1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio.h> 36 37 uint64_t metaslab_aliquot = 512ULL << 10; 38 39 /* 40 * ========================================================================== 41 * Metaslab classes 42 * ========================================================================== 43 */ 44 metaslab_class_t * 45 metaslab_class_create(void) 46 { 47 metaslab_class_t *mc; 48 49 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 50 51 mc->mc_rotor = NULL; 52 53 return (mc); 54 } 55 56 void 57 metaslab_class_destroy(metaslab_class_t *mc) 58 { 59 metaslab_group_t *mg; 60 61 while ((mg = mc->mc_rotor) != NULL) { 62 metaslab_class_remove(mc, mg); 63 metaslab_group_destroy(mg); 64 } 65 66 kmem_free(mc, sizeof (metaslab_class_t)); 67 } 68 69 void 70 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg) 71 { 72 metaslab_group_t *mgprev, *mgnext; 73 74 ASSERT(mg->mg_class == NULL); 75 76 if ((mgprev = mc->mc_rotor) == NULL) { 77 mg->mg_prev = mg; 78 mg->mg_next = mg; 79 } else { 80 mgnext = mgprev->mg_next; 81 mg->mg_prev = mgprev; 82 mg->mg_next = mgnext; 83 mgprev->mg_next = mg; 84 mgnext->mg_prev = mg; 85 } 86 mc->mc_rotor = mg; 87 mg->mg_class = mc; 88 } 89 90 void 91 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg) 92 { 93 metaslab_group_t *mgprev, *mgnext; 94 95 ASSERT(mg->mg_class == mc); 96 97 mgprev = mg->mg_prev; 98 mgnext = mg->mg_next; 99 100 if (mg == mgnext) { 101 mc->mc_rotor = NULL; 102 } else { 103 mc->mc_rotor = mgnext; 104 mgprev->mg_next = mgnext; 105 mgnext->mg_prev = mgprev; 106 } 107 108 mg->mg_prev = NULL; 109 mg->mg_next = NULL; 110 mg->mg_class = NULL; 111 } 112 113 /* 114 * ========================================================================== 115 * Metaslab groups 116 * ========================================================================== 117 */ 118 static int 119 metaslab_compare(const void *x1, const void *x2) 120 { 121 const metaslab_t *m1 = x1; 122 const metaslab_t *m2 = x2; 123 124 if (m1->ms_weight < m2->ms_weight) 125 return (1); 126 if (m1->ms_weight > m2->ms_weight) 127 return (-1); 128 129 /* 130 * If the weights are identical, use the offset to force uniqueness. 131 */ 132 if (m1->ms_map.sm_start < m2->ms_map.sm_start) 133 return (-1); 134 if (m1->ms_map.sm_start > m2->ms_map.sm_start) 135 return (1); 136 137 ASSERT3P(m1, ==, m2); 138 139 return (0); 140 } 141 142 metaslab_group_t * 143 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 144 { 145 metaslab_group_t *mg; 146 147 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 148 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 149 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 150 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node)); 151 mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children); 152 mg->mg_vd = vd; 153 metaslab_class_add(mc, mg); 154 155 return (mg); 156 } 157 158 void 159 metaslab_group_destroy(metaslab_group_t *mg) 160 { 161 avl_destroy(&mg->mg_metaslab_tree); 162 mutex_destroy(&mg->mg_lock); 163 kmem_free(mg, sizeof (metaslab_group_t)); 164 } 165 166 static void 167 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 168 { 169 mutex_enter(&mg->mg_lock); 170 ASSERT(msp->ms_group == NULL); 171 msp->ms_group = mg; 172 msp->ms_weight = 0; 173 avl_add(&mg->mg_metaslab_tree, msp); 174 mutex_exit(&mg->mg_lock); 175 } 176 177 static void 178 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 179 { 180 mutex_enter(&mg->mg_lock); 181 ASSERT(msp->ms_group == mg); 182 avl_remove(&mg->mg_metaslab_tree, msp); 183 msp->ms_group = NULL; 184 mutex_exit(&mg->mg_lock); 185 } 186 187 static void 188 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 189 { 190 /* 191 * Although in principle the weight can be any value, in 192 * practice we do not use values in the range [1, 510]. 193 */ 194 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0); 195 ASSERT(MUTEX_HELD(&msp->ms_lock)); 196 197 mutex_enter(&mg->mg_lock); 198 ASSERT(msp->ms_group == mg); 199 avl_remove(&mg->mg_metaslab_tree, msp); 200 msp->ms_weight = weight; 201 avl_add(&mg->mg_metaslab_tree, msp); 202 mutex_exit(&mg->mg_lock); 203 } 204 205 /* 206 * ========================================================================== 207 * The first-fit block allocator 208 * ========================================================================== 209 */ 210 static void 211 metaslab_ff_load(space_map_t *sm) 212 { 213 ASSERT(sm->sm_ppd == NULL); 214 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP); 215 } 216 217 static void 218 metaslab_ff_unload(space_map_t *sm) 219 { 220 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t)); 221 sm->sm_ppd = NULL; 222 } 223 224 static uint64_t 225 metaslab_ff_alloc(space_map_t *sm, uint64_t size) 226 { 227 avl_tree_t *t = &sm->sm_root; 228 uint64_t align = size & -size; 229 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; 230 space_seg_t *ss, ssearch; 231 avl_index_t where; 232 233 ssearch.ss_start = *cursor; 234 ssearch.ss_end = *cursor + size; 235 236 ss = avl_find(t, &ssearch, &where); 237 if (ss == NULL) 238 ss = avl_nearest(t, where, AVL_AFTER); 239 240 while (ss != NULL) { 241 uint64_t offset = P2ROUNDUP(ss->ss_start, align); 242 243 if (offset + size <= ss->ss_end) { 244 *cursor = offset + size; 245 return (offset); 246 } 247 ss = AVL_NEXT(t, ss); 248 } 249 250 /* 251 * If we know we've searched the whole map (*cursor == 0), give up. 252 * Otherwise, reset the cursor to the beginning and try again. 253 */ 254 if (*cursor == 0) 255 return (-1ULL); 256 257 *cursor = 0; 258 return (metaslab_ff_alloc(sm, size)); 259 } 260 261 /* ARGSUSED */ 262 static void 263 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size) 264 { 265 /* No need to update cursor */ 266 } 267 268 /* ARGSUSED */ 269 static void 270 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size) 271 { 272 /* No need to update cursor */ 273 } 274 275 static space_map_ops_t metaslab_ff_ops = { 276 metaslab_ff_load, 277 metaslab_ff_unload, 278 metaslab_ff_alloc, 279 metaslab_ff_claim, 280 metaslab_ff_free 281 }; 282 283 /* 284 * ========================================================================== 285 * Metaslabs 286 * ========================================================================== 287 */ 288 metaslab_t * 289 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, 290 uint64_t start, uint64_t size, uint64_t txg) 291 { 292 vdev_t *vd = mg->mg_vd; 293 metaslab_t *msp; 294 295 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 296 297 msp->ms_smo_syncing = *smo; 298 299 /* 300 * We create the main space map here, but we don't create the 301 * allocmaps and freemaps until metaslab_sync_done(). This serves 302 * two purposes: it allows metaslab_sync_done() to detect the 303 * addition of new space; and for debugging, it ensures that we'd 304 * data fault on any attempt to use this metaslab before it's ready. 305 */ 306 space_map_create(&msp->ms_map, start, size, 307 vd->vdev_ashift, &msp->ms_lock); 308 309 metaslab_group_add(mg, msp); 310 311 /* 312 * If we're opening an existing pool (txg == 0) or creating 313 * a new one (txg == TXG_INITIAL), all space is available now. 314 * If we're adding space to an existing pool, the new space 315 * does not become available until after this txg has synced. 316 */ 317 if (txg <= TXG_INITIAL) 318 metaslab_sync_done(msp, 0); 319 320 if (txg != 0) { 321 /* 322 * The vdev is dirty, but the metaslab isn't -- it just needs 323 * to have metaslab_sync_done() invoked from vdev_sync_done(). 324 * [We could just dirty the metaslab, but that would cause us 325 * to allocate a space map object for it, which is wasteful 326 * and would mess up the locality logic in metaslab_weight().] 327 */ 328 ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa)); 329 vdev_dirty(vd, 0, NULL, txg); 330 vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg)); 331 } 332 333 return (msp); 334 } 335 336 void 337 metaslab_fini(metaslab_t *msp) 338 { 339 metaslab_group_t *mg = msp->ms_group; 340 int t; 341 342 vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size, 343 -msp->ms_smo.smo_alloc); 344 345 metaslab_group_remove(mg, msp); 346 347 mutex_enter(&msp->ms_lock); 348 349 space_map_unload(&msp->ms_map); 350 space_map_destroy(&msp->ms_map); 351 352 for (t = 0; t < TXG_SIZE; t++) { 353 space_map_destroy(&msp->ms_allocmap[t]); 354 space_map_destroy(&msp->ms_freemap[t]); 355 } 356 357 mutex_exit(&msp->ms_lock); 358 359 kmem_free(msp, sizeof (metaslab_t)); 360 } 361 362 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63) 363 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62) 364 #define METASLAB_ACTIVE_MASK \ 365 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) 366 #define METASLAB_SMO_BONUS_MULTIPLIER 2 367 368 static uint64_t 369 metaslab_weight(metaslab_t *msp) 370 { 371 metaslab_group_t *mg = msp->ms_group; 372 space_map_t *sm = &msp->ms_map; 373 space_map_obj_t *smo = &msp->ms_smo; 374 vdev_t *vd = mg->mg_vd; 375 uint64_t weight, space; 376 377 ASSERT(MUTEX_HELD(&msp->ms_lock)); 378 379 /* 380 * The baseline weight is the metaslab's free space. 381 */ 382 space = sm->sm_size - smo->smo_alloc; 383 weight = space; 384 385 /* 386 * Modern disks have uniform bit density and constant angular velocity. 387 * Therefore, the outer recording zones are faster (higher bandwidth) 388 * than the inner zones by the ratio of outer to inner track diameter, 389 * which is typically around 2:1. We account for this by assigning 390 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 391 * In effect, this means that we'll select the metaslab with the most 392 * free bandwidth rather than simply the one with the most free space. 393 */ 394 weight = 2 * weight - 395 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count; 396 ASSERT(weight >= space && weight <= 2 * space); 397 398 /* 399 * For locality, assign higher weight to metaslabs we've used before. 400 */ 401 if (smo->smo_object != 0) 402 weight *= METASLAB_SMO_BONUS_MULTIPLIER; 403 ASSERT(weight >= space && 404 weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space); 405 406 /* 407 * If this metaslab is one we're actively using, adjust its weight to 408 * make it preferable to any inactive metaslab so we'll polish it off. 409 */ 410 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 411 412 return (weight); 413 } 414 415 static int 416 metaslab_activate(metaslab_t *msp, uint64_t activation_weight) 417 { 418 space_map_t *sm = &msp->ms_map; 419 420 ASSERT(MUTEX_HELD(&msp->ms_lock)); 421 422 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 423 int error = space_map_load(sm, &metaslab_ff_ops, 424 SM_FREE, &msp->ms_smo, 425 msp->ms_group->mg_vd->vdev_spa->spa_meta_objset); 426 if (error) { 427 metaslab_group_sort(msp->ms_group, msp, 0); 428 return (error); 429 } 430 metaslab_group_sort(msp->ms_group, msp, 431 msp->ms_weight | activation_weight); 432 } 433 ASSERT(sm->sm_loaded); 434 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 435 436 return (0); 437 } 438 439 static void 440 metaslab_passivate(metaslab_t *msp, uint64_t size) 441 { 442 /* 443 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 444 * this metaslab again. In that case, it had better be empty, 445 * or we would be leaving space on the table. 446 */ 447 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0); 448 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); 449 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); 450 } 451 452 /* 453 * Write a metaslab to disk in the context of the specified transaction group. 454 */ 455 void 456 metaslab_sync(metaslab_t *msp, uint64_t txg) 457 { 458 vdev_t *vd = msp->ms_group->mg_vd; 459 spa_t *spa = vd->vdev_spa; 460 objset_t *mos = spa->spa_meta_objset; 461 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK]; 462 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK]; 463 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 464 space_map_t *sm = &msp->ms_map; 465 space_map_obj_t *smo = &msp->ms_smo_syncing; 466 dmu_buf_t *db; 467 dmu_tx_t *tx; 468 int t; 469 470 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 471 472 /* 473 * The only state that can actually be changing concurrently with 474 * metaslab_sync() is the metaslab's ms_map. No other thread can 475 * be modifying this txg's allocmap, freemap, freed_map, or smo. 476 * Therefore, we only hold ms_lock to satify space_map ASSERTs. 477 * We drop it whenever we call into the DMU, because the DMU 478 * can call down to us (e.g. via zio_free()) at any time. 479 */ 480 mutex_enter(&msp->ms_lock); 481 482 if (smo->smo_object == 0) { 483 ASSERT(smo->smo_objsize == 0); 484 ASSERT(smo->smo_alloc == 0); 485 mutex_exit(&msp->ms_lock); 486 smo->smo_object = dmu_object_alloc(mos, 487 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 488 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 489 ASSERT(smo->smo_object != 0); 490 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 491 (sm->sm_start >> vd->vdev_ms_shift), 492 sizeof (uint64_t), &smo->smo_object, tx); 493 mutex_enter(&msp->ms_lock); 494 } 495 496 space_map_walk(freemap, space_map_add, freed_map); 497 498 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >= 499 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) { 500 /* 501 * The in-core space map representation is twice as compact 502 * as the on-disk one, so it's time to condense the latter 503 * by generating a pure allocmap from first principles. 504 * 505 * This metaslab is 100% allocated, 506 * minus the content of the in-core map (sm), 507 * minus what's been freed this txg (freed_map), 508 * minus allocations from txgs in the future 509 * (because they haven't been committed yet). 510 */ 511 space_map_vacate(allocmap, NULL, NULL); 512 space_map_vacate(freemap, NULL, NULL); 513 514 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size); 515 516 space_map_walk(sm, space_map_remove, allocmap); 517 space_map_walk(freed_map, space_map_remove, allocmap); 518 519 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 520 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK], 521 space_map_remove, allocmap); 522 523 mutex_exit(&msp->ms_lock); 524 space_map_truncate(smo, mos, tx); 525 mutex_enter(&msp->ms_lock); 526 } 527 528 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx); 529 space_map_sync(freemap, SM_FREE, smo, mos, tx); 530 531 mutex_exit(&msp->ms_lock); 532 533 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 534 dmu_buf_will_dirty(db, tx); 535 ASSERT3U(db->db_size, ==, sizeof (*smo)); 536 bcopy(smo, db->db_data, db->db_size); 537 dmu_buf_rele(db, FTAG); 538 539 dmu_tx_commit(tx); 540 } 541 542 /* 543 * Called after a transaction group has completely synced to mark 544 * all of the metaslab's free space as usable. 545 */ 546 void 547 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 548 { 549 space_map_obj_t *smo = &msp->ms_smo; 550 space_map_obj_t *smosync = &msp->ms_smo_syncing; 551 space_map_t *sm = &msp->ms_map; 552 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; 553 metaslab_group_t *mg = msp->ms_group; 554 vdev_t *vd = mg->mg_vd; 555 int t; 556 557 mutex_enter(&msp->ms_lock); 558 559 /* 560 * If this metaslab is just becoming available, initialize its 561 * allocmaps and freemaps and add its capacity to the vdev. 562 */ 563 if (freed_map->sm_size == 0) { 564 for (t = 0; t < TXG_SIZE; t++) { 565 space_map_create(&msp->ms_allocmap[t], sm->sm_start, 566 sm->sm_size, sm->sm_shift, sm->sm_lock); 567 space_map_create(&msp->ms_freemap[t], sm->sm_start, 568 sm->sm_size, sm->sm_shift, sm->sm_lock); 569 } 570 vdev_space_update(vd, sm->sm_size, 0); 571 } 572 573 vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc); 574 575 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0); 576 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0); 577 578 /* 579 * If there's a space_map_load() in progress, wait for it to complete 580 * so that we have a consistent view of the in-core space map. 581 * Then, add everything we freed in this txg to the map. 582 */ 583 space_map_load_wait(sm); 584 space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm); 585 586 *smo = *smosync; 587 588 /* 589 * If the map is loaded but no longer active, evict it as soon as all 590 * future allocations have synced. (If we unloaded it now and then 591 * loaded a moment later, the map wouldn't reflect those allocations.) 592 */ 593 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { 594 int evictable = 1; 595 596 for (t = 1; t < TXG_CONCURRENT_STATES; t++) 597 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space) 598 evictable = 0; 599 600 if (evictable) 601 space_map_unload(sm); 602 } 603 604 metaslab_group_sort(mg, msp, metaslab_weight(msp)); 605 606 mutex_exit(&msp->ms_lock); 607 } 608 609 static uint64_t 610 metaslab_distance(metaslab_t *msp, dva_t *dva) 611 { 612 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; 613 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; 614 uint64_t start = msp->ms_map.sm_start >> ms_shift; 615 616 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 617 return (1ULL << 63); 618 619 if (offset < start) 620 return ((start - offset) << ms_shift); 621 if (offset > start) 622 return ((offset - start) << ms_shift); 623 return (0); 624 } 625 626 static uint64_t 627 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg, 628 uint64_t min_distance, dva_t *dva, int d) 629 { 630 metaslab_t *msp = NULL; 631 uint64_t offset = -1ULL; 632 avl_tree_t *t = &mg->mg_metaslab_tree; 633 uint64_t activation_weight; 634 uint64_t target_distance; 635 int i; 636 637 activation_weight = METASLAB_WEIGHT_PRIMARY; 638 for (i = 0; i < d; i++) 639 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) 640 activation_weight = METASLAB_WEIGHT_SECONDARY; 641 642 for (;;) { 643 mutex_enter(&mg->mg_lock); 644 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) { 645 if (msp->ms_weight < size) { 646 mutex_exit(&mg->mg_lock); 647 return (-1ULL); 648 } 649 650 if (activation_weight == METASLAB_WEIGHT_PRIMARY) 651 break; 652 653 target_distance = min_distance + 654 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1); 655 656 for (i = 0; i < d; i++) 657 if (metaslab_distance(msp, &dva[i]) < 658 target_distance) 659 break; 660 if (i == d) 661 break; 662 } 663 mutex_exit(&mg->mg_lock); 664 if (msp == NULL) 665 return (-1ULL); 666 667 mutex_enter(&msp->ms_lock); 668 669 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) && 670 activation_weight == METASLAB_WEIGHT_PRIMARY) { 671 metaslab_passivate(msp, 672 msp->ms_weight & ~METASLAB_ACTIVE_MASK); 673 mutex_exit(&msp->ms_lock); 674 continue; 675 } 676 677 if (metaslab_activate(msp, activation_weight) != 0) { 678 mutex_exit(&msp->ms_lock); 679 continue; 680 } 681 682 if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL) 683 break; 684 685 metaslab_passivate(msp, size - 1); 686 687 mutex_exit(&msp->ms_lock); 688 } 689 690 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 691 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 692 693 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 694 695 mutex_exit(&msp->ms_lock); 696 697 return (offset); 698 } 699 700 /* 701 * Allocate a block for the specified i/o. 702 */ 703 static int 704 metaslab_alloc_dva(spa_t *spa, uint64_t psize, dva_t *dva, int d, 705 dva_t *hintdva, uint64_t txg) 706 { 707 metaslab_group_t *mg, *rotor; 708 metaslab_class_t *mc; 709 vdev_t *vd; 710 int dshift = 3; 711 int all_zero; 712 uint64_t offset = -1ULL; 713 uint64_t asize; 714 uint64_t distance; 715 716 ASSERT(!DVA_IS_VALID(&dva[d])); 717 718 mc = spa_metaslab_class_select(spa); 719 720 /* 721 * Start at the rotor and loop through all mgs until we find something. 722 * Note that there's no locking on mc_rotor or mc_allocated because 723 * nothing actually breaks if we miss a few updates -- we just won't 724 * allocate quite as evenly. It all balances out over time. 725 * 726 * If we are doing ditto blocks, try to spread them across consecutive 727 * vdevs. If we're forced to reuse a vdev before we've allocated 728 * all of our ditto blocks, then try and spread them out on that 729 * vdev as much as possible. If it turns out to not be possible, 730 * gradually lower our standards until anything becomes acceptable. 731 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 732 * gives us hope of containing our fault domains to something we're 733 * able to reason about. Otherwise, any two top-level vdev failures 734 * will guarantee the loss of data. With consecutive allocation, 735 * only two adjacent top-level vdev failures will result in data loss. 736 * 737 * If we are doing gang blocks (hintdva is non-NULL), try to keep 738 * ourselves on the same vdev as our gang block header. That 739 * way, we can hope for locality in vdev_cache, plus it makes our 740 * fault domains something tractable. 741 */ 742 if (hintdva) { 743 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 744 mg = vd->vdev_mg; 745 } else if (d != 0) { 746 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 747 mg = vd->vdev_mg->mg_next; 748 } else { 749 mg = mc->mc_rotor; 750 } 751 rotor = mg; 752 753 top: 754 all_zero = B_TRUE; 755 do { 756 vd = mg->mg_vd; 757 758 distance = vd->vdev_asize >> dshift; 759 if (distance <= (1ULL << vd->vdev_ms_shift)) 760 distance = 0; 761 else 762 all_zero = B_FALSE; 763 764 asize = vdev_psize_to_asize(vd, psize); 765 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 766 767 offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d); 768 if (offset != -1ULL) { 769 /* 770 * If we've just selected this metaslab group, 771 * figure out whether the corresponding vdev is 772 * over- or under-used relative to the pool, 773 * and set an allocation bias to even it out. 774 */ 775 if (mc->mc_allocated == 0) { 776 vdev_stat_t *vs = &vd->vdev_stat; 777 uint64_t alloc, space; 778 int64_t vu, su; 779 780 alloc = spa_get_alloc(spa); 781 space = spa_get_space(spa); 782 783 /* 784 * Determine percent used in units of 0..1024. 785 * (This is just to avoid floating point.) 786 */ 787 vu = (vs->vs_alloc << 10) / (vs->vs_space + 1); 788 su = (alloc << 10) / (space + 1); 789 790 /* 791 * Bias by at most +/- 25% of the aliquot. 792 */ 793 mg->mg_bias = ((su - vu) * 794 (int64_t)mg->mg_aliquot) / (1024 * 4); 795 } 796 797 if (atomic_add_64_nv(&mc->mc_allocated, asize) >= 798 mg->mg_aliquot + mg->mg_bias) { 799 mc->mc_rotor = mg->mg_next; 800 mc->mc_allocated = 0; 801 } 802 803 DVA_SET_VDEV(&dva[d], vd->vdev_id); 804 DVA_SET_OFFSET(&dva[d], offset); 805 DVA_SET_GANG(&dva[d], 0); 806 DVA_SET_ASIZE(&dva[d], asize); 807 808 return (0); 809 } 810 mc->mc_rotor = mg->mg_next; 811 mc->mc_allocated = 0; 812 } while ((mg = mg->mg_next) != rotor); 813 814 if (!all_zero) { 815 dshift++; 816 ASSERT(dshift < 64); 817 goto top; 818 } 819 820 bzero(&dva[d], sizeof (dva_t)); 821 822 return (ENOSPC); 823 } 824 825 /* 826 * Free the block represented by DVA in the context of the specified 827 * transaction group. 828 */ 829 static void 830 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) 831 { 832 uint64_t vdev = DVA_GET_VDEV(dva); 833 uint64_t offset = DVA_GET_OFFSET(dva); 834 uint64_t size = DVA_GET_ASIZE(dva); 835 vdev_t *vd; 836 metaslab_t *msp; 837 838 ASSERT(DVA_IS_VALID(dva)); 839 840 if (txg > spa_freeze_txg(spa)) 841 return; 842 843 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 844 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 845 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu", 846 (u_longlong_t)vdev, (u_longlong_t)offset); 847 ASSERT(0); 848 return; 849 } 850 851 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 852 853 if (DVA_GET_GANG(dva)) 854 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 855 856 mutex_enter(&msp->ms_lock); 857 858 if (now) { 859 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK], 860 offset, size); 861 space_map_free(&msp->ms_map, offset, size); 862 } else { 863 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0) 864 vdev_dirty(vd, VDD_METASLAB, msp, txg); 865 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size); 866 } 867 868 mutex_exit(&msp->ms_lock); 869 } 870 871 /* 872 * Intent log support: upon opening the pool after a crash, notify the SPA 873 * of blocks that the intent log has allocated for immediate write, but 874 * which are still considered free by the SPA because the last transaction 875 * group didn't commit yet. 876 */ 877 static int 878 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 879 { 880 uint64_t vdev = DVA_GET_VDEV(dva); 881 uint64_t offset = DVA_GET_OFFSET(dva); 882 uint64_t size = DVA_GET_ASIZE(dva); 883 vdev_t *vd; 884 metaslab_t *msp; 885 int error; 886 887 ASSERT(DVA_IS_VALID(dva)); 888 889 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || 890 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) 891 return (ENXIO); 892 893 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 894 895 if (DVA_GET_GANG(dva)) 896 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 897 898 mutex_enter(&msp->ms_lock); 899 900 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); 901 if (error) { 902 mutex_exit(&msp->ms_lock); 903 return (error); 904 } 905 906 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0) 907 vdev_dirty(vd, VDD_METASLAB, msp, txg); 908 909 space_map_claim(&msp->ms_map, offset, size); 910 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size); 911 912 mutex_exit(&msp->ms_lock); 913 914 return (0); 915 } 916 917 int 918 metaslab_alloc(spa_t *spa, uint64_t psize, blkptr_t *bp, int ndvas, 919 uint64_t txg, blkptr_t *hintbp) 920 { 921 dva_t *dva = bp->blk_dva; 922 dva_t *hintdva = hintbp->blk_dva; 923 int d; 924 int error = 0; 925 926 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 927 ASSERT(BP_GET_NDVAS(bp) == 0); 928 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 929 930 for (d = 0; d < ndvas; d++) { 931 error = metaslab_alloc_dva(spa, psize, dva, d, hintdva, txg); 932 if (error) { 933 for (d--; d >= 0; d--) { 934 metaslab_free_dva(spa, &dva[d], txg, B_TRUE); 935 bzero(&dva[d], sizeof (dva_t)); 936 } 937 return (error); 938 } 939 } 940 ASSERT(error == 0); 941 ASSERT(BP_GET_NDVAS(bp) == ndvas); 942 943 return (0); 944 } 945 946 void 947 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 948 { 949 const dva_t *dva = bp->blk_dva; 950 int ndvas = BP_GET_NDVAS(bp); 951 int d; 952 953 ASSERT(!BP_IS_HOLE(bp)); 954 955 for (d = 0; d < ndvas; d++) 956 metaslab_free_dva(spa, &dva[d], txg, now); 957 } 958 959 int 960 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 961 { 962 const dva_t *dva = bp->blk_dva; 963 int ndvas = BP_GET_NDVAS(bp); 964 int d, error; 965 int last_error = 0; 966 967 ASSERT(!BP_IS_HOLE(bp)); 968 969 for (d = 0; d < ndvas; d++) 970 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0) 971 last_error = error; 972 973 return (last_error); 974 } 975