 0) 2711 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2712 2713 /* 2714 * If we're assembling a pool from a split, the config provided is 2715 * already trusted so there is nothing to do. 2716 */ 2717 if (type == SPA_IMPORT_ASSEMBLE) 2718 return (0); 2719 2720 healthy_tvds = spa_healthy_core_tvds(spa); 2721 2722 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 2723 != 0) { 2724 spa_load_failed(spa, "unable to retrieve MOS config"); 2725 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2726 } 2727 2728 /* 2729 * If we are doing an open, pool owner wasn't verified yet, thus do 2730 * the verification here. 2731 */ 2732 if (spa->spa_load_state == SPA_LOAD_OPEN) { 2733 error = spa_verify_host(spa, mos_config); 2734 if (error != 0) { 2735 nvlist_free(mos_config); 2736 return (error); 2737 } 2738 } 2739 2740 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 2741 2742 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2743 2744 /* 2745 * Build a new vdev tree from the trusted config 2746 */ 2747 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 2748 2749 /* 2750 * Vdev paths in the MOS may be obsolete. If the untrusted config was 2751 * obtained by scanning /dev/dsk, then it will have the right vdev 2752 * paths. We update the trusted MOS config with this information. 2753 * We first try to copy the paths with vdev_copy_path_strict, which 2754 * succeeds only when both configs have exactly the same vdev tree. 2755 * If that fails, we fall back to a more flexible method that has a 2756 * best effort policy. 2757 */ 2758 copy_error = vdev_copy_path_strict(rvd, mrvd); 2759 if (copy_error != 0 || spa_load_print_vdev_tree) { 2760 spa_load_note(spa, "provided vdev tree:"); 2761 vdev_dbgmsg_print_tree(rvd, 2); 2762 spa_load_note(spa, "MOS vdev tree:"); 2763 vdev_dbgmsg_print_tree(mrvd, 2); 2764 } 2765 if (copy_error != 0) { 2766 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 2767 "back to vdev_copy_path_relaxed"); 2768 vdev_copy_path_relaxed(rvd, mrvd); 2769 } 2770 2771 vdev_close(rvd); 2772 vdev_free(rvd); 2773 spa->spa_root_vdev = mrvd; 2774 rvd = mrvd; 2775 spa_config_exit(spa, SCL_ALL, FTAG); 2776 2777 /* 2778 * We will use spa_config if we decide to reload the spa or if spa_load 2779 * fails and we rewind. We must thus regenerate the config using the 2780 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 2781 * pass settings on how to load the pool and is not stored in the MOS. 2782 * We copy it over to our new, trusted config. 2783 */ 2784 mos_config_txg = fnvlist_lookup_uint64(mos_config, 2785 ZPOOL_CONFIG_POOL_TXG); 2786 nvlist_free(mos_config); 2787 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 2788 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 2789 &policy) == 0) 2790 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 2791 spa_config_set(spa, mos_config); 2792 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 2793 2794 /* 2795 * Now that we got the config from the MOS, we should be more strict 2796 * in checking blkptrs and can make assumptions about the consistency 2797 * of the vdev tree. spa_trust_config must be set to true before opening 2798 * vdevs in order for them to be writeable. 2799 */ 2800 spa->spa_trust_config = B_TRUE; 2801 2802 /* 2803 * Open and validate the new vdev tree 2804 */ 2805 error = spa_ld_open_vdevs(spa); 2806 if (error != 0) 2807 return (error); 2808 2809 error = spa_ld_validate_vdevs(spa); 2810 if (error != 0) 2811 return (error); 2812 2813 if (copy_error != 0 || spa_load_print_vdev_tree) { 2814 spa_load_note(spa, "final vdev tree:"); 2815 vdev_dbgmsg_print_tree(rvd, 2); 2816 } 2817 2818 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 2819 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 2820 /* 2821 * Sanity check to make sure that we are indeed loading the 2822 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 2823 * in the config provided and they happened to be the only ones 2824 * to have the latest uberblock, we could involuntarily perform 2825 * an extreme rewind. 2826 */ 2827 healthy_tvds_mos = spa_healthy_core_tvds(spa); 2828 if (healthy_tvds_mos - healthy_tvds >= 2829 SPA_SYNC_MIN_VDEVS) { 2830 spa_load_note(spa, "config provided misses too many " 2831 "top-level vdevs compared to MOS (%lld vs %lld). ", 2832 (u_longlong_t)healthy_tvds, 2833 (u_longlong_t)healthy_tvds_mos); 2834 spa_load_note(spa, "vdev tree:"); 2835 vdev_dbgmsg_print_tree(rvd, 2); 2836 if (reloading) { 2837 spa_load_failed(spa, "config was already " 2838 "provided from MOS. Aborting."); 2839 return (spa_vdev_err(rvd, 2840 VDEV_AUX_CORRUPT_DATA, EIO)); 2841 } 2842 spa_load_note(spa, "spa must be reloaded using MOS " 2843 "config"); 2844 return (SET_ERROR(EAGAIN)); 2845 } 2846 } 2847 2848 error = spa_check_for_missing_logs(spa); 2849 if (error != 0) 2850 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2851 2852 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 2853 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 2854 "guid sum (%llu != %llu)", 2855 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 2856 (u_longlong_t)rvd->vdev_guid_sum); 2857 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2858 ENXIO)); 2859 } 2860 2861 return (0); 2862 } 2863 2864 static int 2865 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 2866 { 2867 int error = 0; 2868 vdev_t *rvd = spa->spa_root_vdev; 2869 2870 /* 2871 * Everything that we read before spa_remove_init() must be stored 2872 * on concreted vdevs. Therefore we do this as early as possible. 2873 */ 2874 error = spa_remove_init(spa); 2875 if (error != 0) { 2876 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 2877 error); 2878 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2879 } 2880 2881 /* 2882 * Retrieve information needed to condense indirect vdev mappings. 2883 */ 2884 error = spa_condense_init(spa); 2885 if (error != 0) { 2886 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 2887 error); 2888 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 2889 } 2890 2891 return (0); 2892 } 2893 2894 static int 2895 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 2896 { 2897 int error = 0; 2898 vdev_t *rvd = spa->spa_root_vdev; 2899 2900 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2901 boolean_t missing_feat_read = B_FALSE; 2902 nvlist_t *unsup_feat, *enabled_feat; 2903 2904 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2905 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 2906 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2907 } 2908 2909 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2910 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 2911 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2912 } 2913 2914 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2915 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 2916 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2917 } 2918 2919 enabled_feat = fnvlist_alloc(); 2920 unsup_feat = fnvlist_alloc(); 2921 2922 if (!spa_features_check(spa, B_FALSE, 2923 unsup_feat, enabled_feat)) 2924 missing_feat_read = B_TRUE; 2925 2926 if (spa_writeable(spa) || 2927 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 2928 if (!spa_features_check(spa, B_TRUE, 2929 unsup_feat, enabled_feat)) { 2930 *missing_feat_writep = B_TRUE; 2931 } 2932 } 2933 2934 fnvlist_add_nvlist(spa->spa_load_info, 2935 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2936 2937 if (!nvlist_empty(unsup_feat)) { 2938 fnvlist_add_nvlist(spa->spa_load_info, 2939 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2940 } 2941 2942 fnvlist_free(enabled_feat); 2943 fnvlist_free(unsup_feat); 2944 2945 if (!missing_feat_read) { 2946 fnvlist_add_boolean(spa->spa_load_info, 2947 ZPOOL_CONFIG_CAN_RDONLY); 2948 } 2949 2950 /* 2951 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2952 * twofold: to determine whether the pool is available for 2953 * import in read-write mode and (if it is not) whether the 2954 * pool is available for import in read-only mode. If the pool 2955 * is available for import in read-write mode, it is displayed 2956 * as available in userland; if it is not available for import 2957 * in read-only mode, it is displayed as unavailable in 2958 * userland. If the pool is available for import in read-only 2959 * mode but not read-write mode, it is displayed as unavailable 2960 * in userland with a special note that the pool is actually 2961 * available for open in read-only mode. 2962 * 2963 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2964 * missing a feature for write, we must first determine whether 2965 * the pool can be opened read-only before returning to 2966 * userland in order to know whether to display the 2967 * abovementioned note. 2968 */ 2969 if (missing_feat_read || (*missing_feat_writep && 2970 spa_writeable(spa))) { 2971 spa_load_failed(spa, "pool uses unsupported features"); 2972 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2973 ENOTSUP)); 2974 } 2975 2976 /* 2977 * Load refcounts for ZFS features from disk into an in-memory 2978 * cache during SPA initialization. 2979 */ 2980 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2981 uint64_t refcount; 2982 2983 error = feature_get_refcount_from_disk(spa, 2984 &spa_feature_table[i], &refcount); 2985 if (error == 0) { 2986 spa->spa_feat_refcount_cache[i] = refcount; 2987 } else if (error == ENOTSUP) { 2988 spa->spa_feat_refcount_cache[i] = 2989 SPA_FEATURE_DISABLED; 2990 } else { 2991 spa_load_failed(spa, "error getting refcount " 2992 "for feature %s [error=%d]", 2993 spa_feature_table[i].fi_guid, error); 2994 return (spa_vdev_err(rvd, 2995 VDEV_AUX_CORRUPT_DATA, EIO)); 2996 } 2997 } 2998 } 2999 3000 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 3001 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 3002 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 3003 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3004 } 3005 3006 return (0); 3007 } 3008 3009 static int 3010 spa_ld_load_special_directories(spa_t *spa) 3011 { 3012 int error = 0; 3013 vdev_t *rvd = spa->spa_root_vdev; 3014 3015 spa->spa_is_initializing = B_TRUE; 3016 error = dsl_pool_open(spa->spa_dsl_pool); 3017 spa->spa_is_initializing = B_FALSE; 3018 if (error != 0) { 3019 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 3020 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3021 } 3022 3023 return (0); 3024 } 3025 3026 static int 3027 spa_ld_get_props(spa_t *spa) 3028 { 3029 int error = 0; 3030 uint64_t obj; 3031 vdev_t *rvd = spa->spa_root_vdev; 3032 3033 /* Grab the secret checksum salt from the MOS. */ 3034 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3035 DMU_POOL_CHECKSUM_SALT, 1, 3036 sizeof (spa->spa_cksum_salt.zcs_bytes), 3037 spa->spa_cksum_salt.zcs_bytes); 3038 if (error == ENOENT) { 3039 /* Generate a new salt for subsequent use */ 3040 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3041 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3042 } else if (error != 0) { 3043 spa_load_failed(spa, "unable to retrieve checksum salt from " 3044 "MOS [error=%d]", error); 3045 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3046 } 3047 3048 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 3049 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3050 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 3051 if (error != 0) { 3052 spa_load_failed(spa, "error opening deferred-frees bpobj " 3053 "[error=%d]", error); 3054 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3055 } 3056 3057 /* 3058 * Load the bit that tells us to use the new accounting function 3059 * (raid-z deflation). If we have an older pool, this will not 3060 * be present. 3061 */ 3062 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 3063 if (error != 0 && error != ENOENT) 3064 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3065 3066 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 3067 &spa->spa_creation_version, B_FALSE); 3068 if (error != 0 && error != ENOENT) 3069 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3070 3071 /* 3072 * Load the persistent error log. If we have an older pool, this will 3073 * not be present. 3074 */ 3075 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 3076 B_FALSE); 3077 if (error != 0 && error != ENOENT) 3078 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3079 3080 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 3081 &spa->spa_errlog_scrub, B_FALSE); 3082 if (error != 0 && error != ENOENT) 3083 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3084 3085 /* 3086 * Load the history object. If we have an older pool, this 3087 * will not be present. 3088 */ 3089 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 3090 if (error != 0 && error != ENOENT) 3091 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3092 3093 /* 3094 * Load the per-vdev ZAP map. If we have an older pool, this will not 3095 * be present; in this case, defer its creation to a later time to 3096 * avoid dirtying the MOS this early / out of sync context. See 3097 * spa_sync_config_object. 3098 */ 3099 3100 /* The sentinel is only available in the MOS config. */ 3101 nvlist_t *mos_config; 3102 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 3103 spa_load_failed(spa, "unable to retrieve MOS config"); 3104 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3105 } 3106 3107 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 3108 &spa->spa_all_vdev_zaps, B_FALSE); 3109 3110 if (error == ENOENT) { 3111 VERIFY(!nvlist_exists(mos_config, 3112 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 3113 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 3114 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3115 } else if (error != 0) { 3116 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3117 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 3118 /* 3119 * An older version of ZFS overwrote the sentinel value, so 3120 * we have orphaned per-vdev ZAPs in the MOS. Defer their 3121 * destruction to later; see spa_sync_config_object. 3122 */ 3123 spa->spa_avz_action = AVZ_ACTION_DESTROY; 3124 /* 3125 * We're assuming that no vdevs have had their ZAPs created 3126 * before this. Better be sure of it. 3127 */ 3128 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 3129 } 3130 nvlist_free(mos_config); 3131 3132 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3133 3134 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 3135 B_FALSE); 3136 if (error && error != ENOENT) 3137 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3138 3139 if (error == 0) { 3140 uint64_t autoreplace; 3141 3142 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 3143 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 3144 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 3145 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 3146 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 3147 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 3148 &spa->spa_dedup_ditto); 3149 3150 spa->spa_autoreplace = (autoreplace != 0); 3151 } 3152 3153 /* 3154 * If we are importing a pool with missing top-level vdevs, 3155 * we enforce that the pool doesn't panic or get suspended on 3156 * error since the likelihood of missing data is extremely high. 3157 */ 3158 if (spa->spa_missing_tvds > 0 && 3159 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 3160 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3161 spa_load_note(spa, "forcing failmode to 'continue' " 3162 "as some top level vdevs are missing"); 3163 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 3164 } 3165 3166 return (0); 3167 } 3168 3169 static int 3170 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 3171 { 3172 int error = 0; 3173 vdev_t *rvd = spa->spa_root_vdev; 3174 3175 /* 3176 * If we're assembling the pool from the split-off vdevs of 3177 * an existing pool, we don't want to attach the spares & cache 3178 * devices. 3179 */ 3180 3181 /* 3182 * Load any hot spares for this pool. 3183 */ 3184 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 3185 B_FALSE); 3186 if (error != 0 && error != ENOENT) 3187 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3188 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3189 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 3190 if (load_nvlist(spa, spa->spa_spares.sav_object, 3191 &spa->spa_spares.sav_config) != 0) { 3192 spa_load_failed(spa, "error loading spares nvlist"); 3193 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3194 } 3195 3196 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3197 spa_load_spares(spa); 3198 spa_config_exit(spa, SCL_ALL, FTAG); 3199 } else if (error == 0) { 3200 spa->spa_spares.sav_sync = B_TRUE; 3201 } 3202 3203 /* 3204 * Load any level 2 ARC devices for this pool. 3205 */ 3206 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 3207 &spa->spa_l2cache.sav_object, B_FALSE); 3208 if (error != 0 && error != ENOENT) 3209 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3210 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 3211 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 3212 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 3213 &spa->spa_l2cache.sav_config) != 0) { 3214 spa_load_failed(spa, "error loading l2cache nvlist"); 3215 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3216 } 3217 3218 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3219 spa_load_l2cache(spa); 3220 spa_config_exit(spa, SCL_ALL, FTAG); 3221 } else if (error == 0) { 3222 spa->spa_l2cache.sav_sync = B_TRUE; 3223 } 3224 3225 return (0); 3226 } 3227 3228 static int 3229 spa_ld_load_vdev_metadata(spa_t *spa) 3230 { 3231 int error = 0; 3232 vdev_t *rvd = spa->spa_root_vdev; 3233 3234 /* 3235 * If the 'autoreplace' property is set, then post a resource notifying 3236 * the ZFS DE that it should not issue any faults for unopenable 3237 * devices. We also iterate over the vdevs, and post a sysevent for any 3238 * unopenable vdevs so that the normal autoreplace handler can take 3239 * over. 3240 */ 3241 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3242 spa_check_removed(spa->spa_root_vdev); 3243 /* 3244 * For the import case, this is done in spa_import(), because 3245 * at this point we're using the spare definitions from 3246 * the MOS config, not necessarily from the userland config. 3247 */ 3248 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 3249 spa_aux_check_removed(&spa->spa_spares); 3250 spa_aux_check_removed(&spa->spa_l2cache); 3251 } 3252 } 3253 3254 /* 3255 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 3256 */ 3257 error = vdev_load(rvd); 3258 if (error != 0) { 3259 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 3260 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3261 } 3262 3263 /* 3264 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 3265 */ 3266 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3267 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 3268 spa_config_exit(spa, SCL_ALL, FTAG); 3269 3270 return (0); 3271 } 3272 3273 static int 3274 spa_ld_load_dedup_tables(spa_t *spa) 3275 { 3276 int error = 0; 3277 vdev_t *rvd = spa->spa_root_vdev; 3278 3279 error = ddt_load(spa); 3280 if (error != 0) { 3281 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 3282 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3283 } 3284 3285 return (0); 3286 } 3287 3288 static int 3289 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 3290 { 3291 vdev_t *rvd = spa->spa_root_vdev; 3292 3293 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 3294 boolean_t missing = spa_check_logs(spa); 3295 if (missing) { 3296 if (spa->spa_missing_tvds != 0) { 3297 spa_load_note(spa, "spa_check_logs failed " 3298 "so dropping the logs"); 3299 } else { 3300 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 3301 spa_load_failed(spa, "spa_check_logs failed"); 3302 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 3303 ENXIO)); 3304 } 3305 } 3306 } 3307 3308 return (0); 3309 } 3310 3311 static int 3312 spa_ld_verify_pool_data(spa_t *spa) 3313 { 3314 int error = 0; 3315 vdev_t *rvd = spa->spa_root_vdev; 3316 3317 /* 3318 * We've successfully opened the pool, verify that we're ready 3319 * to start pushing transactions. 3320 */ 3321 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 3322 error = spa_load_verify(spa); 3323 if (error != 0) { 3324 spa_load_failed(spa, "spa_load_verify failed " 3325 "[error=%d]", error); 3326 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3327 error)); 3328 } 3329 } 3330 3331 return (0); 3332 } 3333 3334 static void 3335 spa_ld_claim_log_blocks(spa_t *spa) 3336 { 3337 dmu_tx_t *tx; 3338 dsl_pool_t *dp = spa_get_dsl(spa); 3339 3340 /* 3341 * Claim log blocks that haven't been committed yet. 3342 * This must all happen in a single txg. 3343 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 3344 * invoked from zil_claim_log_block()'s i/o done callback. 3345 * Price of rollback is that we abandon the log. 3346 */ 3347 spa->spa_claiming = B_TRUE; 3348 3349 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 3350 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3351 zil_claim, tx, DS_FIND_CHILDREN); 3352 dmu_tx_commit(tx); 3353 3354 spa->spa_claiming = B_FALSE; 3355 3356 spa_set_log_state(spa, SPA_LOG_GOOD); 3357 } 3358 3359 static void 3360 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 3361 boolean_t update_config_cache) 3362 { 3363 vdev_t *rvd = spa->spa_root_vdev; 3364 int need_update = B_FALSE; 3365 3366 /* 3367 * If the config cache is stale, or we have uninitialized 3368 * metaslabs (see spa_vdev_add()), then update the config. 3369 * 3370 * If this is a verbatim import, trust the current 3371 * in-core spa_config and update the disk labels. 3372 */ 3373 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 3374 spa->spa_load_state == SPA_LOAD_IMPORT || 3375 spa->spa_load_state == SPA_LOAD_RECOVER || 3376 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 3377 need_update = B_TRUE; 3378 3379 for (int c = 0; c < rvd->vdev_children; c++) 3380 if (rvd->vdev_child[c]->vdev_ms_array == 0) 3381 need_update = B_TRUE; 3382 3383 /* 3384 * Update the config cache asychronously in case we're the 3385 * root pool, in which case the config cache isn't writable yet. 3386 */ 3387 if (need_update) 3388 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3389 } 3390 3391 static void 3392 spa_ld_prepare_for_reload(spa_t *spa) 3393 { 3394 int mode = spa->spa_mode; 3395 int async_suspended = spa->spa_async_suspended; 3396 3397 spa_unload(spa); 3398 spa_deactivate(spa); 3399 spa_activate(spa, mode); 3400 3401 /* 3402 * We save the value of spa_async_suspended as it gets reset to 0 by 3403 * spa_unload(). We want to restore it back to the original value before 3404 * returning as we might be calling spa_async_resume() later. 3405 */ 3406 spa->spa_async_suspended = async_suspended; 3407 } 3408 3409 static int 3410 spa_ld_read_checkpoint_txg(spa_t *spa) 3411 { 3412 uberblock_t checkpoint; 3413 int error = 0; 3414 3415 ASSERT0(spa->spa_checkpoint_txg); 3416 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3417 3418 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3419 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 3420 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 3421 3422 if (error == ENOENT) 3423 return (0); 3424 3425 if (error != 0) 3426 return (error); 3427 3428 ASSERT3U(checkpoint.ub_txg, !=, 0); 3429 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 3430 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 3431 spa->spa_checkpoint_txg = checkpoint.ub_txg; 3432 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 3433 3434 return (0); 3435 } 3436 3437 static int 3438 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 3439 { 3440 int error = 0; 3441 3442 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3443 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 3444 3445 /* 3446 * Never trust the config that is provided unless we are assembling 3447 * a pool following a split. 3448 * This means don't trust blkptrs and the vdev tree in general. This 3449 * also effectively puts the spa in read-only mode since 3450 * spa_writeable() checks for spa_trust_config to be true. 3451 * We will later load a trusted config from the MOS. 3452 */ 3453 if (type != SPA_IMPORT_ASSEMBLE) 3454 spa->spa_trust_config = B_FALSE; 3455 3456 /* 3457 * Parse the config provided to create a vdev tree. 3458 */ 3459 error = spa_ld_parse_config(spa, type); 3460 if (error != 0) 3461 return (error); 3462 3463 /* 3464 * Now that we have the vdev tree, try to open each vdev. This involves 3465 * opening the underlying physical device, retrieving its geometry and 3466 * probing the vdev with a dummy I/O. The state of each vdev will be set 3467 * based on the success of those operations. After this we'll be ready 3468 * to read from the vdevs. 3469 */ 3470 error = spa_ld_open_vdevs(spa); 3471 if (error != 0) 3472 return (error); 3473 3474 /* 3475 * Read the label of each vdev and make sure that the GUIDs stored 3476 * there match the GUIDs in the config provided. 3477 * If we're assembling a new pool that's been split off from an 3478 * existing pool, the labels haven't yet been updated so we skip 3479 * validation for now. 3480 */ 3481 if (type != SPA_IMPORT_ASSEMBLE) { 3482 error = spa_ld_validate_vdevs(spa); 3483 if (error != 0) 3484 return (error); 3485 } 3486 3487 /* 3488 * Read all vdev labels to find the best uberblock (i.e. latest, 3489 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 3490 * get the list of features required to read blkptrs in the MOS from 3491 * the vdev label with the best uberblock and verify that our version 3492 * of zfs supports them all. 3493 */ 3494 error = spa_ld_select_uberblock(spa, type); 3495 if (error != 0) 3496 return (error); 3497 3498 /* 3499 * Pass that uberblock to the dsl_pool layer which will open the root 3500 * blkptr. This blkptr points to the latest version of the MOS and will 3501 * allow us to read its contents. 3502 */ 3503 error = spa_ld_open_rootbp(spa); 3504 if (error != 0) 3505 return (error); 3506 3507 return (0); 3508 } 3509 3510 static int 3511 spa_ld_checkpoint_rewind(spa_t *spa) 3512 { 3513 uberblock_t checkpoint; 3514 int error = 0; 3515 3516 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3517 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3518 3519 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3520 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 3521 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 3522 3523 if (error != 0) { 3524 spa_load_failed(spa, "unable to retrieve checkpointed " 3525 "uberblock from the MOS config [error=%d]", error); 3526 3527 if (error == ENOENT) 3528 error = ZFS_ERR_NO_CHECKPOINT; 3529 3530 return (error); 3531 } 3532 3533 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 3534 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 3535 3536 /* 3537 * We need to update the txg and timestamp of the checkpointed 3538 * uberblock to be higher than the latest one. This ensures that 3539 * the checkpointed uberblock is selected if we were to close and 3540 * reopen the pool right after we've written it in the vdev labels. 3541 * (also see block comment in vdev_uberblock_compare) 3542 */ 3543 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 3544 checkpoint.ub_timestamp = gethrestime_sec(); 3545 3546 /* 3547 * Set current uberblock to be the checkpointed uberblock. 3548 */ 3549 spa->spa_uberblock = checkpoint; 3550 3551 /* 3552 * If we are doing a normal rewind, then the pool is open for 3553 * writing and we sync the "updated" checkpointed uberblock to 3554 * disk. Once this is done, we've basically rewound the whole 3555 * pool and there is no way back. 3556 * 3557 * There are cases when we don't want to attempt and sync the 3558 * checkpointed uberblock to disk because we are opening a 3559 * pool as read-only. Specifically, verifying the checkpointed 3560 * state with zdb, and importing the checkpointed state to get 3561 * a "preview" of its content. 3562 */ 3563 if (spa_writeable(spa)) { 3564 vdev_t *rvd = spa->spa_root_vdev; 3565 3566 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3567 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 3568 int svdcount = 0; 3569 int children = rvd->vdev_children; 3570 int c0 = spa_get_random(children); 3571 3572 for (int c = 0; c < children; c++) { 3573 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 3574 3575 /* Stop when revisiting the first vdev */ 3576 if (c > 0 && svd[0] == vd) 3577 break; 3578 3579 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 3580 !vdev_is_concrete(vd)) 3581 continue; 3582 3583 svd[svdcount++] = vd; 3584 if (svdcount == SPA_SYNC_MIN_VDEVS) 3585 break; 3586 } 3587 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 3588 if (error == 0) 3589 spa->spa_last_synced_guid = rvd->vdev_guid; 3590 spa_config_exit(spa, SCL_ALL, FTAG); 3591 3592 if (error != 0) { 3593 spa_load_failed(spa, "failed to write checkpointed " 3594 "uberblock to the vdev labels [error=%d]", error); 3595 return (error); 3596 } 3597 } 3598 3599 return (0); 3600 } 3601 3602 static int 3603 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 3604 boolean_t *update_config_cache) 3605 { 3606 int error; 3607 3608 /* 3609 * Parse the config for pool, open and validate vdevs, 3610 * select an uberblock, and use that uberblock to open 3611 * the MOS. 3612 */ 3613 error = spa_ld_mos_init(spa, type); 3614 if (error != 0) 3615 return (error); 3616 3617 /* 3618 * Retrieve the trusted config stored in the MOS and use it to create 3619 * a new, exact version of the vdev tree, then reopen all vdevs. 3620 */ 3621 error = spa_ld_trusted_config(spa, type, B_FALSE); 3622 if (error == EAGAIN) { 3623 if (update_config_cache != NULL) 3624 *update_config_cache = B_TRUE; 3625 3626 /* 3627 * Redo the loading process with the trusted config if it is 3628 * too different from the untrusted config. 3629 */ 3630 spa_ld_prepare_for_reload(spa); 3631 spa_load_note(spa, "RELOADING"); 3632 error = spa_ld_mos_init(spa, type); 3633 if (error != 0) 3634 return (error); 3635 3636 error = spa_ld_trusted_config(spa, type, B_TRUE); 3637 if (error != 0) 3638 return (error); 3639 3640 } else if (error != 0) { 3641 return (error); 3642 } 3643 3644 return (0); 3645 } 3646 3647 /* 3648 * Load an existing storage pool, using the config provided. This config 3649 * describes which vdevs are part of the pool and is later validated against 3650 * partial configs present in each vdev's label and an entire copy of the 3651 * config stored in the MOS. 3652 */ 3653 static int 3654 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) 3655 { 3656 int error = 0; 3657 boolean_t missing_feat_write = B_FALSE; 3658 boolean_t checkpoint_rewind = 3659 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3660 boolean_t update_config_cache = B_FALSE; 3661 3662 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3663 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 3664 3665 spa_load_note(spa, "LOADING"); 3666 3667 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 3668 if (error != 0) 3669 return (error); 3670 3671 /* 3672 * If we are rewinding to the checkpoint then we need to repeat 3673 * everything we've done so far in this function but this time 3674 * selecting the checkpointed uberblock and using that to open 3675 * the MOS. 3676 */ 3677 if (checkpoint_rewind) { 3678 /* 3679 * If we are rewinding to the checkpoint update config cache 3680 * anyway. 3681 */ 3682 update_config_cache = B_TRUE; 3683 3684 /* 3685 * Extract the checkpointed uberblock from the current MOS 3686 * and use this as the pool's uberblock from now on. If the 3687 * pool is imported as writeable we also write the checkpoint 3688 * uberblock to the labels, making the rewind permanent. 3689 */ 3690 error = spa_ld_checkpoint_rewind(spa); 3691 if (error != 0) 3692 return (error); 3693 3694 /* 3695 * Redo the loading process process again with the 3696 * checkpointed uberblock. 3697 */ 3698 spa_ld_prepare_for_reload(spa); 3699 spa_load_note(spa, "LOADING checkpointed uberblock"); 3700 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 3701 if (error != 0) 3702 return (error); 3703 } 3704 3705 /* 3706 * Retrieve the checkpoint txg if the pool has a checkpoint. 3707 */ 3708 error = spa_ld_read_checkpoint_txg(spa); 3709 if (error != 0) 3710 return (error); 3711 3712 /* 3713 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 3714 * from the pool and their contents were re-mapped to other vdevs. Note 3715 * that everything that we read before this step must have been 3716 * rewritten on concrete vdevs after the last device removal was 3717 * initiated. Otherwise we could be reading from indirect vdevs before 3718 * we have loaded their mappings. 3719 */ 3720 error = spa_ld_open_indirect_vdev_metadata(spa); 3721 if (error != 0) 3722 return (error); 3723 3724 /* 3725 * Retrieve the full list of active features from the MOS and check if 3726 * they are all supported. 3727 */ 3728 error = spa_ld_check_features(spa, &missing_feat_write); 3729 if (error != 0) 3730 return (error); 3731 3732 /* 3733 * Load several special directories from the MOS needed by the dsl_pool 3734 * layer. 3735 */ 3736 error = spa_ld_load_special_directories(spa); 3737 if (error != 0) 3738 return (error); 3739 3740 /* 3741 * Retrieve pool properties from the MOS. 3742 */ 3743 error = spa_ld_get_props(spa); 3744 if (error != 0) 3745 return (error); 3746 3747 /* 3748 * Retrieve the list of auxiliary devices - cache devices and spares - 3749 * and open them. 3750 */ 3751 error = spa_ld_open_aux_vdevs(spa, type); 3752 if (error != 0) 3753 return (error); 3754 3755 /* 3756 * Load the metadata for all vdevs. Also check if unopenable devices 3757 * should be autoreplaced. 3758 */ 3759 error = spa_ld_load_vdev_metadata(spa); 3760 if (error != 0) 3761 return (error); 3762 3763 error = spa_ld_load_dedup_tables(spa); 3764 if (error != 0) 3765 return (error); 3766 3767 /* 3768 * Verify the logs now to make sure we don't have any unexpected errors 3769 * when we claim log blocks later. 3770 */ 3771 error = spa_ld_verify_logs(spa, type, ereport); 3772 if (error != 0) 3773 return (error); 3774 3775 if (missing_feat_write) { 3776 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 3777 3778 /* 3779 * At this point, we know that we can open the pool in 3780 * read-only mode but not read-write mode. We now have enough 3781 * information and can return to userland. 3782 */ 3783 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 3784 ENOTSUP)); 3785 } 3786 3787 /* 3788 * Traverse the last txgs to make sure the pool was left off in a safe 3789 * state. When performing an extreme rewind, we verify the whole pool, 3790 * which can take a very long time. 3791 */ 3792 error = spa_ld_verify_pool_data(spa); 3793 if (error != 0) 3794 return (error); 3795 3796 /* 3797 * Calculate the deflated space for the pool. This must be done before 3798 * we write anything to the pool because we'd need to update the space 3799 * accounting using the deflated sizes. 3800 */ 3801 spa_update_dspace(spa); 3802 3803 /* 3804 * We have now retrieved all the information we needed to open the 3805 * pool. If we are importing the pool in read-write mode, a few 3806 * additional steps must be performed to finish the import. 3807 */ 3808 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 3809 spa->spa_load_max_txg == UINT64_MAX)) { 3810 uint64_t config_cache_txg = spa->spa_config_txg; 3811 3812 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 3813 3814 /* 3815 * In case of a checkpoint rewind, log the original txg 3816 * of the checkpointed uberblock. 3817 */ 3818 if (checkpoint_rewind) { 3819 spa_history_log_internal(spa, "checkpoint rewind", 3820 NULL, "rewound state to txg=%llu", 3821 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 3822 } 3823 3824 /* 3825 * Traverse the ZIL and claim all blocks. 3826 */ 3827 spa_ld_claim_log_blocks(spa); 3828 3829 /* 3830 * Kick-off the syncing thread. 3831 */ 3832 spa->spa_sync_on = B_TRUE; 3833 txg_sync_start(spa->spa_dsl_pool); 3834 3835 /* 3836 * Wait for all claims to sync. We sync up to the highest 3837 * claimed log block birth time so that claimed log blocks 3838 * don't appear to be from the future. spa_claim_max_txg 3839 * will have been set for us by ZIL traversal operations 3840 * performed above. 3841 */ 3842 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 3843 3844 /* 3845 * Check if we need to request an update of the config. On the 3846 * next sync, we would update the config stored in vdev labels 3847 * and the cachefile (by default /etc/zfs/zpool.cache). 3848 */ 3849 spa_ld_check_for_config_update(spa, config_cache_txg, 3850 update_config_cache); 3851 3852 /* 3853 * Check all DTLs to see if anything needs resilvering. 3854 */ 3855 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 3856 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3857 spa_async_request(spa, SPA_ASYNC_RESILVER); 3858 3859 /* 3860 * Log the fact that we booted up (so that we can detect if 3861 * we rebooted in the middle of an operation). 3862 */ 3863 spa_history_log_version(spa, "open"); 3864 3865 spa_restart_removal(spa); 3866 spa_spawn_aux_threads(spa); 3867 3868 /* 3869 * Delete any inconsistent datasets. 3870 * 3871 * Note: 3872 * Since we may be issuing deletes for clones here, 3873 * we make sure to do so after we've spawned all the 3874 * auxiliary threads above (from which the livelist 3875 * deletion zthr is part of). 3876 */ 3877 (void) dmu_objset_find(spa_name(spa), 3878 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 3879 3880 /* 3881 * Clean up any stale temporary dataset userrefs. 3882 */ 3883 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 3884 3885 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3886 vdev_initialize_restart(spa->spa_root_vdev); 3887 spa_config_exit(spa, SCL_CONFIG, FTAG); 3888 } 3889 3890 spa_load_note(spa, "LOADED"); 3891 3892 return (0); 3893 } 3894 3895 static int 3896 spa_load_retry(spa_t *spa, spa_load_state_t state) 3897 { 3898 int mode = spa->spa_mode; 3899 3900 spa_unload(spa); 3901 spa_deactivate(spa); 3902 3903 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 3904 3905 spa_activate(spa, mode); 3906 spa_async_suspend(spa); 3907 3908 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 3909 (u_longlong_t)spa->spa_load_max_txg); 3910 3911 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 3912 } 3913 3914 /* 3915 * If spa_load() fails this function will try loading prior txg's. If 3916 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 3917 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 3918 * function will not rewind the pool and will return the same error as 3919 * spa_load(). 3920 */ 3921 static int 3922 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 3923 int rewind_flags) 3924 { 3925 nvlist_t *loadinfo = NULL; 3926 nvlist_t *config = NULL; 3927 int load_error, rewind_error; 3928 uint64_t safe_rewind_txg; 3929 uint64_t min_txg; 3930 3931 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 3932 spa->spa_load_max_txg = spa->spa_load_txg; 3933 spa_set_log_state(spa, SPA_LOG_CLEAR); 3934 } else { 3935 spa->spa_load_max_txg = max_request; 3936 if (max_request != UINT64_MAX) 3937 spa->spa_extreme_rewind = B_TRUE; 3938 } 3939 3940 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 3941 if (load_error == 0) 3942 return (0); 3943 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 3944 /* 3945 * When attempting checkpoint-rewind on a pool with no 3946 * checkpoint, we should not attempt to load uberblocks 3947 * from previous txgs when spa_load fails. 3948 */ 3949 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 3950 return (load_error); 3951 } 3952 3953 if (spa->spa_root_vdev != NULL) 3954 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3955 3956 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 3957 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 3958 3959 if (rewind_flags & ZPOOL_NEVER_REWIND) { 3960 nvlist_free(config); 3961 return (load_error); 3962 } 3963 3964 if (state == SPA_LOAD_RECOVER) { 3965 /* Price of rolling back is discarding txgs, including log */ 3966 spa_set_log_state(spa, SPA_LOG_CLEAR); 3967 } else { 3968 /* 3969 * If we aren't rolling back save the load info from our first 3970 * import attempt so that we can restore it after attempting 3971 * to rewind. 3972 */ 3973 loadinfo = spa->spa_load_info; 3974 spa->spa_load_info = fnvlist_alloc(); 3975 } 3976 3977 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 3978 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 3979 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 3980 TXG_INITIAL : safe_rewind_txg; 3981 3982 /* 3983 * Continue as long as we're finding errors, we're still within 3984 * the acceptable rewind range, and we're still finding uberblocks 3985 */ 3986 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 3987 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 3988 if (spa->spa_load_max_txg < safe_rewind_txg) 3989 spa->spa_extreme_rewind = B_TRUE; 3990 rewind_error = spa_load_retry(spa, state); 3991 } 3992 3993 spa->spa_extreme_rewind = B_FALSE; 3994 spa->spa_load_max_txg = UINT64_MAX; 3995 3996 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 3997 spa_config_set(spa, config); 3998 else 3999 nvlist_free(config); 4000 4001 if (state == SPA_LOAD_RECOVER) { 4002 ASSERT3P(loadinfo, ==, NULL); 4003 return (rewind_error); 4004 } else { 4005 /* Store the rewind info as part of the initial load info */ 4006 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 4007 spa->spa_load_info); 4008 4009 /* Restore the initial load info */ 4010 fnvlist_free(spa->spa_load_info); 4011 spa->spa_load_info = loadinfo; 4012 4013 return (load_error); 4014 } 4015 } 4016 4017 /* 4018 * Pool Open/Import 4019 * 4020 * The import case is identical to an open except that the configuration is sent 4021 * down from userland, instead of grabbed from the configuration cache. For the 4022 * case of an open, the pool configuration will exist in the 4023 * POOL_STATE_UNINITIALIZED state. 4024 * 4025 * The stats information (gen/count/ustats) is used to gather vdev statistics at 4026 * the same time open the pool, without having to keep around the spa_t in some 4027 * ambiguous state. 4028 */ 4029 static int 4030 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 4031 nvlist_t **config) 4032 { 4033 spa_t *spa; 4034 spa_load_state_t state = SPA_LOAD_OPEN; 4035 int error; 4036 int locked = B_FALSE; 4037 4038 *spapp = NULL; 4039 4040 /* 4041 * As disgusting as this is, we need to support recursive calls to this 4042 * function because dsl_dir_open() is called during spa_load(), and ends 4043 * up calling spa_open() again. The real fix is to figure out how to 4044 * avoid dsl_dir_open() calling this in the first place. 4045 */ 4046 if (mutex_owner(&spa_namespace_lock) != curthread) { 4047 mutex_enter(&spa_namespace_lock); 4048 locked = B_TRUE; 4049 } 4050 4051 if ((spa = spa_lookup(pool)) == NULL) { 4052 if (locked) 4053 mutex_exit(&spa_namespace_lock); 4054 return (SET_ERROR(ENOENT)); 4055 } 4056 4057 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 4058 zpool_load_policy_t policy; 4059 4060 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 4061 &policy); 4062 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 4063 state = SPA_LOAD_RECOVER; 4064 4065 spa_activate(spa, spa_mode_global); 4066 4067 if (state != SPA_LOAD_RECOVER) 4068 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 4069 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 4070 4071 zfs_dbgmsg("spa_open_common: opening %s", pool); 4072 error = spa_load_best(spa, state, policy.zlp_txg, 4073 policy.zlp_rewind); 4074 4075 if (error == EBADF) { 4076 /* 4077 * If vdev_validate() returns failure (indicated by 4078 * EBADF), it indicates that one of the vdevs indicates 4079 * that the pool has been exported or destroyed. If 4080 * this is the case, the config cache is out of sync and 4081 * we should remove the pool from the namespace. 4082 */ 4083 spa_unload(spa); 4084 spa_deactivate(spa); 4085 spa_write_cachefile(spa, B_TRUE, B_TRUE); 4086 spa_remove(spa); 4087 if (locked) 4088 mutex_exit(&spa_namespace_lock); 4089 return (SET_ERROR(ENOENT)); 4090 } 4091 4092 if (error) { 4093 /* 4094 * We can't open the pool, but we still have useful 4095 * information: the state of each vdev after the 4096 * attempted vdev_open(). Return this to the user. 4097 */ 4098 if (config != NULL && spa->spa_config) { 4099 VERIFY(nvlist_dup(spa->spa_config, config, 4100 KM_SLEEP) == 0); 4101 VERIFY(nvlist_add_nvlist(*config, 4102 ZPOOL_CONFIG_LOAD_INFO, 4103 spa->spa_load_info) == 0); 4104 } 4105 spa_unload(spa); 4106 spa_deactivate(spa); 4107 spa->spa_last_open_failed = error; 4108 if (locked) 4109 mutex_exit(&spa_namespace_lock); 4110 *spapp = NULL; 4111 return (error); 4112 } 4113 } 4114 4115 spa_open_ref(spa, tag); 4116 4117 if (config != NULL) 4118 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4119 4120 /* 4121 * If we've recovered the pool, pass back any information we 4122 * gathered while doing the load. 4123 */ 4124 if (state == SPA_LOAD_RECOVER) { 4125 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 4126 spa->spa_load_info) == 0); 4127 } 4128 4129 if (locked) { 4130 spa->spa_last_open_failed = 0; 4131 spa->spa_last_ubsync_txg = 0; 4132 spa->spa_load_txg = 0; 4133 mutex_exit(&spa_namespace_lock); 4134 } 4135 4136 *spapp = spa; 4137 4138 return (0); 4139 } 4140 4141 int 4142 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 4143 nvlist_t **config) 4144 { 4145 return (spa_open_common(name, spapp, tag, policy, config)); 4146 } 4147 4148 int 4149 spa_open(const char *name, spa_t **spapp, void *tag) 4150 { 4151 return (spa_open_common(name, spapp, tag, NULL, NULL)); 4152 } 4153 4154 /* 4155 * Lookup the given spa_t, incrementing the inject count in the process, 4156 * preventing it from being exported or destroyed. 4157 */ 4158 spa_t * 4159 spa_inject_addref(char *name) 4160 { 4161 spa_t *spa; 4162 4163 mutex_enter(&spa_namespace_lock); 4164 if ((spa = spa_lookup(name)) == NULL) { 4165 mutex_exit(&spa_namespace_lock); 4166 return (NULL); 4167 } 4168 spa->spa_inject_ref++; 4169 mutex_exit(&spa_namespace_lock); 4170 4171 return (spa); 4172 } 4173 4174 void 4175 spa_inject_delref(spa_t *spa) 4176 { 4177 mutex_enter(&spa_namespace_lock); 4178 spa->spa_inject_ref--; 4179 mutex_exit(&spa_namespace_lock); 4180 } 4181 4182 /* 4183 * Add spares device information to the nvlist. 4184 */ 4185 static void 4186 spa_add_spares(spa_t *spa, nvlist_t *config) 4187 { 4188 nvlist_t **spares; 4189 uint_t i, nspares; 4190 nvlist_t *nvroot; 4191 uint64_t guid; 4192 vdev_stat_t *vs; 4193 uint_t vsc; 4194 uint64_t pool; 4195 4196 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4197 4198 if (spa->spa_spares.sav_count == 0) 4199 return; 4200 4201 VERIFY(nvlist_lookup_nvlist(config, 4202 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4203 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4204 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4205 if (nspares != 0) { 4206 VERIFY(nvlist_add_nvlist_array(nvroot, 4207 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4208 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4209 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 4210 4211 /* 4212 * Go through and find any spares which have since been 4213 * repurposed as an active spare. If this is the case, update 4214 * their status appropriately. 4215 */ 4216 for (i = 0; i < nspares; i++) { 4217 VERIFY(nvlist_lookup_uint64(spares[i], 4218 ZPOOL_CONFIG_GUID, &guid) == 0); 4219 if (spa_spare_exists(guid, &pool, NULL) && 4220 pool != 0ULL) { 4221 VERIFY(nvlist_lookup_uint64_array( 4222 spares[i], ZPOOL_CONFIG_VDEV_STATS, 4223 (uint64_t **)&vs, &vsc) == 0); 4224 vs->vs_state = VDEV_STATE_CANT_OPEN; 4225 vs->vs_aux = VDEV_AUX_SPARED; 4226 } 4227 } 4228 } 4229 } 4230 4231 /* 4232 * Add l2cache device information to the nvlist, including vdev stats. 4233 */ 4234 static void 4235 spa_add_l2cache(spa_t *spa, nvlist_t *config) 4236 { 4237 nvlist_t **l2cache; 4238 uint_t i, j, nl2cache; 4239 nvlist_t *nvroot; 4240 uint64_t guid; 4241 vdev_t *vd; 4242 vdev_stat_t *vs; 4243 uint_t vsc; 4244 4245 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4246 4247 if (spa->spa_l2cache.sav_count == 0) 4248 return; 4249 4250 VERIFY(nvlist_lookup_nvlist(config, 4251 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 4252 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4253 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4254 if (nl2cache != 0) { 4255 VERIFY(nvlist_add_nvlist_array(nvroot, 4256 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4257 VERIFY(nvlist_lookup_nvlist_array(nvroot, 4258 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 4259 4260 /* 4261 * Update level 2 cache device stats. 4262 */ 4263 4264 for (i = 0; i < nl2cache; i++) { 4265 VERIFY(nvlist_lookup_uint64(l2cache[i], 4266 ZPOOL_CONFIG_GUID, &guid) == 0); 4267 4268 vd = NULL; 4269 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 4270 if (guid == 4271 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 4272 vd = spa->spa_l2cache.sav_vdevs[j]; 4273 break; 4274 } 4275 } 4276 ASSERT(vd != NULL); 4277 4278 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 4279 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 4280 == 0); 4281 vdev_get_stats(vd, vs); 4282 } 4283 } 4284 } 4285 4286 static void 4287 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 4288 { 4289 nvlist_t *features; 4290 zap_cursor_t zc; 4291 zap_attribute_t za; 4292 4293 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 4294 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4295 4296 if (spa->spa_feat_for_read_obj != 0) { 4297 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4298 spa->spa_feat_for_read_obj); 4299 zap_cursor_retrieve(&zc, &za) == 0; 4300 zap_cursor_advance(&zc)) { 4301 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4302 za.za_num_integers == 1); 4303 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4304 za.za_first_integer)); 4305 } 4306 zap_cursor_fini(&zc); 4307 } 4308 4309 if (spa->spa_feat_for_write_obj != 0) { 4310 for (zap_cursor_init(&zc, spa->spa_meta_objset, 4311 spa->spa_feat_for_write_obj); 4312 zap_cursor_retrieve(&zc, &za) == 0; 4313 zap_cursor_advance(&zc)) { 4314 ASSERT(za.za_integer_length == sizeof (uint64_t) && 4315 za.za_num_integers == 1); 4316 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 4317 za.za_first_integer)); 4318 } 4319 zap_cursor_fini(&zc); 4320 } 4321 4322 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 4323 features) == 0); 4324 nvlist_free(features); 4325 } 4326 4327 int 4328 spa_get_stats(const char *name, nvlist_t **config, 4329 char *altroot, size_t buflen) 4330 { 4331 int error; 4332 spa_t *spa; 4333 4334 *config = NULL; 4335 error = spa_open_common(name, &spa, FTAG, NULL, config); 4336 4337 if (spa != NULL) { 4338 /* 4339 * This still leaves a window of inconsistency where the spares 4340 * or l2cache devices could change and the config would be 4341 * self-inconsistent. 4342 */ 4343 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4344 4345 if (*config != NULL) { 4346 uint64_t loadtimes[2]; 4347 4348 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 4349 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 4350 VERIFY(nvlist_add_uint64_array(*config, 4351 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 4352 4353 VERIFY(nvlist_add_uint64(*config, 4354 ZPOOL_CONFIG_ERRCOUNT, 4355 spa_get_errlog_size(spa)) == 0); 4356 4357 if (spa_suspended(spa)) 4358 VERIFY(nvlist_add_uint64(*config, 4359 ZPOOL_CONFIG_SUSPENDED, 4360 spa->spa_failmode) == 0); 4361 4362 spa_add_spares(spa, *config); 4363 spa_add_l2cache(spa, *config); 4364 spa_add_feature_stats(spa, *config); 4365 } 4366 } 4367 4368 /* 4369 * We want to get the alternate root even for faulted pools, so we cheat 4370 * and call spa_lookup() directly. 4371 */ 4372 if (altroot) { 4373 if (spa == NULL) { 4374 mutex_enter(&spa_namespace_lock); 4375 spa = spa_lookup(name); 4376 if (spa) 4377 spa_altroot(spa, altroot, buflen); 4378 else 4379 altroot[0] = '\0'; 4380 spa = NULL; 4381 mutex_exit(&spa_namespace_lock); 4382 } else { 4383 spa_altroot(spa, altroot, buflen); 4384 } 4385 } 4386 4387 if (spa != NULL) { 4388 spa_config_exit(spa, SCL_CONFIG, FTAG); 4389 spa_close(spa, FTAG); 4390 } 4391 4392 return (error); 4393 } 4394 4395 /* 4396 * Validate that the auxiliary device array is well formed. We must have an 4397 * array of nvlists, each which describes a valid leaf vdev. If this is an 4398 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 4399 * specified, as long as they are well-formed. 4400 */ 4401 static int 4402 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 4403 spa_aux_vdev_t *sav, const char *config, uint64_t version, 4404 vdev_labeltype_t label) 4405 { 4406 nvlist_t **dev; 4407 uint_t i, ndev; 4408 vdev_t *vd; 4409 int error; 4410 4411 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4412 4413 /* 4414 * It's acceptable to have no devs specified. 4415 */ 4416 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 4417 return (0); 4418 4419 if (ndev == 0) 4420 return (SET_ERROR(EINVAL)); 4421 4422 /* 4423 * Make sure the pool is formatted with a version that supports this 4424 * device type. 4425 */ 4426 if (spa_version(spa) < version) 4427 return (SET_ERROR(ENOTSUP)); 4428 4429 /* 4430 * Set the pending device list so we correctly handle device in-use 4431 * checking. 4432 */ 4433 sav->sav_pending = dev; 4434 sav->sav_npending = ndev; 4435 4436 for (i = 0; i < ndev; i++) { 4437 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 4438 mode)) != 0) 4439 goto out; 4440 4441 if (!vd->vdev_ops->vdev_op_leaf) { 4442 vdev_free(vd); 4443 error = SET_ERROR(EINVAL); 4444 goto out; 4445 } 4446 4447 /* 4448 * The L2ARC currently only supports disk devices in 4449 * kernel context. For user-level testing, we allow it. 4450 */ 4451 #ifdef _KERNEL 4452 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 4453 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 4454 error = SET_ERROR(ENOTBLK); 4455 vdev_free(vd); 4456 goto out; 4457 } 4458 #endif 4459 vd->vdev_top = vd; 4460 4461 if ((error = vdev_open(vd)) == 0 && 4462 (error = vdev_label_init(vd, crtxg, label)) == 0) { 4463 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 4464 vd->vdev_guid) == 0); 4465 } 4466 4467 vdev_free(vd); 4468 4469 if (error && 4470 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 4471 goto out; 4472 else 4473 error = 0; 4474 } 4475 4476 out: 4477 sav->sav_pending = NULL; 4478 sav->sav_npending = 0; 4479 return (error); 4480 } 4481 4482 static int 4483 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 4484 { 4485 int error; 4486 4487 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4488 4489 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4490 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 4491 VDEV_LABEL_SPARE)) != 0) { 4492 return (error); 4493 } 4494 4495 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 4496 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 4497 VDEV_LABEL_L2CACHE)); 4498 } 4499 4500 static void 4501 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 4502 const char *config) 4503 { 4504 int i; 4505 4506 if (sav->sav_config != NULL) { 4507 nvlist_t **olddevs; 4508 uint_t oldndevs; 4509 nvlist_t **newdevs; 4510 4511 /* 4512 * Generate new dev list by concatentating with the 4513 * current dev list. 4514 */ 4515 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 4516 &olddevs, &oldndevs) == 0); 4517 4518 newdevs = kmem_alloc(sizeof (void *) * 4519 (ndevs + oldndevs), KM_SLEEP); 4520 for (i = 0; i < oldndevs; i++) 4521 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 4522 KM_SLEEP) == 0); 4523 for (i = 0; i < ndevs; i++) 4524 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 4525 KM_SLEEP) == 0); 4526 4527 VERIFY(nvlist_remove(sav->sav_config, config, 4528 DATA_TYPE_NVLIST_ARRAY) == 0); 4529 4530 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 4531 config, newdevs, ndevs + oldndevs) == 0); 4532 for (i = 0; i < oldndevs + ndevs; i++) 4533 nvlist_free(newdevs[i]); 4534 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 4535 } else { 4536 /* 4537 * Generate a new dev list. 4538 */ 4539 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 4540 KM_SLEEP) == 0); 4541 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 4542 devs, ndevs) == 0); 4543 } 4544 } 4545 4546 /* 4547 * Stop and drop level 2 ARC devices 4548 */ 4549 void 4550 spa_l2cache_drop(spa_t *spa) 4551 { 4552 vdev_t *vd; 4553 int i; 4554 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4555 4556 for (i = 0; i < sav->sav_count; i++) { 4557 uint64_t pool; 4558 4559 vd = sav->sav_vdevs[i]; 4560 ASSERT(vd != NULL); 4561 4562 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 4563 pool != 0ULL && l2arc_vdev_present(vd)) 4564 l2arc_remove_vdev(vd); 4565 } 4566 } 4567 4568 /* 4569 * Pool Creation 4570 */ 4571 int 4572 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 4573 nvlist_t *zplprops) 4574 { 4575 spa_t *spa; 4576 char *altroot = NULL; 4577 vdev_t *rvd; 4578 dsl_pool_t *dp; 4579 dmu_tx_t *tx; 4580 int error = 0; 4581 uint64_t txg = TXG_INITIAL; 4582 nvlist_t **spares, **l2cache; 4583 uint_t nspares, nl2cache; 4584 uint64_t version, obj; 4585 boolean_t has_features; 4586 4587 /* 4588 * If this pool already exists, return failure. 4589 */ 4590 mutex_enter(&spa_namespace_lock); 4591 if (spa_lookup(pool) != NULL) { 4592 mutex_exit(&spa_namespace_lock); 4593 return (SET_ERROR(EEXIST)); 4594 } 4595 4596 /* 4597 * Allocate a new spa_t structure. 4598 */ 4599 (void) nvlist_lookup_string(props, 4600 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4601 spa = spa_add(pool, NULL, altroot); 4602 spa_activate(spa, spa_mode_global); 4603 4604 if (props && (error = spa_prop_validate(spa, props))) { 4605 spa_deactivate(spa); 4606 spa_remove(spa); 4607 mutex_exit(&spa_namespace_lock); 4608 return (error); 4609 } 4610 4611 has_features = B_FALSE; 4612 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 4613 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 4614 if (zpool_prop_feature(nvpair_name(elem))) 4615 has_features = B_TRUE; 4616 } 4617 4618 if (has_features || nvlist_lookup_uint64(props, 4619 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 4620 version = SPA_VERSION; 4621 } 4622 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 4623 4624 spa->spa_first_txg = txg; 4625 spa->spa_uberblock.ub_txg = txg - 1; 4626 spa->spa_uberblock.ub_version = version; 4627 spa->spa_ubsync = spa->spa_uberblock; 4628 spa->spa_load_state = SPA_LOAD_CREATE; 4629 spa->spa_removing_phys.sr_state = DSS_NONE; 4630 spa->spa_removing_phys.sr_removing_vdev = -1; 4631 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 4632 4633 /* 4634 * Create "The Godfather" zio to hold all async IOs 4635 */ 4636 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 4637 KM_SLEEP); 4638 for (int i = 0; i < max_ncpus; i++) { 4639 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 4640 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 4641 ZIO_FLAG_GODFATHER); 4642 } 4643 4644 /* 4645 * Create the root vdev. 4646 */ 4647 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4648 4649 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 4650 4651 ASSERT(error != 0 || rvd != NULL); 4652 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 4653 4654 if (error == 0 && !zfs_allocatable_devs(nvroot)) 4655 error = SET_ERROR(EINVAL); 4656 4657 if (error == 0 && 4658 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 4659 (error = spa_validate_aux(spa, nvroot, txg, 4660 VDEV_ALLOC_ADD)) == 0) { 4661 for (int c = 0; c < rvd->vdev_children; c++) { 4662 vdev_metaslab_set_size(rvd->vdev_child[c]); 4663 vdev_expand(rvd->vdev_child[c], txg); 4664 } 4665 } 4666 4667 spa_config_exit(spa, SCL_ALL, FTAG); 4668 4669 if (error != 0) { 4670 spa_unload(spa); 4671 spa_deactivate(spa); 4672 spa_remove(spa); 4673 mutex_exit(&spa_namespace_lock); 4674 return (error); 4675 } 4676 4677 /* 4678 * Get the list of spares, if specified. 4679 */ 4680 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 4681 &spares, &nspares) == 0) { 4682 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 4683 KM_SLEEP) == 0); 4684 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 4685 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 4686 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4687 spa_load_spares(spa); 4688 spa_config_exit(spa, SCL_ALL, FTAG); 4689 spa->spa_spares.sav_sync = B_TRUE; 4690 } 4691 4692 /* 4693 * Get the list of level 2 cache devices, if specified. 4694 */ 4695 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 4696 &l2cache, &nl2cache) == 0) { 4697 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4698 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4699 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4700 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4701 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4702 spa_load_l2cache(spa); 4703 spa_config_exit(spa, SCL_ALL, FTAG); 4704 spa->spa_l2cache.sav_sync = B_TRUE; 4705 } 4706 4707 spa->spa_is_initializing = B_TRUE; 4708 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 4709 spa->spa_meta_objset = dp->dp_meta_objset; 4710 spa->spa_is_initializing = B_FALSE; 4711 4712 /* 4713 * Create DDTs (dedup tables). 4714 */ 4715 ddt_create(spa); 4716 4717 spa_update_dspace(spa); 4718 4719 tx = dmu_tx_create_assigned(dp, txg); 4720 4721 /* 4722 * Create the pool config object. 4723 */ 4724 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 4725 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 4726 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 4727 4728 if (zap_add(spa->spa_meta_objset, 4729 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 4730 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 4731 cmn_err(CE_PANIC, "failed to add pool config"); 4732 } 4733 4734 if (spa_version(spa) >= SPA_VERSION_FEATURES) 4735 spa_feature_create_zap_objects(spa, tx); 4736 4737 if (zap_add(spa->spa_meta_objset, 4738 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 4739 sizeof (uint64_t), 1, &version, tx) != 0) { 4740 cmn_err(CE_PANIC, "failed to add pool version"); 4741 } 4742 4743 /* Newly created pools with the right version are always deflated. */ 4744 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 4745 spa->spa_deflate = TRUE; 4746 if (zap_add(spa->spa_meta_objset, 4747 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 4748 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 4749 cmn_err(CE_PANIC, "failed to add deflate"); 4750 } 4751 } 4752 4753 /* 4754 * Create the deferred-free bpobj. Turn off compression 4755 * because sync-to-convergence takes longer if the blocksize 4756 * keeps changing. 4757 */ 4758 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 4759 dmu_object_set_compress(spa->spa_meta_objset, obj, 4760 ZIO_COMPRESS_OFF, tx); 4761 if (zap_add(spa->spa_meta_objset, 4762 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 4763 sizeof (uint64_t), 1, &obj, tx) != 0) { 4764 cmn_err(CE_PANIC, "failed to add bpobj"); 4765 } 4766 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 4767 spa->spa_meta_objset, obj)); 4768 4769 /* 4770 * Create the pool's history object. 4771 */ 4772 if (version >= SPA_VERSION_ZPOOL_HISTORY) 4773 spa_history_create_obj(spa, tx); 4774 4775 /* 4776 * Generate some random noise for salted checksums to operate on. 4777 */ 4778 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4779 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4780 4781 /* 4782 * Set pool properties. 4783 */ 4784 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 4785 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4786 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 4787 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 4788 4789 if (props != NULL) { 4790 spa_configfile_set(spa, props, B_FALSE); 4791 spa_sync_props(props, tx); 4792 } 4793 4794 dmu_tx_commit(tx); 4795 4796 spa->spa_sync_on = B_TRUE; 4797 txg_sync_start(spa->spa_dsl_pool); 4798 4799 /* 4800 * We explicitly wait for the first transaction to complete so that our 4801 * bean counters are appropriately updated. 4802 */ 4803 txg_wait_synced(spa->spa_dsl_pool, txg); 4804 4805 spa_spawn_aux_threads(spa); 4806 4807 spa_write_cachefile(spa, B_FALSE, B_TRUE); 4808 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 4809 4810 spa_history_log_version(spa, "create"); 4811 4812 /* 4813 * Don't count references from objsets that are already closed 4814 * and are making their way through the eviction process. 4815 */ 4816 spa_evicting_os_wait(spa); 4817 spa->spa_minref = refcount_count(&spa->spa_refcount); 4818 spa->spa_load_state = SPA_LOAD_NONE; 4819 4820 mutex_exit(&spa_namespace_lock); 4821 4822 return (0); 4823 } 4824 4825 #ifdef _KERNEL 4826 /* 4827 * Get the root pool information from the root disk, then import the root pool 4828 * during the system boot up time. 4829 */ 4830 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 4831 4832 static nvlist_t * 4833 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 4834 { 4835 nvlist_t *config; 4836 nvlist_t *nvtop, *nvroot; 4837 uint64_t pgid; 4838 4839 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 4840 return (NULL); 4841 4842 /* 4843 * Add this top-level vdev to the child array. 4844 */ 4845 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4846 &nvtop) == 0); 4847 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4848 &pgid) == 0); 4849 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 4850 4851 /* 4852 * Put this pool's top-level vdevs into a root vdev. 4853 */ 4854 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4855 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 4856 VDEV_TYPE_ROOT) == 0); 4857 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 4858 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 4859 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 4860 &nvtop, 1) == 0); 4861 4862 /* 4863 * Replace the existing vdev_tree with the new root vdev in 4864 * this pool's configuration (remove the old, add the new). 4865 */ 4866 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 4867 nvlist_free(nvroot); 4868 return (config); 4869 } 4870 4871 /* 4872 * Walk the vdev tree and see if we can find a device with "better" 4873 * configuration. A configuration is "better" if the label on that 4874 * device has a more recent txg. 4875 */ 4876 static void 4877 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 4878 { 4879 for (int c = 0; c < vd->vdev_children; c++) 4880 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 4881 4882 if (vd->vdev_ops->vdev_op_leaf) { 4883 nvlist_t *label; 4884 uint64_t label_txg; 4885 4886 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 4887 &label) != 0) 4888 return; 4889 4890 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 4891 &label_txg) == 0); 4892 4893 /* 4894 * Do we have a better boot device? 4895 */ 4896 if (label_txg > *txg) { 4897 *txg = label_txg; 4898 *avd = vd; 4899 } 4900 nvlist_free(label); 4901 } 4902 } 4903 4904 /* 4905 * Import a root pool. 4906 * 4907 * For x86. devpath_list will consist of devid and/or physpath name of 4908 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 4909 * The GRUB "findroot" command will return the vdev we should boot. 4910 * 4911 * For Sparc, devpath_list consists the physpath name of the booting device 4912 * no matter the rootpool is a single device pool or a mirrored pool. 4913 * e.g. 4914 * "/pci@1f,0/ide@d/disk@0,0:a" 4915 */ 4916 int 4917 spa_import_rootpool(char *devpath, char *devid) 4918 { 4919 spa_t *spa; 4920 vdev_t *rvd, *bvd, *avd = NULL; 4921 nvlist_t *config, *nvtop; 4922 uint64_t guid, txg; 4923 char *pname; 4924 int error; 4925 4926 /* 4927 * Read the label from the boot device and generate a configuration. 4928 */ 4929 config = spa_generate_rootconf(devpath, devid, &guid); 4930 #if defined(_OBP) && defined(_KERNEL) 4931 if (config == NULL) { 4932 if (strstr(devpath, "/iscsi/ssd") != NULL) { 4933 /* iscsi boot */ 4934 get_iscsi_bootpath_phy(devpath); 4935 config = spa_generate_rootconf(devpath, devid, &guid); 4936 } 4937 } 4938 #endif 4939 if (config == NULL) { 4940 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 4941 devpath); 4942 return (SET_ERROR(EIO)); 4943 } 4944 4945 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 4946 &pname) == 0); 4947 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 4948 4949 mutex_enter(&spa_namespace_lock); 4950 if ((spa = spa_lookup(pname)) != NULL) { 4951 /* 4952 * Remove the existing root pool from the namespace so that we 4953 * can replace it with the correct config we just read in. 4954 */ 4955 spa_remove(spa); 4956 } 4957 4958 spa = spa_add(pname, config, NULL); 4959 spa->spa_is_root = B_TRUE; 4960 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 4961 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 4962 &spa->spa_ubsync.ub_version) != 0) 4963 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 4964 4965 /* 4966 * Build up a vdev tree based on the boot device's label config. 4967 */ 4968 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 4969 &nvtop) == 0); 4970 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4971 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 4972 VDEV_ALLOC_ROOTPOOL); 4973 spa_config_exit(spa, SCL_ALL, FTAG); 4974 if (error) { 4975 mutex_exit(&spa_namespace_lock); 4976 nvlist_free(config); 4977 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 4978 pname); 4979 return (error); 4980 } 4981 4982 /* 4983 * Get the boot vdev. 4984 */ 4985 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 4986 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 4987 (u_longlong_t)guid); 4988 error = SET_ERROR(ENOENT); 4989 goto out; 4990 } 4991 4992 /* 4993 * Determine if there is a better boot device. 4994 */ 4995 avd = bvd; 4996 spa_alt_rootvdev(rvd, &avd, &txg); 4997 if (avd != bvd) { 4998 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 4999 "try booting from '%s'", avd->vdev_path); 5000 error = SET_ERROR(EINVAL); 5001 goto out; 5002 } 5003 5004 /* 5005 * If the boot device is part of a spare vdev then ensure that 5006 * we're booting off the active spare. 5007 */ 5008 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 5009 !bvd->vdev_isspare) { 5010 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 5011 "try booting from '%s'", 5012 bvd->vdev_parent-> 5013 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 5014 error = SET_ERROR(EINVAL); 5015 goto out; 5016 } 5017 5018 error = 0; 5019 out: 5020 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5021 vdev_free(rvd); 5022 spa_config_exit(spa, SCL_ALL, FTAG); 5023 mutex_exit(&spa_namespace_lock); 5024 5025 nvlist_free(config); 5026 return (error); 5027 } 5028 5029 #endif 5030 5031 /* 5032 * Import a non-root pool into the system. 5033 */ 5034 int 5035 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 5036 { 5037 spa_t *spa; 5038 char *altroot = NULL; 5039 spa_load_state_t state = SPA_LOAD_IMPORT; 5040 zpool_load_policy_t policy; 5041 uint64_t mode = spa_mode_global; 5042 uint64_t readonly = B_FALSE; 5043 int error; 5044 nvlist_t *nvroot; 5045 nvlist_t **spares, **l2cache; 5046 uint_t nspares, nl2cache; 5047 5048 /* 5049 * If a pool with this name exists, return failure. 5050 */ 5051 mutex_enter(&spa_namespace_lock); 5052 if (spa_lookup(pool) != NULL) { 5053 mutex_exit(&spa_namespace_lock); 5054 return (SET_ERROR(EEXIST)); 5055 } 5056 5057 /* 5058 * Create and initialize the spa structure. 5059 */ 5060 (void) nvlist_lookup_string(props, 5061 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5062 (void) nvlist_lookup_uint64(props, 5063 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 5064 if (readonly) 5065 mode = FREAD; 5066 spa = spa_add(pool, config, altroot); 5067 spa->spa_import_flags = flags; 5068 5069 /* 5070 * Verbatim import - Take a pool and insert it into the namespace 5071 * as if it had been loaded at boot. 5072 */ 5073 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 5074 if (props != NULL) 5075 spa_configfile_set(spa, props, B_FALSE); 5076 5077 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5078 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5079 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 5080 mutex_exit(&spa_namespace_lock); 5081 return (0); 5082 } 5083 5084 spa_activate(spa, mode); 5085 5086 /* 5087 * Don't start async tasks until we know everything is healthy. 5088 */ 5089 spa_async_suspend(spa); 5090 5091 zpool_get_load_policy(config, &policy); 5092 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5093 state = SPA_LOAD_RECOVER; 5094 5095 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 5096 5097 if (state != SPA_LOAD_RECOVER) { 5098 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5099 zfs_dbgmsg("spa_import: importing %s", pool); 5100 } else { 5101 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 5102 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 5103 } 5104 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 5105 5106 /* 5107 * Propagate anything learned while loading the pool and pass it 5108 * back to caller (i.e. rewind info, missing devices, etc). 5109 */ 5110 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5111 spa->spa_load_info) == 0); 5112 5113 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5114 /* 5115 * Toss any existing sparelist, as it doesn't have any validity 5116 * anymore, and conflicts with spa_has_spare(). 5117 */ 5118 if (spa->spa_spares.sav_config) { 5119 nvlist_free(spa->spa_spares.sav_config); 5120 spa->spa_spares.sav_config = NULL; 5121 spa_load_spares(spa); 5122 } 5123 if (spa->spa_l2cache.sav_config) { 5124 nvlist_free(spa->spa_l2cache.sav_config); 5125 spa->spa_l2cache.sav_config = NULL; 5126 spa_load_l2cache(spa); 5127 } 5128 5129 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 5130 &nvroot) == 0); 5131 if (error == 0) 5132 error = spa_validate_aux(spa, nvroot, -1ULL, 5133 VDEV_ALLOC_SPARE); 5134 if (error == 0) 5135 error = spa_validate_aux(spa, nvroot, -1ULL, 5136 VDEV_ALLOC_L2CACHE); 5137 spa_config_exit(spa, SCL_ALL, FTAG); 5138 5139 if (props != NULL) 5140 spa_configfile_set(spa, props, B_FALSE); 5141 5142 if (error != 0 || (props && spa_writeable(spa) && 5143 (error = spa_prop_set(spa, props)))) { 5144 spa_unload(spa); 5145 spa_deactivate(spa); 5146 spa_remove(spa); 5147 mutex_exit(&spa_namespace_lock); 5148 return (error); 5149 } 5150 5151 spa_async_resume(spa); 5152 5153 /* 5154 * Override any spares and level 2 cache devices as specified by 5155 * the user, as these may have correct device names/devids, etc. 5156 */ 5157 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5158 &spares, &nspares) == 0) { 5159 if (spa->spa_spares.sav_config) 5160 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 5161 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 5162 else 5163 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 5164 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5165 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5166 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5167 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5168 spa_load_spares(spa); 5169 spa_config_exit(spa, SCL_ALL, FTAG); 5170 spa->spa_spares.sav_sync = B_TRUE; 5171 } 5172 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5173 &l2cache, &nl2cache) == 0) { 5174 if (spa->spa_l2cache.sav_config) 5175 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 5176 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 5177 else 5178 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5179 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5180 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5181 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5182 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5183 spa_load_l2cache(spa); 5184 spa_config_exit(spa, SCL_ALL, FTAG); 5185 spa->spa_l2cache.sav_sync = B_TRUE; 5186 } 5187 5188 /* 5189 * Check for any removed devices. 5190 */ 5191 if (spa->spa_autoreplace) { 5192 spa_aux_check_removed(&spa->spa_spares); 5193 spa_aux_check_removed(&spa->spa_l2cache); 5194 } 5195 5196 if (spa_writeable(spa)) { 5197 /* 5198 * Update the config cache to include the newly-imported pool. 5199 */ 5200 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5201 } 5202 5203 /* 5204 * It's possible that the pool was expanded while it was exported. 5205 * We kick off an async task to handle this for us. 5206 */ 5207 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 5208 5209 spa_history_log_version(spa, "import"); 5210 5211 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5212 5213 mutex_exit(&spa_namespace_lock); 5214 5215 return (0); 5216 } 5217 5218 nvlist_t * 5219 spa_tryimport(nvlist_t *tryconfig) 5220 { 5221 nvlist_t *config = NULL; 5222 char *poolname, *cachefile; 5223 spa_t *spa; 5224 uint64_t state; 5225 int error; 5226 zpool_load_policy_t policy; 5227 5228 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 5229 return (NULL); 5230 5231 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 5232 return (NULL); 5233 5234 /* 5235 * Create and initialize the spa structure. 5236 */ 5237 mutex_enter(&spa_namespace_lock); 5238 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 5239 spa_activate(spa, FREAD); 5240 5241 /* 5242 * Rewind pool if a max txg was provided. 5243 */ 5244 zpool_get_load_policy(spa->spa_config, &policy); 5245 if (policy.zlp_txg != UINT64_MAX) { 5246 spa->spa_load_max_txg = policy.zlp_txg; 5247 spa->spa_extreme_rewind = B_TRUE; 5248 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 5249 poolname, (longlong_t)policy.zlp_txg); 5250 } else { 5251 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 5252 } 5253 5254 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 5255 == 0) { 5256 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 5257 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5258 } else { 5259 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 5260 } 5261 5262 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 5263 5264 /* 5265 * If 'tryconfig' was at least parsable, return the current config. 5266 */ 5267 if (spa->spa_root_vdev != NULL) { 5268 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5269 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 5270 poolname) == 0); 5271 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 5272 state) == 0); 5273 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 5274 spa->spa_uberblock.ub_timestamp) == 0); 5275 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5276 spa->spa_load_info) == 0); 5277 5278 /* 5279 * If the bootfs property exists on this pool then we 5280 * copy it out so that external consumers can tell which 5281 * pools are bootable. 5282 */ 5283 if ((!error || error == EEXIST) && spa->spa_bootfs) { 5284 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5285 5286 /* 5287 * We have to play games with the name since the 5288 * pool was opened as TRYIMPORT_NAME. 5289 */ 5290 if (dsl_dsobj_to_dsname(spa_name(spa), 5291 spa->spa_bootfs, tmpname) == 0) { 5292 char *cp; 5293 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5294 5295 cp = strchr(tmpname, '/'); 5296 if (cp == NULL) { 5297 (void) strlcpy(dsname, tmpname, 5298 MAXPATHLEN); 5299 } else { 5300 (void) snprintf(dsname, MAXPATHLEN, 5301 "%s/%s", poolname, ++cp); 5302 } 5303 VERIFY(nvlist_add_string(config, 5304 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 5305 kmem_free(dsname, MAXPATHLEN); 5306 } 5307 kmem_free(tmpname, MAXPATHLEN); 5308 } 5309 5310 /* 5311 * Add the list of hot spares and level 2 cache devices. 5312 */ 5313 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5314 spa_add_spares(spa, config); 5315 spa_add_l2cache(spa, config); 5316 spa_config_exit(spa, SCL_CONFIG, FTAG); 5317 } 5318 5319 spa_unload(spa); 5320 spa_deactivate(spa); 5321 spa_remove(spa); 5322 mutex_exit(&spa_namespace_lock); 5323 5324 return (config); 5325 } 5326 5327 /* 5328 * Pool export/destroy 5329 * 5330 * The act of destroying or exporting a pool is very simple. We make sure there 5331 * is no more pending I/O and any references to the pool are gone. Then, we 5332 * update the pool state and sync all the labels to disk, removing the 5333 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 5334 * we don't sync the labels or remove the configuration cache. 5335 */ 5336 static int 5337 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 5338 boolean_t force, boolean_t hardforce) 5339 { 5340 spa_t *spa; 5341 5342 if (oldconfig) 5343 *oldconfig = NULL; 5344 5345 if (!(spa_mode_global & FWRITE)) 5346 return (SET_ERROR(EROFS)); 5347 5348 mutex_enter(&spa_namespace_lock); 5349 if ((spa = spa_lookup(pool)) == NULL) { 5350 mutex_exit(&spa_namespace_lock); 5351 return (SET_ERROR(ENOENT)); 5352 } 5353 5354 /* 5355 * Put a hold on the pool, drop the namespace lock, stop async tasks, 5356 * reacquire the namespace lock, and see if we can export. 5357 */ 5358 spa_open_ref(spa, FTAG); 5359 mutex_exit(&spa_namespace_lock); 5360 spa_async_suspend(spa); 5361 mutex_enter(&spa_namespace_lock); 5362 spa_close(spa, FTAG); 5363 5364 /* 5365 * The pool will be in core if it's openable, 5366 * in which case we can modify its state. 5367 */ 5368 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 5369 5370 /* 5371 * Objsets may be open only because they're dirty, so we 5372 * have to force it to sync before checking spa_refcnt. 5373 */ 5374 txg_wait_synced(spa->spa_dsl_pool, 0); 5375 spa_evicting_os_wait(spa); 5376 5377 /* 5378 * A pool cannot be exported or destroyed if there are active 5379 * references. If we are resetting a pool, allow references by 5380 * fault injection handlers. 5381 */ 5382 if (!spa_refcount_zero(spa) || 5383 (spa->spa_inject_ref != 0 && 5384 new_state != POOL_STATE_UNINITIALIZED)) { 5385 spa_async_resume(spa); 5386 mutex_exit(&spa_namespace_lock); 5387 return (SET_ERROR(EBUSY)); 5388 } 5389 5390 /* 5391 * A pool cannot be exported if it has an active shared spare. 5392 * This is to prevent other pools stealing the active spare 5393 * from an exported pool. At user's own will, such pool can 5394 * be forcedly exported. 5395 */ 5396 if (!force && new_state == POOL_STATE_EXPORTED && 5397 spa_has_active_shared_spare(spa)) { 5398 spa_async_resume(spa); 5399 mutex_exit(&spa_namespace_lock); 5400 return (SET_ERROR(EXDEV)); 5401 } 5402 5403 /* 5404 * We're about to export or destroy this pool. Make sure 5405 * we stop all initializtion activity here before we 5406 * set the spa_final_txg. This will ensure that all 5407 * dirty data resulting from the initialization is 5408 * committed to disk before we unload the pool. 5409 */ 5410 if (spa->spa_root_vdev != NULL) { 5411 vdev_initialize_stop_all(spa->spa_root_vdev, 5412 VDEV_INITIALIZE_ACTIVE); 5413 } 5414 5415 /* 5416 * We want this to be reflected on every label, 5417 * so mark them all dirty. spa_unload() will do the 5418 * final sync that pushes these changes out. 5419 */ 5420 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 5421 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5422 spa->spa_state = new_state; 5423 spa->spa_final_txg = spa_last_synced_txg(spa) + 5424 TXG_DEFER_SIZE + 1; 5425 vdev_config_dirty(spa->spa_root_vdev); 5426 spa_config_exit(spa, SCL_ALL, FTAG); 5427 } 5428 } 5429 5430 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 5431 5432 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5433 spa_unload(spa); 5434 spa_deactivate(spa); 5435 } 5436 5437 if (oldconfig && spa->spa_config) 5438 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 5439 5440 if (new_state != POOL_STATE_UNINITIALIZED) { 5441 if (!hardforce) 5442 spa_write_cachefile(spa, B_TRUE, B_TRUE); 5443 spa_remove(spa); 5444 } 5445 mutex_exit(&spa_namespace_lock); 5446 5447 return (0); 5448 } 5449 5450 /* 5451 * Destroy a storage pool. 5452 */ 5453 int 5454 spa_destroy(char *pool) 5455 { 5456 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 5457 B_FALSE, B_FALSE)); 5458 } 5459 5460 /* 5461 * Export a storage pool. 5462 */ 5463 int 5464 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 5465 boolean_t hardforce) 5466 { 5467 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 5468 force, hardforce)); 5469 } 5470 5471 /* 5472 * Similar to spa_export(), this unloads the spa_t without actually removing it 5473 * from the namespace in any way. 5474 */ 5475 int 5476 spa_reset(char *pool) 5477 { 5478 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 5479 B_FALSE, B_FALSE)); 5480 } 5481 5482 /* 5483 * ========================================================================== 5484 * Device manipulation 5485 * ========================================================================== 5486 */ 5487 5488 /* 5489 * Add a device to a storage pool. 5490 */ 5491 int 5492 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 5493 { 5494 uint64_t txg, id; 5495 int error; 5496 vdev_t *rvd = spa->spa_root_vdev; 5497 vdev_t *vd, *tvd; 5498 nvlist_t **spares, **l2cache; 5499 uint_t nspares, nl2cache; 5500 5501 ASSERT(spa_writeable(spa)); 5502 5503 txg = spa_vdev_enter(spa); 5504 5505 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 5506 VDEV_ALLOC_ADD)) != 0) 5507 return (spa_vdev_exit(spa, NULL, txg, error)); 5508 5509 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 5510 5511 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 5512 &nspares) != 0) 5513 nspares = 0; 5514 5515 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 5516 &nl2cache) != 0) 5517 nl2cache = 0; 5518 5519 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 5520 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5521 5522 if (vd->vdev_children != 0 && 5523 (error = vdev_create(vd, txg, B_FALSE)) != 0) 5524 return (spa_vdev_exit(spa, vd, txg, error)); 5525 5526 /* 5527 * We must validate the spares and l2cache devices after checking the 5528 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 5529 */ 5530 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 5531 return (spa_vdev_exit(spa, vd, txg, error)); 5532 5533 /* 5534 * If we are in the middle of a device removal, we can only add 5535 * devices which match the existing devices in the pool. 5536 * If we are in the middle of a removal, or have some indirect 5537 * vdevs, we can not add raidz toplevels. 5538 */ 5539 if (spa->spa_vdev_removal != NULL || 5540 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 5541 for (int c = 0; c < vd->vdev_children; c++) { 5542 tvd = vd->vdev_child[c]; 5543 if (spa->spa_vdev_removal != NULL && 5544 tvd->vdev_ashift != spa->spa_max_ashift) { 5545 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5546 } 5547 /* Fail if top level vdev is raidz */ 5548 if (tvd->vdev_ops == &vdev_raidz_ops) { 5549 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 5550 } 5551 /* 5552 * Need the top level mirror to be 5553 * a mirror of leaf vdevs only 5554 */ 5555 if (tvd->vdev_ops == &vdev_mirror_ops) { 5556 for (uint64_t cid = 0; 5557 cid < tvd->vdev_children; cid++) { 5558 vdev_t *cvd = tvd->vdev_child[cid]; 5559 if (!cvd->vdev_ops->vdev_op_leaf) { 5560 return (spa_vdev_exit(spa, vd, 5561 txg, EINVAL)); 5562 } 5563 } 5564 } 5565 } 5566 } 5567 5568 for (int c = 0; c < vd->vdev_children; c++) { 5569 5570 /* 5571 * Set the vdev id to the first hole, if one exists. 5572 */ 5573 for (id = 0; id < rvd->vdev_children; id++) { 5574 if (rvd->vdev_child[id]->vdev_ishole) { 5575 vdev_free(rvd->vdev_child[id]); 5576 break; 5577 } 5578 } 5579 tvd = vd->vdev_child[c]; 5580 vdev_remove_child(vd, tvd); 5581 tvd->vdev_id = id; 5582 vdev_add_child(rvd, tvd); 5583 vdev_config_dirty(tvd); 5584 } 5585 5586 if (nspares != 0) { 5587 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 5588 ZPOOL_CONFIG_SPARES); 5589 spa_load_spares(spa); 5590 spa->spa_spares.sav_sync = B_TRUE; 5591 } 5592 5593 if (nl2cache != 0) { 5594 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 5595 ZPOOL_CONFIG_L2CACHE); 5596 spa_load_l2cache(spa); 5597 spa->spa_l2cache.sav_sync = B_TRUE; 5598 } 5599 5600 /* 5601 * We have to be careful when adding new vdevs to an existing pool. 5602 * If other threads start allocating from these vdevs before we 5603 * sync the config cache, and we lose power, then upon reboot we may 5604 * fail to open the pool because there are DVAs that the config cache 5605 * can't translate. Therefore, we first add the vdevs without 5606 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 5607 * and then let spa_config_update() initialize the new metaslabs. 5608 * 5609 * spa_load() checks for added-but-not-initialized vdevs, so that 5610 * if we lose power at any point in this sequence, the remaining 5611 * steps will be completed the next time we load the pool. 5612 */ 5613 (void) spa_vdev_exit(spa, vd, txg, 0); 5614 5615 mutex_enter(&spa_namespace_lock); 5616 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5617 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 5618 mutex_exit(&spa_namespace_lock); 5619 5620 return (0); 5621 } 5622 5623 /* 5624 * Attach a device to a mirror. The arguments are the path to any device 5625 * in the mirror, and the nvroot for the new device. If the path specifies 5626 * a device that is not mirrored, we automatically insert the mirror vdev. 5627 * 5628 * If 'replacing' is specified, the new device is intended to replace the 5629 * existing device; in this case the two devices are made into their own 5630 * mirror using the 'replacing' vdev, which is functionally identical to 5631 * the mirror vdev (it actually reuses all the same ops) but has a few 5632 * extra rules: you can't attach to it after it's been created, and upon 5633 * completion of resilvering, the first disk (the one being replaced) 5634 * is automatically detached. 5635 */ 5636 int 5637 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 5638 { 5639 uint64_t txg, dtl_max_txg; 5640 vdev_t *rvd = spa->spa_root_vdev; 5641 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 5642 vdev_ops_t *pvops; 5643 char *oldvdpath, *newvdpath; 5644 int newvd_isspare; 5645 int error; 5646 5647 ASSERT(spa_writeable(spa)); 5648 5649 txg = spa_vdev_enter(spa); 5650 5651 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 5652 5653 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5654 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 5655 error = (spa_has_checkpoint(spa)) ? 5656 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 5657 return (spa_vdev_exit(spa, NULL, txg, error)); 5658 } 5659 5660 if (spa->spa_vdev_removal != NULL) 5661 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5662 5663 if (oldvd == NULL) 5664 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 5665 5666 if (!oldvd->vdev_ops->vdev_op_leaf) 5667 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5668 5669 pvd = oldvd->vdev_parent; 5670 5671 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 5672 VDEV_ALLOC_ATTACH)) != 0) 5673 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 5674 5675 if (newrootvd->vdev_children != 1) 5676 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 5677 5678 newvd = newrootvd->vdev_child[0]; 5679 5680 if (!newvd->vdev_ops->vdev_op_leaf) 5681 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 5682 5683 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 5684 return (spa_vdev_exit(spa, newrootvd, txg, error)); 5685 5686 /* 5687 * Spares can't replace logs 5688 */ 5689 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 5690 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5691 5692 if (!replacing) { 5693 /* 5694 * For attach, the only allowable parent is a mirror or the root 5695 * vdev. 5696 */ 5697 if (pvd->vdev_ops != &vdev_mirror_ops && 5698 pvd->vdev_ops != &vdev_root_ops) 5699 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5700 5701 pvops = &vdev_mirror_ops; 5702 } else { 5703 /* 5704 * Active hot spares can only be replaced by inactive hot 5705 * spares. 5706 */ 5707 if (pvd->vdev_ops == &vdev_spare_ops && 5708 oldvd->vdev_isspare && 5709 !spa_has_spare(spa, newvd->vdev_guid)) 5710 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5711 5712 /* 5713 * If the source is a hot spare, and the parent isn't already a 5714 * spare, then we want to create a new hot spare. Otherwise, we 5715 * want to create a replacing vdev. The user is not allowed to 5716 * attach to a spared vdev child unless the 'isspare' state is 5717 * the same (spare replaces spare, non-spare replaces 5718 * non-spare). 5719 */ 5720 if (pvd->vdev_ops == &vdev_replacing_ops && 5721 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 5722 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5723 } else if (pvd->vdev_ops == &vdev_spare_ops && 5724 newvd->vdev_isspare != oldvd->vdev_isspare) { 5725 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 5726 } 5727 5728 if (newvd->vdev_isspare) 5729 pvops = &vdev_spare_ops; 5730 else 5731 pvops = &vdev_replacing_ops; 5732 } 5733 5734 /* 5735 * Make sure the new device is big enough. 5736 */ 5737 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 5738 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 5739 5740 /* 5741 * The new device cannot have a higher alignment requirement 5742 * than the top-level vdev. 5743 */ 5744 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 5745 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 5746 5747 /* 5748 * If this is an in-place replacement, update oldvd's path and devid 5749 * to make it distinguishable from newvd, and unopenable from now on. 5750 */ 5751 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 5752 spa_strfree(oldvd->vdev_path); 5753 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 5754 KM_SLEEP); 5755 (void) sprintf(oldvd->vdev_path, "%s/%s", 5756 newvd->vdev_path, "old"); 5757 if (oldvd->vdev_devid != NULL) { 5758 spa_strfree(oldvd->vdev_devid); 5759 oldvd->vdev_devid = NULL; 5760 } 5761 } 5762 5763 /* mark the device being resilvered */ 5764 newvd->vdev_resilver_txg = txg; 5765 5766 /* 5767 * If the parent is not a mirror, or if we're replacing, insert the new 5768 * mirror/replacing/spare vdev above oldvd. 5769 */ 5770 if (pvd->vdev_ops != pvops) 5771 pvd = vdev_add_parent(oldvd, pvops); 5772 5773 ASSERT(pvd->vdev_top->vdev_parent == rvd); 5774 ASSERT(pvd->vdev_ops == pvops); 5775 ASSERT(oldvd->vdev_parent == pvd); 5776 5777 /* 5778 * Extract the new device from its root and add it to pvd. 5779 */ 5780 vdev_remove_child(newrootvd, newvd); 5781 newvd->vdev_id = pvd->vdev_children; 5782 newvd->vdev_crtxg = oldvd->vdev_crtxg; 5783 vdev_add_child(pvd, newvd); 5784 5785 tvd = newvd->vdev_top; 5786 ASSERT(pvd->vdev_top == tvd); 5787 ASSERT(tvd->vdev_parent == rvd); 5788 5789 vdev_config_dirty(tvd); 5790 5791 /* 5792 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 5793 * for any dmu_sync-ed blocks. It will propagate upward when 5794 * spa_vdev_exit() calls vdev_dtl_reassess(). 5795 */ 5796 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 5797 5798 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 5799 dtl_max_txg - TXG_INITIAL); 5800 5801 if (newvd->vdev_isspare) { 5802 spa_spare_activate(newvd); 5803 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 5804 } 5805 5806 oldvdpath = spa_strdup(oldvd->vdev_path); 5807 newvdpath = spa_strdup(newvd->vdev_path); 5808 newvd_isspare = newvd->vdev_isspare; 5809 5810 /* 5811 * Mark newvd's DTL dirty in this txg. 5812 */ 5813 vdev_dirty(tvd, VDD_DTL, newvd, txg); 5814 5815 /* 5816 * Schedule the resilver to restart in the future. We do this to 5817 * ensure that dmu_sync-ed blocks have been stitched into the 5818 * respective datasets. 5819 */ 5820 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 5821 5822 if (spa->spa_bootfs) 5823 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 5824 5825 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 5826 5827 /* 5828 * Commit the config 5829 */ 5830 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 5831 5832 spa_history_log_internal(spa, "vdev attach", NULL, 5833 "%s vdev=%s %s vdev=%s", 5834 replacing && newvd_isspare ? "spare in" : 5835 replacing ? "replace" : "attach", newvdpath, 5836 replacing ? "for" : "to", oldvdpath); 5837 5838 spa_strfree(oldvdpath); 5839 spa_strfree(newvdpath); 5840 5841 return (0); 5842 } 5843 5844 /* 5845 * Detach a device from a mirror or replacing vdev. 5846 * 5847 * If 'replace_done' is specified, only detach if the parent 5848 * is a replacing vdev. 5849 */ 5850 int 5851 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 5852 { 5853 uint64_t txg; 5854 int error; 5855 vdev_t *rvd = spa->spa_root_vdev; 5856 vdev_t *vd, *pvd, *cvd, *tvd; 5857 boolean_t unspare = B_FALSE; 5858 uint64_t unspare_guid = 0; 5859 char *vdpath; 5860 5861 ASSERT(spa_writeable(spa)); 5862 5863 txg = spa_vdev_enter(spa); 5864 5865 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5866 5867 /* 5868 * Besides being called directly from the userland through the 5869 * ioctl interface, spa_vdev_detach() can be potentially called 5870 * at the end of spa_vdev_resilver_done(). 5871 * 5872 * In the regular case, when we have a checkpoint this shouldn't 5873 * happen as we never empty the DTLs of a vdev during the scrub 5874 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 5875 * should never get here when we have a checkpoint. 5876 * 5877 * That said, even in a case when we checkpoint the pool exactly 5878 * as spa_vdev_resilver_done() calls this function everything 5879 * should be fine as the resilver will return right away. 5880 */ 5881 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5882 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 5883 error = (spa_has_checkpoint(spa)) ? 5884 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 5885 return (spa_vdev_exit(spa, NULL, txg, error)); 5886 } 5887 5888 if (vd == NULL) 5889 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 5890 5891 if (!vd->vdev_ops->vdev_op_leaf) 5892 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5893 5894 pvd = vd->vdev_parent; 5895 5896 /* 5897 * If the parent/child relationship is not as expected, don't do it. 5898 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 5899 * vdev that's replacing B with C. The user's intent in replacing 5900 * is to go from M(A,B) to M(A,C). If the user decides to cancel 5901 * the replace by detaching C, the expected behavior is to end up 5902 * M(A,B). But suppose that right after deciding to detach C, 5903 * the replacement of B completes. We would have M(A,C), and then 5904 * ask to detach C, which would leave us with just A -- not what 5905 * the user wanted. To prevent this, we make sure that the 5906 * parent/child relationship hasn't changed -- in this example, 5907 * that C's parent is still the replacing vdev R. 5908 */ 5909 if (pvd->vdev_guid != pguid && pguid != 0) 5910 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5911 5912 /* 5913 * Only 'replacing' or 'spare' vdevs can be replaced. 5914 */ 5915 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 5916 pvd->vdev_ops != &vdev_spare_ops) 5917 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5918 5919 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 5920 spa_version(spa) >= SPA_VERSION_SPARES); 5921 5922 /* 5923 * Only mirror, replacing, and spare vdevs support detach. 5924 */ 5925 if (pvd->vdev_ops != &vdev_replacing_ops && 5926 pvd->vdev_ops != &vdev_mirror_ops && 5927 pvd->vdev_ops != &vdev_spare_ops) 5928 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 5929 5930 /* 5931 * If this device has the only valid copy of some data, 5932 * we cannot safely detach it. 5933 */ 5934 if (vdev_dtl_required(vd)) 5935 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 5936 5937 ASSERT(pvd->vdev_children >= 2); 5938 5939 /* 5940 * If we are detaching the second disk from a replacing vdev, then 5941 * check to see if we changed the original vdev's path to have "/old" 5942 * at the end in spa_vdev_attach(). If so, undo that change now. 5943 */ 5944 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 5945 vd->vdev_path != NULL) { 5946 size_t len = strlen(vd->vdev_path); 5947 5948 for (int c = 0; c < pvd->vdev_children; c++) { 5949 cvd = pvd->vdev_child[c]; 5950 5951 if (cvd == vd || cvd->vdev_path == NULL) 5952 continue; 5953 5954 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 5955 strcmp(cvd->vdev_path + len, "/old") == 0) { 5956 spa_strfree(cvd->vdev_path); 5957 cvd->vdev_path = spa_strdup(vd->vdev_path); 5958 break; 5959 } 5960 } 5961 } 5962 5963 /* 5964 * If we are detaching the original disk from a spare, then it implies 5965 * that the spare should become a real disk, and be removed from the 5966 * active spare list for the pool. 5967 */ 5968 if (pvd->vdev_ops == &vdev_spare_ops && 5969 vd->vdev_id == 0 && 5970 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 5971 unspare = B_TRUE; 5972 5973 /* 5974 * Erase the disk labels so the disk can be used for other things. 5975 * This must be done after all other error cases are handled, 5976 * but before we disembowel vd (so we can still do I/O to it). 5977 * But if we can't do it, don't treat the error as fatal -- 5978 * it may be that the unwritability of the disk is the reason 5979 * it's being detached! 5980 */ 5981 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5982 5983 /* 5984 * Remove vd from its parent and compact the parent's children. 5985 */ 5986 vdev_remove_child(pvd, vd); 5987 vdev_compact_children(pvd); 5988 5989 /* 5990 * Remember one of the remaining children so we can get tvd below. 5991 */ 5992 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 5993 5994 /* 5995 * If we need to remove the remaining child from the list of hot spares, 5996 * do it now, marking the vdev as no longer a spare in the process. 5997 * We must do this before vdev_remove_parent(), because that can 5998 * change the GUID if it creates a new toplevel GUID. For a similar 5999 * reason, we must remove the spare now, in the same txg as the detach; 6000 * otherwise someone could attach a new sibling, change the GUID, and 6001 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 6002 */ 6003 if (unspare) { 6004 ASSERT(cvd->vdev_isspare); 6005 spa_spare_remove(cvd); 6006 unspare_guid = cvd->vdev_guid; 6007 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 6008 cvd->vdev_unspare = B_TRUE; 6009 } 6010 6011 /* 6012 * If the parent mirror/replacing vdev only has one child, 6013 * the parent is no longer needed. Remove it from the tree. 6014 */ 6015 if (pvd->vdev_children == 1) { 6016 if (pvd->vdev_ops == &vdev_spare_ops) 6017 cvd->vdev_unspare = B_FALSE; 6018 vdev_remove_parent(cvd); 6019 } 6020 6021 6022 /* 6023 * We don't set tvd until now because the parent we just removed 6024 * may have been the previous top-level vdev. 6025 */ 6026 tvd = cvd->vdev_top; 6027 ASSERT(tvd->vdev_parent == rvd); 6028 6029 /* 6030 * Reevaluate the parent vdev state. 6031 */ 6032 vdev_propagate_state(cvd); 6033 6034 /* 6035 * If the 'autoexpand' property is set on the pool then automatically 6036 * try to expand the size of the pool. For example if the device we 6037 * just detached was smaller than the others, it may be possible to 6038 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 6039 * first so that we can obtain the updated sizes of the leaf vdevs. 6040 */ 6041 if (spa->spa_autoexpand) { 6042 vdev_reopen(tvd); 6043 vdev_expand(tvd, txg); 6044 } 6045 6046 vdev_config_dirty(tvd); 6047 6048 /* 6049 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 6050 * vd->vdev_detached is set and free vd's DTL object in syncing context. 6051 * But first make sure we're not on any *other* txg's DTL list, to 6052 * prevent vd from being accessed after it's freed. 6053 */ 6054 vdpath = spa_strdup(vd->vdev_path); 6055 for (int t = 0; t < TXG_SIZE; t++) 6056 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 6057 vd->vdev_detached = B_TRUE; 6058 vdev_dirty(tvd, VDD_DTL, vd, txg); 6059 6060 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 6061 6062 /* hang on to the spa before we release the lock */ 6063 spa_open_ref(spa, FTAG); 6064 6065 error = spa_vdev_exit(spa, vd, txg, 0); 6066 6067 spa_history_log_internal(spa, "detach", NULL, 6068 "vdev=%s", vdpath); 6069 spa_strfree(vdpath); 6070 6071 /* 6072 * If this was the removal of the original device in a hot spare vdev, 6073 * then we want to go through and remove the device from the hot spare 6074 * list of every other pool. 6075 */ 6076 if (unspare) { 6077 spa_t *altspa = NULL; 6078 6079 mutex_enter(&spa_namespace_lock); 6080 while ((altspa = spa_next(altspa)) != NULL) { 6081 if (altspa->spa_state != POOL_STATE_ACTIVE || 6082 altspa == spa) 6083 continue; 6084 6085 spa_open_ref(altspa, FTAG); 6086 mutex_exit(&spa_namespace_lock); 6087 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 6088 mutex_enter(&spa_namespace_lock); 6089 spa_close(altspa, FTAG); 6090 } 6091 mutex_exit(&spa_namespace_lock); 6092 6093 /* search the rest of the vdevs for spares to remove */ 6094 spa_vdev_resilver_done(spa); 6095 } 6096 6097 /* all done with the spa; OK to release */ 6098 mutex_enter(&spa_namespace_lock); 6099 spa_close(spa, FTAG); 6100 mutex_exit(&spa_namespace_lock); 6101 6102 return (error); 6103 } 6104 6105 int 6106 spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type) 6107 { 6108 /* 6109 * We hold the namespace lock through the whole function 6110 * to prevent any changes to the pool while we're starting or 6111 * stopping initialization. The config and state locks are held so that 6112 * we can properly assess the vdev state before we commit to 6113 * the initializing operation. 6114 */ 6115 mutex_enter(&spa_namespace_lock); 6116 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6117 6118 /* Look up vdev and ensure it's a leaf. */ 6119 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6120 if (vd == NULL || vd->vdev_detached) { 6121 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6122 mutex_exit(&spa_namespace_lock); 6123 return (SET_ERROR(ENODEV)); 6124 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 6125 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6126 mutex_exit(&spa_namespace_lock); 6127 return (SET_ERROR(EINVAL)); 6128 } else if (!vdev_writeable(vd)) { 6129 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6130 mutex_exit(&spa_namespace_lock); 6131 return (SET_ERROR(EROFS)); 6132 } 6133 mutex_enter(&vd->vdev_initialize_lock); 6134 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6135 6136 /* 6137 * When we activate an initialize action we check to see 6138 * if the vdev_initialize_thread is NULL. We do this instead 6139 * of using the vdev_initialize_state since there might be 6140 * a previous initialization process which has completed but 6141 * the thread is not exited. 6142 */ 6143 if (cmd_type == POOL_INITIALIZE_DO && 6144 (vd->vdev_initialize_thread != NULL || 6145 vd->vdev_top->vdev_removing)) { 6146 mutex_exit(&vd->vdev_initialize_lock); 6147 mutex_exit(&spa_namespace_lock); 6148 return (SET_ERROR(EBUSY)); 6149 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 6150 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 6151 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 6152 mutex_exit(&vd->vdev_initialize_lock); 6153 mutex_exit(&spa_namespace_lock); 6154 return (SET_ERROR(ESRCH)); 6155 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 6156 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 6157 mutex_exit(&vd->vdev_initialize_lock); 6158 mutex_exit(&spa_namespace_lock); 6159 return (SET_ERROR(ESRCH)); 6160 } 6161 6162 switch (cmd_type) { 6163 case POOL_INITIALIZE_DO: 6164 vdev_initialize(vd); 6165 break; 6166 case POOL_INITIALIZE_CANCEL: 6167 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED); 6168 break; 6169 case POOL_INITIALIZE_SUSPEND: 6170 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED); 6171 break; 6172 default: 6173 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 6174 } 6175 mutex_exit(&vd->vdev_initialize_lock); 6176 6177 /* Sync out the initializing state */ 6178 txg_wait_synced(spa->spa_dsl_pool, 0); 6179 mutex_exit(&spa_namespace_lock); 6180 6181 return (0); 6182 } 6183 6184 6185 /* 6186 * Split a set of devices from their mirrors, and create a new pool from them. 6187 */ 6188 int 6189 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 6190 nvlist_t *props, boolean_t exp) 6191 { 6192 int error = 0; 6193 uint64_t txg, *glist; 6194 spa_t *newspa; 6195 uint_t c, children, lastlog; 6196 nvlist_t **child, *nvl, *tmp; 6197 dmu_tx_t *tx; 6198 char *altroot = NULL; 6199 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 6200 boolean_t activate_slog; 6201 6202 ASSERT(spa_writeable(spa)); 6203 6204 txg = spa_vdev_enter(spa); 6205 6206 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6207 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6208 error = (spa_has_checkpoint(spa)) ? 6209 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6210 return (spa_vdev_exit(spa, NULL, txg, error)); 6211 } 6212 6213 /* clear the log and flush everything up to now */ 6214 activate_slog = spa_passivate_log(spa); 6215 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 6216 error = spa_reset_logs(spa); 6217 txg = spa_vdev_config_enter(spa); 6218 6219 if (activate_slog) 6220 spa_activate_log(spa); 6221 6222 if (error != 0) 6223 return (spa_vdev_exit(spa, NULL, txg, error)); 6224 6225 /* check new spa name before going any further */ 6226 if (spa_lookup(newname) != NULL) 6227 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 6228 6229 /* 6230 * scan through all the children to ensure they're all mirrors 6231 */ 6232 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 6233 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 6234 &children) != 0) 6235 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6236 6237 /* first, check to ensure we've got the right child count */ 6238 rvd = spa->spa_root_vdev; 6239 lastlog = 0; 6240 for (c = 0; c < rvd->vdev_children; c++) { 6241 vdev_t *vd = rvd->vdev_child[c]; 6242 6243 /* don't count the holes & logs as children */ 6244 if (vd->vdev_islog || !vdev_is_concrete(vd)) { 6245 if (lastlog == 0) 6246 lastlog = c; 6247 continue; 6248 } 6249 6250 lastlog = 0; 6251 } 6252 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 6253 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6254 6255 /* next, ensure no spare or cache devices are part of the split */ 6256 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 6257 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 6258 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6259 6260 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 6261 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 6262 6263 /* then, loop over each vdev and validate it */ 6264 for (c = 0; c < children; c++) { 6265 uint64_t is_hole = 0; 6266 6267 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 6268 &is_hole); 6269 6270 if (is_hole != 0) { 6271 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 6272 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 6273 continue; 6274 } else { 6275 error = SET_ERROR(EINVAL); 6276 break; 6277 } 6278 } 6279 6280 /* which disk is going to be split? */ 6281 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 6282 &glist[c]) != 0) { 6283 error = SET_ERROR(EINVAL); 6284 break; 6285 } 6286 6287 /* look it up in the spa */ 6288 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 6289 if (vml[c] == NULL) { 6290 error = SET_ERROR(ENODEV); 6291 break; 6292 } 6293 6294 /* make sure there's nothing stopping the split */ 6295 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 6296 vml[c]->vdev_islog || 6297 !vdev_is_concrete(vml[c]) || 6298 vml[c]->vdev_isspare || 6299 vml[c]->vdev_isl2cache || 6300 !vdev_writeable(vml[c]) || 6301 vml[c]->vdev_children != 0 || 6302 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 6303 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 6304 error = SET_ERROR(EINVAL); 6305 break; 6306 } 6307 6308 if (vdev_dtl_required(vml[c])) { 6309 error = SET_ERROR(EBUSY); 6310 break; 6311 } 6312 6313 /* we need certain info from the top level */ 6314 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 6315 vml[c]->vdev_top->vdev_ms_array) == 0); 6316 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 6317 vml[c]->vdev_top->vdev_ms_shift) == 0); 6318 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 6319 vml[c]->vdev_top->vdev_asize) == 0); 6320 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 6321 vml[c]->vdev_top->vdev_ashift) == 0); 6322 6323 /* transfer per-vdev ZAPs */ 6324 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 6325 VERIFY0(nvlist_add_uint64(child[c], 6326 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 6327 6328 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 6329 VERIFY0(nvlist_add_uint64(child[c], 6330 ZPOOL_CONFIG_VDEV_TOP_ZAP, 6331 vml[c]->vdev_parent->vdev_top_zap)); 6332 } 6333 6334 if (error != 0) { 6335 kmem_free(vml, children * sizeof (vdev_t *)); 6336 kmem_free(glist, children * sizeof (uint64_t)); 6337 return (spa_vdev_exit(spa, NULL, txg, error)); 6338 } 6339 6340 /* stop writers from using the disks */ 6341 for (c = 0; c < children; c++) { 6342 if (vml[c] != NULL) 6343 vml[c]->vdev_offline = B_TRUE; 6344 } 6345 vdev_reopen(spa->spa_root_vdev); 6346 6347 /* 6348 * Temporarily record the splitting vdevs in the spa config. This 6349 * will disappear once the config is regenerated. 6350 */ 6351 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6352 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 6353 glist, children) == 0); 6354 kmem_free(glist, children * sizeof (uint64_t)); 6355 6356 mutex_enter(&spa->spa_props_lock); 6357 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 6358 nvl) == 0); 6359 mutex_exit(&spa->spa_props_lock); 6360 spa->spa_config_splitting = nvl; 6361 vdev_config_dirty(spa->spa_root_vdev); 6362 6363 /* configure and create the new pool */ 6364 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 6365 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 6366 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 6367 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 6368 spa_version(spa)) == 0); 6369 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 6370 spa->spa_config_txg) == 0); 6371 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 6372 spa_generate_guid(NULL)) == 0); 6373 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 6374 (void) nvlist_lookup_string(props, 6375 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6376 6377 /* add the new pool to the namespace */ 6378 newspa = spa_add(newname, config, altroot); 6379 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 6380 newspa->spa_config_txg = spa->spa_config_txg; 6381 spa_set_log_state(newspa, SPA_LOG_CLEAR); 6382 6383 /* release the spa config lock, retaining the namespace lock */ 6384 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 6385 6386 if (zio_injection_enabled) 6387 zio_handle_panic_injection(spa, FTAG, 1); 6388 6389 spa_activate(newspa, spa_mode_global); 6390 spa_async_suspend(newspa); 6391 6392 for (c = 0; c < children; c++) { 6393 if (vml[c] != NULL) { 6394 /* 6395 * Temporarily stop the initializing activity. We set 6396 * the state to ACTIVE so that we know to resume 6397 * the initializing once the split has completed. 6398 */ 6399 mutex_enter(&vml[c]->vdev_initialize_lock); 6400 vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE); 6401 mutex_exit(&vml[c]->vdev_initialize_lock); 6402 } 6403 } 6404 6405 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 6406 6407 /* create the new pool from the disks of the original pool */ 6408 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 6409 if (error) 6410 goto out; 6411 6412 /* if that worked, generate a real config for the new pool */ 6413 if (newspa->spa_root_vdev != NULL) { 6414 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 6415 NV_UNIQUE_NAME, KM_SLEEP) == 0); 6416 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 6417 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 6418 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 6419 B_TRUE)); 6420 } 6421 6422 /* set the props */ 6423 if (props != NULL) { 6424 spa_configfile_set(newspa, props, B_FALSE); 6425 error = spa_prop_set(newspa, props); 6426 if (error) 6427 goto out; 6428 } 6429 6430 /* flush everything */ 6431 txg = spa_vdev_config_enter(newspa); 6432 vdev_config_dirty(newspa->spa_root_vdev); 6433 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 6434 6435 if (zio_injection_enabled) 6436 zio_handle_panic_injection(spa, FTAG, 2); 6437 6438 spa_async_resume(newspa); 6439 6440 /* finally, update the original pool's config */ 6441 txg = spa_vdev_config_enter(spa); 6442 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 6443 error = dmu_tx_assign(tx, TXG_WAIT); 6444 if (error != 0) 6445 dmu_tx_abort(tx); 6446 for (c = 0; c < children; c++) { 6447 if (vml[c] != NULL) { 6448 vdev_split(vml[c]); 6449 if (error == 0) 6450 spa_history_log_internal(spa, "detach", tx, 6451 "vdev=%s", vml[c]->vdev_path); 6452 6453 vdev_free(vml[c]); 6454 } 6455 } 6456 spa->spa_avz_action = AVZ_ACTION_REBUILD; 6457 vdev_config_dirty(spa->spa_root_vdev); 6458 spa->spa_config_splitting = NULL; 6459 nvlist_free(nvl); 6460 if (error == 0) 6461 dmu_tx_commit(tx); 6462 (void) spa_vdev_exit(spa, NULL, txg, 0); 6463 6464 if (zio_injection_enabled) 6465 zio_handle_panic_injection(spa, FTAG, 3); 6466 6467 /* split is complete; log a history record */ 6468 spa_history_log_internal(newspa, "split", NULL, 6469 "from pool %s", spa_name(spa)); 6470 6471 kmem_free(vml, children * sizeof (vdev_t *)); 6472 6473 /* if we're not going to mount the filesystems in userland, export */ 6474 if (exp) 6475 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 6476 B_FALSE, B_FALSE); 6477 6478 return (error); 6479 6480 out: 6481 spa_unload(newspa); 6482 spa_deactivate(newspa); 6483 spa_remove(newspa); 6484 6485 txg = spa_vdev_config_enter(spa); 6486 6487 /* re-online all offlined disks */ 6488 for (c = 0; c < children; c++) { 6489 if (vml[c] != NULL) 6490 vml[c]->vdev_offline = B_FALSE; 6491 } 6492 6493 /* restart initializing disks as necessary */ 6494 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 6495 6496 vdev_reopen(spa->spa_root_vdev); 6497 6498 nvlist_free(spa->spa_config_splitting); 6499 spa->spa_config_splitting = NULL; 6500 (void) spa_vdev_exit(spa, NULL, txg, error); 6501 6502 kmem_free(vml, children * sizeof (vdev_t *)); 6503 return (error); 6504 } 6505 6506 /* 6507 * Find any device that's done replacing, or a vdev marked 'unspare' that's 6508 * currently spared, so we can detach it. 6509 */ 6510 static vdev_t * 6511 spa_vdev_resilver_done_hunt(vdev_t *vd) 6512 { 6513 vdev_t *newvd, *oldvd; 6514 6515 for (int c = 0; c < vd->vdev_children; c++) { 6516 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 6517 if (oldvd != NULL) 6518 return (oldvd); 6519 } 6520 6521 /* 6522 * Check for a completed replacement. We always consider the first 6523 * vdev in the list to be the oldest vdev, and the last one to be 6524 * the newest (see spa_vdev_attach() for how that works). In 6525 * the case where the newest vdev is faulted, we will not automatically 6526 * remove it after a resilver completes. This is OK as it will require 6527 * user intervention to determine which disk the admin wishes to keep. 6528 */ 6529 if (vd->vdev_ops == &vdev_replacing_ops) { 6530 ASSERT(vd->vdev_children > 1); 6531 6532 newvd = vd->vdev_child[vd->vdev_children - 1]; 6533 oldvd = vd->vdev_child[0]; 6534 6535 if (vdev_dtl_empty(newvd, DTL_MISSING) && 6536 vdev_dtl_empty(newvd, DTL_OUTAGE) && 6537 !vdev_dtl_required(oldvd)) 6538 return (oldvd); 6539 } 6540 6541 /* 6542 * Check for a completed resilver with the 'unspare' flag set. 6543 * Also potentially update faulted state. 6544 */ 6545 if (vd->vdev_ops == &vdev_spare_ops) { 6546 vdev_t *first = vd->vdev_child[0]; 6547 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 6548 6549 if (last->vdev_unspare) { 6550 oldvd = first; 6551 newvd = last; 6552 } else if (first->vdev_unspare) { 6553 oldvd = last; 6554 newvd = first; 6555 } else { 6556 oldvd = NULL; 6557 } 6558 6559 if (oldvd != NULL && 6560 vdev_dtl_empty(newvd, DTL_MISSING) && 6561 vdev_dtl_empty(newvd, DTL_OUTAGE) && 6562 !vdev_dtl_required(oldvd)) 6563 return (oldvd); 6564 6565 vdev_propagate_state(vd); 6566 6567 /* 6568 * If there are more than two spares attached to a disk, 6569 * and those spares are not required, then we want to 6570 * attempt to free them up now so that they can be used 6571 * by other pools. Once we're back down to a single 6572 * disk+spare, we stop removing them. 6573 */ 6574 if (vd->vdev_children > 2) { 6575 newvd = vd->vdev_child[1]; 6576 6577 if (newvd->vdev_isspare && last->vdev_isspare && 6578 vdev_dtl_empty(last, DTL_MISSING) && 6579 vdev_dtl_empty(last, DTL_OUTAGE) && 6580 !vdev_dtl_required(newvd)) 6581 return (newvd); 6582 } 6583 } 6584 6585 return (NULL); 6586 } 6587 6588 static void 6589 spa_vdev_resilver_done(spa_t *spa) 6590 { 6591 vdev_t *vd, *pvd, *ppvd; 6592 uint64_t guid, sguid, pguid, ppguid; 6593 6594 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6595 6596 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 6597 pvd = vd->vdev_parent; 6598 ppvd = pvd->vdev_parent; 6599 guid = vd->vdev_guid; 6600 pguid = pvd->vdev_guid; 6601 ppguid = ppvd->vdev_guid; 6602 sguid = 0; 6603 /* 6604 * If we have just finished replacing a hot spared device, then 6605 * we need to detach the parent's first child (the original hot 6606 * spare) as well. 6607 */ 6608 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 6609 ppvd->vdev_children == 2) { 6610 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 6611 sguid = ppvd->vdev_child[1]->vdev_guid; 6612 } 6613 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 6614 6615 spa_config_exit(spa, SCL_ALL, FTAG); 6616 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 6617 return; 6618 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 6619 return; 6620 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6621 } 6622 6623 spa_config_exit(spa, SCL_ALL, FTAG); 6624 } 6625 6626 /* 6627 * Update the stored path or FRU for this vdev. 6628 */ 6629 int 6630 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 6631 boolean_t ispath) 6632 { 6633 vdev_t *vd; 6634 boolean_t sync = B_FALSE; 6635 6636 ASSERT(spa_writeable(spa)); 6637 6638 spa_vdev_state_enter(spa, SCL_ALL); 6639 6640 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 6641 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 6642 6643 if (!vd->vdev_ops->vdev_op_leaf) 6644 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 6645 6646 if (ispath) { 6647 if (strcmp(value, vd->vdev_path) != 0) { 6648 spa_strfree(vd->vdev_path); 6649 vd->vdev_path = spa_strdup(value); 6650 sync = B_TRUE; 6651 } 6652 } else { 6653 if (vd->vdev_fru == NULL) { 6654 vd->vdev_fru = spa_strdup(value); 6655 sync = B_TRUE; 6656 } else if (strcmp(value, vd->vdev_fru) != 0) { 6657 spa_strfree(vd->vdev_fru); 6658 vd->vdev_fru = spa_strdup(value); 6659 sync = B_TRUE; 6660 } 6661 } 6662 6663 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 6664 } 6665 6666 int 6667 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 6668 { 6669 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 6670 } 6671 6672 int 6673 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 6674 { 6675 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 6676 } 6677 6678 /* 6679 * ========================================================================== 6680 * SPA Scanning 6681 * ========================================================================== 6682 */ 6683 int 6684 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 6685 { 6686 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6687 6688 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 6689 return (SET_ERROR(EBUSY)); 6690 6691 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 6692 } 6693 6694 int 6695 spa_scan_stop(spa_t *spa) 6696 { 6697 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6698 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 6699 return (SET_ERROR(EBUSY)); 6700 return (dsl_scan_cancel(spa->spa_dsl_pool)); 6701 } 6702 6703 int 6704 spa_scan(spa_t *spa, pool_scan_func_t func) 6705 { 6706 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 6707 6708 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 6709 return (SET_ERROR(ENOTSUP)); 6710 6711 /* 6712 * If a resilver was requested, but there is no DTL on a 6713 * writeable leaf device, we have nothing to do. 6714 */ 6715 if (func == POOL_SCAN_RESILVER && 6716 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 6717 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 6718 return (0); 6719 } 6720 6721 return (dsl_scan(spa->spa_dsl_pool, func)); 6722 } 6723 6724 /* 6725 * ========================================================================== 6726 * SPA async task processing 6727 * ========================================================================== 6728 */ 6729 6730 static void 6731 spa_async_remove(spa_t *spa, vdev_t *vd) 6732 { 6733 if (vd->vdev_remove_wanted) { 6734 vd->vdev_remove_wanted = B_FALSE; 6735 vd->vdev_delayed_close = B_FALSE; 6736 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 6737 6738 /* 6739 * We want to clear the stats, but we don't want to do a full 6740 * vdev_clear() as that will cause us to throw away 6741 * degraded/faulted state as well as attempt to reopen the 6742 * device, all of which is a waste. 6743 */ 6744 vd->vdev_stat.vs_read_errors = 0; 6745 vd->vdev_stat.vs_write_errors = 0; 6746 vd->vdev_stat.vs_checksum_errors = 0; 6747 6748 vdev_state_dirty(vd->vdev_top); 6749 } 6750 6751 for (int c = 0; c < vd->vdev_children; c++) 6752 spa_async_remove(spa, vd->vdev_child[c]); 6753 } 6754 6755 static void 6756 spa_async_probe(spa_t *spa, vdev_t *vd) 6757 { 6758 if (vd->vdev_probe_wanted) { 6759 vd->vdev_probe_wanted = B_FALSE; 6760 vdev_reopen(vd); /* vdev_open() does the actual probe */ 6761 } 6762 6763 for (int c = 0; c < vd->vdev_children; c++) 6764 spa_async_probe(spa, vd->vdev_child[c]); 6765 } 6766 6767 static void 6768 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 6769 { 6770 sysevent_id_t eid; 6771 nvlist_t *attr; 6772 char *physpath; 6773 6774 if (!spa->spa_autoexpand) 6775 return; 6776 6777 for (int c = 0; c < vd->vdev_children; c++) { 6778 vdev_t *cvd = vd->vdev_child[c]; 6779 spa_async_autoexpand(spa, cvd); 6780 } 6781 6782 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 6783 return; 6784 6785 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 6786 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 6787 6788 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 6789 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 6790 6791 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 6792 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 6793 6794 nvlist_free(attr); 6795 kmem_free(physpath, MAXPATHLEN); 6796 } 6797 6798 static void 6799 spa_async_thread(void *arg) 6800 { 6801 spa_t *spa = (spa_t *)arg; 6802 int tasks; 6803 6804 ASSERT(spa->spa_sync_on); 6805 6806 mutex_enter(&spa->spa_async_lock); 6807 tasks = spa->spa_async_tasks; 6808 spa->spa_async_tasks = 0; 6809 mutex_exit(&spa->spa_async_lock); 6810 6811 /* 6812 * See if the config needs to be updated. 6813 */ 6814 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 6815 uint64_t old_space, new_space; 6816 6817 mutex_enter(&spa_namespace_lock); 6818 old_space = metaslab_class_get_space(spa_normal_class(spa)); 6819 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6820 new_space = metaslab_class_get_space(spa_normal_class(spa)); 6821 mutex_exit(&spa_namespace_lock); 6822 6823 /* 6824 * If the pool grew as a result of the config update, 6825 * then log an internal history event. 6826 */ 6827 if (new_space != old_space) { 6828 spa_history_log_internal(spa, "vdev online", NULL, 6829 "pool '%s' size: %llu(+%llu)", 6830 spa_name(spa), new_space, new_space - old_space); 6831 } 6832 } 6833 6834 /* 6835 * See if any devices need to be marked REMOVED. 6836 */ 6837 if (tasks & SPA_ASYNC_REMOVE) { 6838 spa_vdev_state_enter(spa, SCL_NONE); 6839 spa_async_remove(spa, spa->spa_root_vdev); 6840 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 6841 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 6842 for (int i = 0; i < spa->spa_spares.sav_count; i++) 6843 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 6844 (void) spa_vdev_state_exit(spa, NULL, 0); 6845 } 6846 6847 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 6848 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6849 spa_async_autoexpand(spa, spa->spa_root_vdev); 6850 spa_config_exit(spa, SCL_CONFIG, FTAG); 6851 } 6852 6853 /* 6854 * See if any devices need to be probed. 6855 */ 6856 if (tasks & SPA_ASYNC_PROBE) { 6857 spa_vdev_state_enter(spa, SCL_NONE); 6858 spa_async_probe(spa, spa->spa_root_vdev); 6859 (void) spa_vdev_state_exit(spa, NULL, 0); 6860 } 6861 6862 /* 6863 * If any devices are done replacing, detach them. 6864 */ 6865 if (tasks & SPA_ASYNC_RESILVER_DONE) 6866 spa_vdev_resilver_done(spa); 6867 6868 /* 6869 * Kick off a resilver. 6870 */ 6871 if (tasks & SPA_ASYNC_RESILVER) 6872 dsl_resilver_restart(spa->spa_dsl_pool, 0); 6873 6874 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 6875 mutex_enter(&spa_namespace_lock); 6876 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6877 vdev_initialize_restart(spa->spa_root_vdev); 6878 spa_config_exit(spa, SCL_CONFIG, FTAG); 6879 mutex_exit(&spa_namespace_lock); 6880 } 6881 6882 /* 6883 * Let the world know that we're done. 6884 */ 6885 mutex_enter(&spa->spa_async_lock); 6886 spa->spa_async_thread = NULL; 6887 cv_broadcast(&spa->spa_async_cv); 6888 mutex_exit(&spa->spa_async_lock); 6889 thread_exit(); 6890 } 6891 6892 void 6893 spa_async_suspend(spa_t *spa) 6894 { 6895 mutex_enter(&spa->spa_async_lock); 6896 spa->spa_async_suspended++; 6897 while (spa->spa_async_thread != NULL) 6898 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 6899 mutex_exit(&spa->spa_async_lock); 6900 6901 spa_vdev_remove_suspend(spa); 6902 6903 zthr_t *condense_thread = spa->spa_condense_zthr; 6904 if (condense_thread != NULL && zthr_isrunning(condense_thread)) 6905 VERIFY0(zthr_cancel(condense_thread)); 6906 6907 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 6908 if (discard_thread != NULL && zthr_isrunning(discard_thread)) 6909 VERIFY0(zthr_cancel(discard_thread)); 6910 } 6911 6912 void 6913 spa_async_resume(spa_t *spa) 6914 { 6915 mutex_enter(&spa->spa_async_lock); 6916 ASSERT(spa->spa_async_suspended != 0); 6917 spa->spa_async_suspended--; 6918 mutex_exit(&spa->spa_async_lock); 6919 spa_restart_removal(spa); 6920 6921 zthr_t *condense_thread = spa->spa_condense_zthr; 6922 if (condense_thread != NULL && !zthr_isrunning(condense_thread)) 6923 zthr_resume(condense_thread); 6924 6925 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 6926 if (discard_thread != NULL && !zthr_isrunning(discard_thread)) 6927 zthr_resume(discard_thread); 6928 } 6929 6930 static boolean_t 6931 spa_async_tasks_pending(spa_t *spa) 6932 { 6933 uint_t non_config_tasks; 6934 uint_t config_task; 6935 boolean_t config_task_suspended; 6936 6937 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 6938 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 6939 if (spa->spa_ccw_fail_time == 0) { 6940 config_task_suspended = B_FALSE; 6941 } else { 6942 config_task_suspended = 6943 (gethrtime() - spa->spa_ccw_fail_time) < 6944 (zfs_ccw_retry_interval * NANOSEC); 6945 } 6946 6947 return (non_config_tasks || (config_task && !config_task_suspended)); 6948 } 6949 6950 static void 6951 spa_async_dispatch(spa_t *spa) 6952 { 6953 mutex_enter(&spa->spa_async_lock); 6954 if (spa_async_tasks_pending(spa) && 6955 !spa->spa_async_suspended && 6956 spa->spa_async_thread == NULL && 6957 rootdir != NULL) 6958 spa->spa_async_thread = thread_create(NULL, 0, 6959 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 6960 mutex_exit(&spa->spa_async_lock); 6961 } 6962 6963 void 6964 spa_async_request(spa_t *spa, int task) 6965 { 6966 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 6967 mutex_enter(&spa->spa_async_lock); 6968 spa->spa_async_tasks |= task; 6969 mutex_exit(&spa->spa_async_lock); 6970 } 6971 6972 /* 6973 * ========================================================================== 6974 * SPA syncing routines 6975 * ========================================================================== 6976 */ 6977 6978 static int 6979 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6980 { 6981 bpobj_t *bpo = arg; 6982 bpobj_enqueue(bpo, bp, tx); 6983 return (0); 6984 } 6985 6986 static int 6987 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6988 { 6989 zio_t *zio = arg; 6990 6991 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 6992 zio->io_flags)); 6993 return (0); 6994 } 6995 6996 /* 6997 * Note: this simple function is not inlined to make it easier to dtrace the 6998 * amount of time spent syncing frees. 6999 */ 7000 static void 7001 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 7002 { 7003 zio_t *zio = zio_root(spa, NULL, NULL, 0); 7004 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 7005 VERIFY(zio_wait(zio) == 0); 7006 } 7007 7008 /* 7009 * Note: this simple function is not inlined to make it easier to dtrace the 7010 * amount of time spent syncing deferred frees. 7011 */ 7012 static void 7013 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 7014 { 7015 zio_t *zio = zio_root(spa, NULL, NULL, 0); 7016 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 7017 spa_free_sync_cb, zio, tx), ==, 0); 7018 VERIFY0(zio_wait(zio)); 7019 } 7020 7021 7022 static void 7023 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 7024 { 7025 char *packed = NULL; 7026 size_t bufsize; 7027 size_t nvsize = 0; 7028 dmu_buf_t *db; 7029 7030 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 7031 7032 /* 7033 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 7034 * information. This avoids the dmu_buf_will_dirty() path and 7035 * saves us a pre-read to get data we don't actually care about. 7036 */ 7037 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 7038 packed = kmem_alloc(bufsize, KM_SLEEP); 7039 7040 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 7041 KM_SLEEP) == 0); 7042 bzero(packed + nvsize, bufsize - nvsize); 7043 7044 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 7045 7046 kmem_free(packed, bufsize); 7047 7048 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 7049 dmu_buf_will_dirty(db, tx); 7050 *(uint64_t *)db->db_data = nvsize; 7051 dmu_buf_rele(db, FTAG); 7052 } 7053 7054 static void 7055 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 7056 const char *config, const char *entry) 7057 { 7058 nvlist_t *nvroot; 7059 nvlist_t **list; 7060 int i; 7061 7062 if (!sav->sav_sync) 7063 return; 7064 7065 /* 7066 * Update the MOS nvlist describing the list of available devices. 7067 * spa_validate_aux() will have already made sure this nvlist is 7068 * valid and the vdevs are labeled appropriately. 7069 */ 7070 if (sav->sav_object == 0) { 7071 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 7072 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 7073 sizeof (uint64_t), tx); 7074 VERIFY(zap_update(spa->spa_meta_objset, 7075 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 7076 &sav->sav_object, tx) == 0); 7077 } 7078 7079 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7080 if (sav->sav_count == 0) { 7081 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 7082 } else { 7083 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 7084 for (i = 0; i < sav->sav_count; i++) 7085 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 7086 B_FALSE, VDEV_CONFIG_L2CACHE); 7087 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 7088 sav->sav_count) == 0); 7089 for (i = 0; i < sav->sav_count; i++) 7090 nvlist_free(list[i]); 7091 kmem_free(list, sav->sav_count * sizeof (void *)); 7092 } 7093 7094 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 7095 nvlist_free(nvroot); 7096 7097 sav->sav_sync = B_FALSE; 7098 } 7099 7100 /* 7101 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 7102 * The all-vdev ZAP must be empty. 7103 */ 7104 static void 7105 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 7106 { 7107 spa_t *spa = vd->vdev_spa; 7108 if (vd->vdev_top_zap != 0) { 7109 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7110 vd->vdev_top_zap, tx)); 7111 } 7112 if (vd->vdev_leaf_zap != 0) { 7113 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 7114 vd->vdev_leaf_zap, tx)); 7115 } 7116 for (uint64_t i = 0; i < vd->vdev_children; i++) { 7117 spa_avz_build(vd->vdev_child[i], avz, tx); 7118 } 7119 } 7120 7121 static void 7122 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 7123 { 7124 nvlist_t *config; 7125 7126 /* 7127 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 7128 * its config may not be dirty but we still need to build per-vdev ZAPs. 7129 * Similarly, if the pool is being assembled (e.g. after a split), we 7130 * need to rebuild the AVZ although the config may not be dirty. 7131 */ 7132 if (list_is_empty(&spa->spa_config_dirty_list) && 7133 spa->spa_avz_action == AVZ_ACTION_NONE) 7134 return; 7135 7136 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7137 7138 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 7139 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 7140 spa->spa_all_vdev_zaps != 0); 7141 7142 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 7143 /* Make and build the new AVZ */ 7144 uint64_t new_avz = zap_create(spa->spa_meta_objset, 7145 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 7146 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 7147 7148 /* Diff old AVZ with new one */ 7149 zap_cursor_t zc; 7150 zap_attribute_t za; 7151 7152 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7153 spa->spa_all_vdev_zaps); 7154 zap_cursor_retrieve(&zc, &za) == 0; 7155 zap_cursor_advance(&zc)) { 7156 uint64_t vdzap = za.za_first_integer; 7157 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 7158 vdzap) == ENOENT) { 7159 /* 7160 * ZAP is listed in old AVZ but not in new one; 7161 * destroy it 7162 */ 7163 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 7164 tx)); 7165 } 7166 } 7167 7168 zap_cursor_fini(&zc); 7169 7170 /* Destroy the old AVZ */ 7171 VERIFY0(zap_destroy(spa->spa_meta_objset, 7172 spa->spa_all_vdev_zaps, tx)); 7173 7174 /* Replace the old AVZ in the dir obj with the new one */ 7175 VERIFY0(zap_update(spa->spa_meta_objset, 7176 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 7177 sizeof (new_avz), 1, &new_avz, tx)); 7178 7179 spa->spa_all_vdev_zaps = new_avz; 7180 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 7181 zap_cursor_t zc; 7182 zap_attribute_t za; 7183 7184 /* Walk through the AVZ and destroy all listed ZAPs */ 7185 for (zap_cursor_init(&zc, spa->spa_meta_objset, 7186 spa->spa_all_vdev_zaps); 7187 zap_cursor_retrieve(&zc, &za) == 0; 7188 zap_cursor_advance(&zc)) { 7189 uint64_t zap = za.za_first_integer; 7190 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 7191 } 7192 7193 zap_cursor_fini(&zc); 7194 7195 /* Destroy and unlink the AVZ itself */ 7196 VERIFY0(zap_destroy(spa->spa_meta_objset, 7197 spa->spa_all_vdev_zaps, tx)); 7198 VERIFY0(zap_remove(spa->spa_meta_objset, 7199 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 7200 spa->spa_all_vdev_zaps = 0; 7201 } 7202 7203 if (spa->spa_all_vdev_zaps == 0) { 7204 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 7205 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 7206 DMU_POOL_VDEV_ZAP_MAP, tx); 7207 } 7208 spa->spa_avz_action = AVZ_ACTION_NONE; 7209 7210 /* Create ZAPs for vdevs that don't have them. */ 7211 vdev_construct_zaps(spa->spa_root_vdev, tx); 7212 7213 config = spa_config_generate(spa, spa->spa_root_vdev, 7214 dmu_tx_get_txg(tx), B_FALSE); 7215 7216 /* 7217 * If we're upgrading the spa version then make sure that 7218 * the config object gets updated with the correct version. 7219 */ 7220 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 7221 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 7222 spa->spa_uberblock.ub_version); 7223 7224 spa_config_exit(spa, SCL_STATE, FTAG); 7225 7226 nvlist_free(spa->spa_config_syncing); 7227 spa->spa_config_syncing = config; 7228 7229 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 7230 } 7231 7232 static void 7233 spa_sync_version(void *arg, dmu_tx_t *tx) 7234 { 7235 uint64_t *versionp = arg; 7236 uint64_t version = *versionp; 7237 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7238 7239 /* 7240 * Setting the version is special cased when first creating the pool. 7241 */ 7242 ASSERT(tx->tx_txg != TXG_INITIAL); 7243 7244 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 7245 ASSERT(version >= spa_version(spa)); 7246 7247 spa->spa_uberblock.ub_version = version; 7248 vdev_config_dirty(spa->spa_root_vdev); 7249 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 7250 } 7251 7252 /* 7253 * Set zpool properties. 7254 */ 7255 static void 7256 spa_sync_props(void *arg, dmu_tx_t *tx) 7257 { 7258 nvlist_t *nvp = arg; 7259 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7260 objset_t *mos = spa->spa_meta_objset; 7261 nvpair_t *elem = NULL; 7262 7263 mutex_enter(&spa->spa_props_lock); 7264 7265 while ((elem = nvlist_next_nvpair(nvp, elem))) { 7266 uint64_t intval; 7267 char *strval, *fname; 7268 zpool_prop_t prop; 7269 const char *propname; 7270 zprop_type_t proptype; 7271 spa_feature_t fid; 7272 7273 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 7274 case ZPOOL_PROP_INVAL: 7275 /* 7276 * We checked this earlier in spa_prop_validate(). 7277 */ 7278 ASSERT(zpool_prop_feature(nvpair_name(elem))); 7279 7280 fname = strchr(nvpair_name(elem), '@') + 1; 7281 VERIFY0(zfeature_lookup_name(fname, &fid)); 7282 7283 spa_feature_enable(spa, fid, tx); 7284 spa_history_log_internal(spa, "set", tx, 7285 "%s=enabled", nvpair_name(elem)); 7286 break; 7287 7288 case ZPOOL_PROP_VERSION: 7289 intval = fnvpair_value_uint64(elem); 7290 /* 7291 * The version is synced seperatly before other 7292 * properties and should be correct by now. 7293 */ 7294 ASSERT3U(spa_version(spa), >=, intval); 7295 break; 7296 7297 case ZPOOL_PROP_ALTROOT: 7298 /* 7299 * 'altroot' is a non-persistent property. It should 7300 * have been set temporarily at creation or import time. 7301 */ 7302 ASSERT(spa->spa_root != NULL); 7303 break; 7304 7305 case ZPOOL_PROP_READONLY: 7306 case ZPOOL_PROP_CACHEFILE: 7307 /* 7308 * 'readonly' and 'cachefile' are also non-persisitent 7309 * properties. 7310 */ 7311 break; 7312 case ZPOOL_PROP_COMMENT: 7313 strval = fnvpair_value_string(elem); 7314 if (spa->spa_comment != NULL) 7315 spa_strfree(spa->spa_comment); 7316 spa->spa_comment = spa_strdup(strval); 7317 /* 7318 * We need to dirty the configuration on all the vdevs 7319 * so that their labels get updated. It's unnecessary 7320 * to do this for pool creation since the vdev's 7321 * configuratoin has already been dirtied. 7322 */ 7323 if (tx->tx_txg != TXG_INITIAL) 7324 vdev_config_dirty(spa->spa_root_vdev); 7325 spa_history_log_internal(spa, "set", tx, 7326 "%s=%s", nvpair_name(elem), strval); 7327 break; 7328 default: 7329 /* 7330 * Set pool property values in the poolprops mos object. 7331 */ 7332 if (spa->spa_pool_props_object == 0) { 7333 spa->spa_pool_props_object = 7334 zap_create_link(mos, DMU_OT_POOL_PROPS, 7335 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 7336 tx); 7337 } 7338 7339 /* normalize the property name */ 7340 propname = zpool_prop_to_name(prop); 7341 proptype = zpool_prop_get_type(prop); 7342 7343 if (nvpair_type(elem) == DATA_TYPE_STRING) { 7344 ASSERT(proptype == PROP_TYPE_STRING); 7345 strval = fnvpair_value_string(elem); 7346 VERIFY0(zap_update(mos, 7347 spa->spa_pool_props_object, propname, 7348 1, strlen(strval) + 1, strval, tx)); 7349 spa_history_log_internal(spa, "set", tx, 7350 "%s=%s", nvpair_name(elem), strval); 7351 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 7352 intval = fnvpair_value_uint64(elem); 7353 7354 if (proptype == PROP_TYPE_INDEX) { 7355 const char *unused; 7356 VERIFY0(zpool_prop_index_to_string( 7357 prop, intval, &unused)); 7358 } 7359 VERIFY0(zap_update(mos, 7360 spa->spa_pool_props_object, propname, 7361 8, 1, &intval, tx)); 7362 spa_history_log_internal(spa, "set", tx, 7363 "%s=%lld", nvpair_name(elem), intval); 7364 } else { 7365 ASSERT(0); /* not allowed */ 7366 } 7367 7368 switch (prop) { 7369 case ZPOOL_PROP_DELEGATION: 7370 spa->spa_delegation = intval; 7371 break; 7372 case ZPOOL_PROP_BOOTFS: 7373 spa->spa_bootfs = intval; 7374 break; 7375 case ZPOOL_PROP_FAILUREMODE: 7376 spa->spa_failmode = intval; 7377 break; 7378 case ZPOOL_PROP_AUTOEXPAND: 7379 spa->spa_autoexpand = intval; 7380 if (tx->tx_txg != TXG_INITIAL) 7381 spa_async_request(spa, 7382 SPA_ASYNC_AUTOEXPAND); 7383 break; 7384 case ZPOOL_PROP_DEDUPDITTO: 7385 spa->spa_dedup_ditto = intval; 7386 break; 7387 default: 7388 break; 7389 } 7390 } 7391 7392 } 7393 7394 mutex_exit(&spa->spa_props_lock); 7395 } 7396 7397 /* 7398 * Perform one-time upgrade on-disk changes. spa_version() does not 7399 * reflect the new version this txg, so there must be no changes this 7400 * txg to anything that the upgrade code depends on after it executes. 7401 * Therefore this must be called after dsl_pool_sync() does the sync 7402 * tasks. 7403 */ 7404 static void 7405 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 7406 { 7407 dsl_pool_t *dp = spa->spa_dsl_pool; 7408 7409 ASSERT(spa->spa_sync_pass == 1); 7410 7411 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 7412 7413 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 7414 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 7415 dsl_pool_create_origin(dp, tx); 7416 7417 /* Keeping the origin open increases spa_minref */ 7418 spa->spa_minref += 3; 7419 } 7420 7421 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 7422 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 7423 dsl_pool_upgrade_clones(dp, tx); 7424 } 7425 7426 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 7427 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 7428 dsl_pool_upgrade_dir_clones(dp, tx); 7429 7430 /* Keeping the freedir open increases spa_minref */ 7431 spa->spa_minref += 3; 7432 } 7433 7434 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 7435 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 7436 spa_feature_create_zap_objects(spa, tx); 7437 } 7438 7439 /* 7440 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 7441 * when possibility to use lz4 compression for metadata was added 7442 * Old pools that have this feature enabled must be upgraded to have 7443 * this feature active 7444 */ 7445 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 7446 boolean_t lz4_en = spa_feature_is_enabled(spa, 7447 SPA_FEATURE_LZ4_COMPRESS); 7448 boolean_t lz4_ac = spa_feature_is_active(spa, 7449 SPA_FEATURE_LZ4_COMPRESS); 7450 7451 if (lz4_en && !lz4_ac) 7452 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 7453 } 7454 7455 /* 7456 * If we haven't written the salt, do so now. Note that the 7457 * feature may not be activated yet, but that's fine since 7458 * the presence of this ZAP entry is backwards compatible. 7459 */ 7460 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7461 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 7462 VERIFY0(zap_add(spa->spa_meta_objset, 7463 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 7464 sizeof (spa->spa_cksum_salt.zcs_bytes), 7465 spa->spa_cksum_salt.zcs_bytes, tx)); 7466 } 7467 7468 rrw_exit(&dp->dp_config_rwlock, FTAG); 7469 } 7470 7471 static void 7472 vdev_indirect_state_sync_verify(vdev_t *vd) 7473 { 7474 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7475 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 7476 7477 if (vd->vdev_ops == &vdev_indirect_ops) { 7478 ASSERT(vim != NULL); 7479 ASSERT(vib != NULL); 7480 } 7481 7482 if (vdev_obsolete_sm_object(vd) != 0) { 7483 ASSERT(vd->vdev_obsolete_sm != NULL); 7484 ASSERT(vd->vdev_removing || 7485 vd->vdev_ops == &vdev_indirect_ops); 7486 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 7487 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 7488 7489 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 7490 space_map_object(vd->vdev_obsolete_sm)); 7491 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 7492 space_map_allocated(vd->vdev_obsolete_sm)); 7493 } 7494 ASSERT(vd->vdev_obsolete_segments != NULL); 7495 7496 /* 7497 * Since frees / remaps to an indirect vdev can only 7498 * happen in syncing context, the obsolete segments 7499 * tree must be empty when we start syncing. 7500 */ 7501 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 7502 } 7503 7504 /* 7505 * Sync the specified transaction group. New blocks may be dirtied as 7506 * part of the process, so we iterate until it converges. 7507 */ 7508 void 7509 spa_sync(spa_t *spa, uint64_t txg) 7510 { 7511 dsl_pool_t *dp = spa->spa_dsl_pool; 7512 objset_t *mos = spa->spa_meta_objset; 7513 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 7514 vdev_t *rvd = spa->spa_root_vdev; 7515 vdev_t *vd; 7516 dmu_tx_t *tx; 7517 int error; 7518 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 7519 zfs_vdev_queue_depth_pct / 100; 7520 7521 VERIFY(spa_writeable(spa)); 7522 7523 /* 7524 * Wait for i/os issued in open context that need to complete 7525 * before this txg syncs. 7526 */ 7527 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 7528 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 7529 ZIO_FLAG_CANFAIL); 7530 7531 /* 7532 * Lock out configuration changes. 7533 */ 7534 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7535 7536 spa->spa_syncing_txg = txg; 7537 spa->spa_sync_pass = 0; 7538 7539 for (int i = 0; i < spa->spa_alloc_count; i++) { 7540 mutex_enter(&spa->spa_alloc_locks[i]); 7541 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 7542 mutex_exit(&spa->spa_alloc_locks[i]); 7543 } 7544 7545 /* 7546 * If there are any pending vdev state changes, convert them 7547 * into config changes that go out with this transaction group. 7548 */ 7549 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7550 while (list_head(&spa->spa_state_dirty_list) != NULL) { 7551 /* 7552 * We need the write lock here because, for aux vdevs, 7553 * calling vdev_config_dirty() modifies sav_config. 7554 * This is ugly and will become unnecessary when we 7555 * eliminate the aux vdev wart by integrating all vdevs 7556 * into the root vdev tree. 7557 */ 7558 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7559 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 7560 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 7561 vdev_state_clean(vd); 7562 vdev_config_dirty(vd); 7563 } 7564 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7565 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7566 } 7567 spa_config_exit(spa, SCL_STATE, FTAG); 7568 7569 tx = dmu_tx_create_assigned(dp, txg); 7570 7571 spa->spa_sync_starttime = gethrtime(); 7572 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 7573 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 7574 7575 /* 7576 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 7577 * set spa_deflate if we have no raid-z vdevs. 7578 */ 7579 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 7580 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 7581 int i; 7582 7583 for (i = 0; i < rvd->vdev_children; i++) { 7584 vd = rvd->vdev_child[i]; 7585 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 7586 break; 7587 } 7588 if (i == rvd->vdev_children) { 7589 spa->spa_deflate = TRUE; 7590 VERIFY(0 == zap_add(spa->spa_meta_objset, 7591 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 7592 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 7593 } 7594 } 7595 7596 /* 7597 * Set the top-level vdev's max queue depth. Evaluate each 7598 * top-level's async write queue depth in case it changed. 7599 * The max queue depth will not change in the middle of syncing 7600 * out this txg. 7601 */ 7602 uint64_t slots_per_allocator = 0; 7603 for (int c = 0; c < rvd->vdev_children; c++) { 7604 vdev_t *tvd = rvd->vdev_child[c]; 7605 metaslab_group_t *mg = tvd->vdev_mg; 7606 7607 if (mg == NULL || mg->mg_class != spa_normal_class(spa) || 7608 !metaslab_group_initialized(mg)) 7609 continue; 7610 7611 /* 7612 * It is safe to do a lock-free check here because only async 7613 * allocations look at mg_max_alloc_queue_depth, and async 7614 * allocations all happen from spa_sync(). 7615 */ 7616 for (int i = 0; i < spa->spa_alloc_count; i++) 7617 ASSERT0(refcount_count(&(mg->mg_alloc_queue_depth[i]))); 7618 mg->mg_max_alloc_queue_depth = max_queue_depth; 7619 7620 for (int i = 0; i < spa->spa_alloc_count; i++) { 7621 mg->mg_cur_max_alloc_queue_depth[i] = 7622 zfs_vdev_def_queue_depth; 7623 } 7624 slots_per_allocator += zfs_vdev_def_queue_depth; 7625 } 7626 metaslab_class_t *mc = spa_normal_class(spa); 7627 for (int i = 0; i < spa->spa_alloc_count; i++) { 7628 ASSERT0(refcount_count(&mc->mc_alloc_slots[i])); 7629 mc->mc_alloc_max_slots[i] = slots_per_allocator; 7630 } 7631 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 7632 7633 for (int c = 0; c < rvd->vdev_children; c++) { 7634 vdev_t *vd = rvd->vdev_child[c]; 7635 vdev_indirect_state_sync_verify(vd); 7636 7637 if (vdev_indirect_should_condense(vd)) { 7638 spa_condense_indirect_start_sync(vd, tx); 7639 break; 7640 } 7641 } 7642 7643 /* 7644 * Iterate to convergence. 7645 */ 7646 do { 7647 int pass = ++spa->spa_sync_pass; 7648 7649 spa_sync_config_object(spa, tx); 7650 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 7651 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 7652 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 7653 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 7654 spa_errlog_sync(spa, txg); 7655 dsl_pool_sync(dp, txg); 7656 7657 if (pass < zfs_sync_pass_deferred_free) { 7658 spa_sync_frees(spa, free_bpl, tx); 7659 } else { 7660 /* 7661 * We can not defer frees in pass 1, because 7662 * we sync the deferred frees later in pass 1. 7663 */ 7664 ASSERT3U(pass, >, 1); 7665 bplist_iterate(free_bpl, bpobj_enqueue_cb, 7666 &spa->spa_deferred_bpobj, tx); 7667 } 7668 7669 ddt_sync(spa, txg); 7670 dsl_scan_sync(dp, tx); 7671 7672 if (spa->spa_vdev_removal != NULL) 7673 svr_sync(spa, tx); 7674 7675 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 7676 != NULL) 7677 vdev_sync(vd, txg); 7678 7679 if (pass == 1) { 7680 spa_sync_upgrades(spa, tx); 7681 ASSERT3U(txg, >=, 7682 spa->spa_uberblock.ub_rootbp.blk_birth); 7683 /* 7684 * Note: We need to check if the MOS is dirty 7685 * because we could have marked the MOS dirty 7686 * without updating the uberblock (e.g. if we 7687 * have sync tasks but no dirty user data). We 7688 * need to check the uberblock's rootbp because 7689 * it is updated if we have synced out dirty 7690 * data (though in this case the MOS will most 7691 * likely also be dirty due to second order 7692 * effects, we don't want to rely on that here). 7693 */ 7694 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg && 7695 !dmu_objset_is_dirty(mos, txg)) { 7696 /* 7697 * Nothing changed on the first pass, 7698 * therefore this TXG is a no-op. Avoid 7699 * syncing deferred frees, so that we 7700 * can keep this TXG as a no-op. 7701 */ 7702 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, 7703 txg)); 7704 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 7705 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 7706 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, 7707 txg)); 7708 break; 7709 } 7710 spa_sync_deferred_frees(spa, tx); 7711 } 7712 7713 } while (dmu_objset_is_dirty(mos, txg)); 7714 7715 if (!list_is_empty(&spa->spa_config_dirty_list)) { 7716 /* 7717 * Make sure that the number of ZAPs for all the vdevs matches 7718 * the number of ZAPs in the per-vdev ZAP list. This only gets 7719 * called if the config is dirty; otherwise there may be 7720 * outstanding AVZ operations that weren't completed in 7721 * spa_sync_config_object. 7722 */ 7723 uint64_t all_vdev_zap_entry_count; 7724 ASSERT0(zap_count(spa->spa_meta_objset, 7725 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 7726 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 7727 all_vdev_zap_entry_count); 7728 } 7729 7730 if (spa->spa_vdev_removal != NULL) { 7731 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 7732 } 7733 7734 /* 7735 * Rewrite the vdev configuration (which includes the uberblock) 7736 * to commit the transaction group. 7737 * 7738 * If there are no dirty vdevs, we sync the uberblock to a few 7739 * random top-level vdevs that are known to be visible in the 7740 * config cache (see spa_vdev_add() for a complete description). 7741 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 7742 */ 7743 for (;;) { 7744 /* 7745 * We hold SCL_STATE to prevent vdev open/close/etc. 7746 * while we're attempting to write the vdev labels. 7747 */ 7748 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7749 7750 if (list_is_empty(&spa->spa_config_dirty_list)) { 7751 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 7752 int svdcount = 0; 7753 int children = rvd->vdev_children; 7754 int c0 = spa_get_random(children); 7755 7756 for (int c = 0; c < children; c++) { 7757 vd = rvd->vdev_child[(c0 + c) % children]; 7758 7759 /* Stop when revisiting the first vdev */ 7760 if (c > 0 && svd[0] == vd) 7761 break; 7762 7763 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 7764 !vdev_is_concrete(vd)) 7765 continue; 7766 7767 svd[svdcount++] = vd; 7768 if (svdcount == SPA_SYNC_MIN_VDEVS) 7769 break; 7770 } 7771 error = vdev_config_sync(svd, svdcount, txg); 7772 } else { 7773 error = vdev_config_sync(rvd->vdev_child, 7774 rvd->vdev_children, txg); 7775 } 7776 7777 if (error == 0) 7778 spa->spa_last_synced_guid = rvd->vdev_guid; 7779 7780 spa_config_exit(spa, SCL_STATE, FTAG); 7781 7782 if (error == 0) 7783 break; 7784 zio_suspend(spa, NULL); 7785 zio_resume_wait(spa); 7786 } 7787 dmu_tx_commit(tx); 7788 7789 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 7790 7791 /* 7792 * Clear the dirty config list. 7793 */ 7794 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 7795 vdev_config_clean(vd); 7796 7797 /* 7798 * Now that the new config has synced transactionally, 7799 * let it become visible to the config cache. 7800 */ 7801 if (spa->spa_config_syncing != NULL) { 7802 spa_config_set(spa, spa->spa_config_syncing); 7803 spa->spa_config_txg = txg; 7804 spa->spa_config_syncing = NULL; 7805 } 7806 7807 dsl_pool_sync_done(dp, txg); 7808 7809 for (int i = 0; i < spa->spa_alloc_count; i++) { 7810 mutex_enter(&spa->spa_alloc_locks[i]); 7811 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 7812 mutex_exit(&spa->spa_alloc_locks[i]); 7813 } 7814 7815 /* 7816 * Update usable space statistics. 7817 */ 7818 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 7819 != NULL) 7820 vdev_sync_done(vd, txg); 7821 7822 spa_update_dspace(spa); 7823 7824 /* 7825 * It had better be the case that we didn't dirty anything 7826 * since vdev_config_sync(). 7827 */ 7828 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 7829 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 7830 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 7831 7832 while (zfs_pause_spa_sync) 7833 delay(1); 7834 7835 spa->spa_sync_pass = 0; 7836 7837 /* 7838 * Update the last synced uberblock here. We want to do this at 7839 * the end of spa_sync() so that consumers of spa_last_synced_txg() 7840 * will be guaranteed that all the processing associated with 7841 * that txg has been completed. 7842 */ 7843 spa->spa_ubsync = spa->spa_uberblock; 7844 spa_config_exit(spa, SCL_CONFIG, FTAG); 7845 7846 spa_handle_ignored_writes(spa); 7847 7848 /* 7849 * If any async tasks have been requested, kick them off. 7850 */ 7851 spa_async_dispatch(spa); 7852 } 7853 7854 /* 7855 * Sync all pools. We don't want to hold the namespace lock across these 7856 * operations, so we take a reference on the spa_t and drop the lock during the 7857 * sync. 7858 */ 7859 void 7860 spa_sync_allpools(void) 7861 { 7862 spa_t *spa = NULL; 7863 mutex_enter(&spa_namespace_lock); 7864 while ((spa = spa_next(spa)) != NULL) { 7865 if (spa_state(spa) != POOL_STATE_ACTIVE || 7866 !spa_writeable(spa) || spa_suspended(spa)) 7867 continue; 7868 spa_open_ref(spa, FTAG); 7869 mutex_exit(&spa_namespace_lock); 7870 txg_wait_synced(spa_get_dsl(spa), 0); 7871 mutex_enter(&spa_namespace_lock); 7872 spa_close(spa, FTAG); 7873 } 7874 mutex_exit(&spa_namespace_lock); 7875 } 7876 7877 /* 7878 * ========================================================================== 7879 * Miscellaneous routines 7880 * ========================================================================== 7881 */ 7882 7883 /* 7884 * Remove all pools in the system. 7885 */ 7886 void 7887 spa_evict_all(void) 7888 { 7889 spa_t *spa; 7890 7891 /* 7892 * Remove all cached state. All pools should be closed now, 7893 * so every spa in the AVL tree should be unreferenced. 7894 */ 7895 mutex_enter(&spa_namespace_lock); 7896 while ((spa = spa_next(NULL)) != NULL) { 7897 /* 7898 * Stop async tasks. The async thread may need to detach 7899 * a device that's been replaced, which requires grabbing 7900 * spa_namespace_lock, so we must drop it here. 7901 */ 7902 spa_open_ref(spa, FTAG); 7903 mutex_exit(&spa_namespace_lock); 7904 spa_async_suspend(spa); 7905 mutex_enter(&spa_namespace_lock); 7906 spa_close(spa, FTAG); 7907 7908 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 7909 spa_unload(spa); 7910 spa_deactivate(spa); 7911 } 7912 spa_remove(spa); 7913 } 7914 mutex_exit(&spa_namespace_lock); 7915 } 7916 7917 vdev_t * 7918 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 7919 { 7920 vdev_t *vd; 7921 int i; 7922 7923 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 7924 return (vd); 7925 7926 if (aux) { 7927 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 7928 vd = spa->spa_l2cache.sav_vdevs[i]; 7929 if (vd->vdev_guid == guid) 7930 return (vd); 7931 } 7932 7933 for (i = 0; i < spa->spa_spares.sav_count; i++) { 7934 vd = spa->spa_spares.sav_vdevs[i]; 7935 if (vd->vdev_guid == guid) 7936 return (vd); 7937 } 7938 } 7939 7940 return (NULL); 7941 } 7942 7943 void 7944 spa_upgrade(spa_t *spa, uint64_t version) 7945 { 7946 ASSERT(spa_writeable(spa)); 7947 7948 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7949 7950 /* 7951 * This should only be called for a non-faulted pool, and since a 7952 * future version would result in an unopenable pool, this shouldn't be 7953 * possible. 7954 */ 7955 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 7956 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 7957 7958 spa->spa_uberblock.ub_version = version; 7959 vdev_config_dirty(spa->spa_root_vdev); 7960 7961 spa_config_exit(spa, SCL_ALL, FTAG); 7962 7963 txg_wait_synced(spa_get_dsl(spa), 0); 7964 } 7965 7966 boolean_t 7967 spa_has_spare(spa_t *spa, uint64_t guid) 7968 { 7969 int i; 7970 uint64_t spareguid; 7971 spa_aux_vdev_t *sav = &spa->spa_spares; 7972 7973 for (i = 0; i < sav->sav_count; i++) 7974 if (sav->sav_vdevs[i]->vdev_guid == guid) 7975 return (B_TRUE); 7976 7977 for (i = 0; i < sav->sav_npending; i++) { 7978 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 7979 &spareguid) == 0 && spareguid == guid) 7980 return (B_TRUE); 7981 } 7982 7983 return (B_FALSE); 7984 } 7985 7986 /* 7987 * Check if a pool has an active shared spare device. 7988 * Note: reference count of an active spare is 2, as a spare and as a replace 7989 */ 7990 static boolean_t 7991 spa_has_active_shared_spare(spa_t *spa) 7992 { 7993 int i, refcnt; 7994 uint64_t pool; 7995 spa_aux_vdev_t *sav = &spa->spa_spares; 7996 7997 for (i = 0; i < sav->sav_count; i++) { 7998 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 7999 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 8000 refcnt > 2) 8001 return (B_TRUE); 8002 } 8003 8004 return (B_FALSE); 8005 } 8006 8007 sysevent_t * 8008 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8009 { 8010 sysevent_t *ev = NULL; 8011 #ifdef _KERNEL 8012 sysevent_attr_list_t *attr = NULL; 8013 sysevent_value_t value; 8014 8015 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 8016 SE_SLEEP); 8017 ASSERT(ev != NULL); 8018 8019 value.value_type = SE_DATA_TYPE_STRING; 8020 value.value.sv_string = spa_name(spa); 8021 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 8022 goto done; 8023 8024 value.value_type = SE_DATA_TYPE_UINT64; 8025 value.value.sv_uint64 = spa_guid(spa); 8026 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 8027 goto done; 8028 8029 if (vd) { 8030 value.value_type = SE_DATA_TYPE_UINT64; 8031 value.value.sv_uint64 = vd->vdev_guid; 8032 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 8033 SE_SLEEP) != 0) 8034 goto done; 8035 8036 if (vd->vdev_path) { 8037 value.value_type = SE_DATA_TYPE_STRING; 8038 value.value.sv_string = vd->vdev_path; 8039 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 8040 &value, SE_SLEEP) != 0) 8041 goto done; 8042 } 8043 } 8044 8045 if (hist_nvl != NULL) { 8046 fnvlist_merge((nvlist_t *)attr, hist_nvl); 8047 } 8048 8049 if (sysevent_attach_attributes(ev, attr) != 0) 8050 goto done; 8051 attr = NULL; 8052 8053 done: 8054 if (attr) 8055 sysevent_free_attr(attr); 8056 8057 #endif 8058 return (ev); 8059 } 8060 8061 void 8062 spa_event_post(sysevent_t *ev) 8063 { 8064 #ifdef _KERNEL 8065 sysevent_id_t eid; 8066 8067 (void) log_sysevent(ev, SE_SLEEP, &eid); 8068 sysevent_free(ev); 8069 #endif 8070 } 8071 8072 void 8073 spa_event_discard(sysevent_t *ev) 8074 { 8075 #ifdef _KERNEL 8076 sysevent_free(ev); 8077 #endif 8078 } 8079 8080 /* 8081 * Post a sysevent corresponding to the given event. The 'name' must be one of 8082 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 8083 * filled in from the spa and (optionally) the vdev and history nvl. This 8084 * doesn't do anything in the userland libzpool, as we don't want consumers to 8085 * misinterpret ztest or zdb as real changes. 8086 */ 8087 void 8088 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 8089 { 8090 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 8091 } 8092