1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/space_map.h> 32 #include <sys/metaslab_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zfeature.h> 37 #include <sys/vdev_indirect_mapping.h> 38 #include <sys/zap.h> 39 40 #define GANG_ALLOCATION(flags) \ 41 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 42 43 uint64_t metaslab_aliquot = 512ULL << 10; 44 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */ 45 46 /* 47 * Since we can touch multiple metaslabs (and their respective space maps) 48 * with each transaction group, we benefit from having a smaller space map 49 * block size since it allows us to issue more I/O operations scattered 50 * around the disk. 51 */ 52 int zfs_metaslab_sm_blksz = (1 << 12); 53 54 /* 55 * The in-core space map representation is more compact than its on-disk form. 56 * The zfs_condense_pct determines how much more compact the in-core 57 * space map representation must be before we compact it on-disk. 58 * Values should be greater than or equal to 100. 59 */ 60 int zfs_condense_pct = 200; 61 62 /* 63 * Condensing a metaslab is not guaranteed to actually reduce the amount of 64 * space used on disk. In particular, a space map uses data in increments of 65 * MAX(1 << ashift, space_map_blksize), so a metaslab might use the 66 * same number of blocks after condensing. Since the goal of condensing is to 67 * reduce the number of IOPs required to read the space map, we only want to 68 * condense when we can be sure we will reduce the number of blocks used by the 69 * space map. Unfortunately, we cannot precisely compute whether or not this is 70 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 71 * we apply the following heuristic: do not condense a spacemap unless the 72 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 73 * blocks. 74 */ 75 int zfs_metaslab_condense_block_threshold = 4; 76 77 /* 78 * The zfs_mg_noalloc_threshold defines which metaslab groups should 79 * be eligible for allocation. The value is defined as a percentage of 80 * free space. Metaslab groups that have more free space than 81 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 82 * a metaslab group's free space is less than or equal to the 83 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 84 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 85 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 86 * groups are allowed to accept allocations. Gang blocks are always 87 * eligible to allocate on any metaslab group. The default value of 0 means 88 * no metaslab group will be excluded based on this criterion. 89 */ 90 int zfs_mg_noalloc_threshold = 0; 91 92 /* 93 * Metaslab groups are considered eligible for allocations if their 94 * fragmenation metric (measured as a percentage) is less than or equal to 95 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold 96 * then it will be skipped unless all metaslab groups within the metaslab 97 * class have also crossed this threshold. 98 */ 99 int zfs_mg_fragmentation_threshold = 85; 100 101 /* 102 * Allow metaslabs to keep their active state as long as their fragmentation 103 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 104 * active metaslab that exceeds this threshold will no longer keep its active 105 * status allowing better metaslabs to be selected. 106 */ 107 int zfs_metaslab_fragmentation_threshold = 70; 108 109 /* 110 * When set will load all metaslabs when pool is first opened. 111 */ 112 int metaslab_debug_load = 0; 113 114 /* 115 * When set will prevent metaslabs from being unloaded. 116 */ 117 int metaslab_debug_unload = 0; 118 119 /* 120 * Minimum size which forces the dynamic allocator to change 121 * it's allocation strategy. Once the space map cannot satisfy 122 * an allocation of this size then it switches to using more 123 * aggressive strategy (i.e search by size rather than offset). 124 */ 125 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 126 127 /* 128 * The minimum free space, in percent, which must be available 129 * in a space map to continue allocations in a first-fit fashion. 130 * Once the space map's free space drops below this level we dynamically 131 * switch to using best-fit allocations. 132 */ 133 int metaslab_df_free_pct = 4; 134 135 /* 136 * A metaslab is considered "free" if it contains a contiguous 137 * segment which is greater than metaslab_min_alloc_size. 138 */ 139 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS; 140 141 /* 142 * Percentage of all cpus that can be used by the metaslab taskq. 143 */ 144 int metaslab_load_pct = 50; 145 146 /* 147 * Determines how many txgs a metaslab may remain loaded without having any 148 * allocations from it. As long as a metaslab continues to be used we will 149 * keep it loaded. 150 */ 151 int metaslab_unload_delay = TXG_SIZE * 2; 152 153 /* 154 * Max number of metaslabs per group to preload. 155 */ 156 int metaslab_preload_limit = SPA_DVAS_PER_BP; 157 158 /* 159 * Enable/disable preloading of metaslab. 160 */ 161 boolean_t metaslab_preload_enabled = B_TRUE; 162 163 /* 164 * Enable/disable fragmentation weighting on metaslabs. 165 */ 166 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE; 167 168 /* 169 * Enable/disable lba weighting (i.e. outer tracks are given preference). 170 */ 171 boolean_t metaslab_lba_weighting_enabled = B_TRUE; 172 173 /* 174 * Enable/disable metaslab group biasing. 175 */ 176 boolean_t metaslab_bias_enabled = B_TRUE; 177 178 /* 179 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 180 */ 181 boolean_t zfs_remap_blkptr_enable = B_TRUE; 182 183 /* 184 * Enable/disable segment-based metaslab selection. 185 */ 186 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE; 187 188 /* 189 * When using segment-based metaslab selection, we will continue 190 * allocating from the active metaslab until we have exhausted 191 * zfs_metaslab_switch_threshold of its buckets. 192 */ 193 int zfs_metaslab_switch_threshold = 2; 194 195 /* 196 * Internal switch to enable/disable the metaslab allocation tracing 197 * facility. 198 */ 199 boolean_t metaslab_trace_enabled = B_TRUE; 200 201 /* 202 * Maximum entries that the metaslab allocation tracing facility will keep 203 * in a given list when running in non-debug mode. We limit the number 204 * of entries in non-debug mode to prevent us from using up too much memory. 205 * The limit should be sufficiently large that we don't expect any allocation 206 * to every exceed this value. In debug mode, the system will panic if this 207 * limit is ever reached allowing for further investigation. 208 */ 209 uint64_t metaslab_trace_max_entries = 5000; 210 211 static uint64_t metaslab_weight(metaslab_t *); 212 static void metaslab_set_fragmentation(metaslab_t *); 213 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 214 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 215 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 216 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 217 218 kmem_cache_t *metaslab_alloc_trace_cache; 219 220 /* 221 * ========================================================================== 222 * Metaslab classes 223 * ========================================================================== 224 */ 225 metaslab_class_t * 226 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 227 { 228 metaslab_class_t *mc; 229 230 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 231 232 mc->mc_spa = spa; 233 mc->mc_rotor = NULL; 234 mc->mc_ops = ops; 235 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 236 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count * 237 sizeof (refcount_t), KM_SLEEP); 238 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count * 239 sizeof (uint64_t), KM_SLEEP); 240 for (int i = 0; i < spa->spa_alloc_count; i++) 241 refcount_create_tracked(&mc->mc_alloc_slots[i]); 242 243 return (mc); 244 } 245 246 void 247 metaslab_class_destroy(metaslab_class_t *mc) 248 { 249 ASSERT(mc->mc_rotor == NULL); 250 ASSERT(mc->mc_alloc == 0); 251 ASSERT(mc->mc_deferred == 0); 252 ASSERT(mc->mc_space == 0); 253 ASSERT(mc->mc_dspace == 0); 254 255 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++) 256 refcount_destroy(&mc->mc_alloc_slots[i]); 257 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count * 258 sizeof (refcount_t)); 259 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count * 260 sizeof (uint64_t)); 261 mutex_destroy(&mc->mc_lock); 262 kmem_free(mc, sizeof (metaslab_class_t)); 263 } 264 265 int 266 metaslab_class_validate(metaslab_class_t *mc) 267 { 268 metaslab_group_t *mg; 269 vdev_t *vd; 270 271 /* 272 * Must hold one of the spa_config locks. 273 */ 274 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 275 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 276 277 if ((mg = mc->mc_rotor) == NULL) 278 return (0); 279 280 do { 281 vd = mg->mg_vd; 282 ASSERT(vd->vdev_mg != NULL); 283 ASSERT3P(vd->vdev_top, ==, vd); 284 ASSERT3P(mg->mg_class, ==, mc); 285 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 286 } while ((mg = mg->mg_next) != mc->mc_rotor); 287 288 return (0); 289 } 290 291 void 292 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 293 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 294 { 295 atomic_add_64(&mc->mc_alloc, alloc_delta); 296 atomic_add_64(&mc->mc_deferred, defer_delta); 297 atomic_add_64(&mc->mc_space, space_delta); 298 atomic_add_64(&mc->mc_dspace, dspace_delta); 299 } 300 301 uint64_t 302 metaslab_class_get_alloc(metaslab_class_t *mc) 303 { 304 return (mc->mc_alloc); 305 } 306 307 uint64_t 308 metaslab_class_get_deferred(metaslab_class_t *mc) 309 { 310 return (mc->mc_deferred); 311 } 312 313 uint64_t 314 metaslab_class_get_space(metaslab_class_t *mc) 315 { 316 return (mc->mc_space); 317 } 318 319 uint64_t 320 metaslab_class_get_dspace(metaslab_class_t *mc) 321 { 322 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 323 } 324 325 void 326 metaslab_class_histogram_verify(metaslab_class_t *mc) 327 { 328 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 329 uint64_t *mc_hist; 330 int i; 331 332 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 333 return; 334 335 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 336 KM_SLEEP); 337 338 for (int c = 0; c < rvd->vdev_children; c++) { 339 vdev_t *tvd = rvd->vdev_child[c]; 340 metaslab_group_t *mg = tvd->vdev_mg; 341 342 /* 343 * Skip any holes, uninitialized top-levels, or 344 * vdevs that are not in this metalab class. 345 */ 346 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 347 mg->mg_class != mc) { 348 continue; 349 } 350 351 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 352 mc_hist[i] += mg->mg_histogram[i]; 353 } 354 355 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 356 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 357 358 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 359 } 360 361 /* 362 * Calculate the metaslab class's fragmentation metric. The metric 363 * is weighted based on the space contribution of each metaslab group. 364 * The return value will be a number between 0 and 100 (inclusive), or 365 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 366 * zfs_frag_table for more information about the metric. 367 */ 368 uint64_t 369 metaslab_class_fragmentation(metaslab_class_t *mc) 370 { 371 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 372 uint64_t fragmentation = 0; 373 374 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 375 376 for (int c = 0; c < rvd->vdev_children; c++) { 377 vdev_t *tvd = rvd->vdev_child[c]; 378 metaslab_group_t *mg = tvd->vdev_mg; 379 380 /* 381 * Skip any holes, uninitialized top-levels, 382 * or vdevs that are not in this metalab class. 383 */ 384 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 385 mg->mg_class != mc) { 386 continue; 387 } 388 389 /* 390 * If a metaslab group does not contain a fragmentation 391 * metric then just bail out. 392 */ 393 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 394 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 395 return (ZFS_FRAG_INVALID); 396 } 397 398 /* 399 * Determine how much this metaslab_group is contributing 400 * to the overall pool fragmentation metric. 401 */ 402 fragmentation += mg->mg_fragmentation * 403 metaslab_group_get_space(mg); 404 } 405 fragmentation /= metaslab_class_get_space(mc); 406 407 ASSERT3U(fragmentation, <=, 100); 408 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 409 return (fragmentation); 410 } 411 412 /* 413 * Calculate the amount of expandable space that is available in 414 * this metaslab class. If a device is expanded then its expandable 415 * space will be the amount of allocatable space that is currently not 416 * part of this metaslab class. 417 */ 418 uint64_t 419 metaslab_class_expandable_space(metaslab_class_t *mc) 420 { 421 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 422 uint64_t space = 0; 423 424 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 425 for (int c = 0; c < rvd->vdev_children; c++) { 426 uint64_t tspace; 427 vdev_t *tvd = rvd->vdev_child[c]; 428 metaslab_group_t *mg = tvd->vdev_mg; 429 430 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 431 mg->mg_class != mc) { 432 continue; 433 } 434 435 /* 436 * Calculate if we have enough space to add additional 437 * metaslabs. We report the expandable space in terms 438 * of the metaslab size since that's the unit of expansion. 439 * Adjust by efi system partition size. 440 */ 441 tspace = tvd->vdev_max_asize - tvd->vdev_asize; 442 if (tspace > mc->mc_spa->spa_bootsize) { 443 tspace -= mc->mc_spa->spa_bootsize; 444 } 445 space += P2ALIGN(tspace, 1ULL << tvd->vdev_ms_shift); 446 } 447 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 448 return (space); 449 } 450 451 static int 452 metaslab_compare(const void *x1, const void *x2) 453 { 454 const metaslab_t *m1 = x1; 455 const metaslab_t *m2 = x2; 456 457 int sort1 = 0; 458 int sort2 = 0; 459 if (m1->ms_allocator != -1 && m1->ms_primary) 460 sort1 = 1; 461 else if (m1->ms_allocator != -1 && !m1->ms_primary) 462 sort1 = 2; 463 if (m2->ms_allocator != -1 && m2->ms_primary) 464 sort2 = 1; 465 else if (m2->ms_allocator != -1 && !m2->ms_primary) 466 sort2 = 2; 467 468 /* 469 * Sort inactive metaslabs first, then primaries, then secondaries. When 470 * selecting a metaslab to allocate from, an allocator first tries its 471 * primary, then secondary active metaslab. If it doesn't have active 472 * metaslabs, or can't allocate from them, it searches for an inactive 473 * metaslab to activate. If it can't find a suitable one, it will steal 474 * a primary or secondary metaslab from another allocator. 475 */ 476 if (sort1 < sort2) 477 return (-1); 478 if (sort1 > sort2) 479 return (1); 480 481 if (m1->ms_weight < m2->ms_weight) 482 return (1); 483 if (m1->ms_weight > m2->ms_weight) 484 return (-1); 485 486 /* 487 * If the weights are identical, use the offset to force uniqueness. 488 */ 489 if (m1->ms_start < m2->ms_start) 490 return (-1); 491 if (m1->ms_start > m2->ms_start) 492 return (1); 493 494 ASSERT3P(m1, ==, m2); 495 496 return (0); 497 } 498 499 /* 500 * Verify that the space accounting on disk matches the in-core range_trees. 501 */ 502 void 503 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 504 { 505 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 506 uint64_t allocated = 0; 507 uint64_t sm_free_space, msp_free_space; 508 509 ASSERT(MUTEX_HELD(&msp->ms_lock)); 510 511 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 512 return; 513 514 /* 515 * We can only verify the metaslab space when we're called 516 * from syncing context with a loaded metaslab that has an allocated 517 * space map. Calling this in non-syncing context does not 518 * provide a consistent view of the metaslab since we're performing 519 * allocations in the future. 520 */ 521 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 522 !msp->ms_loaded) 523 return; 524 525 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) - 526 space_map_alloc_delta(msp->ms_sm); 527 528 /* 529 * Account for future allocations since we would have already 530 * deducted that space from the ms_freetree. 531 */ 532 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 533 allocated += 534 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 535 } 536 537 msp_free_space = range_tree_space(msp->ms_allocatable) + allocated + 538 msp->ms_deferspace + range_tree_space(msp->ms_freed); 539 540 VERIFY3U(sm_free_space, ==, msp_free_space); 541 } 542 543 /* 544 * ========================================================================== 545 * Metaslab groups 546 * ========================================================================== 547 */ 548 /* 549 * Update the allocatable flag and the metaslab group's capacity. 550 * The allocatable flag is set to true if the capacity is below 551 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 552 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 553 * transitions from allocatable to non-allocatable or vice versa then the 554 * metaslab group's class is updated to reflect the transition. 555 */ 556 static void 557 metaslab_group_alloc_update(metaslab_group_t *mg) 558 { 559 vdev_t *vd = mg->mg_vd; 560 metaslab_class_t *mc = mg->mg_class; 561 vdev_stat_t *vs = &vd->vdev_stat; 562 boolean_t was_allocatable; 563 boolean_t was_initialized; 564 565 ASSERT(vd == vd->vdev_top); 566 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 567 SCL_ALLOC); 568 569 mutex_enter(&mg->mg_lock); 570 was_allocatable = mg->mg_allocatable; 571 was_initialized = mg->mg_initialized; 572 573 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 574 (vs->vs_space + 1); 575 576 mutex_enter(&mc->mc_lock); 577 578 /* 579 * If the metaslab group was just added then it won't 580 * have any space until we finish syncing out this txg. 581 * At that point we will consider it initialized and available 582 * for allocations. We also don't consider non-activated 583 * metaslab groups (e.g. vdevs that are in the middle of being removed) 584 * to be initialized, because they can't be used for allocation. 585 */ 586 mg->mg_initialized = metaslab_group_initialized(mg); 587 if (!was_initialized && mg->mg_initialized) { 588 mc->mc_groups++; 589 } else if (was_initialized && !mg->mg_initialized) { 590 ASSERT3U(mc->mc_groups, >, 0); 591 mc->mc_groups--; 592 } 593 if (mg->mg_initialized) 594 mg->mg_no_free_space = B_FALSE; 595 596 /* 597 * A metaslab group is considered allocatable if it has plenty 598 * of free space or is not heavily fragmented. We only take 599 * fragmentation into account if the metaslab group has a valid 600 * fragmentation metric (i.e. a value between 0 and 100). 601 */ 602 mg->mg_allocatable = (mg->mg_activation_count > 0 && 603 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 604 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 605 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 606 607 /* 608 * The mc_alloc_groups maintains a count of the number of 609 * groups in this metaslab class that are still above the 610 * zfs_mg_noalloc_threshold. This is used by the allocating 611 * threads to determine if they should avoid allocations to 612 * a given group. The allocator will avoid allocations to a group 613 * if that group has reached or is below the zfs_mg_noalloc_threshold 614 * and there are still other groups that are above the threshold. 615 * When a group transitions from allocatable to non-allocatable or 616 * vice versa we update the metaslab class to reflect that change. 617 * When the mc_alloc_groups value drops to 0 that means that all 618 * groups have reached the zfs_mg_noalloc_threshold making all groups 619 * eligible for allocations. This effectively means that all devices 620 * are balanced again. 621 */ 622 if (was_allocatable && !mg->mg_allocatable) 623 mc->mc_alloc_groups--; 624 else if (!was_allocatable && mg->mg_allocatable) 625 mc->mc_alloc_groups++; 626 mutex_exit(&mc->mc_lock); 627 628 mutex_exit(&mg->mg_lock); 629 } 630 631 metaslab_group_t * 632 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 633 { 634 metaslab_group_t *mg; 635 636 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 637 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 638 mutex_init(&mg->mg_ms_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 639 cv_init(&mg->mg_ms_initialize_cv, NULL, CV_DEFAULT, NULL); 640 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *), 641 KM_SLEEP); 642 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *), 643 KM_SLEEP); 644 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 645 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 646 mg->mg_vd = vd; 647 mg->mg_class = mc; 648 mg->mg_activation_count = 0; 649 mg->mg_initialized = B_FALSE; 650 mg->mg_no_free_space = B_TRUE; 651 mg->mg_allocators = allocators; 652 653 mg->mg_alloc_queue_depth = kmem_zalloc(allocators * sizeof (refcount_t), 654 KM_SLEEP); 655 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators * 656 sizeof (uint64_t), KM_SLEEP); 657 for (int i = 0; i < allocators; i++) { 658 refcount_create_tracked(&mg->mg_alloc_queue_depth[i]); 659 mg->mg_cur_max_alloc_queue_depth[i] = 0; 660 } 661 662 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 663 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT); 664 665 return (mg); 666 } 667 668 void 669 metaslab_group_destroy(metaslab_group_t *mg) 670 { 671 ASSERT(mg->mg_prev == NULL); 672 ASSERT(mg->mg_next == NULL); 673 /* 674 * We may have gone below zero with the activation count 675 * either because we never activated in the first place or 676 * because we're done, and possibly removing the vdev. 677 */ 678 ASSERT(mg->mg_activation_count <= 0); 679 680 taskq_destroy(mg->mg_taskq); 681 avl_destroy(&mg->mg_metaslab_tree); 682 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *)); 683 kmem_free(mg->mg_secondaries, mg->mg_allocators * 684 sizeof (metaslab_t *)); 685 mutex_destroy(&mg->mg_lock); 686 mutex_destroy(&mg->mg_ms_initialize_lock); 687 cv_destroy(&mg->mg_ms_initialize_cv); 688 689 for (int i = 0; i < mg->mg_allocators; i++) { 690 refcount_destroy(&mg->mg_alloc_queue_depth[i]); 691 mg->mg_cur_max_alloc_queue_depth[i] = 0; 692 } 693 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators * 694 sizeof (refcount_t)); 695 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators * 696 sizeof (uint64_t)); 697 698 kmem_free(mg, sizeof (metaslab_group_t)); 699 } 700 701 void 702 metaslab_group_activate(metaslab_group_t *mg) 703 { 704 metaslab_class_t *mc = mg->mg_class; 705 metaslab_group_t *mgprev, *mgnext; 706 707 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0); 708 709 ASSERT(mc->mc_rotor != mg); 710 ASSERT(mg->mg_prev == NULL); 711 ASSERT(mg->mg_next == NULL); 712 ASSERT(mg->mg_activation_count <= 0); 713 714 if (++mg->mg_activation_count <= 0) 715 return; 716 717 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 718 metaslab_group_alloc_update(mg); 719 720 if ((mgprev = mc->mc_rotor) == NULL) { 721 mg->mg_prev = mg; 722 mg->mg_next = mg; 723 } else { 724 mgnext = mgprev->mg_next; 725 mg->mg_prev = mgprev; 726 mg->mg_next = mgnext; 727 mgprev->mg_next = mg; 728 mgnext->mg_prev = mg; 729 } 730 mc->mc_rotor = mg; 731 } 732 733 /* 734 * Passivate a metaslab group and remove it from the allocation rotor. 735 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 736 * a metaslab group. This function will momentarily drop spa_config_locks 737 * that are lower than the SCL_ALLOC lock (see comment below). 738 */ 739 void 740 metaslab_group_passivate(metaslab_group_t *mg) 741 { 742 metaslab_class_t *mc = mg->mg_class; 743 spa_t *spa = mc->mc_spa; 744 metaslab_group_t *mgprev, *mgnext; 745 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 746 747 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 748 (SCL_ALLOC | SCL_ZIO)); 749 750 if (--mg->mg_activation_count != 0) { 751 ASSERT(mc->mc_rotor != mg); 752 ASSERT(mg->mg_prev == NULL); 753 ASSERT(mg->mg_next == NULL); 754 ASSERT(mg->mg_activation_count < 0); 755 return; 756 } 757 758 /* 759 * The spa_config_lock is an array of rwlocks, ordered as 760 * follows (from highest to lowest): 761 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 762 * SCL_ZIO > SCL_FREE > SCL_VDEV 763 * (For more information about the spa_config_lock see spa_misc.c) 764 * The higher the lock, the broader its coverage. When we passivate 765 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 766 * config locks. However, the metaslab group's taskq might be trying 767 * to preload metaslabs so we must drop the SCL_ZIO lock and any 768 * lower locks to allow the I/O to complete. At a minimum, 769 * we continue to hold the SCL_ALLOC lock, which prevents any future 770 * allocations from taking place and any changes to the vdev tree. 771 */ 772 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 773 taskq_wait(mg->mg_taskq); 774 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 775 metaslab_group_alloc_update(mg); 776 for (int i = 0; i < mg->mg_allocators; i++) { 777 metaslab_t *msp = mg->mg_primaries[i]; 778 if (msp != NULL) { 779 mutex_enter(&msp->ms_lock); 780 metaslab_passivate(msp, 781 metaslab_weight_from_range_tree(msp)); 782 mutex_exit(&msp->ms_lock); 783 } 784 msp = mg->mg_secondaries[i]; 785 if (msp != NULL) { 786 mutex_enter(&msp->ms_lock); 787 metaslab_passivate(msp, 788 metaslab_weight_from_range_tree(msp)); 789 mutex_exit(&msp->ms_lock); 790 } 791 } 792 793 mgprev = mg->mg_prev; 794 mgnext = mg->mg_next; 795 796 if (mg == mgnext) { 797 mc->mc_rotor = NULL; 798 } else { 799 mc->mc_rotor = mgnext; 800 mgprev->mg_next = mgnext; 801 mgnext->mg_prev = mgprev; 802 } 803 804 mg->mg_prev = NULL; 805 mg->mg_next = NULL; 806 } 807 808 boolean_t 809 metaslab_group_initialized(metaslab_group_t *mg) 810 { 811 vdev_t *vd = mg->mg_vd; 812 vdev_stat_t *vs = &vd->vdev_stat; 813 814 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 815 } 816 817 uint64_t 818 metaslab_group_get_space(metaslab_group_t *mg) 819 { 820 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count); 821 } 822 823 void 824 metaslab_group_histogram_verify(metaslab_group_t *mg) 825 { 826 uint64_t *mg_hist; 827 vdev_t *vd = mg->mg_vd; 828 uint64_t ashift = vd->vdev_ashift; 829 int i; 830 831 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 832 return; 833 834 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 835 KM_SLEEP); 836 837 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 838 SPACE_MAP_HISTOGRAM_SIZE + ashift); 839 840 for (int m = 0; m < vd->vdev_ms_count; m++) { 841 metaslab_t *msp = vd->vdev_ms[m]; 842 843 if (msp->ms_sm == NULL) 844 continue; 845 846 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 847 mg_hist[i + ashift] += 848 msp->ms_sm->sm_phys->smp_histogram[i]; 849 } 850 851 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 852 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 853 854 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 855 } 856 857 static void 858 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 859 { 860 metaslab_class_t *mc = mg->mg_class; 861 uint64_t ashift = mg->mg_vd->vdev_ashift; 862 863 ASSERT(MUTEX_HELD(&msp->ms_lock)); 864 if (msp->ms_sm == NULL) 865 return; 866 867 mutex_enter(&mg->mg_lock); 868 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 869 mg->mg_histogram[i + ashift] += 870 msp->ms_sm->sm_phys->smp_histogram[i]; 871 mc->mc_histogram[i + ashift] += 872 msp->ms_sm->sm_phys->smp_histogram[i]; 873 } 874 mutex_exit(&mg->mg_lock); 875 } 876 877 void 878 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 879 { 880 metaslab_class_t *mc = mg->mg_class; 881 uint64_t ashift = mg->mg_vd->vdev_ashift; 882 883 ASSERT(MUTEX_HELD(&msp->ms_lock)); 884 if (msp->ms_sm == NULL) 885 return; 886 887 mutex_enter(&mg->mg_lock); 888 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 889 ASSERT3U(mg->mg_histogram[i + ashift], >=, 890 msp->ms_sm->sm_phys->smp_histogram[i]); 891 ASSERT3U(mc->mc_histogram[i + ashift], >=, 892 msp->ms_sm->sm_phys->smp_histogram[i]); 893 894 mg->mg_histogram[i + ashift] -= 895 msp->ms_sm->sm_phys->smp_histogram[i]; 896 mc->mc_histogram[i + ashift] -= 897 msp->ms_sm->sm_phys->smp_histogram[i]; 898 } 899 mutex_exit(&mg->mg_lock); 900 } 901 902 static void 903 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 904 { 905 ASSERT(msp->ms_group == NULL); 906 mutex_enter(&mg->mg_lock); 907 msp->ms_group = mg; 908 msp->ms_weight = 0; 909 avl_add(&mg->mg_metaslab_tree, msp); 910 mutex_exit(&mg->mg_lock); 911 912 mutex_enter(&msp->ms_lock); 913 metaslab_group_histogram_add(mg, msp); 914 mutex_exit(&msp->ms_lock); 915 } 916 917 static void 918 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 919 { 920 mutex_enter(&msp->ms_lock); 921 metaslab_group_histogram_remove(mg, msp); 922 mutex_exit(&msp->ms_lock); 923 924 mutex_enter(&mg->mg_lock); 925 ASSERT(msp->ms_group == mg); 926 avl_remove(&mg->mg_metaslab_tree, msp); 927 msp->ms_group = NULL; 928 mutex_exit(&mg->mg_lock); 929 } 930 931 static void 932 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 933 { 934 ASSERT(MUTEX_HELD(&mg->mg_lock)); 935 ASSERT(msp->ms_group == mg); 936 avl_remove(&mg->mg_metaslab_tree, msp); 937 msp->ms_weight = weight; 938 avl_add(&mg->mg_metaslab_tree, msp); 939 940 } 941 942 static void 943 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 944 { 945 /* 946 * Although in principle the weight can be any value, in 947 * practice we do not use values in the range [1, 511]. 948 */ 949 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 950 ASSERT(MUTEX_HELD(&msp->ms_lock)); 951 952 mutex_enter(&mg->mg_lock); 953 metaslab_group_sort_impl(mg, msp, weight); 954 mutex_exit(&mg->mg_lock); 955 } 956 957 /* 958 * Calculate the fragmentation for a given metaslab group. We can use 959 * a simple average here since all metaslabs within the group must have 960 * the same size. The return value will be a value between 0 and 100 961 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 962 * group have a fragmentation metric. 963 */ 964 uint64_t 965 metaslab_group_fragmentation(metaslab_group_t *mg) 966 { 967 vdev_t *vd = mg->mg_vd; 968 uint64_t fragmentation = 0; 969 uint64_t valid_ms = 0; 970 971 for (int m = 0; m < vd->vdev_ms_count; m++) { 972 metaslab_t *msp = vd->vdev_ms[m]; 973 974 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 975 continue; 976 977 valid_ms++; 978 fragmentation += msp->ms_fragmentation; 979 } 980 981 if (valid_ms <= vd->vdev_ms_count / 2) 982 return (ZFS_FRAG_INVALID); 983 984 fragmentation /= valid_ms; 985 ASSERT3U(fragmentation, <=, 100); 986 return (fragmentation); 987 } 988 989 /* 990 * Determine if a given metaslab group should skip allocations. A metaslab 991 * group should avoid allocations if its free capacity is less than the 992 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 993 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 994 * that can still handle allocations. If the allocation throttle is enabled 995 * then we skip allocations to devices that have reached their maximum 996 * allocation queue depth unless the selected metaslab group is the only 997 * eligible group remaining. 998 */ 999 static boolean_t 1000 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1001 uint64_t psize, int allocator) 1002 { 1003 spa_t *spa = mg->mg_vd->vdev_spa; 1004 metaslab_class_t *mc = mg->mg_class; 1005 1006 /* 1007 * We can only consider skipping this metaslab group if it's 1008 * in the normal metaslab class and there are other metaslab 1009 * groups to select from. Otherwise, we always consider it eligible 1010 * for allocations. 1011 */ 1012 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1) 1013 return (B_TRUE); 1014 1015 /* 1016 * If the metaslab group's mg_allocatable flag is set (see comments 1017 * in metaslab_group_alloc_update() for more information) and 1018 * the allocation throttle is disabled then allow allocations to this 1019 * device. However, if the allocation throttle is enabled then 1020 * check if we have reached our allocation limit (mg_alloc_queue_depth) 1021 * to determine if we should allow allocations to this metaslab group. 1022 * If all metaslab groups are no longer considered allocatable 1023 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1024 * gang block size then we allow allocations on this metaslab group 1025 * regardless of the mg_allocatable or throttle settings. 1026 */ 1027 if (mg->mg_allocatable) { 1028 metaslab_group_t *mgp; 1029 int64_t qdepth; 1030 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator]; 1031 1032 if (!mc->mc_alloc_throttle_enabled) 1033 return (B_TRUE); 1034 1035 /* 1036 * If this metaslab group does not have any free space, then 1037 * there is no point in looking further. 1038 */ 1039 if (mg->mg_no_free_space) 1040 return (B_FALSE); 1041 1042 qdepth = refcount_count(&mg->mg_alloc_queue_depth[allocator]); 1043 1044 /* 1045 * If this metaslab group is below its qmax or it's 1046 * the only allocatable metasable group, then attempt 1047 * to allocate from it. 1048 */ 1049 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1050 return (B_TRUE); 1051 ASSERT3U(mc->mc_alloc_groups, >, 1); 1052 1053 /* 1054 * Since this metaslab group is at or over its qmax, we 1055 * need to determine if there are metaslab groups after this 1056 * one that might be able to handle this allocation. This is 1057 * racy since we can't hold the locks for all metaslab 1058 * groups at the same time when we make this check. 1059 */ 1060 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) { 1061 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator]; 1062 1063 qdepth = refcount_count( 1064 &mgp->mg_alloc_queue_depth[allocator]); 1065 1066 /* 1067 * If there is another metaslab group that 1068 * might be able to handle the allocation, then 1069 * we return false so that we skip this group. 1070 */ 1071 if (qdepth < qmax && !mgp->mg_no_free_space) 1072 return (B_FALSE); 1073 } 1074 1075 /* 1076 * We didn't find another group to handle the allocation 1077 * so we can't skip this metaslab group even though 1078 * we are at or over our qmax. 1079 */ 1080 return (B_TRUE); 1081 1082 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1083 return (B_TRUE); 1084 } 1085 return (B_FALSE); 1086 } 1087 1088 /* 1089 * ========================================================================== 1090 * Range tree callbacks 1091 * ========================================================================== 1092 */ 1093 1094 /* 1095 * Comparison function for the private size-ordered tree. Tree is sorted 1096 * by size, larger sizes at the end of the tree. 1097 */ 1098 static int 1099 metaslab_rangesize_compare(const void *x1, const void *x2) 1100 { 1101 const range_seg_t *r1 = x1; 1102 const range_seg_t *r2 = x2; 1103 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1104 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1105 1106 if (rs_size1 < rs_size2) 1107 return (-1); 1108 if (rs_size1 > rs_size2) 1109 return (1); 1110 1111 if (r1->rs_start < r2->rs_start) 1112 return (-1); 1113 1114 if (r1->rs_start > r2->rs_start) 1115 return (1); 1116 1117 return (0); 1118 } 1119 1120 /* 1121 * Create any block allocator specific components. The current allocators 1122 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1123 */ 1124 static void 1125 metaslab_rt_create(range_tree_t *rt, void *arg) 1126 { 1127 metaslab_t *msp = arg; 1128 1129 ASSERT3P(rt->rt_arg, ==, msp); 1130 ASSERT(msp->ms_allocatable == NULL); 1131 1132 avl_create(&msp->ms_allocatable_by_size, metaslab_rangesize_compare, 1133 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); 1134 } 1135 1136 /* 1137 * Destroy the block allocator specific components. 1138 */ 1139 static void 1140 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1141 { 1142 metaslab_t *msp = arg; 1143 1144 ASSERT3P(rt->rt_arg, ==, msp); 1145 ASSERT3P(msp->ms_allocatable, ==, rt); 1146 ASSERT0(avl_numnodes(&msp->ms_allocatable_by_size)); 1147 1148 avl_destroy(&msp->ms_allocatable_by_size); 1149 } 1150 1151 static void 1152 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1153 { 1154 metaslab_t *msp = arg; 1155 1156 ASSERT3P(rt->rt_arg, ==, msp); 1157 ASSERT3P(msp->ms_allocatable, ==, rt); 1158 VERIFY(!msp->ms_condensing); 1159 avl_add(&msp->ms_allocatable_by_size, rs); 1160 } 1161 1162 static void 1163 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1164 { 1165 metaslab_t *msp = arg; 1166 1167 ASSERT3P(rt->rt_arg, ==, msp); 1168 ASSERT3P(msp->ms_allocatable, ==, rt); 1169 VERIFY(!msp->ms_condensing); 1170 avl_remove(&msp->ms_allocatable_by_size, rs); 1171 } 1172 1173 static void 1174 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1175 { 1176 metaslab_t *msp = arg; 1177 1178 ASSERT3P(rt->rt_arg, ==, msp); 1179 ASSERT3P(msp->ms_allocatable, ==, rt); 1180 1181 /* 1182 * Normally one would walk the tree freeing nodes along the way. 1183 * Since the nodes are shared with the range trees we can avoid 1184 * walking all nodes and just reinitialize the avl tree. The nodes 1185 * will be freed by the range tree, so we don't want to free them here. 1186 */ 1187 avl_create(&msp->ms_allocatable_by_size, metaslab_rangesize_compare, 1188 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); 1189 } 1190 1191 static range_tree_ops_t metaslab_rt_ops = { 1192 metaslab_rt_create, 1193 metaslab_rt_destroy, 1194 metaslab_rt_add, 1195 metaslab_rt_remove, 1196 metaslab_rt_vacate 1197 }; 1198 1199 /* 1200 * ========================================================================== 1201 * Common allocator routines 1202 * ========================================================================== 1203 */ 1204 1205 /* 1206 * Return the maximum contiguous segment within the metaslab. 1207 */ 1208 uint64_t 1209 metaslab_block_maxsize(metaslab_t *msp) 1210 { 1211 avl_tree_t *t = &msp->ms_allocatable_by_size; 1212 range_seg_t *rs; 1213 1214 if (t == NULL || (rs = avl_last(t)) == NULL) 1215 return (0ULL); 1216 1217 return (rs->rs_end - rs->rs_start); 1218 } 1219 1220 static range_seg_t * 1221 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size) 1222 { 1223 range_seg_t *rs, rsearch; 1224 avl_index_t where; 1225 1226 rsearch.rs_start = start; 1227 rsearch.rs_end = start + size; 1228 1229 rs = avl_find(t, &rsearch, &where); 1230 if (rs == NULL) { 1231 rs = avl_nearest(t, where, AVL_AFTER); 1232 } 1233 1234 return (rs); 1235 } 1236 1237 /* 1238 * This is a helper function that can be used by the allocator to find 1239 * a suitable block to allocate. This will search the specified AVL 1240 * tree looking for a block that matches the specified criteria. 1241 */ 1242 static uint64_t 1243 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size, 1244 uint64_t align) 1245 { 1246 range_seg_t *rs = metaslab_block_find(t, *cursor, size); 1247 1248 while (rs != NULL) { 1249 uint64_t offset = P2ROUNDUP(rs->rs_start, align); 1250 1251 if (offset + size <= rs->rs_end) { 1252 *cursor = offset + size; 1253 return (offset); 1254 } 1255 rs = AVL_NEXT(t, rs); 1256 } 1257 1258 /* 1259 * If we know we've searched the whole map (*cursor == 0), give up. 1260 * Otherwise, reset the cursor to the beginning and try again. 1261 */ 1262 if (*cursor == 0) 1263 return (-1ULL); 1264 1265 *cursor = 0; 1266 return (metaslab_block_picker(t, cursor, size, align)); 1267 } 1268 1269 /* 1270 * ========================================================================== 1271 * The first-fit block allocator 1272 * ========================================================================== 1273 */ 1274 static uint64_t 1275 metaslab_ff_alloc(metaslab_t *msp, uint64_t size) 1276 { 1277 /* 1278 * Find the largest power of 2 block size that evenly divides the 1279 * requested size. This is used to try to allocate blocks with similar 1280 * alignment from the same area of the metaslab (i.e. same cursor 1281 * bucket) but it does not guarantee that other allocations sizes 1282 * may exist in the same region. 1283 */ 1284 uint64_t align = size & -size; 1285 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1286 avl_tree_t *t = &msp->ms_allocatable->rt_root; 1287 1288 return (metaslab_block_picker(t, cursor, size, align)); 1289 } 1290 1291 static metaslab_ops_t metaslab_ff_ops = { 1292 metaslab_ff_alloc 1293 }; 1294 1295 /* 1296 * ========================================================================== 1297 * Dynamic block allocator - 1298 * Uses the first fit allocation scheme until space get low and then 1299 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold 1300 * and metaslab_df_free_pct to determine when to switch the allocation scheme. 1301 * ========================================================================== 1302 */ 1303 static uint64_t 1304 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1305 { 1306 /* 1307 * Find the largest power of 2 block size that evenly divides the 1308 * requested size. This is used to try to allocate blocks with similar 1309 * alignment from the same area of the metaslab (i.e. same cursor 1310 * bucket) but it does not guarantee that other allocations sizes 1311 * may exist in the same region. 1312 */ 1313 uint64_t align = size & -size; 1314 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1315 range_tree_t *rt = msp->ms_allocatable; 1316 avl_tree_t *t = &rt->rt_root; 1317 uint64_t max_size = metaslab_block_maxsize(msp); 1318 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1319 1320 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1321 ASSERT3U(avl_numnodes(t), ==, 1322 avl_numnodes(&msp->ms_allocatable_by_size)); 1323 1324 if (max_size < size) 1325 return (-1ULL); 1326 1327 /* 1328 * If we're running low on space switch to using the size 1329 * sorted AVL tree (best-fit). 1330 */ 1331 if (max_size < metaslab_df_alloc_threshold || 1332 free_pct < metaslab_df_free_pct) { 1333 t = &msp->ms_allocatable_by_size; 1334 *cursor = 0; 1335 } 1336 1337 return (metaslab_block_picker(t, cursor, size, 1ULL)); 1338 } 1339 1340 static metaslab_ops_t metaslab_df_ops = { 1341 metaslab_df_alloc 1342 }; 1343 1344 /* 1345 * ========================================================================== 1346 * Cursor fit block allocator - 1347 * Select the largest region in the metaslab, set the cursor to the beginning 1348 * of the range and the cursor_end to the end of the range. As allocations 1349 * are made advance the cursor. Continue allocating from the cursor until 1350 * the range is exhausted and then find a new range. 1351 * ========================================================================== 1352 */ 1353 static uint64_t 1354 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1355 { 1356 range_tree_t *rt = msp->ms_allocatable; 1357 avl_tree_t *t = &msp->ms_allocatable_by_size; 1358 uint64_t *cursor = &msp->ms_lbas[0]; 1359 uint64_t *cursor_end = &msp->ms_lbas[1]; 1360 uint64_t offset = 0; 1361 1362 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1363 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root)); 1364 1365 ASSERT3U(*cursor_end, >=, *cursor); 1366 1367 if ((*cursor + size) > *cursor_end) { 1368 range_seg_t *rs; 1369 1370 rs = avl_last(&msp->ms_allocatable_by_size); 1371 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) 1372 return (-1ULL); 1373 1374 *cursor = rs->rs_start; 1375 *cursor_end = rs->rs_end; 1376 } 1377 1378 offset = *cursor; 1379 *cursor += size; 1380 1381 return (offset); 1382 } 1383 1384 static metaslab_ops_t metaslab_cf_ops = { 1385 metaslab_cf_alloc 1386 }; 1387 1388 /* 1389 * ========================================================================== 1390 * New dynamic fit allocator - 1391 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1392 * contiguous blocks. If no region is found then just use the largest segment 1393 * that remains. 1394 * ========================================================================== 1395 */ 1396 1397 /* 1398 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1399 * to request from the allocator. 1400 */ 1401 uint64_t metaslab_ndf_clump_shift = 4; 1402 1403 static uint64_t 1404 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1405 { 1406 avl_tree_t *t = &msp->ms_allocatable->rt_root; 1407 avl_index_t where; 1408 range_seg_t *rs, rsearch; 1409 uint64_t hbit = highbit64(size); 1410 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1411 uint64_t max_size = metaslab_block_maxsize(msp); 1412 1413 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1414 ASSERT3U(avl_numnodes(t), ==, 1415 avl_numnodes(&msp->ms_allocatable_by_size)); 1416 1417 if (max_size < size) 1418 return (-1ULL); 1419 1420 rsearch.rs_start = *cursor; 1421 rsearch.rs_end = *cursor + size; 1422 1423 rs = avl_find(t, &rsearch, &where); 1424 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) { 1425 t = &msp->ms_allocatable_by_size; 1426 1427 rsearch.rs_start = 0; 1428 rsearch.rs_end = MIN(max_size, 1429 1ULL << (hbit + metaslab_ndf_clump_shift)); 1430 rs = avl_find(t, &rsearch, &where); 1431 if (rs == NULL) 1432 rs = avl_nearest(t, where, AVL_AFTER); 1433 ASSERT(rs != NULL); 1434 } 1435 1436 if ((rs->rs_end - rs->rs_start) >= size) { 1437 *cursor = rs->rs_start + size; 1438 return (rs->rs_start); 1439 } 1440 return (-1ULL); 1441 } 1442 1443 static metaslab_ops_t metaslab_ndf_ops = { 1444 metaslab_ndf_alloc 1445 }; 1446 1447 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1448 1449 /* 1450 * ========================================================================== 1451 * Metaslabs 1452 * ========================================================================== 1453 */ 1454 1455 /* 1456 * Wait for any in-progress metaslab loads to complete. 1457 */ 1458 void 1459 metaslab_load_wait(metaslab_t *msp) 1460 { 1461 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1462 1463 while (msp->ms_loading) { 1464 ASSERT(!msp->ms_loaded); 1465 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1466 } 1467 } 1468 1469 int 1470 metaslab_load(metaslab_t *msp) 1471 { 1472 int error = 0; 1473 boolean_t success = B_FALSE; 1474 1475 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1476 ASSERT(!msp->ms_loaded); 1477 ASSERT(!msp->ms_loading); 1478 1479 msp->ms_loading = B_TRUE; 1480 /* 1481 * Nobody else can manipulate a loading metaslab, so it's now safe 1482 * to drop the lock. This way we don't have to hold the lock while 1483 * reading the spacemap from disk. 1484 */ 1485 mutex_exit(&msp->ms_lock); 1486 1487 /* 1488 * If the space map has not been allocated yet, then treat 1489 * all the space in the metaslab as free and add it to ms_allocatable. 1490 */ 1491 if (msp->ms_sm != NULL) { 1492 error = space_map_load(msp->ms_sm, msp->ms_allocatable, 1493 SM_FREE); 1494 } else { 1495 range_tree_add(msp->ms_allocatable, 1496 msp->ms_start, msp->ms_size); 1497 } 1498 1499 success = (error == 0); 1500 1501 mutex_enter(&msp->ms_lock); 1502 msp->ms_loading = B_FALSE; 1503 1504 if (success) { 1505 ASSERT3P(msp->ms_group, !=, NULL); 1506 msp->ms_loaded = B_TRUE; 1507 1508 /* 1509 * If the metaslab already has a spacemap, then we need to 1510 * remove all segments from the defer tree; otherwise, the 1511 * metaslab is completely empty and we can skip this. 1512 */ 1513 if (msp->ms_sm != NULL) { 1514 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1515 range_tree_walk(msp->ms_defer[t], 1516 range_tree_remove, msp->ms_allocatable); 1517 } 1518 } 1519 msp->ms_max_size = metaslab_block_maxsize(msp); 1520 } 1521 cv_broadcast(&msp->ms_load_cv); 1522 return (error); 1523 } 1524 1525 void 1526 metaslab_unload(metaslab_t *msp) 1527 { 1528 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1529 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 1530 msp->ms_loaded = B_FALSE; 1531 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 1532 msp->ms_max_size = 0; 1533 } 1534 1535 int 1536 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg, 1537 metaslab_t **msp) 1538 { 1539 vdev_t *vd = mg->mg_vd; 1540 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1541 metaslab_t *ms; 1542 int error; 1543 1544 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 1545 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 1546 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 1547 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 1548 1549 ms->ms_id = id; 1550 ms->ms_start = id << vd->vdev_ms_shift; 1551 ms->ms_size = 1ULL << vd->vdev_ms_shift; 1552 ms->ms_allocator = -1; 1553 ms->ms_new = B_TRUE; 1554 1555 /* 1556 * We only open space map objects that already exist. All others 1557 * will be opened when we finally allocate an object for it. 1558 */ 1559 if (object != 0) { 1560 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 1561 ms->ms_size, vd->vdev_ashift); 1562 1563 if (error != 0) { 1564 kmem_free(ms, sizeof (metaslab_t)); 1565 return (error); 1566 } 1567 1568 ASSERT(ms->ms_sm != NULL); 1569 } 1570 1571 /* 1572 * We create the main range tree here, but we don't create the 1573 * other range trees until metaslab_sync_done(). This serves 1574 * two purposes: it allows metaslab_sync_done() to detect the 1575 * addition of new space; and for debugging, it ensures that we'd 1576 * data fault on any attempt to use this metaslab before it's ready. 1577 */ 1578 ms->ms_allocatable = range_tree_create(&metaslab_rt_ops, ms); 1579 metaslab_group_add(mg, ms); 1580 1581 metaslab_set_fragmentation(ms); 1582 1583 /* 1584 * If we're opening an existing pool (txg == 0) or creating 1585 * a new one (txg == TXG_INITIAL), all space is available now. 1586 * If we're adding space to an existing pool, the new space 1587 * does not become available until after this txg has synced. 1588 * The metaslab's weight will also be initialized when we sync 1589 * out this txg. This ensures that we don't attempt to allocate 1590 * from it before we have initialized it completely. 1591 */ 1592 if (txg <= TXG_INITIAL) 1593 metaslab_sync_done(ms, 0); 1594 1595 /* 1596 * If metaslab_debug_load is set and we're initializing a metaslab 1597 * that has an allocated space map object then load the its space 1598 * map so that can verify frees. 1599 */ 1600 if (metaslab_debug_load && ms->ms_sm != NULL) { 1601 mutex_enter(&ms->ms_lock); 1602 VERIFY0(metaslab_load(ms)); 1603 mutex_exit(&ms->ms_lock); 1604 } 1605 1606 if (txg != 0) { 1607 vdev_dirty(vd, 0, NULL, txg); 1608 vdev_dirty(vd, VDD_METASLAB, ms, txg); 1609 } 1610 1611 *msp = ms; 1612 1613 return (0); 1614 } 1615 1616 void 1617 metaslab_fini(metaslab_t *msp) 1618 { 1619 metaslab_group_t *mg = msp->ms_group; 1620 1621 metaslab_group_remove(mg, msp); 1622 1623 mutex_enter(&msp->ms_lock); 1624 VERIFY(msp->ms_group == NULL); 1625 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm), 1626 0, -msp->ms_size); 1627 space_map_close(msp->ms_sm); 1628 1629 metaslab_unload(msp); 1630 range_tree_destroy(msp->ms_allocatable); 1631 range_tree_destroy(msp->ms_freeing); 1632 range_tree_destroy(msp->ms_freed); 1633 1634 for (int t = 0; t < TXG_SIZE; t++) { 1635 range_tree_destroy(msp->ms_allocating[t]); 1636 } 1637 1638 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1639 range_tree_destroy(msp->ms_defer[t]); 1640 } 1641 ASSERT0(msp->ms_deferspace); 1642 1643 range_tree_destroy(msp->ms_checkpointing); 1644 1645 mutex_exit(&msp->ms_lock); 1646 cv_destroy(&msp->ms_load_cv); 1647 mutex_destroy(&msp->ms_lock); 1648 mutex_destroy(&msp->ms_sync_lock); 1649 ASSERT3U(msp->ms_allocator, ==, -1); 1650 1651 kmem_free(msp, sizeof (metaslab_t)); 1652 } 1653 1654 #define FRAGMENTATION_TABLE_SIZE 17 1655 1656 /* 1657 * This table defines a segment size based fragmentation metric that will 1658 * allow each metaslab to derive its own fragmentation value. This is done 1659 * by calculating the space in each bucket of the spacemap histogram and 1660 * multiplying that by the fragmetation metric in this table. Doing 1661 * this for all buckets and dividing it by the total amount of free 1662 * space in this metaslab (i.e. the total free space in all buckets) gives 1663 * us the fragmentation metric. This means that a high fragmentation metric 1664 * equates to most of the free space being comprised of small segments. 1665 * Conversely, if the metric is low, then most of the free space is in 1666 * large segments. A 10% change in fragmentation equates to approximately 1667 * double the number of segments. 1668 * 1669 * This table defines 0% fragmented space using 16MB segments. Testing has 1670 * shown that segments that are greater than or equal to 16MB do not suffer 1671 * from drastic performance problems. Using this value, we derive the rest 1672 * of the table. Since the fragmentation value is never stored on disk, it 1673 * is possible to change these calculations in the future. 1674 */ 1675 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 1676 100, /* 512B */ 1677 100, /* 1K */ 1678 98, /* 2K */ 1679 95, /* 4K */ 1680 90, /* 8K */ 1681 80, /* 16K */ 1682 70, /* 32K */ 1683 60, /* 64K */ 1684 50, /* 128K */ 1685 40, /* 256K */ 1686 30, /* 512K */ 1687 20, /* 1M */ 1688 15, /* 2M */ 1689 10, /* 4M */ 1690 5, /* 8M */ 1691 0 /* 16M */ 1692 }; 1693 1694 /* 1695 * Calclate the metaslab's fragmentation metric. A return value 1696 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does 1697 * not support this metric. Otherwise, the return value should be in the 1698 * range [0, 100]. 1699 */ 1700 static void 1701 metaslab_set_fragmentation(metaslab_t *msp) 1702 { 1703 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1704 uint64_t fragmentation = 0; 1705 uint64_t total = 0; 1706 boolean_t feature_enabled = spa_feature_is_enabled(spa, 1707 SPA_FEATURE_SPACEMAP_HISTOGRAM); 1708 1709 if (!feature_enabled) { 1710 msp->ms_fragmentation = ZFS_FRAG_INVALID; 1711 return; 1712 } 1713 1714 /* 1715 * A null space map means that the entire metaslab is free 1716 * and thus is not fragmented. 1717 */ 1718 if (msp->ms_sm == NULL) { 1719 msp->ms_fragmentation = 0; 1720 return; 1721 } 1722 1723 /* 1724 * If this metaslab's space map has not been upgraded, flag it 1725 * so that we upgrade next time we encounter it. 1726 */ 1727 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 1728 uint64_t txg = spa_syncing_txg(spa); 1729 vdev_t *vd = msp->ms_group->mg_vd; 1730 1731 /* 1732 * If we've reached the final dirty txg, then we must 1733 * be shutting down the pool. We don't want to dirty 1734 * any data past this point so skip setting the condense 1735 * flag. We can retry this action the next time the pool 1736 * is imported. 1737 */ 1738 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 1739 msp->ms_condense_wanted = B_TRUE; 1740 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 1741 zfs_dbgmsg("txg %llu, requesting force condense: " 1742 "ms_id %llu, vdev_id %llu", txg, msp->ms_id, 1743 vd->vdev_id); 1744 } 1745 msp->ms_fragmentation = ZFS_FRAG_INVALID; 1746 return; 1747 } 1748 1749 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1750 uint64_t space = 0; 1751 uint8_t shift = msp->ms_sm->sm_shift; 1752 1753 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 1754 FRAGMENTATION_TABLE_SIZE - 1); 1755 1756 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 1757 continue; 1758 1759 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 1760 total += space; 1761 1762 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 1763 fragmentation += space * zfs_frag_table[idx]; 1764 } 1765 1766 if (total > 0) 1767 fragmentation /= total; 1768 ASSERT3U(fragmentation, <=, 100); 1769 1770 msp->ms_fragmentation = fragmentation; 1771 } 1772 1773 /* 1774 * Compute a weight -- a selection preference value -- for the given metaslab. 1775 * This is based on the amount of free space, the level of fragmentation, 1776 * the LBA range, and whether the metaslab is loaded. 1777 */ 1778 static uint64_t 1779 metaslab_space_weight(metaslab_t *msp) 1780 { 1781 metaslab_group_t *mg = msp->ms_group; 1782 vdev_t *vd = mg->mg_vd; 1783 uint64_t weight, space; 1784 1785 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1786 ASSERT(!vd->vdev_removing); 1787 1788 /* 1789 * The baseline weight is the metaslab's free space. 1790 */ 1791 space = msp->ms_size - space_map_allocated(msp->ms_sm); 1792 1793 if (metaslab_fragmentation_factor_enabled && 1794 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 1795 /* 1796 * Use the fragmentation information to inversely scale 1797 * down the baseline weight. We need to ensure that we 1798 * don't exclude this metaslab completely when it's 100% 1799 * fragmented. To avoid this we reduce the fragmented value 1800 * by 1. 1801 */ 1802 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 1803 1804 /* 1805 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 1806 * this metaslab again. The fragmentation metric may have 1807 * decreased the space to something smaller than 1808 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 1809 * so that we can consume any remaining space. 1810 */ 1811 if (space > 0 && space < SPA_MINBLOCKSIZE) 1812 space = SPA_MINBLOCKSIZE; 1813 } 1814 weight = space; 1815 1816 /* 1817 * Modern disks have uniform bit density and constant angular velocity. 1818 * Therefore, the outer recording zones are faster (higher bandwidth) 1819 * than the inner zones by the ratio of outer to inner track diameter, 1820 * which is typically around 2:1. We account for this by assigning 1821 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 1822 * In effect, this means that we'll select the metaslab with the most 1823 * free bandwidth rather than simply the one with the most free space. 1824 */ 1825 if (metaslab_lba_weighting_enabled) { 1826 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 1827 ASSERT(weight >= space && weight <= 2 * space); 1828 } 1829 1830 /* 1831 * If this metaslab is one we're actively using, adjust its 1832 * weight to make it preferable to any inactive metaslab so 1833 * we'll polish it off. If the fragmentation on this metaslab 1834 * has exceed our threshold, then don't mark it active. 1835 */ 1836 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 1837 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 1838 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 1839 } 1840 1841 WEIGHT_SET_SPACEBASED(weight); 1842 return (weight); 1843 } 1844 1845 /* 1846 * Return the weight of the specified metaslab, according to the segment-based 1847 * weighting algorithm. The metaslab must be loaded. This function can 1848 * be called within a sync pass since it relies only on the metaslab's 1849 * range tree which is always accurate when the metaslab is loaded. 1850 */ 1851 static uint64_t 1852 metaslab_weight_from_range_tree(metaslab_t *msp) 1853 { 1854 uint64_t weight = 0; 1855 uint32_t segments = 0; 1856 1857 ASSERT(msp->ms_loaded); 1858 1859 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 1860 i--) { 1861 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 1862 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 1863 1864 segments <<= 1; 1865 segments += msp->ms_allocatable->rt_histogram[i]; 1866 1867 /* 1868 * The range tree provides more precision than the space map 1869 * and must be downgraded so that all values fit within the 1870 * space map's histogram. This allows us to compare loaded 1871 * vs. unloaded metaslabs to determine which metaslab is 1872 * considered "best". 1873 */ 1874 if (i > max_idx) 1875 continue; 1876 1877 if (segments != 0) { 1878 WEIGHT_SET_COUNT(weight, segments); 1879 WEIGHT_SET_INDEX(weight, i); 1880 WEIGHT_SET_ACTIVE(weight, 0); 1881 break; 1882 } 1883 } 1884 return (weight); 1885 } 1886 1887 /* 1888 * Calculate the weight based on the on-disk histogram. This should only 1889 * be called after a sync pass has completely finished since the on-disk 1890 * information is updated in metaslab_sync(). 1891 */ 1892 static uint64_t 1893 metaslab_weight_from_spacemap(metaslab_t *msp) 1894 { 1895 uint64_t weight = 0; 1896 1897 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 1898 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) { 1899 WEIGHT_SET_COUNT(weight, 1900 msp->ms_sm->sm_phys->smp_histogram[i]); 1901 WEIGHT_SET_INDEX(weight, i + 1902 msp->ms_sm->sm_shift); 1903 WEIGHT_SET_ACTIVE(weight, 0); 1904 break; 1905 } 1906 } 1907 return (weight); 1908 } 1909 1910 /* 1911 * Compute a segment-based weight for the specified metaslab. The weight 1912 * is determined by highest bucket in the histogram. The information 1913 * for the highest bucket is encoded into the weight value. 1914 */ 1915 static uint64_t 1916 metaslab_segment_weight(metaslab_t *msp) 1917 { 1918 metaslab_group_t *mg = msp->ms_group; 1919 uint64_t weight = 0; 1920 uint8_t shift = mg->mg_vd->vdev_ashift; 1921 1922 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1923 1924 /* 1925 * The metaslab is completely free. 1926 */ 1927 if (space_map_allocated(msp->ms_sm) == 0) { 1928 int idx = highbit64(msp->ms_size) - 1; 1929 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 1930 1931 if (idx < max_idx) { 1932 WEIGHT_SET_COUNT(weight, 1ULL); 1933 WEIGHT_SET_INDEX(weight, idx); 1934 } else { 1935 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 1936 WEIGHT_SET_INDEX(weight, max_idx); 1937 } 1938 WEIGHT_SET_ACTIVE(weight, 0); 1939 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 1940 1941 return (weight); 1942 } 1943 1944 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 1945 1946 /* 1947 * If the metaslab is fully allocated then just make the weight 0. 1948 */ 1949 if (space_map_allocated(msp->ms_sm) == msp->ms_size) 1950 return (0); 1951 /* 1952 * If the metaslab is already loaded, then use the range tree to 1953 * determine the weight. Otherwise, we rely on the space map information 1954 * to generate the weight. 1955 */ 1956 if (msp->ms_loaded) { 1957 weight = metaslab_weight_from_range_tree(msp); 1958 } else { 1959 weight = metaslab_weight_from_spacemap(msp); 1960 } 1961 1962 /* 1963 * If the metaslab was active the last time we calculated its weight 1964 * then keep it active. We want to consume the entire region that 1965 * is associated with this weight. 1966 */ 1967 if (msp->ms_activation_weight != 0 && weight != 0) 1968 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 1969 return (weight); 1970 } 1971 1972 /* 1973 * Determine if we should attempt to allocate from this metaslab. If the 1974 * metaslab has a maximum size then we can quickly determine if the desired 1975 * allocation size can be satisfied. Otherwise, if we're using segment-based 1976 * weighting then we can determine the maximum allocation that this metaslab 1977 * can accommodate based on the index encoded in the weight. If we're using 1978 * space-based weights then rely on the entire weight (excluding the weight 1979 * type bit). 1980 */ 1981 boolean_t 1982 metaslab_should_allocate(metaslab_t *msp, uint64_t asize) 1983 { 1984 boolean_t should_allocate; 1985 1986 if (msp->ms_max_size != 0) 1987 return (msp->ms_max_size >= asize); 1988 1989 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 1990 /* 1991 * The metaslab segment weight indicates segments in the 1992 * range [2^i, 2^(i+1)), where i is the index in the weight. 1993 * Since the asize might be in the middle of the range, we 1994 * should attempt the allocation if asize < 2^(i+1). 1995 */ 1996 should_allocate = (asize < 1997 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 1998 } else { 1999 should_allocate = (asize <= 2000 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 2001 } 2002 return (should_allocate); 2003 } 2004 2005 static uint64_t 2006 metaslab_weight(metaslab_t *msp) 2007 { 2008 vdev_t *vd = msp->ms_group->mg_vd; 2009 spa_t *spa = vd->vdev_spa; 2010 uint64_t weight; 2011 2012 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2013 2014 /* 2015 * If this vdev is in the process of being removed, there is nothing 2016 * for us to do here. 2017 */ 2018 if (vd->vdev_removing) 2019 return (0); 2020 2021 metaslab_set_fragmentation(msp); 2022 2023 /* 2024 * Update the maximum size if the metaslab is loaded. This will 2025 * ensure that we get an accurate maximum size if newly freed space 2026 * has been added back into the free tree. 2027 */ 2028 if (msp->ms_loaded) 2029 msp->ms_max_size = metaslab_block_maxsize(msp); 2030 2031 /* 2032 * Segment-based weighting requires space map histogram support. 2033 */ 2034 if (zfs_metaslab_segment_weight_enabled && 2035 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 2036 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 2037 sizeof (space_map_phys_t))) { 2038 weight = metaslab_segment_weight(msp); 2039 } else { 2040 weight = metaslab_space_weight(msp); 2041 } 2042 return (weight); 2043 } 2044 2045 static int 2046 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 2047 int allocator, uint64_t activation_weight) 2048 { 2049 /* 2050 * If we're activating for the claim code, we don't want to actually 2051 * set the metaslab up for a specific allocator. 2052 */ 2053 if (activation_weight == METASLAB_WEIGHT_CLAIM) 2054 return (0); 2055 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 2056 mg->mg_primaries : mg->mg_secondaries); 2057 2058 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2059 mutex_enter(&mg->mg_lock); 2060 if (arr[allocator] != NULL) { 2061 mutex_exit(&mg->mg_lock); 2062 return (EEXIST); 2063 } 2064 2065 arr[allocator] = msp; 2066 ASSERT3S(msp->ms_allocator, ==, -1); 2067 msp->ms_allocator = allocator; 2068 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 2069 mutex_exit(&mg->mg_lock); 2070 2071 return (0); 2072 } 2073 2074 static int 2075 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 2076 { 2077 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2078 2079 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 2080 int error = 0; 2081 metaslab_load_wait(msp); 2082 if (!msp->ms_loaded) { 2083 if ((error = metaslab_load(msp)) != 0) { 2084 metaslab_group_sort(msp->ms_group, msp, 0); 2085 return (error); 2086 } 2087 } 2088 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 2089 /* 2090 * The metaslab was activated for another allocator 2091 * while we were waiting, we should reselect. 2092 */ 2093 return (EBUSY); 2094 } 2095 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 2096 allocator, activation_weight)) != 0) { 2097 return (error); 2098 } 2099 2100 msp->ms_activation_weight = msp->ms_weight; 2101 metaslab_group_sort(msp->ms_group, msp, 2102 msp->ms_weight | activation_weight); 2103 } 2104 ASSERT(msp->ms_loaded); 2105 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 2106 2107 return (0); 2108 } 2109 2110 static void 2111 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 2112 uint64_t weight) 2113 { 2114 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2115 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 2116 metaslab_group_sort(mg, msp, weight); 2117 return; 2118 } 2119 2120 mutex_enter(&mg->mg_lock); 2121 ASSERT3P(msp->ms_group, ==, mg); 2122 if (msp->ms_primary) { 2123 ASSERT3U(0, <=, msp->ms_allocator); 2124 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 2125 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp); 2126 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 2127 mg->mg_primaries[msp->ms_allocator] = NULL; 2128 } else { 2129 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 2130 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp); 2131 mg->mg_secondaries[msp->ms_allocator] = NULL; 2132 } 2133 msp->ms_allocator = -1; 2134 metaslab_group_sort_impl(mg, msp, weight); 2135 mutex_exit(&mg->mg_lock); 2136 } 2137 2138 static void 2139 metaslab_passivate(metaslab_t *msp, uint64_t weight) 2140 { 2141 uint64_t size = weight & ~METASLAB_WEIGHT_TYPE; 2142 2143 /* 2144 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 2145 * this metaslab again. In that case, it had better be empty, 2146 * or we would be leaving space on the table. 2147 */ 2148 ASSERT(size >= SPA_MINBLOCKSIZE || 2149 range_tree_is_empty(msp->ms_allocatable)); 2150 ASSERT0(weight & METASLAB_ACTIVE_MASK); 2151 2152 msp->ms_activation_weight = 0; 2153 metaslab_passivate_allocator(msp->ms_group, msp, weight); 2154 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 2155 } 2156 2157 /* 2158 * Segment-based metaslabs are activated once and remain active until 2159 * we either fail an allocation attempt (similar to space-based metaslabs) 2160 * or have exhausted the free space in zfs_metaslab_switch_threshold 2161 * buckets since the metaslab was activated. This function checks to see 2162 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the 2163 * metaslab and passivates it proactively. This will allow us to select a 2164 * metaslabs with larger contiguous region if any remaining within this 2165 * metaslab group. If we're in sync pass > 1, then we continue using this 2166 * metaslab so that we don't dirty more block and cause more sync passes. 2167 */ 2168 void 2169 metaslab_segment_may_passivate(metaslab_t *msp) 2170 { 2171 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2172 2173 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 2174 return; 2175 2176 /* 2177 * Since we are in the middle of a sync pass, the most accurate 2178 * information that is accessible to us is the in-core range tree 2179 * histogram; calculate the new weight based on that information. 2180 */ 2181 uint64_t weight = metaslab_weight_from_range_tree(msp); 2182 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 2183 int current_idx = WEIGHT_GET_INDEX(weight); 2184 2185 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 2186 metaslab_passivate(msp, weight); 2187 } 2188 2189 static void 2190 metaslab_preload(void *arg) 2191 { 2192 metaslab_t *msp = arg; 2193 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2194 2195 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 2196 2197 mutex_enter(&msp->ms_lock); 2198 metaslab_load_wait(msp); 2199 if (!msp->ms_loaded) 2200 (void) metaslab_load(msp); 2201 msp->ms_selected_txg = spa_syncing_txg(spa); 2202 mutex_exit(&msp->ms_lock); 2203 } 2204 2205 static void 2206 metaslab_group_preload(metaslab_group_t *mg) 2207 { 2208 spa_t *spa = mg->mg_vd->vdev_spa; 2209 metaslab_t *msp; 2210 avl_tree_t *t = &mg->mg_metaslab_tree; 2211 int m = 0; 2212 2213 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 2214 taskq_wait(mg->mg_taskq); 2215 return; 2216 } 2217 2218 mutex_enter(&mg->mg_lock); 2219 2220 /* 2221 * Load the next potential metaslabs 2222 */ 2223 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 2224 ASSERT3P(msp->ms_group, ==, mg); 2225 2226 /* 2227 * We preload only the maximum number of metaslabs specified 2228 * by metaslab_preload_limit. If a metaslab is being forced 2229 * to condense then we preload it too. This will ensure 2230 * that force condensing happens in the next txg. 2231 */ 2232 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 2233 continue; 2234 } 2235 2236 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 2237 msp, TQ_SLEEP) != NULL); 2238 } 2239 mutex_exit(&mg->mg_lock); 2240 } 2241 2242 /* 2243 * Determine if the space map's on-disk footprint is past our tolerance 2244 * for inefficiency. We would like to use the following criteria to make 2245 * our decision: 2246 * 2247 * 1. The size of the space map object should not dramatically increase as a 2248 * result of writing out the free space range tree. 2249 * 2250 * 2. The minimal on-disk space map representation is zfs_condense_pct/100 2251 * times the size than the free space range tree representation 2252 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB). 2253 * 2254 * 3. The on-disk size of the space map should actually decrease. 2255 * 2256 * Unfortunately, we cannot compute the on-disk size of the space map in this 2257 * context because we cannot accurately compute the effects of compression, etc. 2258 * Instead, we apply the heuristic described in the block comment for 2259 * zfs_metaslab_condense_block_threshold - we only condense if the space used 2260 * is greater than a threshold number of blocks. 2261 */ 2262 static boolean_t 2263 metaslab_should_condense(metaslab_t *msp) 2264 { 2265 space_map_t *sm = msp->ms_sm; 2266 vdev_t *vd = msp->ms_group->mg_vd; 2267 uint64_t vdev_blocksize = 1 << vd->vdev_ashift; 2268 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa); 2269 2270 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2271 ASSERT(msp->ms_loaded); 2272 2273 /* 2274 * Allocations and frees in early passes are generally more space 2275 * efficient (in terms of blocks described in space map entries) 2276 * than the ones in later passes (e.g. we don't compress after 2277 * sync pass 5) and condensing a metaslab multiple times in a txg 2278 * could degrade performance. 2279 * 2280 * Thus we prefer condensing each metaslab at most once every txg at 2281 * the earliest sync pass possible. If a metaslab is eligible for 2282 * condensing again after being considered for condensing within the 2283 * same txg, it will hopefully be dirty in the next txg where it will 2284 * be condensed at an earlier pass. 2285 */ 2286 if (msp->ms_condense_checked_txg == current_txg) 2287 return (B_FALSE); 2288 msp->ms_condense_checked_txg = current_txg; 2289 2290 /* 2291 * We always condense metaslabs that are empty and metaslabs for 2292 * which a condense request has been made. 2293 */ 2294 if (avl_is_empty(&msp->ms_allocatable_by_size) || 2295 msp->ms_condense_wanted) 2296 return (B_TRUE); 2297 2298 uint64_t object_size = space_map_length(msp->ms_sm); 2299 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 2300 msp->ms_allocatable, SM_NO_VDEVID); 2301 2302 dmu_object_info_t doi; 2303 dmu_object_info_from_db(sm->sm_dbuf, &doi); 2304 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize); 2305 2306 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 2307 object_size > zfs_metaslab_condense_block_threshold * record_size); 2308 } 2309 2310 /* 2311 * Condense the on-disk space map representation to its minimized form. 2312 * The minimized form consists of a small number of allocations followed by 2313 * the entries of the free range tree. 2314 */ 2315 static void 2316 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx) 2317 { 2318 range_tree_t *condense_tree; 2319 space_map_t *sm = msp->ms_sm; 2320 2321 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2322 ASSERT(msp->ms_loaded); 2323 2324 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, " 2325 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg, 2326 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id, 2327 msp->ms_group->mg_vd->vdev_spa->spa_name, 2328 space_map_length(msp->ms_sm), 2329 avl_numnodes(&msp->ms_allocatable->rt_root), 2330 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 2331 2332 msp->ms_condense_wanted = B_FALSE; 2333 2334 /* 2335 * Create an range tree that is 100% allocated. We remove segments 2336 * that have been freed in this txg, any deferred frees that exist, 2337 * and any allocation in the future. Removing segments should be 2338 * a relatively inexpensive operation since we expect these trees to 2339 * have a small number of nodes. 2340 */ 2341 condense_tree = range_tree_create(NULL, NULL); 2342 range_tree_add(condense_tree, msp->ms_start, msp->ms_size); 2343 2344 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree); 2345 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree); 2346 2347 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2348 range_tree_walk(msp->ms_defer[t], 2349 range_tree_remove, condense_tree); 2350 } 2351 2352 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 2353 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 2354 range_tree_remove, condense_tree); 2355 } 2356 2357 /* 2358 * We're about to drop the metaslab's lock thus allowing 2359 * other consumers to change it's content. Set the 2360 * metaslab's ms_condensing flag to ensure that 2361 * allocations on this metaslab do not occur while we're 2362 * in the middle of committing it to disk. This is only critical 2363 * for ms_allocatable as all other range trees use per txg 2364 * views of their content. 2365 */ 2366 msp->ms_condensing = B_TRUE; 2367 2368 mutex_exit(&msp->ms_lock); 2369 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx); 2370 2371 /* 2372 * While we would ideally like to create a space map representation 2373 * that consists only of allocation records, doing so can be 2374 * prohibitively expensive because the in-core free tree can be 2375 * large, and therefore computationally expensive to subtract 2376 * from the condense_tree. Instead we sync out two trees, a cheap 2377 * allocation only tree followed by the in-core free tree. While not 2378 * optimal, this is typically close to optimal, and much cheaper to 2379 * compute. 2380 */ 2381 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx); 2382 range_tree_vacate(condense_tree, NULL, NULL); 2383 range_tree_destroy(condense_tree); 2384 2385 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 2386 mutex_enter(&msp->ms_lock); 2387 msp->ms_condensing = B_FALSE; 2388 } 2389 2390 /* 2391 * Write a metaslab to disk in the context of the specified transaction group. 2392 */ 2393 void 2394 metaslab_sync(metaslab_t *msp, uint64_t txg) 2395 { 2396 metaslab_group_t *mg = msp->ms_group; 2397 vdev_t *vd = mg->mg_vd; 2398 spa_t *spa = vd->vdev_spa; 2399 objset_t *mos = spa_meta_objset(spa); 2400 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 2401 dmu_tx_t *tx; 2402 uint64_t object = space_map_object(msp->ms_sm); 2403 2404 ASSERT(!vd->vdev_ishole); 2405 2406 /* 2407 * This metaslab has just been added so there's no work to do now. 2408 */ 2409 if (msp->ms_freeing == NULL) { 2410 ASSERT3P(alloctree, ==, NULL); 2411 return; 2412 } 2413 2414 ASSERT3P(alloctree, !=, NULL); 2415 ASSERT3P(msp->ms_freeing, !=, NULL); 2416 ASSERT3P(msp->ms_freed, !=, NULL); 2417 ASSERT3P(msp->ms_checkpointing, !=, NULL); 2418 2419 /* 2420 * Normally, we don't want to process a metaslab if there are no 2421 * allocations or frees to perform. However, if the metaslab is being 2422 * forced to condense and it's loaded, we need to let it through. 2423 */ 2424 if (range_tree_is_empty(alloctree) && 2425 range_tree_is_empty(msp->ms_freeing) && 2426 range_tree_is_empty(msp->ms_checkpointing) && 2427 !(msp->ms_loaded && msp->ms_condense_wanted)) 2428 return; 2429 2430 2431 VERIFY(txg <= spa_final_dirty_txg(spa)); 2432 2433 /* 2434 * The only state that can actually be changing concurrently with 2435 * metaslab_sync() is the metaslab's ms_allocatable. No other 2436 * thread can be modifying this txg's alloc, freeing, 2437 * freed, or space_map_phys_t. We drop ms_lock whenever we 2438 * could call into the DMU, because the DMU can call down to us 2439 * (e.g. via zio_free()) at any time. 2440 * 2441 * The spa_vdev_remove_thread() can be reading metaslab state 2442 * concurrently, and it is locked out by the ms_sync_lock. Note 2443 * that the ms_lock is insufficient for this, because it is dropped 2444 * by space_map_write(). 2445 */ 2446 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2447 2448 if (msp->ms_sm == NULL) { 2449 uint64_t new_object; 2450 2451 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx); 2452 VERIFY3U(new_object, !=, 0); 2453 2454 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 2455 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 2456 ASSERT(msp->ms_sm != NULL); 2457 } 2458 2459 if (!range_tree_is_empty(msp->ms_checkpointing) && 2460 vd->vdev_checkpoint_sm == NULL) { 2461 ASSERT(spa_has_checkpoint(spa)); 2462 2463 uint64_t new_object = space_map_alloc(mos, 2464 vdev_standard_sm_blksz, tx); 2465 VERIFY3U(new_object, !=, 0); 2466 2467 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 2468 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 2469 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 2470 2471 /* 2472 * We save the space map object as an entry in vdev_top_zap 2473 * so it can be retrieved when the pool is reopened after an 2474 * export or through zdb. 2475 */ 2476 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 2477 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 2478 sizeof (new_object), 1, &new_object, tx)); 2479 } 2480 2481 mutex_enter(&msp->ms_sync_lock); 2482 mutex_enter(&msp->ms_lock); 2483 2484 /* 2485 * Note: metaslab_condense() clears the space map's histogram. 2486 * Therefore we must verify and remove this histogram before 2487 * condensing. 2488 */ 2489 metaslab_group_histogram_verify(mg); 2490 metaslab_class_histogram_verify(mg->mg_class); 2491 metaslab_group_histogram_remove(mg, msp); 2492 2493 if (msp->ms_loaded && metaslab_should_condense(msp)) { 2494 metaslab_condense(msp, txg, tx); 2495 } else { 2496 mutex_exit(&msp->ms_lock); 2497 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 2498 SM_NO_VDEVID, tx); 2499 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 2500 SM_NO_VDEVID, tx); 2501 mutex_enter(&msp->ms_lock); 2502 } 2503 2504 if (!range_tree_is_empty(msp->ms_checkpointing)) { 2505 ASSERT(spa_has_checkpoint(spa)); 2506 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 2507 2508 /* 2509 * Since we are doing writes to disk and the ms_checkpointing 2510 * tree won't be changing during that time, we drop the 2511 * ms_lock while writing to the checkpoint space map. 2512 */ 2513 mutex_exit(&msp->ms_lock); 2514 space_map_write(vd->vdev_checkpoint_sm, 2515 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 2516 mutex_enter(&msp->ms_lock); 2517 space_map_update(vd->vdev_checkpoint_sm); 2518 2519 spa->spa_checkpoint_info.sci_dspace += 2520 range_tree_space(msp->ms_checkpointing); 2521 vd->vdev_stat.vs_checkpoint_space += 2522 range_tree_space(msp->ms_checkpointing); 2523 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 2524 -vd->vdev_checkpoint_sm->sm_alloc); 2525 2526 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 2527 } 2528 2529 if (msp->ms_loaded) { 2530 /* 2531 * When the space map is loaded, we have an accurate 2532 * histogram in the range tree. This gives us an opportunity 2533 * to bring the space map's histogram up-to-date so we clear 2534 * it first before updating it. 2535 */ 2536 space_map_histogram_clear(msp->ms_sm); 2537 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 2538 2539 /* 2540 * Since we've cleared the histogram we need to add back 2541 * any free space that has already been processed, plus 2542 * any deferred space. This allows the on-disk histogram 2543 * to accurately reflect all free space even if some space 2544 * is not yet available for allocation (i.e. deferred). 2545 */ 2546 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 2547 2548 /* 2549 * Add back any deferred free space that has not been 2550 * added back into the in-core free tree yet. This will 2551 * ensure that we don't end up with a space map histogram 2552 * that is completely empty unless the metaslab is fully 2553 * allocated. 2554 */ 2555 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2556 space_map_histogram_add(msp->ms_sm, 2557 msp->ms_defer[t], tx); 2558 } 2559 } 2560 2561 /* 2562 * Always add the free space from this sync pass to the space 2563 * map histogram. We want to make sure that the on-disk histogram 2564 * accounts for all free space. If the space map is not loaded, 2565 * then we will lose some accuracy but will correct it the next 2566 * time we load the space map. 2567 */ 2568 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 2569 2570 metaslab_group_histogram_add(mg, msp); 2571 metaslab_group_histogram_verify(mg); 2572 metaslab_class_histogram_verify(mg->mg_class); 2573 2574 /* 2575 * For sync pass 1, we avoid traversing this txg's free range tree 2576 * and instead will just swap the pointers for freeing and 2577 * freed. We can safely do this since the freed_tree is 2578 * guaranteed to be empty on the initial pass. 2579 */ 2580 if (spa_sync_pass(spa) == 1) { 2581 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 2582 } else { 2583 range_tree_vacate(msp->ms_freeing, 2584 range_tree_add, msp->ms_freed); 2585 } 2586 range_tree_vacate(alloctree, NULL, NULL); 2587 2588 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 2589 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 2590 & TXG_MASK])); 2591 ASSERT0(range_tree_space(msp->ms_freeing)); 2592 ASSERT0(range_tree_space(msp->ms_checkpointing)); 2593 2594 mutex_exit(&msp->ms_lock); 2595 2596 if (object != space_map_object(msp->ms_sm)) { 2597 object = space_map_object(msp->ms_sm); 2598 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 2599 msp->ms_id, sizeof (uint64_t), &object, tx); 2600 } 2601 mutex_exit(&msp->ms_sync_lock); 2602 dmu_tx_commit(tx); 2603 } 2604 2605 /* 2606 * Called after a transaction group has completely synced to mark 2607 * all of the metaslab's free space as usable. 2608 */ 2609 void 2610 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 2611 { 2612 metaslab_group_t *mg = msp->ms_group; 2613 vdev_t *vd = mg->mg_vd; 2614 spa_t *spa = vd->vdev_spa; 2615 range_tree_t **defer_tree; 2616 int64_t alloc_delta, defer_delta; 2617 boolean_t defer_allowed = B_TRUE; 2618 2619 ASSERT(!vd->vdev_ishole); 2620 2621 mutex_enter(&msp->ms_lock); 2622 2623 /* 2624 * If this metaslab is just becoming available, initialize its 2625 * range trees and add its capacity to the vdev. 2626 */ 2627 if (msp->ms_freed == NULL) { 2628 for (int t = 0; t < TXG_SIZE; t++) { 2629 ASSERT(msp->ms_allocating[t] == NULL); 2630 2631 msp->ms_allocating[t] = range_tree_create(NULL, NULL); 2632 } 2633 2634 ASSERT3P(msp->ms_freeing, ==, NULL); 2635 msp->ms_freeing = range_tree_create(NULL, NULL); 2636 2637 ASSERT3P(msp->ms_freed, ==, NULL); 2638 msp->ms_freed = range_tree_create(NULL, NULL); 2639 2640 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2641 ASSERT(msp->ms_defer[t] == NULL); 2642 2643 msp->ms_defer[t] = range_tree_create(NULL, NULL); 2644 } 2645 2646 ASSERT3P(msp->ms_checkpointing, ==, NULL); 2647 msp->ms_checkpointing = range_tree_create(NULL, NULL); 2648 2649 vdev_space_update(vd, 0, 0, msp->ms_size); 2650 } 2651 ASSERT0(range_tree_space(msp->ms_freeing)); 2652 ASSERT0(range_tree_space(msp->ms_checkpointing)); 2653 2654 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 2655 2656 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 2657 metaslab_class_get_alloc(spa_normal_class(spa)); 2658 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 2659 defer_allowed = B_FALSE; 2660 } 2661 2662 defer_delta = 0; 2663 alloc_delta = space_map_alloc_delta(msp->ms_sm); 2664 if (defer_allowed) { 2665 defer_delta = range_tree_space(msp->ms_freed) - 2666 range_tree_space(*defer_tree); 2667 } else { 2668 defer_delta -= range_tree_space(*defer_tree); 2669 } 2670 2671 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0); 2672 2673 /* 2674 * If there's a metaslab_load() in progress, wait for it to complete 2675 * so that we have a consistent view of the in-core space map. 2676 */ 2677 metaslab_load_wait(msp); 2678 2679 /* 2680 * Move the frees from the defer_tree back to the free 2681 * range tree (if it's loaded). Swap the freed_tree and 2682 * the defer_tree -- this is safe to do because we've 2683 * just emptied out the defer_tree. 2684 */ 2685 range_tree_vacate(*defer_tree, 2686 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 2687 if (defer_allowed) { 2688 range_tree_swap(&msp->ms_freed, defer_tree); 2689 } else { 2690 range_tree_vacate(msp->ms_freed, 2691 msp->ms_loaded ? range_tree_add : NULL, 2692 msp->ms_allocatable); 2693 } 2694 space_map_update(msp->ms_sm); 2695 2696 msp->ms_deferspace += defer_delta; 2697 ASSERT3S(msp->ms_deferspace, >=, 0); 2698 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 2699 if (msp->ms_deferspace != 0) { 2700 /* 2701 * Keep syncing this metaslab until all deferred frees 2702 * are back in circulation. 2703 */ 2704 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2705 } 2706 2707 if (msp->ms_new) { 2708 msp->ms_new = B_FALSE; 2709 mutex_enter(&mg->mg_lock); 2710 mg->mg_ms_ready++; 2711 mutex_exit(&mg->mg_lock); 2712 } 2713 /* 2714 * Calculate the new weights before unloading any metaslabs. 2715 * This will give us the most accurate weighting. 2716 */ 2717 metaslab_group_sort(mg, msp, metaslab_weight(msp) | 2718 (msp->ms_weight & METASLAB_ACTIVE_MASK)); 2719 2720 /* 2721 * If the metaslab is loaded and we've not tried to load or allocate 2722 * from it in 'metaslab_unload_delay' txgs, then unload it. 2723 */ 2724 if (msp->ms_loaded && 2725 msp->ms_initializing == 0 && 2726 msp->ms_selected_txg + metaslab_unload_delay < txg) { 2727 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 2728 VERIFY0(range_tree_space( 2729 msp->ms_allocating[(txg + t) & TXG_MASK])); 2730 } 2731 if (msp->ms_allocator != -1) { 2732 metaslab_passivate(msp, msp->ms_weight & 2733 ~METASLAB_ACTIVE_MASK); 2734 } 2735 2736 if (!metaslab_debug_unload) 2737 metaslab_unload(msp); 2738 } 2739 2740 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 2741 ASSERT0(range_tree_space(msp->ms_freeing)); 2742 ASSERT0(range_tree_space(msp->ms_freed)); 2743 ASSERT0(range_tree_space(msp->ms_checkpointing)); 2744 2745 mutex_exit(&msp->ms_lock); 2746 } 2747 2748 void 2749 metaslab_sync_reassess(metaslab_group_t *mg) 2750 { 2751 spa_t *spa = mg->mg_class->mc_spa; 2752 2753 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 2754 metaslab_group_alloc_update(mg); 2755 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 2756 2757 /* 2758 * Preload the next potential metaslabs but only on active 2759 * metaslab groups. We can get into a state where the metaslab 2760 * is no longer active since we dirty metaslabs as we remove a 2761 * a device, thus potentially making the metaslab group eligible 2762 * for preloading. 2763 */ 2764 if (mg->mg_activation_count > 0) { 2765 metaslab_group_preload(mg); 2766 } 2767 spa_config_exit(spa, SCL_ALLOC, FTAG); 2768 } 2769 2770 static uint64_t 2771 metaslab_distance(metaslab_t *msp, dva_t *dva) 2772 { 2773 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 2774 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 2775 uint64_t start = msp->ms_id; 2776 2777 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 2778 return (1ULL << 63); 2779 2780 if (offset < start) 2781 return ((start - offset) << ms_shift); 2782 if (offset > start) 2783 return ((offset - start) << ms_shift); 2784 return (0); 2785 } 2786 2787 /* 2788 * ========================================================================== 2789 * Metaslab allocation tracing facility 2790 * ========================================================================== 2791 */ 2792 kstat_t *metaslab_trace_ksp; 2793 kstat_named_t metaslab_trace_over_limit; 2794 2795 void 2796 metaslab_alloc_trace_init(void) 2797 { 2798 ASSERT(metaslab_alloc_trace_cache == NULL); 2799 metaslab_alloc_trace_cache = kmem_cache_create( 2800 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 2801 0, NULL, NULL, NULL, NULL, NULL, 0); 2802 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats", 2803 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL); 2804 if (metaslab_trace_ksp != NULL) { 2805 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit; 2806 kstat_named_init(&metaslab_trace_over_limit, 2807 "metaslab_trace_over_limit", KSTAT_DATA_UINT64); 2808 kstat_install(metaslab_trace_ksp); 2809 } 2810 } 2811 2812 void 2813 metaslab_alloc_trace_fini(void) 2814 { 2815 if (metaslab_trace_ksp != NULL) { 2816 kstat_delete(metaslab_trace_ksp); 2817 metaslab_trace_ksp = NULL; 2818 } 2819 kmem_cache_destroy(metaslab_alloc_trace_cache); 2820 metaslab_alloc_trace_cache = NULL; 2821 } 2822 2823 /* 2824 * Add an allocation trace element to the allocation tracing list. 2825 */ 2826 static void 2827 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 2828 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 2829 int allocator) 2830 { 2831 if (!metaslab_trace_enabled) 2832 return; 2833 2834 /* 2835 * When the tracing list reaches its maximum we remove 2836 * the second element in the list before adding a new one. 2837 * By removing the second element we preserve the original 2838 * entry as a clue to what allocations steps have already been 2839 * performed. 2840 */ 2841 if (zal->zal_size == metaslab_trace_max_entries) { 2842 metaslab_alloc_trace_t *mat_next; 2843 #ifdef DEBUG 2844 panic("too many entries in allocation list"); 2845 #endif 2846 atomic_inc_64(&metaslab_trace_over_limit.value.ui64); 2847 zal->zal_size--; 2848 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 2849 list_remove(&zal->zal_list, mat_next); 2850 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 2851 } 2852 2853 metaslab_alloc_trace_t *mat = 2854 kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 2855 list_link_init(&mat->mat_list_node); 2856 mat->mat_mg = mg; 2857 mat->mat_msp = msp; 2858 mat->mat_size = psize; 2859 mat->mat_dva_id = dva_id; 2860 mat->mat_offset = offset; 2861 mat->mat_weight = 0; 2862 mat->mat_allocator = allocator; 2863 2864 if (msp != NULL) 2865 mat->mat_weight = msp->ms_weight; 2866 2867 /* 2868 * The list is part of the zio so locking is not required. Only 2869 * a single thread will perform allocations for a given zio. 2870 */ 2871 list_insert_tail(&zal->zal_list, mat); 2872 zal->zal_size++; 2873 2874 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 2875 } 2876 2877 void 2878 metaslab_trace_init(zio_alloc_list_t *zal) 2879 { 2880 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 2881 offsetof(metaslab_alloc_trace_t, mat_list_node)); 2882 zal->zal_size = 0; 2883 } 2884 2885 void 2886 metaslab_trace_fini(zio_alloc_list_t *zal) 2887 { 2888 metaslab_alloc_trace_t *mat; 2889 2890 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 2891 kmem_cache_free(metaslab_alloc_trace_cache, mat); 2892 list_destroy(&zal->zal_list); 2893 zal->zal_size = 0; 2894 } 2895 2896 /* 2897 * ========================================================================== 2898 * Metaslab block operations 2899 * ========================================================================== 2900 */ 2901 2902 static void 2903 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags, 2904 int allocator) 2905 { 2906 if (!(flags & METASLAB_ASYNC_ALLOC) || 2907 (flags & METASLAB_DONT_THROTTLE)) 2908 return; 2909 2910 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 2911 if (!mg->mg_class->mc_alloc_throttle_enabled) 2912 return; 2913 2914 (void) refcount_add(&mg->mg_alloc_queue_depth[allocator], tag); 2915 } 2916 2917 static void 2918 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 2919 { 2920 uint64_t max = mg->mg_max_alloc_queue_depth; 2921 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator]; 2922 while (cur < max) { 2923 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator], 2924 cur, cur + 1) == cur) { 2925 atomic_inc_64( 2926 &mg->mg_class->mc_alloc_max_slots[allocator]); 2927 return; 2928 } 2929 cur = mg->mg_cur_max_alloc_queue_depth[allocator]; 2930 } 2931 } 2932 2933 void 2934 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags, 2935 int allocator, boolean_t io_complete) 2936 { 2937 if (!(flags & METASLAB_ASYNC_ALLOC) || 2938 (flags & METASLAB_DONT_THROTTLE)) 2939 return; 2940 2941 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 2942 if (!mg->mg_class->mc_alloc_throttle_enabled) 2943 return; 2944 2945 (void) refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag); 2946 if (io_complete) 2947 metaslab_group_increment_qdepth(mg, allocator); 2948 } 2949 2950 void 2951 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag, 2952 int allocator) 2953 { 2954 #ifdef ZFS_DEBUG 2955 const dva_t *dva = bp->blk_dva; 2956 int ndvas = BP_GET_NDVAS(bp); 2957 2958 for (int d = 0; d < ndvas; d++) { 2959 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 2960 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 2961 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth[allocator], 2962 tag)); 2963 } 2964 #endif 2965 } 2966 2967 static uint64_t 2968 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 2969 { 2970 uint64_t start; 2971 range_tree_t *rt = msp->ms_allocatable; 2972 metaslab_class_t *mc = msp->ms_group->mg_class; 2973 2974 VERIFY(!msp->ms_condensing); 2975 VERIFY0(msp->ms_initializing); 2976 2977 start = mc->mc_ops->msop_alloc(msp, size); 2978 if (start != -1ULL) { 2979 metaslab_group_t *mg = msp->ms_group; 2980 vdev_t *vd = mg->mg_vd; 2981 2982 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 2983 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 2984 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 2985 range_tree_remove(rt, start, size); 2986 2987 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 2988 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 2989 2990 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 2991 2992 /* Track the last successful allocation */ 2993 msp->ms_alloc_txg = txg; 2994 metaslab_verify_space(msp, txg); 2995 } 2996 2997 /* 2998 * Now that we've attempted the allocation we need to update the 2999 * metaslab's maximum block size since it may have changed. 3000 */ 3001 msp->ms_max_size = metaslab_block_maxsize(msp); 3002 return (start); 3003 } 3004 3005 /* 3006 * Find the metaslab with the highest weight that is less than what we've 3007 * already tried. In the common case, this means that we will examine each 3008 * metaslab at most once. Note that concurrent callers could reorder metaslabs 3009 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 3010 * activated by another thread, and we fail to allocate from the metaslab we 3011 * have selected, we may not try the newly-activated metaslab, and instead 3012 * activate another metaslab. This is not optimal, but generally does not cause 3013 * any problems (a possible exception being if every metaslab is completely full 3014 * except for the the newly-activated metaslab which we fail to examine). 3015 */ 3016 static metaslab_t * 3017 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 3018 dva_t *dva, int d, uint64_t min_distance, uint64_t asize, int allocator, 3019 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active) 3020 { 3021 avl_index_t idx; 3022 avl_tree_t *t = &mg->mg_metaslab_tree; 3023 metaslab_t *msp = avl_find(t, search, &idx); 3024 if (msp == NULL) 3025 msp = avl_nearest(t, idx, AVL_AFTER); 3026 3027 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 3028 int i; 3029 if (!metaslab_should_allocate(msp, asize)) { 3030 metaslab_trace_add(zal, mg, msp, asize, d, 3031 TRACE_TOO_SMALL, allocator); 3032 continue; 3033 } 3034 3035 /* 3036 * If the selected metaslab is condensing or being 3037 * initialized, skip it. 3038 */ 3039 if (msp->ms_condensing || msp->ms_initializing > 0) 3040 continue; 3041 3042 *was_active = msp->ms_allocator != -1; 3043 /* 3044 * If we're activating as primary, this is our first allocation 3045 * from this disk, so we don't need to check how close we are. 3046 * If the metaslab under consideration was already active, 3047 * we're getting desperate enough to steal another allocator's 3048 * metaslab, so we still don't care about distances. 3049 */ 3050 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 3051 break; 3052 3053 uint64_t target_distance = min_distance 3054 + (space_map_allocated(msp->ms_sm) != 0 ? 0 : 3055 min_distance >> 1); 3056 3057 for (i = 0; i < d; i++) { 3058 if (metaslab_distance(msp, &dva[i]) < target_distance) 3059 break; 3060 } 3061 if (i == d) 3062 break; 3063 } 3064 3065 if (msp != NULL) { 3066 search->ms_weight = msp->ms_weight; 3067 search->ms_start = msp->ms_start + 1; 3068 search->ms_allocator = msp->ms_allocator; 3069 search->ms_primary = msp->ms_primary; 3070 } 3071 return (msp); 3072 } 3073 3074 /* ARGSUSED */ 3075 static uint64_t 3076 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 3077 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d, 3078 int allocator) 3079 { 3080 metaslab_t *msp = NULL; 3081 uint64_t offset = -1ULL; 3082 uint64_t activation_weight; 3083 3084 activation_weight = METASLAB_WEIGHT_PRIMARY; 3085 for (int i = 0; i < d; i++) { 3086 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 3087 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 3088 activation_weight = METASLAB_WEIGHT_SECONDARY; 3089 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 3090 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 3091 activation_weight = METASLAB_WEIGHT_CLAIM; 3092 break; 3093 } 3094 } 3095 3096 /* 3097 * If we don't have enough metaslabs active to fill the entire array, we 3098 * just use the 0th slot. 3099 */ 3100 if (mg->mg_ms_ready < mg->mg_allocators * 3) 3101 allocator = 0; 3102 3103 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 3104 3105 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 3106 search->ms_weight = UINT64_MAX; 3107 search->ms_start = 0; 3108 /* 3109 * At the end of the metaslab tree are the already-active metaslabs, 3110 * first the primaries, then the secondaries. When we resume searching 3111 * through the tree, we need to consider ms_allocator and ms_primary so 3112 * we start in the location right after where we left off, and don't 3113 * accidentally loop forever considering the same metaslabs. 3114 */ 3115 search->ms_allocator = -1; 3116 search->ms_primary = B_TRUE; 3117 for (;;) { 3118 boolean_t was_active = B_FALSE; 3119 3120 mutex_enter(&mg->mg_lock); 3121 3122 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 3123 mg->mg_primaries[allocator] != NULL) { 3124 msp = mg->mg_primaries[allocator]; 3125 was_active = B_TRUE; 3126 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 3127 mg->mg_secondaries[allocator] != NULL) { 3128 msp = mg->mg_secondaries[allocator]; 3129 was_active = B_TRUE; 3130 } else { 3131 msp = find_valid_metaslab(mg, activation_weight, dva, d, 3132 min_distance, asize, allocator, zal, search, 3133 &was_active); 3134 } 3135 3136 mutex_exit(&mg->mg_lock); 3137 if (msp == NULL) { 3138 kmem_free(search, sizeof (*search)); 3139 return (-1ULL); 3140 } 3141 3142 mutex_enter(&msp->ms_lock); 3143 /* 3144 * Ensure that the metaslab we have selected is still 3145 * capable of handling our request. It's possible that 3146 * another thread may have changed the weight while we 3147 * were blocked on the metaslab lock. We check the 3148 * active status first to see if we need to reselect 3149 * a new metaslab. 3150 */ 3151 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 3152 mutex_exit(&msp->ms_lock); 3153 continue; 3154 } 3155 3156 /* 3157 * If the metaslab is freshly activated for an allocator that 3158 * isn't the one we're allocating from, or if it's a primary and 3159 * we're seeking a secondary (or vice versa), we go back and 3160 * select a new metaslab. 3161 */ 3162 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 3163 (msp->ms_allocator != -1) && 3164 (msp->ms_allocator != allocator || ((activation_weight == 3165 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 3166 mutex_exit(&msp->ms_lock); 3167 continue; 3168 } 3169 3170 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 3171 activation_weight != METASLAB_WEIGHT_CLAIM) { 3172 metaslab_passivate(msp, msp->ms_weight & 3173 ~METASLAB_WEIGHT_CLAIM); 3174 mutex_exit(&msp->ms_lock); 3175 continue; 3176 } 3177 3178 if (metaslab_activate(msp, allocator, activation_weight) != 0) { 3179 mutex_exit(&msp->ms_lock); 3180 continue; 3181 } 3182 3183 msp->ms_selected_txg = txg; 3184 3185 /* 3186 * Now that we have the lock, recheck to see if we should 3187 * continue to use this metaslab for this allocation. The 3188 * the metaslab is now loaded so metaslab_should_allocate() can 3189 * accurately determine if the allocation attempt should 3190 * proceed. 3191 */ 3192 if (!metaslab_should_allocate(msp, asize)) { 3193 /* Passivate this metaslab and select a new one. */ 3194 metaslab_trace_add(zal, mg, msp, asize, d, 3195 TRACE_TOO_SMALL, allocator); 3196 goto next; 3197 } 3198 3199 /* 3200 * If this metaslab is currently condensing then pick again as 3201 * we can't manipulate this metaslab until it's committed 3202 * to disk. If this metaslab is being initialized, we shouldn't 3203 * allocate from it since the allocated region might be 3204 * overwritten after allocation. 3205 */ 3206 if (msp->ms_condensing) { 3207 metaslab_trace_add(zal, mg, msp, asize, d, 3208 TRACE_CONDENSING, allocator); 3209 metaslab_passivate(msp, msp->ms_weight & 3210 ~METASLAB_ACTIVE_MASK); 3211 mutex_exit(&msp->ms_lock); 3212 continue; 3213 } else if (msp->ms_initializing > 0) { 3214 metaslab_trace_add(zal, mg, msp, asize, d, 3215 TRACE_INITIALIZING, allocator); 3216 metaslab_passivate(msp, msp->ms_weight & 3217 ~METASLAB_ACTIVE_MASK); 3218 mutex_exit(&msp->ms_lock); 3219 continue; 3220 } 3221 3222 offset = metaslab_block_alloc(msp, asize, txg); 3223 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 3224 3225 if (offset != -1ULL) { 3226 /* Proactively passivate the metaslab, if needed */ 3227 metaslab_segment_may_passivate(msp); 3228 break; 3229 } 3230 next: 3231 ASSERT(msp->ms_loaded); 3232 3233 /* 3234 * We were unable to allocate from this metaslab so determine 3235 * a new weight for this metaslab. Now that we have loaded 3236 * the metaslab we can provide a better hint to the metaslab 3237 * selector. 3238 * 3239 * For space-based metaslabs, we use the maximum block size. 3240 * This information is only available when the metaslab 3241 * is loaded and is more accurate than the generic free 3242 * space weight that was calculated by metaslab_weight(). 3243 * This information allows us to quickly compare the maximum 3244 * available allocation in the metaslab to the allocation 3245 * size being requested. 3246 * 3247 * For segment-based metaslabs, determine the new weight 3248 * based on the highest bucket in the range tree. We 3249 * explicitly use the loaded segment weight (i.e. the range 3250 * tree histogram) since it contains the space that is 3251 * currently available for allocation and is accurate 3252 * even within a sync pass. 3253 */ 3254 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3255 uint64_t weight = metaslab_block_maxsize(msp); 3256 WEIGHT_SET_SPACEBASED(weight); 3257 metaslab_passivate(msp, weight); 3258 } else { 3259 metaslab_passivate(msp, 3260 metaslab_weight_from_range_tree(msp)); 3261 } 3262 3263 /* 3264 * We have just failed an allocation attempt, check 3265 * that metaslab_should_allocate() agrees. Otherwise, 3266 * we may end up in an infinite loop retrying the same 3267 * metaslab. 3268 */ 3269 ASSERT(!metaslab_should_allocate(msp, asize)); 3270 mutex_exit(&msp->ms_lock); 3271 } 3272 mutex_exit(&msp->ms_lock); 3273 kmem_free(search, sizeof (*search)); 3274 return (offset); 3275 } 3276 3277 static uint64_t 3278 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 3279 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d, 3280 int allocator) 3281 { 3282 uint64_t offset; 3283 ASSERT(mg->mg_initialized); 3284 3285 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, 3286 min_distance, dva, d, allocator); 3287 3288 mutex_enter(&mg->mg_lock); 3289 if (offset == -1ULL) { 3290 mg->mg_failed_allocations++; 3291 metaslab_trace_add(zal, mg, NULL, asize, d, 3292 TRACE_GROUP_FAILURE, allocator); 3293 if (asize == SPA_GANGBLOCKSIZE) { 3294 /* 3295 * This metaslab group was unable to allocate 3296 * the minimum gang block size so it must be out of 3297 * space. We must notify the allocation throttle 3298 * to start skipping allocation attempts to this 3299 * metaslab group until more space becomes available. 3300 * Note: this failure cannot be caused by the 3301 * allocation throttle since the allocation throttle 3302 * is only responsible for skipping devices and 3303 * not failing block allocations. 3304 */ 3305 mg->mg_no_free_space = B_TRUE; 3306 } 3307 } 3308 mg->mg_allocations++; 3309 mutex_exit(&mg->mg_lock); 3310 return (offset); 3311 } 3312 3313 /* 3314 * If we have to write a ditto block (i.e. more than one DVA for a given BP) 3315 * on the same vdev as an existing DVA of this BP, then try to allocate it 3316 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the 3317 * existing DVAs. 3318 */ 3319 int ditto_same_vdev_distance_shift = 3; 3320 3321 /* 3322 * Allocate a block for the specified i/o. 3323 */ 3324 int 3325 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 3326 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 3327 zio_alloc_list_t *zal, int allocator) 3328 { 3329 metaslab_group_t *mg, *rotor; 3330 vdev_t *vd; 3331 boolean_t try_hard = B_FALSE; 3332 3333 ASSERT(!DVA_IS_VALID(&dva[d])); 3334 3335 /* 3336 * For testing, make some blocks above a certain size be gang blocks. 3337 */ 3338 if (psize >= metaslab_force_ganging && (ddi_get_lbolt() & 3) == 0) { 3339 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 3340 allocator); 3341 return (SET_ERROR(ENOSPC)); 3342 } 3343 3344 /* 3345 * Start at the rotor and loop through all mgs until we find something. 3346 * Note that there's no locking on mc_rotor or mc_aliquot because 3347 * nothing actually breaks if we miss a few updates -- we just won't 3348 * allocate quite as evenly. It all balances out over time. 3349 * 3350 * If we are doing ditto or log blocks, try to spread them across 3351 * consecutive vdevs. If we're forced to reuse a vdev before we've 3352 * allocated all of our ditto blocks, then try and spread them out on 3353 * that vdev as much as possible. If it turns out to not be possible, 3354 * gradually lower our standards until anything becomes acceptable. 3355 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 3356 * gives us hope of containing our fault domains to something we're 3357 * able to reason about. Otherwise, any two top-level vdev failures 3358 * will guarantee the loss of data. With consecutive allocation, 3359 * only two adjacent top-level vdev failures will result in data loss. 3360 * 3361 * If we are doing gang blocks (hintdva is non-NULL), try to keep 3362 * ourselves on the same vdev as our gang block header. That 3363 * way, we can hope for locality in vdev_cache, plus it makes our 3364 * fault domains something tractable. 3365 */ 3366 if (hintdva) { 3367 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 3368 3369 /* 3370 * It's possible the vdev we're using as the hint no 3371 * longer exists or its mg has been closed (e.g. by 3372 * device removal). Consult the rotor when 3373 * all else fails. 3374 */ 3375 if (vd != NULL && vd->vdev_mg != NULL) { 3376 mg = vd->vdev_mg; 3377 3378 if (flags & METASLAB_HINTBP_AVOID && 3379 mg->mg_next != NULL) 3380 mg = mg->mg_next; 3381 } else { 3382 mg = mc->mc_rotor; 3383 } 3384 } else if (d != 0) { 3385 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 3386 mg = vd->vdev_mg->mg_next; 3387 } else { 3388 mg = mc->mc_rotor; 3389 } 3390 3391 /* 3392 * If the hint put us into the wrong metaslab class, or into a 3393 * metaslab group that has been passivated, just follow the rotor. 3394 */ 3395 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 3396 mg = mc->mc_rotor; 3397 3398 rotor = mg; 3399 top: 3400 do { 3401 boolean_t allocatable; 3402 3403 ASSERT(mg->mg_activation_count == 1); 3404 vd = mg->mg_vd; 3405 3406 /* 3407 * Don't allocate from faulted devices. 3408 */ 3409 if (try_hard) { 3410 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 3411 allocatable = vdev_allocatable(vd); 3412 spa_config_exit(spa, SCL_ZIO, FTAG); 3413 } else { 3414 allocatable = vdev_allocatable(vd); 3415 } 3416 3417 /* 3418 * Determine if the selected metaslab group is eligible 3419 * for allocations. If we're ganging then don't allow 3420 * this metaslab group to skip allocations since that would 3421 * inadvertently return ENOSPC and suspend the pool 3422 * even though space is still available. 3423 */ 3424 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 3425 allocatable = metaslab_group_allocatable(mg, rotor, 3426 psize, allocator); 3427 } 3428 3429 if (!allocatable) { 3430 metaslab_trace_add(zal, mg, NULL, psize, d, 3431 TRACE_NOT_ALLOCATABLE, allocator); 3432 goto next; 3433 } 3434 3435 ASSERT(mg->mg_initialized); 3436 3437 /* 3438 * Avoid writing single-copy data to a failing, 3439 * non-redundant vdev, unless we've already tried all 3440 * other vdevs. 3441 */ 3442 if ((vd->vdev_stat.vs_write_errors > 0 || 3443 vd->vdev_state < VDEV_STATE_HEALTHY) && 3444 d == 0 && !try_hard && vd->vdev_children == 0) { 3445 metaslab_trace_add(zal, mg, NULL, psize, d, 3446 TRACE_VDEV_ERROR, allocator); 3447 goto next; 3448 } 3449 3450 ASSERT(mg->mg_class == mc); 3451 3452 /* 3453 * If we don't need to try hard, then require that the 3454 * block be 1/8th of the device away from any other DVAs 3455 * in this BP. If we are trying hard, allow any offset 3456 * to be used (distance=0). 3457 */ 3458 uint64_t distance = 0; 3459 if (!try_hard) { 3460 distance = vd->vdev_asize >> 3461 ditto_same_vdev_distance_shift; 3462 if (distance <= (1ULL << vd->vdev_ms_shift)) 3463 distance = 0; 3464 } 3465 3466 uint64_t asize = vdev_psize_to_asize(vd, psize); 3467 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 3468 3469 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 3470 distance, dva, d, allocator); 3471 3472 if (offset != -1ULL) { 3473 /* 3474 * If we've just selected this metaslab group, 3475 * figure out whether the corresponding vdev is 3476 * over- or under-used relative to the pool, 3477 * and set an allocation bias to even it out. 3478 */ 3479 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) { 3480 vdev_stat_t *vs = &vd->vdev_stat; 3481 int64_t vu, cu; 3482 3483 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1); 3484 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1); 3485 3486 /* 3487 * Calculate how much more or less we should 3488 * try to allocate from this device during 3489 * this iteration around the rotor. 3490 * For example, if a device is 80% full 3491 * and the pool is 20% full then we should 3492 * reduce allocations by 60% on this device. 3493 * 3494 * mg_bias = (20 - 80) * 512K / 100 = -307K 3495 * 3496 * This reduces allocations by 307K for this 3497 * iteration. 3498 */ 3499 mg->mg_bias = ((cu - vu) * 3500 (int64_t)mg->mg_aliquot) / 100; 3501 } else if (!metaslab_bias_enabled) { 3502 mg->mg_bias = 0; 3503 } 3504 3505 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >= 3506 mg->mg_aliquot + mg->mg_bias) { 3507 mc->mc_rotor = mg->mg_next; 3508 mc->mc_aliquot = 0; 3509 } 3510 3511 DVA_SET_VDEV(&dva[d], vd->vdev_id); 3512 DVA_SET_OFFSET(&dva[d], offset); 3513 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER)); 3514 DVA_SET_ASIZE(&dva[d], asize); 3515 3516 return (0); 3517 } 3518 next: 3519 mc->mc_rotor = mg->mg_next; 3520 mc->mc_aliquot = 0; 3521 } while ((mg = mg->mg_next) != rotor); 3522 3523 /* 3524 * If we haven't tried hard, do so now. 3525 */ 3526 if (!try_hard) { 3527 try_hard = B_TRUE; 3528 goto top; 3529 } 3530 3531 bzero(&dva[d], sizeof (dva_t)); 3532 3533 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 3534 return (SET_ERROR(ENOSPC)); 3535 } 3536 3537 void 3538 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 3539 boolean_t checkpoint) 3540 { 3541 metaslab_t *msp; 3542 spa_t *spa = vd->vdev_spa; 3543 3544 ASSERT(vdev_is_concrete(vd)); 3545 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 3546 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 3547 3548 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3549 3550 VERIFY(!msp->ms_condensing); 3551 VERIFY3U(offset, >=, msp->ms_start); 3552 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 3553 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 3554 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 3555 3556 metaslab_check_free_impl(vd, offset, asize); 3557 3558 mutex_enter(&msp->ms_lock); 3559 if (range_tree_is_empty(msp->ms_freeing) && 3560 range_tree_is_empty(msp->ms_checkpointing)) { 3561 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 3562 } 3563 3564 if (checkpoint) { 3565 ASSERT(spa_has_checkpoint(spa)); 3566 range_tree_add(msp->ms_checkpointing, offset, asize); 3567 } else { 3568 range_tree_add(msp->ms_freeing, offset, asize); 3569 } 3570 mutex_exit(&msp->ms_lock); 3571 } 3572 3573 /* ARGSUSED */ 3574 void 3575 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 3576 uint64_t size, void *arg) 3577 { 3578 boolean_t *checkpoint = arg; 3579 3580 ASSERT3P(checkpoint, !=, NULL); 3581 3582 if (vd->vdev_ops->vdev_op_remap != NULL) 3583 vdev_indirect_mark_obsolete(vd, offset, size); 3584 else 3585 metaslab_free_impl(vd, offset, size, *checkpoint); 3586 } 3587 3588 static void 3589 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 3590 boolean_t checkpoint) 3591 { 3592 spa_t *spa = vd->vdev_spa; 3593 3594 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 3595 3596 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 3597 return; 3598 3599 if (spa->spa_vdev_removal != NULL && 3600 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 3601 vdev_is_concrete(vd)) { 3602 /* 3603 * Note: we check if the vdev is concrete because when 3604 * we complete the removal, we first change the vdev to be 3605 * an indirect vdev (in open context), and then (in syncing 3606 * context) clear spa_vdev_removal. 3607 */ 3608 free_from_removing_vdev(vd, offset, size); 3609 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 3610 vdev_indirect_mark_obsolete(vd, offset, size); 3611 vd->vdev_ops->vdev_op_remap(vd, offset, size, 3612 metaslab_free_impl_cb, &checkpoint); 3613 } else { 3614 metaslab_free_concrete(vd, offset, size, checkpoint); 3615 } 3616 } 3617 3618 typedef struct remap_blkptr_cb_arg { 3619 blkptr_t *rbca_bp; 3620 spa_remap_cb_t rbca_cb; 3621 vdev_t *rbca_remap_vd; 3622 uint64_t rbca_remap_offset; 3623 void *rbca_cb_arg; 3624 } remap_blkptr_cb_arg_t; 3625 3626 void 3627 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 3628 uint64_t size, void *arg) 3629 { 3630 remap_blkptr_cb_arg_t *rbca = arg; 3631 blkptr_t *bp = rbca->rbca_bp; 3632 3633 /* We can not remap split blocks. */ 3634 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 3635 return; 3636 ASSERT0(inner_offset); 3637 3638 if (rbca->rbca_cb != NULL) { 3639 /* 3640 * At this point we know that we are not handling split 3641 * blocks and we invoke the callback on the previous 3642 * vdev which must be indirect. 3643 */ 3644 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 3645 3646 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 3647 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 3648 3649 /* set up remap_blkptr_cb_arg for the next call */ 3650 rbca->rbca_remap_vd = vd; 3651 rbca->rbca_remap_offset = offset; 3652 } 3653 3654 /* 3655 * The phys birth time is that of dva[0]. This ensures that we know 3656 * when each dva was written, so that resilver can determine which 3657 * blocks need to be scrubbed (i.e. those written during the time 3658 * the vdev was offline). It also ensures that the key used in 3659 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 3660 * we didn't change the phys_birth, a lookup in the ARC for a 3661 * remapped BP could find the data that was previously stored at 3662 * this vdev + offset. 3663 */ 3664 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 3665 DVA_GET_VDEV(&bp->blk_dva[0])); 3666 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 3667 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 3668 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 3669 3670 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 3671 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 3672 } 3673 3674 /* 3675 * If the block pointer contains any indirect DVAs, modify them to refer to 3676 * concrete DVAs. Note that this will sometimes not be possible, leaving 3677 * the indirect DVA in place. This happens if the indirect DVA spans multiple 3678 * segments in the mapping (i.e. it is a "split block"). 3679 * 3680 * If the BP was remapped, calls the callback on the original dva (note the 3681 * callback can be called multiple times if the original indirect DVA refers 3682 * to another indirect DVA, etc). 3683 * 3684 * Returns TRUE if the BP was remapped. 3685 */ 3686 boolean_t 3687 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 3688 { 3689 remap_blkptr_cb_arg_t rbca; 3690 3691 if (!zfs_remap_blkptr_enable) 3692 return (B_FALSE); 3693 3694 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 3695 return (B_FALSE); 3696 3697 /* 3698 * Dedup BP's can not be remapped, because ddt_phys_select() depends 3699 * on DVA[0] being the same in the BP as in the DDT (dedup table). 3700 */ 3701 if (BP_GET_DEDUP(bp)) 3702 return (B_FALSE); 3703 3704 /* 3705 * Gang blocks can not be remapped, because 3706 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 3707 * the BP used to read the gang block header (GBH) being the same 3708 * as the DVA[0] that we allocated for the GBH. 3709 */ 3710 if (BP_IS_GANG(bp)) 3711 return (B_FALSE); 3712 3713 /* 3714 * Embedded BP's have no DVA to remap. 3715 */ 3716 if (BP_GET_NDVAS(bp) < 1) 3717 return (B_FALSE); 3718 3719 /* 3720 * Note: we only remap dva[0]. If we remapped other dvas, we 3721 * would no longer know what their phys birth txg is. 3722 */ 3723 dva_t *dva = &bp->blk_dva[0]; 3724 3725 uint64_t offset = DVA_GET_OFFSET(dva); 3726 uint64_t size = DVA_GET_ASIZE(dva); 3727 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3728 3729 if (vd->vdev_ops->vdev_op_remap == NULL) 3730 return (B_FALSE); 3731 3732 rbca.rbca_bp = bp; 3733 rbca.rbca_cb = callback; 3734 rbca.rbca_remap_vd = vd; 3735 rbca.rbca_remap_offset = offset; 3736 rbca.rbca_cb_arg = arg; 3737 3738 /* 3739 * remap_blkptr_cb() will be called in order for each level of 3740 * indirection, until a concrete vdev is reached or a split block is 3741 * encountered. old_vd and old_offset are updated within the callback 3742 * as we go from the one indirect vdev to the next one (either concrete 3743 * or indirect again) in that order. 3744 */ 3745 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 3746 3747 /* Check if the DVA wasn't remapped because it is a split block */ 3748 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 3749 return (B_FALSE); 3750 3751 return (B_TRUE); 3752 } 3753 3754 /* 3755 * Undo the allocation of a DVA which happened in the given transaction group. 3756 */ 3757 void 3758 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 3759 { 3760 metaslab_t *msp; 3761 vdev_t *vd; 3762 uint64_t vdev = DVA_GET_VDEV(dva); 3763 uint64_t offset = DVA_GET_OFFSET(dva); 3764 uint64_t size = DVA_GET_ASIZE(dva); 3765 3766 ASSERT(DVA_IS_VALID(dva)); 3767 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 3768 3769 if (txg > spa_freeze_txg(spa)) 3770 return; 3771 3772 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 3773 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 3774 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 3775 (u_longlong_t)vdev, (u_longlong_t)offset); 3776 ASSERT(0); 3777 return; 3778 } 3779 3780 ASSERT(!vd->vdev_removing); 3781 ASSERT(vdev_is_concrete(vd)); 3782 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3783 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 3784 3785 if (DVA_GET_GANG(dva)) 3786 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 3787 3788 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3789 3790 mutex_enter(&msp->ms_lock); 3791 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 3792 offset, size); 3793 3794 VERIFY(!msp->ms_condensing); 3795 VERIFY3U(offset, >=, msp->ms_start); 3796 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 3797 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 3798 msp->ms_size); 3799 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 3800 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 3801 range_tree_add(msp->ms_allocatable, offset, size); 3802 mutex_exit(&msp->ms_lock); 3803 } 3804 3805 /* 3806 * Free the block represented by the given DVA. 3807 */ 3808 void 3809 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 3810 { 3811 uint64_t vdev = DVA_GET_VDEV(dva); 3812 uint64_t offset = DVA_GET_OFFSET(dva); 3813 uint64_t size = DVA_GET_ASIZE(dva); 3814 vdev_t *vd = vdev_lookup_top(spa, vdev); 3815 3816 ASSERT(DVA_IS_VALID(dva)); 3817 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 3818 3819 if (DVA_GET_GANG(dva)) { 3820 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 3821 } 3822 3823 metaslab_free_impl(vd, offset, size, checkpoint); 3824 } 3825 3826 /* 3827 * Reserve some allocation slots. The reservation system must be called 3828 * before we call into the allocator. If there aren't any available slots 3829 * then the I/O will be throttled until an I/O completes and its slots are 3830 * freed up. The function returns true if it was successful in placing 3831 * the reservation. 3832 */ 3833 boolean_t 3834 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 3835 zio_t *zio, int flags) 3836 { 3837 uint64_t available_slots = 0; 3838 boolean_t slot_reserved = B_FALSE; 3839 uint64_t max = mc->mc_alloc_max_slots[allocator]; 3840 3841 ASSERT(mc->mc_alloc_throttle_enabled); 3842 mutex_enter(&mc->mc_lock); 3843 3844 uint64_t reserved_slots = 3845 refcount_count(&mc->mc_alloc_slots[allocator]); 3846 if (reserved_slots < max) 3847 available_slots = max - reserved_slots; 3848 3849 if (slots <= available_slots || GANG_ALLOCATION(flags)) { 3850 /* 3851 * We reserve the slots individually so that we can unreserve 3852 * them individually when an I/O completes. 3853 */ 3854 for (int d = 0; d < slots; d++) { 3855 reserved_slots = 3856 refcount_add(&mc->mc_alloc_slots[allocator], 3857 zio); 3858 } 3859 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 3860 slot_reserved = B_TRUE; 3861 } 3862 3863 mutex_exit(&mc->mc_lock); 3864 return (slot_reserved); 3865 } 3866 3867 void 3868 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 3869 int allocator, zio_t *zio) 3870 { 3871 ASSERT(mc->mc_alloc_throttle_enabled); 3872 mutex_enter(&mc->mc_lock); 3873 for (int d = 0; d < slots; d++) { 3874 (void) refcount_remove(&mc->mc_alloc_slots[allocator], 3875 zio); 3876 } 3877 mutex_exit(&mc->mc_lock); 3878 } 3879 3880 static int 3881 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 3882 uint64_t txg) 3883 { 3884 metaslab_t *msp; 3885 spa_t *spa = vd->vdev_spa; 3886 int error = 0; 3887 3888 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 3889 return (ENXIO); 3890 3891 ASSERT3P(vd->vdev_ms, !=, NULL); 3892 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3893 3894 mutex_enter(&msp->ms_lock); 3895 3896 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) 3897 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 3898 /* 3899 * No need to fail in that case; someone else has activated the 3900 * metaslab, but that doesn't preclude us from using it. 3901 */ 3902 if (error == EBUSY) 3903 error = 0; 3904 3905 if (error == 0 && 3906 !range_tree_contains(msp->ms_allocatable, offset, size)) 3907 error = SET_ERROR(ENOENT); 3908 3909 if (error || txg == 0) { /* txg == 0 indicates dry run */ 3910 mutex_exit(&msp->ms_lock); 3911 return (error); 3912 } 3913 3914 VERIFY(!msp->ms_condensing); 3915 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 3916 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 3917 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 3918 msp->ms_size); 3919 range_tree_remove(msp->ms_allocatable, offset, size); 3920 3921 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */ 3922 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 3923 vdev_dirty(vd, VDD_METASLAB, msp, txg); 3924 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 3925 offset, size); 3926 } 3927 3928 mutex_exit(&msp->ms_lock); 3929 3930 return (0); 3931 } 3932 3933 typedef struct metaslab_claim_cb_arg_t { 3934 uint64_t mcca_txg; 3935 int mcca_error; 3936 } metaslab_claim_cb_arg_t; 3937 3938 /* ARGSUSED */ 3939 static void 3940 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 3941 uint64_t size, void *arg) 3942 { 3943 metaslab_claim_cb_arg_t *mcca_arg = arg; 3944 3945 if (mcca_arg->mcca_error == 0) { 3946 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 3947 size, mcca_arg->mcca_txg); 3948 } 3949 } 3950 3951 int 3952 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 3953 { 3954 if (vd->vdev_ops->vdev_op_remap != NULL) { 3955 metaslab_claim_cb_arg_t arg; 3956 3957 /* 3958 * Only zdb(1M) can claim on indirect vdevs. This is used 3959 * to detect leaks of mapped space (that are not accounted 3960 * for in the obsolete counts, spacemap, or bpobj). 3961 */ 3962 ASSERT(!spa_writeable(vd->vdev_spa)); 3963 arg.mcca_error = 0; 3964 arg.mcca_txg = txg; 3965 3966 vd->vdev_ops->vdev_op_remap(vd, offset, size, 3967 metaslab_claim_impl_cb, &arg); 3968 3969 if (arg.mcca_error == 0) { 3970 arg.mcca_error = metaslab_claim_concrete(vd, 3971 offset, size, txg); 3972 } 3973 return (arg.mcca_error); 3974 } else { 3975 return (metaslab_claim_concrete(vd, offset, size, txg)); 3976 } 3977 } 3978 3979 /* 3980 * Intent log support: upon opening the pool after a crash, notify the SPA 3981 * of blocks that the intent log has allocated for immediate write, but 3982 * which are still considered free by the SPA because the last transaction 3983 * group didn't commit yet. 3984 */ 3985 static int 3986 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 3987 { 3988 uint64_t vdev = DVA_GET_VDEV(dva); 3989 uint64_t offset = DVA_GET_OFFSET(dva); 3990 uint64_t size = DVA_GET_ASIZE(dva); 3991 vdev_t *vd; 3992 3993 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 3994 return (SET_ERROR(ENXIO)); 3995 } 3996 3997 ASSERT(DVA_IS_VALID(dva)); 3998 3999 if (DVA_GET_GANG(dva)) 4000 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 4001 4002 return (metaslab_claim_impl(vd, offset, size, txg)); 4003 } 4004 4005 int 4006 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 4007 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 4008 zio_alloc_list_t *zal, zio_t *zio, int allocator) 4009 { 4010 dva_t *dva = bp->blk_dva; 4011 dva_t *hintdva = hintbp->blk_dva; 4012 int error = 0; 4013 4014 ASSERT(bp->blk_birth == 0); 4015 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 4016 4017 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4018 4019 if (mc->mc_rotor == NULL) { /* no vdevs in this class */ 4020 spa_config_exit(spa, SCL_ALLOC, FTAG); 4021 return (SET_ERROR(ENOSPC)); 4022 } 4023 4024 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 4025 ASSERT(BP_GET_NDVAS(bp) == 0); 4026 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 4027 ASSERT3P(zal, !=, NULL); 4028 4029 for (int d = 0; d < ndvas; d++) { 4030 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 4031 txg, flags, zal, allocator); 4032 if (error != 0) { 4033 for (d--; d >= 0; d--) { 4034 metaslab_unalloc_dva(spa, &dva[d], txg); 4035 metaslab_group_alloc_decrement(spa, 4036 DVA_GET_VDEV(&dva[d]), zio, flags, 4037 allocator, B_FALSE); 4038 bzero(&dva[d], sizeof (dva_t)); 4039 } 4040 spa_config_exit(spa, SCL_ALLOC, FTAG); 4041 return (error); 4042 } else { 4043 /* 4044 * Update the metaslab group's queue depth 4045 * based on the newly allocated dva. 4046 */ 4047 metaslab_group_alloc_increment(spa, 4048 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 4049 } 4050 4051 } 4052 ASSERT(error == 0); 4053 ASSERT(BP_GET_NDVAS(bp) == ndvas); 4054 4055 spa_config_exit(spa, SCL_ALLOC, FTAG); 4056 4057 BP_SET_BIRTH(bp, txg, txg); 4058 4059 return (0); 4060 } 4061 4062 void 4063 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 4064 { 4065 const dva_t *dva = bp->blk_dva; 4066 int ndvas = BP_GET_NDVAS(bp); 4067 4068 ASSERT(!BP_IS_HOLE(bp)); 4069 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 4070 4071 /* 4072 * If we have a checkpoint for the pool we need to make sure that 4073 * the blocks that we free that are part of the checkpoint won't be 4074 * reused until the checkpoint is discarded or we revert to it. 4075 * 4076 * The checkpoint flag is passed down the metaslab_free code path 4077 * and is set whenever we want to add a block to the checkpoint's 4078 * accounting. That is, we "checkpoint" blocks that existed at the 4079 * time the checkpoint was created and are therefore referenced by 4080 * the checkpointed uberblock. 4081 * 4082 * Note that, we don't checkpoint any blocks if the current 4083 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 4084 * normally as they will be referenced by the checkpointed uberblock. 4085 */ 4086 boolean_t checkpoint = B_FALSE; 4087 if (bp->blk_birth <= spa->spa_checkpoint_txg && 4088 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 4089 /* 4090 * At this point, if the block is part of the checkpoint 4091 * there is no way it was created in the current txg. 4092 */ 4093 ASSERT(!now); 4094 ASSERT3U(spa_syncing_txg(spa), ==, txg); 4095 checkpoint = B_TRUE; 4096 } 4097 4098 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 4099 4100 for (int d = 0; d < ndvas; d++) { 4101 if (now) { 4102 metaslab_unalloc_dva(spa, &dva[d], txg); 4103 } else { 4104 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 4105 metaslab_free_dva(spa, &dva[d], checkpoint); 4106 } 4107 } 4108 4109 spa_config_exit(spa, SCL_FREE, FTAG); 4110 } 4111 4112 int 4113 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 4114 { 4115 const dva_t *dva = bp->blk_dva; 4116 int ndvas = BP_GET_NDVAS(bp); 4117 int error = 0; 4118 4119 ASSERT(!BP_IS_HOLE(bp)); 4120 4121 if (txg != 0) { 4122 /* 4123 * First do a dry run to make sure all DVAs are claimable, 4124 * so we don't have to unwind from partial failures below. 4125 */ 4126 if ((error = metaslab_claim(spa, bp, 0)) != 0) 4127 return (error); 4128 } 4129 4130 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4131 4132 for (int d = 0; d < ndvas; d++) 4133 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 4134 break; 4135 4136 spa_config_exit(spa, SCL_ALLOC, FTAG); 4137 4138 ASSERT(error == 0 || txg == 0); 4139 4140 return (error); 4141 } 4142 4143 /* ARGSUSED */ 4144 static void 4145 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 4146 uint64_t size, void *arg) 4147 { 4148 if (vd->vdev_ops == &vdev_indirect_ops) 4149 return; 4150 4151 metaslab_check_free_impl(vd, offset, size); 4152 } 4153 4154 static void 4155 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 4156 { 4157 metaslab_t *msp; 4158 spa_t *spa = vd->vdev_spa; 4159 4160 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 4161 return; 4162 4163 if (vd->vdev_ops->vdev_op_remap != NULL) { 4164 vd->vdev_ops->vdev_op_remap(vd, offset, size, 4165 metaslab_check_free_impl_cb, NULL); 4166 return; 4167 } 4168 4169 ASSERT(vdev_is_concrete(vd)); 4170 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 4171 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 4172 4173 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 4174 4175 mutex_enter(&msp->ms_lock); 4176 if (msp->ms_loaded) 4177 range_tree_verify(msp->ms_allocatable, offset, size); 4178 4179 range_tree_verify(msp->ms_freeing, offset, size); 4180 range_tree_verify(msp->ms_checkpointing, offset, size); 4181 range_tree_verify(msp->ms_freed, offset, size); 4182 for (int j = 0; j < TXG_DEFER_SIZE; j++) 4183 range_tree_verify(msp->ms_defer[j], offset, size); 4184 mutex_exit(&msp->ms_lock); 4185 } 4186 4187 void 4188 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 4189 { 4190 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 4191 return; 4192 4193 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 4194 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 4195 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 4196 vdev_t *vd = vdev_lookup_top(spa, vdev); 4197 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 4198 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 4199 4200 if (DVA_GET_GANG(&bp->blk_dva[i])) 4201 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 4202 4203 ASSERT3P(vd, !=, NULL); 4204 4205 metaslab_check_free_impl(vd, offset, size); 4206 } 4207 spa_config_exit(spa, SCL_VDEV, FTAG); 4208 } 4209