xref: /illumos-gate/usr/src/uts/common/fs/zfs/metaslab.c (revision 744b124e8caed130fec6baedb0c53d1b6de03e41)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zfeature.h>
38 #include <sys/vdev_indirect_mapping.h>
39 #include <sys/zap.h>
40 
41 #define	GANG_ALLOCATION(flags) \
42 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
43 
44 uint64_t metaslab_aliquot = 512ULL << 10;
45 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
46 
47 /*
48  * In pools where the log space map feature is not enabled we touch
49  * multiple metaslabs (and their respective space maps) with each
50  * transaction group. Thus, we benefit from having a small space map
51  * block size since it allows us to issue more I/O operations scattered
52  * around the disk. So a sane default for the space map block size
53  * is 8~16K.
54  */
55 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
56 
57 /*
58  * When the log space map feature is enabled, we accumulate a lot of
59  * changes per metaslab that are flushed once in a while so we benefit
60  * from a bigger block size like 128K for the metaslab space maps.
61  */
62 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
63 
64 /*
65  * The in-core space map representation is more compact than its on-disk form.
66  * The zfs_condense_pct determines how much more compact the in-core
67  * space map representation must be before we compact it on-disk.
68  * Values should be greater than or equal to 100.
69  */
70 int zfs_condense_pct = 200;
71 
72 /*
73  * Condensing a metaslab is not guaranteed to actually reduce the amount of
74  * space used on disk. In particular, a space map uses data in increments of
75  * MAX(1 << ashift, space_map_blksize), so a metaslab might use the
76  * same number of blocks after condensing. Since the goal of condensing is to
77  * reduce the number of IOPs required to read the space map, we only want to
78  * condense when we can be sure we will reduce the number of blocks used by the
79  * space map. Unfortunately, we cannot precisely compute whether or not this is
80  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
81  * we apply the following heuristic: do not condense a spacemap unless the
82  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
83  * blocks.
84  */
85 int zfs_metaslab_condense_block_threshold = 4;
86 
87 /*
88  * The zfs_mg_noalloc_threshold defines which metaslab groups should
89  * be eligible for allocation. The value is defined as a percentage of
90  * free space. Metaslab groups that have more free space than
91  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
92  * a metaslab group's free space is less than or equal to the
93  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
94  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
95  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
96  * groups are allowed to accept allocations. Gang blocks are always
97  * eligible to allocate on any metaslab group. The default value of 0 means
98  * no metaslab group will be excluded based on this criterion.
99  */
100 int zfs_mg_noalloc_threshold = 0;
101 
102 /*
103  * Metaslab groups are considered eligible for allocations if their
104  * fragmenation metric (measured as a percentage) is less than or
105  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
106  * exceeds this threshold then it will be skipped unless all metaslab
107  * groups within the metaslab class have also crossed this threshold.
108  *
109  * This tunable was introduced to avoid edge cases where we continue
110  * allocating from very fragmented disks in our pool while other, less
111  * fragmented disks, exists. On the other hand, if all disks in the
112  * pool are uniformly approaching the threshold, the threshold can
113  * be a speed bump in performance, where we keep switching the disks
114  * that we allocate from (e.g. we allocate some segments from disk A
115  * making it bypassing the threshold while freeing segments from disk
116  * B getting its fragmentation below the threshold).
117  *
118  * Empirically, we've seen that our vdev selection for allocations is
119  * good enough that fragmentation increases uniformly across all vdevs
120  * the majority of the time. Thus we set the threshold percentage high
121  * enough to avoid hitting the speed bump on pools that are being pushed
122  * to the edge.
123  */
124 int zfs_mg_fragmentation_threshold = 95;
125 
126 /*
127  * Allow metaslabs to keep their active state as long as their fragmentation
128  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
129  * active metaslab that exceeds this threshold will no longer keep its active
130  * status allowing better metaslabs to be selected.
131  */
132 int zfs_metaslab_fragmentation_threshold = 70;
133 
134 /*
135  * When set will load all metaslabs when pool is first opened.
136  */
137 int metaslab_debug_load = 0;
138 
139 /*
140  * When set will prevent metaslabs from being unloaded.
141  */
142 int metaslab_debug_unload = 0;
143 
144 /*
145  * Minimum size which forces the dynamic allocator to change
146  * it's allocation strategy.  Once the space map cannot satisfy
147  * an allocation of this size then it switches to using more
148  * aggressive strategy (i.e search by size rather than offset).
149  */
150 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
151 
152 /*
153  * The minimum free space, in percent, which must be available
154  * in a space map to continue allocations in a first-fit fashion.
155  * Once the space map's free space drops below this level we dynamically
156  * switch to using best-fit allocations.
157  */
158 int metaslab_df_free_pct = 4;
159 
160 /*
161  * Maximum distance to search forward from the last offset. Without this
162  * limit, fragmented pools can see >100,000 iterations and
163  * metaslab_block_picker() becomes the performance limiting factor on
164  * high-performance storage.
165  *
166  * With the default setting of 16MB, we typically see less than 500
167  * iterations, even with very fragmented, ashift=9 pools. The maximum number
168  * of iterations possible is:
169  *     metaslab_df_max_search / (2 * (1<<ashift))
170  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
171  * 2048 (with ashift=12).
172  */
173 int metaslab_df_max_search = 16 * 1024 * 1024;
174 
175 /*
176  * If we are not searching forward (due to metaslab_df_max_search,
177  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
178  * controls what segment is used.  If it is set, we will use the largest free
179  * segment.  If it is not set, we will use a segment of exactly the requested
180  * size (or larger).
181  */
182 int metaslab_df_use_largest_segment = B_FALSE;
183 
184 /*
185  * A metaslab is considered "free" if it contains a contiguous
186  * segment which is greater than metaslab_min_alloc_size.
187  */
188 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
189 
190 /*
191  * Percentage of all cpus that can be used by the metaslab taskq.
192  */
193 int metaslab_load_pct = 50;
194 
195 /*
196  * Determines how many txgs a metaslab may remain loaded without having any
197  * allocations from it. As long as a metaslab continues to be used we will
198  * keep it loaded.
199  */
200 int metaslab_unload_delay = TXG_SIZE * 2;
201 
202 /*
203  * Max number of metaslabs per group to preload.
204  */
205 int metaslab_preload_limit = SPA_DVAS_PER_BP;
206 
207 /*
208  * Enable/disable preloading of metaslab.
209  */
210 boolean_t metaslab_preload_enabled = B_TRUE;
211 
212 /*
213  * Enable/disable fragmentation weighting on metaslabs.
214  */
215 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
216 
217 /*
218  * Enable/disable lba weighting (i.e. outer tracks are given preference).
219  */
220 boolean_t metaslab_lba_weighting_enabled = B_TRUE;
221 
222 /*
223  * Enable/disable metaslab group biasing.
224  */
225 boolean_t metaslab_bias_enabled = B_TRUE;
226 
227 /*
228  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
229  */
230 boolean_t zfs_remap_blkptr_enable = B_TRUE;
231 
232 /*
233  * Enable/disable segment-based metaslab selection.
234  */
235 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE;
236 
237 /*
238  * When using segment-based metaslab selection, we will continue
239  * allocating from the active metaslab until we have exhausted
240  * zfs_metaslab_switch_threshold of its buckets.
241  */
242 int zfs_metaslab_switch_threshold = 2;
243 
244 /*
245  * Internal switch to enable/disable the metaslab allocation tracing
246  * facility.
247  */
248 boolean_t metaslab_trace_enabled = B_TRUE;
249 
250 /*
251  * Maximum entries that the metaslab allocation tracing facility will keep
252  * in a given list when running in non-debug mode. We limit the number
253  * of entries in non-debug mode to prevent us from using up too much memory.
254  * The limit should be sufficiently large that we don't expect any allocation
255  * to every exceed this value. In debug mode, the system will panic if this
256  * limit is ever reached allowing for further investigation.
257  */
258 uint64_t metaslab_trace_max_entries = 5000;
259 
260 /*
261  * Maximum number of metaslabs per group that can be disabled
262  * simultaneously.
263  */
264 int max_disabled_ms = 3;
265 
266 static uint64_t metaslab_weight(metaslab_t *);
267 static void metaslab_set_fragmentation(metaslab_t *);
268 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
269 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
270 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
271 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
272 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
273 
274 kmem_cache_t *metaslab_alloc_trace_cache;
275 
276 /*
277  * ==========================================================================
278  * Metaslab classes
279  * ==========================================================================
280  */
281 metaslab_class_t *
282 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
283 {
284 	metaslab_class_t *mc;
285 
286 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
287 
288 	mc->mc_spa = spa;
289 	mc->mc_rotor = NULL;
290 	mc->mc_ops = ops;
291 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
292 	mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
293 	    sizeof (zfs_refcount_t), KM_SLEEP);
294 	mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
295 	    sizeof (uint64_t), KM_SLEEP);
296 	for (int i = 0; i < spa->spa_alloc_count; i++)
297 		zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
298 
299 	return (mc);
300 }
301 
302 void
303 metaslab_class_destroy(metaslab_class_t *mc)
304 {
305 	ASSERT(mc->mc_rotor == NULL);
306 	ASSERT(mc->mc_alloc == 0);
307 	ASSERT(mc->mc_deferred == 0);
308 	ASSERT(mc->mc_space == 0);
309 	ASSERT(mc->mc_dspace == 0);
310 
311 	for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
312 		zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
313 	kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
314 	    sizeof (zfs_refcount_t));
315 	kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
316 	    sizeof (uint64_t));
317 	mutex_destroy(&mc->mc_lock);
318 	kmem_free(mc, sizeof (metaslab_class_t));
319 }
320 
321 int
322 metaslab_class_validate(metaslab_class_t *mc)
323 {
324 	metaslab_group_t *mg;
325 	vdev_t *vd;
326 
327 	/*
328 	 * Must hold one of the spa_config locks.
329 	 */
330 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
331 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
332 
333 	if ((mg = mc->mc_rotor) == NULL)
334 		return (0);
335 
336 	do {
337 		vd = mg->mg_vd;
338 		ASSERT(vd->vdev_mg != NULL);
339 		ASSERT3P(vd->vdev_top, ==, vd);
340 		ASSERT3P(mg->mg_class, ==, mc);
341 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
342 	} while ((mg = mg->mg_next) != mc->mc_rotor);
343 
344 	return (0);
345 }
346 
347 static void
348 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
349     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
350 {
351 	atomic_add_64(&mc->mc_alloc, alloc_delta);
352 	atomic_add_64(&mc->mc_deferred, defer_delta);
353 	atomic_add_64(&mc->mc_space, space_delta);
354 	atomic_add_64(&mc->mc_dspace, dspace_delta);
355 }
356 
357 uint64_t
358 metaslab_class_get_alloc(metaslab_class_t *mc)
359 {
360 	return (mc->mc_alloc);
361 }
362 
363 uint64_t
364 metaslab_class_get_deferred(metaslab_class_t *mc)
365 {
366 	return (mc->mc_deferred);
367 }
368 
369 uint64_t
370 metaslab_class_get_space(metaslab_class_t *mc)
371 {
372 	return (mc->mc_space);
373 }
374 
375 uint64_t
376 metaslab_class_get_dspace(metaslab_class_t *mc)
377 {
378 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
379 }
380 
381 void
382 metaslab_class_histogram_verify(metaslab_class_t *mc)
383 {
384 	spa_t *spa = mc->mc_spa;
385 	vdev_t *rvd = spa->spa_root_vdev;
386 	uint64_t *mc_hist;
387 	int i;
388 
389 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
390 		return;
391 
392 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
393 	    KM_SLEEP);
394 
395 	for (int c = 0; c < rvd->vdev_children; c++) {
396 		vdev_t *tvd = rvd->vdev_child[c];
397 		metaslab_group_t *mg = tvd->vdev_mg;
398 
399 		/*
400 		 * Skip any holes, uninitialized top-levels, or
401 		 * vdevs that are not in this metalab class.
402 		 */
403 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
404 		    mg->mg_class != mc) {
405 			continue;
406 		}
407 
408 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
409 			mc_hist[i] += mg->mg_histogram[i];
410 	}
411 
412 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
413 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
414 
415 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
416 }
417 
418 /*
419  * Calculate the metaslab class's fragmentation metric. The metric
420  * is weighted based on the space contribution of each metaslab group.
421  * The return value will be a number between 0 and 100 (inclusive), or
422  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
423  * zfs_frag_table for more information about the metric.
424  */
425 uint64_t
426 metaslab_class_fragmentation(metaslab_class_t *mc)
427 {
428 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
429 	uint64_t fragmentation = 0;
430 
431 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
432 
433 	for (int c = 0; c < rvd->vdev_children; c++) {
434 		vdev_t *tvd = rvd->vdev_child[c];
435 		metaslab_group_t *mg = tvd->vdev_mg;
436 
437 		/*
438 		 * Skip any holes, uninitialized top-levels,
439 		 * or vdevs that are not in this metalab class.
440 		 */
441 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
442 		    mg->mg_class != mc) {
443 			continue;
444 		}
445 
446 		/*
447 		 * If a metaslab group does not contain a fragmentation
448 		 * metric then just bail out.
449 		 */
450 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
451 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
452 			return (ZFS_FRAG_INVALID);
453 		}
454 
455 		/*
456 		 * Determine how much this metaslab_group is contributing
457 		 * to the overall pool fragmentation metric.
458 		 */
459 		fragmentation += mg->mg_fragmentation *
460 		    metaslab_group_get_space(mg);
461 	}
462 	fragmentation /= metaslab_class_get_space(mc);
463 
464 	ASSERT3U(fragmentation, <=, 100);
465 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
466 	return (fragmentation);
467 }
468 
469 /*
470  * Calculate the amount of expandable space that is available in
471  * this metaslab class. If a device is expanded then its expandable
472  * space will be the amount of allocatable space that is currently not
473  * part of this metaslab class.
474  */
475 uint64_t
476 metaslab_class_expandable_space(metaslab_class_t *mc)
477 {
478 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
479 	uint64_t space = 0;
480 
481 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
482 	for (int c = 0; c < rvd->vdev_children; c++) {
483 		uint64_t tspace;
484 		vdev_t *tvd = rvd->vdev_child[c];
485 		metaslab_group_t *mg = tvd->vdev_mg;
486 
487 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
488 		    mg->mg_class != mc) {
489 			continue;
490 		}
491 
492 		/*
493 		 * Calculate if we have enough space to add additional
494 		 * metaslabs. We report the expandable space in terms
495 		 * of the metaslab size since that's the unit of expansion.
496 		 * Adjust by efi system partition size.
497 		 */
498 		tspace = tvd->vdev_max_asize - tvd->vdev_asize;
499 		if (tspace > mc->mc_spa->spa_bootsize) {
500 			tspace -= mc->mc_spa->spa_bootsize;
501 		}
502 		space += P2ALIGN(tspace, 1ULL << tvd->vdev_ms_shift);
503 	}
504 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
505 	return (space);
506 }
507 
508 static int
509 metaslab_compare(const void *x1, const void *x2)
510 {
511 	const metaslab_t *m1 = (const metaslab_t *)x1;
512 	const metaslab_t *m2 = (const metaslab_t *)x2;
513 
514 	int sort1 = 0;
515 	int sort2 = 0;
516 	if (m1->ms_allocator != -1 && m1->ms_primary)
517 		sort1 = 1;
518 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
519 		sort1 = 2;
520 	if (m2->ms_allocator != -1 && m2->ms_primary)
521 		sort2 = 1;
522 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
523 		sort2 = 2;
524 
525 	/*
526 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
527 	 * selecting a metaslab to allocate from, an allocator first tries its
528 	 * primary, then secondary active metaslab. If it doesn't have active
529 	 * metaslabs, or can't allocate from them, it searches for an inactive
530 	 * metaslab to activate. If it can't find a suitable one, it will steal
531 	 * a primary or secondary metaslab from another allocator.
532 	 */
533 	if (sort1 < sort2)
534 		return (-1);
535 	if (sort1 > sort2)
536 		return (1);
537 
538 	int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
539 	if (likely(cmp))
540 		return (cmp);
541 
542 	IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
543 
544 	return (AVL_CMP(m1->ms_start, m2->ms_start));
545 }
546 
547 /*
548  * ==========================================================================
549  * Metaslab groups
550  * ==========================================================================
551  */
552 /*
553  * Update the allocatable flag and the metaslab group's capacity.
554  * The allocatable flag is set to true if the capacity is below
555  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
556  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
557  * transitions from allocatable to non-allocatable or vice versa then the
558  * metaslab group's class is updated to reflect the transition.
559  */
560 static void
561 metaslab_group_alloc_update(metaslab_group_t *mg)
562 {
563 	vdev_t *vd = mg->mg_vd;
564 	metaslab_class_t *mc = mg->mg_class;
565 	vdev_stat_t *vs = &vd->vdev_stat;
566 	boolean_t was_allocatable;
567 	boolean_t was_initialized;
568 
569 	ASSERT(vd == vd->vdev_top);
570 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
571 	    SCL_ALLOC);
572 
573 	mutex_enter(&mg->mg_lock);
574 	was_allocatable = mg->mg_allocatable;
575 	was_initialized = mg->mg_initialized;
576 
577 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
578 	    (vs->vs_space + 1);
579 
580 	mutex_enter(&mc->mc_lock);
581 
582 	/*
583 	 * If the metaslab group was just added then it won't
584 	 * have any space until we finish syncing out this txg.
585 	 * At that point we will consider it initialized and available
586 	 * for allocations.  We also don't consider non-activated
587 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
588 	 * to be initialized, because they can't be used for allocation.
589 	 */
590 	mg->mg_initialized = metaslab_group_initialized(mg);
591 	if (!was_initialized && mg->mg_initialized) {
592 		mc->mc_groups++;
593 	} else if (was_initialized && !mg->mg_initialized) {
594 		ASSERT3U(mc->mc_groups, >, 0);
595 		mc->mc_groups--;
596 	}
597 	if (mg->mg_initialized)
598 		mg->mg_no_free_space = B_FALSE;
599 
600 	/*
601 	 * A metaslab group is considered allocatable if it has plenty
602 	 * of free space or is not heavily fragmented. We only take
603 	 * fragmentation into account if the metaslab group has a valid
604 	 * fragmentation metric (i.e. a value between 0 and 100).
605 	 */
606 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
607 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
608 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
609 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
610 
611 	/*
612 	 * The mc_alloc_groups maintains a count of the number of
613 	 * groups in this metaslab class that are still above the
614 	 * zfs_mg_noalloc_threshold. This is used by the allocating
615 	 * threads to determine if they should avoid allocations to
616 	 * a given group. The allocator will avoid allocations to a group
617 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
618 	 * and there are still other groups that are above the threshold.
619 	 * When a group transitions from allocatable to non-allocatable or
620 	 * vice versa we update the metaslab class to reflect that change.
621 	 * When the mc_alloc_groups value drops to 0 that means that all
622 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
623 	 * eligible for allocations. This effectively means that all devices
624 	 * are balanced again.
625 	 */
626 	if (was_allocatable && !mg->mg_allocatable)
627 		mc->mc_alloc_groups--;
628 	else if (!was_allocatable && mg->mg_allocatable)
629 		mc->mc_alloc_groups++;
630 	mutex_exit(&mc->mc_lock);
631 
632 	mutex_exit(&mg->mg_lock);
633 }
634 
635 int
636 metaslab_sort_by_flushed(const void *va, const void *vb)
637 {
638 	const metaslab_t *a = va;
639 	const metaslab_t *b = vb;
640 
641 	int cmp = AVL_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
642 	if (likely(cmp))
643 		return (cmp);
644 
645 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
646 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
647 	cmp = AVL_CMP(a_vdev_id, b_vdev_id);
648 	if (cmp)
649 		return (cmp);
650 
651 	return (AVL_CMP(a->ms_id, b->ms_id));
652 }
653 
654 metaslab_group_t *
655 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
656 {
657 	metaslab_group_t *mg;
658 
659 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
660 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
661 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
662 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
663 	mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
664 	    KM_SLEEP);
665 	mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
666 	    KM_SLEEP);
667 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
668 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
669 	mg->mg_vd = vd;
670 	mg->mg_class = mc;
671 	mg->mg_activation_count = 0;
672 	mg->mg_initialized = B_FALSE;
673 	mg->mg_no_free_space = B_TRUE;
674 	mg->mg_allocators = allocators;
675 
676 	mg->mg_alloc_queue_depth = kmem_zalloc(allocators *
677 	    sizeof (zfs_refcount_t), KM_SLEEP);
678 	mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
679 	    sizeof (uint64_t), KM_SLEEP);
680 	for (int i = 0; i < allocators; i++) {
681 		zfs_refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
682 		mg->mg_cur_max_alloc_queue_depth[i] = 0;
683 	}
684 
685 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
686 	    minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
687 
688 	return (mg);
689 }
690 
691 void
692 metaslab_group_destroy(metaslab_group_t *mg)
693 {
694 	ASSERT(mg->mg_prev == NULL);
695 	ASSERT(mg->mg_next == NULL);
696 	/*
697 	 * We may have gone below zero with the activation count
698 	 * either because we never activated in the first place or
699 	 * because we're done, and possibly removing the vdev.
700 	 */
701 	ASSERT(mg->mg_activation_count <= 0);
702 
703 	taskq_destroy(mg->mg_taskq);
704 	avl_destroy(&mg->mg_metaslab_tree);
705 	kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
706 	kmem_free(mg->mg_secondaries, mg->mg_allocators *
707 	    sizeof (metaslab_t *));
708 	mutex_destroy(&mg->mg_lock);
709 	mutex_destroy(&mg->mg_ms_disabled_lock);
710 	cv_destroy(&mg->mg_ms_disabled_cv);
711 
712 	for (int i = 0; i < mg->mg_allocators; i++) {
713 		zfs_refcount_destroy(&mg->mg_alloc_queue_depth[i]);
714 		mg->mg_cur_max_alloc_queue_depth[i] = 0;
715 	}
716 	kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
717 	    sizeof (zfs_refcount_t));
718 	kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
719 	    sizeof (uint64_t));
720 
721 	kmem_free(mg, sizeof (metaslab_group_t));
722 }
723 
724 void
725 metaslab_group_activate(metaslab_group_t *mg)
726 {
727 	metaslab_class_t *mc = mg->mg_class;
728 	metaslab_group_t *mgprev, *mgnext;
729 
730 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
731 
732 	ASSERT(mc->mc_rotor != mg);
733 	ASSERT(mg->mg_prev == NULL);
734 	ASSERT(mg->mg_next == NULL);
735 	ASSERT(mg->mg_activation_count <= 0);
736 
737 	if (++mg->mg_activation_count <= 0)
738 		return;
739 
740 	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
741 	metaslab_group_alloc_update(mg);
742 
743 	if ((mgprev = mc->mc_rotor) == NULL) {
744 		mg->mg_prev = mg;
745 		mg->mg_next = mg;
746 	} else {
747 		mgnext = mgprev->mg_next;
748 		mg->mg_prev = mgprev;
749 		mg->mg_next = mgnext;
750 		mgprev->mg_next = mg;
751 		mgnext->mg_prev = mg;
752 	}
753 	mc->mc_rotor = mg;
754 }
755 
756 /*
757  * Passivate a metaslab group and remove it from the allocation rotor.
758  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
759  * a metaslab group. This function will momentarily drop spa_config_locks
760  * that are lower than the SCL_ALLOC lock (see comment below).
761  */
762 void
763 metaslab_group_passivate(metaslab_group_t *mg)
764 {
765 	metaslab_class_t *mc = mg->mg_class;
766 	spa_t *spa = mc->mc_spa;
767 	metaslab_group_t *mgprev, *mgnext;
768 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
769 
770 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
771 	    (SCL_ALLOC | SCL_ZIO));
772 
773 	if (--mg->mg_activation_count != 0) {
774 		ASSERT(mc->mc_rotor != mg);
775 		ASSERT(mg->mg_prev == NULL);
776 		ASSERT(mg->mg_next == NULL);
777 		ASSERT(mg->mg_activation_count < 0);
778 		return;
779 	}
780 
781 	/*
782 	 * The spa_config_lock is an array of rwlocks, ordered as
783 	 * follows (from highest to lowest):
784 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
785 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
786 	 * (For more information about the spa_config_lock see spa_misc.c)
787 	 * The higher the lock, the broader its coverage. When we passivate
788 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
789 	 * config locks. However, the metaslab group's taskq might be trying
790 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
791 	 * lower locks to allow the I/O to complete. At a minimum,
792 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
793 	 * allocations from taking place and any changes to the vdev tree.
794 	 */
795 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
796 	taskq_wait(mg->mg_taskq);
797 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
798 	metaslab_group_alloc_update(mg);
799 	for (int i = 0; i < mg->mg_allocators; i++) {
800 		metaslab_t *msp = mg->mg_primaries[i];
801 		if (msp != NULL) {
802 			mutex_enter(&msp->ms_lock);
803 			metaslab_passivate(msp,
804 			    metaslab_weight_from_range_tree(msp));
805 			mutex_exit(&msp->ms_lock);
806 		}
807 		msp = mg->mg_secondaries[i];
808 		if (msp != NULL) {
809 			mutex_enter(&msp->ms_lock);
810 			metaslab_passivate(msp,
811 			    metaslab_weight_from_range_tree(msp));
812 			mutex_exit(&msp->ms_lock);
813 		}
814 	}
815 
816 	mgprev = mg->mg_prev;
817 	mgnext = mg->mg_next;
818 
819 	if (mg == mgnext) {
820 		mc->mc_rotor = NULL;
821 	} else {
822 		mc->mc_rotor = mgnext;
823 		mgprev->mg_next = mgnext;
824 		mgnext->mg_prev = mgprev;
825 	}
826 
827 	mg->mg_prev = NULL;
828 	mg->mg_next = NULL;
829 }
830 
831 boolean_t
832 metaslab_group_initialized(metaslab_group_t *mg)
833 {
834 	vdev_t *vd = mg->mg_vd;
835 	vdev_stat_t *vs = &vd->vdev_stat;
836 
837 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
838 }
839 
840 uint64_t
841 metaslab_group_get_space(metaslab_group_t *mg)
842 {
843 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
844 }
845 
846 void
847 metaslab_group_histogram_verify(metaslab_group_t *mg)
848 {
849 	uint64_t *mg_hist;
850 	vdev_t *vd = mg->mg_vd;
851 	uint64_t ashift = vd->vdev_ashift;
852 	int i;
853 
854 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
855 		return;
856 
857 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
858 	    KM_SLEEP);
859 
860 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
861 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
862 
863 	for (int m = 0; m < vd->vdev_ms_count; m++) {
864 		metaslab_t *msp = vd->vdev_ms[m];
865 
866 		/* skip if not active or not a member */
867 		if (msp->ms_sm == NULL || msp->ms_group != mg)
868 			continue;
869 
870 		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
871 			mg_hist[i + ashift] +=
872 			    msp->ms_sm->sm_phys->smp_histogram[i];
873 	}
874 
875 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
876 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
877 
878 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
879 }
880 
881 static void
882 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
883 {
884 	metaslab_class_t *mc = mg->mg_class;
885 	uint64_t ashift = mg->mg_vd->vdev_ashift;
886 
887 	ASSERT(MUTEX_HELD(&msp->ms_lock));
888 	if (msp->ms_sm == NULL)
889 		return;
890 
891 	mutex_enter(&mg->mg_lock);
892 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
893 		mg->mg_histogram[i + ashift] +=
894 		    msp->ms_sm->sm_phys->smp_histogram[i];
895 		mc->mc_histogram[i + ashift] +=
896 		    msp->ms_sm->sm_phys->smp_histogram[i];
897 	}
898 	mutex_exit(&mg->mg_lock);
899 }
900 
901 void
902 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
903 {
904 	metaslab_class_t *mc = mg->mg_class;
905 	uint64_t ashift = mg->mg_vd->vdev_ashift;
906 
907 	ASSERT(MUTEX_HELD(&msp->ms_lock));
908 	if (msp->ms_sm == NULL)
909 		return;
910 
911 	mutex_enter(&mg->mg_lock);
912 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
913 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
914 		    msp->ms_sm->sm_phys->smp_histogram[i]);
915 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
916 		    msp->ms_sm->sm_phys->smp_histogram[i]);
917 
918 		mg->mg_histogram[i + ashift] -=
919 		    msp->ms_sm->sm_phys->smp_histogram[i];
920 		mc->mc_histogram[i + ashift] -=
921 		    msp->ms_sm->sm_phys->smp_histogram[i];
922 	}
923 	mutex_exit(&mg->mg_lock);
924 }
925 
926 static void
927 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
928 {
929 	ASSERT(msp->ms_group == NULL);
930 	mutex_enter(&mg->mg_lock);
931 	msp->ms_group = mg;
932 	msp->ms_weight = 0;
933 	avl_add(&mg->mg_metaslab_tree, msp);
934 	mutex_exit(&mg->mg_lock);
935 
936 	mutex_enter(&msp->ms_lock);
937 	metaslab_group_histogram_add(mg, msp);
938 	mutex_exit(&msp->ms_lock);
939 }
940 
941 static void
942 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
943 {
944 	mutex_enter(&msp->ms_lock);
945 	metaslab_group_histogram_remove(mg, msp);
946 	mutex_exit(&msp->ms_lock);
947 
948 	mutex_enter(&mg->mg_lock);
949 	ASSERT(msp->ms_group == mg);
950 	avl_remove(&mg->mg_metaslab_tree, msp);
951 	msp->ms_group = NULL;
952 	mutex_exit(&mg->mg_lock);
953 }
954 
955 static void
956 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
957 {
958 	ASSERT(MUTEX_HELD(&mg->mg_lock));
959 	ASSERT(msp->ms_group == mg);
960 	avl_remove(&mg->mg_metaslab_tree, msp);
961 	msp->ms_weight = weight;
962 	avl_add(&mg->mg_metaslab_tree, msp);
963 
964 }
965 
966 static void
967 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
968 {
969 	/*
970 	 * Although in principle the weight can be any value, in
971 	 * practice we do not use values in the range [1, 511].
972 	 */
973 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
974 	ASSERT(MUTEX_HELD(&msp->ms_lock));
975 
976 	mutex_enter(&mg->mg_lock);
977 	metaslab_group_sort_impl(mg, msp, weight);
978 	mutex_exit(&mg->mg_lock);
979 }
980 
981 /*
982  * Calculate the fragmentation for a given metaslab group. We can use
983  * a simple average here since all metaslabs within the group must have
984  * the same size. The return value will be a value between 0 and 100
985  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
986  * group have a fragmentation metric.
987  */
988 uint64_t
989 metaslab_group_fragmentation(metaslab_group_t *mg)
990 {
991 	vdev_t *vd = mg->mg_vd;
992 	uint64_t fragmentation = 0;
993 	uint64_t valid_ms = 0;
994 
995 	for (int m = 0; m < vd->vdev_ms_count; m++) {
996 		metaslab_t *msp = vd->vdev_ms[m];
997 
998 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
999 			continue;
1000 		if (msp->ms_group != mg)
1001 			continue;
1002 
1003 		valid_ms++;
1004 		fragmentation += msp->ms_fragmentation;
1005 	}
1006 
1007 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1008 		return (ZFS_FRAG_INVALID);
1009 
1010 	fragmentation /= valid_ms;
1011 	ASSERT3U(fragmentation, <=, 100);
1012 	return (fragmentation);
1013 }
1014 
1015 /*
1016  * Determine if a given metaslab group should skip allocations. A metaslab
1017  * group should avoid allocations if its free capacity is less than the
1018  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1019  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1020  * that can still handle allocations. If the allocation throttle is enabled
1021  * then we skip allocations to devices that have reached their maximum
1022  * allocation queue depth unless the selected metaslab group is the only
1023  * eligible group remaining.
1024  */
1025 static boolean_t
1026 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1027     uint64_t psize, int allocator, int d)
1028 {
1029 	spa_t *spa = mg->mg_vd->vdev_spa;
1030 	metaslab_class_t *mc = mg->mg_class;
1031 
1032 	/*
1033 	 * We can only consider skipping this metaslab group if it's
1034 	 * in the normal metaslab class and there are other metaslab
1035 	 * groups to select from. Otherwise, we always consider it eligible
1036 	 * for allocations.
1037 	 */
1038 	if ((mc != spa_normal_class(spa) &&
1039 	    mc != spa_special_class(spa) &&
1040 	    mc != spa_dedup_class(spa)) ||
1041 	    mc->mc_groups <= 1)
1042 		return (B_TRUE);
1043 
1044 	/*
1045 	 * If the metaslab group's mg_allocatable flag is set (see comments
1046 	 * in metaslab_group_alloc_update() for more information) and
1047 	 * the allocation throttle is disabled then allow allocations to this
1048 	 * device. However, if the allocation throttle is enabled then
1049 	 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1050 	 * to determine if we should allow allocations to this metaslab group.
1051 	 * If all metaslab groups are no longer considered allocatable
1052 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1053 	 * gang block size then we allow allocations on this metaslab group
1054 	 * regardless of the mg_allocatable or throttle settings.
1055 	 */
1056 	if (mg->mg_allocatable) {
1057 		metaslab_group_t *mgp;
1058 		int64_t qdepth;
1059 		uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
1060 
1061 		if (!mc->mc_alloc_throttle_enabled)
1062 			return (B_TRUE);
1063 
1064 		/*
1065 		 * If this metaslab group does not have any free space, then
1066 		 * there is no point in looking further.
1067 		 */
1068 		if (mg->mg_no_free_space)
1069 			return (B_FALSE);
1070 
1071 		/*
1072 		 * Relax allocation throttling for ditto blocks.  Due to
1073 		 * random imbalances in allocation it tends to push copies
1074 		 * to one vdev, that looks a bit better at the moment.
1075 		 */
1076 		qmax = qmax * (4 + d) / 4;
1077 
1078 		qdepth = zfs_refcount_count(
1079 		    &mg->mg_alloc_queue_depth[allocator]);
1080 
1081 		/*
1082 		 * If this metaslab group is below its qmax or it's
1083 		 * the only allocatable metasable group, then attempt
1084 		 * to allocate from it.
1085 		 */
1086 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1087 			return (B_TRUE);
1088 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1089 
1090 		/*
1091 		 * Since this metaslab group is at or over its qmax, we
1092 		 * need to determine if there are metaslab groups after this
1093 		 * one that might be able to handle this allocation. This is
1094 		 * racy since we can't hold the locks for all metaslab
1095 		 * groups at the same time when we make this check.
1096 		 */
1097 		for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
1098 			qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
1099 			qmax = qmax * (4 + d) / 4;
1100 			qdepth = zfs_refcount_count(
1101 			    &mgp->mg_alloc_queue_depth[allocator]);
1102 
1103 			/*
1104 			 * If there is another metaslab group that
1105 			 * might be able to handle the allocation, then
1106 			 * we return false so that we skip this group.
1107 			 */
1108 			if (qdepth < qmax && !mgp->mg_no_free_space)
1109 				return (B_FALSE);
1110 		}
1111 
1112 		/*
1113 		 * We didn't find another group to handle the allocation
1114 		 * so we can't skip this metaslab group even though
1115 		 * we are at or over our qmax.
1116 		 */
1117 		return (B_TRUE);
1118 
1119 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1120 		return (B_TRUE);
1121 	}
1122 	return (B_FALSE);
1123 }
1124 
1125 /*
1126  * ==========================================================================
1127  * Range tree callbacks
1128  * ==========================================================================
1129  */
1130 
1131 /*
1132  * Comparison function for the private size-ordered tree. Tree is sorted
1133  * by size, larger sizes at the end of the tree.
1134  */
1135 static int
1136 metaslab_rangesize_compare(const void *x1, const void *x2)
1137 {
1138 	const range_seg_t *r1 = x1;
1139 	const range_seg_t *r2 = x2;
1140 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1141 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1142 
1143 	int cmp = AVL_CMP(rs_size1, rs_size2);
1144 	if (likely(cmp))
1145 		return (cmp);
1146 
1147 	return (AVL_CMP(r1->rs_start, r2->rs_start));
1148 }
1149 
1150 /*
1151  * ==========================================================================
1152  * Common allocator routines
1153  * ==========================================================================
1154  */
1155 
1156 /*
1157  * Return the maximum contiguous segment within the metaslab.
1158  */
1159 uint64_t
1160 metaslab_block_maxsize(metaslab_t *msp)
1161 {
1162 	avl_tree_t *t = &msp->ms_allocatable_by_size;
1163 	range_seg_t *rs;
1164 
1165 	if (t == NULL || (rs = avl_last(t)) == NULL)
1166 		return (0ULL);
1167 
1168 	return (rs->rs_end - rs->rs_start);
1169 }
1170 
1171 static range_seg_t *
1172 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1173 {
1174 	range_seg_t *rs, rsearch;
1175 	avl_index_t where;
1176 
1177 	rsearch.rs_start = start;
1178 	rsearch.rs_end = start + size;
1179 
1180 	rs = avl_find(t, &rsearch, &where);
1181 	if (rs == NULL) {
1182 		rs = avl_nearest(t, where, AVL_AFTER);
1183 	}
1184 
1185 	return (rs);
1186 }
1187 
1188 /*
1189  * This is a helper function that can be used by the allocator to find
1190  * a suitable block to allocate. This will search the specified AVL
1191  * tree looking for a block that matches the specified criteria.
1192  */
1193 static uint64_t
1194 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1195     uint64_t max_search)
1196 {
1197 	range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1198 	uint64_t first_found;
1199 
1200 	if (rs != NULL)
1201 		first_found = rs->rs_start;
1202 
1203 	while (rs != NULL && rs->rs_start - first_found <= max_search) {
1204 		uint64_t offset = rs->rs_start;
1205 		if (offset + size <= rs->rs_end) {
1206 			*cursor = offset + size;
1207 			return (offset);
1208 		}
1209 		rs = AVL_NEXT(t, rs);
1210 	}
1211 
1212 	*cursor = 0;
1213 	return (-1ULL);
1214 }
1215 
1216 /*
1217  * ==========================================================================
1218  * Dynamic Fit (df) block allocator
1219  *
1220  * Search for a free chunk of at least this size, starting from the last
1221  * offset (for this alignment of block) looking for up to
1222  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1223  * found within 16MB, then return a free chunk of exactly the requested size (or
1224  * larger).
1225  *
1226  * If it seems like searching from the last offset will be unproductive, skip
1227  * that and just return a free chunk of exactly the requested size (or larger).
1228  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1229  * mechanism is probably not very useful and may be removed in the future.
1230  *
1231  * The behavior when not searching can be changed to return the largest free
1232  * chunk, instead of a free chunk of exactly the requested size, by setting
1233  * metaslab_df_use_largest_segment.
1234  * ==========================================================================
1235  */
1236 static uint64_t
1237 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1238 {
1239 	/*
1240 	 * Find the largest power of 2 block size that evenly divides the
1241 	 * requested size. This is used to try to allocate blocks with similar
1242 	 * alignment from the same area of the metaslab (i.e. same cursor
1243 	 * bucket) but it does not guarantee that other allocations sizes
1244 	 * may exist in the same region.
1245 	 */
1246 	uint64_t align = size & -size;
1247 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1248 	range_tree_t *rt = msp->ms_allocatable;
1249 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1250 	uint64_t offset;
1251 
1252 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1253 	ASSERT3U(avl_numnodes(&rt->rt_root), ==,
1254 	    avl_numnodes(&msp->ms_allocatable_by_size));
1255 
1256 	/*
1257 	 * If we're running low on space, find a segment based on size,
1258 	 * rather than iterating based on offset.
1259 	 */
1260 	if (metaslab_block_maxsize(msp) < metaslab_df_alloc_threshold ||
1261 	    free_pct < metaslab_df_free_pct) {
1262 		offset = -1;
1263 	} else {
1264 		offset = metaslab_block_picker(&rt->rt_root,
1265 		    cursor, size, metaslab_df_max_search);
1266 	}
1267 
1268 	if (offset == -1) {
1269 		range_seg_t *rs;
1270 		if (metaslab_df_use_largest_segment) {
1271 			/* use largest free segment */
1272 			rs = avl_last(&msp->ms_allocatable_by_size);
1273 		} else {
1274 			/* use segment of this size, or next largest */
1275 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1276 			    0, size);
1277 		}
1278 		if (rs != NULL && rs->rs_start + size <= rs->rs_end) {
1279 			offset = rs->rs_start;
1280 			*cursor = offset + size;
1281 		}
1282 	}
1283 
1284 	return (offset);
1285 }
1286 
1287 static metaslab_ops_t metaslab_df_ops = {
1288 	metaslab_df_alloc
1289 };
1290 
1291 /*
1292  * ==========================================================================
1293  * Cursor fit block allocator -
1294  * Select the largest region in the metaslab, set the cursor to the beginning
1295  * of the range and the cursor_end to the end of the range. As allocations
1296  * are made advance the cursor. Continue allocating from the cursor until
1297  * the range is exhausted and then find a new range.
1298  * ==========================================================================
1299  */
1300 static uint64_t
1301 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1302 {
1303 	range_tree_t *rt = msp->ms_allocatable;
1304 	avl_tree_t *t = &msp->ms_allocatable_by_size;
1305 	uint64_t *cursor = &msp->ms_lbas[0];
1306 	uint64_t *cursor_end = &msp->ms_lbas[1];
1307 	uint64_t offset = 0;
1308 
1309 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1310 	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1311 
1312 	ASSERT3U(*cursor_end, >=, *cursor);
1313 
1314 	if ((*cursor + size) > *cursor_end) {
1315 		range_seg_t *rs;
1316 
1317 		rs = avl_last(&msp->ms_allocatable_by_size);
1318 		if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1319 			return (-1ULL);
1320 
1321 		*cursor = rs->rs_start;
1322 		*cursor_end = rs->rs_end;
1323 	}
1324 
1325 	offset = *cursor;
1326 	*cursor += size;
1327 
1328 	return (offset);
1329 }
1330 
1331 static metaslab_ops_t metaslab_cf_ops = {
1332 	metaslab_cf_alloc
1333 };
1334 
1335 /*
1336  * ==========================================================================
1337  * New dynamic fit allocator -
1338  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1339  * contiguous blocks. If no region is found then just use the largest segment
1340  * that remains.
1341  * ==========================================================================
1342  */
1343 
1344 /*
1345  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1346  * to request from the allocator.
1347  */
1348 uint64_t metaslab_ndf_clump_shift = 4;
1349 
1350 static uint64_t
1351 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1352 {
1353 	avl_tree_t *t = &msp->ms_allocatable->rt_root;
1354 	avl_index_t where;
1355 	range_seg_t *rs, rsearch;
1356 	uint64_t hbit = highbit64(size);
1357 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1358 	uint64_t max_size = metaslab_block_maxsize(msp);
1359 
1360 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1361 	ASSERT3U(avl_numnodes(t), ==,
1362 	    avl_numnodes(&msp->ms_allocatable_by_size));
1363 
1364 	if (max_size < size)
1365 		return (-1ULL);
1366 
1367 	rsearch.rs_start = *cursor;
1368 	rsearch.rs_end = *cursor + size;
1369 
1370 	rs = avl_find(t, &rsearch, &where);
1371 	if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1372 		t = &msp->ms_allocatable_by_size;
1373 
1374 		rsearch.rs_start = 0;
1375 		rsearch.rs_end = MIN(max_size,
1376 		    1ULL << (hbit + metaslab_ndf_clump_shift));
1377 		rs = avl_find(t, &rsearch, &where);
1378 		if (rs == NULL)
1379 			rs = avl_nearest(t, where, AVL_AFTER);
1380 		ASSERT(rs != NULL);
1381 	}
1382 
1383 	if ((rs->rs_end - rs->rs_start) >= size) {
1384 		*cursor = rs->rs_start + size;
1385 		return (rs->rs_start);
1386 	}
1387 	return (-1ULL);
1388 }
1389 
1390 static metaslab_ops_t metaslab_ndf_ops = {
1391 	metaslab_ndf_alloc
1392 };
1393 
1394 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1395 
1396 /*
1397  * ==========================================================================
1398  * Metaslabs
1399  * ==========================================================================
1400  */
1401 
1402 /*
1403  * Wait for any in-progress metaslab loads to complete.
1404  */
1405 void
1406 metaslab_load_wait(metaslab_t *msp)
1407 {
1408 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1409 
1410 	while (msp->ms_loading) {
1411 		ASSERT(!msp->ms_loaded);
1412 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1413 	}
1414 }
1415 
1416 /*
1417  * Wait for any in-progress flushing to complete.
1418  */
1419 void
1420 metaslab_flush_wait(metaslab_t *msp)
1421 {
1422 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1423 
1424 	while (msp->ms_flushing)
1425 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1426 }
1427 
1428 uint64_t
1429 metaslab_allocated_space(metaslab_t *msp)
1430 {
1431 	return (msp->ms_allocated_space);
1432 }
1433 
1434 /*
1435  * Verify that the space accounting on disk matches the in-core range_trees.
1436  */
1437 static void
1438 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1439 {
1440 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1441 	uint64_t allocating = 0;
1442 	uint64_t sm_free_space, msp_free_space;
1443 
1444 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1445 	ASSERT(!msp->ms_condensing);
1446 
1447 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1448 		return;
1449 
1450 	/*
1451 	 * We can only verify the metaslab space when we're called
1452 	 * from syncing context with a loaded metaslab that has an
1453 	 * allocated space map. Calling this in non-syncing context
1454 	 * does not provide a consistent view of the metaslab since
1455 	 * we're performing allocations in the future.
1456 	 */
1457 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1458 	    !msp->ms_loaded)
1459 		return;
1460 
1461 	/*
1462 	 * Even though the smp_alloc field can get negative,
1463 	 * when it comes to a metaslab's space map, that should
1464 	 * never be the case.
1465 	 */
1466 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1467 
1468 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1469 	    range_tree_space(msp->ms_unflushed_frees));
1470 
1471 	ASSERT3U(metaslab_allocated_space(msp), ==,
1472 	    space_map_allocated(msp->ms_sm) +
1473 	    range_tree_space(msp->ms_unflushed_allocs) -
1474 	    range_tree_space(msp->ms_unflushed_frees));
1475 
1476 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1477 
1478 	/*
1479 	 * Account for future allocations since we would have
1480 	 * already deducted that space from the ms_allocatable.
1481 	 */
1482 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1483 		allocating +=
1484 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1485 	}
1486 
1487 	ASSERT3U(msp->ms_deferspace, ==,
1488 	    range_tree_space(msp->ms_defer[0]) +
1489 	    range_tree_space(msp->ms_defer[1]));
1490 
1491 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1492 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1493 
1494 	VERIFY3U(sm_free_space, ==, msp_free_space);
1495 }
1496 
1497 static void
1498 metaslab_aux_histograms_clear(metaslab_t *msp)
1499 {
1500 	/*
1501 	 * Auxiliary histograms are only cleared when resetting them,
1502 	 * which can only happen while the metaslab is loaded.
1503 	 */
1504 	ASSERT(msp->ms_loaded);
1505 
1506 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1507 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1508 		bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
1509 }
1510 
1511 static void
1512 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1513     range_tree_t *rt)
1514 {
1515 	/*
1516 	 * This is modeled after space_map_histogram_add(), so refer to that
1517 	 * function for implementation details. We want this to work like
1518 	 * the space map histogram, and not the range tree histogram, as we
1519 	 * are essentially constructing a delta that will be later subtracted
1520 	 * from the space map histogram.
1521 	 */
1522 	int idx = 0;
1523 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1524 		ASSERT3U(i, >=, idx + shift);
1525 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1526 
1527 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1528 			ASSERT3U(idx + shift, ==, i);
1529 			idx++;
1530 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1531 		}
1532 	}
1533 }
1534 
1535 /*
1536  * Called at every sync pass that the metaslab gets synced.
1537  *
1538  * The reason is that we want our auxiliary histograms to be updated
1539  * wherever the metaslab's space map histogram is updated. This way
1540  * we stay consistent on which parts of the metaslab space map's
1541  * histogram are currently not available for allocations (e.g because
1542  * they are in the defer, freed, and freeing trees).
1543  */
1544 static void
1545 metaslab_aux_histograms_update(metaslab_t *msp)
1546 {
1547 	space_map_t *sm = msp->ms_sm;
1548 	ASSERT(sm != NULL);
1549 
1550 	/*
1551 	 * This is similar to the metaslab's space map histogram updates
1552 	 * that take place in metaslab_sync(). The only difference is that
1553 	 * we only care about segments that haven't made it into the
1554 	 * ms_allocatable tree yet.
1555 	 */
1556 	if (msp->ms_loaded) {
1557 		metaslab_aux_histograms_clear(msp);
1558 
1559 		metaslab_aux_histogram_add(msp->ms_synchist,
1560 		    sm->sm_shift, msp->ms_freed);
1561 
1562 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1563 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
1564 			    sm->sm_shift, msp->ms_defer[t]);
1565 		}
1566 	}
1567 
1568 	metaslab_aux_histogram_add(msp->ms_synchist,
1569 	    sm->sm_shift, msp->ms_freeing);
1570 }
1571 
1572 /*
1573  * Called every time we are done syncing (writing to) the metaslab,
1574  * i.e. at the end of each sync pass.
1575  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
1576  */
1577 static void
1578 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
1579 {
1580 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1581 	space_map_t *sm = msp->ms_sm;
1582 
1583 	if (sm == NULL) {
1584 		/*
1585 		 * We came here from metaslab_init() when creating/opening a
1586 		 * pool, looking at a metaslab that hasn't had any allocations
1587 		 * yet.
1588 		 */
1589 		return;
1590 	}
1591 
1592 	/*
1593 	 * This is similar to the actions that we take for the ms_freed
1594 	 * and ms_defer trees in metaslab_sync_done().
1595 	 */
1596 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
1597 	if (defer_allowed) {
1598 		bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
1599 		    sizeof (msp->ms_synchist));
1600 	} else {
1601 		bzero(msp->ms_deferhist[hist_index],
1602 		    sizeof (msp->ms_deferhist[hist_index]));
1603 	}
1604 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1605 }
1606 
1607 /*
1608  * Ensure that the metaslab's weight and fragmentation are consistent
1609  * with the contents of the histogram (either the range tree's histogram
1610  * or the space map's depending whether the metaslab is loaded).
1611  */
1612 static void
1613 metaslab_verify_weight_and_frag(metaslab_t *msp)
1614 {
1615 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1616 
1617 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1618 		return;
1619 
1620 	/*
1621 	 * We can end up here from vdev_remove_complete(), in which case we
1622 	 * cannot do these assertions because we hold spa config locks and
1623 	 * thus we are not allowed to read from the DMU.
1624 	 *
1625 	 * We check if the metaslab group has been removed and if that's
1626 	 * the case we return immediately as that would mean that we are
1627 	 * here from the aforementioned code path.
1628 	 */
1629 	if (msp->ms_group == NULL)
1630 		return;
1631 
1632 	/*
1633 	 * Devices being removed always return a weight of 0 and leave
1634 	 * fragmentation and ms_max_size as is - there is nothing for
1635 	 * us to verify here.
1636 	 */
1637 	vdev_t *vd = msp->ms_group->mg_vd;
1638 	if (vd->vdev_removing)
1639 		return;
1640 
1641 	/*
1642 	 * If the metaslab is dirty it probably means that we've done
1643 	 * some allocations or frees that have changed our histograms
1644 	 * and thus the weight.
1645 	 */
1646 	for (int t = 0; t < TXG_SIZE; t++) {
1647 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
1648 			return;
1649 	}
1650 
1651 	/*
1652 	 * This verification checks that our in-memory state is consistent
1653 	 * with what's on disk. If the pool is read-only then there aren't
1654 	 * any changes and we just have the initially-loaded state.
1655 	 */
1656 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
1657 		return;
1658 
1659 	/* some extra verification for in-core tree if you can */
1660 	if (msp->ms_loaded) {
1661 		range_tree_stat_verify(msp->ms_allocatable);
1662 		VERIFY(space_map_histogram_verify(msp->ms_sm,
1663 		    msp->ms_allocatable));
1664 	}
1665 
1666 	uint64_t weight = msp->ms_weight;
1667 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1668 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
1669 	uint64_t frag = msp->ms_fragmentation;
1670 	uint64_t max_segsize = msp->ms_max_size;
1671 
1672 	msp->ms_weight = 0;
1673 	msp->ms_fragmentation = 0;
1674 	msp->ms_max_size = 0;
1675 
1676 	/*
1677 	 * This function is used for verification purposes. Regardless of
1678 	 * whether metaslab_weight() thinks this metaslab should be active or
1679 	 * not, we want to ensure that the actual weight (and therefore the
1680 	 * value of ms_weight) would be the same if it was to be recalculated
1681 	 * at this point.
1682 	 */
1683 	msp->ms_weight = metaslab_weight(msp) | was_active;
1684 
1685 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
1686 
1687 	/*
1688 	 * If the weight type changed then there is no point in doing
1689 	 * verification. Revert fields to their original values.
1690 	 */
1691 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
1692 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
1693 		msp->ms_fragmentation = frag;
1694 		msp->ms_weight = weight;
1695 		return;
1696 	}
1697 
1698 	VERIFY3U(msp->ms_fragmentation, ==, frag);
1699 	VERIFY3U(msp->ms_weight, ==, weight);
1700 }
1701 
1702 static int
1703 metaslab_load_impl(metaslab_t *msp)
1704 {
1705 	int error = 0;
1706 
1707 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1708 	ASSERT(msp->ms_loading);
1709 	ASSERT(!msp->ms_condensing);
1710 
1711 	/*
1712 	 * We temporarily drop the lock to unblock other operations while we
1713 	 * are reading the space map. Therefore, metaslab_sync() and
1714 	 * metaslab_sync_done() can run at the same time as we do.
1715 	 *
1716 	 * If we are using the log space maps, metaslab_sync() can't write to
1717 	 * the metaslab's space map while we are loading as we only write to
1718 	 * it when we are flushing the metaslab, and that can't happen while
1719 	 * we are loading it.
1720 	 *
1721 	 * If we are not using log space maps though, metaslab_sync() can
1722 	 * append to the space map while we are loading. Therefore we load
1723 	 * only entries that existed when we started the load. Additionally,
1724 	 * metaslab_sync_done() has to wait for the load to complete because
1725 	 * there are potential races like metaslab_load() loading parts of the
1726 	 * space map that are currently being appended by metaslab_sync(). If
1727 	 * we didn't, the ms_allocatable would have entries that
1728 	 * metaslab_sync_done() would try to re-add later.
1729 	 *
1730 	 * That's why before dropping the lock we remember the synced length
1731 	 * of the metaslab and read up to that point of the space map,
1732 	 * ignoring entries appended by metaslab_sync() that happen after we
1733 	 * drop the lock.
1734 	 */
1735 	uint64_t length = msp->ms_synced_length;
1736 	mutex_exit(&msp->ms_lock);
1737 
1738 	hrtime_t load_start = gethrtime();
1739 	if (msp->ms_sm != NULL) {
1740 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
1741 		    SM_FREE, length);
1742 	} else {
1743 		/*
1744 		 * The space map has not been allocated yet, so treat
1745 		 * all the space in the metaslab as free and add it to the
1746 		 * ms_allocatable tree.
1747 		 */
1748 		range_tree_add(msp->ms_allocatable,
1749 		    msp->ms_start, msp->ms_size);
1750 
1751 		if (msp->ms_freed != NULL) {
1752 			/*
1753 			 * If the ms_sm doesn't exist, this means that this
1754 			 * metaslab hasn't gone through metaslab_sync() and
1755 			 * thus has never been dirtied. So we shouldn't
1756 			 * expect any unflushed allocs or frees from previous
1757 			 * TXGs.
1758 			 *
1759 			 * Note: ms_freed and all the other trees except for
1760 			 * the ms_allocatable, can be NULL at this point only
1761 			 * if this is a new metaslab of a vdev that just got
1762 			 * expanded.
1763 			 */
1764 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
1765 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
1771 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
1772 	 * while we are about to use them and populate the ms_allocatable.
1773 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
1774 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
1775 	 */
1776 	mutex_enter(&msp->ms_sync_lock);
1777 	mutex_enter(&msp->ms_lock);
1778 
1779 	ASSERT(!msp->ms_condensing);
1780 	ASSERT(!msp->ms_flushing);
1781 
1782 	if (error != 0) {
1783 		mutex_exit(&msp->ms_sync_lock);
1784 		return (error);
1785 	}
1786 
1787 	ASSERT3P(msp->ms_group, !=, NULL);
1788 	msp->ms_loaded = B_TRUE;
1789 
1790 	/*
1791 	 * Apply all the unflushed changes to ms_allocatable right
1792 	 * away so any manipulations we do below have a clear view
1793 	 * of what is allocated and what is free.
1794 	 */
1795 	range_tree_walk(msp->ms_unflushed_allocs,
1796 	    range_tree_remove, msp->ms_allocatable);
1797 	range_tree_walk(msp->ms_unflushed_frees,
1798 	    range_tree_add, msp->ms_allocatable);
1799 
1800 	msp->ms_loaded = B_TRUE;
1801 
1802 	ASSERT3P(msp->ms_group, !=, NULL);
1803 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1804 	if (spa_syncing_log_sm(spa) != NULL) {
1805 		ASSERT(spa_feature_is_enabled(spa,
1806 		    SPA_FEATURE_LOG_SPACEMAP));
1807 
1808 		/*
1809 		 * If we use a log space map we add all the segments
1810 		 * that are in ms_unflushed_frees so they are available
1811 		 * for allocation.
1812 		 *
1813 		 * ms_allocatable needs to contain all free segments
1814 		 * that are ready for allocations (thus not segments
1815 		 * from ms_freeing, ms_freed, and the ms_defer trees).
1816 		 * But if we grab the lock in this code path at a sync
1817 		 * pass later that 1, then it also contains the
1818 		 * segments of ms_freed (they were added to it earlier
1819 		 * in this path through ms_unflushed_frees). So we
1820 		 * need to remove all the segments that exist in
1821 		 * ms_freed from ms_allocatable as they will be added
1822 		 * later in metaslab_sync_done().
1823 		 *
1824 		 * When there's no log space map, the ms_allocatable
1825 		 * correctly doesn't contain any segments that exist
1826 		 * in ms_freed [see ms_synced_length].
1827 		 */
1828 		range_tree_walk(msp->ms_freed,
1829 		    range_tree_remove, msp->ms_allocatable);
1830 	}
1831 
1832 	/*
1833 	 * If we are not using the log space map, ms_allocatable
1834 	 * contains the segments that exist in the ms_defer trees
1835 	 * [see ms_synced_length]. Thus we need to remove them
1836 	 * from ms_allocatable as they will be added again in
1837 	 * metaslab_sync_done().
1838 	 *
1839 	 * If we are using the log space map, ms_allocatable still
1840 	 * contains the segments that exist in the ms_defer trees.
1841 	 * Not because it read them through the ms_sm though. But
1842 	 * because these segments are part of ms_unflushed_frees
1843 	 * whose segments we add to ms_allocatable earlier in this
1844 	 * code path.
1845 	 */
1846 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1847 		range_tree_walk(msp->ms_defer[t],
1848 		    range_tree_remove, msp->ms_allocatable);
1849 	}
1850 
1851 	/*
1852 	 * Call metaslab_recalculate_weight_and_sort() now that the
1853 	 * metaslab is loaded so we get the metaslab's real weight.
1854 	 *
1855 	 * Unless this metaslab was created with older software and
1856 	 * has not yet been converted to use segment-based weight, we
1857 	 * expect the new weight to be better or equal to the weight
1858 	 * that the metaslab had while it was not loaded. This is
1859 	 * because the old weight does not take into account the
1860 	 * consolidation of adjacent segments between TXGs. [see
1861 	 * comment for ms_synchist and ms_deferhist[] for more info]
1862 	 */
1863 	uint64_t weight = msp->ms_weight;
1864 	metaslab_recalculate_weight_and_sort(msp);
1865 	if (!WEIGHT_IS_SPACEBASED(weight))
1866 		ASSERT3U(weight, <=, msp->ms_weight);
1867 	msp->ms_max_size = metaslab_block_maxsize(msp);
1868 
1869 	hrtime_t load_end = gethrtime();
1870 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
1871 		zfs_dbgmsg("loading: txg %llu, spa %s, vdev_id %llu, "
1872 		    "ms_id %llu, smp_length %llu, "
1873 		    "unflushed_allocs %llu, unflushed_frees %llu, "
1874 		    "freed %llu, defer %llu + %llu, "
1875 		    "loading_time %lld ms",
1876 		    spa_syncing_txg(spa), spa_name(spa),
1877 		    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
1878 		    space_map_length(msp->ms_sm),
1879 		    range_tree_space(msp->ms_unflushed_allocs),
1880 		    range_tree_space(msp->ms_unflushed_frees),
1881 		    range_tree_space(msp->ms_freed),
1882 		    range_tree_space(msp->ms_defer[0]),
1883 		    range_tree_space(msp->ms_defer[1]),
1884 		    (longlong_t)((load_end - load_start) / 1000000));
1885 	}
1886 
1887 	metaslab_verify_space(msp, spa_syncing_txg(spa));
1888 	mutex_exit(&msp->ms_sync_lock);
1889 	return (0);
1890 }
1891 
1892 int
1893 metaslab_load(metaslab_t *msp)
1894 {
1895 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1896 
1897 	/*
1898 	 * There may be another thread loading the same metaslab, if that's
1899 	 * the case just wait until the other thread is done and return.
1900 	 */
1901 	metaslab_load_wait(msp);
1902 	if (msp->ms_loaded)
1903 		return (0);
1904 	VERIFY(!msp->ms_loading);
1905 	ASSERT(!msp->ms_condensing);
1906 
1907 	/*
1908 	 * We set the loading flag BEFORE potentially dropping the lock to
1909 	 * wait for an ongoing flush (see ms_flushing below). This way other
1910 	 * threads know that there is already a thread that is loading this
1911 	 * metaslab.
1912 	 */
1913 	msp->ms_loading = B_TRUE;
1914 
1915 	/*
1916 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
1917 	 * both here (during space_map_load()) and in metaslab_flush() (when
1918 	 * we flush our changes to the ms_sm).
1919 	 */
1920 	if (msp->ms_flushing)
1921 		metaslab_flush_wait(msp);
1922 
1923 	/*
1924 	 * In the possibility that we were waiting for the metaslab to be
1925 	 * flushed (where we temporarily dropped the ms_lock), ensure that
1926 	 * no one else loaded the metaslab somehow.
1927 	 */
1928 	ASSERT(!msp->ms_loaded);
1929 
1930 	int error = metaslab_load_impl(msp);
1931 
1932 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1933 	msp->ms_loading = B_FALSE;
1934 	cv_broadcast(&msp->ms_load_cv);
1935 
1936 	return (error);
1937 }
1938 
1939 void
1940 metaslab_unload(metaslab_t *msp)
1941 {
1942 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1943 
1944 	metaslab_verify_weight_and_frag(msp);
1945 
1946 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
1947 	msp->ms_loaded = B_FALSE;
1948 
1949 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1950 	msp->ms_max_size = 0;
1951 
1952 	/*
1953 	 * We explicitly recalculate the metaslab's weight based on its space
1954 	 * map (as it is now not loaded). We want unload metaslabs to always
1955 	 * have their weights calculated from the space map histograms, while
1956 	 * loaded ones have it calculated from their in-core range tree
1957 	 * [see metaslab_load()]. This way, the weight reflects the information
1958 	 * available in-core, whether it is loaded or not.
1959 	 *
1960 	 * If ms_group == NULL means that we came here from metaslab_fini(),
1961 	 * at which point it doesn't make sense for us to do the recalculation
1962 	 * and the sorting.
1963 	 */
1964 	if (msp->ms_group != NULL)
1965 		metaslab_recalculate_weight_and_sort(msp);
1966 }
1967 
1968 void
1969 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
1970     int64_t defer_delta, int64_t space_delta)
1971 {
1972 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
1973 
1974 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
1975 	ASSERT(vd->vdev_ms_count != 0);
1976 
1977 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
1978 	    vdev_deflated_space(vd, space_delta));
1979 }
1980 
1981 int
1982 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
1983     uint64_t txg, metaslab_t **msp)
1984 {
1985 	vdev_t *vd = mg->mg_vd;
1986 	spa_t *spa = vd->vdev_spa;
1987 	objset_t *mos = spa->spa_meta_objset;
1988 	metaslab_t *ms;
1989 	int error;
1990 
1991 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1992 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1993 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
1994 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1995 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
1996 
1997 	ms->ms_id = id;
1998 	ms->ms_start = id << vd->vdev_ms_shift;
1999 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2000 	ms->ms_allocator = -1;
2001 	ms->ms_new = B_TRUE;
2002 
2003 	/*
2004 	 * We only open space map objects that already exist. All others
2005 	 * will be opened when we finally allocate an object for it.
2006 	 *
2007 	 * Note:
2008 	 * When called from vdev_expand(), we can't call into the DMU as
2009 	 * we are holding the spa_config_lock as a writer and we would
2010 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2011 	 * that case, the object parameter is zero though, so we won't
2012 	 * call into the DMU.
2013 	 */
2014 	if (object != 0) {
2015 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2016 		    ms->ms_size, vd->vdev_ashift);
2017 
2018 		if (error != 0) {
2019 			kmem_free(ms, sizeof (metaslab_t));
2020 			return (error);
2021 		}
2022 
2023 		ASSERT(ms->ms_sm != NULL);
2024 		ASSERT3S(space_map_allocated(ms->ms_sm), >=, 0);
2025 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2026 	}
2027 
2028 	/*
2029 	 * We create the ms_allocatable here, but we don't create the
2030 	 * other range trees until metaslab_sync_done().  This serves
2031 	 * two purposes: it allows metaslab_sync_done() to detect the
2032 	 * addition of new space; and for debugging, it ensures that
2033 	 * we'd data fault on any attempt to use this metaslab before
2034 	 * it's ready.
2035 	 */
2036 	ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
2037 	    &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
2038 
2039 	ms->ms_trim = range_tree_create(NULL, NULL);
2040 
2041 	metaslab_group_add(mg, ms);
2042 	metaslab_set_fragmentation(ms);
2043 
2044 	/*
2045 	 * If we're opening an existing pool (txg == 0) or creating
2046 	 * a new one (txg == TXG_INITIAL), all space is available now.
2047 	 * If we're adding space to an existing pool, the new space
2048 	 * does not become available until after this txg has synced.
2049 	 * The metaslab's weight will also be initialized when we sync
2050 	 * out this txg. This ensures that we don't attempt to allocate
2051 	 * from it before we have initialized it completely.
2052 	 */
2053 	if (txg <= TXG_INITIAL) {
2054 		metaslab_sync_done(ms, 0);
2055 		metaslab_space_update(vd, mg->mg_class,
2056 		    metaslab_allocated_space(ms), 0, 0);
2057 	}
2058 
2059 	if (txg != 0) {
2060 		vdev_dirty(vd, 0, NULL, txg);
2061 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2062 	}
2063 
2064 	*msp = ms;
2065 
2066 	return (0);
2067 }
2068 
2069 static void
2070 metaslab_fini_flush_data(metaslab_t *msp)
2071 {
2072 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2073 
2074 	if (metaslab_unflushed_txg(msp) == 0) {
2075 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2076 		    ==, NULL);
2077 		return;
2078 	}
2079 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2080 
2081 	mutex_enter(&spa->spa_flushed_ms_lock);
2082 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2083 	mutex_exit(&spa->spa_flushed_ms_lock);
2084 
2085 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2086 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2087 }
2088 
2089 uint64_t
2090 metaslab_unflushed_changes_memused(metaslab_t *ms)
2091 {
2092 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2093 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2094 	    sizeof (range_seg_t));
2095 }
2096 
2097 void
2098 metaslab_fini(metaslab_t *msp)
2099 {
2100 	metaslab_group_t *mg = msp->ms_group;
2101 	vdev_t *vd = mg->mg_vd;
2102 	spa_t *spa = vd->vdev_spa;
2103 
2104 	metaslab_fini_flush_data(msp);
2105 
2106 	metaslab_group_remove(mg, msp);
2107 
2108 	mutex_enter(&msp->ms_lock);
2109 	VERIFY(msp->ms_group == NULL);
2110 	metaslab_space_update(vd, mg->mg_class,
2111 	    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2112 
2113 	space_map_close(msp->ms_sm);
2114 	msp->ms_sm = NULL;
2115 
2116 	metaslab_unload(msp);
2117 	range_tree_destroy(msp->ms_allocatable);
2118 	range_tree_destroy(msp->ms_freeing);
2119 	range_tree_destroy(msp->ms_freed);
2120 
2121 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2122 	    metaslab_unflushed_changes_memused(msp));
2123 	spa->spa_unflushed_stats.sus_memused -=
2124 	    metaslab_unflushed_changes_memused(msp);
2125 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2126 	range_tree_destroy(msp->ms_unflushed_allocs);
2127 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2128 	range_tree_destroy(msp->ms_unflushed_frees);
2129 
2130 	for (int t = 0; t < TXG_SIZE; t++) {
2131 		range_tree_destroy(msp->ms_allocating[t]);
2132 	}
2133 
2134 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2135 		range_tree_destroy(msp->ms_defer[t]);
2136 	}
2137 	ASSERT0(msp->ms_deferspace);
2138 
2139 	range_tree_destroy(msp->ms_checkpointing);
2140 
2141 	for (int t = 0; t < TXG_SIZE; t++)
2142 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2143 
2144 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2145 	range_tree_destroy(msp->ms_trim);
2146 
2147 	mutex_exit(&msp->ms_lock);
2148 	cv_destroy(&msp->ms_load_cv);
2149 	cv_destroy(&msp->ms_flush_cv);
2150 	mutex_destroy(&msp->ms_lock);
2151 	mutex_destroy(&msp->ms_sync_lock);
2152 	ASSERT3U(msp->ms_allocator, ==, -1);
2153 
2154 	kmem_free(msp, sizeof (metaslab_t));
2155 }
2156 
2157 #define	FRAGMENTATION_TABLE_SIZE	17
2158 
2159 /*
2160  * This table defines a segment size based fragmentation metric that will
2161  * allow each metaslab to derive its own fragmentation value. This is done
2162  * by calculating the space in each bucket of the spacemap histogram and
2163  * multiplying that by the fragmentation metric in this table. Doing
2164  * this for all buckets and dividing it by the total amount of free
2165  * space in this metaslab (i.e. the total free space in all buckets) gives
2166  * us the fragmentation metric. This means that a high fragmentation metric
2167  * equates to most of the free space being comprised of small segments.
2168  * Conversely, if the metric is low, then most of the free space is in
2169  * large segments. A 10% change in fragmentation equates to approximately
2170  * double the number of segments.
2171  *
2172  * This table defines 0% fragmented space using 16MB segments. Testing has
2173  * shown that segments that are greater than or equal to 16MB do not suffer
2174  * from drastic performance problems. Using this value, we derive the rest
2175  * of the table. Since the fragmentation value is never stored on disk, it
2176  * is possible to change these calculations in the future.
2177  */
2178 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2179 	100,	/* 512B	*/
2180 	100,	/* 1K	*/
2181 	98,	/* 2K	*/
2182 	95,	/* 4K	*/
2183 	90,	/* 8K	*/
2184 	80,	/* 16K	*/
2185 	70,	/* 32K	*/
2186 	60,	/* 64K	*/
2187 	50,	/* 128K	*/
2188 	40,	/* 256K	*/
2189 	30,	/* 512K	*/
2190 	20,	/* 1M	*/
2191 	15,	/* 2M	*/
2192 	10,	/* 4M	*/
2193 	5,	/* 8M	*/
2194 	0	/* 16M	*/
2195 };
2196 
2197 /*
2198  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2199  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2200  * been upgraded and does not support this metric. Otherwise, the return
2201  * value should be in the range [0, 100].
2202  */
2203 static void
2204 metaslab_set_fragmentation(metaslab_t *msp)
2205 {
2206 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2207 	uint64_t fragmentation = 0;
2208 	uint64_t total = 0;
2209 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2210 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2211 
2212 	if (!feature_enabled) {
2213 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2214 		return;
2215 	}
2216 
2217 	/*
2218 	 * A null space map means that the entire metaslab is free
2219 	 * and thus is not fragmented.
2220 	 */
2221 	if (msp->ms_sm == NULL) {
2222 		msp->ms_fragmentation = 0;
2223 		return;
2224 	}
2225 
2226 	/*
2227 	 * If this metaslab's space map has not been upgraded, flag it
2228 	 * so that we upgrade next time we encounter it.
2229 	 */
2230 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2231 		uint64_t txg = spa_syncing_txg(spa);
2232 		vdev_t *vd = msp->ms_group->mg_vd;
2233 
2234 		/*
2235 		 * If we've reached the final dirty txg, then we must
2236 		 * be shutting down the pool. We don't want to dirty
2237 		 * any data past this point so skip setting the condense
2238 		 * flag. We can retry this action the next time the pool
2239 		 * is imported.
2240 		 */
2241 		if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2242 			msp->ms_condense_wanted = B_TRUE;
2243 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2244 			zfs_dbgmsg("txg %llu, requesting force condense: "
2245 			    "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
2246 			    vd->vdev_id);
2247 		}
2248 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2249 		return;
2250 	}
2251 
2252 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2253 		uint64_t space = 0;
2254 		uint8_t shift = msp->ms_sm->sm_shift;
2255 
2256 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2257 		    FRAGMENTATION_TABLE_SIZE - 1);
2258 
2259 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2260 			continue;
2261 
2262 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2263 		total += space;
2264 
2265 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2266 		fragmentation += space * zfs_frag_table[idx];
2267 	}
2268 
2269 	if (total > 0)
2270 		fragmentation /= total;
2271 	ASSERT3U(fragmentation, <=, 100);
2272 
2273 	msp->ms_fragmentation = fragmentation;
2274 }
2275 
2276 /*
2277  * Compute a weight -- a selection preference value -- for the given metaslab.
2278  * This is based on the amount of free space, the level of fragmentation,
2279  * the LBA range, and whether the metaslab is loaded.
2280  */
2281 static uint64_t
2282 metaslab_space_weight(metaslab_t *msp)
2283 {
2284 	metaslab_group_t *mg = msp->ms_group;
2285 	vdev_t *vd = mg->mg_vd;
2286 	uint64_t weight, space;
2287 
2288 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2289 	ASSERT(!vd->vdev_removing);
2290 
2291 	/*
2292 	 * The baseline weight is the metaslab's free space.
2293 	 */
2294 	space = msp->ms_size - metaslab_allocated_space(msp);
2295 
2296 	if (metaslab_fragmentation_factor_enabled &&
2297 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2298 		/*
2299 		 * Use the fragmentation information to inversely scale
2300 		 * down the baseline weight. We need to ensure that we
2301 		 * don't exclude this metaslab completely when it's 100%
2302 		 * fragmented. To avoid this we reduce the fragmented value
2303 		 * by 1.
2304 		 */
2305 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2306 
2307 		/*
2308 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2309 		 * this metaslab again. The fragmentation metric may have
2310 		 * decreased the space to something smaller than
2311 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2312 		 * so that we can consume any remaining space.
2313 		 */
2314 		if (space > 0 && space < SPA_MINBLOCKSIZE)
2315 			space = SPA_MINBLOCKSIZE;
2316 	}
2317 	weight = space;
2318 
2319 	/*
2320 	 * Modern disks have uniform bit density and constant angular velocity.
2321 	 * Therefore, the outer recording zones are faster (higher bandwidth)
2322 	 * than the inner zones by the ratio of outer to inner track diameter,
2323 	 * which is typically around 2:1.  We account for this by assigning
2324 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
2325 	 * In effect, this means that we'll select the metaslab with the most
2326 	 * free bandwidth rather than simply the one with the most free space.
2327 	 */
2328 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
2329 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
2330 		ASSERT(weight >= space && weight <= 2 * space);
2331 	}
2332 
2333 	/*
2334 	 * If this metaslab is one we're actively using, adjust its
2335 	 * weight to make it preferable to any inactive metaslab so
2336 	 * we'll polish it off. If the fragmentation on this metaslab
2337 	 * has exceed our threshold, then don't mark it active.
2338 	 */
2339 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
2340 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
2341 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
2342 	}
2343 
2344 	WEIGHT_SET_SPACEBASED(weight);
2345 	return (weight);
2346 }
2347 
2348 /*
2349  * Return the weight of the specified metaslab, according to the segment-based
2350  * weighting algorithm. The metaslab must be loaded. This function can
2351  * be called within a sync pass since it relies only on the metaslab's
2352  * range tree which is always accurate when the metaslab is loaded.
2353  */
2354 static uint64_t
2355 metaslab_weight_from_range_tree(metaslab_t *msp)
2356 {
2357 	uint64_t weight = 0;
2358 	uint32_t segments = 0;
2359 
2360 	ASSERT(msp->ms_loaded);
2361 
2362 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
2363 	    i--) {
2364 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
2365 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2366 
2367 		segments <<= 1;
2368 		segments += msp->ms_allocatable->rt_histogram[i];
2369 
2370 		/*
2371 		 * The range tree provides more precision than the space map
2372 		 * and must be downgraded so that all values fit within the
2373 		 * space map's histogram. This allows us to compare loaded
2374 		 * vs. unloaded metaslabs to determine which metaslab is
2375 		 * considered "best".
2376 		 */
2377 		if (i > max_idx)
2378 			continue;
2379 
2380 		if (segments != 0) {
2381 			WEIGHT_SET_COUNT(weight, segments);
2382 			WEIGHT_SET_INDEX(weight, i);
2383 			WEIGHT_SET_ACTIVE(weight, 0);
2384 			break;
2385 		}
2386 	}
2387 	return (weight);
2388 }
2389 
2390 /*
2391  * Calculate the weight based on the on-disk histogram. Should be applied
2392  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
2393  * give results consistent with the on-disk state
2394  */
2395 static uint64_t
2396 metaslab_weight_from_spacemap(metaslab_t *msp)
2397 {
2398 	space_map_t *sm = msp->ms_sm;
2399 	ASSERT(!msp->ms_loaded);
2400 	ASSERT(sm != NULL);
2401 	ASSERT3U(space_map_object(sm), !=, 0);
2402 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
2403 
2404 	/*
2405 	 * Create a joint histogram from all the segments that have made
2406 	 * it to the metaslab's space map histogram, that are not yet
2407 	 * available for allocation because they are still in the freeing
2408 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
2409 	 * these segments from the space map's histogram to get a more
2410 	 * accurate weight.
2411 	 */
2412 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
2413 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
2414 		deferspace_histogram[i] += msp->ms_synchist[i];
2415 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2416 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2417 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
2418 		}
2419 	}
2420 
2421 	uint64_t weight = 0;
2422 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
2423 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
2424 		    deferspace_histogram[i]);
2425 		uint64_t count =
2426 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
2427 		if (count != 0) {
2428 			WEIGHT_SET_COUNT(weight, count);
2429 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
2430 			WEIGHT_SET_ACTIVE(weight, 0);
2431 			break;
2432 		}
2433 	}
2434 	return (weight);
2435 }
2436 
2437 /*
2438  * Compute a segment-based weight for the specified metaslab. The weight
2439  * is determined by highest bucket in the histogram. The information
2440  * for the highest bucket is encoded into the weight value.
2441  */
2442 static uint64_t
2443 metaslab_segment_weight(metaslab_t *msp)
2444 {
2445 	metaslab_group_t *mg = msp->ms_group;
2446 	uint64_t weight = 0;
2447 	uint8_t shift = mg->mg_vd->vdev_ashift;
2448 
2449 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2450 
2451 	/*
2452 	 * The metaslab is completely free.
2453 	 */
2454 	if (metaslab_allocated_space(msp) == 0) {
2455 		int idx = highbit64(msp->ms_size) - 1;
2456 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2457 
2458 		if (idx < max_idx) {
2459 			WEIGHT_SET_COUNT(weight, 1ULL);
2460 			WEIGHT_SET_INDEX(weight, idx);
2461 		} else {
2462 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
2463 			WEIGHT_SET_INDEX(weight, max_idx);
2464 		}
2465 		WEIGHT_SET_ACTIVE(weight, 0);
2466 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
2467 		return (weight);
2468 	}
2469 
2470 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
2471 
2472 	/*
2473 	 * If the metaslab is fully allocated then just make the weight 0.
2474 	 */
2475 	if (metaslab_allocated_space(msp) == msp->ms_size)
2476 		return (0);
2477 	/*
2478 	 * If the metaslab is already loaded, then use the range tree to
2479 	 * determine the weight. Otherwise, we rely on the space map information
2480 	 * to generate the weight.
2481 	 */
2482 	if (msp->ms_loaded) {
2483 		weight = metaslab_weight_from_range_tree(msp);
2484 	} else {
2485 		weight = metaslab_weight_from_spacemap(msp);
2486 	}
2487 
2488 	/*
2489 	 * If the metaslab was active the last time we calculated its weight
2490 	 * then keep it active. We want to consume the entire region that
2491 	 * is associated with this weight.
2492 	 */
2493 	if (msp->ms_activation_weight != 0 && weight != 0)
2494 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
2495 	return (weight);
2496 }
2497 
2498 /*
2499  * Determine if we should attempt to allocate from this metaslab. If the
2500  * metaslab is loaded, then we can determine if the desired allocation
2501  * can be satisfied by looking at the size of the maximum free segment
2502  * on that metaslab. Otherwise, we make our decision based on the metaslab's
2503  * weight. For segment-based weighting we can determine the maximum
2504  * allocation based on the index encoded in its value. For space-based
2505  * weights we rely on the entire weight (excluding the weight-type bit).
2506  */
2507 boolean_t
2508 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
2509 {
2510 	if (msp->ms_loaded) {
2511 		return (msp->ms_max_size >= asize);
2512 	} else {
2513 		ASSERT0(msp->ms_max_size);
2514 	}
2515 
2516 	boolean_t should_allocate;
2517 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2518 		/*
2519 		 * The metaslab segment weight indicates segments in the
2520 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
2521 		 * Since the asize might be in the middle of the range, we
2522 		 * should attempt the allocation if asize < 2^(i+1).
2523 		 */
2524 		should_allocate = (asize <
2525 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
2526 	} else {
2527 		should_allocate = (asize <=
2528 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
2529 	}
2530 	return (should_allocate);
2531 }
2532 
2533 static uint64_t
2534 metaslab_weight(metaslab_t *msp)
2535 {
2536 	vdev_t *vd = msp->ms_group->mg_vd;
2537 	spa_t *spa = vd->vdev_spa;
2538 	uint64_t weight;
2539 
2540 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2541 
2542 	/*
2543 	 * If this vdev is in the process of being removed, there is nothing
2544 	 * for us to do here.
2545 	 */
2546 	if (vd->vdev_removing)
2547 		return (0);
2548 
2549 	metaslab_set_fragmentation(msp);
2550 
2551 	/*
2552 	 * Update the maximum size if the metaslab is loaded. This will
2553 	 * ensure that we get an accurate maximum size if newly freed space
2554 	 * has been added back into the free tree.
2555 	 */
2556 	if (msp->ms_loaded)
2557 		msp->ms_max_size = metaslab_block_maxsize(msp);
2558 	else
2559 		ASSERT0(msp->ms_max_size);
2560 
2561 	/*
2562 	 * Segment-based weighting requires space map histogram support.
2563 	 */
2564 	if (zfs_metaslab_segment_weight_enabled &&
2565 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2566 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2567 	    sizeof (space_map_phys_t))) {
2568 		weight = metaslab_segment_weight(msp);
2569 	} else {
2570 		weight = metaslab_space_weight(msp);
2571 	}
2572 	return (weight);
2573 }
2574 
2575 void
2576 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
2577 {
2578 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
2579 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2580 	metaslab_group_sort(msp->ms_group, msp,
2581 	    metaslab_weight(msp) | was_active);
2582 }
2583 
2584 static int
2585 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2586     int allocator, uint64_t activation_weight)
2587 {
2588 	/*
2589 	 * If we're activating for the claim code, we don't want to actually
2590 	 * set the metaslab up for a specific allocator.
2591 	 */
2592 	if (activation_weight == METASLAB_WEIGHT_CLAIM)
2593 		return (0);
2594 	metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2595 	    mg->mg_primaries : mg->mg_secondaries);
2596 
2597 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2598 	mutex_enter(&mg->mg_lock);
2599 	if (arr[allocator] != NULL) {
2600 		mutex_exit(&mg->mg_lock);
2601 		return (EEXIST);
2602 	}
2603 
2604 	arr[allocator] = msp;
2605 	ASSERT3S(msp->ms_allocator, ==, -1);
2606 	msp->ms_allocator = allocator;
2607 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2608 	mutex_exit(&mg->mg_lock);
2609 
2610 	return (0);
2611 }
2612 
2613 static int
2614 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
2615 {
2616 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2617 
2618 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
2619 		int error = metaslab_load(msp);
2620 		if (error != 0) {
2621 			metaslab_group_sort(msp->ms_group, msp, 0);
2622 			return (error);
2623 		}
2624 		if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2625 			/*
2626 			 * The metaslab was activated for another allocator
2627 			 * while we were waiting, we should reselect.
2628 			 */
2629 			return (EBUSY);
2630 		}
2631 		if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2632 		    allocator, activation_weight)) != 0) {
2633 			return (error);
2634 		}
2635 
2636 		msp->ms_activation_weight = msp->ms_weight;
2637 		metaslab_group_sort(msp->ms_group, msp,
2638 		    msp->ms_weight | activation_weight);
2639 	}
2640 	ASSERT(msp->ms_loaded);
2641 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2642 
2643 	return (0);
2644 }
2645 
2646 static void
2647 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2648     uint64_t weight)
2649 {
2650 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2651 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2652 		metaslab_group_sort(mg, msp, weight);
2653 		return;
2654 	}
2655 
2656 	mutex_enter(&mg->mg_lock);
2657 	ASSERT3P(msp->ms_group, ==, mg);
2658 	if (msp->ms_primary) {
2659 		ASSERT3U(0, <=, msp->ms_allocator);
2660 		ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2661 		ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2662 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2663 		mg->mg_primaries[msp->ms_allocator] = NULL;
2664 	} else {
2665 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2666 		ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2667 		mg->mg_secondaries[msp->ms_allocator] = NULL;
2668 	}
2669 	msp->ms_allocator = -1;
2670 	metaslab_group_sort_impl(mg, msp, weight);
2671 	mutex_exit(&mg->mg_lock);
2672 }
2673 
2674 static void
2675 metaslab_passivate(metaslab_t *msp, uint64_t weight)
2676 {
2677 	uint64_t size = weight & ~METASLAB_WEIGHT_TYPE;
2678 
2679 	/*
2680 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2681 	 * this metaslab again.  In that case, it had better be empty,
2682 	 * or we would be leaving space on the table.
2683 	 */
2684 	ASSERT(size >= SPA_MINBLOCKSIZE ||
2685 	    range_tree_is_empty(msp->ms_allocatable));
2686 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
2687 
2688 	msp->ms_activation_weight = 0;
2689 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
2690 	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2691 }
2692 
2693 /*
2694  * Segment-based metaslabs are activated once and remain active until
2695  * we either fail an allocation attempt (similar to space-based metaslabs)
2696  * or have exhausted the free space in zfs_metaslab_switch_threshold
2697  * buckets since the metaslab was activated. This function checks to see
2698  * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2699  * metaslab and passivates it proactively. This will allow us to select a
2700  * metaslabs with larger contiguous region if any remaining within this
2701  * metaslab group. If we're in sync pass > 1, then we continue using this
2702  * metaslab so that we don't dirty more block and cause more sync passes.
2703  */
2704 void
2705 metaslab_segment_may_passivate(metaslab_t *msp)
2706 {
2707 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2708 
2709 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2710 		return;
2711 
2712 	/*
2713 	 * Since we are in the middle of a sync pass, the most accurate
2714 	 * information that is accessible to us is the in-core range tree
2715 	 * histogram; calculate the new weight based on that information.
2716 	 */
2717 	uint64_t weight = metaslab_weight_from_range_tree(msp);
2718 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2719 	int current_idx = WEIGHT_GET_INDEX(weight);
2720 
2721 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2722 		metaslab_passivate(msp, weight);
2723 }
2724 
2725 static void
2726 metaslab_preload(void *arg)
2727 {
2728 	metaslab_t *msp = arg;
2729 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2730 
2731 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2732 
2733 	mutex_enter(&msp->ms_lock);
2734 	(void) metaslab_load(msp);
2735 	msp->ms_selected_txg = spa_syncing_txg(spa);
2736 	mutex_exit(&msp->ms_lock);
2737 }
2738 
2739 static void
2740 metaslab_group_preload(metaslab_group_t *mg)
2741 {
2742 	spa_t *spa = mg->mg_vd->vdev_spa;
2743 	metaslab_t *msp;
2744 	avl_tree_t *t = &mg->mg_metaslab_tree;
2745 	int m = 0;
2746 
2747 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
2748 		taskq_wait(mg->mg_taskq);
2749 		return;
2750 	}
2751 
2752 	mutex_enter(&mg->mg_lock);
2753 
2754 	/*
2755 	 * Load the next potential metaslabs
2756 	 */
2757 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2758 		ASSERT3P(msp->ms_group, ==, mg);
2759 
2760 		/*
2761 		 * We preload only the maximum number of metaslabs specified
2762 		 * by metaslab_preload_limit. If a metaslab is being forced
2763 		 * to condense then we preload it too. This will ensure
2764 		 * that force condensing happens in the next txg.
2765 		 */
2766 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2767 			continue;
2768 		}
2769 
2770 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2771 		    msp, TQ_SLEEP) != TASKQID_INVALID);
2772 	}
2773 	mutex_exit(&mg->mg_lock);
2774 }
2775 
2776 /*
2777  * Determine if the space map's on-disk footprint is past our tolerance for
2778  * inefficiency. We would like to use the following criteria to make our
2779  * decision:
2780  *
2781  * 1. Do not condense if the size of the space map object would dramatically
2782  *    increase as a result of writing out the free space range tree.
2783  *
2784  * 2. Condense if the on on-disk space map representation is at least
2785  *    zfs_condense_pct/100 times the size of the optimal representation
2786  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
2787  *
2788  * 3. Do not condense if the on-disk size of the space map does not actually
2789  *    decrease.
2790  *
2791  * Unfortunately, we cannot compute the on-disk size of the space map in this
2792  * context because we cannot accurately compute the effects of compression, etc.
2793  * Instead, we apply the heuristic described in the block comment for
2794  * zfs_metaslab_condense_block_threshold - we only condense if the space used
2795  * is greater than a threshold number of blocks.
2796  */
2797 static boolean_t
2798 metaslab_should_condense(metaslab_t *msp)
2799 {
2800 	space_map_t *sm = msp->ms_sm;
2801 	vdev_t *vd = msp->ms_group->mg_vd;
2802 	uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2803 
2804 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2805 	ASSERT(msp->ms_loaded);
2806 	ASSERT(sm != NULL);
2807 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
2808 
2809 	/*
2810 	 * We always condense metaslabs that are empty and metaslabs for
2811 	 * which a condense request has been made.
2812 	 */
2813 	if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2814 	    msp->ms_condense_wanted)
2815 		return (B_TRUE);
2816 
2817 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
2818 	uint64_t object_size = space_map_length(sm);
2819 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2820 	    msp->ms_allocatable, SM_NO_VDEVID);
2821 
2822 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
2823 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
2824 }
2825 
2826 /*
2827  * Condense the on-disk space map representation to its minimized form.
2828  * The minimized form consists of a small number of allocations followed
2829  * by the entries of the free range tree (ms_allocatable). The condensed
2830  * spacemap contains all the entries of previous TXGs (including those in
2831  * the pool-wide log spacemaps; thus this is effectively a superset of
2832  * metaslab_flush()), but this TXG's entries still need to be written.
2833  */
2834 static void
2835 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
2836 {
2837 	range_tree_t *condense_tree;
2838 	space_map_t *sm = msp->ms_sm;
2839 	uint64_t txg = dmu_tx_get_txg(tx);
2840 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2841 
2842 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2843 	ASSERT(msp->ms_loaded);
2844 	ASSERT(msp->ms_sm != NULL);
2845 
2846 	/*
2847 	 * In order to condense the space map, we need to change it so it
2848 	 * only describes which segments are currently allocated and free.
2849 	 *
2850 	 * All the current free space resides in the ms_allocatable, all
2851 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
2852 	 * ms_freed because it is empty because we're in sync pass 1. We
2853 	 * ignore ms_freeing because these changes are not yet reflected
2854 	 * in the spacemap (they will be written later this txg).
2855 	 *
2856 	 * So to truncate the space map to represent all the entries of
2857 	 * previous TXGs we do the following:
2858 	 *
2859 	 * 1] We create a range tree (condense tree) that is 100% allocated.
2860 	 * 2] We remove from it all segments found in the ms_defer trees
2861 	 *    as those segments are marked as free in the original space
2862 	 *    map. We do the same with the ms_allocating trees for the same
2863 	 *    reason. Removing these segments should be a relatively
2864 	 *    inexpensive operation since we expect these trees to have a
2865 	 *    small number of nodes.
2866 	 * 3] We vacate any unflushed allocs as they should already exist
2867 	 *    in the condense tree. Then we vacate any unflushed frees as
2868 	 *    they should already be part of ms_allocatable.
2869 	 * 4] At this point, we would ideally like to remove all segments
2870 	 *    in the ms_allocatable tree from the condense tree. This way
2871 	 *    we would write all the entries of the condense tree as the
2872 	 *    condensed space map, which would only contain allocated
2873 	 *    segments with everything else assumed to be freed.
2874 	 *
2875 	 *    Doing so can be prohibitively expensive as ms_allocatable can
2876 	 *    be large, and therefore computationally expensive to subtract
2877 	 *    from the condense_tree. Instead we first sync out the
2878 	 *    condense_tree and then the ms_allocatable, in the condensed
2879 	 *    space map. While this is not optimal, it is typically close to
2880 	 *    optimal and more importantly much cheaper to compute.
2881 	 *
2882 	 * 5] Finally, as both of the unflushed trees were written to our
2883 	 *    new and condensed metaslab space map, we basically flushed
2884 	 *    all the unflushed changes to disk, thus we call
2885 	 *    metaslab_flush_update().
2886 	 */
2887 	ASSERT3U(spa_sync_pass(spa), ==, 1);
2888 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
2889 
2890 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2891 	    "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2892 	    msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2893 	    spa->spa_name, space_map_length(msp->ms_sm),
2894 	    avl_numnodes(&msp->ms_allocatable->rt_root),
2895 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
2896 
2897 	msp->ms_condense_wanted = B_FALSE;
2898 
2899 	condense_tree = range_tree_create(NULL, NULL);
2900 	range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2901 
2902 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2903 		range_tree_walk(msp->ms_defer[t],
2904 		    range_tree_remove, condense_tree);
2905 	}
2906 
2907 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
2908 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
2909 		    range_tree_remove, condense_tree);
2910 	}
2911 
2912 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2913 	    metaslab_unflushed_changes_memused(msp));
2914 	spa->spa_unflushed_stats.sus_memused -=
2915 	    metaslab_unflushed_changes_memused(msp);
2916 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2917 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2918 
2919 	/*
2920 	 * We're about to drop the metaslab's lock thus allowing other
2921 	 * consumers to change its content. Set the metaslab's ms_condensing
2922 	 * flag to ensure that allocations on this metaslab do not occur
2923 	 * while we're in the middle of committing it to disk. This is only
2924 	 * critical for ms_allocatable as all other range trees use per TXG
2925 	 * views of their content.
2926 	 */
2927 	msp->ms_condensing = B_TRUE;
2928 
2929 	mutex_exit(&msp->ms_lock);
2930 	uint64_t object = space_map_object(msp->ms_sm);
2931 	space_map_truncate(sm,
2932 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
2933 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
2934 
2935 	/*
2936 	 * space_map_truncate() may have reallocated the spacemap object.
2937 	 * If so, update the vdev_ms_array.
2938 	 */
2939 	if (space_map_object(msp->ms_sm) != object) {
2940 		object = space_map_object(msp->ms_sm);
2941 		dmu_write(spa->spa_meta_objset,
2942 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
2943 		    msp->ms_id, sizeof (uint64_t), &object, tx);
2944 	}
2945 
2946 	/*
2947 	 * Note:
2948 	 * When the log space map feature is enabled, each space map will
2949 	 * always have ALLOCS followed by FREES for each sync pass. This is
2950 	 * typically true even when the log space map feature is disabled,
2951 	 * except from the case where a metaslab goes through metaslab_sync()
2952 	 * and gets condensed. In that case the metaslab's space map will have
2953 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
2954 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
2955 	 * sync pass 1.
2956 	 */
2957 	space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
2958 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
2959 
2960 	range_tree_vacate(condense_tree, NULL, NULL);
2961 	range_tree_destroy(condense_tree);
2962 	mutex_enter(&msp->ms_lock);
2963 
2964 	msp->ms_condensing = B_FALSE;
2965 	metaslab_flush_update(msp, tx);
2966 }
2967 
2968 /*
2969  * Called when the metaslab has been flushed (its own spacemap now reflects
2970  * all the contents of the pool-wide spacemap log). Updates the metaslab's
2971  * metadata and any pool-wide related log space map data (e.g. summary,
2972  * obsolete logs, etc.) to reflect that.
2973  */
2974 static void
2975 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
2976 {
2977 	metaslab_group_t *mg = msp->ms_group;
2978 	spa_t *spa = mg->mg_vd->vdev_spa;
2979 
2980 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2981 
2982 	ASSERT3U(spa_sync_pass(spa), ==, 1);
2983 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2984 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2985 
2986 	/*
2987 	 * Just because a metaslab got flushed, that doesn't mean that
2988 	 * it will pass through metaslab_sync_done(). Thus, make sure to
2989 	 * update ms_synced_length here in case it doesn't.
2990 	 */
2991 	msp->ms_synced_length = space_map_length(msp->ms_sm);
2992 
2993 	/*
2994 	 * We may end up here from metaslab_condense() without the
2995 	 * feature being active. In that case this is a no-op.
2996 	 */
2997 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
2998 		return;
2999 
3000 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3001 	ASSERT(msp->ms_sm != NULL);
3002 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3003 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3004 
3005 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3006 
3007 	/* update metaslab's position in our flushing tree */
3008 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3009 	mutex_enter(&spa->spa_flushed_ms_lock);
3010 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3011 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3012 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3013 	mutex_exit(&spa->spa_flushed_ms_lock);
3014 
3015 	/* update metaslab counts of spa_log_sm_t nodes */
3016 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3017 	spa_log_sm_increment_current_mscount(spa);
3018 
3019 	/* cleanup obsolete logs if any */
3020 	uint64_t log_blocks_before = spa_log_sm_nblocks(spa);
3021 	spa_cleanup_old_sm_logs(spa, tx);
3022 	uint64_t log_blocks_after = spa_log_sm_nblocks(spa);
3023 	VERIFY3U(log_blocks_after, <=, log_blocks_before);
3024 
3025 	/* update log space map summary */
3026 	uint64_t blocks_gone = log_blocks_before - log_blocks_after;
3027 	spa_log_summary_add_flushed_metaslab(spa);
3028 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg);
3029 	spa_log_summary_decrement_blkcount(spa, blocks_gone);
3030 }
3031 
3032 boolean_t
3033 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3034 {
3035 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3036 
3037 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3038 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3039 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3040 
3041 	ASSERT(msp->ms_sm != NULL);
3042 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3043 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3044 
3045 	/*
3046 	 * There is nothing wrong with flushing the same metaslab twice, as
3047 	 * this codepath should work on that case. However, the current
3048 	 * flushing scheme makes sure to avoid this situation as we would be
3049 	 * making all these calls without having anything meaningful to write
3050 	 * to disk. We assert this behavior here.
3051 	 */
3052 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3053 
3054 	/*
3055 	 * We can not flush while loading, because then we would
3056 	 * not load the ms_unflushed_{allocs,frees}.
3057 	 */
3058 	if (msp->ms_loading)
3059 		return (B_FALSE);
3060 
3061 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3062 	metaslab_verify_weight_and_frag(msp);
3063 
3064 	/*
3065 	 * Metaslab condensing is effectively flushing. Therefore if the
3066 	 * metaslab can be condensed we can just condense it instead of
3067 	 * flushing it.
3068 	 *
3069 	 * Note that metaslab_condense() does call metaslab_flush_update()
3070 	 * so we can just return immediately after condensing. We also
3071 	 * don't need to care about setting ms_flushing or broadcasting
3072 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3073 	 * metaslab_condense(), as the metaslab is already loaded.
3074 	 */
3075 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3076 		metaslab_group_t *mg = msp->ms_group;
3077 
3078 		/*
3079 		 * For all histogram operations below refer to the
3080 		 * comments of metaslab_sync() where we follow a
3081 		 * similar procedure.
3082 		 */
3083 		metaslab_group_histogram_verify(mg);
3084 		metaslab_class_histogram_verify(mg->mg_class);
3085 		metaslab_group_histogram_remove(mg, msp);
3086 
3087 		metaslab_condense(msp, tx);
3088 
3089 		space_map_histogram_clear(msp->ms_sm);
3090 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3091 		ASSERT(range_tree_is_empty(msp->ms_freed));
3092 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3093 			space_map_histogram_add(msp->ms_sm,
3094 			    msp->ms_defer[t], tx);
3095 		}
3096 		metaslab_aux_histograms_update(msp);
3097 
3098 		metaslab_group_histogram_add(mg, msp);
3099 		metaslab_group_histogram_verify(mg);
3100 		metaslab_class_histogram_verify(mg->mg_class);
3101 
3102 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3103 
3104 		/*
3105 		 * Since we recreated the histogram (and potentially
3106 		 * the ms_sm too while condensing) ensure that the
3107 		 * weight is updated too because we are not guaranteed
3108 		 * that this metaslab is dirty and will go through
3109 		 * metaslab_sync_done().
3110 		 */
3111 		metaslab_recalculate_weight_and_sort(msp);
3112 		return (B_TRUE);
3113 	}
3114 
3115 	msp->ms_flushing = B_TRUE;
3116 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3117 
3118 	mutex_exit(&msp->ms_lock);
3119 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3120 	    SM_NO_VDEVID, tx);
3121 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3122 	    SM_NO_VDEVID, tx);
3123 	mutex_enter(&msp->ms_lock);
3124 
3125 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3126 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3127 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3128 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3129 		    "appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa),
3130 		    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
3131 		    range_tree_space(msp->ms_unflushed_allocs),
3132 		    range_tree_space(msp->ms_unflushed_frees),
3133 		    (sm_len_after - sm_len_before));
3134 	}
3135 
3136 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3137 	    metaslab_unflushed_changes_memused(msp));
3138 	spa->spa_unflushed_stats.sus_memused -=
3139 	    metaslab_unflushed_changes_memused(msp);
3140 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3141 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3142 
3143 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3144 	metaslab_verify_weight_and_frag(msp);
3145 
3146 	metaslab_flush_update(msp, tx);
3147 
3148 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3149 	metaslab_verify_weight_and_frag(msp);
3150 
3151 	msp->ms_flushing = B_FALSE;
3152 	cv_broadcast(&msp->ms_flush_cv);
3153 	return (B_TRUE);
3154 }
3155 
3156 /*
3157  * Write a metaslab to disk in the context of the specified transaction group.
3158  */
3159 void
3160 metaslab_sync(metaslab_t *msp, uint64_t txg)
3161 {
3162 	metaslab_group_t *mg = msp->ms_group;
3163 	vdev_t *vd = mg->mg_vd;
3164 	spa_t *spa = vd->vdev_spa;
3165 	objset_t *mos = spa_meta_objset(spa);
3166 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3167 	dmu_tx_t *tx;
3168 
3169 	ASSERT(!vd->vdev_ishole);
3170 
3171 	/*
3172 	 * This metaslab has just been added so there's no work to do now.
3173 	 */
3174 	if (msp->ms_freeing == NULL) {
3175 		ASSERT3P(alloctree, ==, NULL);
3176 		return;
3177 	}
3178 
3179 	ASSERT3P(alloctree, !=, NULL);
3180 	ASSERT3P(msp->ms_freeing, !=, NULL);
3181 	ASSERT3P(msp->ms_freed, !=, NULL);
3182 	ASSERT3P(msp->ms_checkpointing, !=, NULL);
3183 	ASSERT3P(msp->ms_trim, !=, NULL);
3184 
3185 	/*
3186 	 * Normally, we don't want to process a metaslab if there are no
3187 	 * allocations or frees to perform. However, if the metaslab is being
3188 	 * forced to condense and it's loaded, we need to let it through.
3189 	 */
3190 	if (range_tree_is_empty(alloctree) &&
3191 	    range_tree_is_empty(msp->ms_freeing) &&
3192 	    range_tree_is_empty(msp->ms_checkpointing) &&
3193 	    !(msp->ms_loaded && msp->ms_condense_wanted))
3194 		return;
3195 
3196 
3197 	VERIFY(txg <= spa_final_dirty_txg(spa));
3198 
3199 	/*
3200 	 * The only state that can actually be changing concurrently
3201 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
3202 	 * other thread can be modifying this txg's alloc, freeing,
3203 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
3204 	 * could call into the DMU, because the DMU can call down to
3205 	 * us (e.g. via zio_free()) at any time.
3206 	 *
3207 	 * The spa_vdev_remove_thread() can be reading metaslab state
3208 	 * concurrently, and it is locked out by the ms_sync_lock.
3209 	 * Note that the ms_lock is insufficient for this, because it
3210 	 * is dropped by space_map_write().
3211 	 */
3212 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3213 
3214 	/*
3215 	 * Generate a log space map if one doesn't exist already.
3216 	 */
3217 	spa_generate_syncing_log_sm(spa, tx);
3218 
3219 	if (msp->ms_sm == NULL) {
3220 		uint64_t new_object = space_map_alloc(mos,
3221 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3222 		    zfs_metaslab_sm_blksz_with_log :
3223 		    zfs_metaslab_sm_blksz_no_log, tx);
3224 		VERIFY3U(new_object, !=, 0);
3225 
3226 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
3227 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
3228 
3229 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
3230 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
3231 		ASSERT(msp->ms_sm != NULL);
3232 
3233 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3234 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3235 		ASSERT0(metaslab_allocated_space(msp));
3236 	}
3237 
3238 	if (metaslab_unflushed_txg(msp) == 0 &&
3239 	    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
3240 		ASSERT(spa_syncing_log_sm(spa) != NULL);
3241 
3242 		metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3243 		spa_log_sm_increment_current_mscount(spa);
3244 		spa_log_summary_add_flushed_metaslab(spa);
3245 
3246 		ASSERT(msp->ms_sm != NULL);
3247 		mutex_enter(&spa->spa_flushed_ms_lock);
3248 		avl_add(&spa->spa_metaslabs_by_flushed, msp);
3249 		mutex_exit(&spa->spa_flushed_ms_lock);
3250 
3251 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3252 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3253 	}
3254 
3255 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
3256 	    vd->vdev_checkpoint_sm == NULL) {
3257 		ASSERT(spa_has_checkpoint(spa));
3258 
3259 		uint64_t new_object = space_map_alloc(mos,
3260 		    zfs_vdev_standard_sm_blksz, tx);
3261 		VERIFY3U(new_object, !=, 0);
3262 
3263 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
3264 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
3265 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3266 
3267 		/*
3268 		 * We save the space map object as an entry in vdev_top_zap
3269 		 * so it can be retrieved when the pool is reopened after an
3270 		 * export or through zdb.
3271 		 */
3272 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
3273 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
3274 		    sizeof (new_object), 1, &new_object, tx));
3275 	}
3276 
3277 	mutex_enter(&msp->ms_sync_lock);
3278 	mutex_enter(&msp->ms_lock);
3279 
3280 	/*
3281 	 * Note: metaslab_condense() clears the space map's histogram.
3282 	 * Therefore we must verify and remove this histogram before
3283 	 * condensing.
3284 	 */
3285 	metaslab_group_histogram_verify(mg);
3286 	metaslab_class_histogram_verify(mg->mg_class);
3287 	metaslab_group_histogram_remove(mg, msp);
3288 
3289 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
3290 	    metaslab_should_condense(msp))
3291 		metaslab_condense(msp, tx);
3292 
3293 	/*
3294 	 * We'll be going to disk to sync our space accounting, thus we
3295 	 * drop the ms_lock during that time so allocations coming from
3296 	 * open-context (ZIL) for future TXGs do not block.
3297 	 */
3298 	mutex_exit(&msp->ms_lock);
3299 	space_map_t *log_sm = spa_syncing_log_sm(spa);
3300 	if (log_sm != NULL) {
3301 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
3302 
3303 		space_map_write(log_sm, alloctree, SM_ALLOC,
3304 		    vd->vdev_id, tx);
3305 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
3306 		    vd->vdev_id, tx);
3307 		mutex_enter(&msp->ms_lock);
3308 
3309 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3310 		    metaslab_unflushed_changes_memused(msp));
3311 		spa->spa_unflushed_stats.sus_memused -=
3312 		    metaslab_unflushed_changes_memused(msp);
3313 		range_tree_remove_xor_add(alloctree,
3314 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
3315 		range_tree_remove_xor_add(msp->ms_freeing,
3316 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
3317 		spa->spa_unflushed_stats.sus_memused +=
3318 		    metaslab_unflushed_changes_memused(msp);
3319 	} else {
3320 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
3321 
3322 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
3323 		    SM_NO_VDEVID, tx);
3324 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
3325 		    SM_NO_VDEVID, tx);
3326 		mutex_enter(&msp->ms_lock);
3327 	}
3328 
3329 	msp->ms_allocated_space += range_tree_space(alloctree);
3330 	ASSERT3U(msp->ms_allocated_space, >=,
3331 	    range_tree_space(msp->ms_freeing));
3332 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
3333 
3334 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
3335 		ASSERT(spa_has_checkpoint(spa));
3336 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3337 
3338 		/*
3339 		 * Since we are doing writes to disk and the ms_checkpointing
3340 		 * tree won't be changing during that time, we drop the
3341 		 * ms_lock while writing to the checkpoint space map, for the
3342 		 * same reason mentioned above.
3343 		 */
3344 		mutex_exit(&msp->ms_lock);
3345 		space_map_write(vd->vdev_checkpoint_sm,
3346 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
3347 		mutex_enter(&msp->ms_lock);
3348 
3349 		spa->spa_checkpoint_info.sci_dspace +=
3350 		    range_tree_space(msp->ms_checkpointing);
3351 		vd->vdev_stat.vs_checkpoint_space +=
3352 		    range_tree_space(msp->ms_checkpointing);
3353 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
3354 		    -space_map_allocated(vd->vdev_checkpoint_sm));
3355 
3356 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
3357 	}
3358 
3359 	if (msp->ms_loaded) {
3360 		/*
3361 		 * When the space map is loaded, we have an accurate
3362 		 * histogram in the range tree. This gives us an opportunity
3363 		 * to bring the space map's histogram up-to-date so we clear
3364 		 * it first before updating it.
3365 		 */
3366 		space_map_histogram_clear(msp->ms_sm);
3367 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3368 
3369 		/*
3370 		 * Since we've cleared the histogram we need to add back
3371 		 * any free space that has already been processed, plus
3372 		 * any deferred space. This allows the on-disk histogram
3373 		 * to accurately reflect all free space even if some space
3374 		 * is not yet available for allocation (i.e. deferred).
3375 		 */
3376 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
3377 
3378 		/*
3379 		 * Add back any deferred free space that has not been
3380 		 * added back into the in-core free tree yet. This will
3381 		 * ensure that we don't end up with a space map histogram
3382 		 * that is completely empty unless the metaslab is fully
3383 		 * allocated.
3384 		 */
3385 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3386 			space_map_histogram_add(msp->ms_sm,
3387 			    msp->ms_defer[t], tx);
3388 		}
3389 	}
3390 
3391 	/*
3392 	 * Always add the free space from this sync pass to the space
3393 	 * map histogram. We want to make sure that the on-disk histogram
3394 	 * accounts for all free space. If the space map is not loaded,
3395 	 * then we will lose some accuracy but will correct it the next
3396 	 * time we load the space map.
3397 	 */
3398 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
3399 	metaslab_aux_histograms_update(msp);
3400 
3401 	metaslab_group_histogram_add(mg, msp);
3402 	metaslab_group_histogram_verify(mg);
3403 	metaslab_class_histogram_verify(mg->mg_class);
3404 
3405 	/*
3406 	 * For sync pass 1, we avoid traversing this txg's free range tree
3407 	 * and instead will just swap the pointers for freeing and freed.
3408 	 * We can safely do this since the freed_tree is guaranteed to be
3409 	 * empty on the initial pass.
3410 	 *
3411 	 * Keep in mind that even if we are currently using a log spacemap
3412 	 * we want current frees to end up in the ms_allocatable (but not
3413 	 * get appended to the ms_sm) so their ranges can be reused as usual.
3414 	 */
3415 	if (spa_sync_pass(spa) == 1) {
3416 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
3417 		ASSERT0(msp->ms_allocated_this_txg);
3418 	} else {
3419 		range_tree_vacate(msp->ms_freeing,
3420 		    range_tree_add, msp->ms_freed);
3421 	}
3422 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
3423 	range_tree_vacate(alloctree, NULL, NULL);
3424 
3425 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
3426 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
3427 	    & TXG_MASK]));
3428 	ASSERT0(range_tree_space(msp->ms_freeing));
3429 	ASSERT0(range_tree_space(msp->ms_checkpointing));
3430 
3431 	mutex_exit(&msp->ms_lock);
3432 
3433 	/*
3434 	 * Verify that the space map object ID has been recorded in the
3435 	 * vdev_ms_array.
3436 	 */
3437 	uint64_t object;
3438 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
3439 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
3440 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
3441 
3442 	mutex_exit(&msp->ms_sync_lock);
3443 	dmu_tx_commit(tx);
3444 }
3445 
3446 /*
3447  * Called after a transaction group has completely synced to mark
3448  * all of the metaslab's free space as usable.
3449  */
3450 void
3451 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
3452 {
3453 	metaslab_group_t *mg = msp->ms_group;
3454 	vdev_t *vd = mg->mg_vd;
3455 	spa_t *spa = vd->vdev_spa;
3456 	range_tree_t **defer_tree;
3457 	int64_t alloc_delta, defer_delta;
3458 	boolean_t defer_allowed = B_TRUE;
3459 
3460 	ASSERT(!vd->vdev_ishole);
3461 
3462 	mutex_enter(&msp->ms_lock);
3463 
3464 	/*
3465 	 * If this metaslab is just becoming available, initialize its
3466 	 * range trees and add its capacity to the vdev.
3467 	 */
3468 	if (msp->ms_freed == NULL) {
3469 		for (int t = 0; t < TXG_SIZE; t++) {
3470 			ASSERT(msp->ms_allocating[t] == NULL);
3471 
3472 			msp->ms_allocating[t] = range_tree_create(NULL, NULL);
3473 		}
3474 
3475 		ASSERT3P(msp->ms_freeing, ==, NULL);
3476 		msp->ms_freeing = range_tree_create(NULL, NULL);
3477 
3478 		ASSERT3P(msp->ms_freed, ==, NULL);
3479 		msp->ms_freed = range_tree_create(NULL, NULL);
3480 
3481 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3482 			ASSERT3P(msp->ms_defer[t], ==, NULL);
3483 			msp->ms_defer[t] = range_tree_create(NULL, NULL);
3484 		}
3485 
3486 		ASSERT3P(msp->ms_checkpointing, ==, NULL);
3487 		msp->ms_checkpointing = range_tree_create(NULL, NULL);
3488 
3489 		ASSERT3P(msp->ms_unflushed_allocs, ==, NULL);
3490 		msp->ms_unflushed_allocs = range_tree_create(NULL, NULL);
3491 		ASSERT3P(msp->ms_unflushed_frees, ==, NULL);
3492 		msp->ms_unflushed_frees = range_tree_create(NULL, NULL);
3493 
3494 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
3495 	}
3496 	ASSERT0(range_tree_space(msp->ms_freeing));
3497 	ASSERT0(range_tree_space(msp->ms_checkpointing));
3498 
3499 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
3500 
3501 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
3502 	    metaslab_class_get_alloc(spa_normal_class(spa));
3503 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
3504 		defer_allowed = B_FALSE;
3505 	}
3506 
3507 	defer_delta = 0;
3508 	alloc_delta = msp->ms_allocated_this_txg -
3509 	    range_tree_space(msp->ms_freed);
3510 
3511 	if (defer_allowed) {
3512 		defer_delta = range_tree_space(msp->ms_freed) -
3513 		    range_tree_space(*defer_tree);
3514 	} else {
3515 		defer_delta -= range_tree_space(*defer_tree);
3516 	}
3517 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
3518 	    defer_delta, 0);
3519 
3520 	if (spa_syncing_log_sm(spa) == NULL) {
3521 		/*
3522 		 * If there's a metaslab_load() in progress and we don't have
3523 		 * a log space map, it means that we probably wrote to the
3524 		 * metaslab's space map. If this is the case, we need to
3525 		 * make sure that we wait for the load to complete so that we
3526 		 * have a consistent view at the in-core side of the metaslab.
3527 		 */
3528 		metaslab_load_wait(msp);
3529 	} else {
3530 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3531 	}
3532 
3533 	/*
3534 	 * When auto-trimming is enabled, free ranges which are added to
3535 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
3536 	 * periodically consumed by the vdev_autotrim_thread() which issues
3537 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
3538 	 * can be discarded at any time with the sole consequence of recent
3539 	 * frees not being trimmed.
3540 	 */
3541 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
3542 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
3543 		if (!defer_allowed) {
3544 			range_tree_walk(msp->ms_freed, range_tree_add,
3545 			    msp->ms_trim);
3546 		}
3547 	} else {
3548 		range_tree_vacate(msp->ms_trim, NULL, NULL);
3549 	}
3550 
3551 	/*
3552 	 * Move the frees from the defer_tree back to the free
3553 	 * range tree (if it's loaded). Swap the freed_tree and
3554 	 * the defer_tree -- this is safe to do because we've
3555 	 * just emptied out the defer_tree.
3556 	 */
3557 	range_tree_vacate(*defer_tree,
3558 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
3559 	if (defer_allowed) {
3560 		range_tree_swap(&msp->ms_freed, defer_tree);
3561 	} else {
3562 		range_tree_vacate(msp->ms_freed,
3563 		    msp->ms_loaded ? range_tree_add : NULL,
3564 		    msp->ms_allocatable);
3565 	}
3566 
3567 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3568 
3569 	msp->ms_deferspace += defer_delta;
3570 	ASSERT3S(msp->ms_deferspace, >=, 0);
3571 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
3572 	if (msp->ms_deferspace != 0) {
3573 		/*
3574 		 * Keep syncing this metaslab until all deferred frees
3575 		 * are back in circulation.
3576 		 */
3577 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
3578 	}
3579 	metaslab_aux_histograms_update_done(msp, defer_allowed);
3580 
3581 	if (msp->ms_new) {
3582 		msp->ms_new = B_FALSE;
3583 		mutex_enter(&mg->mg_lock);
3584 		mg->mg_ms_ready++;
3585 		mutex_exit(&mg->mg_lock);
3586 	}
3587 
3588 	/*
3589 	 * Re-sort metaslab within its group now that we've adjusted
3590 	 * its allocatable space.
3591 	 */
3592 	metaslab_recalculate_weight_and_sort(msp);
3593 
3594 	/*
3595 	 * If the metaslab is loaded and we've not tried to load or allocate
3596 	 * from it in 'metaslab_unload_delay' txgs, then unload it.
3597 	 */
3598 	if (msp->ms_loaded &&
3599 	    msp->ms_disabled == 0 &&
3600 	    msp->ms_selected_txg + metaslab_unload_delay < txg) {
3601 
3602 		for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
3603 			VERIFY0(range_tree_space(
3604 			    msp->ms_allocating[(txg + t) & TXG_MASK]));
3605 		}
3606 		if (msp->ms_allocator != -1) {
3607 			metaslab_passivate(msp, msp->ms_weight &
3608 			    ~METASLAB_ACTIVE_MASK);
3609 		}
3610 
3611 		if (!metaslab_debug_unload)
3612 			metaslab_unload(msp);
3613 	}
3614 
3615 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
3616 	ASSERT0(range_tree_space(msp->ms_freeing));
3617 	ASSERT0(range_tree_space(msp->ms_freed));
3618 	ASSERT0(range_tree_space(msp->ms_checkpointing));
3619 
3620 	msp->ms_allocated_this_txg = 0;
3621 	mutex_exit(&msp->ms_lock);
3622 }
3623 
3624 void
3625 metaslab_sync_reassess(metaslab_group_t *mg)
3626 {
3627 	spa_t *spa = mg->mg_class->mc_spa;
3628 
3629 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3630 	metaslab_group_alloc_update(mg);
3631 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
3632 
3633 	/*
3634 	 * Preload the next potential metaslabs but only on active
3635 	 * metaslab groups. We can get into a state where the metaslab
3636 	 * is no longer active since we dirty metaslabs as we remove a
3637 	 * a device, thus potentially making the metaslab group eligible
3638 	 * for preloading.
3639 	 */
3640 	if (mg->mg_activation_count > 0) {
3641 		metaslab_group_preload(mg);
3642 	}
3643 	spa_config_exit(spa, SCL_ALLOC, FTAG);
3644 }
3645 
3646 /*
3647  * When writing a ditto block (i.e. more than one DVA for a given BP) on
3648  * the same vdev as an existing DVA of this BP, then try to allocate it
3649  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
3650  */
3651 static boolean_t
3652 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
3653 {
3654 	uint64_t dva_ms_id;
3655 
3656 	if (DVA_GET_ASIZE(dva) == 0)
3657 		return (B_TRUE);
3658 
3659 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
3660 		return (B_TRUE);
3661 
3662 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
3663 
3664 	return (msp->ms_id != dva_ms_id);
3665 }
3666 
3667 /*
3668  * ==========================================================================
3669  * Metaslab allocation tracing facility
3670  * ==========================================================================
3671  */
3672 kstat_t *metaslab_trace_ksp;
3673 kstat_named_t metaslab_trace_over_limit;
3674 
3675 void
3676 metaslab_alloc_trace_init(void)
3677 {
3678 	ASSERT(metaslab_alloc_trace_cache == NULL);
3679 	metaslab_alloc_trace_cache = kmem_cache_create(
3680 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
3681 	    0, NULL, NULL, NULL, NULL, NULL, 0);
3682 	metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
3683 	    "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
3684 	if (metaslab_trace_ksp != NULL) {
3685 		metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
3686 		kstat_named_init(&metaslab_trace_over_limit,
3687 		    "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
3688 		kstat_install(metaslab_trace_ksp);
3689 	}
3690 }
3691 
3692 void
3693 metaslab_alloc_trace_fini(void)
3694 {
3695 	if (metaslab_trace_ksp != NULL) {
3696 		kstat_delete(metaslab_trace_ksp);
3697 		metaslab_trace_ksp = NULL;
3698 	}
3699 	kmem_cache_destroy(metaslab_alloc_trace_cache);
3700 	metaslab_alloc_trace_cache = NULL;
3701 }
3702 
3703 /*
3704  * Add an allocation trace element to the allocation tracing list.
3705  */
3706 static void
3707 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
3708     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
3709     int allocator)
3710 {
3711 	if (!metaslab_trace_enabled)
3712 		return;
3713 
3714 	/*
3715 	 * When the tracing list reaches its maximum we remove
3716 	 * the second element in the list before adding a new one.
3717 	 * By removing the second element we preserve the original
3718 	 * entry as a clue to what allocations steps have already been
3719 	 * performed.
3720 	 */
3721 	if (zal->zal_size == metaslab_trace_max_entries) {
3722 		metaslab_alloc_trace_t *mat_next;
3723 #ifdef DEBUG
3724 		panic("too many entries in allocation list");
3725 #endif
3726 		atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
3727 		zal->zal_size--;
3728 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
3729 		list_remove(&zal->zal_list, mat_next);
3730 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
3731 	}
3732 
3733 	metaslab_alloc_trace_t *mat =
3734 	    kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
3735 	list_link_init(&mat->mat_list_node);
3736 	mat->mat_mg = mg;
3737 	mat->mat_msp = msp;
3738 	mat->mat_size = psize;
3739 	mat->mat_dva_id = dva_id;
3740 	mat->mat_offset = offset;
3741 	mat->mat_weight = 0;
3742 	mat->mat_allocator = allocator;
3743 
3744 	if (msp != NULL)
3745 		mat->mat_weight = msp->ms_weight;
3746 
3747 	/*
3748 	 * The list is part of the zio so locking is not required. Only
3749 	 * a single thread will perform allocations for a given zio.
3750 	 */
3751 	list_insert_tail(&zal->zal_list, mat);
3752 	zal->zal_size++;
3753 
3754 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
3755 }
3756 
3757 void
3758 metaslab_trace_init(zio_alloc_list_t *zal)
3759 {
3760 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
3761 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
3762 	zal->zal_size = 0;
3763 }
3764 
3765 void
3766 metaslab_trace_fini(zio_alloc_list_t *zal)
3767 {
3768 	metaslab_alloc_trace_t *mat;
3769 
3770 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
3771 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
3772 	list_destroy(&zal->zal_list);
3773 	zal->zal_size = 0;
3774 }
3775 
3776 /*
3777  * ==========================================================================
3778  * Metaslab block operations
3779  * ==========================================================================
3780  */
3781 
3782 static void
3783 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
3784     int allocator)
3785 {
3786 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
3787 	    (flags & METASLAB_DONT_THROTTLE))
3788 		return;
3789 
3790 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3791 	if (!mg->mg_class->mc_alloc_throttle_enabled)
3792 		return;
3793 
3794 	(void) zfs_refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
3795 }
3796 
3797 static void
3798 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
3799 {
3800 	uint64_t max = mg->mg_max_alloc_queue_depth;
3801 	uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3802 	while (cur < max) {
3803 		if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
3804 		    cur, cur + 1) == cur) {
3805 			atomic_inc_64(
3806 			    &mg->mg_class->mc_alloc_max_slots[allocator]);
3807 			return;
3808 		}
3809 		cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3810 	}
3811 }
3812 
3813 void
3814 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
3815     int allocator, boolean_t io_complete)
3816 {
3817 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
3818 	    (flags & METASLAB_DONT_THROTTLE))
3819 		return;
3820 
3821 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3822 	if (!mg->mg_class->mc_alloc_throttle_enabled)
3823 		return;
3824 
3825 	(void) zfs_refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
3826 	if (io_complete)
3827 		metaslab_group_increment_qdepth(mg, allocator);
3828 }
3829 
3830 void
3831 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
3832     int allocator)
3833 {
3834 #ifdef ZFS_DEBUG
3835 	const dva_t *dva = bp->blk_dva;
3836 	int ndvas = BP_GET_NDVAS(bp);
3837 
3838 	for (int d = 0; d < ndvas; d++) {
3839 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
3840 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3841 		VERIFY(zfs_refcount_not_held(
3842 		    &mg->mg_alloc_queue_depth[allocator], tag));
3843 	}
3844 #endif
3845 }
3846 
3847 static uint64_t
3848 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
3849 {
3850 	uint64_t start;
3851 	range_tree_t *rt = msp->ms_allocatable;
3852 	metaslab_class_t *mc = msp->ms_group->mg_class;
3853 
3854 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3855 	VERIFY(!msp->ms_condensing);
3856 	VERIFY0(msp->ms_disabled);
3857 
3858 	start = mc->mc_ops->msop_alloc(msp, size);
3859 	if (start != -1ULL) {
3860 		metaslab_group_t *mg = msp->ms_group;
3861 		vdev_t *vd = mg->mg_vd;
3862 
3863 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
3864 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3865 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
3866 		range_tree_remove(rt, start, size);
3867 		range_tree_clear(msp->ms_trim, start, size);
3868 
3869 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3870 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
3871 
3872 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
3873 
3874 		/* Track the last successful allocation */
3875 		msp->ms_alloc_txg = txg;
3876 		metaslab_verify_space(msp, txg);
3877 	}
3878 
3879 	/*
3880 	 * Now that we've attempted the allocation we need to update the
3881 	 * metaslab's maximum block size since it may have changed.
3882 	 */
3883 	msp->ms_max_size = metaslab_block_maxsize(msp);
3884 	return (start);
3885 }
3886 
3887 /*
3888  * Find the metaslab with the highest weight that is less than what we've
3889  * already tried.  In the common case, this means that we will examine each
3890  * metaslab at most once. Note that concurrent callers could reorder metaslabs
3891  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
3892  * activated by another thread, and we fail to allocate from the metaslab we
3893  * have selected, we may not try the newly-activated metaslab, and instead
3894  * activate another metaslab.  This is not optimal, but generally does not cause
3895  * any problems (a possible exception being if every metaslab is completely full
3896  * except for the the newly-activated metaslab which we fail to examine).
3897  */
3898 static metaslab_t *
3899 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
3900     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
3901     zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
3902 {
3903 	avl_index_t idx;
3904 	avl_tree_t *t = &mg->mg_metaslab_tree;
3905 	metaslab_t *msp = avl_find(t, search, &idx);
3906 	if (msp == NULL)
3907 		msp = avl_nearest(t, idx, AVL_AFTER);
3908 
3909 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
3910 		int i;
3911 		if (!metaslab_should_allocate(msp, asize)) {
3912 			metaslab_trace_add(zal, mg, msp, asize, d,
3913 			    TRACE_TOO_SMALL, allocator);
3914 			continue;
3915 		}
3916 
3917 		/*
3918 		 * If the selected metaslab is condensing or disabled,
3919 		 * skip it.
3920 		 */
3921 		if (msp->ms_condensing || msp->ms_disabled > 0)
3922 			continue;
3923 
3924 		*was_active = msp->ms_allocator != -1;
3925 		/*
3926 		 * If we're activating as primary, this is our first allocation
3927 		 * from this disk, so we don't need to check how close we are.
3928 		 * If the metaslab under consideration was already active,
3929 		 * we're getting desperate enough to steal another allocator's
3930 		 * metaslab, so we still don't care about distances.
3931 		 */
3932 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3933 			break;
3934 
3935 		for (i = 0; i < d; i++) {
3936 			if (want_unique &&
3937 			    !metaslab_is_unique(msp, &dva[i]))
3938 				break;  /* try another metaslab */
3939 		}
3940 		if (i == d)
3941 			break;
3942 	}
3943 
3944 	if (msp != NULL) {
3945 		search->ms_weight = msp->ms_weight;
3946 		search->ms_start = msp->ms_start + 1;
3947 		search->ms_allocator = msp->ms_allocator;
3948 		search->ms_primary = msp->ms_primary;
3949 	}
3950 	return (msp);
3951 }
3952 
3953 /* ARGSUSED */
3954 static uint64_t
3955 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
3956     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3957     int d, int allocator)
3958 {
3959 	metaslab_t *msp = NULL;
3960 	uint64_t offset = -1ULL;
3961 	uint64_t activation_weight;
3962 
3963 	activation_weight = METASLAB_WEIGHT_PRIMARY;
3964 	for (int i = 0; i < d; i++) {
3965 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3966 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3967 			activation_weight = METASLAB_WEIGHT_SECONDARY;
3968 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3969 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3970 			activation_weight = METASLAB_WEIGHT_CLAIM;
3971 			break;
3972 		}
3973 	}
3974 
3975 	/*
3976 	 * If we don't have enough metaslabs active to fill the entire array, we
3977 	 * just use the 0th slot.
3978 	 */
3979 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
3980 		allocator = 0;
3981 
3982 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3983 
3984 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
3985 	search->ms_weight = UINT64_MAX;
3986 	search->ms_start = 0;
3987 	/*
3988 	 * At the end of the metaslab tree are the already-active metaslabs,
3989 	 * first the primaries, then the secondaries. When we resume searching
3990 	 * through the tree, we need to consider ms_allocator and ms_primary so
3991 	 * we start in the location right after where we left off, and don't
3992 	 * accidentally loop forever considering the same metaslabs.
3993 	 */
3994 	search->ms_allocator = -1;
3995 	search->ms_primary = B_TRUE;
3996 	for (;;) {
3997 		boolean_t was_active = B_FALSE;
3998 
3999 		mutex_enter(&mg->mg_lock);
4000 
4001 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4002 		    mg->mg_primaries[allocator] != NULL) {
4003 			msp = mg->mg_primaries[allocator];
4004 			was_active = B_TRUE;
4005 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4006 		    mg->mg_secondaries[allocator] != NULL) {
4007 			msp = mg->mg_secondaries[allocator];
4008 			was_active = B_TRUE;
4009 		} else {
4010 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4011 			    want_unique, asize, allocator, zal, search,
4012 			    &was_active);
4013 		}
4014 
4015 		mutex_exit(&mg->mg_lock);
4016 		if (msp == NULL) {
4017 			kmem_free(search, sizeof (*search));
4018 			return (-1ULL);
4019 		}
4020 
4021 		mutex_enter(&msp->ms_lock);
4022 		/*
4023 		 * Ensure that the metaslab we have selected is still
4024 		 * capable of handling our request. It's possible that
4025 		 * another thread may have changed the weight while we
4026 		 * were blocked on the metaslab lock. We check the
4027 		 * active status first to see if we need to reselect
4028 		 * a new metaslab.
4029 		 */
4030 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4031 			mutex_exit(&msp->ms_lock);
4032 			continue;
4033 		}
4034 
4035 		/*
4036 		 * If the metaslab is freshly activated for an allocator that
4037 		 * isn't the one we're allocating from, or if it's a primary and
4038 		 * we're seeking a secondary (or vice versa), we go back and
4039 		 * select a new metaslab.
4040 		 */
4041 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4042 		    (msp->ms_allocator != -1) &&
4043 		    (msp->ms_allocator != allocator || ((activation_weight ==
4044 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4045 			mutex_exit(&msp->ms_lock);
4046 			continue;
4047 		}
4048 
4049 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4050 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4051 			metaslab_passivate(msp, msp->ms_weight &
4052 			    ~METASLAB_WEIGHT_CLAIM);
4053 			mutex_exit(&msp->ms_lock);
4054 			continue;
4055 		}
4056 
4057 		if (metaslab_activate(msp, allocator, activation_weight) != 0) {
4058 			mutex_exit(&msp->ms_lock);
4059 			continue;
4060 		}
4061 
4062 		msp->ms_selected_txg = txg;
4063 
4064 		/*
4065 		 * Now that we have the lock, recheck to see if we should
4066 		 * continue to use this metaslab for this allocation. The
4067 		 * the metaslab is now loaded so metaslab_should_allocate() can
4068 		 * accurately determine if the allocation attempt should
4069 		 * proceed.
4070 		 */
4071 		if (!metaslab_should_allocate(msp, asize)) {
4072 			/* Passivate this metaslab and select a new one. */
4073 			metaslab_trace_add(zal, mg, msp, asize, d,
4074 			    TRACE_TOO_SMALL, allocator);
4075 			goto next;
4076 		}
4077 
4078 		/*
4079 		 * If this metaslab is currently condensing then pick again as
4080 		 * we can't manipulate this metaslab until it's committed
4081 		 * to disk. If this metaslab is being initialized, we shouldn't
4082 		 * allocate from it since the allocated region might be
4083 		 * overwritten after allocation.
4084 		 */
4085 		if (msp->ms_condensing) {
4086 			metaslab_trace_add(zal, mg, msp, asize, d,
4087 			    TRACE_CONDENSING, allocator);
4088 			metaslab_passivate(msp, msp->ms_weight &
4089 			    ~METASLAB_ACTIVE_MASK);
4090 			mutex_exit(&msp->ms_lock);
4091 			continue;
4092 		} else if (msp->ms_disabled > 0) {
4093 			metaslab_trace_add(zal, mg, msp, asize, d,
4094 			    TRACE_DISABLED, allocator);
4095 			metaslab_passivate(msp, msp->ms_weight &
4096 			    ~METASLAB_ACTIVE_MASK);
4097 			mutex_exit(&msp->ms_lock);
4098 			continue;
4099 		}
4100 
4101 		offset = metaslab_block_alloc(msp, asize, txg);
4102 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4103 
4104 		if (offset != -1ULL) {
4105 			/* Proactively passivate the metaslab, if needed */
4106 			metaslab_segment_may_passivate(msp);
4107 			break;
4108 		}
4109 next:
4110 		ASSERT(msp->ms_loaded);
4111 
4112 		/*
4113 		 * We were unable to allocate from this metaslab so determine
4114 		 * a new weight for this metaslab. Now that we have loaded
4115 		 * the metaslab we can provide a better hint to the metaslab
4116 		 * selector.
4117 		 *
4118 		 * For space-based metaslabs, we use the maximum block size.
4119 		 * This information is only available when the metaslab
4120 		 * is loaded and is more accurate than the generic free
4121 		 * space weight that was calculated by metaslab_weight().
4122 		 * This information allows us to quickly compare the maximum
4123 		 * available allocation in the metaslab to the allocation
4124 		 * size being requested.
4125 		 *
4126 		 * For segment-based metaslabs, determine the new weight
4127 		 * based on the highest bucket in the range tree. We
4128 		 * explicitly use the loaded segment weight (i.e. the range
4129 		 * tree histogram) since it contains the space that is
4130 		 * currently available for allocation and is accurate
4131 		 * even within a sync pass.
4132 		 */
4133 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
4134 			uint64_t weight = metaslab_block_maxsize(msp);
4135 			WEIGHT_SET_SPACEBASED(weight);
4136 			metaslab_passivate(msp, weight);
4137 		} else {
4138 			metaslab_passivate(msp,
4139 			    metaslab_weight_from_range_tree(msp));
4140 		}
4141 
4142 		/*
4143 		 * We have just failed an allocation attempt, check
4144 		 * that metaslab_should_allocate() agrees. Otherwise,
4145 		 * we may end up in an infinite loop retrying the same
4146 		 * metaslab.
4147 		 */
4148 		ASSERT(!metaslab_should_allocate(msp, asize));
4149 
4150 		mutex_exit(&msp->ms_lock);
4151 	}
4152 	mutex_exit(&msp->ms_lock);
4153 	kmem_free(search, sizeof (*search));
4154 	return (offset);
4155 }
4156 
4157 static uint64_t
4158 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
4159     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
4160     int d, int allocator)
4161 {
4162 	uint64_t offset;
4163 	ASSERT(mg->mg_initialized);
4164 
4165 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
4166 	    dva, d, allocator);
4167 
4168 	mutex_enter(&mg->mg_lock);
4169 	if (offset == -1ULL) {
4170 		mg->mg_failed_allocations++;
4171 		metaslab_trace_add(zal, mg, NULL, asize, d,
4172 		    TRACE_GROUP_FAILURE, allocator);
4173 		if (asize == SPA_GANGBLOCKSIZE) {
4174 			/*
4175 			 * This metaslab group was unable to allocate
4176 			 * the minimum gang block size so it must be out of
4177 			 * space. We must notify the allocation throttle
4178 			 * to start skipping allocation attempts to this
4179 			 * metaslab group until more space becomes available.
4180 			 * Note: this failure cannot be caused by the
4181 			 * allocation throttle since the allocation throttle
4182 			 * is only responsible for skipping devices and
4183 			 * not failing block allocations.
4184 			 */
4185 			mg->mg_no_free_space = B_TRUE;
4186 		}
4187 	}
4188 	mg->mg_allocations++;
4189 	mutex_exit(&mg->mg_lock);
4190 	return (offset);
4191 }
4192 
4193 /*
4194  * Allocate a block for the specified i/o.
4195  */
4196 int
4197 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
4198     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
4199     zio_alloc_list_t *zal, int allocator)
4200 {
4201 	metaslab_group_t *mg, *rotor;
4202 	vdev_t *vd;
4203 	boolean_t try_hard = B_FALSE;
4204 
4205 	ASSERT(!DVA_IS_VALID(&dva[d]));
4206 
4207 	/*
4208 	 * For testing, make some blocks above a certain size be gang blocks.
4209 	 * This will also test spilling from special to normal.
4210 	 */
4211 	if (psize >= metaslab_force_ganging && (ddi_get_lbolt() & 3) == 0) {
4212 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
4213 		    allocator);
4214 		return (SET_ERROR(ENOSPC));
4215 	}
4216 
4217 	/*
4218 	 * Start at the rotor and loop through all mgs until we find something.
4219 	 * Note that there's no locking on mc_rotor or mc_aliquot because
4220 	 * nothing actually breaks if we miss a few updates -- we just won't
4221 	 * allocate quite as evenly.  It all balances out over time.
4222 	 *
4223 	 * If we are doing ditto or log blocks, try to spread them across
4224 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
4225 	 * allocated all of our ditto blocks, then try and spread them out on
4226 	 * that vdev as much as possible.  If it turns out to not be possible,
4227 	 * gradually lower our standards until anything becomes acceptable.
4228 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
4229 	 * gives us hope of containing our fault domains to something we're
4230 	 * able to reason about.  Otherwise, any two top-level vdev failures
4231 	 * will guarantee the loss of data.  With consecutive allocation,
4232 	 * only two adjacent top-level vdev failures will result in data loss.
4233 	 *
4234 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
4235 	 * ourselves on the same vdev as our gang block header.  That
4236 	 * way, we can hope for locality in vdev_cache, plus it makes our
4237 	 * fault domains something tractable.
4238 	 */
4239 	if (hintdva) {
4240 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
4241 
4242 		/*
4243 		 * It's possible the vdev we're using as the hint no
4244 		 * longer exists or its mg has been closed (e.g. by
4245 		 * device removal).  Consult the rotor when
4246 		 * all else fails.
4247 		 */
4248 		if (vd != NULL && vd->vdev_mg != NULL) {
4249 			mg = vd->vdev_mg;
4250 
4251 			if (flags & METASLAB_HINTBP_AVOID &&
4252 			    mg->mg_next != NULL)
4253 				mg = mg->mg_next;
4254 		} else {
4255 			mg = mc->mc_rotor;
4256 		}
4257 	} else if (d != 0) {
4258 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
4259 		mg = vd->vdev_mg->mg_next;
4260 	} else {
4261 		ASSERT(mc->mc_rotor != NULL);
4262 		mg = mc->mc_rotor;
4263 	}
4264 
4265 	/*
4266 	 * If the hint put us into the wrong metaslab class, or into a
4267 	 * metaslab group that has been passivated, just follow the rotor.
4268 	 */
4269 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
4270 		mg = mc->mc_rotor;
4271 
4272 	rotor = mg;
4273 top:
4274 	do {
4275 		boolean_t allocatable;
4276 
4277 		ASSERT(mg->mg_activation_count == 1);
4278 		vd = mg->mg_vd;
4279 
4280 		/*
4281 		 * Don't allocate from faulted devices.
4282 		 */
4283 		if (try_hard) {
4284 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
4285 			allocatable = vdev_allocatable(vd);
4286 			spa_config_exit(spa, SCL_ZIO, FTAG);
4287 		} else {
4288 			allocatable = vdev_allocatable(vd);
4289 		}
4290 
4291 		/*
4292 		 * Determine if the selected metaslab group is eligible
4293 		 * for allocations. If we're ganging then don't allow
4294 		 * this metaslab group to skip allocations since that would
4295 		 * inadvertently return ENOSPC and suspend the pool
4296 		 * even though space is still available.
4297 		 */
4298 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
4299 			allocatable = metaslab_group_allocatable(mg, rotor,
4300 			    psize, allocator, d);
4301 		}
4302 
4303 		if (!allocatable) {
4304 			metaslab_trace_add(zal, mg, NULL, psize, d,
4305 			    TRACE_NOT_ALLOCATABLE, allocator);
4306 			goto next;
4307 		}
4308 
4309 		ASSERT(mg->mg_initialized);
4310 
4311 		/*
4312 		 * Avoid writing single-copy data to a failing,
4313 		 * non-redundant vdev, unless we've already tried all
4314 		 * other vdevs.
4315 		 */
4316 		if ((vd->vdev_stat.vs_write_errors > 0 ||
4317 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
4318 		    d == 0 && !try_hard && vd->vdev_children == 0) {
4319 			metaslab_trace_add(zal, mg, NULL, psize, d,
4320 			    TRACE_VDEV_ERROR, allocator);
4321 			goto next;
4322 		}
4323 
4324 		ASSERT(mg->mg_class == mc);
4325 
4326 		uint64_t asize = vdev_psize_to_asize(vd, psize);
4327 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
4328 
4329 		/*
4330 		 * If we don't need to try hard, then require that the
4331 		 * block be on an different metaslab from any other DVAs
4332 		 * in this BP (unique=true).  If we are trying hard, then
4333 		 * allow any metaslab to be used (unique=false).
4334 		 */
4335 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
4336 		    !try_hard, dva, d, allocator);
4337 
4338 		if (offset != -1ULL) {
4339 			/*
4340 			 * If we've just selected this metaslab group,
4341 			 * figure out whether the corresponding vdev is
4342 			 * over- or under-used relative to the pool,
4343 			 * and set an allocation bias to even it out.
4344 			 */
4345 			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
4346 				vdev_stat_t *vs = &vd->vdev_stat;
4347 				int64_t vu, cu;
4348 
4349 				vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
4350 				cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
4351 
4352 				/*
4353 				 * Calculate how much more or less we should
4354 				 * try to allocate from this device during
4355 				 * this iteration around the rotor.
4356 				 * For example, if a device is 80% full
4357 				 * and the pool is 20% full then we should
4358 				 * reduce allocations by 60% on this device.
4359 				 *
4360 				 * mg_bias = (20 - 80) * 512K / 100 = -307K
4361 				 *
4362 				 * This reduces allocations by 307K for this
4363 				 * iteration.
4364 				 */
4365 				mg->mg_bias = ((cu - vu) *
4366 				    (int64_t)mg->mg_aliquot) / 100;
4367 			} else if (!metaslab_bias_enabled) {
4368 				mg->mg_bias = 0;
4369 			}
4370 
4371 			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
4372 			    mg->mg_aliquot + mg->mg_bias) {
4373 				mc->mc_rotor = mg->mg_next;
4374 				mc->mc_aliquot = 0;
4375 			}
4376 
4377 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
4378 			DVA_SET_OFFSET(&dva[d], offset);
4379 			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
4380 			DVA_SET_ASIZE(&dva[d], asize);
4381 
4382 			return (0);
4383 		}
4384 next:
4385 		mc->mc_rotor = mg->mg_next;
4386 		mc->mc_aliquot = 0;
4387 	} while ((mg = mg->mg_next) != rotor);
4388 
4389 	/*
4390 	 * If we haven't tried hard, do so now.
4391 	 */
4392 	if (!try_hard) {
4393 		try_hard = B_TRUE;
4394 		goto top;
4395 	}
4396 
4397 	bzero(&dva[d], sizeof (dva_t));
4398 
4399 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
4400 	return (SET_ERROR(ENOSPC));
4401 }
4402 
4403 void
4404 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
4405     boolean_t checkpoint)
4406 {
4407 	metaslab_t *msp;
4408 	spa_t *spa = vd->vdev_spa;
4409 
4410 	ASSERT(vdev_is_concrete(vd));
4411 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4412 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4413 
4414 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4415 
4416 	VERIFY(!msp->ms_condensing);
4417 	VERIFY3U(offset, >=, msp->ms_start);
4418 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
4419 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4420 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
4421 
4422 	metaslab_check_free_impl(vd, offset, asize);
4423 
4424 	mutex_enter(&msp->ms_lock);
4425 	if (range_tree_is_empty(msp->ms_freeing) &&
4426 	    range_tree_is_empty(msp->ms_checkpointing)) {
4427 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
4428 	}
4429 
4430 	if (checkpoint) {
4431 		ASSERT(spa_has_checkpoint(spa));
4432 		range_tree_add(msp->ms_checkpointing, offset, asize);
4433 	} else {
4434 		range_tree_add(msp->ms_freeing, offset, asize);
4435 	}
4436 	mutex_exit(&msp->ms_lock);
4437 }
4438 
4439 /* ARGSUSED */
4440 void
4441 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4442     uint64_t size, void *arg)
4443 {
4444 	boolean_t *checkpoint = arg;
4445 
4446 	ASSERT3P(checkpoint, !=, NULL);
4447 
4448 	if (vd->vdev_ops->vdev_op_remap != NULL)
4449 		vdev_indirect_mark_obsolete(vd, offset, size);
4450 	else
4451 		metaslab_free_impl(vd, offset, size, *checkpoint);
4452 }
4453 
4454 static void
4455 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
4456     boolean_t checkpoint)
4457 {
4458 	spa_t *spa = vd->vdev_spa;
4459 
4460 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4461 
4462 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
4463 		return;
4464 
4465 	if (spa->spa_vdev_removal != NULL &&
4466 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
4467 	    vdev_is_concrete(vd)) {
4468 		/*
4469 		 * Note: we check if the vdev is concrete because when
4470 		 * we complete the removal, we first change the vdev to be
4471 		 * an indirect vdev (in open context), and then (in syncing
4472 		 * context) clear spa_vdev_removal.
4473 		 */
4474 		free_from_removing_vdev(vd, offset, size);
4475 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
4476 		vdev_indirect_mark_obsolete(vd, offset, size);
4477 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
4478 		    metaslab_free_impl_cb, &checkpoint);
4479 	} else {
4480 		metaslab_free_concrete(vd, offset, size, checkpoint);
4481 	}
4482 }
4483 
4484 typedef struct remap_blkptr_cb_arg {
4485 	blkptr_t *rbca_bp;
4486 	spa_remap_cb_t rbca_cb;
4487 	vdev_t *rbca_remap_vd;
4488 	uint64_t rbca_remap_offset;
4489 	void *rbca_cb_arg;
4490 } remap_blkptr_cb_arg_t;
4491 
4492 void
4493 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4494     uint64_t size, void *arg)
4495 {
4496 	remap_blkptr_cb_arg_t *rbca = arg;
4497 	blkptr_t *bp = rbca->rbca_bp;
4498 
4499 	/* We can not remap split blocks. */
4500 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
4501 		return;
4502 	ASSERT0(inner_offset);
4503 
4504 	if (rbca->rbca_cb != NULL) {
4505 		/*
4506 		 * At this point we know that we are not handling split
4507 		 * blocks and we invoke the callback on the previous
4508 		 * vdev which must be indirect.
4509 		 */
4510 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
4511 
4512 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
4513 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
4514 
4515 		/* set up remap_blkptr_cb_arg for the next call */
4516 		rbca->rbca_remap_vd = vd;
4517 		rbca->rbca_remap_offset = offset;
4518 	}
4519 
4520 	/*
4521 	 * The phys birth time is that of dva[0].  This ensures that we know
4522 	 * when each dva was written, so that resilver can determine which
4523 	 * blocks need to be scrubbed (i.e. those written during the time
4524 	 * the vdev was offline).  It also ensures that the key used in
4525 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
4526 	 * we didn't change the phys_birth, a lookup in the ARC for a
4527 	 * remapped BP could find the data that was previously stored at
4528 	 * this vdev + offset.
4529 	 */
4530 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
4531 	    DVA_GET_VDEV(&bp->blk_dva[0]));
4532 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
4533 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
4534 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
4535 
4536 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
4537 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
4538 }
4539 
4540 /*
4541  * If the block pointer contains any indirect DVAs, modify them to refer to
4542  * concrete DVAs.  Note that this will sometimes not be possible, leaving
4543  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
4544  * segments in the mapping (i.e. it is a "split block").
4545  *
4546  * If the BP was remapped, calls the callback on the original dva (note the
4547  * callback can be called multiple times if the original indirect DVA refers
4548  * to another indirect DVA, etc).
4549  *
4550  * Returns TRUE if the BP was remapped.
4551  */
4552 boolean_t
4553 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
4554 {
4555 	remap_blkptr_cb_arg_t rbca;
4556 
4557 	if (!zfs_remap_blkptr_enable)
4558 		return (B_FALSE);
4559 
4560 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
4561 		return (B_FALSE);
4562 
4563 	/*
4564 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
4565 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
4566 	 */
4567 	if (BP_GET_DEDUP(bp))
4568 		return (B_FALSE);
4569 
4570 	/*
4571 	 * Gang blocks can not be remapped, because
4572 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
4573 	 * the BP used to read the gang block header (GBH) being the same
4574 	 * as the DVA[0] that we allocated for the GBH.
4575 	 */
4576 	if (BP_IS_GANG(bp))
4577 		return (B_FALSE);
4578 
4579 	/*
4580 	 * Embedded BP's have no DVA to remap.
4581 	 */
4582 	if (BP_GET_NDVAS(bp) < 1)
4583 		return (B_FALSE);
4584 
4585 	/*
4586 	 * Note: we only remap dva[0].  If we remapped other dvas, we
4587 	 * would no longer know what their phys birth txg is.
4588 	 */
4589 	dva_t *dva = &bp->blk_dva[0];
4590 
4591 	uint64_t offset = DVA_GET_OFFSET(dva);
4592 	uint64_t size = DVA_GET_ASIZE(dva);
4593 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
4594 
4595 	if (vd->vdev_ops->vdev_op_remap == NULL)
4596 		return (B_FALSE);
4597 
4598 	rbca.rbca_bp = bp;
4599 	rbca.rbca_cb = callback;
4600 	rbca.rbca_remap_vd = vd;
4601 	rbca.rbca_remap_offset = offset;
4602 	rbca.rbca_cb_arg = arg;
4603 
4604 	/*
4605 	 * remap_blkptr_cb() will be called in order for each level of
4606 	 * indirection, until a concrete vdev is reached or a split block is
4607 	 * encountered. old_vd and old_offset are updated within the callback
4608 	 * as we go from the one indirect vdev to the next one (either concrete
4609 	 * or indirect again) in that order.
4610 	 */
4611 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
4612 
4613 	/* Check if the DVA wasn't remapped because it is a split block */
4614 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
4615 		return (B_FALSE);
4616 
4617 	return (B_TRUE);
4618 }
4619 
4620 /*
4621  * Undo the allocation of a DVA which happened in the given transaction group.
4622  */
4623 void
4624 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4625 {
4626 	metaslab_t *msp;
4627 	vdev_t *vd;
4628 	uint64_t vdev = DVA_GET_VDEV(dva);
4629 	uint64_t offset = DVA_GET_OFFSET(dva);
4630 	uint64_t size = DVA_GET_ASIZE(dva);
4631 
4632 	ASSERT(DVA_IS_VALID(dva));
4633 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4634 
4635 	if (txg > spa_freeze_txg(spa))
4636 		return;
4637 
4638 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
4639 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
4640 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
4641 		    (u_longlong_t)vdev, (u_longlong_t)offset);
4642 		ASSERT(0);
4643 		return;
4644 	}
4645 
4646 	ASSERT(!vd->vdev_removing);
4647 	ASSERT(vdev_is_concrete(vd));
4648 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4649 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
4650 
4651 	if (DVA_GET_GANG(dva))
4652 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4653 
4654 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4655 
4656 	mutex_enter(&msp->ms_lock);
4657 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
4658 	    offset, size);
4659 
4660 	VERIFY(!msp->ms_condensing);
4661 	VERIFY3U(offset, >=, msp->ms_start);
4662 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
4663 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
4664 	    msp->ms_size);
4665 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4666 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4667 	range_tree_add(msp->ms_allocatable, offset, size);
4668 	mutex_exit(&msp->ms_lock);
4669 }
4670 
4671 /*
4672  * Free the block represented by the given DVA.
4673  */
4674 void
4675 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
4676 {
4677 	uint64_t vdev = DVA_GET_VDEV(dva);
4678 	uint64_t offset = DVA_GET_OFFSET(dva);
4679 	uint64_t size = DVA_GET_ASIZE(dva);
4680 	vdev_t *vd = vdev_lookup_top(spa, vdev);
4681 
4682 	ASSERT(DVA_IS_VALID(dva));
4683 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4684 
4685 	if (DVA_GET_GANG(dva)) {
4686 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4687 	}
4688 
4689 	metaslab_free_impl(vd, offset, size, checkpoint);
4690 }
4691 
4692 /*
4693  * Reserve some allocation slots. The reservation system must be called
4694  * before we call into the allocator. If there aren't any available slots
4695  * then the I/O will be throttled until an I/O completes and its slots are
4696  * freed up. The function returns true if it was successful in placing
4697  * the reservation.
4698  */
4699 boolean_t
4700 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
4701     zio_t *zio, int flags)
4702 {
4703 	uint64_t available_slots = 0;
4704 	boolean_t slot_reserved = B_FALSE;
4705 	uint64_t max = mc->mc_alloc_max_slots[allocator];
4706 
4707 	ASSERT(mc->mc_alloc_throttle_enabled);
4708 	mutex_enter(&mc->mc_lock);
4709 
4710 	uint64_t reserved_slots =
4711 	    zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
4712 	if (reserved_slots < max)
4713 		available_slots = max - reserved_slots;
4714 
4715 	if (slots <= available_slots || GANG_ALLOCATION(flags) ||
4716 	    flags & METASLAB_MUST_RESERVE) {
4717 		/*
4718 		 * We reserve the slots individually so that we can unreserve
4719 		 * them individually when an I/O completes.
4720 		 */
4721 		for (int d = 0; d < slots; d++) {
4722 			reserved_slots =
4723 			    zfs_refcount_add(&mc->mc_alloc_slots[allocator],
4724 			    zio);
4725 		}
4726 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
4727 		slot_reserved = B_TRUE;
4728 	}
4729 
4730 	mutex_exit(&mc->mc_lock);
4731 	return (slot_reserved);
4732 }
4733 
4734 void
4735 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
4736     int allocator, zio_t *zio)
4737 {
4738 	ASSERT(mc->mc_alloc_throttle_enabled);
4739 	mutex_enter(&mc->mc_lock);
4740 	for (int d = 0; d < slots; d++) {
4741 		(void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
4742 		    zio);
4743 	}
4744 	mutex_exit(&mc->mc_lock);
4745 }
4746 
4747 static int
4748 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
4749     uint64_t txg)
4750 {
4751 	metaslab_t *msp;
4752 	spa_t *spa = vd->vdev_spa;
4753 	int error = 0;
4754 
4755 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
4756 		return (ENXIO);
4757 
4758 	ASSERT3P(vd->vdev_ms, !=, NULL);
4759 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4760 
4761 	mutex_enter(&msp->ms_lock);
4762 
4763 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
4764 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
4765 	/*
4766 	 * No need to fail in that case; someone else has activated the
4767 	 * metaslab, but that doesn't preclude us from using it.
4768 	 */
4769 	if (error == EBUSY)
4770 		error = 0;
4771 
4772 	if (error == 0 &&
4773 	    !range_tree_contains(msp->ms_allocatable, offset, size))
4774 		error = SET_ERROR(ENOENT);
4775 
4776 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
4777 		mutex_exit(&msp->ms_lock);
4778 		return (error);
4779 	}
4780 
4781 	VERIFY(!msp->ms_condensing);
4782 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4783 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4784 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
4785 	    msp->ms_size);
4786 	range_tree_remove(msp->ms_allocatable, offset, size);
4787 	range_tree_clear(msp->ms_trim, offset, size);
4788 
4789 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
4790 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4791 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
4792 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
4793 		    offset, size);
4794 	}
4795 
4796 	mutex_exit(&msp->ms_lock);
4797 
4798 	return (0);
4799 }
4800 
4801 typedef struct metaslab_claim_cb_arg_t {
4802 	uint64_t	mcca_txg;
4803 	int		mcca_error;
4804 } metaslab_claim_cb_arg_t;
4805 
4806 /* ARGSUSED */
4807 static void
4808 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4809     uint64_t size, void *arg)
4810 {
4811 	metaslab_claim_cb_arg_t *mcca_arg = arg;
4812 
4813 	if (mcca_arg->mcca_error == 0) {
4814 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
4815 		    size, mcca_arg->mcca_txg);
4816 	}
4817 }
4818 
4819 int
4820 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
4821 {
4822 	if (vd->vdev_ops->vdev_op_remap != NULL) {
4823 		metaslab_claim_cb_arg_t arg;
4824 
4825 		/*
4826 		 * Only zdb(1M) can claim on indirect vdevs.  This is used
4827 		 * to detect leaks of mapped space (that are not accounted
4828 		 * for in the obsolete counts, spacemap, or bpobj).
4829 		 */
4830 		ASSERT(!spa_writeable(vd->vdev_spa));
4831 		arg.mcca_error = 0;
4832 		arg.mcca_txg = txg;
4833 
4834 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
4835 		    metaslab_claim_impl_cb, &arg);
4836 
4837 		if (arg.mcca_error == 0) {
4838 			arg.mcca_error = metaslab_claim_concrete(vd,
4839 			    offset, size, txg);
4840 		}
4841 		return (arg.mcca_error);
4842 	} else {
4843 		return (metaslab_claim_concrete(vd, offset, size, txg));
4844 	}
4845 }
4846 
4847 /*
4848  * Intent log support: upon opening the pool after a crash, notify the SPA
4849  * of blocks that the intent log has allocated for immediate write, but
4850  * which are still considered free by the SPA because the last transaction
4851  * group didn't commit yet.
4852  */
4853 static int
4854 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4855 {
4856 	uint64_t vdev = DVA_GET_VDEV(dva);
4857 	uint64_t offset = DVA_GET_OFFSET(dva);
4858 	uint64_t size = DVA_GET_ASIZE(dva);
4859 	vdev_t *vd;
4860 
4861 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
4862 		return (SET_ERROR(ENXIO));
4863 	}
4864 
4865 	ASSERT(DVA_IS_VALID(dva));
4866 
4867 	if (DVA_GET_GANG(dva))
4868 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4869 
4870 	return (metaslab_claim_impl(vd, offset, size, txg));
4871 }
4872 
4873 int
4874 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4875     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
4876     zio_alloc_list_t *zal, zio_t *zio, int allocator)
4877 {
4878 	dva_t *dva = bp->blk_dva;
4879 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
4880 	int error = 0;
4881 
4882 	ASSERT(bp->blk_birth == 0);
4883 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
4884 
4885 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4886 
4887 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
4888 		spa_config_exit(spa, SCL_ALLOC, FTAG);
4889 		return (SET_ERROR(ENOSPC));
4890 	}
4891 
4892 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4893 	ASSERT(BP_GET_NDVAS(bp) == 0);
4894 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4895 	ASSERT3P(zal, !=, NULL);
4896 
4897 	for (int d = 0; d < ndvas; d++) {
4898 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
4899 		    txg, flags, zal, allocator);
4900 		if (error != 0) {
4901 			for (d--; d >= 0; d--) {
4902 				metaslab_unalloc_dva(spa, &dva[d], txg);
4903 				metaslab_group_alloc_decrement(spa,
4904 				    DVA_GET_VDEV(&dva[d]), zio, flags,
4905 				    allocator, B_FALSE);
4906 				bzero(&dva[d], sizeof (dva_t));
4907 			}
4908 			spa_config_exit(spa, SCL_ALLOC, FTAG);
4909 			return (error);
4910 		} else {
4911 			/*
4912 			 * Update the metaslab group's queue depth
4913 			 * based on the newly allocated dva.
4914 			 */
4915 			metaslab_group_alloc_increment(spa,
4916 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
4917 		}
4918 
4919 	}
4920 	ASSERT(error == 0);
4921 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
4922 
4923 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4924 
4925 	BP_SET_BIRTH(bp, txg, txg);
4926 
4927 	return (0);
4928 }
4929 
4930 void
4931 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4932 {
4933 	const dva_t *dva = bp->blk_dva;
4934 	int ndvas = BP_GET_NDVAS(bp);
4935 
4936 	ASSERT(!BP_IS_HOLE(bp));
4937 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
4938 
4939 	/*
4940 	 * If we have a checkpoint for the pool we need to make sure that
4941 	 * the blocks that we free that are part of the checkpoint won't be
4942 	 * reused until the checkpoint is discarded or we revert to it.
4943 	 *
4944 	 * The checkpoint flag is passed down the metaslab_free code path
4945 	 * and is set whenever we want to add a block to the checkpoint's
4946 	 * accounting. That is, we "checkpoint" blocks that existed at the
4947 	 * time the checkpoint was created and are therefore referenced by
4948 	 * the checkpointed uberblock.
4949 	 *
4950 	 * Note that, we don't checkpoint any blocks if the current
4951 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4952 	 * normally as they will be referenced by the checkpointed uberblock.
4953 	 */
4954 	boolean_t checkpoint = B_FALSE;
4955 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4956 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4957 		/*
4958 		 * At this point, if the block is part of the checkpoint
4959 		 * there is no way it was created in the current txg.
4960 		 */
4961 		ASSERT(!now);
4962 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
4963 		checkpoint = B_TRUE;
4964 	}
4965 
4966 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
4967 
4968 	for (int d = 0; d < ndvas; d++) {
4969 		if (now) {
4970 			metaslab_unalloc_dva(spa, &dva[d], txg);
4971 		} else {
4972 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
4973 			metaslab_free_dva(spa, &dva[d], checkpoint);
4974 		}
4975 	}
4976 
4977 	spa_config_exit(spa, SCL_FREE, FTAG);
4978 }
4979 
4980 int
4981 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4982 {
4983 	const dva_t *dva = bp->blk_dva;
4984 	int ndvas = BP_GET_NDVAS(bp);
4985 	int error = 0;
4986 
4987 	ASSERT(!BP_IS_HOLE(bp));
4988 
4989 	if (txg != 0) {
4990 		/*
4991 		 * First do a dry run to make sure all DVAs are claimable,
4992 		 * so we don't have to unwind from partial failures below.
4993 		 */
4994 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
4995 			return (error);
4996 	}
4997 
4998 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4999 
5000 	for (int d = 0; d < ndvas; d++) {
5001 		error = metaslab_claim_dva(spa, &dva[d], txg);
5002 		if (error != 0)
5003 			break;
5004 	}
5005 
5006 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5007 
5008 	ASSERT(error == 0 || txg == 0);
5009 
5010 	return (error);
5011 }
5012 
5013 /* ARGSUSED */
5014 static void
5015 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5016     uint64_t size, void *arg)
5017 {
5018 	if (vd->vdev_ops == &vdev_indirect_ops)
5019 		return;
5020 
5021 	metaslab_check_free_impl(vd, offset, size);
5022 }
5023 
5024 static void
5025 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5026 {
5027 	metaslab_t *msp;
5028 	spa_t *spa = vd->vdev_spa;
5029 
5030 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5031 		return;
5032 
5033 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5034 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5035 		    metaslab_check_free_impl_cb, NULL);
5036 		return;
5037 	}
5038 
5039 	ASSERT(vdev_is_concrete(vd));
5040 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5041 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5042 
5043 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5044 
5045 	mutex_enter(&msp->ms_lock);
5046 	if (msp->ms_loaded) {
5047 		range_tree_verify_not_present(msp->ms_allocatable,
5048 		    offset, size);
5049 	}
5050 
5051 	/*
5052 	 * Check all segments that currently exist in the freeing pipeline.
5053 	 *
5054 	 * It would intuitively make sense to also check the current allocating
5055 	 * tree since metaslab_unalloc_dva() exists for extents that are
5056 	 * allocated and freed in the same sync pass withing the same txg.
5057 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
5058 	 * segment but then we free part of it within the same txg
5059 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
5060 	 * current allocating tree.
5061 	 */
5062 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
5063 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
5064 	range_tree_verify_not_present(msp->ms_freed, offset, size);
5065 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
5066 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
5067 	range_tree_verify_not_present(msp->ms_trim, offset, size);
5068 	mutex_exit(&msp->ms_lock);
5069 }
5070 
5071 void
5072 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
5073 {
5074 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5075 		return;
5076 
5077 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5078 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
5079 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
5080 		vdev_t *vd = vdev_lookup_top(spa, vdev);
5081 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
5082 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
5083 
5084 		if (DVA_GET_GANG(&bp->blk_dva[i]))
5085 			size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5086 
5087 		ASSERT3P(vd, !=, NULL);
5088 
5089 		metaslab_check_free_impl(vd, offset, size);
5090 	}
5091 	spa_config_exit(spa, SCL_VDEV, FTAG);
5092 }
5093 
5094 static void
5095 metaslab_group_disable_wait(metaslab_group_t *mg)
5096 {
5097 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
5098 	while (mg->mg_disabled_updating) {
5099 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
5100 	}
5101 }
5102 
5103 static void
5104 metaslab_group_disabled_increment(metaslab_group_t *mg)
5105 {
5106 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
5107 	ASSERT(mg->mg_disabled_updating);
5108 
5109 	while (mg->mg_ms_disabled >= max_disabled_ms) {
5110 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
5111 	}
5112 	mg->mg_ms_disabled++;
5113 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
5114 }
5115 
5116 /*
5117  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
5118  * We must also track how many metaslabs are currently disabled within a
5119  * metaslab group and limit them to prevent allocation failures from
5120  * occurring because all metaslabs are disabled.
5121  */
5122 void
5123 metaslab_disable(metaslab_t *msp)
5124 {
5125 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
5126 	metaslab_group_t *mg = msp->ms_group;
5127 
5128 	mutex_enter(&mg->mg_ms_disabled_lock);
5129 
5130 	/*
5131 	 * To keep an accurate count of how many threads have disabled
5132 	 * a specific metaslab group, we only allow one thread to mark
5133 	 * the metaslab group at a time. This ensures that the value of
5134 	 * ms_disabled will be accurate when we decide to mark a metaslab
5135 	 * group as disabled. To do this we force all other threads
5136 	 * to wait till the metaslab's mg_disabled_updating flag is no
5137 	 * longer set.
5138 	 */
5139 	metaslab_group_disable_wait(mg);
5140 	mg->mg_disabled_updating = B_TRUE;
5141 	if (msp->ms_disabled == 0) {
5142 		metaslab_group_disabled_increment(mg);
5143 	}
5144 	mutex_enter(&msp->ms_lock);
5145 	msp->ms_disabled++;
5146 	mutex_exit(&msp->ms_lock);
5147 
5148 	mg->mg_disabled_updating = B_FALSE;
5149 	cv_broadcast(&mg->mg_ms_disabled_cv);
5150 	mutex_exit(&mg->mg_ms_disabled_lock);
5151 }
5152 
5153 void
5154 metaslab_enable(metaslab_t *msp, boolean_t sync)
5155 {
5156 	metaslab_group_t *mg = msp->ms_group;
5157 	spa_t *spa = mg->mg_vd->vdev_spa;
5158 
5159 	/*
5160 	 * Wait for the outstanding IO to be synced to prevent newly
5161 	 * allocated blocks from being overwritten.  This used by
5162 	 * initialize and TRIM which are modifying unallocated space.
5163 	 */
5164 	if (sync)
5165 		txg_wait_synced(spa_get_dsl(spa), 0);
5166 
5167 	mutex_enter(&mg->mg_ms_disabled_lock);
5168 	mutex_enter(&msp->ms_lock);
5169 	if (--msp->ms_disabled == 0) {
5170 		mg->mg_ms_disabled--;
5171 		cv_broadcast(&mg->mg_ms_disabled_cv);
5172 	}
5173 	mutex_exit(&msp->ms_lock);
5174 	mutex_exit(&mg->mg_ms_disabled_lock);
5175 }
5176 
5177 static void
5178 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
5179 {
5180 	vdev_t *vd = ms->ms_group->mg_vd;
5181 	spa_t *spa = vd->vdev_spa;
5182 	objset_t *mos = spa_meta_objset(spa);
5183 
5184 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
5185 
5186 	metaslab_unflushed_phys_t entry = {
5187 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
5188 	};
5189 	uint64_t entry_size = sizeof (entry);
5190 	uint64_t entry_offset = ms->ms_id * entry_size;
5191 
5192 	uint64_t object = 0;
5193 	int err = zap_lookup(mos, vd->vdev_top_zap,
5194 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
5195 	    &object);
5196 	if (err == ENOENT) {
5197 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
5198 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
5199 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
5200 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
5201 		    &object, tx));
5202 	} else {
5203 		VERIFY0(err);
5204 	}
5205 
5206 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
5207 	    &entry, tx);
5208 }
5209 
5210 void
5211 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
5212 {
5213 	spa_t *spa = ms->ms_group->mg_vd->vdev_spa;
5214 
5215 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
5216 		return;
5217 
5218 	ms->ms_unflushed_txg = txg;
5219 	metaslab_update_ondisk_flush_data(ms, tx);
5220 }
5221 
5222 uint64_t
5223 metaslab_unflushed_txg(metaslab_t *ms)
5224 {
5225 	return (ms->ms_unflushed_txg);
5226 }
5227