1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/space_map.h> 32 #include <sys/metaslab_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zfeature.h> 37 #include <sys/vdev_indirect_mapping.h> 38 39 #define GANG_ALLOCATION(flags) \ 40 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 41 42 uint64_t metaslab_aliquot = 512ULL << 10; 43 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */ 44 45 /* 46 * The in-core space map representation is more compact than its on-disk form. 47 * The zfs_condense_pct determines how much more compact the in-core 48 * space map representation must be before we compact it on-disk. 49 * Values should be greater than or equal to 100. 50 */ 51 int zfs_condense_pct = 200; 52 53 /* 54 * Condensing a metaslab is not guaranteed to actually reduce the amount of 55 * space used on disk. In particular, a space map uses data in increments of 56 * MAX(1 << ashift, space_map_blksize), so a metaslab might use the 57 * same number of blocks after condensing. Since the goal of condensing is to 58 * reduce the number of IOPs required to read the space map, we only want to 59 * condense when we can be sure we will reduce the number of blocks used by the 60 * space map. Unfortunately, we cannot precisely compute whether or not this is 61 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 62 * we apply the following heuristic: do not condense a spacemap unless the 63 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 64 * blocks. 65 */ 66 int zfs_metaslab_condense_block_threshold = 4; 67 68 /* 69 * The zfs_mg_noalloc_threshold defines which metaslab groups should 70 * be eligible for allocation. The value is defined as a percentage of 71 * free space. Metaslab groups that have more free space than 72 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 73 * a metaslab group's free space is less than or equal to the 74 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 75 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 76 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 77 * groups are allowed to accept allocations. Gang blocks are always 78 * eligible to allocate on any metaslab group. The default value of 0 means 79 * no metaslab group will be excluded based on this criterion. 80 */ 81 int zfs_mg_noalloc_threshold = 0; 82 83 /* 84 * Metaslab groups are considered eligible for allocations if their 85 * fragmenation metric (measured as a percentage) is less than or equal to 86 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold 87 * then it will be skipped unless all metaslab groups within the metaslab 88 * class have also crossed this threshold. 89 */ 90 int zfs_mg_fragmentation_threshold = 85; 91 92 /* 93 * Allow metaslabs to keep their active state as long as their fragmentation 94 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 95 * active metaslab that exceeds this threshold will no longer keep its active 96 * status allowing better metaslabs to be selected. 97 */ 98 int zfs_metaslab_fragmentation_threshold = 70; 99 100 /* 101 * When set will load all metaslabs when pool is first opened. 102 */ 103 int metaslab_debug_load = 0; 104 105 /* 106 * When set will prevent metaslabs from being unloaded. 107 */ 108 int metaslab_debug_unload = 0; 109 110 /* 111 * Minimum size which forces the dynamic allocator to change 112 * it's allocation strategy. Once the space map cannot satisfy 113 * an allocation of this size then it switches to using more 114 * aggressive strategy (i.e search by size rather than offset). 115 */ 116 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 117 118 /* 119 * The minimum free space, in percent, which must be available 120 * in a space map to continue allocations in a first-fit fashion. 121 * Once the space map's free space drops below this level we dynamically 122 * switch to using best-fit allocations. 123 */ 124 int metaslab_df_free_pct = 4; 125 126 /* 127 * A metaslab is considered "free" if it contains a contiguous 128 * segment which is greater than metaslab_min_alloc_size. 129 */ 130 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS; 131 132 /* 133 * Percentage of all cpus that can be used by the metaslab taskq. 134 */ 135 int metaslab_load_pct = 50; 136 137 /* 138 * Determines how many txgs a metaslab may remain loaded without having any 139 * allocations from it. As long as a metaslab continues to be used we will 140 * keep it loaded. 141 */ 142 int metaslab_unload_delay = TXG_SIZE * 2; 143 144 /* 145 * Max number of metaslabs per group to preload. 146 */ 147 int metaslab_preload_limit = SPA_DVAS_PER_BP; 148 149 /* 150 * Enable/disable preloading of metaslab. 151 */ 152 boolean_t metaslab_preload_enabled = B_TRUE; 153 154 /* 155 * Enable/disable fragmentation weighting on metaslabs. 156 */ 157 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE; 158 159 /* 160 * Enable/disable lba weighting (i.e. outer tracks are given preference). 161 */ 162 boolean_t metaslab_lba_weighting_enabled = B_TRUE; 163 164 /* 165 * Enable/disable metaslab group biasing. 166 */ 167 boolean_t metaslab_bias_enabled = B_TRUE; 168 169 /* 170 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 171 */ 172 boolean_t zfs_remap_blkptr_enable = B_TRUE; 173 174 /* 175 * Enable/disable segment-based metaslab selection. 176 */ 177 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE; 178 179 /* 180 * When using segment-based metaslab selection, we will continue 181 * allocating from the active metaslab until we have exhausted 182 * zfs_metaslab_switch_threshold of its buckets. 183 */ 184 int zfs_metaslab_switch_threshold = 2; 185 186 /* 187 * Internal switch to enable/disable the metaslab allocation tracing 188 * facility. 189 */ 190 boolean_t metaslab_trace_enabled = B_TRUE; 191 192 /* 193 * Maximum entries that the metaslab allocation tracing facility will keep 194 * in a given list when running in non-debug mode. We limit the number 195 * of entries in non-debug mode to prevent us from using up too much memory. 196 * The limit should be sufficiently large that we don't expect any allocation 197 * to every exceed this value. In debug mode, the system will panic if this 198 * limit is ever reached allowing for further investigation. 199 */ 200 uint64_t metaslab_trace_max_entries = 5000; 201 202 static uint64_t metaslab_weight(metaslab_t *); 203 static void metaslab_set_fragmentation(metaslab_t *); 204 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, uint64_t); 205 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 206 207 kmem_cache_t *metaslab_alloc_trace_cache; 208 209 /* 210 * ========================================================================== 211 * Metaslab classes 212 * ========================================================================== 213 */ 214 metaslab_class_t * 215 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 216 { 217 metaslab_class_t *mc; 218 219 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 220 221 mc->mc_spa = spa; 222 mc->mc_rotor = NULL; 223 mc->mc_ops = ops; 224 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 225 refcount_create_tracked(&mc->mc_alloc_slots); 226 227 return (mc); 228 } 229 230 void 231 metaslab_class_destroy(metaslab_class_t *mc) 232 { 233 ASSERT(mc->mc_rotor == NULL); 234 ASSERT(mc->mc_alloc == 0); 235 ASSERT(mc->mc_deferred == 0); 236 ASSERT(mc->mc_space == 0); 237 ASSERT(mc->mc_dspace == 0); 238 239 refcount_destroy(&mc->mc_alloc_slots); 240 mutex_destroy(&mc->mc_lock); 241 kmem_free(mc, sizeof (metaslab_class_t)); 242 } 243 244 int 245 metaslab_class_validate(metaslab_class_t *mc) 246 { 247 metaslab_group_t *mg; 248 vdev_t *vd; 249 250 /* 251 * Must hold one of the spa_config locks. 252 */ 253 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 254 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 255 256 if ((mg = mc->mc_rotor) == NULL) 257 return (0); 258 259 do { 260 vd = mg->mg_vd; 261 ASSERT(vd->vdev_mg != NULL); 262 ASSERT3P(vd->vdev_top, ==, vd); 263 ASSERT3P(mg->mg_class, ==, mc); 264 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 265 } while ((mg = mg->mg_next) != mc->mc_rotor); 266 267 return (0); 268 } 269 270 void 271 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 272 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 273 { 274 atomic_add_64(&mc->mc_alloc, alloc_delta); 275 atomic_add_64(&mc->mc_deferred, defer_delta); 276 atomic_add_64(&mc->mc_space, space_delta); 277 atomic_add_64(&mc->mc_dspace, dspace_delta); 278 } 279 280 uint64_t 281 metaslab_class_get_alloc(metaslab_class_t *mc) 282 { 283 return (mc->mc_alloc); 284 } 285 286 uint64_t 287 metaslab_class_get_deferred(metaslab_class_t *mc) 288 { 289 return (mc->mc_deferred); 290 } 291 292 uint64_t 293 metaslab_class_get_space(metaslab_class_t *mc) 294 { 295 return (mc->mc_space); 296 } 297 298 uint64_t 299 metaslab_class_get_dspace(metaslab_class_t *mc) 300 { 301 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 302 } 303 304 void 305 metaslab_class_histogram_verify(metaslab_class_t *mc) 306 { 307 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 308 uint64_t *mc_hist; 309 int i; 310 311 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 312 return; 313 314 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 315 KM_SLEEP); 316 317 for (int c = 0; c < rvd->vdev_children; c++) { 318 vdev_t *tvd = rvd->vdev_child[c]; 319 metaslab_group_t *mg = tvd->vdev_mg; 320 321 /* 322 * Skip any holes, uninitialized top-levels, or 323 * vdevs that are not in this metalab class. 324 */ 325 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 326 mg->mg_class != mc) { 327 continue; 328 } 329 330 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 331 mc_hist[i] += mg->mg_histogram[i]; 332 } 333 334 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 335 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 336 337 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 338 } 339 340 /* 341 * Calculate the metaslab class's fragmentation metric. The metric 342 * is weighted based on the space contribution of each metaslab group. 343 * The return value will be a number between 0 and 100 (inclusive), or 344 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 345 * zfs_frag_table for more information about the metric. 346 */ 347 uint64_t 348 metaslab_class_fragmentation(metaslab_class_t *mc) 349 { 350 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 351 uint64_t fragmentation = 0; 352 353 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 354 355 for (int c = 0; c < rvd->vdev_children; c++) { 356 vdev_t *tvd = rvd->vdev_child[c]; 357 metaslab_group_t *mg = tvd->vdev_mg; 358 359 /* 360 * Skip any holes, uninitialized top-levels, 361 * or vdevs that are not in this metalab class. 362 */ 363 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 364 mg->mg_class != mc) { 365 continue; 366 } 367 368 /* 369 * If a metaslab group does not contain a fragmentation 370 * metric then just bail out. 371 */ 372 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 373 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 374 return (ZFS_FRAG_INVALID); 375 } 376 377 /* 378 * Determine how much this metaslab_group is contributing 379 * to the overall pool fragmentation metric. 380 */ 381 fragmentation += mg->mg_fragmentation * 382 metaslab_group_get_space(mg); 383 } 384 fragmentation /= metaslab_class_get_space(mc); 385 386 ASSERT3U(fragmentation, <=, 100); 387 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 388 return (fragmentation); 389 } 390 391 /* 392 * Calculate the amount of expandable space that is available in 393 * this metaslab class. If a device is expanded then its expandable 394 * space will be the amount of allocatable space that is currently not 395 * part of this metaslab class. 396 */ 397 uint64_t 398 metaslab_class_expandable_space(metaslab_class_t *mc) 399 { 400 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 401 uint64_t space = 0; 402 403 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 404 for (int c = 0; c < rvd->vdev_children; c++) { 405 uint64_t tspace; 406 vdev_t *tvd = rvd->vdev_child[c]; 407 metaslab_group_t *mg = tvd->vdev_mg; 408 409 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 410 mg->mg_class != mc) { 411 continue; 412 } 413 414 /* 415 * Calculate if we have enough space to add additional 416 * metaslabs. We report the expandable space in terms 417 * of the metaslab size since that's the unit of expansion. 418 * Adjust by efi system partition size. 419 */ 420 tspace = tvd->vdev_max_asize - tvd->vdev_asize; 421 if (tspace > mc->mc_spa->spa_bootsize) { 422 tspace -= mc->mc_spa->spa_bootsize; 423 } 424 space += P2ALIGN(tspace, 1ULL << tvd->vdev_ms_shift); 425 } 426 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 427 return (space); 428 } 429 430 static int 431 metaslab_compare(const void *x1, const void *x2) 432 { 433 const metaslab_t *m1 = x1; 434 const metaslab_t *m2 = x2; 435 436 if (m1->ms_weight < m2->ms_weight) 437 return (1); 438 if (m1->ms_weight > m2->ms_weight) 439 return (-1); 440 441 /* 442 * If the weights are identical, use the offset to force uniqueness. 443 */ 444 if (m1->ms_start < m2->ms_start) 445 return (-1); 446 if (m1->ms_start > m2->ms_start) 447 return (1); 448 449 ASSERT3P(m1, ==, m2); 450 451 return (0); 452 } 453 454 /* 455 * Verify that the space accounting on disk matches the in-core range_trees. 456 */ 457 void 458 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 459 { 460 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 461 uint64_t allocated = 0; 462 uint64_t sm_free_space, msp_free_space; 463 464 ASSERT(MUTEX_HELD(&msp->ms_lock)); 465 466 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 467 return; 468 469 /* 470 * We can only verify the metaslab space when we're called 471 * from syncing context with a loaded metaslab that has an allocated 472 * space map. Calling this in non-syncing context does not 473 * provide a consistent view of the metaslab since we're performing 474 * allocations in the future. 475 */ 476 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 477 !msp->ms_loaded) 478 return; 479 480 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) - 481 space_map_alloc_delta(msp->ms_sm); 482 483 /* 484 * Account for future allocations since we would have already 485 * deducted that space from the ms_freetree. 486 */ 487 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 488 allocated += 489 range_tree_space(msp->ms_alloctree[(txg + t) & TXG_MASK]); 490 } 491 492 msp_free_space = range_tree_space(msp->ms_tree) + allocated + 493 msp->ms_deferspace + range_tree_space(msp->ms_freedtree); 494 495 VERIFY3U(sm_free_space, ==, msp_free_space); 496 } 497 498 /* 499 * ========================================================================== 500 * Metaslab groups 501 * ========================================================================== 502 */ 503 /* 504 * Update the allocatable flag and the metaslab group's capacity. 505 * The allocatable flag is set to true if the capacity is below 506 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 507 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 508 * transitions from allocatable to non-allocatable or vice versa then the 509 * metaslab group's class is updated to reflect the transition. 510 */ 511 static void 512 metaslab_group_alloc_update(metaslab_group_t *mg) 513 { 514 vdev_t *vd = mg->mg_vd; 515 metaslab_class_t *mc = mg->mg_class; 516 vdev_stat_t *vs = &vd->vdev_stat; 517 boolean_t was_allocatable; 518 boolean_t was_initialized; 519 520 ASSERT(vd == vd->vdev_top); 521 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 522 SCL_ALLOC); 523 524 mutex_enter(&mg->mg_lock); 525 was_allocatable = mg->mg_allocatable; 526 was_initialized = mg->mg_initialized; 527 528 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 529 (vs->vs_space + 1); 530 531 mutex_enter(&mc->mc_lock); 532 533 /* 534 * If the metaslab group was just added then it won't 535 * have any space until we finish syncing out this txg. 536 * At that point we will consider it initialized and available 537 * for allocations. We also don't consider non-activated 538 * metaslab groups (e.g. vdevs that are in the middle of being removed) 539 * to be initialized, because they can't be used for allocation. 540 */ 541 mg->mg_initialized = metaslab_group_initialized(mg); 542 if (!was_initialized && mg->mg_initialized) { 543 mc->mc_groups++; 544 } else if (was_initialized && !mg->mg_initialized) { 545 ASSERT3U(mc->mc_groups, >, 0); 546 mc->mc_groups--; 547 } 548 if (mg->mg_initialized) 549 mg->mg_no_free_space = B_FALSE; 550 551 /* 552 * A metaslab group is considered allocatable if it has plenty 553 * of free space or is not heavily fragmented. We only take 554 * fragmentation into account if the metaslab group has a valid 555 * fragmentation metric (i.e. a value between 0 and 100). 556 */ 557 mg->mg_allocatable = (mg->mg_activation_count > 0 && 558 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 559 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 560 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 561 562 /* 563 * The mc_alloc_groups maintains a count of the number of 564 * groups in this metaslab class that are still above the 565 * zfs_mg_noalloc_threshold. This is used by the allocating 566 * threads to determine if they should avoid allocations to 567 * a given group. The allocator will avoid allocations to a group 568 * if that group has reached or is below the zfs_mg_noalloc_threshold 569 * and there are still other groups that are above the threshold. 570 * When a group transitions from allocatable to non-allocatable or 571 * vice versa we update the metaslab class to reflect that change. 572 * When the mc_alloc_groups value drops to 0 that means that all 573 * groups have reached the zfs_mg_noalloc_threshold making all groups 574 * eligible for allocations. This effectively means that all devices 575 * are balanced again. 576 */ 577 if (was_allocatable && !mg->mg_allocatable) 578 mc->mc_alloc_groups--; 579 else if (!was_allocatable && mg->mg_allocatable) 580 mc->mc_alloc_groups++; 581 mutex_exit(&mc->mc_lock); 582 583 mutex_exit(&mg->mg_lock); 584 } 585 586 metaslab_group_t * 587 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 588 { 589 metaslab_group_t *mg; 590 591 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 592 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 593 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 594 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 595 mg->mg_vd = vd; 596 mg->mg_class = mc; 597 mg->mg_activation_count = 0; 598 mg->mg_initialized = B_FALSE; 599 mg->mg_no_free_space = B_TRUE; 600 refcount_create_tracked(&mg->mg_alloc_queue_depth); 601 602 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 603 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT); 604 605 return (mg); 606 } 607 608 void 609 metaslab_group_destroy(metaslab_group_t *mg) 610 { 611 ASSERT(mg->mg_prev == NULL); 612 ASSERT(mg->mg_next == NULL); 613 /* 614 * We may have gone below zero with the activation count 615 * either because we never activated in the first place or 616 * because we're done, and possibly removing the vdev. 617 */ 618 ASSERT(mg->mg_activation_count <= 0); 619 620 taskq_destroy(mg->mg_taskq); 621 avl_destroy(&mg->mg_metaslab_tree); 622 mutex_destroy(&mg->mg_lock); 623 refcount_destroy(&mg->mg_alloc_queue_depth); 624 kmem_free(mg, sizeof (metaslab_group_t)); 625 } 626 627 void 628 metaslab_group_activate(metaslab_group_t *mg) 629 { 630 metaslab_class_t *mc = mg->mg_class; 631 metaslab_group_t *mgprev, *mgnext; 632 633 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0); 634 635 ASSERT(mc->mc_rotor != mg); 636 ASSERT(mg->mg_prev == NULL); 637 ASSERT(mg->mg_next == NULL); 638 ASSERT(mg->mg_activation_count <= 0); 639 640 if (++mg->mg_activation_count <= 0) 641 return; 642 643 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 644 metaslab_group_alloc_update(mg); 645 646 if ((mgprev = mc->mc_rotor) == NULL) { 647 mg->mg_prev = mg; 648 mg->mg_next = mg; 649 } else { 650 mgnext = mgprev->mg_next; 651 mg->mg_prev = mgprev; 652 mg->mg_next = mgnext; 653 mgprev->mg_next = mg; 654 mgnext->mg_prev = mg; 655 } 656 mc->mc_rotor = mg; 657 } 658 659 /* 660 * Passivate a metaslab group and remove it from the allocation rotor. 661 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 662 * a metaslab group. This function will momentarily drop spa_config_locks 663 * that are lower than the SCL_ALLOC lock (see comment below). 664 */ 665 void 666 metaslab_group_passivate(metaslab_group_t *mg) 667 { 668 metaslab_class_t *mc = mg->mg_class; 669 spa_t *spa = mc->mc_spa; 670 metaslab_group_t *mgprev, *mgnext; 671 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 672 673 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 674 (SCL_ALLOC | SCL_ZIO)); 675 676 if (--mg->mg_activation_count != 0) { 677 ASSERT(mc->mc_rotor != mg); 678 ASSERT(mg->mg_prev == NULL); 679 ASSERT(mg->mg_next == NULL); 680 ASSERT(mg->mg_activation_count < 0); 681 return; 682 } 683 684 /* 685 * The spa_config_lock is an array of rwlocks, ordered as 686 * follows (from highest to lowest): 687 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 688 * SCL_ZIO > SCL_FREE > SCL_VDEV 689 * (For more information about the spa_config_lock see spa_misc.c) 690 * The higher the lock, the broader its coverage. When we passivate 691 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 692 * config locks. However, the metaslab group's taskq might be trying 693 * to preload metaslabs so we must drop the SCL_ZIO lock and any 694 * lower locks to allow the I/O to complete. At a minimum, 695 * we continue to hold the SCL_ALLOC lock, which prevents any future 696 * allocations from taking place and any changes to the vdev tree. 697 */ 698 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 699 taskq_wait(mg->mg_taskq); 700 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 701 metaslab_group_alloc_update(mg); 702 703 mgprev = mg->mg_prev; 704 mgnext = mg->mg_next; 705 706 if (mg == mgnext) { 707 mc->mc_rotor = NULL; 708 } else { 709 mc->mc_rotor = mgnext; 710 mgprev->mg_next = mgnext; 711 mgnext->mg_prev = mgprev; 712 } 713 714 mg->mg_prev = NULL; 715 mg->mg_next = NULL; 716 } 717 718 boolean_t 719 metaslab_group_initialized(metaslab_group_t *mg) 720 { 721 vdev_t *vd = mg->mg_vd; 722 vdev_stat_t *vs = &vd->vdev_stat; 723 724 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 725 } 726 727 uint64_t 728 metaslab_group_get_space(metaslab_group_t *mg) 729 { 730 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count); 731 } 732 733 void 734 metaslab_group_histogram_verify(metaslab_group_t *mg) 735 { 736 uint64_t *mg_hist; 737 vdev_t *vd = mg->mg_vd; 738 uint64_t ashift = vd->vdev_ashift; 739 int i; 740 741 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 742 return; 743 744 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 745 KM_SLEEP); 746 747 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 748 SPACE_MAP_HISTOGRAM_SIZE + ashift); 749 750 for (int m = 0; m < vd->vdev_ms_count; m++) { 751 metaslab_t *msp = vd->vdev_ms[m]; 752 753 if (msp->ms_sm == NULL) 754 continue; 755 756 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 757 mg_hist[i + ashift] += 758 msp->ms_sm->sm_phys->smp_histogram[i]; 759 } 760 761 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 762 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 763 764 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 765 } 766 767 static void 768 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 769 { 770 metaslab_class_t *mc = mg->mg_class; 771 uint64_t ashift = mg->mg_vd->vdev_ashift; 772 773 ASSERT(MUTEX_HELD(&msp->ms_lock)); 774 if (msp->ms_sm == NULL) 775 return; 776 777 mutex_enter(&mg->mg_lock); 778 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 779 mg->mg_histogram[i + ashift] += 780 msp->ms_sm->sm_phys->smp_histogram[i]; 781 mc->mc_histogram[i + ashift] += 782 msp->ms_sm->sm_phys->smp_histogram[i]; 783 } 784 mutex_exit(&mg->mg_lock); 785 } 786 787 void 788 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 789 { 790 metaslab_class_t *mc = mg->mg_class; 791 uint64_t ashift = mg->mg_vd->vdev_ashift; 792 793 ASSERT(MUTEX_HELD(&msp->ms_lock)); 794 if (msp->ms_sm == NULL) 795 return; 796 797 mutex_enter(&mg->mg_lock); 798 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 799 ASSERT3U(mg->mg_histogram[i + ashift], >=, 800 msp->ms_sm->sm_phys->smp_histogram[i]); 801 ASSERT3U(mc->mc_histogram[i + ashift], >=, 802 msp->ms_sm->sm_phys->smp_histogram[i]); 803 804 mg->mg_histogram[i + ashift] -= 805 msp->ms_sm->sm_phys->smp_histogram[i]; 806 mc->mc_histogram[i + ashift] -= 807 msp->ms_sm->sm_phys->smp_histogram[i]; 808 } 809 mutex_exit(&mg->mg_lock); 810 } 811 812 static void 813 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 814 { 815 ASSERT(msp->ms_group == NULL); 816 mutex_enter(&mg->mg_lock); 817 msp->ms_group = mg; 818 msp->ms_weight = 0; 819 avl_add(&mg->mg_metaslab_tree, msp); 820 mutex_exit(&mg->mg_lock); 821 822 mutex_enter(&msp->ms_lock); 823 metaslab_group_histogram_add(mg, msp); 824 mutex_exit(&msp->ms_lock); 825 } 826 827 static void 828 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 829 { 830 mutex_enter(&msp->ms_lock); 831 metaslab_group_histogram_remove(mg, msp); 832 mutex_exit(&msp->ms_lock); 833 834 mutex_enter(&mg->mg_lock); 835 ASSERT(msp->ms_group == mg); 836 avl_remove(&mg->mg_metaslab_tree, msp); 837 msp->ms_group = NULL; 838 mutex_exit(&mg->mg_lock); 839 } 840 841 static void 842 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 843 { 844 /* 845 * Although in principle the weight can be any value, in 846 * practice we do not use values in the range [1, 511]. 847 */ 848 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 849 ASSERT(MUTEX_HELD(&msp->ms_lock)); 850 851 mutex_enter(&mg->mg_lock); 852 ASSERT(msp->ms_group == mg); 853 avl_remove(&mg->mg_metaslab_tree, msp); 854 msp->ms_weight = weight; 855 avl_add(&mg->mg_metaslab_tree, msp); 856 mutex_exit(&mg->mg_lock); 857 } 858 859 /* 860 * Calculate the fragmentation for a given metaslab group. We can use 861 * a simple average here since all metaslabs within the group must have 862 * the same size. The return value will be a value between 0 and 100 863 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 864 * group have a fragmentation metric. 865 */ 866 uint64_t 867 metaslab_group_fragmentation(metaslab_group_t *mg) 868 { 869 vdev_t *vd = mg->mg_vd; 870 uint64_t fragmentation = 0; 871 uint64_t valid_ms = 0; 872 873 for (int m = 0; m < vd->vdev_ms_count; m++) { 874 metaslab_t *msp = vd->vdev_ms[m]; 875 876 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 877 continue; 878 879 valid_ms++; 880 fragmentation += msp->ms_fragmentation; 881 } 882 883 if (valid_ms <= vd->vdev_ms_count / 2) 884 return (ZFS_FRAG_INVALID); 885 886 fragmentation /= valid_ms; 887 ASSERT3U(fragmentation, <=, 100); 888 return (fragmentation); 889 } 890 891 /* 892 * Determine if a given metaslab group should skip allocations. A metaslab 893 * group should avoid allocations if its free capacity is less than the 894 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 895 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 896 * that can still handle allocations. If the allocation throttle is enabled 897 * then we skip allocations to devices that have reached their maximum 898 * allocation queue depth unless the selected metaslab group is the only 899 * eligible group remaining. 900 */ 901 static boolean_t 902 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 903 uint64_t psize) 904 { 905 spa_t *spa = mg->mg_vd->vdev_spa; 906 metaslab_class_t *mc = mg->mg_class; 907 908 /* 909 * We can only consider skipping this metaslab group if it's 910 * in the normal metaslab class and there are other metaslab 911 * groups to select from. Otherwise, we always consider it eligible 912 * for allocations. 913 */ 914 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1) 915 return (B_TRUE); 916 917 /* 918 * If the metaslab group's mg_allocatable flag is set (see comments 919 * in metaslab_group_alloc_update() for more information) and 920 * the allocation throttle is disabled then allow allocations to this 921 * device. However, if the allocation throttle is enabled then 922 * check if we have reached our allocation limit (mg_alloc_queue_depth) 923 * to determine if we should allow allocations to this metaslab group. 924 * If all metaslab groups are no longer considered allocatable 925 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 926 * gang block size then we allow allocations on this metaslab group 927 * regardless of the mg_allocatable or throttle settings. 928 */ 929 if (mg->mg_allocatable) { 930 metaslab_group_t *mgp; 931 int64_t qdepth; 932 uint64_t qmax = mg->mg_max_alloc_queue_depth; 933 934 if (!mc->mc_alloc_throttle_enabled) 935 return (B_TRUE); 936 937 /* 938 * If this metaslab group does not have any free space, then 939 * there is no point in looking further. 940 */ 941 if (mg->mg_no_free_space) 942 return (B_FALSE); 943 944 qdepth = refcount_count(&mg->mg_alloc_queue_depth); 945 946 /* 947 * If this metaslab group is below its qmax or it's 948 * the only allocatable metasable group, then attempt 949 * to allocate from it. 950 */ 951 if (qdepth < qmax || mc->mc_alloc_groups == 1) 952 return (B_TRUE); 953 ASSERT3U(mc->mc_alloc_groups, >, 1); 954 955 /* 956 * Since this metaslab group is at or over its qmax, we 957 * need to determine if there are metaslab groups after this 958 * one that might be able to handle this allocation. This is 959 * racy since we can't hold the locks for all metaslab 960 * groups at the same time when we make this check. 961 */ 962 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) { 963 qmax = mgp->mg_max_alloc_queue_depth; 964 965 qdepth = refcount_count(&mgp->mg_alloc_queue_depth); 966 967 /* 968 * If there is another metaslab group that 969 * might be able to handle the allocation, then 970 * we return false so that we skip this group. 971 */ 972 if (qdepth < qmax && !mgp->mg_no_free_space) 973 return (B_FALSE); 974 } 975 976 /* 977 * We didn't find another group to handle the allocation 978 * so we can't skip this metaslab group even though 979 * we are at or over our qmax. 980 */ 981 return (B_TRUE); 982 983 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 984 return (B_TRUE); 985 } 986 return (B_FALSE); 987 } 988 989 /* 990 * ========================================================================== 991 * Range tree callbacks 992 * ========================================================================== 993 */ 994 995 /* 996 * Comparison function for the private size-ordered tree. Tree is sorted 997 * by size, larger sizes at the end of the tree. 998 */ 999 static int 1000 metaslab_rangesize_compare(const void *x1, const void *x2) 1001 { 1002 const range_seg_t *r1 = x1; 1003 const range_seg_t *r2 = x2; 1004 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1005 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1006 1007 if (rs_size1 < rs_size2) 1008 return (-1); 1009 if (rs_size1 > rs_size2) 1010 return (1); 1011 1012 if (r1->rs_start < r2->rs_start) 1013 return (-1); 1014 1015 if (r1->rs_start > r2->rs_start) 1016 return (1); 1017 1018 return (0); 1019 } 1020 1021 /* 1022 * Create any block allocator specific components. The current allocators 1023 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1024 */ 1025 static void 1026 metaslab_rt_create(range_tree_t *rt, void *arg) 1027 { 1028 metaslab_t *msp = arg; 1029 1030 ASSERT3P(rt->rt_arg, ==, msp); 1031 ASSERT(msp->ms_tree == NULL); 1032 1033 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, 1034 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); 1035 } 1036 1037 /* 1038 * Destroy the block allocator specific components. 1039 */ 1040 static void 1041 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1042 { 1043 metaslab_t *msp = arg; 1044 1045 ASSERT3P(rt->rt_arg, ==, msp); 1046 ASSERT3P(msp->ms_tree, ==, rt); 1047 ASSERT0(avl_numnodes(&msp->ms_size_tree)); 1048 1049 avl_destroy(&msp->ms_size_tree); 1050 } 1051 1052 static void 1053 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1054 { 1055 metaslab_t *msp = arg; 1056 1057 ASSERT3P(rt->rt_arg, ==, msp); 1058 ASSERT3P(msp->ms_tree, ==, rt); 1059 VERIFY(!msp->ms_condensing); 1060 avl_add(&msp->ms_size_tree, rs); 1061 } 1062 1063 static void 1064 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1065 { 1066 metaslab_t *msp = arg; 1067 1068 ASSERT3P(rt->rt_arg, ==, msp); 1069 ASSERT3P(msp->ms_tree, ==, rt); 1070 VERIFY(!msp->ms_condensing); 1071 avl_remove(&msp->ms_size_tree, rs); 1072 } 1073 1074 static void 1075 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1076 { 1077 metaslab_t *msp = arg; 1078 1079 ASSERT3P(rt->rt_arg, ==, msp); 1080 ASSERT3P(msp->ms_tree, ==, rt); 1081 1082 /* 1083 * Normally one would walk the tree freeing nodes along the way. 1084 * Since the nodes are shared with the range trees we can avoid 1085 * walking all nodes and just reinitialize the avl tree. The nodes 1086 * will be freed by the range tree, so we don't want to free them here. 1087 */ 1088 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, 1089 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); 1090 } 1091 1092 static range_tree_ops_t metaslab_rt_ops = { 1093 metaslab_rt_create, 1094 metaslab_rt_destroy, 1095 metaslab_rt_add, 1096 metaslab_rt_remove, 1097 metaslab_rt_vacate 1098 }; 1099 1100 /* 1101 * ========================================================================== 1102 * Common allocator routines 1103 * ========================================================================== 1104 */ 1105 1106 /* 1107 * Return the maximum contiguous segment within the metaslab. 1108 */ 1109 uint64_t 1110 metaslab_block_maxsize(metaslab_t *msp) 1111 { 1112 avl_tree_t *t = &msp->ms_size_tree; 1113 range_seg_t *rs; 1114 1115 if (t == NULL || (rs = avl_last(t)) == NULL) 1116 return (0ULL); 1117 1118 return (rs->rs_end - rs->rs_start); 1119 } 1120 1121 static range_seg_t * 1122 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size) 1123 { 1124 range_seg_t *rs, rsearch; 1125 avl_index_t where; 1126 1127 rsearch.rs_start = start; 1128 rsearch.rs_end = start + size; 1129 1130 rs = avl_find(t, &rsearch, &where); 1131 if (rs == NULL) { 1132 rs = avl_nearest(t, where, AVL_AFTER); 1133 } 1134 1135 return (rs); 1136 } 1137 1138 /* 1139 * This is a helper function that can be used by the allocator to find 1140 * a suitable block to allocate. This will search the specified AVL 1141 * tree looking for a block that matches the specified criteria. 1142 */ 1143 static uint64_t 1144 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size, 1145 uint64_t align) 1146 { 1147 range_seg_t *rs = metaslab_block_find(t, *cursor, size); 1148 1149 while (rs != NULL) { 1150 uint64_t offset = P2ROUNDUP(rs->rs_start, align); 1151 1152 if (offset + size <= rs->rs_end) { 1153 *cursor = offset + size; 1154 return (offset); 1155 } 1156 rs = AVL_NEXT(t, rs); 1157 } 1158 1159 /* 1160 * If we know we've searched the whole map (*cursor == 0), give up. 1161 * Otherwise, reset the cursor to the beginning and try again. 1162 */ 1163 if (*cursor == 0) 1164 return (-1ULL); 1165 1166 *cursor = 0; 1167 return (metaslab_block_picker(t, cursor, size, align)); 1168 } 1169 1170 /* 1171 * ========================================================================== 1172 * The first-fit block allocator 1173 * ========================================================================== 1174 */ 1175 static uint64_t 1176 metaslab_ff_alloc(metaslab_t *msp, uint64_t size) 1177 { 1178 /* 1179 * Find the largest power of 2 block size that evenly divides the 1180 * requested size. This is used to try to allocate blocks with similar 1181 * alignment from the same area of the metaslab (i.e. same cursor 1182 * bucket) but it does not guarantee that other allocations sizes 1183 * may exist in the same region. 1184 */ 1185 uint64_t align = size & -size; 1186 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1187 avl_tree_t *t = &msp->ms_tree->rt_root; 1188 1189 return (metaslab_block_picker(t, cursor, size, align)); 1190 } 1191 1192 static metaslab_ops_t metaslab_ff_ops = { 1193 metaslab_ff_alloc 1194 }; 1195 1196 /* 1197 * ========================================================================== 1198 * Dynamic block allocator - 1199 * Uses the first fit allocation scheme until space get low and then 1200 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold 1201 * and metaslab_df_free_pct to determine when to switch the allocation scheme. 1202 * ========================================================================== 1203 */ 1204 static uint64_t 1205 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1206 { 1207 /* 1208 * Find the largest power of 2 block size that evenly divides the 1209 * requested size. This is used to try to allocate blocks with similar 1210 * alignment from the same area of the metaslab (i.e. same cursor 1211 * bucket) but it does not guarantee that other allocations sizes 1212 * may exist in the same region. 1213 */ 1214 uint64_t align = size & -size; 1215 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1216 range_tree_t *rt = msp->ms_tree; 1217 avl_tree_t *t = &rt->rt_root; 1218 uint64_t max_size = metaslab_block_maxsize(msp); 1219 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1220 1221 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1222 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); 1223 1224 if (max_size < size) 1225 return (-1ULL); 1226 1227 /* 1228 * If we're running low on space switch to using the size 1229 * sorted AVL tree (best-fit). 1230 */ 1231 if (max_size < metaslab_df_alloc_threshold || 1232 free_pct < metaslab_df_free_pct) { 1233 t = &msp->ms_size_tree; 1234 *cursor = 0; 1235 } 1236 1237 return (metaslab_block_picker(t, cursor, size, 1ULL)); 1238 } 1239 1240 static metaslab_ops_t metaslab_df_ops = { 1241 metaslab_df_alloc 1242 }; 1243 1244 /* 1245 * ========================================================================== 1246 * Cursor fit block allocator - 1247 * Select the largest region in the metaslab, set the cursor to the beginning 1248 * of the range and the cursor_end to the end of the range. As allocations 1249 * are made advance the cursor. Continue allocating from the cursor until 1250 * the range is exhausted and then find a new range. 1251 * ========================================================================== 1252 */ 1253 static uint64_t 1254 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1255 { 1256 range_tree_t *rt = msp->ms_tree; 1257 avl_tree_t *t = &msp->ms_size_tree; 1258 uint64_t *cursor = &msp->ms_lbas[0]; 1259 uint64_t *cursor_end = &msp->ms_lbas[1]; 1260 uint64_t offset = 0; 1261 1262 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1263 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root)); 1264 1265 ASSERT3U(*cursor_end, >=, *cursor); 1266 1267 if ((*cursor + size) > *cursor_end) { 1268 range_seg_t *rs; 1269 1270 rs = avl_last(&msp->ms_size_tree); 1271 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) 1272 return (-1ULL); 1273 1274 *cursor = rs->rs_start; 1275 *cursor_end = rs->rs_end; 1276 } 1277 1278 offset = *cursor; 1279 *cursor += size; 1280 1281 return (offset); 1282 } 1283 1284 static metaslab_ops_t metaslab_cf_ops = { 1285 metaslab_cf_alloc 1286 }; 1287 1288 /* 1289 * ========================================================================== 1290 * New dynamic fit allocator - 1291 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1292 * contiguous blocks. If no region is found then just use the largest segment 1293 * that remains. 1294 * ========================================================================== 1295 */ 1296 1297 /* 1298 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1299 * to request from the allocator. 1300 */ 1301 uint64_t metaslab_ndf_clump_shift = 4; 1302 1303 static uint64_t 1304 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1305 { 1306 avl_tree_t *t = &msp->ms_tree->rt_root; 1307 avl_index_t where; 1308 range_seg_t *rs, rsearch; 1309 uint64_t hbit = highbit64(size); 1310 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1311 uint64_t max_size = metaslab_block_maxsize(msp); 1312 1313 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1314 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); 1315 1316 if (max_size < size) 1317 return (-1ULL); 1318 1319 rsearch.rs_start = *cursor; 1320 rsearch.rs_end = *cursor + size; 1321 1322 rs = avl_find(t, &rsearch, &where); 1323 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) { 1324 t = &msp->ms_size_tree; 1325 1326 rsearch.rs_start = 0; 1327 rsearch.rs_end = MIN(max_size, 1328 1ULL << (hbit + metaslab_ndf_clump_shift)); 1329 rs = avl_find(t, &rsearch, &where); 1330 if (rs == NULL) 1331 rs = avl_nearest(t, where, AVL_AFTER); 1332 ASSERT(rs != NULL); 1333 } 1334 1335 if ((rs->rs_end - rs->rs_start) >= size) { 1336 *cursor = rs->rs_start + size; 1337 return (rs->rs_start); 1338 } 1339 return (-1ULL); 1340 } 1341 1342 static metaslab_ops_t metaslab_ndf_ops = { 1343 metaslab_ndf_alloc 1344 }; 1345 1346 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1347 1348 /* 1349 * ========================================================================== 1350 * Metaslabs 1351 * ========================================================================== 1352 */ 1353 1354 /* 1355 * Wait for any in-progress metaslab loads to complete. 1356 */ 1357 void 1358 metaslab_load_wait(metaslab_t *msp) 1359 { 1360 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1361 1362 while (msp->ms_loading) { 1363 ASSERT(!msp->ms_loaded); 1364 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1365 } 1366 } 1367 1368 int 1369 metaslab_load(metaslab_t *msp) 1370 { 1371 int error = 0; 1372 boolean_t success = B_FALSE; 1373 1374 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1375 ASSERT(!msp->ms_loaded); 1376 ASSERT(!msp->ms_loading); 1377 1378 msp->ms_loading = B_TRUE; 1379 /* 1380 * Nobody else can manipulate a loading metaslab, so it's now safe 1381 * to drop the lock. This way we don't have to hold the lock while 1382 * reading the spacemap from disk. 1383 */ 1384 mutex_exit(&msp->ms_lock); 1385 1386 /* 1387 * If the space map has not been allocated yet, then treat 1388 * all the space in the metaslab as free and add it to the 1389 * ms_tree. 1390 */ 1391 if (msp->ms_sm != NULL) 1392 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE); 1393 else 1394 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size); 1395 1396 success = (error == 0); 1397 1398 mutex_enter(&msp->ms_lock); 1399 msp->ms_loading = B_FALSE; 1400 1401 if (success) { 1402 ASSERT3P(msp->ms_group, !=, NULL); 1403 msp->ms_loaded = B_TRUE; 1404 1405 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1406 range_tree_walk(msp->ms_defertree[t], 1407 range_tree_remove, msp->ms_tree); 1408 } 1409 msp->ms_max_size = metaslab_block_maxsize(msp); 1410 } 1411 cv_broadcast(&msp->ms_load_cv); 1412 return (error); 1413 } 1414 1415 void 1416 metaslab_unload(metaslab_t *msp) 1417 { 1418 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1419 range_tree_vacate(msp->ms_tree, NULL, NULL); 1420 msp->ms_loaded = B_FALSE; 1421 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 1422 msp->ms_max_size = 0; 1423 } 1424 1425 int 1426 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg, 1427 metaslab_t **msp) 1428 { 1429 vdev_t *vd = mg->mg_vd; 1430 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1431 metaslab_t *ms; 1432 int error; 1433 1434 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 1435 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 1436 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 1437 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 1438 ms->ms_id = id; 1439 ms->ms_start = id << vd->vdev_ms_shift; 1440 ms->ms_size = 1ULL << vd->vdev_ms_shift; 1441 1442 /* 1443 * We only open space map objects that already exist. All others 1444 * will be opened when we finally allocate an object for it. 1445 */ 1446 if (object != 0) { 1447 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 1448 ms->ms_size, vd->vdev_ashift); 1449 1450 if (error != 0) { 1451 kmem_free(ms, sizeof (metaslab_t)); 1452 return (error); 1453 } 1454 1455 ASSERT(ms->ms_sm != NULL); 1456 } 1457 1458 /* 1459 * We create the main range tree here, but we don't create the 1460 * other range trees until metaslab_sync_done(). This serves 1461 * two purposes: it allows metaslab_sync_done() to detect the 1462 * addition of new space; and for debugging, it ensures that we'd 1463 * data fault on any attempt to use this metaslab before it's ready. 1464 */ 1465 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms); 1466 metaslab_group_add(mg, ms); 1467 1468 metaslab_set_fragmentation(ms); 1469 1470 /* 1471 * If we're opening an existing pool (txg == 0) or creating 1472 * a new one (txg == TXG_INITIAL), all space is available now. 1473 * If we're adding space to an existing pool, the new space 1474 * does not become available until after this txg has synced. 1475 * The metaslab's weight will also be initialized when we sync 1476 * out this txg. This ensures that we don't attempt to allocate 1477 * from it before we have initialized it completely. 1478 */ 1479 if (txg <= TXG_INITIAL) 1480 metaslab_sync_done(ms, 0); 1481 1482 /* 1483 * If metaslab_debug_load is set and we're initializing a metaslab 1484 * that has an allocated space map object then load the its space 1485 * map so that can verify frees. 1486 */ 1487 if (metaslab_debug_load && ms->ms_sm != NULL) { 1488 mutex_enter(&ms->ms_lock); 1489 VERIFY0(metaslab_load(ms)); 1490 mutex_exit(&ms->ms_lock); 1491 } 1492 1493 if (txg != 0) { 1494 vdev_dirty(vd, 0, NULL, txg); 1495 vdev_dirty(vd, VDD_METASLAB, ms, txg); 1496 } 1497 1498 *msp = ms; 1499 1500 return (0); 1501 } 1502 1503 void 1504 metaslab_fini(metaslab_t *msp) 1505 { 1506 metaslab_group_t *mg = msp->ms_group; 1507 1508 metaslab_group_remove(mg, msp); 1509 1510 mutex_enter(&msp->ms_lock); 1511 VERIFY(msp->ms_group == NULL); 1512 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm), 1513 0, -msp->ms_size); 1514 space_map_close(msp->ms_sm); 1515 1516 metaslab_unload(msp); 1517 range_tree_destroy(msp->ms_tree); 1518 range_tree_destroy(msp->ms_freeingtree); 1519 range_tree_destroy(msp->ms_freedtree); 1520 1521 for (int t = 0; t < TXG_SIZE; t++) { 1522 range_tree_destroy(msp->ms_alloctree[t]); 1523 } 1524 1525 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1526 range_tree_destroy(msp->ms_defertree[t]); 1527 } 1528 1529 ASSERT0(msp->ms_deferspace); 1530 1531 mutex_exit(&msp->ms_lock); 1532 cv_destroy(&msp->ms_load_cv); 1533 mutex_destroy(&msp->ms_lock); 1534 mutex_destroy(&msp->ms_sync_lock); 1535 1536 kmem_free(msp, sizeof (metaslab_t)); 1537 } 1538 1539 #define FRAGMENTATION_TABLE_SIZE 17 1540 1541 /* 1542 * This table defines a segment size based fragmentation metric that will 1543 * allow each metaslab to derive its own fragmentation value. This is done 1544 * by calculating the space in each bucket of the spacemap histogram and 1545 * multiplying that by the fragmetation metric in this table. Doing 1546 * this for all buckets and dividing it by the total amount of free 1547 * space in this metaslab (i.e. the total free space in all buckets) gives 1548 * us the fragmentation metric. This means that a high fragmentation metric 1549 * equates to most of the free space being comprised of small segments. 1550 * Conversely, if the metric is low, then most of the free space is in 1551 * large segments. A 10% change in fragmentation equates to approximately 1552 * double the number of segments. 1553 * 1554 * This table defines 0% fragmented space using 16MB segments. Testing has 1555 * shown that segments that are greater than or equal to 16MB do not suffer 1556 * from drastic performance problems. Using this value, we derive the rest 1557 * of the table. Since the fragmentation value is never stored on disk, it 1558 * is possible to change these calculations in the future. 1559 */ 1560 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 1561 100, /* 512B */ 1562 100, /* 1K */ 1563 98, /* 2K */ 1564 95, /* 4K */ 1565 90, /* 8K */ 1566 80, /* 16K */ 1567 70, /* 32K */ 1568 60, /* 64K */ 1569 50, /* 128K */ 1570 40, /* 256K */ 1571 30, /* 512K */ 1572 20, /* 1M */ 1573 15, /* 2M */ 1574 10, /* 4M */ 1575 5, /* 8M */ 1576 0 /* 16M */ 1577 }; 1578 1579 /* 1580 * Calclate the metaslab's fragmentation metric. A return value 1581 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does 1582 * not support this metric. Otherwise, the return value should be in the 1583 * range [0, 100]. 1584 */ 1585 static void 1586 metaslab_set_fragmentation(metaslab_t *msp) 1587 { 1588 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1589 uint64_t fragmentation = 0; 1590 uint64_t total = 0; 1591 boolean_t feature_enabled = spa_feature_is_enabled(spa, 1592 SPA_FEATURE_SPACEMAP_HISTOGRAM); 1593 1594 if (!feature_enabled) { 1595 msp->ms_fragmentation = ZFS_FRAG_INVALID; 1596 return; 1597 } 1598 1599 /* 1600 * A null space map means that the entire metaslab is free 1601 * and thus is not fragmented. 1602 */ 1603 if (msp->ms_sm == NULL) { 1604 msp->ms_fragmentation = 0; 1605 return; 1606 } 1607 1608 /* 1609 * If this metaslab's space map has not been upgraded, flag it 1610 * so that we upgrade next time we encounter it. 1611 */ 1612 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 1613 uint64_t txg = spa_syncing_txg(spa); 1614 vdev_t *vd = msp->ms_group->mg_vd; 1615 1616 /* 1617 * If we've reached the final dirty txg, then we must 1618 * be shutting down the pool. We don't want to dirty 1619 * any data past this point so skip setting the condense 1620 * flag. We can retry this action the next time the pool 1621 * is imported. 1622 */ 1623 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 1624 msp->ms_condense_wanted = B_TRUE; 1625 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 1626 spa_dbgmsg(spa, "txg %llu, requesting force condense: " 1627 "ms_id %llu, vdev_id %llu", txg, msp->ms_id, 1628 vd->vdev_id); 1629 } 1630 msp->ms_fragmentation = ZFS_FRAG_INVALID; 1631 return; 1632 } 1633 1634 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1635 uint64_t space = 0; 1636 uint8_t shift = msp->ms_sm->sm_shift; 1637 1638 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 1639 FRAGMENTATION_TABLE_SIZE - 1); 1640 1641 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 1642 continue; 1643 1644 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 1645 total += space; 1646 1647 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 1648 fragmentation += space * zfs_frag_table[idx]; 1649 } 1650 1651 if (total > 0) 1652 fragmentation /= total; 1653 ASSERT3U(fragmentation, <=, 100); 1654 1655 msp->ms_fragmentation = fragmentation; 1656 } 1657 1658 /* 1659 * Compute a weight -- a selection preference value -- for the given metaslab. 1660 * This is based on the amount of free space, the level of fragmentation, 1661 * the LBA range, and whether the metaslab is loaded. 1662 */ 1663 static uint64_t 1664 metaslab_space_weight(metaslab_t *msp) 1665 { 1666 metaslab_group_t *mg = msp->ms_group; 1667 vdev_t *vd = mg->mg_vd; 1668 uint64_t weight, space; 1669 1670 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1671 ASSERT(!vd->vdev_removing); 1672 1673 /* 1674 * The baseline weight is the metaslab's free space. 1675 */ 1676 space = msp->ms_size - space_map_allocated(msp->ms_sm); 1677 1678 if (metaslab_fragmentation_factor_enabled && 1679 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 1680 /* 1681 * Use the fragmentation information to inversely scale 1682 * down the baseline weight. We need to ensure that we 1683 * don't exclude this metaslab completely when it's 100% 1684 * fragmented. To avoid this we reduce the fragmented value 1685 * by 1. 1686 */ 1687 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 1688 1689 /* 1690 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 1691 * this metaslab again. The fragmentation metric may have 1692 * decreased the space to something smaller than 1693 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 1694 * so that we can consume any remaining space. 1695 */ 1696 if (space > 0 && space < SPA_MINBLOCKSIZE) 1697 space = SPA_MINBLOCKSIZE; 1698 } 1699 weight = space; 1700 1701 /* 1702 * Modern disks have uniform bit density and constant angular velocity. 1703 * Therefore, the outer recording zones are faster (higher bandwidth) 1704 * than the inner zones by the ratio of outer to inner track diameter, 1705 * which is typically around 2:1. We account for this by assigning 1706 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 1707 * In effect, this means that we'll select the metaslab with the most 1708 * free bandwidth rather than simply the one with the most free space. 1709 */ 1710 if (metaslab_lba_weighting_enabled) { 1711 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 1712 ASSERT(weight >= space && weight <= 2 * space); 1713 } 1714 1715 /* 1716 * If this metaslab is one we're actively using, adjust its 1717 * weight to make it preferable to any inactive metaslab so 1718 * we'll polish it off. If the fragmentation on this metaslab 1719 * has exceed our threshold, then don't mark it active. 1720 */ 1721 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 1722 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 1723 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 1724 } 1725 1726 WEIGHT_SET_SPACEBASED(weight); 1727 return (weight); 1728 } 1729 1730 /* 1731 * Return the weight of the specified metaslab, according to the segment-based 1732 * weighting algorithm. The metaslab must be loaded. This function can 1733 * be called within a sync pass since it relies only on the metaslab's 1734 * range tree which is always accurate when the metaslab is loaded. 1735 */ 1736 static uint64_t 1737 metaslab_weight_from_range_tree(metaslab_t *msp) 1738 { 1739 uint64_t weight = 0; 1740 uint32_t segments = 0; 1741 1742 ASSERT(msp->ms_loaded); 1743 1744 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 1745 i--) { 1746 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 1747 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 1748 1749 segments <<= 1; 1750 segments += msp->ms_tree->rt_histogram[i]; 1751 1752 /* 1753 * The range tree provides more precision than the space map 1754 * and must be downgraded so that all values fit within the 1755 * space map's histogram. This allows us to compare loaded 1756 * vs. unloaded metaslabs to determine which metaslab is 1757 * considered "best". 1758 */ 1759 if (i > max_idx) 1760 continue; 1761 1762 if (segments != 0) { 1763 WEIGHT_SET_COUNT(weight, segments); 1764 WEIGHT_SET_INDEX(weight, i); 1765 WEIGHT_SET_ACTIVE(weight, 0); 1766 break; 1767 } 1768 } 1769 return (weight); 1770 } 1771 1772 /* 1773 * Calculate the weight based on the on-disk histogram. This should only 1774 * be called after a sync pass has completely finished since the on-disk 1775 * information is updated in metaslab_sync(). 1776 */ 1777 static uint64_t 1778 metaslab_weight_from_spacemap(metaslab_t *msp) 1779 { 1780 uint64_t weight = 0; 1781 1782 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 1783 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) { 1784 WEIGHT_SET_COUNT(weight, 1785 msp->ms_sm->sm_phys->smp_histogram[i]); 1786 WEIGHT_SET_INDEX(weight, i + 1787 msp->ms_sm->sm_shift); 1788 WEIGHT_SET_ACTIVE(weight, 0); 1789 break; 1790 } 1791 } 1792 return (weight); 1793 } 1794 1795 /* 1796 * Compute a segment-based weight for the specified metaslab. The weight 1797 * is determined by highest bucket in the histogram. The information 1798 * for the highest bucket is encoded into the weight value. 1799 */ 1800 static uint64_t 1801 metaslab_segment_weight(metaslab_t *msp) 1802 { 1803 metaslab_group_t *mg = msp->ms_group; 1804 uint64_t weight = 0; 1805 uint8_t shift = mg->mg_vd->vdev_ashift; 1806 1807 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1808 1809 /* 1810 * The metaslab is completely free. 1811 */ 1812 if (space_map_allocated(msp->ms_sm) == 0) { 1813 int idx = highbit64(msp->ms_size) - 1; 1814 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 1815 1816 if (idx < max_idx) { 1817 WEIGHT_SET_COUNT(weight, 1ULL); 1818 WEIGHT_SET_INDEX(weight, idx); 1819 } else { 1820 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 1821 WEIGHT_SET_INDEX(weight, max_idx); 1822 } 1823 WEIGHT_SET_ACTIVE(weight, 0); 1824 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 1825 1826 return (weight); 1827 } 1828 1829 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 1830 1831 /* 1832 * If the metaslab is fully allocated then just make the weight 0. 1833 */ 1834 if (space_map_allocated(msp->ms_sm) == msp->ms_size) 1835 return (0); 1836 /* 1837 * If the metaslab is already loaded, then use the range tree to 1838 * determine the weight. Otherwise, we rely on the space map information 1839 * to generate the weight. 1840 */ 1841 if (msp->ms_loaded) { 1842 weight = metaslab_weight_from_range_tree(msp); 1843 } else { 1844 weight = metaslab_weight_from_spacemap(msp); 1845 } 1846 1847 /* 1848 * If the metaslab was active the last time we calculated its weight 1849 * then keep it active. We want to consume the entire region that 1850 * is associated with this weight. 1851 */ 1852 if (msp->ms_activation_weight != 0 && weight != 0) 1853 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 1854 return (weight); 1855 } 1856 1857 /* 1858 * Determine if we should attempt to allocate from this metaslab. If the 1859 * metaslab has a maximum size then we can quickly determine if the desired 1860 * allocation size can be satisfied. Otherwise, if we're using segment-based 1861 * weighting then we can determine the maximum allocation that this metaslab 1862 * can accommodate based on the index encoded in the weight. If we're using 1863 * space-based weights then rely on the entire weight (excluding the weight 1864 * type bit). 1865 */ 1866 boolean_t 1867 metaslab_should_allocate(metaslab_t *msp, uint64_t asize) 1868 { 1869 boolean_t should_allocate; 1870 1871 if (msp->ms_max_size != 0) 1872 return (msp->ms_max_size >= asize); 1873 1874 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 1875 /* 1876 * The metaslab segment weight indicates segments in the 1877 * range [2^i, 2^(i+1)), where i is the index in the weight. 1878 * Since the asize might be in the middle of the range, we 1879 * should attempt the allocation if asize < 2^(i+1). 1880 */ 1881 should_allocate = (asize < 1882 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 1883 } else { 1884 should_allocate = (asize <= 1885 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 1886 } 1887 return (should_allocate); 1888 } 1889 1890 static uint64_t 1891 metaslab_weight(metaslab_t *msp) 1892 { 1893 vdev_t *vd = msp->ms_group->mg_vd; 1894 spa_t *spa = vd->vdev_spa; 1895 uint64_t weight; 1896 1897 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1898 1899 /* 1900 * If this vdev is in the process of being removed, there is nothing 1901 * for us to do here. 1902 */ 1903 if (vd->vdev_removing) 1904 return (0); 1905 1906 metaslab_set_fragmentation(msp); 1907 1908 /* 1909 * Update the maximum size if the metaslab is loaded. This will 1910 * ensure that we get an accurate maximum size if newly freed space 1911 * has been added back into the free tree. 1912 */ 1913 if (msp->ms_loaded) 1914 msp->ms_max_size = metaslab_block_maxsize(msp); 1915 1916 /* 1917 * Segment-based weighting requires space map histogram support. 1918 */ 1919 if (zfs_metaslab_segment_weight_enabled && 1920 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 1921 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 1922 sizeof (space_map_phys_t))) { 1923 weight = metaslab_segment_weight(msp); 1924 } else { 1925 weight = metaslab_space_weight(msp); 1926 } 1927 return (weight); 1928 } 1929 1930 static int 1931 metaslab_activate(metaslab_t *msp, uint64_t activation_weight) 1932 { 1933 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1934 1935 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 1936 metaslab_load_wait(msp); 1937 if (!msp->ms_loaded) { 1938 int error = metaslab_load(msp); 1939 if (error) { 1940 metaslab_group_sort(msp->ms_group, msp, 0); 1941 return (error); 1942 } 1943 } 1944 1945 msp->ms_activation_weight = msp->ms_weight; 1946 metaslab_group_sort(msp->ms_group, msp, 1947 msp->ms_weight | activation_weight); 1948 } 1949 ASSERT(msp->ms_loaded); 1950 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 1951 1952 return (0); 1953 } 1954 1955 static void 1956 metaslab_passivate(metaslab_t *msp, uint64_t weight) 1957 { 1958 uint64_t size = weight & ~METASLAB_WEIGHT_TYPE; 1959 1960 /* 1961 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 1962 * this metaslab again. In that case, it had better be empty, 1963 * or we would be leaving space on the table. 1964 */ 1965 ASSERT(size >= SPA_MINBLOCKSIZE || 1966 range_tree_space(msp->ms_tree) == 0); 1967 ASSERT0(weight & METASLAB_ACTIVE_MASK); 1968 1969 msp->ms_activation_weight = 0; 1970 metaslab_group_sort(msp->ms_group, msp, weight); 1971 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 1972 } 1973 1974 /* 1975 * Segment-based metaslabs are activated once and remain active until 1976 * we either fail an allocation attempt (similar to space-based metaslabs) 1977 * or have exhausted the free space in zfs_metaslab_switch_threshold 1978 * buckets since the metaslab was activated. This function checks to see 1979 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the 1980 * metaslab and passivates it proactively. This will allow us to select a 1981 * metaslabs with larger contiguous region if any remaining within this 1982 * metaslab group. If we're in sync pass > 1, then we continue using this 1983 * metaslab so that we don't dirty more block and cause more sync passes. 1984 */ 1985 void 1986 metaslab_segment_may_passivate(metaslab_t *msp) 1987 { 1988 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1989 1990 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 1991 return; 1992 1993 /* 1994 * Since we are in the middle of a sync pass, the most accurate 1995 * information that is accessible to us is the in-core range tree 1996 * histogram; calculate the new weight based on that information. 1997 */ 1998 uint64_t weight = metaslab_weight_from_range_tree(msp); 1999 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 2000 int current_idx = WEIGHT_GET_INDEX(weight); 2001 2002 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 2003 metaslab_passivate(msp, weight); 2004 } 2005 2006 static void 2007 metaslab_preload(void *arg) 2008 { 2009 metaslab_t *msp = arg; 2010 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2011 2012 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 2013 2014 mutex_enter(&msp->ms_lock); 2015 metaslab_load_wait(msp); 2016 if (!msp->ms_loaded) 2017 (void) metaslab_load(msp); 2018 msp->ms_selected_txg = spa_syncing_txg(spa); 2019 mutex_exit(&msp->ms_lock); 2020 } 2021 2022 static void 2023 metaslab_group_preload(metaslab_group_t *mg) 2024 { 2025 spa_t *spa = mg->mg_vd->vdev_spa; 2026 metaslab_t *msp; 2027 avl_tree_t *t = &mg->mg_metaslab_tree; 2028 int m = 0; 2029 2030 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 2031 taskq_wait(mg->mg_taskq); 2032 return; 2033 } 2034 2035 mutex_enter(&mg->mg_lock); 2036 2037 /* 2038 * Load the next potential metaslabs 2039 */ 2040 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 2041 ASSERT3P(msp->ms_group, ==, mg); 2042 2043 /* 2044 * We preload only the maximum number of metaslabs specified 2045 * by metaslab_preload_limit. If a metaslab is being forced 2046 * to condense then we preload it too. This will ensure 2047 * that force condensing happens in the next txg. 2048 */ 2049 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 2050 continue; 2051 } 2052 2053 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 2054 msp, TQ_SLEEP) != NULL); 2055 } 2056 mutex_exit(&mg->mg_lock); 2057 } 2058 2059 /* 2060 * Determine if the space map's on-disk footprint is past our tolerance 2061 * for inefficiency. We would like to use the following criteria to make 2062 * our decision: 2063 * 2064 * 1. The size of the space map object should not dramatically increase as a 2065 * result of writing out the free space range tree. 2066 * 2067 * 2. The minimal on-disk space map representation is zfs_condense_pct/100 2068 * times the size than the free space range tree representation 2069 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB). 2070 * 2071 * 3. The on-disk size of the space map should actually decrease. 2072 * 2073 * Checking the first condition is tricky since we don't want to walk 2074 * the entire AVL tree calculating the estimated on-disk size. Instead we 2075 * use the size-ordered range tree in the metaslab and calculate the 2076 * size required to write out the largest segment in our free tree. If the 2077 * size required to represent that segment on disk is larger than the space 2078 * map object then we avoid condensing this map. 2079 * 2080 * To determine the second criterion we use a best-case estimate and assume 2081 * each segment can be represented on-disk as a single 64-bit entry. We refer 2082 * to this best-case estimate as the space map's minimal form. 2083 * 2084 * Unfortunately, we cannot compute the on-disk size of the space map in this 2085 * context because we cannot accurately compute the effects of compression, etc. 2086 * Instead, we apply the heuristic described in the block comment for 2087 * zfs_metaslab_condense_block_threshold - we only condense if the space used 2088 * is greater than a threshold number of blocks. 2089 */ 2090 static boolean_t 2091 metaslab_should_condense(metaslab_t *msp) 2092 { 2093 space_map_t *sm = msp->ms_sm; 2094 range_seg_t *rs; 2095 uint64_t size, entries, segsz, object_size, optimal_size, record_size; 2096 dmu_object_info_t doi; 2097 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift; 2098 2099 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2100 ASSERT(msp->ms_loaded); 2101 2102 /* 2103 * Use the ms_size_tree range tree, which is ordered by size, to 2104 * obtain the largest segment in the free tree. We always condense 2105 * metaslabs that are empty and metaslabs for which a condense 2106 * request has been made. 2107 */ 2108 rs = avl_last(&msp->ms_size_tree); 2109 if (rs == NULL || msp->ms_condense_wanted) 2110 return (B_TRUE); 2111 2112 /* 2113 * Calculate the number of 64-bit entries this segment would 2114 * require when written to disk. If this single segment would be 2115 * larger on-disk than the entire current on-disk structure, then 2116 * clearly condensing will increase the on-disk structure size. 2117 */ 2118 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; 2119 entries = size / (MIN(size, SM_RUN_MAX)); 2120 segsz = entries * sizeof (uint64_t); 2121 2122 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root); 2123 object_size = space_map_length(msp->ms_sm); 2124 2125 dmu_object_info_from_db(sm->sm_dbuf, &doi); 2126 record_size = MAX(doi.doi_data_block_size, vdev_blocksize); 2127 2128 return (segsz <= object_size && 2129 object_size >= (optimal_size * zfs_condense_pct / 100) && 2130 object_size > zfs_metaslab_condense_block_threshold * record_size); 2131 } 2132 2133 /* 2134 * Condense the on-disk space map representation to its minimized form. 2135 * The minimized form consists of a small number of allocations followed by 2136 * the entries of the free range tree. 2137 */ 2138 static void 2139 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx) 2140 { 2141 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2142 range_tree_t *condense_tree; 2143 space_map_t *sm = msp->ms_sm; 2144 2145 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2146 ASSERT3U(spa_sync_pass(spa), ==, 1); 2147 ASSERT(msp->ms_loaded); 2148 2149 2150 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, " 2151 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg, 2152 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id, 2153 msp->ms_group->mg_vd->vdev_spa->spa_name, 2154 space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root), 2155 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 2156 2157 msp->ms_condense_wanted = B_FALSE; 2158 2159 /* 2160 * Create an range tree that is 100% allocated. We remove segments 2161 * that have been freed in this txg, any deferred frees that exist, 2162 * and any allocation in the future. Removing segments should be 2163 * a relatively inexpensive operation since we expect these trees to 2164 * have a small number of nodes. 2165 */ 2166 condense_tree = range_tree_create(NULL, NULL); 2167 range_tree_add(condense_tree, msp->ms_start, msp->ms_size); 2168 2169 /* 2170 * Remove what's been freed in this txg from the condense_tree. 2171 * Since we're in sync_pass 1, we know that all the frees from 2172 * this txg are in the freeingtree. 2173 */ 2174 range_tree_walk(msp->ms_freeingtree, range_tree_remove, condense_tree); 2175 2176 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2177 range_tree_walk(msp->ms_defertree[t], 2178 range_tree_remove, condense_tree); 2179 } 2180 2181 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 2182 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK], 2183 range_tree_remove, condense_tree); 2184 } 2185 2186 /* 2187 * We're about to drop the metaslab's lock thus allowing 2188 * other consumers to change it's content. Set the 2189 * metaslab's ms_condensing flag to ensure that 2190 * allocations on this metaslab do not occur while we're 2191 * in the middle of committing it to disk. This is only critical 2192 * for the ms_tree as all other range trees use per txg 2193 * views of their content. 2194 */ 2195 msp->ms_condensing = B_TRUE; 2196 2197 mutex_exit(&msp->ms_lock); 2198 space_map_truncate(sm, tx); 2199 2200 /* 2201 * While we would ideally like to create a space map representation 2202 * that consists only of allocation records, doing so can be 2203 * prohibitively expensive because the in-core free tree can be 2204 * large, and therefore computationally expensive to subtract 2205 * from the condense_tree. Instead we sync out two trees, a cheap 2206 * allocation only tree followed by the in-core free tree. While not 2207 * optimal, this is typically close to optimal, and much cheaper to 2208 * compute. 2209 */ 2210 space_map_write(sm, condense_tree, SM_ALLOC, tx); 2211 range_tree_vacate(condense_tree, NULL, NULL); 2212 range_tree_destroy(condense_tree); 2213 2214 space_map_write(sm, msp->ms_tree, SM_FREE, tx); 2215 mutex_enter(&msp->ms_lock); 2216 msp->ms_condensing = B_FALSE; 2217 } 2218 2219 /* 2220 * Write a metaslab to disk in the context of the specified transaction group. 2221 */ 2222 void 2223 metaslab_sync(metaslab_t *msp, uint64_t txg) 2224 { 2225 metaslab_group_t *mg = msp->ms_group; 2226 vdev_t *vd = mg->mg_vd; 2227 spa_t *spa = vd->vdev_spa; 2228 objset_t *mos = spa_meta_objset(spa); 2229 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK]; 2230 dmu_tx_t *tx; 2231 uint64_t object = space_map_object(msp->ms_sm); 2232 2233 ASSERT(!vd->vdev_ishole); 2234 2235 /* 2236 * This metaslab has just been added so there's no work to do now. 2237 */ 2238 if (msp->ms_freeingtree == NULL) { 2239 ASSERT3P(alloctree, ==, NULL); 2240 return; 2241 } 2242 2243 ASSERT3P(alloctree, !=, NULL); 2244 ASSERT3P(msp->ms_freeingtree, !=, NULL); 2245 ASSERT3P(msp->ms_freedtree, !=, NULL); 2246 2247 /* 2248 * Normally, we don't want to process a metaslab if there 2249 * are no allocations or frees to perform. However, if the metaslab 2250 * is being forced to condense and it's loaded, we need to let it 2251 * through. 2252 */ 2253 if (range_tree_space(alloctree) == 0 && 2254 range_tree_space(msp->ms_freeingtree) == 0 && 2255 !(msp->ms_loaded && msp->ms_condense_wanted)) 2256 return; 2257 2258 2259 VERIFY(txg <= spa_final_dirty_txg(spa)); 2260 2261 /* 2262 * The only state that can actually be changing concurrently with 2263 * metaslab_sync() is the metaslab's ms_tree. No other thread can 2264 * be modifying this txg's alloctree, freeingtree, freedtree, or 2265 * space_map_phys_t. We drop ms_lock whenever we could call 2266 * into the DMU, because the DMU can call down to us 2267 * (e.g. via zio_free()) at any time. 2268 * 2269 * The spa_vdev_remove_thread() can be reading metaslab state 2270 * concurrently, and it is locked out by the ms_sync_lock. Note 2271 * that the ms_lock is insufficient for this, because it is dropped 2272 * by space_map_write(). 2273 */ 2274 2275 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2276 2277 if (msp->ms_sm == NULL) { 2278 uint64_t new_object; 2279 2280 new_object = space_map_alloc(mos, tx); 2281 VERIFY3U(new_object, !=, 0); 2282 2283 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 2284 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 2285 ASSERT(msp->ms_sm != NULL); 2286 } 2287 2288 mutex_enter(&msp->ms_sync_lock); 2289 mutex_enter(&msp->ms_lock); 2290 2291 /* 2292 * Note: metaslab_condense() clears the space map's histogram. 2293 * Therefore we must verify and remove this histogram before 2294 * condensing. 2295 */ 2296 metaslab_group_histogram_verify(mg); 2297 metaslab_class_histogram_verify(mg->mg_class); 2298 metaslab_group_histogram_remove(mg, msp); 2299 2300 if (msp->ms_loaded && spa_sync_pass(spa) == 1 && 2301 metaslab_should_condense(msp)) { 2302 metaslab_condense(msp, txg, tx); 2303 } else { 2304 mutex_exit(&msp->ms_lock); 2305 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx); 2306 space_map_write(msp->ms_sm, msp->ms_freeingtree, SM_FREE, tx); 2307 mutex_enter(&msp->ms_lock); 2308 } 2309 2310 if (msp->ms_loaded) { 2311 /* 2312 * When the space map is loaded, we have an accurate 2313 * histogram in the range tree. This gives us an opportunity 2314 * to bring the space map's histogram up-to-date so we clear 2315 * it first before updating it. 2316 */ 2317 space_map_histogram_clear(msp->ms_sm); 2318 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx); 2319 2320 /* 2321 * Since we've cleared the histogram we need to add back 2322 * any free space that has already been processed, plus 2323 * any deferred space. This allows the on-disk histogram 2324 * to accurately reflect all free space even if some space 2325 * is not yet available for allocation (i.e. deferred). 2326 */ 2327 space_map_histogram_add(msp->ms_sm, msp->ms_freedtree, tx); 2328 2329 /* 2330 * Add back any deferred free space that has not been 2331 * added back into the in-core free tree yet. This will 2332 * ensure that we don't end up with a space map histogram 2333 * that is completely empty unless the metaslab is fully 2334 * allocated. 2335 */ 2336 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2337 space_map_histogram_add(msp->ms_sm, 2338 msp->ms_defertree[t], tx); 2339 } 2340 } 2341 2342 /* 2343 * Always add the free space from this sync pass to the space 2344 * map histogram. We want to make sure that the on-disk histogram 2345 * accounts for all free space. If the space map is not loaded, 2346 * then we will lose some accuracy but will correct it the next 2347 * time we load the space map. 2348 */ 2349 space_map_histogram_add(msp->ms_sm, msp->ms_freeingtree, tx); 2350 2351 metaslab_group_histogram_add(mg, msp); 2352 metaslab_group_histogram_verify(mg); 2353 metaslab_class_histogram_verify(mg->mg_class); 2354 2355 /* 2356 * For sync pass 1, we avoid traversing this txg's free range tree 2357 * and instead will just swap the pointers for freeingtree and 2358 * freedtree. We can safely do this since the freed_tree is 2359 * guaranteed to be empty on the initial pass. 2360 */ 2361 if (spa_sync_pass(spa) == 1) { 2362 range_tree_swap(&msp->ms_freeingtree, &msp->ms_freedtree); 2363 } else { 2364 range_tree_vacate(msp->ms_freeingtree, 2365 range_tree_add, msp->ms_freedtree); 2366 } 2367 range_tree_vacate(alloctree, NULL, NULL); 2368 2369 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK])); 2370 ASSERT0(range_tree_space(msp->ms_alloctree[TXG_CLEAN(txg) & TXG_MASK])); 2371 ASSERT0(range_tree_space(msp->ms_freeingtree)); 2372 2373 mutex_exit(&msp->ms_lock); 2374 2375 if (object != space_map_object(msp->ms_sm)) { 2376 object = space_map_object(msp->ms_sm); 2377 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 2378 msp->ms_id, sizeof (uint64_t), &object, tx); 2379 } 2380 mutex_exit(&msp->ms_sync_lock); 2381 dmu_tx_commit(tx); 2382 } 2383 2384 /* 2385 * Called after a transaction group has completely synced to mark 2386 * all of the metaslab's free space as usable. 2387 */ 2388 void 2389 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 2390 { 2391 metaslab_group_t *mg = msp->ms_group; 2392 vdev_t *vd = mg->mg_vd; 2393 spa_t *spa = vd->vdev_spa; 2394 range_tree_t **defer_tree; 2395 int64_t alloc_delta, defer_delta; 2396 boolean_t defer_allowed = B_TRUE; 2397 2398 ASSERT(!vd->vdev_ishole); 2399 2400 mutex_enter(&msp->ms_lock); 2401 2402 /* 2403 * If this metaslab is just becoming available, initialize its 2404 * range trees and add its capacity to the vdev. 2405 */ 2406 if (msp->ms_freedtree == NULL) { 2407 for (int t = 0; t < TXG_SIZE; t++) { 2408 ASSERT(msp->ms_alloctree[t] == NULL); 2409 2410 msp->ms_alloctree[t] = range_tree_create(NULL, NULL); 2411 } 2412 2413 ASSERT3P(msp->ms_freeingtree, ==, NULL); 2414 msp->ms_freeingtree = range_tree_create(NULL, NULL); 2415 2416 ASSERT3P(msp->ms_freedtree, ==, NULL); 2417 msp->ms_freedtree = range_tree_create(NULL, NULL); 2418 2419 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2420 ASSERT(msp->ms_defertree[t] == NULL); 2421 2422 msp->ms_defertree[t] = range_tree_create(NULL, NULL); 2423 } 2424 2425 vdev_space_update(vd, 0, 0, msp->ms_size); 2426 } 2427 2428 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE]; 2429 2430 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 2431 metaslab_class_get_alloc(spa_normal_class(spa)); 2432 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 2433 defer_allowed = B_FALSE; 2434 } 2435 2436 defer_delta = 0; 2437 alloc_delta = space_map_alloc_delta(msp->ms_sm); 2438 if (defer_allowed) { 2439 defer_delta = range_tree_space(msp->ms_freedtree) - 2440 range_tree_space(*defer_tree); 2441 } else { 2442 defer_delta -= range_tree_space(*defer_tree); 2443 } 2444 2445 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0); 2446 2447 /* 2448 * If there's a metaslab_load() in progress, wait for it to complete 2449 * so that we have a consistent view of the in-core space map. 2450 */ 2451 metaslab_load_wait(msp); 2452 2453 /* 2454 * Move the frees from the defer_tree back to the free 2455 * range tree (if it's loaded). Swap the freed_tree and the 2456 * defer_tree -- this is safe to do because we've just emptied out 2457 * the defer_tree. 2458 */ 2459 range_tree_vacate(*defer_tree, 2460 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree); 2461 if (defer_allowed) { 2462 range_tree_swap(&msp->ms_freedtree, defer_tree); 2463 } else { 2464 range_tree_vacate(msp->ms_freedtree, 2465 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree); 2466 } 2467 2468 space_map_update(msp->ms_sm); 2469 2470 msp->ms_deferspace += defer_delta; 2471 ASSERT3S(msp->ms_deferspace, >=, 0); 2472 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 2473 if (msp->ms_deferspace != 0) { 2474 /* 2475 * Keep syncing this metaslab until all deferred frees 2476 * are back in circulation. 2477 */ 2478 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2479 } 2480 2481 /* 2482 * Calculate the new weights before unloading any metaslabs. 2483 * This will give us the most accurate weighting. 2484 */ 2485 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 2486 2487 /* 2488 * If the metaslab is loaded and we've not tried to load or allocate 2489 * from it in 'metaslab_unload_delay' txgs, then unload it. 2490 */ 2491 if (msp->ms_loaded && 2492 msp->ms_selected_txg + metaslab_unload_delay < txg) { 2493 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 2494 VERIFY0(range_tree_space( 2495 msp->ms_alloctree[(txg + t) & TXG_MASK])); 2496 } 2497 2498 if (!metaslab_debug_unload) 2499 metaslab_unload(msp); 2500 } 2501 2502 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK])); 2503 ASSERT0(range_tree_space(msp->ms_freeingtree)); 2504 ASSERT0(range_tree_space(msp->ms_freedtree)); 2505 2506 mutex_exit(&msp->ms_lock); 2507 } 2508 2509 void 2510 metaslab_sync_reassess(metaslab_group_t *mg) 2511 { 2512 spa_t *spa = mg->mg_class->mc_spa; 2513 2514 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 2515 metaslab_group_alloc_update(mg); 2516 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 2517 2518 /* 2519 * Preload the next potential metaslabs but only on active 2520 * metaslab groups. We can get into a state where the metaslab 2521 * is no longer active since we dirty metaslabs as we remove a 2522 * a device, thus potentially making the metaslab group eligible 2523 * for preloading. 2524 */ 2525 if (mg->mg_activation_count > 0) { 2526 metaslab_group_preload(mg); 2527 } 2528 spa_config_exit(spa, SCL_ALLOC, FTAG); 2529 } 2530 2531 static uint64_t 2532 metaslab_distance(metaslab_t *msp, dva_t *dva) 2533 { 2534 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 2535 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 2536 uint64_t start = msp->ms_id; 2537 2538 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 2539 return (1ULL << 63); 2540 2541 if (offset < start) 2542 return ((start - offset) << ms_shift); 2543 if (offset > start) 2544 return ((offset - start) << ms_shift); 2545 return (0); 2546 } 2547 2548 /* 2549 * ========================================================================== 2550 * Metaslab allocation tracing facility 2551 * ========================================================================== 2552 */ 2553 kstat_t *metaslab_trace_ksp; 2554 kstat_named_t metaslab_trace_over_limit; 2555 2556 void 2557 metaslab_alloc_trace_init(void) 2558 { 2559 ASSERT(metaslab_alloc_trace_cache == NULL); 2560 metaslab_alloc_trace_cache = kmem_cache_create( 2561 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 2562 0, NULL, NULL, NULL, NULL, NULL, 0); 2563 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats", 2564 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL); 2565 if (metaslab_trace_ksp != NULL) { 2566 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit; 2567 kstat_named_init(&metaslab_trace_over_limit, 2568 "metaslab_trace_over_limit", KSTAT_DATA_UINT64); 2569 kstat_install(metaslab_trace_ksp); 2570 } 2571 } 2572 2573 void 2574 metaslab_alloc_trace_fini(void) 2575 { 2576 if (metaslab_trace_ksp != NULL) { 2577 kstat_delete(metaslab_trace_ksp); 2578 metaslab_trace_ksp = NULL; 2579 } 2580 kmem_cache_destroy(metaslab_alloc_trace_cache); 2581 metaslab_alloc_trace_cache = NULL; 2582 } 2583 2584 /* 2585 * Add an allocation trace element to the allocation tracing list. 2586 */ 2587 static void 2588 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 2589 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset) 2590 { 2591 if (!metaslab_trace_enabled) 2592 return; 2593 2594 /* 2595 * When the tracing list reaches its maximum we remove 2596 * the second element in the list before adding a new one. 2597 * By removing the second element we preserve the original 2598 * entry as a clue to what allocations steps have already been 2599 * performed. 2600 */ 2601 if (zal->zal_size == metaslab_trace_max_entries) { 2602 metaslab_alloc_trace_t *mat_next; 2603 #ifdef DEBUG 2604 panic("too many entries in allocation list"); 2605 #endif 2606 atomic_inc_64(&metaslab_trace_over_limit.value.ui64); 2607 zal->zal_size--; 2608 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 2609 list_remove(&zal->zal_list, mat_next); 2610 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 2611 } 2612 2613 metaslab_alloc_trace_t *mat = 2614 kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 2615 list_link_init(&mat->mat_list_node); 2616 mat->mat_mg = mg; 2617 mat->mat_msp = msp; 2618 mat->mat_size = psize; 2619 mat->mat_dva_id = dva_id; 2620 mat->mat_offset = offset; 2621 mat->mat_weight = 0; 2622 2623 if (msp != NULL) 2624 mat->mat_weight = msp->ms_weight; 2625 2626 /* 2627 * The list is part of the zio so locking is not required. Only 2628 * a single thread will perform allocations for a given zio. 2629 */ 2630 list_insert_tail(&zal->zal_list, mat); 2631 zal->zal_size++; 2632 2633 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 2634 } 2635 2636 void 2637 metaslab_trace_init(zio_alloc_list_t *zal) 2638 { 2639 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 2640 offsetof(metaslab_alloc_trace_t, mat_list_node)); 2641 zal->zal_size = 0; 2642 } 2643 2644 void 2645 metaslab_trace_fini(zio_alloc_list_t *zal) 2646 { 2647 metaslab_alloc_trace_t *mat; 2648 2649 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 2650 kmem_cache_free(metaslab_alloc_trace_cache, mat); 2651 list_destroy(&zal->zal_list); 2652 zal->zal_size = 0; 2653 } 2654 2655 /* 2656 * ========================================================================== 2657 * Metaslab block operations 2658 * ========================================================================== 2659 */ 2660 2661 static void 2662 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags) 2663 { 2664 if (!(flags & METASLAB_ASYNC_ALLOC) || 2665 flags & METASLAB_DONT_THROTTLE) 2666 return; 2667 2668 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 2669 if (!mg->mg_class->mc_alloc_throttle_enabled) 2670 return; 2671 2672 (void) refcount_add(&mg->mg_alloc_queue_depth, tag); 2673 } 2674 2675 void 2676 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags) 2677 { 2678 if (!(flags & METASLAB_ASYNC_ALLOC) || 2679 flags & METASLAB_DONT_THROTTLE) 2680 return; 2681 2682 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 2683 if (!mg->mg_class->mc_alloc_throttle_enabled) 2684 return; 2685 2686 (void) refcount_remove(&mg->mg_alloc_queue_depth, tag); 2687 } 2688 2689 void 2690 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag) 2691 { 2692 #ifdef ZFS_DEBUG 2693 const dva_t *dva = bp->blk_dva; 2694 int ndvas = BP_GET_NDVAS(bp); 2695 2696 for (int d = 0; d < ndvas; d++) { 2697 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 2698 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 2699 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag)); 2700 } 2701 #endif 2702 } 2703 2704 static uint64_t 2705 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 2706 { 2707 uint64_t start; 2708 range_tree_t *rt = msp->ms_tree; 2709 metaslab_class_t *mc = msp->ms_group->mg_class; 2710 2711 VERIFY(!msp->ms_condensing); 2712 2713 start = mc->mc_ops->msop_alloc(msp, size); 2714 if (start != -1ULL) { 2715 metaslab_group_t *mg = msp->ms_group; 2716 vdev_t *vd = mg->mg_vd; 2717 2718 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 2719 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 2720 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 2721 range_tree_remove(rt, start, size); 2722 2723 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) 2724 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 2725 2726 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], start, size); 2727 2728 /* Track the last successful allocation */ 2729 msp->ms_alloc_txg = txg; 2730 metaslab_verify_space(msp, txg); 2731 } 2732 2733 /* 2734 * Now that we've attempted the allocation we need to update the 2735 * metaslab's maximum block size since it may have changed. 2736 */ 2737 msp->ms_max_size = metaslab_block_maxsize(msp); 2738 return (start); 2739 } 2740 2741 static uint64_t 2742 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 2743 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d) 2744 { 2745 metaslab_t *msp = NULL; 2746 uint64_t offset = -1ULL; 2747 uint64_t activation_weight; 2748 uint64_t target_distance; 2749 int i; 2750 2751 activation_weight = METASLAB_WEIGHT_PRIMARY; 2752 for (i = 0; i < d; i++) { 2753 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 2754 activation_weight = METASLAB_WEIGHT_SECONDARY; 2755 break; 2756 } 2757 } 2758 2759 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 2760 search->ms_weight = UINT64_MAX; 2761 search->ms_start = 0; 2762 for (;;) { 2763 boolean_t was_active; 2764 avl_tree_t *t = &mg->mg_metaslab_tree; 2765 avl_index_t idx; 2766 2767 mutex_enter(&mg->mg_lock); 2768 2769 /* 2770 * Find the metaslab with the highest weight that is less 2771 * than what we've already tried. In the common case, this 2772 * means that we will examine each metaslab at most once. 2773 * Note that concurrent callers could reorder metaslabs 2774 * by activation/passivation once we have dropped the mg_lock. 2775 * If a metaslab is activated by another thread, and we fail 2776 * to allocate from the metaslab we have selected, we may 2777 * not try the newly-activated metaslab, and instead activate 2778 * another metaslab. This is not optimal, but generally 2779 * does not cause any problems (a possible exception being 2780 * if every metaslab is completely full except for the 2781 * the newly-activated metaslab which we fail to examine). 2782 */ 2783 msp = avl_find(t, search, &idx); 2784 if (msp == NULL) 2785 msp = avl_nearest(t, idx, AVL_AFTER); 2786 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 2787 2788 if (!metaslab_should_allocate(msp, asize)) { 2789 metaslab_trace_add(zal, mg, msp, asize, d, 2790 TRACE_TOO_SMALL); 2791 continue; 2792 } 2793 2794 /* 2795 * If the selected metaslab is condensing, skip it. 2796 */ 2797 if (msp->ms_condensing) 2798 continue; 2799 2800 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2801 if (activation_weight == METASLAB_WEIGHT_PRIMARY) 2802 break; 2803 2804 target_distance = min_distance + 2805 (space_map_allocated(msp->ms_sm) != 0 ? 0 : 2806 min_distance >> 1); 2807 2808 for (i = 0; i < d; i++) { 2809 if (metaslab_distance(msp, &dva[i]) < 2810 target_distance) 2811 break; 2812 } 2813 if (i == d) 2814 break; 2815 } 2816 mutex_exit(&mg->mg_lock); 2817 if (msp == NULL) { 2818 kmem_free(search, sizeof (*search)); 2819 return (-1ULL); 2820 } 2821 search->ms_weight = msp->ms_weight; 2822 search->ms_start = msp->ms_start + 1; 2823 2824 mutex_enter(&msp->ms_lock); 2825 2826 /* 2827 * Ensure that the metaslab we have selected is still 2828 * capable of handling our request. It's possible that 2829 * another thread may have changed the weight while we 2830 * were blocked on the metaslab lock. We check the 2831 * active status first to see if we need to reselect 2832 * a new metaslab. 2833 */ 2834 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 2835 mutex_exit(&msp->ms_lock); 2836 continue; 2837 } 2838 2839 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && 2840 activation_weight == METASLAB_WEIGHT_PRIMARY) { 2841 metaslab_passivate(msp, 2842 msp->ms_weight & ~METASLAB_ACTIVE_MASK); 2843 mutex_exit(&msp->ms_lock); 2844 continue; 2845 } 2846 2847 if (metaslab_activate(msp, activation_weight) != 0) { 2848 mutex_exit(&msp->ms_lock); 2849 continue; 2850 } 2851 msp->ms_selected_txg = txg; 2852 2853 /* 2854 * Now that we have the lock, recheck to see if we should 2855 * continue to use this metaslab for this allocation. The 2856 * the metaslab is now loaded so metaslab_should_allocate() can 2857 * accurately determine if the allocation attempt should 2858 * proceed. 2859 */ 2860 if (!metaslab_should_allocate(msp, asize)) { 2861 /* Passivate this metaslab and select a new one. */ 2862 metaslab_trace_add(zal, mg, msp, asize, d, 2863 TRACE_TOO_SMALL); 2864 goto next; 2865 } 2866 2867 /* 2868 * If this metaslab is currently condensing then pick again as 2869 * we can't manipulate this metaslab until it's committed 2870 * to disk. 2871 */ 2872 if (msp->ms_condensing) { 2873 metaslab_trace_add(zal, mg, msp, asize, d, 2874 TRACE_CONDENSING); 2875 mutex_exit(&msp->ms_lock); 2876 continue; 2877 } 2878 2879 offset = metaslab_block_alloc(msp, asize, txg); 2880 metaslab_trace_add(zal, mg, msp, asize, d, offset); 2881 2882 if (offset != -1ULL) { 2883 /* Proactively passivate the metaslab, if needed */ 2884 metaslab_segment_may_passivate(msp); 2885 break; 2886 } 2887 next: 2888 ASSERT(msp->ms_loaded); 2889 2890 /* 2891 * We were unable to allocate from this metaslab so determine 2892 * a new weight for this metaslab. Now that we have loaded 2893 * the metaslab we can provide a better hint to the metaslab 2894 * selector. 2895 * 2896 * For space-based metaslabs, we use the maximum block size. 2897 * This information is only available when the metaslab 2898 * is loaded and is more accurate than the generic free 2899 * space weight that was calculated by metaslab_weight(). 2900 * This information allows us to quickly compare the maximum 2901 * available allocation in the metaslab to the allocation 2902 * size being requested. 2903 * 2904 * For segment-based metaslabs, determine the new weight 2905 * based on the highest bucket in the range tree. We 2906 * explicitly use the loaded segment weight (i.e. the range 2907 * tree histogram) since it contains the space that is 2908 * currently available for allocation and is accurate 2909 * even within a sync pass. 2910 */ 2911 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 2912 uint64_t weight = metaslab_block_maxsize(msp); 2913 WEIGHT_SET_SPACEBASED(weight); 2914 metaslab_passivate(msp, weight); 2915 } else { 2916 metaslab_passivate(msp, 2917 metaslab_weight_from_range_tree(msp)); 2918 } 2919 2920 /* 2921 * We have just failed an allocation attempt, check 2922 * that metaslab_should_allocate() agrees. Otherwise, 2923 * we may end up in an infinite loop retrying the same 2924 * metaslab. 2925 */ 2926 ASSERT(!metaslab_should_allocate(msp, asize)); 2927 mutex_exit(&msp->ms_lock); 2928 } 2929 mutex_exit(&msp->ms_lock); 2930 kmem_free(search, sizeof (*search)); 2931 return (offset); 2932 } 2933 2934 static uint64_t 2935 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 2936 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d) 2937 { 2938 uint64_t offset; 2939 ASSERT(mg->mg_initialized); 2940 2941 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, 2942 min_distance, dva, d); 2943 2944 mutex_enter(&mg->mg_lock); 2945 if (offset == -1ULL) { 2946 mg->mg_failed_allocations++; 2947 metaslab_trace_add(zal, mg, NULL, asize, d, 2948 TRACE_GROUP_FAILURE); 2949 if (asize == SPA_GANGBLOCKSIZE) { 2950 /* 2951 * This metaslab group was unable to allocate 2952 * the minimum gang block size so it must be out of 2953 * space. We must notify the allocation throttle 2954 * to start skipping allocation attempts to this 2955 * metaslab group until more space becomes available. 2956 * Note: this failure cannot be caused by the 2957 * allocation throttle since the allocation throttle 2958 * is only responsible for skipping devices and 2959 * not failing block allocations. 2960 */ 2961 mg->mg_no_free_space = B_TRUE; 2962 } 2963 } 2964 mg->mg_allocations++; 2965 mutex_exit(&mg->mg_lock); 2966 return (offset); 2967 } 2968 2969 /* 2970 * If we have to write a ditto block (i.e. more than one DVA for a given BP) 2971 * on the same vdev as an existing DVA of this BP, then try to allocate it 2972 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the 2973 * existing DVAs. 2974 */ 2975 int ditto_same_vdev_distance_shift = 3; 2976 2977 /* 2978 * Allocate a block for the specified i/o. 2979 */ 2980 int 2981 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 2982 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 2983 zio_alloc_list_t *zal) 2984 { 2985 metaslab_group_t *mg, *rotor; 2986 vdev_t *vd; 2987 boolean_t try_hard = B_FALSE; 2988 2989 ASSERT(!DVA_IS_VALID(&dva[d])); 2990 2991 /* 2992 * For testing, make some blocks above a certain size be gang blocks. 2993 */ 2994 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) { 2995 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG); 2996 return (SET_ERROR(ENOSPC)); 2997 } 2998 2999 /* 3000 * Start at the rotor and loop through all mgs until we find something. 3001 * Note that there's no locking on mc_rotor or mc_aliquot because 3002 * nothing actually breaks if we miss a few updates -- we just won't 3003 * allocate quite as evenly. It all balances out over time. 3004 * 3005 * If we are doing ditto or log blocks, try to spread them across 3006 * consecutive vdevs. If we're forced to reuse a vdev before we've 3007 * allocated all of our ditto blocks, then try and spread them out on 3008 * that vdev as much as possible. If it turns out to not be possible, 3009 * gradually lower our standards until anything becomes acceptable. 3010 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 3011 * gives us hope of containing our fault domains to something we're 3012 * able to reason about. Otherwise, any two top-level vdev failures 3013 * will guarantee the loss of data. With consecutive allocation, 3014 * only two adjacent top-level vdev failures will result in data loss. 3015 * 3016 * If we are doing gang blocks (hintdva is non-NULL), try to keep 3017 * ourselves on the same vdev as our gang block header. That 3018 * way, we can hope for locality in vdev_cache, plus it makes our 3019 * fault domains something tractable. 3020 */ 3021 if (hintdva) { 3022 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 3023 3024 /* 3025 * It's possible the vdev we're using as the hint no 3026 * longer exists or its mg has been closed (e.g. by 3027 * device removal). Consult the rotor when 3028 * all else fails. 3029 */ 3030 if (vd != NULL && vd->vdev_mg != NULL) { 3031 mg = vd->vdev_mg; 3032 3033 if (flags & METASLAB_HINTBP_AVOID && 3034 mg->mg_next != NULL) 3035 mg = mg->mg_next; 3036 } else { 3037 mg = mc->mc_rotor; 3038 } 3039 } else if (d != 0) { 3040 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 3041 mg = vd->vdev_mg->mg_next; 3042 } else { 3043 mg = mc->mc_rotor; 3044 } 3045 3046 /* 3047 * If the hint put us into the wrong metaslab class, or into a 3048 * metaslab group that has been passivated, just follow the rotor. 3049 */ 3050 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 3051 mg = mc->mc_rotor; 3052 3053 rotor = mg; 3054 top: 3055 do { 3056 boolean_t allocatable; 3057 3058 ASSERT(mg->mg_activation_count == 1); 3059 vd = mg->mg_vd; 3060 3061 /* 3062 * Don't allocate from faulted devices. 3063 */ 3064 if (try_hard) { 3065 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 3066 allocatable = vdev_allocatable(vd); 3067 spa_config_exit(spa, SCL_ZIO, FTAG); 3068 } else { 3069 allocatable = vdev_allocatable(vd); 3070 } 3071 3072 /* 3073 * Determine if the selected metaslab group is eligible 3074 * for allocations. If we're ganging then don't allow 3075 * this metaslab group to skip allocations since that would 3076 * inadvertently return ENOSPC and suspend the pool 3077 * even though space is still available. 3078 */ 3079 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 3080 allocatable = metaslab_group_allocatable(mg, rotor, 3081 psize); 3082 } 3083 3084 if (!allocatable) { 3085 metaslab_trace_add(zal, mg, NULL, psize, d, 3086 TRACE_NOT_ALLOCATABLE); 3087 goto next; 3088 } 3089 3090 ASSERT(mg->mg_initialized); 3091 3092 /* 3093 * Avoid writing single-copy data to a failing, 3094 * non-redundant vdev, unless we've already tried all 3095 * other vdevs. 3096 */ 3097 if ((vd->vdev_stat.vs_write_errors > 0 || 3098 vd->vdev_state < VDEV_STATE_HEALTHY) && 3099 d == 0 && !try_hard && vd->vdev_children == 0) { 3100 metaslab_trace_add(zal, mg, NULL, psize, d, 3101 TRACE_VDEV_ERROR); 3102 goto next; 3103 } 3104 3105 ASSERT(mg->mg_class == mc); 3106 3107 /* 3108 * If we don't need to try hard, then require that the 3109 * block be 1/8th of the device away from any other DVAs 3110 * in this BP. If we are trying hard, allow any offset 3111 * to be used (distance=0). 3112 */ 3113 uint64_t distance = 0; 3114 if (!try_hard) { 3115 distance = vd->vdev_asize >> 3116 ditto_same_vdev_distance_shift; 3117 if (distance <= (1ULL << vd->vdev_ms_shift)) 3118 distance = 0; 3119 } 3120 3121 uint64_t asize = vdev_psize_to_asize(vd, psize); 3122 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 3123 3124 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 3125 distance, dva, d); 3126 3127 if (offset != -1ULL) { 3128 /* 3129 * If we've just selected this metaslab group, 3130 * figure out whether the corresponding vdev is 3131 * over- or under-used relative to the pool, 3132 * and set an allocation bias to even it out. 3133 */ 3134 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) { 3135 vdev_stat_t *vs = &vd->vdev_stat; 3136 int64_t vu, cu; 3137 3138 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1); 3139 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1); 3140 3141 /* 3142 * Calculate how much more or less we should 3143 * try to allocate from this device during 3144 * this iteration around the rotor. 3145 * For example, if a device is 80% full 3146 * and the pool is 20% full then we should 3147 * reduce allocations by 60% on this device. 3148 * 3149 * mg_bias = (20 - 80) * 512K / 100 = -307K 3150 * 3151 * This reduces allocations by 307K for this 3152 * iteration. 3153 */ 3154 mg->mg_bias = ((cu - vu) * 3155 (int64_t)mg->mg_aliquot) / 100; 3156 } else if (!metaslab_bias_enabled) { 3157 mg->mg_bias = 0; 3158 } 3159 3160 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >= 3161 mg->mg_aliquot + mg->mg_bias) { 3162 mc->mc_rotor = mg->mg_next; 3163 mc->mc_aliquot = 0; 3164 } 3165 3166 DVA_SET_VDEV(&dva[d], vd->vdev_id); 3167 DVA_SET_OFFSET(&dva[d], offset); 3168 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER)); 3169 DVA_SET_ASIZE(&dva[d], asize); 3170 3171 return (0); 3172 } 3173 next: 3174 mc->mc_rotor = mg->mg_next; 3175 mc->mc_aliquot = 0; 3176 } while ((mg = mg->mg_next) != rotor); 3177 3178 /* 3179 * If we haven't tried hard, do so now. 3180 */ 3181 if (!try_hard) { 3182 try_hard = B_TRUE; 3183 goto top; 3184 } 3185 3186 bzero(&dva[d], sizeof (dva_t)); 3187 3188 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC); 3189 return (SET_ERROR(ENOSPC)); 3190 } 3191 3192 void 3193 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 3194 uint64_t txg) 3195 { 3196 metaslab_t *msp; 3197 spa_t *spa = vd->vdev_spa; 3198 3199 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3200 ASSERT(vdev_is_concrete(vd)); 3201 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 3202 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 3203 3204 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3205 3206 VERIFY(!msp->ms_condensing); 3207 VERIFY3U(offset, >=, msp->ms_start); 3208 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 3209 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 3210 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 3211 3212 metaslab_check_free_impl(vd, offset, asize); 3213 mutex_enter(&msp->ms_lock); 3214 if (range_tree_space(msp->ms_freeingtree) == 0) { 3215 vdev_dirty(vd, VDD_METASLAB, msp, txg); 3216 } 3217 range_tree_add(msp->ms_freeingtree, offset, asize); 3218 mutex_exit(&msp->ms_lock); 3219 } 3220 3221 /* ARGSUSED */ 3222 void 3223 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 3224 uint64_t size, void *arg) 3225 { 3226 uint64_t *txgp = arg; 3227 3228 if (vd->vdev_ops->vdev_op_remap != NULL) 3229 vdev_indirect_mark_obsolete(vd, offset, size, *txgp); 3230 else 3231 metaslab_free_impl(vd, offset, size, *txgp); 3232 } 3233 3234 static void 3235 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 3236 uint64_t txg) 3237 { 3238 spa_t *spa = vd->vdev_spa; 3239 3240 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 3241 3242 if (txg > spa_freeze_txg(spa)) 3243 return; 3244 3245 if (spa->spa_vdev_removal != NULL && 3246 spa->spa_vdev_removal->svr_vdev == vd && 3247 vdev_is_concrete(vd)) { 3248 /* 3249 * Note: we check if the vdev is concrete because when 3250 * we complete the removal, we first change the vdev to be 3251 * an indirect vdev (in open context), and then (in syncing 3252 * context) clear spa_vdev_removal. 3253 */ 3254 free_from_removing_vdev(vd, offset, size, txg); 3255 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 3256 vdev_indirect_mark_obsolete(vd, offset, size, txg); 3257 vd->vdev_ops->vdev_op_remap(vd, offset, size, 3258 metaslab_free_impl_cb, &txg); 3259 } else { 3260 metaslab_free_concrete(vd, offset, size, txg); 3261 } 3262 } 3263 3264 typedef struct remap_blkptr_cb_arg { 3265 blkptr_t *rbca_bp; 3266 spa_remap_cb_t rbca_cb; 3267 vdev_t *rbca_remap_vd; 3268 uint64_t rbca_remap_offset; 3269 void *rbca_cb_arg; 3270 } remap_blkptr_cb_arg_t; 3271 3272 void 3273 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 3274 uint64_t size, void *arg) 3275 { 3276 remap_blkptr_cb_arg_t *rbca = arg; 3277 blkptr_t *bp = rbca->rbca_bp; 3278 3279 /* We can not remap split blocks. */ 3280 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 3281 return; 3282 ASSERT0(inner_offset); 3283 3284 if (rbca->rbca_cb != NULL) { 3285 /* 3286 * At this point we know that we are not handling split 3287 * blocks and we invoke the callback on the previous 3288 * vdev which must be indirect. 3289 */ 3290 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 3291 3292 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 3293 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 3294 3295 /* set up remap_blkptr_cb_arg for the next call */ 3296 rbca->rbca_remap_vd = vd; 3297 rbca->rbca_remap_offset = offset; 3298 } 3299 3300 /* 3301 * The phys birth time is that of dva[0]. This ensures that we know 3302 * when each dva was written, so that resilver can determine which 3303 * blocks need to be scrubbed (i.e. those written during the time 3304 * the vdev was offline). It also ensures that the key used in 3305 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 3306 * we didn't change the phys_birth, a lookup in the ARC for a 3307 * remapped BP could find the data that was previously stored at 3308 * this vdev + offset. 3309 */ 3310 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 3311 DVA_GET_VDEV(&bp->blk_dva[0])); 3312 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 3313 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 3314 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 3315 3316 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 3317 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 3318 } 3319 3320 /* 3321 * If the block pointer contains any indirect DVAs, modify them to refer to 3322 * concrete DVAs. Note that this will sometimes not be possible, leaving 3323 * the indirect DVA in place. This happens if the indirect DVA spans multiple 3324 * segments in the mapping (i.e. it is a "split block"). 3325 * 3326 * If the BP was remapped, calls the callback on the original dva (note the 3327 * callback can be called multiple times if the original indirect DVA refers 3328 * to another indirect DVA, etc). 3329 * 3330 * Returns TRUE if the BP was remapped. 3331 */ 3332 boolean_t 3333 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 3334 { 3335 remap_blkptr_cb_arg_t rbca; 3336 3337 if (!zfs_remap_blkptr_enable) 3338 return (B_FALSE); 3339 3340 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 3341 return (B_FALSE); 3342 3343 /* 3344 * Dedup BP's can not be remapped, because ddt_phys_select() depends 3345 * on DVA[0] being the same in the BP as in the DDT (dedup table). 3346 */ 3347 if (BP_GET_DEDUP(bp)) 3348 return (B_FALSE); 3349 3350 /* 3351 * Gang blocks can not be remapped, because 3352 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 3353 * the BP used to read the gang block header (GBH) being the same 3354 * as the DVA[0] that we allocated for the GBH. 3355 */ 3356 if (BP_IS_GANG(bp)) 3357 return (B_FALSE); 3358 3359 /* 3360 * Embedded BP's have no DVA to remap. 3361 */ 3362 if (BP_GET_NDVAS(bp) < 1) 3363 return (B_FALSE); 3364 3365 /* 3366 * Note: we only remap dva[0]. If we remapped other dvas, we 3367 * would no longer know what their phys birth txg is. 3368 */ 3369 dva_t *dva = &bp->blk_dva[0]; 3370 3371 uint64_t offset = DVA_GET_OFFSET(dva); 3372 uint64_t size = DVA_GET_ASIZE(dva); 3373 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3374 3375 if (vd->vdev_ops->vdev_op_remap == NULL) 3376 return (B_FALSE); 3377 3378 rbca.rbca_bp = bp; 3379 rbca.rbca_cb = callback; 3380 rbca.rbca_remap_vd = vd; 3381 rbca.rbca_remap_offset = offset; 3382 rbca.rbca_cb_arg = arg; 3383 3384 /* 3385 * remap_blkptr_cb() will be called in order for each level of 3386 * indirection, until a concrete vdev is reached or a split block is 3387 * encountered. old_vd and old_offset are updated within the callback 3388 * as we go from the one indirect vdev to the next one (either concrete 3389 * or indirect again) in that order. 3390 */ 3391 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 3392 3393 /* Check if the DVA wasn't remapped because it is a split block */ 3394 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 3395 return (B_FALSE); 3396 3397 return (B_TRUE); 3398 } 3399 3400 /* 3401 * Undo the allocation of a DVA which happened in the given transaction group. 3402 */ 3403 void 3404 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 3405 { 3406 metaslab_t *msp; 3407 vdev_t *vd; 3408 uint64_t vdev = DVA_GET_VDEV(dva); 3409 uint64_t offset = DVA_GET_OFFSET(dva); 3410 uint64_t size = DVA_GET_ASIZE(dva); 3411 3412 ASSERT(DVA_IS_VALID(dva)); 3413 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 3414 3415 if (txg > spa_freeze_txg(spa)) 3416 return; 3417 3418 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 3419 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 3420 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 3421 (u_longlong_t)vdev, (u_longlong_t)offset); 3422 ASSERT(0); 3423 return; 3424 } 3425 3426 ASSERT(!vd->vdev_removing); 3427 ASSERT(vdev_is_concrete(vd)); 3428 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3429 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 3430 3431 if (DVA_GET_GANG(dva)) 3432 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 3433 3434 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3435 3436 mutex_enter(&msp->ms_lock); 3437 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK], 3438 offset, size); 3439 3440 VERIFY(!msp->ms_condensing); 3441 VERIFY3U(offset, >=, msp->ms_start); 3442 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 3443 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=, 3444 msp->ms_size); 3445 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 3446 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 3447 range_tree_add(msp->ms_tree, offset, size); 3448 mutex_exit(&msp->ms_lock); 3449 } 3450 3451 /* 3452 * Free the block represented by DVA in the context of the specified 3453 * transaction group. 3454 */ 3455 void 3456 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 3457 { 3458 uint64_t vdev = DVA_GET_VDEV(dva); 3459 uint64_t offset = DVA_GET_OFFSET(dva); 3460 uint64_t size = DVA_GET_ASIZE(dva); 3461 vdev_t *vd = vdev_lookup_top(spa, vdev); 3462 3463 ASSERT(DVA_IS_VALID(dva)); 3464 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 3465 3466 if (DVA_GET_GANG(dva)) { 3467 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 3468 } 3469 3470 metaslab_free_impl(vd, offset, size, txg); 3471 } 3472 3473 /* 3474 * Reserve some allocation slots. The reservation system must be called 3475 * before we call into the allocator. If there aren't any available slots 3476 * then the I/O will be throttled until an I/O completes and its slots are 3477 * freed up. The function returns true if it was successful in placing 3478 * the reservation. 3479 */ 3480 boolean_t 3481 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio, 3482 int flags) 3483 { 3484 uint64_t available_slots = 0; 3485 boolean_t slot_reserved = B_FALSE; 3486 3487 ASSERT(mc->mc_alloc_throttle_enabled); 3488 mutex_enter(&mc->mc_lock); 3489 3490 uint64_t reserved_slots = refcount_count(&mc->mc_alloc_slots); 3491 if (reserved_slots < mc->mc_alloc_max_slots) 3492 available_slots = mc->mc_alloc_max_slots - reserved_slots; 3493 3494 if (slots <= available_slots || GANG_ALLOCATION(flags)) { 3495 /* 3496 * We reserve the slots individually so that we can unreserve 3497 * them individually when an I/O completes. 3498 */ 3499 for (int d = 0; d < slots; d++) { 3500 reserved_slots = refcount_add(&mc->mc_alloc_slots, zio); 3501 } 3502 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 3503 slot_reserved = B_TRUE; 3504 } 3505 3506 mutex_exit(&mc->mc_lock); 3507 return (slot_reserved); 3508 } 3509 3510 void 3511 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio) 3512 { 3513 ASSERT(mc->mc_alloc_throttle_enabled); 3514 mutex_enter(&mc->mc_lock); 3515 for (int d = 0; d < slots; d++) { 3516 (void) refcount_remove(&mc->mc_alloc_slots, zio); 3517 } 3518 mutex_exit(&mc->mc_lock); 3519 } 3520 3521 static int 3522 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 3523 uint64_t txg) 3524 { 3525 metaslab_t *msp; 3526 spa_t *spa = vd->vdev_spa; 3527 int error = 0; 3528 3529 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 3530 return (ENXIO); 3531 3532 ASSERT3P(vd->vdev_ms, !=, NULL); 3533 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3534 3535 mutex_enter(&msp->ms_lock); 3536 3537 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) 3538 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); 3539 3540 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size)) 3541 error = SET_ERROR(ENOENT); 3542 3543 if (error || txg == 0) { /* txg == 0 indicates dry run */ 3544 mutex_exit(&msp->ms_lock); 3545 return (error); 3546 } 3547 3548 VERIFY(!msp->ms_condensing); 3549 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 3550 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 3551 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size); 3552 range_tree_remove(msp->ms_tree, offset, size); 3553 3554 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */ 3555 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) 3556 vdev_dirty(vd, VDD_METASLAB, msp, txg); 3557 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size); 3558 } 3559 3560 mutex_exit(&msp->ms_lock); 3561 3562 return (0); 3563 } 3564 3565 typedef struct metaslab_claim_cb_arg_t { 3566 uint64_t mcca_txg; 3567 int mcca_error; 3568 } metaslab_claim_cb_arg_t; 3569 3570 /* ARGSUSED */ 3571 static void 3572 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 3573 uint64_t size, void *arg) 3574 { 3575 metaslab_claim_cb_arg_t *mcca_arg = arg; 3576 3577 if (mcca_arg->mcca_error == 0) { 3578 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 3579 size, mcca_arg->mcca_txg); 3580 } 3581 } 3582 3583 int 3584 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 3585 { 3586 if (vd->vdev_ops->vdev_op_remap != NULL) { 3587 metaslab_claim_cb_arg_t arg; 3588 3589 /* 3590 * Only zdb(1M) can claim on indirect vdevs. This is used 3591 * to detect leaks of mapped space (that are not accounted 3592 * for in the obsolete counts, spacemap, or bpobj). 3593 */ 3594 ASSERT(!spa_writeable(vd->vdev_spa)); 3595 arg.mcca_error = 0; 3596 arg.mcca_txg = txg; 3597 3598 vd->vdev_ops->vdev_op_remap(vd, offset, size, 3599 metaslab_claim_impl_cb, &arg); 3600 3601 if (arg.mcca_error == 0) { 3602 arg.mcca_error = metaslab_claim_concrete(vd, 3603 offset, size, txg); 3604 } 3605 return (arg.mcca_error); 3606 } else { 3607 return (metaslab_claim_concrete(vd, offset, size, txg)); 3608 } 3609 } 3610 3611 /* 3612 * Intent log support: upon opening the pool after a crash, notify the SPA 3613 * of blocks that the intent log has allocated for immediate write, but 3614 * which are still considered free by the SPA because the last transaction 3615 * group didn't commit yet. 3616 */ 3617 static int 3618 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 3619 { 3620 uint64_t vdev = DVA_GET_VDEV(dva); 3621 uint64_t offset = DVA_GET_OFFSET(dva); 3622 uint64_t size = DVA_GET_ASIZE(dva); 3623 vdev_t *vd; 3624 3625 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 3626 return (SET_ERROR(ENXIO)); 3627 } 3628 3629 ASSERT(DVA_IS_VALID(dva)); 3630 3631 if (DVA_GET_GANG(dva)) 3632 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 3633 3634 return (metaslab_claim_impl(vd, offset, size, txg)); 3635 } 3636 3637 int 3638 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 3639 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 3640 zio_alloc_list_t *zal, zio_t *zio) 3641 { 3642 dva_t *dva = bp->blk_dva; 3643 dva_t *hintdva = hintbp->blk_dva; 3644 int error = 0; 3645 3646 ASSERT(bp->blk_birth == 0); 3647 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 3648 3649 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 3650 3651 if (mc->mc_rotor == NULL) { /* no vdevs in this class */ 3652 spa_config_exit(spa, SCL_ALLOC, FTAG); 3653 return (SET_ERROR(ENOSPC)); 3654 } 3655 3656 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 3657 ASSERT(BP_GET_NDVAS(bp) == 0); 3658 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 3659 ASSERT3P(zal, !=, NULL); 3660 3661 for (int d = 0; d < ndvas; d++) { 3662 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 3663 txg, flags, zal); 3664 if (error != 0) { 3665 for (d--; d >= 0; d--) { 3666 metaslab_unalloc_dva(spa, &dva[d], txg); 3667 metaslab_group_alloc_decrement(spa, 3668 DVA_GET_VDEV(&dva[d]), zio, flags); 3669 bzero(&dva[d], sizeof (dva_t)); 3670 } 3671 spa_config_exit(spa, SCL_ALLOC, FTAG); 3672 return (error); 3673 } else { 3674 /* 3675 * Update the metaslab group's queue depth 3676 * based on the newly allocated dva. 3677 */ 3678 metaslab_group_alloc_increment(spa, 3679 DVA_GET_VDEV(&dva[d]), zio, flags); 3680 } 3681 3682 } 3683 ASSERT(error == 0); 3684 ASSERT(BP_GET_NDVAS(bp) == ndvas); 3685 3686 spa_config_exit(spa, SCL_ALLOC, FTAG); 3687 3688 BP_SET_BIRTH(bp, txg, txg); 3689 3690 return (0); 3691 } 3692 3693 void 3694 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 3695 { 3696 const dva_t *dva = bp->blk_dva; 3697 int ndvas = BP_GET_NDVAS(bp); 3698 3699 ASSERT(!BP_IS_HOLE(bp)); 3700 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 3701 3702 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 3703 3704 for (int d = 0; d < ndvas; d++) { 3705 if (now) { 3706 metaslab_unalloc_dva(spa, &dva[d], txg); 3707 } else { 3708 metaslab_free_dva(spa, &dva[d], txg); 3709 } 3710 } 3711 3712 spa_config_exit(spa, SCL_FREE, FTAG); 3713 } 3714 3715 int 3716 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 3717 { 3718 const dva_t *dva = bp->blk_dva; 3719 int ndvas = BP_GET_NDVAS(bp); 3720 int error = 0; 3721 3722 ASSERT(!BP_IS_HOLE(bp)); 3723 3724 if (txg != 0) { 3725 /* 3726 * First do a dry run to make sure all DVAs are claimable, 3727 * so we don't have to unwind from partial failures below. 3728 */ 3729 if ((error = metaslab_claim(spa, bp, 0)) != 0) 3730 return (error); 3731 } 3732 3733 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 3734 3735 for (int d = 0; d < ndvas; d++) 3736 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 3737 break; 3738 3739 spa_config_exit(spa, SCL_ALLOC, FTAG); 3740 3741 ASSERT(error == 0 || txg == 0); 3742 3743 return (error); 3744 } 3745 3746 /* ARGSUSED */ 3747 static void 3748 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 3749 uint64_t size, void *arg) 3750 { 3751 if (vd->vdev_ops == &vdev_indirect_ops) 3752 return; 3753 3754 metaslab_check_free_impl(vd, offset, size); 3755 } 3756 3757 static void 3758 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 3759 { 3760 metaslab_t *msp; 3761 spa_t *spa = vd->vdev_spa; 3762 3763 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 3764 return; 3765 3766 if (vd->vdev_ops->vdev_op_remap != NULL) { 3767 vd->vdev_ops->vdev_op_remap(vd, offset, size, 3768 metaslab_check_free_impl_cb, NULL); 3769 return; 3770 } 3771 3772 ASSERT(vdev_is_concrete(vd)); 3773 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 3774 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 3775 3776 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 3777 3778 mutex_enter(&msp->ms_lock); 3779 if (msp->ms_loaded) 3780 range_tree_verify(msp->ms_tree, offset, size); 3781 3782 range_tree_verify(msp->ms_freeingtree, offset, size); 3783 range_tree_verify(msp->ms_freedtree, offset, size); 3784 for (int j = 0; j < TXG_DEFER_SIZE; j++) 3785 range_tree_verify(msp->ms_defertree[j], offset, size); 3786 mutex_exit(&msp->ms_lock); 3787 } 3788 3789 void 3790 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 3791 { 3792 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 3793 return; 3794 3795 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3796 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3797 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 3798 vdev_t *vd = vdev_lookup_top(spa, vdev); 3799 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 3800 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 3801 3802 if (DVA_GET_GANG(&bp->blk_dva[i])) 3803 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 3804 3805 ASSERT3P(vd, !=, NULL); 3806 3807 metaslab_check_free_impl(vd, offset, size); 3808 } 3809 spa_config_exit(spa, SCL_VDEV, FTAG); 3810 } 3811