xref: /illumos-gate/usr/src/uts/common/fs/zfs/metaslab.c (revision 46b592853d0f4f11781b6b0a7533f267c6aee132)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/dmu.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/space_map.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33 
34 uint64_t metaslab_aliquot = 512ULL << 10;
35 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
36 
37 /*
38  * Metaslab debugging: when set, keeps all space maps in core to verify frees.
39  */
40 static int metaslab_debug = 0;
41 
42 /*
43  * Minimum size which forces the dynamic allocator to change
44  * it's allocation strategy. Once the space map cannot satisfy
45  * an allocation of this size then it switches to using more
46  * aggressive strategy (i.e search by size rather than offset).
47  */
48 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
49 
50 /*
51  * The minimum free space, in percent, which must be available
52  * in a space map to continue allocations in a first-fit fashion.
53  * Once the space_map's free space drops below this level we dynamically
54  * switch to using best-fit allocations.
55  */
56 int metaslab_df_free_pct = 30;
57 
58 /*
59  * ==========================================================================
60  * Metaslab classes
61  * ==========================================================================
62  */
63 metaslab_class_t *
64 metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
65 {
66 	metaslab_class_t *mc;
67 
68 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
69 
70 	mc->mc_spa = spa;
71 	mc->mc_rotor = NULL;
72 	mc->mc_ops = ops;
73 
74 	return (mc);
75 }
76 
77 void
78 metaslab_class_destroy(metaslab_class_t *mc)
79 {
80 	metaslab_group_t *mg;
81 
82 	while ((mg = mc->mc_rotor) != NULL) {
83 		metaslab_class_remove(mc, mg);
84 		metaslab_group_destroy(mg);
85 	}
86 
87 	kmem_free(mc, sizeof (metaslab_class_t));
88 }
89 
90 void
91 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg)
92 {
93 	metaslab_group_t *mgprev, *mgnext;
94 
95 	ASSERT(mg->mg_class == NULL);
96 
97 	if ((mgprev = mc->mc_rotor) == NULL) {
98 		mg->mg_prev = mg;
99 		mg->mg_next = mg;
100 	} else {
101 		mgnext = mgprev->mg_next;
102 		mg->mg_prev = mgprev;
103 		mg->mg_next = mgnext;
104 		mgprev->mg_next = mg;
105 		mgnext->mg_prev = mg;
106 	}
107 	mc->mc_rotor = mg;
108 	mg->mg_class = mc;
109 }
110 
111 void
112 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg)
113 {
114 	metaslab_group_t *mgprev, *mgnext;
115 
116 	ASSERT(mg->mg_class == mc);
117 
118 	mgprev = mg->mg_prev;
119 	mgnext = mg->mg_next;
120 
121 	if (mg == mgnext) {
122 		mc->mc_rotor = NULL;
123 	} else {
124 		mc->mc_rotor = mgnext;
125 		mgprev->mg_next = mgnext;
126 		mgnext->mg_prev = mgprev;
127 	}
128 
129 	mg->mg_prev = NULL;
130 	mg->mg_next = NULL;
131 	mg->mg_class = NULL;
132 }
133 
134 int
135 metaslab_class_validate(metaslab_class_t *mc)
136 {
137 	metaslab_group_t *mg;
138 	vdev_t *vd;
139 
140 	/*
141 	 * Must hold one of the spa_config locks.
142 	 */
143 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
144 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
145 
146 	if ((mg = mc->mc_rotor) == NULL)
147 		return (0);
148 
149 	do {
150 		vd = mg->mg_vd;
151 		ASSERT(vd->vdev_mg != NULL);
152 		ASSERT3P(vd->vdev_top, ==, vd);
153 		ASSERT3P(mg->mg_class, ==, mc);
154 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
155 	} while ((mg = mg->mg_next) != mc->mc_rotor);
156 
157 	return (0);
158 }
159 
160 void
161 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
162     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
163 {
164 	atomic_add_64(&mc->mc_alloc, alloc_delta);
165 	atomic_add_64(&mc->mc_deferred, defer_delta);
166 	atomic_add_64(&mc->mc_space, space_delta);
167 	atomic_add_64(&mc->mc_dspace, dspace_delta);
168 
169 	ASSERT((int64_t)mc->mc_alloc >= 0 &&
170 	    (int64_t)mc->mc_deferred >= 0 &&
171 	    (int64_t)mc->mc_space >= 0 &&
172 	    (int64_t)mc->mc_dspace >= 0);
173 }
174 
175 uint64_t
176 metaslab_class_get_alloc(metaslab_class_t *mc)
177 {
178 	return (mc->mc_alloc);
179 }
180 
181 uint64_t
182 metaslab_class_get_deferred(metaslab_class_t *mc)
183 {
184 	return (mc->mc_deferred);
185 }
186 
187 uint64_t
188 metaslab_class_get_space(metaslab_class_t *mc)
189 {
190 	return (mc->mc_space);
191 }
192 
193 uint64_t
194 metaslab_class_get_dspace(metaslab_class_t *mc)
195 {
196 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
197 }
198 
199 /*
200  * ==========================================================================
201  * Metaslab groups
202  * ==========================================================================
203  */
204 static int
205 metaslab_compare(const void *x1, const void *x2)
206 {
207 	const metaslab_t *m1 = x1;
208 	const metaslab_t *m2 = x2;
209 
210 	if (m1->ms_weight < m2->ms_weight)
211 		return (1);
212 	if (m1->ms_weight > m2->ms_weight)
213 		return (-1);
214 
215 	/*
216 	 * If the weights are identical, use the offset to force uniqueness.
217 	 */
218 	if (m1->ms_map.sm_start < m2->ms_map.sm_start)
219 		return (-1);
220 	if (m1->ms_map.sm_start > m2->ms_map.sm_start)
221 		return (1);
222 
223 	ASSERT3P(m1, ==, m2);
224 
225 	return (0);
226 }
227 
228 metaslab_group_t *
229 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
230 {
231 	metaslab_group_t *mg;
232 
233 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
234 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
235 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
236 	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
237 	mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children);
238 	mg->mg_vd = vd;
239 	metaslab_class_add(mc, mg);
240 
241 	return (mg);
242 }
243 
244 void
245 metaslab_group_destroy(metaslab_group_t *mg)
246 {
247 	avl_destroy(&mg->mg_metaslab_tree);
248 	mutex_destroy(&mg->mg_lock);
249 	kmem_free(mg, sizeof (metaslab_group_t));
250 }
251 
252 static void
253 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
254 {
255 	mutex_enter(&mg->mg_lock);
256 	ASSERT(msp->ms_group == NULL);
257 	msp->ms_group = mg;
258 	msp->ms_weight = 0;
259 	avl_add(&mg->mg_metaslab_tree, msp);
260 	mutex_exit(&mg->mg_lock);
261 }
262 
263 static void
264 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
265 {
266 	mutex_enter(&mg->mg_lock);
267 	ASSERT(msp->ms_group == mg);
268 	avl_remove(&mg->mg_metaslab_tree, msp);
269 	msp->ms_group = NULL;
270 	mutex_exit(&mg->mg_lock);
271 }
272 
273 static void
274 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
275 {
276 	/*
277 	 * Although in principle the weight can be any value, in
278 	 * practice we do not use values in the range [1, 510].
279 	 */
280 	ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
281 	ASSERT(MUTEX_HELD(&msp->ms_lock));
282 
283 	mutex_enter(&mg->mg_lock);
284 	ASSERT(msp->ms_group == mg);
285 	avl_remove(&mg->mg_metaslab_tree, msp);
286 	msp->ms_weight = weight;
287 	avl_add(&mg->mg_metaslab_tree, msp);
288 	mutex_exit(&mg->mg_lock);
289 }
290 
291 /*
292  * This is a helper function that can be used by the allocator to find
293  * a suitable block to allocate. This will search the specified AVL
294  * tree looking for a block that matches the specified criteria.
295  */
296 static uint64_t
297 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
298     uint64_t align)
299 {
300 	space_seg_t *ss, ssearch;
301 	avl_index_t where;
302 
303 	ssearch.ss_start = *cursor;
304 	ssearch.ss_end = *cursor + size;
305 
306 	ss = avl_find(t, &ssearch, &where);
307 	if (ss == NULL)
308 		ss = avl_nearest(t, where, AVL_AFTER);
309 
310 	while (ss != NULL) {
311 		uint64_t offset = P2ROUNDUP(ss->ss_start, align);
312 
313 		if (offset + size <= ss->ss_end) {
314 			*cursor = offset + size;
315 			return (offset);
316 		}
317 		ss = AVL_NEXT(t, ss);
318 	}
319 
320 	/*
321 	 * If we know we've searched the whole map (*cursor == 0), give up.
322 	 * Otherwise, reset the cursor to the beginning and try again.
323 	 */
324 	if (*cursor == 0)
325 		return (-1ULL);
326 
327 	*cursor = 0;
328 	return (metaslab_block_picker(t, cursor, size, align));
329 }
330 
331 /*
332  * ==========================================================================
333  * The first-fit block allocator
334  * ==========================================================================
335  */
336 static void
337 metaslab_ff_load(space_map_t *sm)
338 {
339 	ASSERT(sm->sm_ppd == NULL);
340 	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
341 	sm->sm_pp_root = NULL;
342 }
343 
344 static void
345 metaslab_ff_unload(space_map_t *sm)
346 {
347 	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
348 	sm->sm_ppd = NULL;
349 }
350 
351 static uint64_t
352 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
353 {
354 	avl_tree_t *t = &sm->sm_root;
355 	uint64_t align = size & -size;
356 	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
357 
358 	return (metaslab_block_picker(t, cursor, size, align));
359 }
360 
361 /* ARGSUSED */
362 static void
363 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size)
364 {
365 	/* No need to update cursor */
366 }
367 
368 /* ARGSUSED */
369 static void
370 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size)
371 {
372 	/* No need to update cursor */
373 }
374 
375 static space_map_ops_t metaslab_ff_ops = {
376 	metaslab_ff_load,
377 	metaslab_ff_unload,
378 	metaslab_ff_alloc,
379 	metaslab_ff_claim,
380 	metaslab_ff_free,
381 	NULL	/* maxsize */
382 };
383 
384 /*
385  * Dynamic block allocator -
386  * Uses the first fit allocation scheme until space get low and then
387  * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
388  * and metaslab_df_free_pct to determine when to switch the allocation scheme.
389  */
390 
391 uint64_t
392 metaslab_df_maxsize(space_map_t *sm)
393 {
394 	avl_tree_t *t = sm->sm_pp_root;
395 	space_seg_t *ss;
396 
397 	if (t == NULL || (ss = avl_last(t)) == NULL)
398 		return (0ULL);
399 
400 	return (ss->ss_end - ss->ss_start);
401 }
402 
403 static int
404 metaslab_df_seg_compare(const void *x1, const void *x2)
405 {
406 	const space_seg_t *s1 = x1;
407 	const space_seg_t *s2 = x2;
408 	uint64_t ss_size1 = s1->ss_end - s1->ss_start;
409 	uint64_t ss_size2 = s2->ss_end - s2->ss_start;
410 
411 	if (ss_size1 < ss_size2)
412 		return (-1);
413 	if (ss_size1 > ss_size2)
414 		return (1);
415 
416 	if (s1->ss_start < s2->ss_start)
417 		return (-1);
418 	if (s1->ss_start > s2->ss_start)
419 		return (1);
420 
421 	return (0);
422 }
423 
424 static void
425 metaslab_df_load(space_map_t *sm)
426 {
427 	space_seg_t *ss;
428 
429 	ASSERT(sm->sm_ppd == NULL);
430 	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
431 
432 	sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
433 	avl_create(sm->sm_pp_root, metaslab_df_seg_compare,
434 	    sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
435 
436 	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
437 		avl_add(sm->sm_pp_root, ss);
438 }
439 
440 static void
441 metaslab_df_unload(space_map_t *sm)
442 {
443 	void *cookie = NULL;
444 
445 	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
446 	sm->sm_ppd = NULL;
447 
448 	while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
449 		/* tear down the tree */
450 	}
451 
452 	avl_destroy(sm->sm_pp_root);
453 	kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
454 	sm->sm_pp_root = NULL;
455 }
456 
457 static uint64_t
458 metaslab_df_alloc(space_map_t *sm, uint64_t size)
459 {
460 	avl_tree_t *t = &sm->sm_root;
461 	uint64_t align = size & -size;
462 	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
463 	uint64_t max_size = metaslab_df_maxsize(sm);
464 	int free_pct = sm->sm_space * 100 / sm->sm_size;
465 
466 	ASSERT(MUTEX_HELD(sm->sm_lock));
467 	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
468 
469 	if (max_size < size)
470 		return (-1ULL);
471 
472 	/*
473 	 * If we're running low on space switch to using the size
474 	 * sorted AVL tree (best-fit).
475 	 */
476 	if (max_size < metaslab_df_alloc_threshold ||
477 	    free_pct < metaslab_df_free_pct) {
478 		t = sm->sm_pp_root;
479 		*cursor = 0;
480 	}
481 
482 	return (metaslab_block_picker(t, cursor, size, 1ULL));
483 }
484 
485 /* ARGSUSED */
486 static void
487 metaslab_df_claim(space_map_t *sm, uint64_t start, uint64_t size)
488 {
489 	/* No need to update cursor */
490 }
491 
492 /* ARGSUSED */
493 static void
494 metaslab_df_free(space_map_t *sm, uint64_t start, uint64_t size)
495 {
496 	/* No need to update cursor */
497 }
498 
499 static space_map_ops_t metaslab_df_ops = {
500 	metaslab_df_load,
501 	metaslab_df_unload,
502 	metaslab_df_alloc,
503 	metaslab_df_claim,
504 	metaslab_df_free,
505 	metaslab_df_maxsize
506 };
507 
508 space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
509 
510 /*
511  * ==========================================================================
512  * Metaslabs
513  * ==========================================================================
514  */
515 metaslab_t *
516 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
517 	uint64_t start, uint64_t size, uint64_t txg)
518 {
519 	vdev_t *vd = mg->mg_vd;
520 	metaslab_t *msp;
521 
522 	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
523 	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
524 
525 	msp->ms_smo_syncing = *smo;
526 
527 	/*
528 	 * We create the main space map here, but we don't create the
529 	 * allocmaps and freemaps until metaslab_sync_done().  This serves
530 	 * two purposes: it allows metaslab_sync_done() to detect the
531 	 * addition of new space; and for debugging, it ensures that we'd
532 	 * data fault on any attempt to use this metaslab before it's ready.
533 	 */
534 	space_map_create(&msp->ms_map, start, size,
535 	    vd->vdev_ashift, &msp->ms_lock);
536 
537 	metaslab_group_add(mg, msp);
538 
539 	if (metaslab_debug && smo->smo_object != 0) {
540 		mutex_enter(&msp->ms_lock);
541 		VERIFY(space_map_load(&msp->ms_map, mg->mg_class->mc_ops,
542 		    SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
543 		mutex_exit(&msp->ms_lock);
544 	}
545 
546 	/*
547 	 * If we're opening an existing pool (txg == 0) or creating
548 	 * a new one (txg == TXG_INITIAL), all space is available now.
549 	 * If we're adding space to an existing pool, the new space
550 	 * does not become available until after this txg has synced.
551 	 */
552 	if (txg <= TXG_INITIAL)
553 		metaslab_sync_done(msp, 0);
554 
555 	if (txg != 0) {
556 		vdev_dirty(vd, 0, NULL, txg);
557 		vdev_dirty(vd, VDD_METASLAB, msp, txg);
558 	}
559 
560 	return (msp);
561 }
562 
563 void
564 metaslab_fini(metaslab_t *msp)
565 {
566 	metaslab_group_t *mg = msp->ms_group;
567 
568 	vdev_space_update(mg->mg_vd,
569 	    -msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size);
570 
571 	metaslab_group_remove(mg, msp);
572 
573 	mutex_enter(&msp->ms_lock);
574 
575 	space_map_unload(&msp->ms_map);
576 	space_map_destroy(&msp->ms_map);
577 
578 	for (int t = 0; t < TXG_SIZE; t++) {
579 		space_map_destroy(&msp->ms_allocmap[t]);
580 		space_map_destroy(&msp->ms_freemap[t]);
581 	}
582 
583 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
584 		space_map_destroy(&msp->ms_defermap[t]);
585 
586 	ASSERT3S(msp->ms_deferspace, ==, 0);
587 
588 	mutex_exit(&msp->ms_lock);
589 	mutex_destroy(&msp->ms_lock);
590 
591 	kmem_free(msp, sizeof (metaslab_t));
592 }
593 
594 #define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
595 #define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
596 #define	METASLAB_ACTIVE_MASK		\
597 	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
598 #define	METASLAB_SMO_BONUS_MULTIPLIER	2
599 
600 static uint64_t
601 metaslab_weight(metaslab_t *msp)
602 {
603 	metaslab_group_t *mg = msp->ms_group;
604 	space_map_t *sm = &msp->ms_map;
605 	space_map_obj_t *smo = &msp->ms_smo;
606 	vdev_t *vd = mg->mg_vd;
607 	uint64_t weight, space;
608 
609 	ASSERT(MUTEX_HELD(&msp->ms_lock));
610 
611 	/*
612 	 * The baseline weight is the metaslab's free space.
613 	 */
614 	space = sm->sm_size - smo->smo_alloc;
615 	weight = space;
616 
617 	/*
618 	 * Modern disks have uniform bit density and constant angular velocity.
619 	 * Therefore, the outer recording zones are faster (higher bandwidth)
620 	 * than the inner zones by the ratio of outer to inner track diameter,
621 	 * which is typically around 2:1.  We account for this by assigning
622 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
623 	 * In effect, this means that we'll select the metaslab with the most
624 	 * free bandwidth rather than simply the one with the most free space.
625 	 */
626 	weight = 2 * weight -
627 	    ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
628 	ASSERT(weight >= space && weight <= 2 * space);
629 
630 	/*
631 	 * For locality, assign higher weight to metaslabs we've used before.
632 	 */
633 	if (smo->smo_object != 0)
634 		weight *= METASLAB_SMO_BONUS_MULTIPLIER;
635 	ASSERT(weight >= space &&
636 	    weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space);
637 
638 	/*
639 	 * If this metaslab is one we're actively using, adjust its weight to
640 	 * make it preferable to any inactive metaslab so we'll polish it off.
641 	 */
642 	weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
643 
644 	return (weight);
645 }
646 
647 static int
648 metaslab_activate(metaslab_t *msp, uint64_t activation_weight, uint64_t size)
649 {
650 	space_map_t *sm = &msp->ms_map;
651 	space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
652 
653 	ASSERT(MUTEX_HELD(&msp->ms_lock));
654 
655 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
656 		space_map_load_wait(sm);
657 		if (!sm->sm_loaded) {
658 			int error = space_map_load(sm, sm_ops, SM_FREE,
659 			    &msp->ms_smo,
660 			    spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
661 			if (error) {
662 				metaslab_group_sort(msp->ms_group, msp, 0);
663 				return (error);
664 			}
665 			for (int t = 0; t < TXG_DEFER_SIZE; t++)
666 				space_map_walk(&msp->ms_defermap[t],
667 				    space_map_claim, sm);
668 		}
669 
670 		/*
671 		 * If we were able to load the map then make sure
672 		 * that this map is still able to satisfy our request.
673 		 */
674 		if (msp->ms_weight < size)
675 			return (ENOSPC);
676 
677 		metaslab_group_sort(msp->ms_group, msp,
678 		    msp->ms_weight | activation_weight);
679 	}
680 	ASSERT(sm->sm_loaded);
681 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
682 
683 	return (0);
684 }
685 
686 static void
687 metaslab_passivate(metaslab_t *msp, uint64_t size)
688 {
689 	/*
690 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
691 	 * this metaslab again.  In that case, it had better be empty,
692 	 * or we would be leaving space on the table.
693 	 */
694 #if 0
695 	ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
696 #endif
697 	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
698 	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
699 }
700 
701 /*
702  * Write a metaslab to disk in the context of the specified transaction group.
703  */
704 void
705 metaslab_sync(metaslab_t *msp, uint64_t txg)
706 {
707 	vdev_t *vd = msp->ms_group->mg_vd;
708 	spa_t *spa = vd->vdev_spa;
709 	objset_t *mos = spa_meta_objset(spa);
710 	space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
711 	space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
712 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
713 	space_map_t *sm = &msp->ms_map;
714 	space_map_obj_t *smo = &msp->ms_smo_syncing;
715 	dmu_buf_t *db;
716 	dmu_tx_t *tx;
717 
718 	ASSERT(!vd->vdev_ishole);
719 
720 	if (allocmap->sm_space == 0 && freemap->sm_space == 0)
721 		return;
722 
723 	/*
724 	 * The only state that can actually be changing concurrently with
725 	 * metaslab_sync() is the metaslab's ms_map.  No other thread can
726 	 * be modifying this txg's allocmap, freemap, freed_map, or smo.
727 	 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
728 	 * We drop it whenever we call into the DMU, because the DMU
729 	 * can call down to us (e.g. via zio_free()) at any time.
730 	 */
731 
732 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
733 
734 	if (smo->smo_object == 0) {
735 		ASSERT(smo->smo_objsize == 0);
736 		ASSERT(smo->smo_alloc == 0);
737 		smo->smo_object = dmu_object_alloc(mos,
738 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
739 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
740 		ASSERT(smo->smo_object != 0);
741 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
742 		    (sm->sm_start >> vd->vdev_ms_shift),
743 		    sizeof (uint64_t), &smo->smo_object, tx);
744 	}
745 
746 	mutex_enter(&msp->ms_lock);
747 
748 	space_map_walk(freemap, space_map_add, freed_map);
749 
750 	if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
751 	    2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
752 		/*
753 		 * The in-core space map representation is twice as compact
754 		 * as the on-disk one, so it's time to condense the latter
755 		 * by generating a pure allocmap from first principles.
756 		 *
757 		 * This metaslab is 100% allocated,
758 		 * minus the content of the in-core map (sm),
759 		 * minus what's been freed this txg (freed_map),
760 		 * minus deferred frees (ms_defermap[]),
761 		 * minus allocations from txgs in the future
762 		 * (because they haven't been committed yet).
763 		 */
764 		space_map_vacate(allocmap, NULL, NULL);
765 		space_map_vacate(freemap, NULL, NULL);
766 
767 		space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
768 
769 		space_map_walk(sm, space_map_remove, allocmap);
770 		space_map_walk(freed_map, space_map_remove, allocmap);
771 
772 		for (int t = 0; t < TXG_DEFER_SIZE; t++)
773 			space_map_walk(&msp->ms_defermap[t],
774 			    space_map_remove, allocmap);
775 
776 		for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
777 			space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
778 			    space_map_remove, allocmap);
779 
780 		mutex_exit(&msp->ms_lock);
781 		space_map_truncate(smo, mos, tx);
782 		mutex_enter(&msp->ms_lock);
783 	}
784 
785 	space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
786 	space_map_sync(freemap, SM_FREE, smo, mos, tx);
787 
788 	mutex_exit(&msp->ms_lock);
789 
790 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
791 	dmu_buf_will_dirty(db, tx);
792 	ASSERT3U(db->db_size, >=, sizeof (*smo));
793 	bcopy(smo, db->db_data, sizeof (*smo));
794 	dmu_buf_rele(db, FTAG);
795 
796 	dmu_tx_commit(tx);
797 }
798 
799 /*
800  * Called after a transaction group has completely synced to mark
801  * all of the metaslab's free space as usable.
802  */
803 void
804 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
805 {
806 	space_map_obj_t *smo = &msp->ms_smo;
807 	space_map_obj_t *smosync = &msp->ms_smo_syncing;
808 	space_map_t *sm = &msp->ms_map;
809 	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
810 	space_map_t *defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
811 	metaslab_group_t *mg = msp->ms_group;
812 	vdev_t *vd = mg->mg_vd;
813 	int64_t alloc_delta, defer_delta;
814 
815 	ASSERT(!vd->vdev_ishole);
816 
817 	mutex_enter(&msp->ms_lock);
818 
819 	/*
820 	 * If this metaslab is just becoming available, initialize its
821 	 * allocmaps and freemaps and add its capacity to the vdev.
822 	 */
823 	if (freed_map->sm_size == 0) {
824 		for (int t = 0; t < TXG_SIZE; t++) {
825 			space_map_create(&msp->ms_allocmap[t], sm->sm_start,
826 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
827 			space_map_create(&msp->ms_freemap[t], sm->sm_start,
828 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
829 		}
830 
831 		for (int t = 0; t < TXG_DEFER_SIZE; t++)
832 			space_map_create(&msp->ms_defermap[t], sm->sm_start,
833 			    sm->sm_size, sm->sm_shift, sm->sm_lock);
834 
835 		vdev_space_update(vd, 0, 0, sm->sm_size);
836 	}
837 
838 	alloc_delta = smosync->smo_alloc - smo->smo_alloc;
839 	defer_delta = freed_map->sm_space - defer_map->sm_space;
840 
841 	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
842 
843 	ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
844 	ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
845 
846 	/*
847 	 * If there's a space_map_load() in progress, wait for it to complete
848 	 * so that we have a consistent view of the in-core space map.
849 	 * Then, add defer_map (oldest deferred frees) to this map and
850 	 * transfer freed_map (this txg's frees) to defer_map.
851 	 */
852 	space_map_load_wait(sm);
853 	space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
854 	space_map_vacate(freed_map, space_map_add, defer_map);
855 
856 	*smo = *smosync;
857 
858 	msp->ms_deferspace += defer_delta;
859 	ASSERT3S(msp->ms_deferspace, >=, 0);
860 	ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
861 	if (msp->ms_deferspace != 0) {
862 		/*
863 		 * Keep syncing this metaslab until all deferred frees
864 		 * are back in circulation.
865 		 */
866 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
867 	}
868 
869 	/*
870 	 * If the map is loaded but no longer active, evict it as soon as all
871 	 * future allocations have synced.  (If we unloaded it now and then
872 	 * loaded a moment later, the map wouldn't reflect those allocations.)
873 	 */
874 	if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
875 		int evictable = 1;
876 
877 		for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
878 			if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
879 				evictable = 0;
880 
881 		if (evictable && !metaslab_debug)
882 			space_map_unload(sm);
883 	}
884 
885 	metaslab_group_sort(mg, msp, metaslab_weight(msp));
886 
887 	mutex_exit(&msp->ms_lock);
888 }
889 
890 static uint64_t
891 metaslab_distance(metaslab_t *msp, dva_t *dva)
892 {
893 	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
894 	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
895 	uint64_t start = msp->ms_map.sm_start >> ms_shift;
896 
897 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
898 		return (1ULL << 63);
899 
900 	if (offset < start)
901 		return ((start - offset) << ms_shift);
902 	if (offset > start)
903 		return ((offset - start) << ms_shift);
904 	return (0);
905 }
906 
907 static uint64_t
908 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
909     uint64_t min_distance, dva_t *dva, int d)
910 {
911 	metaslab_t *msp = NULL;
912 	uint64_t offset = -1ULL;
913 	avl_tree_t *t = &mg->mg_metaslab_tree;
914 	uint64_t activation_weight;
915 	uint64_t target_distance;
916 	int i;
917 
918 	activation_weight = METASLAB_WEIGHT_PRIMARY;
919 	for (i = 0; i < d; i++) {
920 		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
921 			activation_weight = METASLAB_WEIGHT_SECONDARY;
922 			break;
923 		}
924 	}
925 
926 	for (;;) {
927 		boolean_t was_active;
928 
929 		mutex_enter(&mg->mg_lock);
930 		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
931 			if (msp->ms_weight < size) {
932 				mutex_exit(&mg->mg_lock);
933 				return (-1ULL);
934 			}
935 
936 			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
937 			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
938 				break;
939 
940 			target_distance = min_distance +
941 			    (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
942 
943 			for (i = 0; i < d; i++)
944 				if (metaslab_distance(msp, &dva[i]) <
945 				    target_distance)
946 					break;
947 			if (i == d)
948 				break;
949 		}
950 		mutex_exit(&mg->mg_lock);
951 		if (msp == NULL)
952 			return (-1ULL);
953 
954 		mutex_enter(&msp->ms_lock);
955 
956 		/*
957 		 * Ensure that the metaslab we have selected is still
958 		 * capable of handling our request. It's possible that
959 		 * another thread may have changed the weight while we
960 		 * were blocked on the metaslab lock.
961 		 */
962 		if (msp->ms_weight < size || (was_active &&
963 		    !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
964 		    activation_weight == METASLAB_WEIGHT_PRIMARY)) {
965 			mutex_exit(&msp->ms_lock);
966 			continue;
967 		}
968 
969 		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
970 		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
971 			metaslab_passivate(msp,
972 			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
973 			mutex_exit(&msp->ms_lock);
974 			continue;
975 		}
976 
977 		if (metaslab_activate(msp, activation_weight, size) != 0) {
978 			mutex_exit(&msp->ms_lock);
979 			continue;
980 		}
981 
982 		if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
983 			break;
984 
985 		metaslab_passivate(msp, size - 1);
986 
987 		mutex_exit(&msp->ms_lock);
988 	}
989 
990 	if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
991 		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
992 
993 	space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
994 
995 	mutex_exit(&msp->ms_lock);
996 
997 	return (offset);
998 }
999 
1000 /*
1001  * Allocate a block for the specified i/o.
1002  */
1003 static int
1004 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1005     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1006 {
1007 	metaslab_group_t *mg, *rotor;
1008 	vdev_t *vd;
1009 	int dshift = 3;
1010 	int all_zero;
1011 	int zio_lock = B_FALSE;
1012 	boolean_t allocatable;
1013 	uint64_t offset = -1ULL;
1014 	uint64_t asize;
1015 	uint64_t distance;
1016 
1017 	ASSERT(!DVA_IS_VALID(&dva[d]));
1018 
1019 	/*
1020 	 * For testing, make some blocks above a certain size be gang blocks.
1021 	 */
1022 	if (psize >= metaslab_gang_bang && (lbolt & 3) == 0)
1023 		return (ENOSPC);
1024 
1025 	/*
1026 	 * Start at the rotor and loop through all mgs until we find something.
1027 	 * Note that there's no locking on mc_rotor or mc_aliquot because
1028 	 * nothing actually breaks if we miss a few updates -- we just won't
1029 	 * allocate quite as evenly.  It all balances out over time.
1030 	 *
1031 	 * If we are doing ditto or log blocks, try to spread them across
1032 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
1033 	 * allocated all of our ditto blocks, then try and spread them out on
1034 	 * that vdev as much as possible.  If it turns out to not be possible,
1035 	 * gradually lower our standards until anything becomes acceptable.
1036 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1037 	 * gives us hope of containing our fault domains to something we're
1038 	 * able to reason about.  Otherwise, any two top-level vdev failures
1039 	 * will guarantee the loss of data.  With consecutive allocation,
1040 	 * only two adjacent top-level vdev failures will result in data loss.
1041 	 *
1042 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1043 	 * ourselves on the same vdev as our gang block header.  That
1044 	 * way, we can hope for locality in vdev_cache, plus it makes our
1045 	 * fault domains something tractable.
1046 	 */
1047 	if (hintdva) {
1048 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1049 
1050 		/*
1051 		 * It's possible the vdev we're using as the hint no
1052 		 * longer exists (i.e. removed). Consult the rotor when
1053 		 * all else fails.
1054 		 */
1055 		if (vd != NULL && vd->vdev_mg != NULL) {
1056 			mg = vd->vdev_mg;
1057 
1058 			if (flags & METASLAB_HINTBP_AVOID &&
1059 			    mg->mg_next != NULL)
1060 				mg = mg->mg_next;
1061 		} else {
1062 			mg = mc->mc_rotor;
1063 		}
1064 	} else if (d != 0) {
1065 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1066 		mg = vd->vdev_mg->mg_next;
1067 	} else {
1068 		mg = mc->mc_rotor;
1069 	}
1070 
1071 	/*
1072 	 * If the hint put us into the wrong class, just follow the rotor.
1073 	 */
1074 	if (mg->mg_class != mc)
1075 		mg = mc->mc_rotor;
1076 
1077 	rotor = mg;
1078 top:
1079 	all_zero = B_TRUE;
1080 	do {
1081 		vd = mg->mg_vd;
1082 
1083 		/*
1084 		 * Don't allocate from faulted devices.
1085 		 */
1086 		if (zio_lock) {
1087 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1088 			allocatable = vdev_allocatable(vd);
1089 			spa_config_exit(spa, SCL_ZIO, FTAG);
1090 		} else {
1091 			allocatable = vdev_allocatable(vd);
1092 		}
1093 		if (!allocatable)
1094 			goto next;
1095 
1096 		/*
1097 		 * Avoid writing single-copy data to a failing vdev
1098 		 */
1099 		if ((vd->vdev_stat.vs_write_errors > 0 ||
1100 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
1101 		    d == 0 && dshift == 3) {
1102 			all_zero = B_FALSE;
1103 			goto next;
1104 		}
1105 
1106 		ASSERT(mg->mg_class == mc);
1107 
1108 		distance = vd->vdev_asize >> dshift;
1109 		if (distance <= (1ULL << vd->vdev_ms_shift))
1110 			distance = 0;
1111 		else
1112 			all_zero = B_FALSE;
1113 
1114 		asize = vdev_psize_to_asize(vd, psize);
1115 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1116 
1117 		offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
1118 		if (offset != -1ULL) {
1119 			/*
1120 			 * If we've just selected this metaslab group,
1121 			 * figure out whether the corresponding vdev is
1122 			 * over- or under-used relative to the pool,
1123 			 * and set an allocation bias to even it out.
1124 			 */
1125 			if (mc->mc_aliquot == 0) {
1126 				vdev_stat_t *vs = &vd->vdev_stat;
1127 				int64_t vu, cu;
1128 
1129 				/*
1130 				 * Determine percent used in units of 0..1024.
1131 				 * (This is just to avoid floating point.)
1132 				 */
1133 				vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
1134 				cu = (mc->mc_alloc << 10) / (mc->mc_space + 1);
1135 
1136 				/*
1137 				 * Bias by at most +/- 25% of the aliquot.
1138 				 */
1139 				mg->mg_bias = ((cu - vu) *
1140 				    (int64_t)mg->mg_aliquot) / (1024 * 4);
1141 			}
1142 
1143 			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1144 			    mg->mg_aliquot + mg->mg_bias) {
1145 				mc->mc_rotor = mg->mg_next;
1146 				mc->mc_aliquot = 0;
1147 			}
1148 
1149 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
1150 			DVA_SET_OFFSET(&dva[d], offset);
1151 			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1152 			DVA_SET_ASIZE(&dva[d], asize);
1153 
1154 			return (0);
1155 		}
1156 next:
1157 		mc->mc_rotor = mg->mg_next;
1158 		mc->mc_aliquot = 0;
1159 	} while ((mg = mg->mg_next) != rotor);
1160 
1161 	if (!all_zero) {
1162 		dshift++;
1163 		ASSERT(dshift < 64);
1164 		goto top;
1165 	}
1166 
1167 	if (!allocatable && !zio_lock) {
1168 		dshift = 3;
1169 		zio_lock = B_TRUE;
1170 		goto top;
1171 	}
1172 
1173 	bzero(&dva[d], sizeof (dva_t));
1174 
1175 	return (ENOSPC);
1176 }
1177 
1178 /*
1179  * Free the block represented by DVA in the context of the specified
1180  * transaction group.
1181  */
1182 static void
1183 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1184 {
1185 	uint64_t vdev = DVA_GET_VDEV(dva);
1186 	uint64_t offset = DVA_GET_OFFSET(dva);
1187 	uint64_t size = DVA_GET_ASIZE(dva);
1188 	vdev_t *vd;
1189 	metaslab_t *msp;
1190 
1191 	ASSERT(DVA_IS_VALID(dva));
1192 
1193 	if (txg > spa_freeze_txg(spa))
1194 		return;
1195 
1196 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1197 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1198 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1199 		    (u_longlong_t)vdev, (u_longlong_t)offset);
1200 		ASSERT(0);
1201 		return;
1202 	}
1203 
1204 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1205 
1206 	if (DVA_GET_GANG(dva))
1207 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1208 
1209 	mutex_enter(&msp->ms_lock);
1210 
1211 	if (now) {
1212 		space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
1213 		    offset, size);
1214 		space_map_free(&msp->ms_map, offset, size);
1215 	} else {
1216 		if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
1217 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1218 		space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
1219 	}
1220 
1221 	mutex_exit(&msp->ms_lock);
1222 }
1223 
1224 /*
1225  * Intent log support: upon opening the pool after a crash, notify the SPA
1226  * of blocks that the intent log has allocated for immediate write, but
1227  * which are still considered free by the SPA because the last transaction
1228  * group didn't commit yet.
1229  */
1230 static int
1231 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1232 {
1233 	uint64_t vdev = DVA_GET_VDEV(dva);
1234 	uint64_t offset = DVA_GET_OFFSET(dva);
1235 	uint64_t size = DVA_GET_ASIZE(dva);
1236 	vdev_t *vd;
1237 	metaslab_t *msp;
1238 	int error = 0;
1239 
1240 	ASSERT(DVA_IS_VALID(dva));
1241 
1242 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1243 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1244 		return (ENXIO);
1245 
1246 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1247 
1248 	if (DVA_GET_GANG(dva))
1249 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1250 
1251 	mutex_enter(&msp->ms_lock);
1252 
1253 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map.sm_loaded)
1254 		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY, 0);
1255 
1256 	if (error == 0 && !space_map_contains(&msp->ms_map, offset, size))
1257 		error = ENOENT;
1258 
1259 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
1260 		mutex_exit(&msp->ms_lock);
1261 		return (error);
1262 	}
1263 
1264 	space_map_claim(&msp->ms_map, offset, size);
1265 
1266 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
1267 		if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1268 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1269 		space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1270 	}
1271 
1272 	mutex_exit(&msp->ms_lock);
1273 
1274 	return (0);
1275 }
1276 
1277 int
1278 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1279     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1280 {
1281 	dva_t *dva = bp->blk_dva;
1282 	dva_t *hintdva = hintbp->blk_dva;
1283 	int error = 0;
1284 
1285 	ASSERT(bp->blk_birth == 0);
1286 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
1287 
1288 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1289 
1290 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
1291 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1292 		return (ENOSPC);
1293 	}
1294 
1295 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1296 	ASSERT(BP_GET_NDVAS(bp) == 0);
1297 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1298 
1299 	for (int d = 0; d < ndvas; d++) {
1300 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1301 		    txg, flags);
1302 		if (error) {
1303 			for (d--; d >= 0; d--) {
1304 				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1305 				bzero(&dva[d], sizeof (dva_t));
1306 			}
1307 			spa_config_exit(spa, SCL_ALLOC, FTAG);
1308 			return (error);
1309 		}
1310 	}
1311 	ASSERT(error == 0);
1312 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
1313 
1314 	spa_config_exit(spa, SCL_ALLOC, FTAG);
1315 
1316 	BP_SET_BIRTH(bp, txg, txg);
1317 
1318 	return (0);
1319 }
1320 
1321 void
1322 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1323 {
1324 	const dva_t *dva = bp->blk_dva;
1325 	int ndvas = BP_GET_NDVAS(bp);
1326 
1327 	ASSERT(!BP_IS_HOLE(bp));
1328 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
1329 
1330 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1331 
1332 	for (int d = 0; d < ndvas; d++)
1333 		metaslab_free_dva(spa, &dva[d], txg, now);
1334 
1335 	spa_config_exit(spa, SCL_FREE, FTAG);
1336 }
1337 
1338 int
1339 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1340 {
1341 	const dva_t *dva = bp->blk_dva;
1342 	int ndvas = BP_GET_NDVAS(bp);
1343 	int error = 0;
1344 
1345 	ASSERT(!BP_IS_HOLE(bp));
1346 
1347 	if (txg != 0) {
1348 		/*
1349 		 * First do a dry run to make sure all DVAs are claimable,
1350 		 * so we don't have to unwind from partial failures below.
1351 		 */
1352 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
1353 			return (error);
1354 	}
1355 
1356 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1357 
1358 	for (int d = 0; d < ndvas; d++)
1359 		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1360 			break;
1361 
1362 	spa_config_exit(spa, SCL_ALLOC, FTAG);
1363 
1364 	ASSERT(error == 0 || txg == 0);
1365 
1366 	return (error);
1367 }
1368