xref: /illumos-gate/usr/src/uts/common/fs/zfs/metaslab.c (revision 43da549e0419e2943d8bd143ebfb1db11a16c569)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
37 
38 /*
39  * Allow allocations to switch to gang blocks quickly. We do this to
40  * avoid having to load lots of space_maps in a given txg. There are,
41  * however, some cases where we want to avoid "fast" ganging and instead
42  * we want to do an exhaustive search of all metaslabs on this device.
43  * Currently we don't allow any gang, slog, or dump device related allocations
44  * to "fast" gang.
45  */
46 #define	CAN_FASTGANG(flags) \
47 	(!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
48 	METASLAB_GANG_AVOID)))
49 
50 #define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
51 #define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
52 #define	METASLAB_ACTIVE_MASK		\
53 	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
54 
55 uint64_t metaslab_aliquot = 512ULL << 10;
56 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
57 
58 /*
59  * The in-core space map representation is more compact than its on-disk form.
60  * The zfs_condense_pct determines how much more compact the in-core
61  * space_map representation must be before we compact it on-disk.
62  * Values should be greater than or equal to 100.
63  */
64 int zfs_condense_pct = 200;
65 
66 /*
67  * Condensing a metaslab is not guaranteed to actually reduce the amount of
68  * space used on disk. In particular, a space map uses data in increments of
69  * MAX(1 << ashift, space_map_blksize), so a metaslab might use the
70  * same number of blocks after condensing. Since the goal of condensing is to
71  * reduce the number of IOPs required to read the space map, we only want to
72  * condense when we can be sure we will reduce the number of blocks used by the
73  * space map. Unfortunately, we cannot precisely compute whether or not this is
74  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
75  * we apply the following heuristic: do not condense a spacemap unless the
76  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
77  * blocks.
78  */
79 int zfs_metaslab_condense_block_threshold = 4;
80 
81 /*
82  * The zfs_mg_noalloc_threshold defines which metaslab groups should
83  * be eligible for allocation. The value is defined as a percentage of
84  * free space. Metaslab groups that have more free space than
85  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
86  * a metaslab group's free space is less than or equal to the
87  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
88  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
89  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
90  * groups are allowed to accept allocations. Gang blocks are always
91  * eligible to allocate on any metaslab group. The default value of 0 means
92  * no metaslab group will be excluded based on this criterion.
93  */
94 int zfs_mg_noalloc_threshold = 0;
95 
96 /*
97  * Metaslab groups are considered eligible for allocations if their
98  * fragmenation metric (measured as a percentage) is less than or equal to
99  * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
100  * then it will be skipped unless all metaslab groups within the metaslab
101  * class have also crossed this threshold.
102  */
103 int zfs_mg_fragmentation_threshold = 85;
104 
105 /*
106  * Allow metaslabs to keep their active state as long as their fragmentation
107  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
108  * active metaslab that exceeds this threshold will no longer keep its active
109  * status allowing better metaslabs to be selected.
110  */
111 int zfs_metaslab_fragmentation_threshold = 70;
112 
113 /*
114  * When set will load all metaslabs when pool is first opened.
115  */
116 int metaslab_debug_load = 0;
117 
118 /*
119  * When set will prevent metaslabs from being unloaded.
120  */
121 int metaslab_debug_unload = 0;
122 
123 /*
124  * Minimum size which forces the dynamic allocator to change
125  * it's allocation strategy.  Once the space map cannot satisfy
126  * an allocation of this size then it switches to using more
127  * aggressive strategy (i.e search by size rather than offset).
128  */
129 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
130 
131 /*
132  * The minimum free space, in percent, which must be available
133  * in a space map to continue allocations in a first-fit fashion.
134  * Once the space_map's free space drops below this level we dynamically
135  * switch to using best-fit allocations.
136  */
137 int metaslab_df_free_pct = 4;
138 
139 /*
140  * A metaslab is considered "free" if it contains a contiguous
141  * segment which is greater than metaslab_min_alloc_size.
142  */
143 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
144 
145 /*
146  * Percentage of all cpus that can be used by the metaslab taskq.
147  */
148 int metaslab_load_pct = 50;
149 
150 /*
151  * Determines how many txgs a metaslab may remain loaded without having any
152  * allocations from it. As long as a metaslab continues to be used we will
153  * keep it loaded.
154  */
155 int metaslab_unload_delay = TXG_SIZE * 2;
156 
157 /*
158  * Max number of metaslabs per group to preload.
159  */
160 int metaslab_preload_limit = SPA_DVAS_PER_BP;
161 
162 /*
163  * Enable/disable preloading of metaslab.
164  */
165 boolean_t metaslab_preload_enabled = B_TRUE;
166 
167 /*
168  * Enable/disable fragmentation weighting on metaslabs.
169  */
170 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
171 
172 /*
173  * Enable/disable lba weighting (i.e. outer tracks are given preference).
174  */
175 boolean_t metaslab_lba_weighting_enabled = B_TRUE;
176 
177 /*
178  * Enable/disable metaslab group biasing.
179  */
180 boolean_t metaslab_bias_enabled = B_TRUE;
181 
182 static uint64_t metaslab_fragmentation(metaslab_t *);
183 
184 /*
185  * ==========================================================================
186  * Metaslab classes
187  * ==========================================================================
188  */
189 metaslab_class_t *
190 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
191 {
192 	metaslab_class_t *mc;
193 
194 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
195 
196 	mc->mc_spa = spa;
197 	mc->mc_rotor = NULL;
198 	mc->mc_ops = ops;
199 
200 	return (mc);
201 }
202 
203 void
204 metaslab_class_destroy(metaslab_class_t *mc)
205 {
206 	ASSERT(mc->mc_rotor == NULL);
207 	ASSERT(mc->mc_alloc == 0);
208 	ASSERT(mc->mc_deferred == 0);
209 	ASSERT(mc->mc_space == 0);
210 	ASSERT(mc->mc_dspace == 0);
211 
212 	kmem_free(mc, sizeof (metaslab_class_t));
213 }
214 
215 int
216 metaslab_class_validate(metaslab_class_t *mc)
217 {
218 	metaslab_group_t *mg;
219 	vdev_t *vd;
220 
221 	/*
222 	 * Must hold one of the spa_config locks.
223 	 */
224 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
225 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
226 
227 	if ((mg = mc->mc_rotor) == NULL)
228 		return (0);
229 
230 	do {
231 		vd = mg->mg_vd;
232 		ASSERT(vd->vdev_mg != NULL);
233 		ASSERT3P(vd->vdev_top, ==, vd);
234 		ASSERT3P(mg->mg_class, ==, mc);
235 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
236 	} while ((mg = mg->mg_next) != mc->mc_rotor);
237 
238 	return (0);
239 }
240 
241 void
242 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
243     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
244 {
245 	atomic_add_64(&mc->mc_alloc, alloc_delta);
246 	atomic_add_64(&mc->mc_deferred, defer_delta);
247 	atomic_add_64(&mc->mc_space, space_delta);
248 	atomic_add_64(&mc->mc_dspace, dspace_delta);
249 }
250 
251 uint64_t
252 metaslab_class_get_alloc(metaslab_class_t *mc)
253 {
254 	return (mc->mc_alloc);
255 }
256 
257 uint64_t
258 metaslab_class_get_deferred(metaslab_class_t *mc)
259 {
260 	return (mc->mc_deferred);
261 }
262 
263 uint64_t
264 metaslab_class_get_space(metaslab_class_t *mc)
265 {
266 	return (mc->mc_space);
267 }
268 
269 uint64_t
270 metaslab_class_get_dspace(metaslab_class_t *mc)
271 {
272 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
273 }
274 
275 void
276 metaslab_class_histogram_verify(metaslab_class_t *mc)
277 {
278 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
279 	uint64_t *mc_hist;
280 	int i;
281 
282 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
283 		return;
284 
285 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
286 	    KM_SLEEP);
287 
288 	for (int c = 0; c < rvd->vdev_children; c++) {
289 		vdev_t *tvd = rvd->vdev_child[c];
290 		metaslab_group_t *mg = tvd->vdev_mg;
291 
292 		/*
293 		 * Skip any holes, uninitialized top-levels, or
294 		 * vdevs that are not in this metalab class.
295 		 */
296 		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
297 		    mg->mg_class != mc) {
298 			continue;
299 		}
300 
301 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
302 			mc_hist[i] += mg->mg_histogram[i];
303 	}
304 
305 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
306 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
307 
308 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
309 }
310 
311 /*
312  * Calculate the metaslab class's fragmentation metric. The metric
313  * is weighted based on the space contribution of each metaslab group.
314  * The return value will be a number between 0 and 100 (inclusive), or
315  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
316  * zfs_frag_table for more information about the metric.
317  */
318 uint64_t
319 metaslab_class_fragmentation(metaslab_class_t *mc)
320 {
321 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
322 	uint64_t fragmentation = 0;
323 
324 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
325 
326 	for (int c = 0; c < rvd->vdev_children; c++) {
327 		vdev_t *tvd = rvd->vdev_child[c];
328 		metaslab_group_t *mg = tvd->vdev_mg;
329 
330 		/*
331 		 * Skip any holes, uninitialized top-levels, or
332 		 * vdevs that are not in this metalab class.
333 		 */
334 		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
335 		    mg->mg_class != mc) {
336 			continue;
337 		}
338 
339 		/*
340 		 * If a metaslab group does not contain a fragmentation
341 		 * metric then just bail out.
342 		 */
343 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
344 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
345 			return (ZFS_FRAG_INVALID);
346 		}
347 
348 		/*
349 		 * Determine how much this metaslab_group is contributing
350 		 * to the overall pool fragmentation metric.
351 		 */
352 		fragmentation += mg->mg_fragmentation *
353 		    metaslab_group_get_space(mg);
354 	}
355 	fragmentation /= metaslab_class_get_space(mc);
356 
357 	ASSERT3U(fragmentation, <=, 100);
358 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
359 	return (fragmentation);
360 }
361 
362 /*
363  * Calculate the amount of expandable space that is available in
364  * this metaslab class. If a device is expanded then its expandable
365  * space will be the amount of allocatable space that is currently not
366  * part of this metaslab class.
367  */
368 uint64_t
369 metaslab_class_expandable_space(metaslab_class_t *mc)
370 {
371 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
372 	uint64_t space = 0;
373 
374 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
375 	for (int c = 0; c < rvd->vdev_children; c++) {
376 		vdev_t *tvd = rvd->vdev_child[c];
377 		metaslab_group_t *mg = tvd->vdev_mg;
378 
379 		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
380 		    mg->mg_class != mc) {
381 			continue;
382 		}
383 
384 		space += tvd->vdev_max_asize - tvd->vdev_asize;
385 	}
386 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
387 	return (space);
388 }
389 
390 /*
391  * ==========================================================================
392  * Metaslab groups
393  * ==========================================================================
394  */
395 static int
396 metaslab_compare(const void *x1, const void *x2)
397 {
398 	const metaslab_t *m1 = x1;
399 	const metaslab_t *m2 = x2;
400 
401 	if (m1->ms_weight < m2->ms_weight)
402 		return (1);
403 	if (m1->ms_weight > m2->ms_weight)
404 		return (-1);
405 
406 	/*
407 	 * If the weights are identical, use the offset to force uniqueness.
408 	 */
409 	if (m1->ms_start < m2->ms_start)
410 		return (-1);
411 	if (m1->ms_start > m2->ms_start)
412 		return (1);
413 
414 	ASSERT3P(m1, ==, m2);
415 
416 	return (0);
417 }
418 
419 /*
420  * Update the allocatable flag and the metaslab group's capacity.
421  * The allocatable flag is set to true if the capacity is below
422  * the zfs_mg_noalloc_threshold. If a metaslab group transitions
423  * from allocatable to non-allocatable or vice versa then the metaslab
424  * group's class is updated to reflect the transition.
425  */
426 static void
427 metaslab_group_alloc_update(metaslab_group_t *mg)
428 {
429 	vdev_t *vd = mg->mg_vd;
430 	metaslab_class_t *mc = mg->mg_class;
431 	vdev_stat_t *vs = &vd->vdev_stat;
432 	boolean_t was_allocatable;
433 
434 	ASSERT(vd == vd->vdev_top);
435 
436 	mutex_enter(&mg->mg_lock);
437 	was_allocatable = mg->mg_allocatable;
438 
439 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
440 	    (vs->vs_space + 1);
441 
442 	/*
443 	 * A metaslab group is considered allocatable if it has plenty
444 	 * of free space or is not heavily fragmented. We only take
445 	 * fragmentation into account if the metaslab group has a valid
446 	 * fragmentation metric (i.e. a value between 0 and 100).
447 	 */
448 	mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
449 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
450 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
451 
452 	/*
453 	 * The mc_alloc_groups maintains a count of the number of
454 	 * groups in this metaslab class that are still above the
455 	 * zfs_mg_noalloc_threshold. This is used by the allocating
456 	 * threads to determine if they should avoid allocations to
457 	 * a given group. The allocator will avoid allocations to a group
458 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
459 	 * and there are still other groups that are above the threshold.
460 	 * When a group transitions from allocatable to non-allocatable or
461 	 * vice versa we update the metaslab class to reflect that change.
462 	 * When the mc_alloc_groups value drops to 0 that means that all
463 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
464 	 * eligible for allocations. This effectively means that all devices
465 	 * are balanced again.
466 	 */
467 	if (was_allocatable && !mg->mg_allocatable)
468 		mc->mc_alloc_groups--;
469 	else if (!was_allocatable && mg->mg_allocatable)
470 		mc->mc_alloc_groups++;
471 
472 	mutex_exit(&mg->mg_lock);
473 }
474 
475 metaslab_group_t *
476 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
477 {
478 	metaslab_group_t *mg;
479 
480 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
481 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
482 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
483 	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
484 	mg->mg_vd = vd;
485 	mg->mg_class = mc;
486 	mg->mg_activation_count = 0;
487 
488 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
489 	    minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
490 
491 	return (mg);
492 }
493 
494 void
495 metaslab_group_destroy(metaslab_group_t *mg)
496 {
497 	ASSERT(mg->mg_prev == NULL);
498 	ASSERT(mg->mg_next == NULL);
499 	/*
500 	 * We may have gone below zero with the activation count
501 	 * either because we never activated in the first place or
502 	 * because we're done, and possibly removing the vdev.
503 	 */
504 	ASSERT(mg->mg_activation_count <= 0);
505 
506 	taskq_destroy(mg->mg_taskq);
507 	avl_destroy(&mg->mg_metaslab_tree);
508 	mutex_destroy(&mg->mg_lock);
509 	kmem_free(mg, sizeof (metaslab_group_t));
510 }
511 
512 void
513 metaslab_group_activate(metaslab_group_t *mg)
514 {
515 	metaslab_class_t *mc = mg->mg_class;
516 	metaslab_group_t *mgprev, *mgnext;
517 
518 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
519 
520 	ASSERT(mc->mc_rotor != mg);
521 	ASSERT(mg->mg_prev == NULL);
522 	ASSERT(mg->mg_next == NULL);
523 	ASSERT(mg->mg_activation_count <= 0);
524 
525 	if (++mg->mg_activation_count <= 0)
526 		return;
527 
528 	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
529 	metaslab_group_alloc_update(mg);
530 
531 	if ((mgprev = mc->mc_rotor) == NULL) {
532 		mg->mg_prev = mg;
533 		mg->mg_next = mg;
534 	} else {
535 		mgnext = mgprev->mg_next;
536 		mg->mg_prev = mgprev;
537 		mg->mg_next = mgnext;
538 		mgprev->mg_next = mg;
539 		mgnext->mg_prev = mg;
540 	}
541 	mc->mc_rotor = mg;
542 }
543 
544 void
545 metaslab_group_passivate(metaslab_group_t *mg)
546 {
547 	metaslab_class_t *mc = mg->mg_class;
548 	metaslab_group_t *mgprev, *mgnext;
549 
550 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
551 
552 	if (--mg->mg_activation_count != 0) {
553 		ASSERT(mc->mc_rotor != mg);
554 		ASSERT(mg->mg_prev == NULL);
555 		ASSERT(mg->mg_next == NULL);
556 		ASSERT(mg->mg_activation_count < 0);
557 		return;
558 	}
559 
560 	taskq_wait(mg->mg_taskq);
561 	metaslab_group_alloc_update(mg);
562 
563 	mgprev = mg->mg_prev;
564 	mgnext = mg->mg_next;
565 
566 	if (mg == mgnext) {
567 		mc->mc_rotor = NULL;
568 	} else {
569 		mc->mc_rotor = mgnext;
570 		mgprev->mg_next = mgnext;
571 		mgnext->mg_prev = mgprev;
572 	}
573 
574 	mg->mg_prev = NULL;
575 	mg->mg_next = NULL;
576 }
577 
578 uint64_t
579 metaslab_group_get_space(metaslab_group_t *mg)
580 {
581 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
582 }
583 
584 void
585 metaslab_group_histogram_verify(metaslab_group_t *mg)
586 {
587 	uint64_t *mg_hist;
588 	vdev_t *vd = mg->mg_vd;
589 	uint64_t ashift = vd->vdev_ashift;
590 	int i;
591 
592 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
593 		return;
594 
595 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
596 	    KM_SLEEP);
597 
598 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
599 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
600 
601 	for (int m = 0; m < vd->vdev_ms_count; m++) {
602 		metaslab_t *msp = vd->vdev_ms[m];
603 
604 		if (msp->ms_sm == NULL)
605 			continue;
606 
607 		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
608 			mg_hist[i + ashift] +=
609 			    msp->ms_sm->sm_phys->smp_histogram[i];
610 	}
611 
612 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
613 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
614 
615 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
616 }
617 
618 static void
619 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
620 {
621 	metaslab_class_t *mc = mg->mg_class;
622 	uint64_t ashift = mg->mg_vd->vdev_ashift;
623 
624 	ASSERT(MUTEX_HELD(&msp->ms_lock));
625 	if (msp->ms_sm == NULL)
626 		return;
627 
628 	mutex_enter(&mg->mg_lock);
629 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
630 		mg->mg_histogram[i + ashift] +=
631 		    msp->ms_sm->sm_phys->smp_histogram[i];
632 		mc->mc_histogram[i + ashift] +=
633 		    msp->ms_sm->sm_phys->smp_histogram[i];
634 	}
635 	mutex_exit(&mg->mg_lock);
636 }
637 
638 void
639 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
640 {
641 	metaslab_class_t *mc = mg->mg_class;
642 	uint64_t ashift = mg->mg_vd->vdev_ashift;
643 
644 	ASSERT(MUTEX_HELD(&msp->ms_lock));
645 	if (msp->ms_sm == NULL)
646 		return;
647 
648 	mutex_enter(&mg->mg_lock);
649 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
650 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
651 		    msp->ms_sm->sm_phys->smp_histogram[i]);
652 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
653 		    msp->ms_sm->sm_phys->smp_histogram[i]);
654 
655 		mg->mg_histogram[i + ashift] -=
656 		    msp->ms_sm->sm_phys->smp_histogram[i];
657 		mc->mc_histogram[i + ashift] -=
658 		    msp->ms_sm->sm_phys->smp_histogram[i];
659 	}
660 	mutex_exit(&mg->mg_lock);
661 }
662 
663 static void
664 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
665 {
666 	ASSERT(msp->ms_group == NULL);
667 	mutex_enter(&mg->mg_lock);
668 	msp->ms_group = mg;
669 	msp->ms_weight = 0;
670 	avl_add(&mg->mg_metaslab_tree, msp);
671 	mutex_exit(&mg->mg_lock);
672 
673 	mutex_enter(&msp->ms_lock);
674 	metaslab_group_histogram_add(mg, msp);
675 	mutex_exit(&msp->ms_lock);
676 }
677 
678 static void
679 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
680 {
681 	mutex_enter(&msp->ms_lock);
682 	metaslab_group_histogram_remove(mg, msp);
683 	mutex_exit(&msp->ms_lock);
684 
685 	mutex_enter(&mg->mg_lock);
686 	ASSERT(msp->ms_group == mg);
687 	avl_remove(&mg->mg_metaslab_tree, msp);
688 	msp->ms_group = NULL;
689 	mutex_exit(&mg->mg_lock);
690 }
691 
692 static void
693 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
694 {
695 	/*
696 	 * Although in principle the weight can be any value, in
697 	 * practice we do not use values in the range [1, 511].
698 	 */
699 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
700 	ASSERT(MUTEX_HELD(&msp->ms_lock));
701 
702 	mutex_enter(&mg->mg_lock);
703 	ASSERT(msp->ms_group == mg);
704 	avl_remove(&mg->mg_metaslab_tree, msp);
705 	msp->ms_weight = weight;
706 	avl_add(&mg->mg_metaslab_tree, msp);
707 	mutex_exit(&mg->mg_lock);
708 }
709 
710 /*
711  * Calculate the fragmentation for a given metaslab group. We can use
712  * a simple average here since all metaslabs within the group must have
713  * the same size. The return value will be a value between 0 and 100
714  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
715  * group have a fragmentation metric.
716  */
717 uint64_t
718 metaslab_group_fragmentation(metaslab_group_t *mg)
719 {
720 	vdev_t *vd = mg->mg_vd;
721 	uint64_t fragmentation = 0;
722 	uint64_t valid_ms = 0;
723 
724 	for (int m = 0; m < vd->vdev_ms_count; m++) {
725 		metaslab_t *msp = vd->vdev_ms[m];
726 
727 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
728 			continue;
729 
730 		valid_ms++;
731 		fragmentation += msp->ms_fragmentation;
732 	}
733 
734 	if (valid_ms <= vd->vdev_ms_count / 2)
735 		return (ZFS_FRAG_INVALID);
736 
737 	fragmentation /= valid_ms;
738 	ASSERT3U(fragmentation, <=, 100);
739 	return (fragmentation);
740 }
741 
742 /*
743  * Determine if a given metaslab group should skip allocations. A metaslab
744  * group should avoid allocations if its free capacity is less than the
745  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
746  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
747  * that can still handle allocations.
748  */
749 static boolean_t
750 metaslab_group_allocatable(metaslab_group_t *mg)
751 {
752 	vdev_t *vd = mg->mg_vd;
753 	spa_t *spa = vd->vdev_spa;
754 	metaslab_class_t *mc = mg->mg_class;
755 
756 	/*
757 	 * We use two key metrics to determine if a metaslab group is
758 	 * considered allocatable -- free space and fragmentation. If
759 	 * the free space is greater than the free space threshold and
760 	 * the fragmentation is less than the fragmentation threshold then
761 	 * consider the group allocatable. There are two case when we will
762 	 * not consider these key metrics. The first is if the group is
763 	 * associated with a slog device and the second is if all groups
764 	 * in this metaslab class have already been consider ineligible
765 	 * for allocations.
766 	 */
767 	return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
768 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
769 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
770 	    mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
771 }
772 
773 /*
774  * ==========================================================================
775  * Range tree callbacks
776  * ==========================================================================
777  */
778 
779 /*
780  * Comparison function for the private size-ordered tree. Tree is sorted
781  * by size, larger sizes at the end of the tree.
782  */
783 static int
784 metaslab_rangesize_compare(const void *x1, const void *x2)
785 {
786 	const range_seg_t *r1 = x1;
787 	const range_seg_t *r2 = x2;
788 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
789 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
790 
791 	if (rs_size1 < rs_size2)
792 		return (-1);
793 	if (rs_size1 > rs_size2)
794 		return (1);
795 
796 	if (r1->rs_start < r2->rs_start)
797 		return (-1);
798 
799 	if (r1->rs_start > r2->rs_start)
800 		return (1);
801 
802 	return (0);
803 }
804 
805 /*
806  * Create any block allocator specific components. The current allocators
807  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
808  */
809 static void
810 metaslab_rt_create(range_tree_t *rt, void *arg)
811 {
812 	metaslab_t *msp = arg;
813 
814 	ASSERT3P(rt->rt_arg, ==, msp);
815 	ASSERT(msp->ms_tree == NULL);
816 
817 	avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
818 	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
819 }
820 
821 /*
822  * Destroy the block allocator specific components.
823  */
824 static void
825 metaslab_rt_destroy(range_tree_t *rt, void *arg)
826 {
827 	metaslab_t *msp = arg;
828 
829 	ASSERT3P(rt->rt_arg, ==, msp);
830 	ASSERT3P(msp->ms_tree, ==, rt);
831 	ASSERT0(avl_numnodes(&msp->ms_size_tree));
832 
833 	avl_destroy(&msp->ms_size_tree);
834 }
835 
836 static void
837 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
838 {
839 	metaslab_t *msp = arg;
840 
841 	ASSERT3P(rt->rt_arg, ==, msp);
842 	ASSERT3P(msp->ms_tree, ==, rt);
843 	VERIFY(!msp->ms_condensing);
844 	avl_add(&msp->ms_size_tree, rs);
845 }
846 
847 static void
848 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
849 {
850 	metaslab_t *msp = arg;
851 
852 	ASSERT3P(rt->rt_arg, ==, msp);
853 	ASSERT3P(msp->ms_tree, ==, rt);
854 	VERIFY(!msp->ms_condensing);
855 	avl_remove(&msp->ms_size_tree, rs);
856 }
857 
858 static void
859 metaslab_rt_vacate(range_tree_t *rt, void *arg)
860 {
861 	metaslab_t *msp = arg;
862 
863 	ASSERT3P(rt->rt_arg, ==, msp);
864 	ASSERT3P(msp->ms_tree, ==, rt);
865 
866 	/*
867 	 * Normally one would walk the tree freeing nodes along the way.
868 	 * Since the nodes are shared with the range trees we can avoid
869 	 * walking all nodes and just reinitialize the avl tree. The nodes
870 	 * will be freed by the range tree, so we don't want to free them here.
871 	 */
872 	avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
873 	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
874 }
875 
876 static range_tree_ops_t metaslab_rt_ops = {
877 	metaslab_rt_create,
878 	metaslab_rt_destroy,
879 	metaslab_rt_add,
880 	metaslab_rt_remove,
881 	metaslab_rt_vacate
882 };
883 
884 /*
885  * ==========================================================================
886  * Metaslab block operations
887  * ==========================================================================
888  */
889 
890 /*
891  * Return the maximum contiguous segment within the metaslab.
892  */
893 uint64_t
894 metaslab_block_maxsize(metaslab_t *msp)
895 {
896 	avl_tree_t *t = &msp->ms_size_tree;
897 	range_seg_t *rs;
898 
899 	if (t == NULL || (rs = avl_last(t)) == NULL)
900 		return (0ULL);
901 
902 	return (rs->rs_end - rs->rs_start);
903 }
904 
905 uint64_t
906 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
907 {
908 	uint64_t start;
909 	range_tree_t *rt = msp->ms_tree;
910 
911 	VERIFY(!msp->ms_condensing);
912 
913 	start = msp->ms_ops->msop_alloc(msp, size);
914 	if (start != -1ULL) {
915 		vdev_t *vd = msp->ms_group->mg_vd;
916 
917 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
918 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
919 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
920 		range_tree_remove(rt, start, size);
921 	}
922 	return (start);
923 }
924 
925 /*
926  * ==========================================================================
927  * Common allocator routines
928  * ==========================================================================
929  */
930 
931 /*
932  * This is a helper function that can be used by the allocator to find
933  * a suitable block to allocate. This will search the specified AVL
934  * tree looking for a block that matches the specified criteria.
935  */
936 static uint64_t
937 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
938     uint64_t align)
939 {
940 	range_seg_t *rs, rsearch;
941 	avl_index_t where;
942 
943 	rsearch.rs_start = *cursor;
944 	rsearch.rs_end = *cursor + size;
945 
946 	rs = avl_find(t, &rsearch, &where);
947 	if (rs == NULL)
948 		rs = avl_nearest(t, where, AVL_AFTER);
949 
950 	while (rs != NULL) {
951 		uint64_t offset = P2ROUNDUP(rs->rs_start, align);
952 
953 		if (offset + size <= rs->rs_end) {
954 			*cursor = offset + size;
955 			return (offset);
956 		}
957 		rs = AVL_NEXT(t, rs);
958 	}
959 
960 	/*
961 	 * If we know we've searched the whole map (*cursor == 0), give up.
962 	 * Otherwise, reset the cursor to the beginning and try again.
963 	 */
964 	if (*cursor == 0)
965 		return (-1ULL);
966 
967 	*cursor = 0;
968 	return (metaslab_block_picker(t, cursor, size, align));
969 }
970 
971 /*
972  * ==========================================================================
973  * The first-fit block allocator
974  * ==========================================================================
975  */
976 static uint64_t
977 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
978 {
979 	/*
980 	 * Find the largest power of 2 block size that evenly divides the
981 	 * requested size. This is used to try to allocate blocks with similar
982 	 * alignment from the same area of the metaslab (i.e. same cursor
983 	 * bucket) but it does not guarantee that other allocations sizes
984 	 * may exist in the same region.
985 	 */
986 	uint64_t align = size & -size;
987 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
988 	avl_tree_t *t = &msp->ms_tree->rt_root;
989 
990 	return (metaslab_block_picker(t, cursor, size, align));
991 }
992 
993 static metaslab_ops_t metaslab_ff_ops = {
994 	metaslab_ff_alloc
995 };
996 
997 /*
998  * ==========================================================================
999  * Dynamic block allocator -
1000  * Uses the first fit allocation scheme until space get low and then
1001  * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1002  * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1003  * ==========================================================================
1004  */
1005 static uint64_t
1006 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1007 {
1008 	/*
1009 	 * Find the largest power of 2 block size that evenly divides the
1010 	 * requested size. This is used to try to allocate blocks with similar
1011 	 * alignment from the same area of the metaslab (i.e. same cursor
1012 	 * bucket) but it does not guarantee that other allocations sizes
1013 	 * may exist in the same region.
1014 	 */
1015 	uint64_t align = size & -size;
1016 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1017 	range_tree_t *rt = msp->ms_tree;
1018 	avl_tree_t *t = &rt->rt_root;
1019 	uint64_t max_size = metaslab_block_maxsize(msp);
1020 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1021 
1022 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1023 	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1024 
1025 	if (max_size < size)
1026 		return (-1ULL);
1027 
1028 	/*
1029 	 * If we're running low on space switch to using the size
1030 	 * sorted AVL tree (best-fit).
1031 	 */
1032 	if (max_size < metaslab_df_alloc_threshold ||
1033 	    free_pct < metaslab_df_free_pct) {
1034 		t = &msp->ms_size_tree;
1035 		*cursor = 0;
1036 	}
1037 
1038 	return (metaslab_block_picker(t, cursor, size, 1ULL));
1039 }
1040 
1041 static metaslab_ops_t metaslab_df_ops = {
1042 	metaslab_df_alloc
1043 };
1044 
1045 /*
1046  * ==========================================================================
1047  * Cursor fit block allocator -
1048  * Select the largest region in the metaslab, set the cursor to the beginning
1049  * of the range and the cursor_end to the end of the range. As allocations
1050  * are made advance the cursor. Continue allocating from the cursor until
1051  * the range is exhausted and then find a new range.
1052  * ==========================================================================
1053  */
1054 static uint64_t
1055 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1056 {
1057 	range_tree_t *rt = msp->ms_tree;
1058 	avl_tree_t *t = &msp->ms_size_tree;
1059 	uint64_t *cursor = &msp->ms_lbas[0];
1060 	uint64_t *cursor_end = &msp->ms_lbas[1];
1061 	uint64_t offset = 0;
1062 
1063 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1064 	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1065 
1066 	ASSERT3U(*cursor_end, >=, *cursor);
1067 
1068 	if ((*cursor + size) > *cursor_end) {
1069 		range_seg_t *rs;
1070 
1071 		rs = avl_last(&msp->ms_size_tree);
1072 		if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1073 			return (-1ULL);
1074 
1075 		*cursor = rs->rs_start;
1076 		*cursor_end = rs->rs_end;
1077 	}
1078 
1079 	offset = *cursor;
1080 	*cursor += size;
1081 
1082 	return (offset);
1083 }
1084 
1085 static metaslab_ops_t metaslab_cf_ops = {
1086 	metaslab_cf_alloc
1087 };
1088 
1089 /*
1090  * ==========================================================================
1091  * New dynamic fit allocator -
1092  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1093  * contiguous blocks. If no region is found then just use the largest segment
1094  * that remains.
1095  * ==========================================================================
1096  */
1097 
1098 /*
1099  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1100  * to request from the allocator.
1101  */
1102 uint64_t metaslab_ndf_clump_shift = 4;
1103 
1104 static uint64_t
1105 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1106 {
1107 	avl_tree_t *t = &msp->ms_tree->rt_root;
1108 	avl_index_t where;
1109 	range_seg_t *rs, rsearch;
1110 	uint64_t hbit = highbit64(size);
1111 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1112 	uint64_t max_size = metaslab_block_maxsize(msp);
1113 
1114 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1115 	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1116 
1117 	if (max_size < size)
1118 		return (-1ULL);
1119 
1120 	rsearch.rs_start = *cursor;
1121 	rsearch.rs_end = *cursor + size;
1122 
1123 	rs = avl_find(t, &rsearch, &where);
1124 	if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1125 		t = &msp->ms_size_tree;
1126 
1127 		rsearch.rs_start = 0;
1128 		rsearch.rs_end = MIN(max_size,
1129 		    1ULL << (hbit + metaslab_ndf_clump_shift));
1130 		rs = avl_find(t, &rsearch, &where);
1131 		if (rs == NULL)
1132 			rs = avl_nearest(t, where, AVL_AFTER);
1133 		ASSERT(rs != NULL);
1134 	}
1135 
1136 	if ((rs->rs_end - rs->rs_start) >= size) {
1137 		*cursor = rs->rs_start + size;
1138 		return (rs->rs_start);
1139 	}
1140 	return (-1ULL);
1141 }
1142 
1143 static metaslab_ops_t metaslab_ndf_ops = {
1144 	metaslab_ndf_alloc
1145 };
1146 
1147 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1148 
1149 /*
1150  * ==========================================================================
1151  * Metaslabs
1152  * ==========================================================================
1153  */
1154 
1155 /*
1156  * Wait for any in-progress metaslab loads to complete.
1157  */
1158 void
1159 metaslab_load_wait(metaslab_t *msp)
1160 {
1161 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1162 
1163 	while (msp->ms_loading) {
1164 		ASSERT(!msp->ms_loaded);
1165 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1166 	}
1167 }
1168 
1169 int
1170 metaslab_load(metaslab_t *msp)
1171 {
1172 	int error = 0;
1173 
1174 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1175 	ASSERT(!msp->ms_loaded);
1176 	ASSERT(!msp->ms_loading);
1177 
1178 	msp->ms_loading = B_TRUE;
1179 
1180 	/*
1181 	 * If the space map has not been allocated yet, then treat
1182 	 * all the space in the metaslab as free and add it to the
1183 	 * ms_tree.
1184 	 */
1185 	if (msp->ms_sm != NULL)
1186 		error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1187 	else
1188 		range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1189 
1190 	msp->ms_loaded = (error == 0);
1191 	msp->ms_loading = B_FALSE;
1192 
1193 	if (msp->ms_loaded) {
1194 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1195 			range_tree_walk(msp->ms_defertree[t],
1196 			    range_tree_remove, msp->ms_tree);
1197 		}
1198 	}
1199 	cv_broadcast(&msp->ms_load_cv);
1200 	return (error);
1201 }
1202 
1203 void
1204 metaslab_unload(metaslab_t *msp)
1205 {
1206 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1207 	range_tree_vacate(msp->ms_tree, NULL, NULL);
1208 	msp->ms_loaded = B_FALSE;
1209 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1210 }
1211 
1212 int
1213 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1214     metaslab_t **msp)
1215 {
1216 	vdev_t *vd = mg->mg_vd;
1217 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
1218 	metaslab_t *ms;
1219 	int error;
1220 
1221 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1222 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1223 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1224 	ms->ms_id = id;
1225 	ms->ms_start = id << vd->vdev_ms_shift;
1226 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
1227 
1228 	/*
1229 	 * We only open space map objects that already exist. All others
1230 	 * will be opened when we finally allocate an object for it.
1231 	 */
1232 	if (object != 0) {
1233 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1234 		    ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
1235 
1236 		if (error != 0) {
1237 			kmem_free(ms, sizeof (metaslab_t));
1238 			return (error);
1239 		}
1240 
1241 		ASSERT(ms->ms_sm != NULL);
1242 	}
1243 
1244 	/*
1245 	 * We create the main range tree here, but we don't create the
1246 	 * alloctree and freetree until metaslab_sync_done().  This serves
1247 	 * two purposes: it allows metaslab_sync_done() to detect the
1248 	 * addition of new space; and for debugging, it ensures that we'd
1249 	 * data fault on any attempt to use this metaslab before it's ready.
1250 	 */
1251 	ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1252 	metaslab_group_add(mg, ms);
1253 
1254 	ms->ms_fragmentation = metaslab_fragmentation(ms);
1255 	ms->ms_ops = mg->mg_class->mc_ops;
1256 
1257 	/*
1258 	 * If we're opening an existing pool (txg == 0) or creating
1259 	 * a new one (txg == TXG_INITIAL), all space is available now.
1260 	 * If we're adding space to an existing pool, the new space
1261 	 * does not become available until after this txg has synced.
1262 	 */
1263 	if (txg <= TXG_INITIAL)
1264 		metaslab_sync_done(ms, 0);
1265 
1266 	/*
1267 	 * If metaslab_debug_load is set and we're initializing a metaslab
1268 	 * that has an allocated space_map object then load the its space
1269 	 * map so that can verify frees.
1270 	 */
1271 	if (metaslab_debug_load && ms->ms_sm != NULL) {
1272 		mutex_enter(&ms->ms_lock);
1273 		VERIFY0(metaslab_load(ms));
1274 		mutex_exit(&ms->ms_lock);
1275 	}
1276 
1277 	if (txg != 0) {
1278 		vdev_dirty(vd, 0, NULL, txg);
1279 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
1280 	}
1281 
1282 	*msp = ms;
1283 
1284 	return (0);
1285 }
1286 
1287 void
1288 metaslab_fini(metaslab_t *msp)
1289 {
1290 	metaslab_group_t *mg = msp->ms_group;
1291 
1292 	metaslab_group_remove(mg, msp);
1293 
1294 	mutex_enter(&msp->ms_lock);
1295 
1296 	VERIFY(msp->ms_group == NULL);
1297 	vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1298 	    0, -msp->ms_size);
1299 	space_map_close(msp->ms_sm);
1300 
1301 	metaslab_unload(msp);
1302 	range_tree_destroy(msp->ms_tree);
1303 
1304 	for (int t = 0; t < TXG_SIZE; t++) {
1305 		range_tree_destroy(msp->ms_alloctree[t]);
1306 		range_tree_destroy(msp->ms_freetree[t]);
1307 	}
1308 
1309 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1310 		range_tree_destroy(msp->ms_defertree[t]);
1311 	}
1312 
1313 	ASSERT0(msp->ms_deferspace);
1314 
1315 	mutex_exit(&msp->ms_lock);
1316 	cv_destroy(&msp->ms_load_cv);
1317 	mutex_destroy(&msp->ms_lock);
1318 
1319 	kmem_free(msp, sizeof (metaslab_t));
1320 }
1321 
1322 #define	FRAGMENTATION_TABLE_SIZE	17
1323 
1324 /*
1325  * This table defines a segment size based fragmentation metric that will
1326  * allow each metaslab to derive its own fragmentation value. This is done
1327  * by calculating the space in each bucket of the spacemap histogram and
1328  * multiplying that by the fragmetation metric in this table. Doing
1329  * this for all buckets and dividing it by the total amount of free
1330  * space in this metaslab (i.e. the total free space in all buckets) gives
1331  * us the fragmentation metric. This means that a high fragmentation metric
1332  * equates to most of the free space being comprised of small segments.
1333  * Conversely, if the metric is low, then most of the free space is in
1334  * large segments. A 10% change in fragmentation equates to approximately
1335  * double the number of segments.
1336  *
1337  * This table defines 0% fragmented space using 16MB segments. Testing has
1338  * shown that segments that are greater than or equal to 16MB do not suffer
1339  * from drastic performance problems. Using this value, we derive the rest
1340  * of the table. Since the fragmentation value is never stored on disk, it
1341  * is possible to change these calculations in the future.
1342  */
1343 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1344 	100,	/* 512B	*/
1345 	100,	/* 1K	*/
1346 	98,	/* 2K	*/
1347 	95,	/* 4K	*/
1348 	90,	/* 8K	*/
1349 	80,	/* 16K	*/
1350 	70,	/* 32K	*/
1351 	60,	/* 64K	*/
1352 	50,	/* 128K	*/
1353 	40,	/* 256K	*/
1354 	30,	/* 512K	*/
1355 	20,	/* 1M	*/
1356 	15,	/* 2M	*/
1357 	10,	/* 4M	*/
1358 	5,	/* 8M	*/
1359 	0	/* 16M	*/
1360 };
1361 
1362 /*
1363  * Calclate the metaslab's fragmentation metric. A return value
1364  * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1365  * not support this metric. Otherwise, the return value should be in the
1366  * range [0, 100].
1367  */
1368 static uint64_t
1369 metaslab_fragmentation(metaslab_t *msp)
1370 {
1371 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1372 	uint64_t fragmentation = 0;
1373 	uint64_t total = 0;
1374 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
1375 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
1376 
1377 	if (!feature_enabled)
1378 		return (ZFS_FRAG_INVALID);
1379 
1380 	/*
1381 	 * A null space map means that the entire metaslab is free
1382 	 * and thus is not fragmented.
1383 	 */
1384 	if (msp->ms_sm == NULL)
1385 		return (0);
1386 
1387 	/*
1388 	 * If this metaslab's space_map has not been upgraded, flag it
1389 	 * so that we upgrade next time we encounter it.
1390 	 */
1391 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1392 		uint64_t txg = spa_syncing_txg(spa);
1393 		vdev_t *vd = msp->ms_group->mg_vd;
1394 
1395 		if (spa_writeable(spa)) {
1396 			msp->ms_condense_wanted = B_TRUE;
1397 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1398 			spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1399 			    "msp %p, vd %p", txg, msp, vd);
1400 		}
1401 		return (ZFS_FRAG_INVALID);
1402 	}
1403 
1404 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1405 		uint64_t space = 0;
1406 		uint8_t shift = msp->ms_sm->sm_shift;
1407 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1408 		    FRAGMENTATION_TABLE_SIZE - 1);
1409 
1410 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1411 			continue;
1412 
1413 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1414 		total += space;
1415 
1416 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1417 		fragmentation += space * zfs_frag_table[idx];
1418 	}
1419 
1420 	if (total > 0)
1421 		fragmentation /= total;
1422 	ASSERT3U(fragmentation, <=, 100);
1423 	return (fragmentation);
1424 }
1425 
1426 /*
1427  * Compute a weight -- a selection preference value -- for the given metaslab.
1428  * This is based on the amount of free space, the level of fragmentation,
1429  * the LBA range, and whether the metaslab is loaded.
1430  */
1431 static uint64_t
1432 metaslab_weight(metaslab_t *msp)
1433 {
1434 	metaslab_group_t *mg = msp->ms_group;
1435 	vdev_t *vd = mg->mg_vd;
1436 	uint64_t weight, space;
1437 
1438 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1439 
1440 	/*
1441 	 * This vdev is in the process of being removed so there is nothing
1442 	 * for us to do here.
1443 	 */
1444 	if (vd->vdev_removing) {
1445 		ASSERT0(space_map_allocated(msp->ms_sm));
1446 		ASSERT0(vd->vdev_ms_shift);
1447 		return (0);
1448 	}
1449 
1450 	/*
1451 	 * The baseline weight is the metaslab's free space.
1452 	 */
1453 	space = msp->ms_size - space_map_allocated(msp->ms_sm);
1454 
1455 	msp->ms_fragmentation = metaslab_fragmentation(msp);
1456 	if (metaslab_fragmentation_factor_enabled &&
1457 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1458 		/*
1459 		 * Use the fragmentation information to inversely scale
1460 		 * down the baseline weight. We need to ensure that we
1461 		 * don't exclude this metaslab completely when it's 100%
1462 		 * fragmented. To avoid this we reduce the fragmented value
1463 		 * by 1.
1464 		 */
1465 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1466 
1467 		/*
1468 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1469 		 * this metaslab again. The fragmentation metric may have
1470 		 * decreased the space to something smaller than
1471 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1472 		 * so that we can consume any remaining space.
1473 		 */
1474 		if (space > 0 && space < SPA_MINBLOCKSIZE)
1475 			space = SPA_MINBLOCKSIZE;
1476 	}
1477 	weight = space;
1478 
1479 	/*
1480 	 * Modern disks have uniform bit density and constant angular velocity.
1481 	 * Therefore, the outer recording zones are faster (higher bandwidth)
1482 	 * than the inner zones by the ratio of outer to inner track diameter,
1483 	 * which is typically around 2:1.  We account for this by assigning
1484 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1485 	 * In effect, this means that we'll select the metaslab with the most
1486 	 * free bandwidth rather than simply the one with the most free space.
1487 	 */
1488 	if (metaslab_lba_weighting_enabled) {
1489 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1490 		ASSERT(weight >= space && weight <= 2 * space);
1491 	}
1492 
1493 	/*
1494 	 * If this metaslab is one we're actively using, adjust its
1495 	 * weight to make it preferable to any inactive metaslab so
1496 	 * we'll polish it off. If the fragmentation on this metaslab
1497 	 * has exceed our threshold, then don't mark it active.
1498 	 */
1499 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1500 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1501 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1502 	}
1503 
1504 	return (weight);
1505 }
1506 
1507 static int
1508 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1509 {
1510 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1511 
1512 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1513 		metaslab_load_wait(msp);
1514 		if (!msp->ms_loaded) {
1515 			int error = metaslab_load(msp);
1516 			if (error) {
1517 				metaslab_group_sort(msp->ms_group, msp, 0);
1518 				return (error);
1519 			}
1520 		}
1521 
1522 		metaslab_group_sort(msp->ms_group, msp,
1523 		    msp->ms_weight | activation_weight);
1524 	}
1525 	ASSERT(msp->ms_loaded);
1526 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1527 
1528 	return (0);
1529 }
1530 
1531 static void
1532 metaslab_passivate(metaslab_t *msp, uint64_t size)
1533 {
1534 	/*
1535 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1536 	 * this metaslab again.  In that case, it had better be empty,
1537 	 * or we would be leaving space on the table.
1538 	 */
1539 	ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1540 	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1541 	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1542 }
1543 
1544 static void
1545 metaslab_preload(void *arg)
1546 {
1547 	metaslab_t *msp = arg;
1548 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1549 
1550 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1551 
1552 	mutex_enter(&msp->ms_lock);
1553 	metaslab_load_wait(msp);
1554 	if (!msp->ms_loaded)
1555 		(void) metaslab_load(msp);
1556 
1557 	/*
1558 	 * Set the ms_access_txg value so that we don't unload it right away.
1559 	 */
1560 	msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1561 	mutex_exit(&msp->ms_lock);
1562 }
1563 
1564 static void
1565 metaslab_group_preload(metaslab_group_t *mg)
1566 {
1567 	spa_t *spa = mg->mg_vd->vdev_spa;
1568 	metaslab_t *msp;
1569 	avl_tree_t *t = &mg->mg_metaslab_tree;
1570 	int m = 0;
1571 
1572 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1573 		taskq_wait(mg->mg_taskq);
1574 		return;
1575 	}
1576 
1577 	mutex_enter(&mg->mg_lock);
1578 	/*
1579 	 * Load the next potential metaslabs
1580 	 */
1581 	msp = avl_first(t);
1582 	while (msp != NULL) {
1583 		metaslab_t *msp_next = AVL_NEXT(t, msp);
1584 
1585 		/*
1586 		 * We preload only the maximum number of metaslabs specified
1587 		 * by metaslab_preload_limit. If a metaslab is being forced
1588 		 * to condense then we preload it too. This will ensure
1589 		 * that force condensing happens in the next txg.
1590 		 */
1591 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1592 			msp = msp_next;
1593 			continue;
1594 		}
1595 
1596 		/*
1597 		 * We must drop the metaslab group lock here to preserve
1598 		 * lock ordering with the ms_lock (when grabbing both
1599 		 * the mg_lock and the ms_lock, the ms_lock must be taken
1600 		 * first).  As a result, it is possible that the ordering
1601 		 * of the metaslabs within the avl tree may change before
1602 		 * we reacquire the lock. The metaslab cannot be removed from
1603 		 * the tree while we're in syncing context so it is safe to
1604 		 * drop the mg_lock here. If the metaslabs are reordered
1605 		 * nothing will break -- we just may end up loading a
1606 		 * less than optimal one.
1607 		 */
1608 		mutex_exit(&mg->mg_lock);
1609 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1610 		    msp, TQ_SLEEP) != NULL);
1611 		mutex_enter(&mg->mg_lock);
1612 		msp = msp_next;
1613 	}
1614 	mutex_exit(&mg->mg_lock);
1615 }
1616 
1617 /*
1618  * Determine if the space map's on-disk footprint is past our tolerance
1619  * for inefficiency. We would like to use the following criteria to make
1620  * our decision:
1621  *
1622  * 1. The size of the space map object should not dramatically increase as a
1623  * result of writing out the free space range tree.
1624  *
1625  * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1626  * times the size than the free space range tree representation
1627  * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1628  *
1629  * 3. The on-disk size of the space map should actually decrease.
1630  *
1631  * Checking the first condition is tricky since we don't want to walk
1632  * the entire AVL tree calculating the estimated on-disk size. Instead we
1633  * use the size-ordered range tree in the metaslab and calculate the
1634  * size required to write out the largest segment in our free tree. If the
1635  * size required to represent that segment on disk is larger than the space
1636  * map object then we avoid condensing this map.
1637  *
1638  * To determine the second criterion we use a best-case estimate and assume
1639  * each segment can be represented on-disk as a single 64-bit entry. We refer
1640  * to this best-case estimate as the space map's minimal form.
1641  *
1642  * Unfortunately, we cannot compute the on-disk size of the space map in this
1643  * context because we cannot accurately compute the effects of compression, etc.
1644  * Instead, we apply the heuristic described in the block comment for
1645  * zfs_metaslab_condense_block_threshold - we only condense if the space used
1646  * is greater than a threshold number of blocks.
1647  */
1648 static boolean_t
1649 metaslab_should_condense(metaslab_t *msp)
1650 {
1651 	space_map_t *sm = msp->ms_sm;
1652 	range_seg_t *rs;
1653 	uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1654 	dmu_object_info_t doi;
1655 	uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
1656 
1657 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1658 	ASSERT(msp->ms_loaded);
1659 
1660 	/*
1661 	 * Use the ms_size_tree range tree, which is ordered by size, to
1662 	 * obtain the largest segment in the free tree. We always condense
1663 	 * metaslabs that are empty and metaslabs for which a condense
1664 	 * request has been made.
1665 	 */
1666 	rs = avl_last(&msp->ms_size_tree);
1667 	if (rs == NULL || msp->ms_condense_wanted)
1668 		return (B_TRUE);
1669 
1670 	/*
1671 	 * Calculate the number of 64-bit entries this segment would
1672 	 * require when written to disk. If this single segment would be
1673 	 * larger on-disk than the entire current on-disk structure, then
1674 	 * clearly condensing will increase the on-disk structure size.
1675 	 */
1676 	size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1677 	entries = size / (MIN(size, SM_RUN_MAX));
1678 	segsz = entries * sizeof (uint64_t);
1679 
1680 	optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1681 	object_size = space_map_length(msp->ms_sm);
1682 
1683 	dmu_object_info_from_db(sm->sm_dbuf, &doi);
1684 	record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1685 
1686 	return (segsz <= object_size &&
1687 	    object_size >= (optimal_size * zfs_condense_pct / 100) &&
1688 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
1689 }
1690 
1691 /*
1692  * Condense the on-disk space map representation to its minimized form.
1693  * The minimized form consists of a small number of allocations followed by
1694  * the entries of the free range tree.
1695  */
1696 static void
1697 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1698 {
1699 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1700 	range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1701 	range_tree_t *condense_tree;
1702 	space_map_t *sm = msp->ms_sm;
1703 
1704 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1705 	ASSERT3U(spa_sync_pass(spa), ==, 1);
1706 	ASSERT(msp->ms_loaded);
1707 
1708 
1709 	spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
1710 	    "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
1711 	    msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
1712 	    msp->ms_group->mg_vd->vdev_spa->spa_name,
1713 	    space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root),
1714 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
1715 
1716 	msp->ms_condense_wanted = B_FALSE;
1717 
1718 	/*
1719 	 * Create an range tree that is 100% allocated. We remove segments
1720 	 * that have been freed in this txg, any deferred frees that exist,
1721 	 * and any allocation in the future. Removing segments should be
1722 	 * a relatively inexpensive operation since we expect these trees to
1723 	 * have a small number of nodes.
1724 	 */
1725 	condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1726 	range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1727 
1728 	/*
1729 	 * Remove what's been freed in this txg from the condense_tree.
1730 	 * Since we're in sync_pass 1, we know that all the frees from
1731 	 * this txg are in the freetree.
1732 	 */
1733 	range_tree_walk(freetree, range_tree_remove, condense_tree);
1734 
1735 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1736 		range_tree_walk(msp->ms_defertree[t],
1737 		    range_tree_remove, condense_tree);
1738 	}
1739 
1740 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1741 		range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1742 		    range_tree_remove, condense_tree);
1743 	}
1744 
1745 	/*
1746 	 * We're about to drop the metaslab's lock thus allowing
1747 	 * other consumers to change it's content. Set the
1748 	 * metaslab's ms_condensing flag to ensure that
1749 	 * allocations on this metaslab do not occur while we're
1750 	 * in the middle of committing it to disk. This is only critical
1751 	 * for the ms_tree as all other range trees use per txg
1752 	 * views of their content.
1753 	 */
1754 	msp->ms_condensing = B_TRUE;
1755 
1756 	mutex_exit(&msp->ms_lock);
1757 	space_map_truncate(sm, tx);
1758 	mutex_enter(&msp->ms_lock);
1759 
1760 	/*
1761 	 * While we would ideally like to create a space_map representation
1762 	 * that consists only of allocation records, doing so can be
1763 	 * prohibitively expensive because the in-core free tree can be
1764 	 * large, and therefore computationally expensive to subtract
1765 	 * from the condense_tree. Instead we sync out two trees, a cheap
1766 	 * allocation only tree followed by the in-core free tree. While not
1767 	 * optimal, this is typically close to optimal, and much cheaper to
1768 	 * compute.
1769 	 */
1770 	space_map_write(sm, condense_tree, SM_ALLOC, tx);
1771 	range_tree_vacate(condense_tree, NULL, NULL);
1772 	range_tree_destroy(condense_tree);
1773 
1774 	space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1775 	msp->ms_condensing = B_FALSE;
1776 }
1777 
1778 /*
1779  * Write a metaslab to disk in the context of the specified transaction group.
1780  */
1781 void
1782 metaslab_sync(metaslab_t *msp, uint64_t txg)
1783 {
1784 	metaslab_group_t *mg = msp->ms_group;
1785 	vdev_t *vd = mg->mg_vd;
1786 	spa_t *spa = vd->vdev_spa;
1787 	objset_t *mos = spa_meta_objset(spa);
1788 	range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1789 	range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1790 	range_tree_t **freed_tree =
1791 	    &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1792 	dmu_tx_t *tx;
1793 	uint64_t object = space_map_object(msp->ms_sm);
1794 
1795 	ASSERT(!vd->vdev_ishole);
1796 
1797 	/*
1798 	 * This metaslab has just been added so there's no work to do now.
1799 	 */
1800 	if (*freetree == NULL) {
1801 		ASSERT3P(alloctree, ==, NULL);
1802 		return;
1803 	}
1804 
1805 	ASSERT3P(alloctree, !=, NULL);
1806 	ASSERT3P(*freetree, !=, NULL);
1807 	ASSERT3P(*freed_tree, !=, NULL);
1808 
1809 	/*
1810 	 * Normally, we don't want to process a metaslab if there
1811 	 * are no allocations or frees to perform. However, if the metaslab
1812 	 * is being forced to condense we need to let it through.
1813 	 */
1814 	if (range_tree_space(alloctree) == 0 &&
1815 	    range_tree_space(*freetree) == 0 &&
1816 	    !msp->ms_condense_wanted)
1817 		return;
1818 
1819 	/*
1820 	 * The only state that can actually be changing concurrently with
1821 	 * metaslab_sync() is the metaslab's ms_tree.  No other thread can
1822 	 * be modifying this txg's alloctree, freetree, freed_tree, or
1823 	 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1824 	 * space_map ASSERTs. We drop it whenever we call into the DMU,
1825 	 * because the DMU can call down to us (e.g. via zio_free()) at
1826 	 * any time.
1827 	 */
1828 
1829 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1830 
1831 	if (msp->ms_sm == NULL) {
1832 		uint64_t new_object;
1833 
1834 		new_object = space_map_alloc(mos, tx);
1835 		VERIFY3U(new_object, !=, 0);
1836 
1837 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1838 		    msp->ms_start, msp->ms_size, vd->vdev_ashift,
1839 		    &msp->ms_lock));
1840 		ASSERT(msp->ms_sm != NULL);
1841 	}
1842 
1843 	mutex_enter(&msp->ms_lock);
1844 
1845 	/*
1846 	 * Note: metaslab_condense() clears the space_map's histogram.
1847 	 * Therefore we must verify and remove this histogram before
1848 	 * condensing.
1849 	 */
1850 	metaslab_group_histogram_verify(mg);
1851 	metaslab_class_histogram_verify(mg->mg_class);
1852 	metaslab_group_histogram_remove(mg, msp);
1853 
1854 	if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1855 	    metaslab_should_condense(msp)) {
1856 		metaslab_condense(msp, txg, tx);
1857 	} else {
1858 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1859 		space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1860 	}
1861 
1862 	if (msp->ms_loaded) {
1863 		/*
1864 		 * When the space map is loaded, we have an accruate
1865 		 * histogram in the range tree. This gives us an opportunity
1866 		 * to bring the space map's histogram up-to-date so we clear
1867 		 * it first before updating it.
1868 		 */
1869 		space_map_histogram_clear(msp->ms_sm);
1870 		space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1871 	} else {
1872 		/*
1873 		 * Since the space map is not loaded we simply update the
1874 		 * exisiting histogram with what was freed in this txg. This
1875 		 * means that the on-disk histogram may not have an accurate
1876 		 * view of the free space but it's close enough to allow
1877 		 * us to make allocation decisions.
1878 		 */
1879 		space_map_histogram_add(msp->ms_sm, *freetree, tx);
1880 	}
1881 	metaslab_group_histogram_add(mg, msp);
1882 	metaslab_group_histogram_verify(mg);
1883 	metaslab_class_histogram_verify(mg->mg_class);
1884 
1885 	/*
1886 	 * For sync pass 1, we avoid traversing this txg's free range tree
1887 	 * and instead will just swap the pointers for freetree and
1888 	 * freed_tree. We can safely do this since the freed_tree is
1889 	 * guaranteed to be empty on the initial pass.
1890 	 */
1891 	if (spa_sync_pass(spa) == 1) {
1892 		range_tree_swap(freetree, freed_tree);
1893 	} else {
1894 		range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1895 	}
1896 	range_tree_vacate(alloctree, NULL, NULL);
1897 
1898 	ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1899 	ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1900 
1901 	mutex_exit(&msp->ms_lock);
1902 
1903 	if (object != space_map_object(msp->ms_sm)) {
1904 		object = space_map_object(msp->ms_sm);
1905 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1906 		    msp->ms_id, sizeof (uint64_t), &object, tx);
1907 	}
1908 	dmu_tx_commit(tx);
1909 }
1910 
1911 /*
1912  * Called after a transaction group has completely synced to mark
1913  * all of the metaslab's free space as usable.
1914  */
1915 void
1916 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1917 {
1918 	metaslab_group_t *mg = msp->ms_group;
1919 	vdev_t *vd = mg->mg_vd;
1920 	range_tree_t **freed_tree;
1921 	range_tree_t **defer_tree;
1922 	int64_t alloc_delta, defer_delta;
1923 
1924 	ASSERT(!vd->vdev_ishole);
1925 
1926 	mutex_enter(&msp->ms_lock);
1927 
1928 	/*
1929 	 * If this metaslab is just becoming available, initialize its
1930 	 * alloctrees, freetrees, and defertree and add its capacity to
1931 	 * the vdev.
1932 	 */
1933 	if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
1934 		for (int t = 0; t < TXG_SIZE; t++) {
1935 			ASSERT(msp->ms_alloctree[t] == NULL);
1936 			ASSERT(msp->ms_freetree[t] == NULL);
1937 
1938 			msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1939 			    &msp->ms_lock);
1940 			msp->ms_freetree[t] = range_tree_create(NULL, msp,
1941 			    &msp->ms_lock);
1942 		}
1943 
1944 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1945 			ASSERT(msp->ms_defertree[t] == NULL);
1946 
1947 			msp->ms_defertree[t] = range_tree_create(NULL, msp,
1948 			    &msp->ms_lock);
1949 		}
1950 
1951 		vdev_space_update(vd, 0, 0, msp->ms_size);
1952 	}
1953 
1954 	freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1955 	defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1956 
1957 	alloc_delta = space_map_alloc_delta(msp->ms_sm);
1958 	defer_delta = range_tree_space(*freed_tree) -
1959 	    range_tree_space(*defer_tree);
1960 
1961 	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1962 
1963 	ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1964 	ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1965 
1966 	/*
1967 	 * If there's a metaslab_load() in progress, wait for it to complete
1968 	 * so that we have a consistent view of the in-core space map.
1969 	 */
1970 	metaslab_load_wait(msp);
1971 
1972 	/*
1973 	 * Move the frees from the defer_tree back to the free
1974 	 * range tree (if it's loaded). Swap the freed_tree and the
1975 	 * defer_tree -- this is safe to do because we've just emptied out
1976 	 * the defer_tree.
1977 	 */
1978 	range_tree_vacate(*defer_tree,
1979 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
1980 	range_tree_swap(freed_tree, defer_tree);
1981 
1982 	space_map_update(msp->ms_sm);
1983 
1984 	msp->ms_deferspace += defer_delta;
1985 	ASSERT3S(msp->ms_deferspace, >=, 0);
1986 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
1987 	if (msp->ms_deferspace != 0) {
1988 		/*
1989 		 * Keep syncing this metaslab until all deferred frees
1990 		 * are back in circulation.
1991 		 */
1992 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1993 	}
1994 
1995 	if (msp->ms_loaded && msp->ms_access_txg < txg) {
1996 		for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1997 			VERIFY0(range_tree_space(
1998 			    msp->ms_alloctree[(txg + t) & TXG_MASK]));
1999 		}
2000 
2001 		if (!metaslab_debug_unload)
2002 			metaslab_unload(msp);
2003 	}
2004 
2005 	metaslab_group_sort(mg, msp, metaslab_weight(msp));
2006 	mutex_exit(&msp->ms_lock);
2007 }
2008 
2009 void
2010 metaslab_sync_reassess(metaslab_group_t *mg)
2011 {
2012 	metaslab_group_alloc_update(mg);
2013 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2014 
2015 	/*
2016 	 * Preload the next potential metaslabs
2017 	 */
2018 	metaslab_group_preload(mg);
2019 }
2020 
2021 static uint64_t
2022 metaslab_distance(metaslab_t *msp, dva_t *dva)
2023 {
2024 	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2025 	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2026 	uint64_t start = msp->ms_id;
2027 
2028 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2029 		return (1ULL << 63);
2030 
2031 	if (offset < start)
2032 		return ((start - offset) << ms_shift);
2033 	if (offset > start)
2034 		return ((offset - start) << ms_shift);
2035 	return (0);
2036 }
2037 
2038 static uint64_t
2039 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
2040     uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2041 {
2042 	spa_t *spa = mg->mg_vd->vdev_spa;
2043 	metaslab_t *msp = NULL;
2044 	uint64_t offset = -1ULL;
2045 	avl_tree_t *t = &mg->mg_metaslab_tree;
2046 	uint64_t activation_weight;
2047 	uint64_t target_distance;
2048 	int i;
2049 
2050 	activation_weight = METASLAB_WEIGHT_PRIMARY;
2051 	for (i = 0; i < d; i++) {
2052 		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2053 			activation_weight = METASLAB_WEIGHT_SECONDARY;
2054 			break;
2055 		}
2056 	}
2057 
2058 	for (;;) {
2059 		boolean_t was_active;
2060 
2061 		mutex_enter(&mg->mg_lock);
2062 		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
2063 			if (msp->ms_weight < asize) {
2064 				spa_dbgmsg(spa, "%s: failed to meet weight "
2065 				    "requirement: vdev %llu, txg %llu, mg %p, "
2066 				    "msp %p, psize %llu, asize %llu, "
2067 				    "weight %llu", spa_name(spa),
2068 				    mg->mg_vd->vdev_id, txg,
2069 				    mg, msp, psize, asize, msp->ms_weight);
2070 				mutex_exit(&mg->mg_lock);
2071 				return (-1ULL);
2072 			}
2073 
2074 			/*
2075 			 * If the selected metaslab is condensing, skip it.
2076 			 */
2077 			if (msp->ms_condensing)
2078 				continue;
2079 
2080 			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2081 			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2082 				break;
2083 
2084 			target_distance = min_distance +
2085 			    (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2086 			    min_distance >> 1);
2087 
2088 			for (i = 0; i < d; i++)
2089 				if (metaslab_distance(msp, &dva[i]) <
2090 				    target_distance)
2091 					break;
2092 			if (i == d)
2093 				break;
2094 		}
2095 		mutex_exit(&mg->mg_lock);
2096 		if (msp == NULL)
2097 			return (-1ULL);
2098 
2099 		mutex_enter(&msp->ms_lock);
2100 
2101 		/*
2102 		 * Ensure that the metaslab we have selected is still
2103 		 * capable of handling our request. It's possible that
2104 		 * another thread may have changed the weight while we
2105 		 * were blocked on the metaslab lock.
2106 		 */
2107 		if (msp->ms_weight < asize || (was_active &&
2108 		    !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2109 		    activation_weight == METASLAB_WEIGHT_PRIMARY)) {
2110 			mutex_exit(&msp->ms_lock);
2111 			continue;
2112 		}
2113 
2114 		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2115 		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
2116 			metaslab_passivate(msp,
2117 			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2118 			mutex_exit(&msp->ms_lock);
2119 			continue;
2120 		}
2121 
2122 		if (metaslab_activate(msp, activation_weight) != 0) {
2123 			mutex_exit(&msp->ms_lock);
2124 			continue;
2125 		}
2126 
2127 		/*
2128 		 * If this metaslab is currently condensing then pick again as
2129 		 * we can't manipulate this metaslab until it's committed
2130 		 * to disk.
2131 		 */
2132 		if (msp->ms_condensing) {
2133 			mutex_exit(&msp->ms_lock);
2134 			continue;
2135 		}
2136 
2137 		if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
2138 			break;
2139 
2140 		metaslab_passivate(msp, metaslab_block_maxsize(msp));
2141 		mutex_exit(&msp->ms_lock);
2142 	}
2143 
2144 	if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2145 		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2146 
2147 	range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2148 	msp->ms_access_txg = txg + metaslab_unload_delay;
2149 
2150 	mutex_exit(&msp->ms_lock);
2151 
2152 	return (offset);
2153 }
2154 
2155 /*
2156  * Allocate a block for the specified i/o.
2157  */
2158 static int
2159 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2160     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
2161 {
2162 	metaslab_group_t *mg, *rotor;
2163 	vdev_t *vd;
2164 	int dshift = 3;
2165 	int all_zero;
2166 	int zio_lock = B_FALSE;
2167 	boolean_t allocatable;
2168 	uint64_t offset = -1ULL;
2169 	uint64_t asize;
2170 	uint64_t distance;
2171 
2172 	ASSERT(!DVA_IS_VALID(&dva[d]));
2173 
2174 	/*
2175 	 * For testing, make some blocks above a certain size be gang blocks.
2176 	 */
2177 	if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2178 		return (SET_ERROR(ENOSPC));
2179 
2180 	/*
2181 	 * Start at the rotor and loop through all mgs until we find something.
2182 	 * Note that there's no locking on mc_rotor or mc_aliquot because
2183 	 * nothing actually breaks if we miss a few updates -- we just won't
2184 	 * allocate quite as evenly.  It all balances out over time.
2185 	 *
2186 	 * If we are doing ditto or log blocks, try to spread them across
2187 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
2188 	 * allocated all of our ditto blocks, then try and spread them out on
2189 	 * that vdev as much as possible.  If it turns out to not be possible,
2190 	 * gradually lower our standards until anything becomes acceptable.
2191 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2192 	 * gives us hope of containing our fault domains to something we're
2193 	 * able to reason about.  Otherwise, any two top-level vdev failures
2194 	 * will guarantee the loss of data.  With consecutive allocation,
2195 	 * only two adjacent top-level vdev failures will result in data loss.
2196 	 *
2197 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2198 	 * ourselves on the same vdev as our gang block header.  That
2199 	 * way, we can hope for locality in vdev_cache, plus it makes our
2200 	 * fault domains something tractable.
2201 	 */
2202 	if (hintdva) {
2203 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2204 
2205 		/*
2206 		 * It's possible the vdev we're using as the hint no
2207 		 * longer exists (i.e. removed). Consult the rotor when
2208 		 * all else fails.
2209 		 */
2210 		if (vd != NULL) {
2211 			mg = vd->vdev_mg;
2212 
2213 			if (flags & METASLAB_HINTBP_AVOID &&
2214 			    mg->mg_next != NULL)
2215 				mg = mg->mg_next;
2216 		} else {
2217 			mg = mc->mc_rotor;
2218 		}
2219 	} else if (d != 0) {
2220 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2221 		mg = vd->vdev_mg->mg_next;
2222 	} else {
2223 		mg = mc->mc_rotor;
2224 	}
2225 
2226 	/*
2227 	 * If the hint put us into the wrong metaslab class, or into a
2228 	 * metaslab group that has been passivated, just follow the rotor.
2229 	 */
2230 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2231 		mg = mc->mc_rotor;
2232 
2233 	rotor = mg;
2234 top:
2235 	all_zero = B_TRUE;
2236 	do {
2237 		ASSERT(mg->mg_activation_count == 1);
2238 
2239 		vd = mg->mg_vd;
2240 
2241 		/*
2242 		 * Don't allocate from faulted devices.
2243 		 */
2244 		if (zio_lock) {
2245 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2246 			allocatable = vdev_allocatable(vd);
2247 			spa_config_exit(spa, SCL_ZIO, FTAG);
2248 		} else {
2249 			allocatable = vdev_allocatable(vd);
2250 		}
2251 
2252 		/*
2253 		 * Determine if the selected metaslab group is eligible
2254 		 * for allocations. If we're ganging or have requested
2255 		 * an allocation for the smallest gang block size
2256 		 * then we don't want to avoid allocating to the this
2257 		 * metaslab group. If we're in this condition we should
2258 		 * try to allocate from any device possible so that we
2259 		 * don't inadvertently return ENOSPC and suspend the pool
2260 		 * even though space is still available.
2261 		 */
2262 		if (allocatable && CAN_FASTGANG(flags) &&
2263 		    psize > SPA_GANGBLOCKSIZE)
2264 			allocatable = metaslab_group_allocatable(mg);
2265 
2266 		if (!allocatable)
2267 			goto next;
2268 
2269 		/*
2270 		 * Avoid writing single-copy data to a failing vdev
2271 		 * unless the user instructs us that it is okay.
2272 		 */
2273 		if ((vd->vdev_stat.vs_write_errors > 0 ||
2274 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
2275 		    d == 0 && dshift == 3 && vd->vdev_children == 0) {
2276 			all_zero = B_FALSE;
2277 			goto next;
2278 		}
2279 
2280 		ASSERT(mg->mg_class == mc);
2281 
2282 		distance = vd->vdev_asize >> dshift;
2283 		if (distance <= (1ULL << vd->vdev_ms_shift))
2284 			distance = 0;
2285 		else
2286 			all_zero = B_FALSE;
2287 
2288 		asize = vdev_psize_to_asize(vd, psize);
2289 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2290 
2291 		offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
2292 		    dva, d);
2293 		if (offset != -1ULL) {
2294 			/*
2295 			 * If we've just selected this metaslab group,
2296 			 * figure out whether the corresponding vdev is
2297 			 * over- or under-used relative to the pool,
2298 			 * and set an allocation bias to even it out.
2299 			 */
2300 			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
2301 				vdev_stat_t *vs = &vd->vdev_stat;
2302 				int64_t vu, cu;
2303 
2304 				vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
2305 				cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
2306 
2307 				/*
2308 				 * Calculate how much more or less we should
2309 				 * try to allocate from this device during
2310 				 * this iteration around the rotor.
2311 				 * For example, if a device is 80% full
2312 				 * and the pool is 20% full then we should
2313 				 * reduce allocations by 60% on this device.
2314 				 *
2315 				 * mg_bias = (20 - 80) * 512K / 100 = -307K
2316 				 *
2317 				 * This reduces allocations by 307K for this
2318 				 * iteration.
2319 				 */
2320 				mg->mg_bias = ((cu - vu) *
2321 				    (int64_t)mg->mg_aliquot) / 100;
2322 			} else if (!metaslab_bias_enabled) {
2323 				mg->mg_bias = 0;
2324 			}
2325 
2326 			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
2327 			    mg->mg_aliquot + mg->mg_bias) {
2328 				mc->mc_rotor = mg->mg_next;
2329 				mc->mc_aliquot = 0;
2330 			}
2331 
2332 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
2333 			DVA_SET_OFFSET(&dva[d], offset);
2334 			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
2335 			DVA_SET_ASIZE(&dva[d], asize);
2336 
2337 			return (0);
2338 		}
2339 next:
2340 		mc->mc_rotor = mg->mg_next;
2341 		mc->mc_aliquot = 0;
2342 	} while ((mg = mg->mg_next) != rotor);
2343 
2344 	if (!all_zero) {
2345 		dshift++;
2346 		ASSERT(dshift < 64);
2347 		goto top;
2348 	}
2349 
2350 	if (!allocatable && !zio_lock) {
2351 		dshift = 3;
2352 		zio_lock = B_TRUE;
2353 		goto top;
2354 	}
2355 
2356 	bzero(&dva[d], sizeof (dva_t));
2357 
2358 	return (SET_ERROR(ENOSPC));
2359 }
2360 
2361 /*
2362  * Free the block represented by DVA in the context of the specified
2363  * transaction group.
2364  */
2365 static void
2366 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2367 {
2368 	uint64_t vdev = DVA_GET_VDEV(dva);
2369 	uint64_t offset = DVA_GET_OFFSET(dva);
2370 	uint64_t size = DVA_GET_ASIZE(dva);
2371 	vdev_t *vd;
2372 	metaslab_t *msp;
2373 
2374 	ASSERT(DVA_IS_VALID(dva));
2375 
2376 	if (txg > spa_freeze_txg(spa))
2377 		return;
2378 
2379 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2380 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2381 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
2382 		    (u_longlong_t)vdev, (u_longlong_t)offset);
2383 		ASSERT(0);
2384 		return;
2385 	}
2386 
2387 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2388 
2389 	if (DVA_GET_GANG(dva))
2390 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2391 
2392 	mutex_enter(&msp->ms_lock);
2393 
2394 	if (now) {
2395 		range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2396 		    offset, size);
2397 
2398 		VERIFY(!msp->ms_condensing);
2399 		VERIFY3U(offset, >=, msp->ms_start);
2400 		VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2401 		VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2402 		    msp->ms_size);
2403 		VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2404 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2405 		range_tree_add(msp->ms_tree, offset, size);
2406 	} else {
2407 		if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2408 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
2409 		range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2410 		    offset, size);
2411 	}
2412 
2413 	mutex_exit(&msp->ms_lock);
2414 }
2415 
2416 /*
2417  * Intent log support: upon opening the pool after a crash, notify the SPA
2418  * of blocks that the intent log has allocated for immediate write, but
2419  * which are still considered free by the SPA because the last transaction
2420  * group didn't commit yet.
2421  */
2422 static int
2423 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2424 {
2425 	uint64_t vdev = DVA_GET_VDEV(dva);
2426 	uint64_t offset = DVA_GET_OFFSET(dva);
2427 	uint64_t size = DVA_GET_ASIZE(dva);
2428 	vdev_t *vd;
2429 	metaslab_t *msp;
2430 	int error = 0;
2431 
2432 	ASSERT(DVA_IS_VALID(dva));
2433 
2434 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2435 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2436 		return (SET_ERROR(ENXIO));
2437 
2438 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2439 
2440 	if (DVA_GET_GANG(dva))
2441 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2442 
2443 	mutex_enter(&msp->ms_lock);
2444 
2445 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2446 		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2447 
2448 	if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2449 		error = SET_ERROR(ENOENT);
2450 
2451 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
2452 		mutex_exit(&msp->ms_lock);
2453 		return (error);
2454 	}
2455 
2456 	VERIFY(!msp->ms_condensing);
2457 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2458 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2459 	VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2460 	range_tree_remove(msp->ms_tree, offset, size);
2461 
2462 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
2463 		if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2464 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
2465 		range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2466 	}
2467 
2468 	mutex_exit(&msp->ms_lock);
2469 
2470 	return (0);
2471 }
2472 
2473 int
2474 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2475     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2476 {
2477 	dva_t *dva = bp->blk_dva;
2478 	dva_t *hintdva = hintbp->blk_dva;
2479 	int error = 0;
2480 
2481 	ASSERT(bp->blk_birth == 0);
2482 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2483 
2484 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2485 
2486 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
2487 		spa_config_exit(spa, SCL_ALLOC, FTAG);
2488 		return (SET_ERROR(ENOSPC));
2489 	}
2490 
2491 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2492 	ASSERT(BP_GET_NDVAS(bp) == 0);
2493 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2494 
2495 	for (int d = 0; d < ndvas; d++) {
2496 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2497 		    txg, flags);
2498 		if (error != 0) {
2499 			for (d--; d >= 0; d--) {
2500 				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2501 				bzero(&dva[d], sizeof (dva_t));
2502 			}
2503 			spa_config_exit(spa, SCL_ALLOC, FTAG);
2504 			return (error);
2505 		}
2506 	}
2507 	ASSERT(error == 0);
2508 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
2509 
2510 	spa_config_exit(spa, SCL_ALLOC, FTAG);
2511 
2512 	BP_SET_BIRTH(bp, txg, txg);
2513 
2514 	return (0);
2515 }
2516 
2517 void
2518 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2519 {
2520 	const dva_t *dva = bp->blk_dva;
2521 	int ndvas = BP_GET_NDVAS(bp);
2522 
2523 	ASSERT(!BP_IS_HOLE(bp));
2524 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2525 
2526 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2527 
2528 	for (int d = 0; d < ndvas; d++)
2529 		metaslab_free_dva(spa, &dva[d], txg, now);
2530 
2531 	spa_config_exit(spa, SCL_FREE, FTAG);
2532 }
2533 
2534 int
2535 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2536 {
2537 	const dva_t *dva = bp->blk_dva;
2538 	int ndvas = BP_GET_NDVAS(bp);
2539 	int error = 0;
2540 
2541 	ASSERT(!BP_IS_HOLE(bp));
2542 
2543 	if (txg != 0) {
2544 		/*
2545 		 * First do a dry run to make sure all DVAs are claimable,
2546 		 * so we don't have to unwind from partial failures below.
2547 		 */
2548 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
2549 			return (error);
2550 	}
2551 
2552 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2553 
2554 	for (int d = 0; d < ndvas; d++)
2555 		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2556 			break;
2557 
2558 	spa_config_exit(spa, SCL_ALLOC, FTAG);
2559 
2560 	ASSERT(error == 0 || txg == 0);
2561 
2562 	return (error);
2563 }
2564 
2565 void
2566 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2567 {
2568 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2569 		return;
2570 
2571 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2572 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
2573 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2574 		vdev_t *vd = vdev_lookup_top(spa, vdev);
2575 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2576 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2577 		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2578 
2579 		if (msp->ms_loaded)
2580 			range_tree_verify(msp->ms_tree, offset, size);
2581 
2582 		for (int j = 0; j < TXG_SIZE; j++)
2583 			range_tree_verify(msp->ms_freetree[j], offset, size);
2584 		for (int j = 0; j < TXG_DEFER_SIZE; j++)
2585 			range_tree_verify(msp->ms_defertree[j], offset, size);
2586 	}
2587 	spa_config_exit(spa, SCL_VDEV, FTAG);
2588 }
2589