1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 28 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org> 29 */ 30 31 #include <sys/dsl_scan.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_prop.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dnode.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/arc.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/zfs_context.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/spa_impl.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/zil_impl.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/ddt.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/zfeature.h> 54 #include <sys/abd.h> 55 #include <sys/range_tree.h> 56 #ifdef _KERNEL 57 #include <sys/zfs_vfsops.h> 58 #endif 59 60 /* 61 * Grand theory statement on scan queue sorting 62 * 63 * Scanning is implemented by recursively traversing all indirection levels 64 * in an object and reading all blocks referenced from said objects. This 65 * results in us approximately traversing the object from lowest logical 66 * offset to the highest. For best performance, we would want the logical 67 * blocks to be physically contiguous. However, this is frequently not the 68 * case with pools given the allocation patterns of copy-on-write filesystems. 69 * So instead, we put the I/Os into a reordering queue and issue them in a 70 * way that will most benefit physical disks (LBA-order). 71 * 72 * Queue management: 73 * 74 * Ideally, we would want to scan all metadata and queue up all block I/O 75 * prior to starting to issue it, because that allows us to do an optimal 76 * sorting job. This can however consume large amounts of memory. Therefore 77 * we continuously monitor the size of the queues and constrain them to 5% 78 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 79 * limit, we clear out a few of the largest extents at the head of the queues 80 * to make room for more scanning. Hopefully, these extents will be fairly 81 * large and contiguous, allowing us to approach sequential I/O throughput 82 * even without a fully sorted tree. 83 * 84 * Metadata scanning takes place in dsl_scan_visit(), which is called from 85 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 86 * metadata on the pool, or we need to make room in memory because our 87 * queues are too large, dsl_scan_visit() is postponed and 88 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 89 * that metadata scanning and queued I/O issuing are mutually exclusive. This 90 * allows us to provide maximum sequential I/O throughput for the majority of 91 * I/O's issued since sequential I/O performance is significantly negatively 92 * impacted if it is interleaved with random I/O. 93 * 94 * Implementation Notes 95 * 96 * One side effect of the queued scanning algorithm is that the scanning code 97 * needs to be notified whenever a block is freed. This is needed to allow 98 * the scanning code to remove these I/Os from the issuing queue. Additionally, 99 * we do not attempt to queue gang blocks to be issued sequentially since this 100 * is very hard to do and would have an extremely limited performance benefit. 101 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 102 * algorithm. 103 * 104 * Backwards compatibility 105 * 106 * This new algorithm is backwards compatible with the legacy on-disk data 107 * structures (and therefore does not require a new feature flag). 108 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 109 * will stop scanning metadata (in logical order) and wait for all outstanding 110 * sorted I/O to complete. Once this is done, we write out a checkpoint 111 * bookmark, indicating that we have scanned everything logically before it. 112 * If the pool is imported on a machine without the new sorting algorithm, 113 * the scan simply resumes from the last checkpoint using the legacy algorithm. 114 */ 115 116 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 117 const zbookmark_phys_t *); 118 119 static scan_cb_t dsl_scan_scrub_cb; 120 121 static int scan_ds_queue_compare(const void *a, const void *b); 122 static int scan_prefetch_queue_compare(const void *a, const void *b); 123 static void scan_ds_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 130 extern int zfs_vdev_async_write_active_min_dirty_percent; 131 132 /* 133 * By default zfs will check to ensure it is not over the hard memory 134 * limit before each txg. If finer-grained control of this is needed 135 * this value can be set to 1 to enable checking before scanning each 136 * block. 137 */ 138 int zfs_scan_strict_mem_lim = B_FALSE; 139 140 /* 141 * Maximum number of parallelly executing I/Os per top-level vdev. 142 * Tune with care. Very high settings (hundreds) are known to trigger 143 * some firmware bugs and resets on certain SSDs. 144 */ 145 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ 146 unsigned int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ 147 unsigned int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ 148 unsigned int zfs_scan_idle = 50; /* idle window in clock ticks */ 149 150 /* 151 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 152 * to strike a balance here between keeping the vdev queues full of I/Os 153 * at all times and not overflowing the queues to cause long latency, 154 * which would cause long txg sync times. No matter what, we will not 155 * overload the drives with I/O, since that is protected by 156 * zfs_vdev_scrub_max_active. 157 */ 158 unsigned long zfs_scan_vdev_limit = 4 << 20; 159 160 int zfs_scan_issue_strategy = 0; 161 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 162 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 163 164 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ 165 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) 166 167 /* 168 * fill_weight is non-tunable at runtime, so we copy it at module init from 169 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 170 * break queue sorting. 171 */ 172 uint64_t zfs_scan_fill_weight = 3; 173 static uint64_t fill_weight; 174 175 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 176 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 177 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 178 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 179 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 180 181 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 182 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 183 /* min millisecs to obsolete per txg */ 184 unsigned int zfs_obsolete_min_time_ms = 500; 185 /* min millisecs to resilver per txg */ 186 unsigned int zfs_resilver_min_time_ms = 3000; 187 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 188 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 189 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 190 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 191 /* max number of blocks to free in a single TXG */ 192 uint64_t zfs_async_block_max_blocks = UINT64_MAX; 193 194 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 195 196 /* 197 * We wait a few txgs after importing a pool to begin scanning so that 198 * the import / mounting code isn't held up by scrub / resilver IO. 199 * Unfortunately, it is a bit difficult to determine exactly how long 200 * this will take since userspace will trigger fs mounts asynchronously 201 * and the kernel will create zvol minors asynchronously. As a result, 202 * the value provided here is a bit arbitrary, but represents a 203 * reasonable estimate of how many txgs it will take to finish fully 204 * importing a pool 205 */ 206 #define SCAN_IMPORT_WAIT_TXGS 5 207 208 209 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 210 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 211 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 212 213 extern int zfs_txg_timeout; 214 215 /* 216 * Enable/disable the processing of the free_bpobj object. 217 */ 218 boolean_t zfs_free_bpobj_enabled = B_TRUE; 219 220 /* the order has to match pool_scan_type */ 221 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 222 NULL, 223 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 224 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 225 }; 226 227 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 228 typedef struct { 229 uint64_t sds_dsobj; 230 uint64_t sds_txg; 231 avl_node_t sds_node; 232 } scan_ds_t; 233 234 /* 235 * This controls what conditions are placed on dsl_scan_sync_state(): 236 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 237 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 238 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 239 * write out the scn_phys_cached version. 240 * See dsl_scan_sync_state for details. 241 */ 242 typedef enum { 243 SYNC_OPTIONAL, 244 SYNC_MANDATORY, 245 SYNC_CACHED 246 } state_sync_type_t; 247 248 /* 249 * This struct represents the minimum information needed to reconstruct a 250 * zio for sequential scanning. This is useful because many of these will 251 * accumulate in the sequential IO queues before being issued, so saving 252 * memory matters here. 253 */ 254 typedef struct scan_io { 255 /* fields from blkptr_t */ 256 uint64_t sio_blk_prop; 257 uint64_t sio_phys_birth; 258 uint64_t sio_birth; 259 zio_cksum_t sio_cksum; 260 uint32_t sio_nr_dvas; 261 262 /* fields from zio_t */ 263 uint32_t sio_flags; 264 zbookmark_phys_t sio_zb; 265 266 /* members for queue sorting */ 267 union { 268 avl_node_t sio_addr_node; /* link into issuing queue */ 269 list_node_t sio_list_node; /* link for issuing to disk */ 270 } sio_nodes; 271 272 /* 273 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 274 * depending on how many were in the original bp. Only the 275 * first DVA is really used for sorting and issuing purposes. 276 * The other DVAs (if provided) simply exist so that the zio 277 * layer can find additional copies to repair from in the 278 * event of an error. This array must go at the end of the 279 * struct to allow this for the variable number of elements. 280 */ 281 dva_t sio_dva[0]; 282 } scan_io_t; 283 284 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 285 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 286 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 287 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 288 #define SIO_GET_END_OFFSET(sio) \ 289 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 290 #define SIO_GET_MUSED(sio) \ 291 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 292 293 struct dsl_scan_io_queue { 294 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 295 vdev_t *q_vd; /* top-level vdev that this queue represents */ 296 297 /* trees used for sorting I/Os and extents of I/Os */ 298 range_tree_t *q_exts_by_addr; 299 zfs_btree_t q_exts_by_size; 300 avl_tree_t q_sios_by_addr; 301 uint64_t q_sio_memused; 302 303 /* members for zio rate limiting */ 304 uint64_t q_maxinflight_bytes; 305 uint64_t q_inflight_bytes; 306 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 307 308 /* per txg statistics */ 309 uint64_t q_total_seg_size_this_txg; 310 uint64_t q_segs_this_txg; 311 uint64_t q_total_zio_size_this_txg; 312 uint64_t q_zios_this_txg; 313 }; 314 315 /* private data for dsl_scan_prefetch_cb() */ 316 typedef struct scan_prefetch_ctx { 317 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 318 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 319 boolean_t spc_root; /* is this prefetch for an objset? */ 320 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 321 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 322 } scan_prefetch_ctx_t; 323 324 /* private data for dsl_scan_prefetch() */ 325 typedef struct scan_prefetch_issue_ctx { 326 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 327 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 328 blkptr_t spic_bp; /* bp to prefetch */ 329 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 330 } scan_prefetch_issue_ctx_t; 331 332 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 333 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 334 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 335 scan_io_t *sio); 336 337 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 338 static void scan_io_queues_destroy(dsl_scan_t *scn); 339 340 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 341 342 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 343 static void 344 sio_free(scan_io_t *sio) 345 { 346 ASSERT3U(sio->sio_nr_dvas, >, 0); 347 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 348 349 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 350 } 351 352 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 353 static scan_io_t * 354 sio_alloc(unsigned short nr_dvas) 355 { 356 ASSERT3U(nr_dvas, >, 0); 357 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 358 359 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 360 } 361 362 void 363 scan_init(void) 364 { 365 /* 366 * This is used in ext_size_compare() to weight segments 367 * based on how sparse they are. This cannot be changed 368 * mid-scan and the tree comparison functions don't currently 369 * have a mechansim for passing additional context to the 370 * compare functions. Thus we store this value globally and 371 * we only allow it to be set at module intiailization time 372 */ 373 fill_weight = zfs_scan_fill_weight; 374 375 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 376 char name[36]; 377 378 (void) sprintf(name, "sio_cache_%d", i); 379 sio_cache[i] = kmem_cache_create(name, 380 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 } 383 } 384 385 void 386 scan_fini(void) 387 { 388 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 389 kmem_cache_destroy(sio_cache[i]); 390 } 391 } 392 393 static inline boolean_t 394 dsl_scan_is_running(const dsl_scan_t *scn) 395 { 396 return (scn->scn_phys.scn_state == DSS_SCANNING); 397 } 398 399 boolean_t 400 dsl_scan_resilvering(dsl_pool_t *dp) 401 { 402 return (dsl_scan_is_running(dp->dp_scan) && 403 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 404 } 405 406 static inline void 407 sio2bp(const scan_io_t *sio, blkptr_t *bp) 408 { 409 bzero(bp, sizeof (*bp)); 410 bp->blk_prop = sio->sio_blk_prop; 411 bp->blk_phys_birth = sio->sio_phys_birth; 412 bp->blk_birth = sio->sio_birth; 413 bp->blk_fill = 1; /* we always only work with data pointers */ 414 bp->blk_cksum = sio->sio_cksum; 415 416 ASSERT3U(sio->sio_nr_dvas, >, 0); 417 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 418 419 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 420 } 421 422 static inline void 423 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 424 { 425 sio->sio_blk_prop = bp->blk_prop; 426 sio->sio_phys_birth = bp->blk_phys_birth; 427 sio->sio_birth = bp->blk_birth; 428 sio->sio_cksum = bp->blk_cksum; 429 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 430 431 /* 432 * Copy the DVAs to the sio. We need all copies of the block so 433 * that the self healing code can use the alternate copies if the 434 * first is corrupted. We want the DVA at index dva_i to be first 435 * in the sio since this is the primary one that we want to issue. 436 */ 437 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 438 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 439 } 440 } 441 442 int 443 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 444 { 445 int err; 446 dsl_scan_t *scn; 447 spa_t *spa = dp->dp_spa; 448 uint64_t f; 449 450 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 451 scn->scn_dp = dp; 452 453 /* 454 * It's possible that we're resuming a scan after a reboot so 455 * make sure that the scan_async_destroying flag is initialized 456 * appropriately. 457 */ 458 ASSERT(!scn->scn_async_destroying); 459 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 460 SPA_FEATURE_ASYNC_DESTROY); 461 462 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 463 offsetof(scan_ds_t, sds_node)); 464 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 465 sizeof (scan_prefetch_issue_ctx_t), 466 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 467 468 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 469 "scrub_func", sizeof (uint64_t), 1, &f); 470 if (err == 0) { 471 /* 472 * There was an old-style scrub in progress. Restart a 473 * new-style scrub from the beginning. 474 */ 475 scn->scn_restart_txg = txg; 476 zfs_dbgmsg("old-style scrub was in progress; " 477 "restarting new-style scrub in txg %llu", 478 (longlong_t)scn->scn_restart_txg); 479 480 /* 481 * Load the queue obj from the old location so that it 482 * can be freed by dsl_scan_done(). 483 */ 484 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 485 "scrub_queue", sizeof (uint64_t), 1, 486 &scn->scn_phys.scn_queue_obj); 487 } else { 488 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 489 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 490 &scn->scn_phys); 491 492 /* 493 * Detect if the pool contains the signature of #2094. If it 494 * does properly update the scn->scn_phys structure and notify 495 * the administrator by setting an errata for the pool. 496 */ 497 if (err == EOVERFLOW) { 498 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 499 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 500 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 501 (23 * sizeof (uint64_t))); 502 503 err = zap_lookup(dp->dp_meta_objset, 504 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 505 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 506 if (err == 0) { 507 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 508 509 if (overflow & ~DSF_VISIT_DS_AGAIN || 510 scn->scn_async_destroying) { 511 spa->spa_errata = 512 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 513 return (EOVERFLOW); 514 } 515 516 bcopy(zaptmp, &scn->scn_phys, 517 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 518 scn->scn_phys.scn_flags = overflow; 519 520 /* Required scrub already in progress. */ 521 if (scn->scn_phys.scn_state == DSS_FINISHED || 522 scn->scn_phys.scn_state == DSS_CANCELED) 523 spa->spa_errata = 524 ZPOOL_ERRATA_ZOL_2094_SCRUB; 525 } 526 } 527 528 if (err == ENOENT) 529 return (0); 530 else if (err) 531 return (err); 532 533 /* 534 * We might be restarting after a reboot, so jump the issued 535 * counter to how far we've scanned. We know we're consistent 536 * up to here. 537 */ 538 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 539 540 if (dsl_scan_is_running(scn) && 541 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 542 /* 543 * A new-type scrub was in progress on an old 544 * pool, and the pool was accessed by old 545 * software. Restart from the beginning, since 546 * the old software may have changed the pool in 547 * the meantime. 548 */ 549 scn->scn_restart_txg = txg; 550 zfs_dbgmsg("new-style scrub was modified " 551 "by old software; restarting in txg %llu", 552 (longlong_t)scn->scn_restart_txg); 553 } else if (dsl_scan_resilvering(dp)) { 554 /* 555 * If a resilver is in progress and there are already 556 * errors, restart it instead of finishing this scan and 557 * then restarting it. If there haven't been any errors 558 * then remember that the incore DTL is valid. 559 */ 560 if (scn->scn_phys.scn_errors > 0) { 561 scn->scn_restart_txg = txg; 562 zfs_dbgmsg("resilver can't excise DTL_MISSING " 563 "when finished; restarting in txg %llu", 564 (u_longlong_t)scn->scn_restart_txg); 565 } else { 566 /* it's safe to excise DTL when finished */ 567 spa->spa_scrub_started = B_TRUE; 568 } 569 } 570 } 571 572 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 573 574 /* reload the queue into the in-core state */ 575 if (scn->scn_phys.scn_queue_obj != 0) { 576 zap_cursor_t zc; 577 zap_attribute_t za; 578 579 for (zap_cursor_init(&zc, dp->dp_meta_objset, 580 scn->scn_phys.scn_queue_obj); 581 zap_cursor_retrieve(&zc, &za) == 0; 582 (void) zap_cursor_advance(&zc)) { 583 scan_ds_queue_insert(scn, 584 zfs_strtonum(za.za_name, NULL), 585 za.za_first_integer); 586 } 587 zap_cursor_fini(&zc); 588 } 589 590 spa_scan_stat_init(spa); 591 return (0); 592 } 593 594 void 595 dsl_scan_fini(dsl_pool_t *dp) 596 { 597 if (dp->dp_scan != NULL) { 598 dsl_scan_t *scn = dp->dp_scan; 599 600 if (scn->scn_taskq != NULL) 601 taskq_destroy(scn->scn_taskq); 602 scan_ds_queue_clear(scn); 603 avl_destroy(&scn->scn_queue); 604 avl_destroy(&scn->scn_prefetch_queue); 605 606 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 607 dp->dp_scan = NULL; 608 } 609 } 610 611 static boolean_t 612 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 613 { 614 return (scn->scn_restart_txg != 0 && 615 scn->scn_restart_txg <= tx->tx_txg); 616 } 617 618 boolean_t 619 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 620 { 621 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 622 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 623 } 624 625 boolean_t 626 dsl_scan_scrubbing(const dsl_pool_t *dp) 627 { 628 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 629 630 return (scn_phys->scn_state == DSS_SCANNING && 631 scn_phys->scn_func == POOL_SCAN_SCRUB); 632 } 633 634 boolean_t 635 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 636 { 637 return (dsl_scan_scrubbing(scn->scn_dp) && 638 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 639 } 640 641 /* 642 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 643 * Because we can be running in the block sorting algorithm, we do not always 644 * want to write out the record, only when it is "safe" to do so. This safety 645 * condition is achieved by making sure that the sorting queues are empty 646 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 647 * is inconsistent with how much actual scanning progress has been made. The 648 * kind of sync to be performed is specified by the sync_type argument. If the 649 * sync is optional, we only sync if the queues are empty. If the sync is 650 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 651 * third possible state is a "cached" sync. This is done in response to: 652 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 653 * destroyed, so we wouldn't be able to restart scanning from it. 654 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 655 * superseded by a newer snapshot. 656 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 657 * swapped with its clone. 658 * In all cases, a cached sync simply rewrites the last record we've written, 659 * just slightly modified. For the modifications that are performed to the 660 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 661 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 662 */ 663 static void 664 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 665 { 666 int i; 667 spa_t *spa = scn->scn_dp->dp_spa; 668 669 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 670 if (scn->scn_bytes_pending == 0) { 671 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 672 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 673 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 674 675 if (q == NULL) 676 continue; 677 678 mutex_enter(&vd->vdev_scan_io_queue_lock); 679 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 680 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 681 NULL); 682 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 683 mutex_exit(&vd->vdev_scan_io_queue_lock); 684 } 685 686 if (scn->scn_phys.scn_queue_obj != 0) 687 scan_ds_queue_sync(scn, tx); 688 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 689 DMU_POOL_DIRECTORY_OBJECT, 690 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 691 &scn->scn_phys, tx)); 692 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 693 sizeof (scn->scn_phys)); 694 695 if (scn->scn_checkpointing) 696 zfs_dbgmsg("finish scan checkpoint"); 697 698 scn->scn_checkpointing = B_FALSE; 699 scn->scn_last_checkpoint = ddi_get_lbolt(); 700 } else if (sync_type == SYNC_CACHED) { 701 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 702 DMU_POOL_DIRECTORY_OBJECT, 703 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 704 &scn->scn_phys_cached, tx)); 705 } 706 } 707 708 /* ARGSUSED */ 709 static int 710 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 711 { 712 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 713 714 if (dsl_scan_is_running(scn)) 715 return (SET_ERROR(EBUSY)); 716 717 return (0); 718 } 719 720 static void 721 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 722 { 723 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 724 pool_scan_func_t *funcp = arg; 725 dmu_object_type_t ot = 0; 726 dsl_pool_t *dp = scn->scn_dp; 727 spa_t *spa = dp->dp_spa; 728 729 ASSERT(!dsl_scan_is_running(scn)); 730 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 731 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 732 scn->scn_phys.scn_func = *funcp; 733 scn->scn_phys.scn_state = DSS_SCANNING; 734 scn->scn_phys.scn_min_txg = 0; 735 scn->scn_phys.scn_max_txg = tx->tx_txg; 736 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 737 scn->scn_phys.scn_start_time = gethrestime_sec(); 738 scn->scn_phys.scn_errors = 0; 739 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 740 scn->scn_issued_before_pass = 0; 741 scn->scn_restart_txg = 0; 742 scn->scn_done_txg = 0; 743 scn->scn_last_checkpoint = 0; 744 scn->scn_checkpointing = B_FALSE; 745 spa_scan_stat_init(spa); 746 747 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 748 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 749 750 /* rewrite all disk labels */ 751 vdev_config_dirty(spa->spa_root_vdev); 752 753 if (vdev_resilver_needed(spa->spa_root_vdev, 754 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 755 spa_event_notify(spa, NULL, NULL, 756 ESC_ZFS_RESILVER_START); 757 } else { 758 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 759 } 760 761 spa->spa_scrub_started = B_TRUE; 762 /* 763 * If this is an incremental scrub, limit the DDT scrub phase 764 * to just the auto-ditto class (for correctness); the rest 765 * of the scrub should go faster using top-down pruning. 766 */ 767 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 768 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 769 770 } 771 772 /* back to the generic stuff */ 773 774 if (dp->dp_blkstats == NULL) { 775 dp->dp_blkstats = 776 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 777 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 778 MUTEX_DEFAULT, NULL); 779 } 780 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 781 782 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 783 ot = DMU_OT_ZAP_OTHER; 784 785 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 786 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 787 788 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 789 790 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 791 792 spa_history_log_internal(spa, "scan setup", tx, 793 "func=%u mintxg=%llu maxtxg=%llu", 794 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); 795 } 796 797 /* 798 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 799 * Can also be called to resume a paused scrub. 800 */ 801 int 802 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 803 { 804 spa_t *spa = dp->dp_spa; 805 dsl_scan_t *scn = dp->dp_scan; 806 807 /* 808 * Purge all vdev caches and probe all devices. We do this here 809 * rather than in sync context because this requires a writer lock 810 * on the spa_config lock, which we can't do from sync context. The 811 * spa_scrub_reopen flag indicates that vdev_open() should not 812 * attempt to start another scrub. 813 */ 814 spa_vdev_state_enter(spa, SCL_NONE); 815 spa->spa_scrub_reopen = B_TRUE; 816 vdev_reopen(spa->spa_root_vdev); 817 spa->spa_scrub_reopen = B_FALSE; 818 (void) spa_vdev_state_exit(spa, NULL, 0); 819 820 if (func == POOL_SCAN_RESILVER) { 821 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 822 return (0); 823 } 824 825 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 826 /* got scrub start cmd, resume paused scrub */ 827 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 828 POOL_SCRUB_NORMAL); 829 if (err == 0) { 830 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 831 return (ECANCELED); 832 } 833 return (SET_ERROR(err)); 834 } 835 836 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 837 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 838 } 839 840 /* ARGSUSED */ 841 static void 842 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 843 { 844 static const char *old_names[] = { 845 "scrub_bookmark", 846 "scrub_ddt_bookmark", 847 "scrub_ddt_class_max", 848 "scrub_queue", 849 "scrub_min_txg", 850 "scrub_max_txg", 851 "scrub_func", 852 "scrub_errors", 853 NULL 854 }; 855 856 dsl_pool_t *dp = scn->scn_dp; 857 spa_t *spa = dp->dp_spa; 858 int i; 859 860 /* Remove any remnants of an old-style scrub. */ 861 for (i = 0; old_names[i]; i++) { 862 (void) zap_remove(dp->dp_meta_objset, 863 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 864 } 865 866 if (scn->scn_phys.scn_queue_obj != 0) { 867 VERIFY0(dmu_object_free(dp->dp_meta_objset, 868 scn->scn_phys.scn_queue_obj, tx)); 869 scn->scn_phys.scn_queue_obj = 0; 870 } 871 scan_ds_queue_clear(scn); 872 873 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 874 875 /* 876 * If we were "restarted" from a stopped state, don't bother 877 * with anything else. 878 */ 879 if (!dsl_scan_is_running(scn)) { 880 ASSERT(!scn->scn_is_sorted); 881 return; 882 } 883 884 if (scn->scn_is_sorted) { 885 scan_io_queues_destroy(scn); 886 scn->scn_is_sorted = B_FALSE; 887 888 if (scn->scn_taskq != NULL) { 889 taskq_destroy(scn->scn_taskq); 890 scn->scn_taskq = NULL; 891 } 892 } 893 894 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 895 896 if (dsl_scan_restarting(scn, tx)) 897 spa_history_log_internal(spa, "scan aborted, restarting", tx, 898 "errors=%llu", spa_get_errlog_size(spa)); 899 else if (!complete) 900 spa_history_log_internal(spa, "scan cancelled", tx, 901 "errors=%llu", spa_get_errlog_size(spa)); 902 else 903 spa_history_log_internal(spa, "scan done", tx, 904 "errors=%llu", spa_get_errlog_size(spa)); 905 906 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 907 spa->spa_scrub_active = B_FALSE; 908 909 /* 910 * If the scrub/resilver completed, update all DTLs to 911 * reflect this. Whether it succeeded or not, vacate 912 * all temporary scrub DTLs. 913 * 914 * As the scrub does not currently support traversing 915 * data that have been freed but are part of a checkpoint, 916 * we don't mark the scrub as done in the DTLs as faults 917 * may still exist in those vdevs. 918 */ 919 if (complete && 920 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 921 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 922 scn->scn_phys.scn_max_txg, B_TRUE); 923 924 spa_event_notify(spa, NULL, NULL, 925 scn->scn_phys.scn_min_txg ? 926 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); 927 } else { 928 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 929 0, B_TRUE); 930 } 931 spa_errlog_rotate(spa); 932 933 /* 934 * Don't clear flag until after vdev_dtl_reassess to ensure that 935 * DTL_MISSING will get updated when possible. 936 */ 937 spa->spa_scrub_started = B_FALSE; 938 939 /* 940 * We may have finished replacing a device. 941 * Let the async thread assess this and handle the detach. 942 */ 943 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 944 945 /* 946 * Clear any resilver_deferred flags in the config. 947 * If there are drives that need resilvering, kick 948 * off an asynchronous request to start resilver. 949 * vdev_clear_resilver_deferred() may update the config 950 * before the resilver can restart. In the event of 951 * a crash during this period, the spa loading code 952 * will find the drives that need to be resilvered 953 * and start the resilver then. 954 */ 955 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 956 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 957 spa_history_log_internal(spa, 958 "starting deferred resilver", tx, "errors=%llu", 959 (u_longlong_t)spa_get_errlog_size(spa)); 960 spa_async_request(spa, SPA_ASYNC_RESILVER); 961 } 962 } 963 964 scn->scn_phys.scn_end_time = gethrestime_sec(); 965 966 ASSERT(!dsl_scan_is_running(scn)); 967 } 968 969 /* ARGSUSED */ 970 static int 971 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 972 { 973 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 974 975 if (!dsl_scan_is_running(scn)) 976 return (SET_ERROR(ENOENT)); 977 return (0); 978 } 979 980 /* ARGSUSED */ 981 static void 982 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 983 { 984 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 985 986 dsl_scan_done(scn, B_FALSE, tx); 987 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 988 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 989 } 990 991 int 992 dsl_scan_cancel(dsl_pool_t *dp) 993 { 994 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 995 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 996 } 997 998 static int 999 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1000 { 1001 pool_scrub_cmd_t *cmd = arg; 1002 dsl_pool_t *dp = dmu_tx_pool(tx); 1003 dsl_scan_t *scn = dp->dp_scan; 1004 1005 if (*cmd == POOL_SCRUB_PAUSE) { 1006 /* can't pause a scrub when there is no in-progress scrub */ 1007 if (!dsl_scan_scrubbing(dp)) 1008 return (SET_ERROR(ENOENT)); 1009 1010 /* can't pause a paused scrub */ 1011 if (dsl_scan_is_paused_scrub(scn)) 1012 return (SET_ERROR(EBUSY)); 1013 } else if (*cmd != POOL_SCRUB_NORMAL) { 1014 return (SET_ERROR(ENOTSUP)); 1015 } 1016 1017 return (0); 1018 } 1019 1020 static void 1021 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1022 { 1023 pool_scrub_cmd_t *cmd = arg; 1024 dsl_pool_t *dp = dmu_tx_pool(tx); 1025 spa_t *spa = dp->dp_spa; 1026 dsl_scan_t *scn = dp->dp_scan; 1027 1028 if (*cmd == POOL_SCRUB_PAUSE) { 1029 /* can't pause a scrub when there is no in-progress scrub */ 1030 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1031 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1032 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1033 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1034 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1035 } else { 1036 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1037 if (dsl_scan_is_paused_scrub(scn)) { 1038 /* 1039 * We need to keep track of how much time we spend 1040 * paused per pass so that we can adjust the scrub rate 1041 * shown in the output of 'zpool status' 1042 */ 1043 spa->spa_scan_pass_scrub_spent_paused += 1044 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1045 spa->spa_scan_pass_scrub_pause = 0; 1046 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1047 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1048 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1049 } 1050 } 1051 } 1052 1053 /* 1054 * Set scrub pause/resume state if it makes sense to do so 1055 */ 1056 int 1057 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1058 { 1059 return (dsl_sync_task(spa_name(dp->dp_spa), 1060 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1061 ZFS_SPACE_CHECK_RESERVED)); 1062 } 1063 1064 1065 /* start a new scan, or restart an existing one. */ 1066 void 1067 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1068 { 1069 if (txg == 0) { 1070 dmu_tx_t *tx; 1071 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1072 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1073 1074 txg = dmu_tx_get_txg(tx); 1075 dp->dp_scan->scn_restart_txg = txg; 1076 dmu_tx_commit(tx); 1077 } else { 1078 dp->dp_scan->scn_restart_txg = txg; 1079 } 1080 zfs_dbgmsg("restarting resilver txg=%llu", txg); 1081 } 1082 1083 void 1084 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1085 { 1086 zio_free(dp->dp_spa, txg, bp); 1087 } 1088 1089 void 1090 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1091 { 1092 ASSERT(dsl_pool_sync_context(dp)); 1093 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1094 } 1095 1096 static int 1097 scan_ds_queue_compare(const void *a, const void *b) 1098 { 1099 const scan_ds_t *sds_a = a, *sds_b = b; 1100 1101 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1102 return (-1); 1103 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1104 return (0); 1105 return (1); 1106 } 1107 1108 static void 1109 scan_ds_queue_clear(dsl_scan_t *scn) 1110 { 1111 void *cookie = NULL; 1112 scan_ds_t *sds; 1113 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1114 kmem_free(sds, sizeof (*sds)); 1115 } 1116 } 1117 1118 static boolean_t 1119 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1120 { 1121 scan_ds_t srch, *sds; 1122 1123 srch.sds_dsobj = dsobj; 1124 sds = avl_find(&scn->scn_queue, &srch, NULL); 1125 if (sds != NULL && txg != NULL) 1126 *txg = sds->sds_txg; 1127 return (sds != NULL); 1128 } 1129 1130 static void 1131 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1132 { 1133 scan_ds_t *sds; 1134 avl_index_t where; 1135 1136 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1137 sds->sds_dsobj = dsobj; 1138 sds->sds_txg = txg; 1139 1140 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1141 avl_insert(&scn->scn_queue, sds, where); 1142 } 1143 1144 static void 1145 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1146 { 1147 scan_ds_t srch, *sds; 1148 1149 srch.sds_dsobj = dsobj; 1150 1151 sds = avl_find(&scn->scn_queue, &srch, NULL); 1152 VERIFY(sds != NULL); 1153 avl_remove(&scn->scn_queue, sds); 1154 kmem_free(sds, sizeof (*sds)); 1155 } 1156 1157 static void 1158 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1159 { 1160 dsl_pool_t *dp = scn->scn_dp; 1161 spa_t *spa = dp->dp_spa; 1162 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1163 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1164 1165 ASSERT0(scn->scn_bytes_pending); 1166 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1167 1168 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1169 scn->scn_phys.scn_queue_obj, tx)); 1170 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1171 DMU_OT_NONE, 0, tx); 1172 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1173 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1174 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1175 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1176 sds->sds_txg, tx)); 1177 } 1178 } 1179 1180 /* 1181 * Computes the memory limit state that we're currently in. A sorted scan 1182 * needs quite a bit of memory to hold the sorting queue, so we need to 1183 * reasonably constrain the size so it doesn't impact overall system 1184 * performance. We compute two limits: 1185 * 1) Hard memory limit: if the amount of memory used by the sorting 1186 * queues on a pool gets above this value, we stop the metadata 1187 * scanning portion and start issuing the queued up and sorted 1188 * I/Os to reduce memory usage. 1189 * This limit is calculated as a fraction of physmem (by default 5%). 1190 * We constrain the lower bound of the hard limit to an absolute 1191 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1192 * the upper bound to 5% of the total pool size - no chance we'll 1193 * ever need that much memory, but just to keep the value in check. 1194 * 2) Soft memory limit: once we hit the hard memory limit, we start 1195 * issuing I/O to reduce queue memory usage, but we don't want to 1196 * completely empty out the queues, since we might be able to find I/Os 1197 * that will fill in the gaps of our non-sequential IOs at some point 1198 * in the future. So we stop the issuing of I/Os once the amount of 1199 * memory used drops below the soft limit (at which point we stop issuing 1200 * I/O and start scanning metadata again). 1201 * 1202 * This limit is calculated by subtracting a fraction of the hard 1203 * limit from the hard limit. By default this fraction is 5%, so 1204 * the soft limit is 95% of the hard limit. We cap the size of the 1205 * difference between the hard and soft limits at an absolute 1206 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1207 * sufficient to not cause too frequent switching between the 1208 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1209 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1210 * that should take at least a decent fraction of a second). 1211 */ 1212 static boolean_t 1213 dsl_scan_should_clear(dsl_scan_t *scn) 1214 { 1215 spa_t *spa = scn->scn_dp->dp_spa; 1216 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1217 uint64_t alloc, mlim_hard, mlim_soft, mused; 1218 1219 if (arc_memory_is_low()) { 1220 /* 1221 * System memory is tight, and scanning requires allocation. 1222 * Throttle the scan until we have more headroom. 1223 */ 1224 return (B_TRUE); 1225 } 1226 1227 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1228 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1229 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1230 1231 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1232 zfs_scan_mem_lim_min); 1233 mlim_hard = MIN(mlim_hard, alloc / 20); 1234 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1235 zfs_scan_mem_lim_soft_max); 1236 mused = 0; 1237 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1238 vdev_t *tvd = rvd->vdev_child[i]; 1239 dsl_scan_io_queue_t *queue; 1240 1241 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1242 queue = tvd->vdev_scan_io_queue; 1243 if (queue != NULL) { 1244 /* 1245 * # of extents in exts_by_size = # in exts_by_addr. 1246 * B-tree efficiency is ~75%, but can be as low as 50%. 1247 */ 1248 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1249 3 * sizeof (range_seg_gap_t) + queue->q_sio_memused; 1250 } 1251 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1252 } 1253 1254 dprintf_zfs("current scan memory usage: %llu bytes\n", 1255 (longlong_t)mused); 1256 1257 if (mused == 0) 1258 ASSERT0(scn->scn_bytes_pending); 1259 1260 /* 1261 * If we are above our hard limit, we need to clear out memory. 1262 * If we are below our soft limit, we need to accumulate sequential IOs. 1263 * Otherwise, we should keep doing whatever we are currently doing. 1264 */ 1265 if (mused >= mlim_hard) 1266 return (B_TRUE); 1267 else if (mused < mlim_soft) 1268 return (B_FALSE); 1269 else 1270 return (scn->scn_clearing); 1271 } 1272 1273 static boolean_t 1274 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1275 { 1276 /* we never skip user/group accounting objects */ 1277 if (zb && (int64_t)zb->zb_object < 0) 1278 return (B_FALSE); 1279 1280 if (scn->scn_suspending) 1281 return (B_TRUE); /* we're already suspending */ 1282 1283 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1284 return (B_FALSE); /* we're resuming */ 1285 1286 /* We only know how to resume from level-0 blocks. */ 1287 if (zb && zb->zb_level != 0) 1288 return (B_FALSE); 1289 1290 /* 1291 * We suspend if: 1292 * - we have scanned for at least the minimum time (default 1 sec 1293 * for scrub, 3 sec for resilver), and either we have sufficient 1294 * dirty data that we are starting to write more quickly 1295 * (default 30%), or someone is explicitly waiting for this txg 1296 * to complete. 1297 * or 1298 * - the spa is shutting down because this pool is being exported 1299 * or the machine is rebooting. 1300 * or 1301 * - the scan queue has reached its memory use limit 1302 */ 1303 hrtime_t curr_time_ns = gethrtime(); 1304 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1305 uint64_t sync_time_ns = curr_time_ns - 1306 scn->scn_dp->dp_spa->spa_sync_starttime; 1307 1308 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1309 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1310 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1311 1312 if ((NSEC2MSEC(scan_time_ns) > mintime && 1313 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1314 txg_sync_waiting(scn->scn_dp) || 1315 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1316 spa_shutting_down(scn->scn_dp->dp_spa) || 1317 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1318 if (zb) { 1319 dprintf_zfs("suspending at bookmark " 1320 "%llx/%llx/%llx/%llx\n", 1321 (longlong_t)zb->zb_objset, 1322 (longlong_t)zb->zb_object, 1323 (longlong_t)zb->zb_level, 1324 (longlong_t)zb->zb_blkid); 1325 scn->scn_phys.scn_bookmark = *zb; 1326 } else { 1327 dsl_scan_phys_t *scnp = &scn->scn_phys; 1328 1329 dprintf_zfs("suspending at DDT bookmark " 1330 "%llx/%llx/%llx/%llx\n", 1331 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1332 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1333 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1334 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1335 } 1336 scn->scn_suspending = B_TRUE; 1337 return (B_TRUE); 1338 } 1339 return (B_FALSE); 1340 } 1341 1342 typedef struct zil_scan_arg { 1343 dsl_pool_t *zsa_dp; 1344 zil_header_t *zsa_zh; 1345 } zil_scan_arg_t; 1346 1347 /* ARGSUSED */ 1348 static int 1349 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1350 { 1351 zil_scan_arg_t *zsa = arg; 1352 dsl_pool_t *dp = zsa->zsa_dp; 1353 dsl_scan_t *scn = dp->dp_scan; 1354 zil_header_t *zh = zsa->zsa_zh; 1355 zbookmark_phys_t zb; 1356 1357 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1358 return (0); 1359 1360 /* 1361 * One block ("stubby") can be allocated a long time ago; we 1362 * want to visit that one because it has been allocated 1363 * (on-disk) even if it hasn't been claimed (even though for 1364 * scrub there's nothing to do to it). 1365 */ 1366 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1367 return (0); 1368 1369 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1370 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1371 1372 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1373 return (0); 1374 } 1375 1376 /* ARGSUSED */ 1377 static int 1378 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1379 { 1380 if (lrc->lrc_txtype == TX_WRITE) { 1381 zil_scan_arg_t *zsa = arg; 1382 dsl_pool_t *dp = zsa->zsa_dp; 1383 dsl_scan_t *scn = dp->dp_scan; 1384 zil_header_t *zh = zsa->zsa_zh; 1385 lr_write_t *lr = (lr_write_t *)lrc; 1386 blkptr_t *bp = &lr->lr_blkptr; 1387 zbookmark_phys_t zb; 1388 1389 if (BP_IS_HOLE(bp) || 1390 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1391 return (0); 1392 1393 /* 1394 * birth can be < claim_txg if this record's txg is 1395 * already txg sync'ed (but this log block contains 1396 * other records that are not synced) 1397 */ 1398 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1399 return (0); 1400 1401 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1402 lr->lr_foid, ZB_ZIL_LEVEL, 1403 lr->lr_offset / BP_GET_LSIZE(bp)); 1404 1405 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1406 } 1407 return (0); 1408 } 1409 1410 static void 1411 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1412 { 1413 uint64_t claim_txg = zh->zh_claim_txg; 1414 zil_scan_arg_t zsa = { dp, zh }; 1415 zilog_t *zilog; 1416 1417 ASSERT(spa_writeable(dp->dp_spa)); 1418 1419 /* 1420 * We only want to visit blocks that have been claimed 1421 * but not yet replayed. 1422 */ 1423 if (claim_txg == 0) 1424 return; 1425 1426 zilog = zil_alloc(dp->dp_meta_objset, zh); 1427 1428 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1429 claim_txg, B_FALSE); 1430 1431 zil_free(zilog); 1432 } 1433 1434 /* 1435 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1436 * here is to sort the AVL tree by the order each block will be needed. 1437 */ 1438 static int 1439 scan_prefetch_queue_compare(const void *a, const void *b) 1440 { 1441 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1442 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1443 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1444 1445 return (zbookmark_compare(spc_a->spc_datablkszsec, 1446 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1447 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1448 } 1449 1450 static void 1451 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1452 { 1453 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1454 zfs_refcount_destroy(&spc->spc_refcnt); 1455 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1456 } 1457 } 1458 1459 static scan_prefetch_ctx_t * 1460 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1461 { 1462 scan_prefetch_ctx_t *spc; 1463 1464 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1465 zfs_refcount_create(&spc->spc_refcnt); 1466 zfs_refcount_add(&spc->spc_refcnt, tag); 1467 spc->spc_scn = scn; 1468 if (dnp != NULL) { 1469 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1470 spc->spc_indblkshift = dnp->dn_indblkshift; 1471 spc->spc_root = B_FALSE; 1472 } else { 1473 spc->spc_datablkszsec = 0; 1474 spc->spc_indblkshift = 0; 1475 spc->spc_root = B_TRUE; 1476 } 1477 1478 return (spc); 1479 } 1480 1481 static void 1482 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1483 { 1484 zfs_refcount_add(&spc->spc_refcnt, tag); 1485 } 1486 1487 static boolean_t 1488 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1489 const zbookmark_phys_t *zb) 1490 { 1491 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1492 dnode_phys_t tmp_dnp; 1493 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1494 1495 if (zb->zb_objset != last_zb->zb_objset) 1496 return (B_TRUE); 1497 if ((int64_t)zb->zb_object < 0) 1498 return (B_FALSE); 1499 1500 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1501 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1502 1503 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1504 return (B_TRUE); 1505 1506 return (B_FALSE); 1507 } 1508 1509 static void 1510 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1511 { 1512 avl_index_t idx; 1513 dsl_scan_t *scn = spc->spc_scn; 1514 spa_t *spa = scn->scn_dp->dp_spa; 1515 scan_prefetch_issue_ctx_t *spic; 1516 1517 if (zfs_no_scrub_prefetch) 1518 return; 1519 1520 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1521 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1522 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1523 return; 1524 1525 if (dsl_scan_check_prefetch_resume(spc, zb)) 1526 return; 1527 1528 scan_prefetch_ctx_add_ref(spc, scn); 1529 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1530 spic->spic_spc = spc; 1531 spic->spic_bp = *bp; 1532 spic->spic_zb = *zb; 1533 1534 /* 1535 * Add the IO to the queue of blocks to prefetch. This allows us to 1536 * prioritize blocks that we will need first for the main traversal 1537 * thread. 1538 */ 1539 mutex_enter(&spa->spa_scrub_lock); 1540 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1541 /* this block is already queued for prefetch */ 1542 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1543 scan_prefetch_ctx_rele(spc, scn); 1544 mutex_exit(&spa->spa_scrub_lock); 1545 return; 1546 } 1547 1548 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1549 cv_broadcast(&spa->spa_scrub_io_cv); 1550 mutex_exit(&spa->spa_scrub_lock); 1551 } 1552 1553 static void 1554 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1555 uint64_t objset, uint64_t object) 1556 { 1557 int i; 1558 zbookmark_phys_t zb; 1559 scan_prefetch_ctx_t *spc; 1560 1561 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1562 return; 1563 1564 SET_BOOKMARK(&zb, objset, object, 0, 0); 1565 1566 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1567 1568 for (i = 0; i < dnp->dn_nblkptr; i++) { 1569 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1570 zb.zb_blkid = i; 1571 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1572 } 1573 1574 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1575 zb.zb_level = 0; 1576 zb.zb_blkid = DMU_SPILL_BLKID; 1577 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); 1578 } 1579 1580 scan_prefetch_ctx_rele(spc, FTAG); 1581 } 1582 1583 void 1584 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1585 arc_buf_t *buf, void *private) 1586 { 1587 scan_prefetch_ctx_t *spc = private; 1588 dsl_scan_t *scn = spc->spc_scn; 1589 spa_t *spa = scn->scn_dp->dp_spa; 1590 1591 /* broadcast that the IO has completed for rate limitting purposes */ 1592 mutex_enter(&spa->spa_scrub_lock); 1593 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1594 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1595 cv_broadcast(&spa->spa_scrub_io_cv); 1596 mutex_exit(&spa->spa_scrub_lock); 1597 1598 /* if there was an error or we are done prefetching, just cleanup */ 1599 if (buf == NULL || scn->scn_suspending) 1600 goto out; 1601 1602 if (BP_GET_LEVEL(bp) > 0) { 1603 int i; 1604 blkptr_t *cbp; 1605 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1606 zbookmark_phys_t czb; 1607 1608 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1609 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1610 zb->zb_level - 1, zb->zb_blkid * epb + i); 1611 dsl_scan_prefetch(spc, cbp, &czb); 1612 } 1613 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1614 dnode_phys_t *cdnp = buf->b_data; 1615 int i; 1616 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1617 1618 for (i = 0, cdnp = buf->b_data; i < epb; 1619 i += cdnp->dn_extra_slots + 1, 1620 cdnp += cdnp->dn_extra_slots + 1) { 1621 dsl_scan_prefetch_dnode(scn, cdnp, 1622 zb->zb_objset, zb->zb_blkid * epb + i); 1623 } 1624 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1625 objset_phys_t *osp = buf->b_data; 1626 1627 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1628 zb->zb_objset, DMU_META_DNODE_OBJECT); 1629 1630 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1631 dsl_scan_prefetch_dnode(scn, 1632 &osp->os_groupused_dnode, zb->zb_objset, 1633 DMU_GROUPUSED_OBJECT); 1634 dsl_scan_prefetch_dnode(scn, 1635 &osp->os_userused_dnode, zb->zb_objset, 1636 DMU_USERUSED_OBJECT); 1637 } 1638 } 1639 1640 out: 1641 if (buf != NULL) 1642 arc_buf_destroy(buf, private); 1643 scan_prefetch_ctx_rele(spc, scn); 1644 } 1645 1646 /* ARGSUSED */ 1647 static void 1648 dsl_scan_prefetch_thread(void *arg) 1649 { 1650 dsl_scan_t *scn = arg; 1651 spa_t *spa = scn->scn_dp->dp_spa; 1652 vdev_t *rvd = spa->spa_root_vdev; 1653 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; 1654 scan_prefetch_issue_ctx_t *spic; 1655 1656 /* loop until we are told to stop */ 1657 while (!scn->scn_prefetch_stop) { 1658 arc_flags_t flags = ARC_FLAG_NOWAIT | 1659 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1660 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1661 1662 mutex_enter(&spa->spa_scrub_lock); 1663 1664 /* 1665 * Wait until we have an IO to issue and are not above our 1666 * maximum in flight limit. 1667 */ 1668 while (!scn->scn_prefetch_stop && 1669 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1670 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1671 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1672 } 1673 1674 /* recheck if we should stop since we waited for the cv */ 1675 if (scn->scn_prefetch_stop) { 1676 mutex_exit(&spa->spa_scrub_lock); 1677 break; 1678 } 1679 1680 /* remove the prefetch IO from the tree */ 1681 spic = avl_first(&scn->scn_prefetch_queue); 1682 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1683 avl_remove(&scn->scn_prefetch_queue, spic); 1684 1685 mutex_exit(&spa->spa_scrub_lock); 1686 1687 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1688 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1689 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1690 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1691 zio_flags |= ZIO_FLAG_RAW; 1692 } 1693 1694 /* issue the prefetch asynchronously */ 1695 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1696 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1697 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1698 1699 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1700 } 1701 1702 ASSERT(scn->scn_prefetch_stop); 1703 1704 /* free any prefetches we didn't get to complete */ 1705 mutex_enter(&spa->spa_scrub_lock); 1706 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1707 avl_remove(&scn->scn_prefetch_queue, spic); 1708 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1709 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1710 } 1711 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1712 mutex_exit(&spa->spa_scrub_lock); 1713 } 1714 1715 static boolean_t 1716 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1717 const zbookmark_phys_t *zb) 1718 { 1719 /* 1720 * We never skip over user/group accounting objects (obj<0) 1721 */ 1722 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1723 (int64_t)zb->zb_object >= 0) { 1724 /* 1725 * If we already visited this bp & everything below (in 1726 * a prior txg sync), don't bother doing it again. 1727 */ 1728 if (zbookmark_subtree_completed(dnp, zb, 1729 &scn->scn_phys.scn_bookmark)) 1730 return (B_TRUE); 1731 1732 /* 1733 * If we found the block we're trying to resume from, or 1734 * we went past it to a different object, zero it out to 1735 * indicate that it's OK to start checking for suspending 1736 * again. 1737 */ 1738 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1739 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1740 dprintf_zfs("resuming at %llx/%llx/%llx/%llx\n", 1741 (longlong_t)zb->zb_objset, 1742 (longlong_t)zb->zb_object, 1743 (longlong_t)zb->zb_level, 1744 (longlong_t)zb->zb_blkid); 1745 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1746 } 1747 } 1748 return (B_FALSE); 1749 } 1750 1751 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1752 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1753 dmu_objset_type_t ostype, dmu_tx_t *tx); 1754 static void dsl_scan_visitdnode( 1755 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1756 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1757 1758 /* 1759 * Return nonzero on i/o error. 1760 * Return new buf to write out in *bufp. 1761 */ 1762 static int 1763 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1764 dnode_phys_t *dnp, const blkptr_t *bp, 1765 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1766 { 1767 dsl_pool_t *dp = scn->scn_dp; 1768 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1769 int err; 1770 1771 if (BP_GET_LEVEL(bp) > 0) { 1772 arc_flags_t flags = ARC_FLAG_WAIT; 1773 int i; 1774 blkptr_t *cbp; 1775 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1776 arc_buf_t *buf; 1777 1778 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1779 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1780 if (err) { 1781 scn->scn_phys.scn_errors++; 1782 return (err); 1783 } 1784 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1785 zbookmark_phys_t czb; 1786 1787 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1788 zb->zb_level - 1, 1789 zb->zb_blkid * epb + i); 1790 dsl_scan_visitbp(cbp, &czb, dnp, 1791 ds, scn, ostype, tx); 1792 } 1793 arc_buf_destroy(buf, &buf); 1794 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1795 arc_flags_t flags = ARC_FLAG_WAIT; 1796 dnode_phys_t *cdnp; 1797 int i; 1798 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1799 arc_buf_t *buf; 1800 1801 if (BP_IS_PROTECTED(bp)) { 1802 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1803 zio_flags |= ZIO_FLAG_RAW; 1804 } 1805 1806 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1807 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1808 if (err) { 1809 scn->scn_phys.scn_errors++; 1810 return (err); 1811 } 1812 for (i = 0, cdnp = buf->b_data; i < epb; 1813 i += cdnp->dn_extra_slots + 1, 1814 cdnp += cdnp->dn_extra_slots + 1) { 1815 dsl_scan_visitdnode(scn, ds, ostype, 1816 cdnp, zb->zb_blkid * epb + i, tx); 1817 } 1818 1819 arc_buf_destroy(buf, &buf); 1820 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1821 arc_flags_t flags = ARC_FLAG_WAIT; 1822 objset_phys_t *osp; 1823 arc_buf_t *buf; 1824 1825 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1826 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1827 if (err) { 1828 scn->scn_phys.scn_errors++; 1829 return (err); 1830 } 1831 1832 osp = buf->b_data; 1833 1834 dsl_scan_visitdnode(scn, ds, osp->os_type, 1835 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1836 1837 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1838 /* 1839 * We also always visit user/group/project accounting 1840 * objects, and never skip them, even if we are 1841 * suspending. This is necessary so that the space 1842 * deltas from this txg get integrated. 1843 */ 1844 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1845 dsl_scan_visitdnode(scn, ds, osp->os_type, 1846 &osp->os_projectused_dnode, 1847 DMU_PROJECTUSED_OBJECT, tx); 1848 dsl_scan_visitdnode(scn, ds, osp->os_type, 1849 &osp->os_groupused_dnode, 1850 DMU_GROUPUSED_OBJECT, tx); 1851 dsl_scan_visitdnode(scn, ds, osp->os_type, 1852 &osp->os_userused_dnode, 1853 DMU_USERUSED_OBJECT, tx); 1854 } 1855 arc_buf_destroy(buf, &buf); 1856 } 1857 1858 return (0); 1859 } 1860 1861 static void 1862 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1863 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1864 uint64_t object, dmu_tx_t *tx) 1865 { 1866 int j; 1867 1868 for (j = 0; j < dnp->dn_nblkptr; j++) { 1869 zbookmark_phys_t czb; 1870 1871 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1872 dnp->dn_nlevels - 1, j); 1873 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1874 &czb, dnp, ds, scn, ostype, tx); 1875 } 1876 1877 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1878 zbookmark_phys_t czb; 1879 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1880 0, DMU_SPILL_BLKID); 1881 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1882 &czb, dnp, ds, scn, ostype, tx); 1883 } 1884 } 1885 1886 /* 1887 * The arguments are in this order because mdb can only print the 1888 * first 5; we want them to be useful. 1889 */ 1890 static void 1891 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1892 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1893 dmu_objset_type_t ostype, dmu_tx_t *tx) 1894 { 1895 dsl_pool_t *dp = scn->scn_dp; 1896 blkptr_t *bp_toread = NULL; 1897 1898 if (dsl_scan_check_suspend(scn, zb)) 1899 return; 1900 1901 if (dsl_scan_check_resume(scn, dnp, zb)) 1902 return; 1903 1904 scn->scn_visited_this_txg++; 1905 1906 /* 1907 * This debugging is commented out to conserve stack space. This 1908 * function is called recursively and the debugging addes several 1909 * bytes to the stack for each call. It can be commented back in 1910 * if required to debug an issue in dsl_scan_visitbp(). 1911 * 1912 * dprintf_bp(bp, 1913 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1914 * ds, ds ? ds->ds_object : 0, 1915 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1916 * bp); 1917 */ 1918 1919 if (BP_IS_HOLE(bp)) { 1920 scn->scn_holes_this_txg++; 1921 return; 1922 } 1923 1924 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1925 scn->scn_lt_min_this_txg++; 1926 return; 1927 } 1928 1929 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1930 *bp_toread = *bp; 1931 1932 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1933 goto out; 1934 1935 /* 1936 * If dsl_scan_ddt() has already visited this block, it will have 1937 * already done any translations or scrubbing, so don't call the 1938 * callback again. 1939 */ 1940 if (ddt_class_contains(dp->dp_spa, 1941 scn->scn_phys.scn_ddt_class_max, bp)) { 1942 scn->scn_ddt_contained_this_txg++; 1943 goto out; 1944 } 1945 1946 /* 1947 * If this block is from the future (after cur_max_txg), then we 1948 * are doing this on behalf of a deleted snapshot, and we will 1949 * revisit the future block on the next pass of this dataset. 1950 * Don't scan it now unless we need to because something 1951 * under it was modified. 1952 */ 1953 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 1954 scn->scn_gt_max_this_txg++; 1955 goto out; 1956 } 1957 1958 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 1959 1960 out: 1961 kmem_free(bp_toread, sizeof (blkptr_t)); 1962 } 1963 1964 static void 1965 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 1966 dmu_tx_t *tx) 1967 { 1968 zbookmark_phys_t zb; 1969 scan_prefetch_ctx_t *spc; 1970 1971 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1972 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 1973 1974 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 1975 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 1976 zb.zb_objset, 0, 0, 0); 1977 } else { 1978 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 1979 } 1980 1981 scn->scn_objsets_visited_this_txg++; 1982 1983 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 1984 dsl_scan_prefetch(spc, bp, &zb); 1985 scan_prefetch_ctx_rele(spc, FTAG); 1986 1987 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 1988 1989 dprintf_ds(ds, "finished scan%s", ""); 1990 } 1991 1992 static void 1993 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 1994 { 1995 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 1996 if (ds->ds_is_snapshot) { 1997 /* 1998 * Note: 1999 * - scn_cur_{min,max}_txg stays the same. 2000 * - Setting the flag is not really necessary if 2001 * scn_cur_max_txg == scn_max_txg, because there 2002 * is nothing after this snapshot that we care 2003 * about. However, we set it anyway and then 2004 * ignore it when we retraverse it in 2005 * dsl_scan_visitds(). 2006 */ 2007 scn_phys->scn_bookmark.zb_objset = 2008 dsl_dataset_phys(ds)->ds_next_snap_obj; 2009 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2010 "reset zb_objset to %llu", 2011 (u_longlong_t)ds->ds_object, 2012 (u_longlong_t)dsl_dataset_phys(ds)-> 2013 ds_next_snap_obj); 2014 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2015 } else { 2016 SET_BOOKMARK(&scn_phys->scn_bookmark, 2017 ZB_DESTROYED_OBJSET, 0, 0, 0); 2018 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2019 "reset bookmark to -1,0,0,0", 2020 (u_longlong_t)ds->ds_object); 2021 } 2022 } 2023 } 2024 2025 /* 2026 * Invoked when a dataset is destroyed. We need to make sure that: 2027 * 2028 * 1) If it is the dataset that was currently being scanned, we write 2029 * a new dsl_scan_phys_t and marking the objset reference in it 2030 * as destroyed. 2031 * 2) Remove it from the work queue, if it was present. 2032 * 2033 * If the dataset was actually a snapshot, instead of marking the dataset 2034 * as destroyed, we instead substitute the next snapshot in line. 2035 */ 2036 void 2037 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2038 { 2039 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2040 dsl_scan_t *scn = dp->dp_scan; 2041 uint64_t mintxg; 2042 2043 if (!dsl_scan_is_running(scn)) 2044 return; 2045 2046 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2047 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2048 2049 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2050 scan_ds_queue_remove(scn, ds->ds_object); 2051 if (ds->ds_is_snapshot) 2052 scan_ds_queue_insert(scn, 2053 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2054 } 2055 2056 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2057 ds->ds_object, &mintxg) == 0) { 2058 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2059 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2060 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2061 if (ds->ds_is_snapshot) { 2062 /* 2063 * We keep the same mintxg; it could be > 2064 * ds_creation_txg if the previous snapshot was 2065 * deleted too. 2066 */ 2067 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2068 scn->scn_phys.scn_queue_obj, 2069 dsl_dataset_phys(ds)->ds_next_snap_obj, 2070 mintxg, tx) == 0); 2071 zfs_dbgmsg("destroying ds %llu; in queue; " 2072 "replacing with %llu", 2073 (u_longlong_t)ds->ds_object, 2074 (u_longlong_t)dsl_dataset_phys(ds)-> 2075 ds_next_snap_obj); 2076 } else { 2077 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2078 (u_longlong_t)ds->ds_object); 2079 } 2080 } 2081 2082 /* 2083 * dsl_scan_sync() should be called after this, and should sync 2084 * out our changed state, but just to be safe, do it here. 2085 */ 2086 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2087 } 2088 2089 static void 2090 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2091 { 2092 if (scn_bookmark->zb_objset == ds->ds_object) { 2093 scn_bookmark->zb_objset = 2094 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2095 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2096 "reset zb_objset to %llu", 2097 (u_longlong_t)ds->ds_object, 2098 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2099 } 2100 } 2101 2102 /* 2103 * Called when a dataset is snapshotted. If we were currently traversing 2104 * this snapshot, we reset our bookmark to point at the newly created 2105 * snapshot. We also modify our work queue to remove the old snapshot and 2106 * replace with the new one. 2107 */ 2108 void 2109 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2110 { 2111 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2112 dsl_scan_t *scn = dp->dp_scan; 2113 uint64_t mintxg; 2114 2115 if (!dsl_scan_is_running(scn)) 2116 return; 2117 2118 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2119 2120 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2121 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2122 2123 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2124 scan_ds_queue_remove(scn, ds->ds_object); 2125 scan_ds_queue_insert(scn, 2126 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2127 } 2128 2129 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2130 ds->ds_object, &mintxg) == 0) { 2131 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2132 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2133 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2134 scn->scn_phys.scn_queue_obj, 2135 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2136 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2137 "replacing with %llu", 2138 (u_longlong_t)ds->ds_object, 2139 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2140 } 2141 2142 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2143 } 2144 2145 static void 2146 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2147 zbookmark_phys_t *scn_bookmark) 2148 { 2149 if (scn_bookmark->zb_objset == ds1->ds_object) { 2150 scn_bookmark->zb_objset = ds2->ds_object; 2151 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2152 "reset zb_objset to %llu", 2153 (u_longlong_t)ds1->ds_object, 2154 (u_longlong_t)ds2->ds_object); 2155 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2156 scn_bookmark->zb_objset = ds1->ds_object; 2157 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2158 "reset zb_objset to %llu", 2159 (u_longlong_t)ds2->ds_object, 2160 (u_longlong_t)ds1->ds_object); 2161 } 2162 } 2163 2164 /* 2165 * Called when a parent dataset and its clone are swapped. If we were 2166 * currently traversing the dataset, we need to switch to traversing the 2167 * newly promoted parent. 2168 */ 2169 void 2170 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2171 { 2172 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2173 dsl_scan_t *scn = dp->dp_scan; 2174 uint64_t mintxg; 2175 2176 if (!dsl_scan_is_running(scn)) 2177 return; 2178 2179 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2180 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2181 2182 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) { 2183 scan_ds_queue_remove(scn, ds1->ds_object); 2184 scan_ds_queue_insert(scn, ds2->ds_object, mintxg); 2185 } 2186 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) { 2187 scan_ds_queue_remove(scn, ds2->ds_object); 2188 scan_ds_queue_insert(scn, ds1->ds_object, mintxg); 2189 } 2190 2191 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2192 ds1->ds_object, &mintxg) == 0) { 2193 int err; 2194 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2195 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2196 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2197 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2198 err = zap_add_int_key(dp->dp_meta_objset, 2199 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); 2200 VERIFY(err == 0 || err == EEXIST); 2201 if (err == EEXIST) { 2202 /* Both were there to begin with */ 2203 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2204 scn->scn_phys.scn_queue_obj, 2205 ds1->ds_object, mintxg, tx)); 2206 } 2207 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2208 "replacing with %llu", 2209 (u_longlong_t)ds1->ds_object, 2210 (u_longlong_t)ds2->ds_object); 2211 } 2212 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2213 ds2->ds_object, &mintxg) == 0) { 2214 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2215 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2216 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2217 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2218 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2219 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); 2220 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2221 "replacing with %llu", 2222 (u_longlong_t)ds2->ds_object, 2223 (u_longlong_t)ds1->ds_object); 2224 } 2225 2226 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2227 } 2228 2229 /* ARGSUSED */ 2230 static int 2231 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2232 { 2233 uint64_t originobj = *(uint64_t *)arg; 2234 dsl_dataset_t *ds; 2235 int err; 2236 dsl_scan_t *scn = dp->dp_scan; 2237 2238 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2239 return (0); 2240 2241 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2242 if (err) 2243 return (err); 2244 2245 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2246 dsl_dataset_t *prev; 2247 err = dsl_dataset_hold_obj(dp, 2248 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2249 2250 dsl_dataset_rele(ds, FTAG); 2251 if (err) 2252 return (err); 2253 ds = prev; 2254 } 2255 scan_ds_queue_insert(scn, ds->ds_object, 2256 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2257 dsl_dataset_rele(ds, FTAG); 2258 return (0); 2259 } 2260 2261 static void 2262 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2263 { 2264 dsl_pool_t *dp = scn->scn_dp; 2265 dsl_dataset_t *ds; 2266 2267 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2268 2269 if (scn->scn_phys.scn_cur_min_txg >= 2270 scn->scn_phys.scn_max_txg) { 2271 /* 2272 * This can happen if this snapshot was created after the 2273 * scan started, and we already completed a previous snapshot 2274 * that was created after the scan started. This snapshot 2275 * only references blocks with: 2276 * 2277 * birth < our ds_creation_txg 2278 * cur_min_txg is no less than ds_creation_txg. 2279 * We have already visited these blocks. 2280 * or 2281 * birth > scn_max_txg 2282 * The scan requested not to visit these blocks. 2283 * 2284 * Subsequent snapshots (and clones) can reference our 2285 * blocks, or blocks with even higher birth times. 2286 * Therefore we do not need to visit them either, 2287 * so we do not add them to the work queue. 2288 * 2289 * Note that checking for cur_min_txg >= cur_max_txg 2290 * is not sufficient, because in that case we may need to 2291 * visit subsequent snapshots. This happens when min_txg > 0, 2292 * which raises cur_min_txg. In this case we will visit 2293 * this dataset but skip all of its blocks, because the 2294 * rootbp's birth time is < cur_min_txg. Then we will 2295 * add the next snapshots/clones to the work queue. 2296 */ 2297 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); 2298 dsl_dataset_name(ds, dsname); 2299 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2300 "cur_min_txg (%llu) >= max_txg (%llu)", 2301 (longlong_t)dsobj, dsname, 2302 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2303 (longlong_t)scn->scn_phys.scn_max_txg); 2304 kmem_free(dsname, MAXNAMELEN); 2305 2306 goto out; 2307 } 2308 2309 /* 2310 * Only the ZIL in the head (non-snapshot) is valid. Even though 2311 * snapshots can have ZIL block pointers (which may be the same 2312 * BP as in the head), they must be ignored. In addition, $ORIGIN 2313 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2314 * need to look for a ZIL in it either. So we traverse the ZIL here, 2315 * rather than in scan_recurse(), because the regular snapshot 2316 * block-sharing rules don't apply to it. 2317 */ 2318 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && 2319 (dp->dp_origin_snap == NULL || 2320 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2321 objset_t *os; 2322 if (dmu_objset_from_ds(ds, &os) != 0) { 2323 goto out; 2324 } 2325 dsl_scan_zil(dp, &os->os_zil_header); 2326 } 2327 2328 /* 2329 * Iterate over the bps in this ds. 2330 */ 2331 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2332 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2333 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2334 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2335 2336 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2337 dsl_dataset_name(ds, dsname); 2338 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2339 "suspending=%u", 2340 (longlong_t)dsobj, dsname, 2341 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2342 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2343 (int)scn->scn_suspending); 2344 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2345 2346 if (scn->scn_suspending) 2347 goto out; 2348 2349 /* 2350 * We've finished this pass over this dataset. 2351 */ 2352 2353 /* 2354 * If we did not completely visit this dataset, do another pass. 2355 */ 2356 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2357 zfs_dbgmsg("incomplete pass; visiting again"); 2358 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2359 scan_ds_queue_insert(scn, ds->ds_object, 2360 scn->scn_phys.scn_cur_max_txg); 2361 goto out; 2362 } 2363 2364 /* 2365 * Add descendent datasets to work queue. 2366 */ 2367 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2368 scan_ds_queue_insert(scn, 2369 dsl_dataset_phys(ds)->ds_next_snap_obj, 2370 dsl_dataset_phys(ds)->ds_creation_txg); 2371 } 2372 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2373 boolean_t usenext = B_FALSE; 2374 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2375 uint64_t count; 2376 /* 2377 * A bug in a previous version of the code could 2378 * cause upgrade_clones_cb() to not set 2379 * ds_next_snap_obj when it should, leading to a 2380 * missing entry. Therefore we can only use the 2381 * next_clones_obj when its count is correct. 2382 */ 2383 int err = zap_count(dp->dp_meta_objset, 2384 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2385 if (err == 0 && 2386 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2387 usenext = B_TRUE; 2388 } 2389 2390 if (usenext) { 2391 zap_cursor_t zc; 2392 zap_attribute_t za; 2393 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2394 dsl_dataset_phys(ds)->ds_next_clones_obj); 2395 zap_cursor_retrieve(&zc, &za) == 0; 2396 (void) zap_cursor_advance(&zc)) { 2397 scan_ds_queue_insert(scn, 2398 zfs_strtonum(za.za_name, NULL), 2399 dsl_dataset_phys(ds)->ds_creation_txg); 2400 } 2401 zap_cursor_fini(&zc); 2402 } else { 2403 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2404 enqueue_clones_cb, &ds->ds_object, 2405 DS_FIND_CHILDREN)); 2406 } 2407 } 2408 2409 out: 2410 dsl_dataset_rele(ds, FTAG); 2411 } 2412 2413 /* ARGSUSED */ 2414 static int 2415 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2416 { 2417 dsl_dataset_t *ds; 2418 int err; 2419 dsl_scan_t *scn = dp->dp_scan; 2420 2421 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2422 if (err) 2423 return (err); 2424 2425 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2426 dsl_dataset_t *prev; 2427 err = dsl_dataset_hold_obj(dp, 2428 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2429 if (err) { 2430 dsl_dataset_rele(ds, FTAG); 2431 return (err); 2432 } 2433 2434 /* 2435 * If this is a clone, we don't need to worry about it for now. 2436 */ 2437 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2438 dsl_dataset_rele(ds, FTAG); 2439 dsl_dataset_rele(prev, FTAG); 2440 return (0); 2441 } 2442 dsl_dataset_rele(ds, FTAG); 2443 ds = prev; 2444 } 2445 2446 scan_ds_queue_insert(scn, ds->ds_object, 2447 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2448 dsl_dataset_rele(ds, FTAG); 2449 return (0); 2450 } 2451 2452 /* ARGSUSED */ 2453 void 2454 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2455 ddt_entry_t *dde, dmu_tx_t *tx) 2456 { 2457 const ddt_key_t *ddk = &dde->dde_key; 2458 ddt_phys_t *ddp = dde->dde_phys; 2459 blkptr_t bp; 2460 zbookmark_phys_t zb = { 0 }; 2461 int p; 2462 2463 if (scn->scn_phys.scn_state != DSS_SCANNING) 2464 return; 2465 2466 /* 2467 * This function is special because it is the only thing 2468 * that can add scan_io_t's to the vdev scan queues from 2469 * outside dsl_scan_sync(). For the most part this is ok 2470 * as long as it is called from within syncing context. 2471 * However, dsl_scan_sync() expects that no new sio's will 2472 * be added between when all the work for a scan is done 2473 * and the next txg when the scan is actually marked as 2474 * completed. This check ensures we do not issue new sio's 2475 * during this period. 2476 */ 2477 if (scn->scn_done_txg != 0) 2478 return; 2479 2480 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2481 if (ddp->ddp_phys_birth == 0 || 2482 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2483 continue; 2484 ddt_bp_create(checksum, ddk, ddp, &bp); 2485 2486 scn->scn_visited_this_txg++; 2487 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2488 } 2489 } 2490 2491 /* 2492 * Scrub/dedup interaction. 2493 * 2494 * If there are N references to a deduped block, we don't want to scrub it 2495 * N times -- ideally, we should scrub it exactly once. 2496 * 2497 * We leverage the fact that the dde's replication class (enum ddt_class) 2498 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2499 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2500 * 2501 * To prevent excess scrubbing, the scrub begins by walking the DDT 2502 * to find all blocks with refcnt > 1, and scrubs each of these once. 2503 * Since there are two replication classes which contain blocks with 2504 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2505 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2506 * 2507 * There would be nothing more to say if a block's refcnt couldn't change 2508 * during a scrub, but of course it can so we must account for changes 2509 * in a block's replication class. 2510 * 2511 * Here's an example of what can occur: 2512 * 2513 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2514 * when visited during the top-down scrub phase, it will be scrubbed twice. 2515 * This negates our scrub optimization, but is otherwise harmless. 2516 * 2517 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2518 * on each visit during the top-down scrub phase, it will never be scrubbed. 2519 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2520 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2521 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2522 * while a scrub is in progress, it scrubs the block right then. 2523 */ 2524 static void 2525 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2526 { 2527 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2528 ddt_entry_t dde = { 0 }; 2529 int error; 2530 uint64_t n = 0; 2531 2532 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2533 ddt_t *ddt; 2534 2535 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2536 break; 2537 dprintf_zfs("visiting ddb=%llu/%llu/%llu/%llx\n", 2538 (longlong_t)ddb->ddb_class, 2539 (longlong_t)ddb->ddb_type, 2540 (longlong_t)ddb->ddb_checksum, 2541 (longlong_t)ddb->ddb_cursor); 2542 2543 /* There should be no pending changes to the dedup table */ 2544 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2545 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2546 2547 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2548 n++; 2549 2550 if (dsl_scan_check_suspend(scn, NULL)) 2551 break; 2552 } 2553 2554 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2555 "suspending=%u", (longlong_t)n, 2556 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2557 2558 ASSERT(error == 0 || error == ENOENT); 2559 ASSERT(error != ENOENT || 2560 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2561 } 2562 2563 static uint64_t 2564 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2565 { 2566 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2567 if (ds->ds_is_snapshot) 2568 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2569 return (smt); 2570 } 2571 2572 static void 2573 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2574 { 2575 scan_ds_t *sds; 2576 dsl_pool_t *dp = scn->scn_dp; 2577 2578 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2579 scn->scn_phys.scn_ddt_class_max) { 2580 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2581 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2582 dsl_scan_ddt(scn, tx); 2583 if (scn->scn_suspending) 2584 return; 2585 } 2586 2587 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2588 /* First do the MOS & ORIGIN */ 2589 2590 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2591 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2592 dsl_scan_visit_rootbp(scn, NULL, 2593 &dp->dp_meta_rootbp, tx); 2594 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2595 if (scn->scn_suspending) 2596 return; 2597 2598 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2599 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2600 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2601 } else { 2602 dsl_scan_visitds(scn, 2603 dp->dp_origin_snap->ds_object, tx); 2604 } 2605 ASSERT(!scn->scn_suspending); 2606 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2607 ZB_DESTROYED_OBJSET) { 2608 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2609 /* 2610 * If we were suspended, continue from here. Note if the 2611 * ds we were suspended on was deleted, the zb_objset may 2612 * be -1, so we will skip this and find a new objset 2613 * below. 2614 */ 2615 dsl_scan_visitds(scn, dsobj, tx); 2616 if (scn->scn_suspending) 2617 return; 2618 } 2619 2620 /* 2621 * In case we suspended right at the end of the ds, zero the 2622 * bookmark so we don't think that we're still trying to resume. 2623 */ 2624 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2625 2626 /* 2627 * Keep pulling things out of the dataset avl queue. Updates to the 2628 * persistent zap-object-as-queue happen only at checkpoints. 2629 */ 2630 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2631 dsl_dataset_t *ds; 2632 uint64_t dsobj = sds->sds_dsobj; 2633 uint64_t txg = sds->sds_txg; 2634 2635 /* dequeue and free the ds from the queue */ 2636 scan_ds_queue_remove(scn, dsobj); 2637 sds = NULL; /* must not be touched after removal */ 2638 2639 /* Set up min / max txg */ 2640 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2641 if (txg != 0) { 2642 scn->scn_phys.scn_cur_min_txg = 2643 MAX(scn->scn_phys.scn_min_txg, txg); 2644 } else { 2645 scn->scn_phys.scn_cur_min_txg = 2646 MAX(scn->scn_phys.scn_min_txg, 2647 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2648 } 2649 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2650 dsl_dataset_rele(ds, FTAG); 2651 2652 dsl_scan_visitds(scn, dsobj, tx); 2653 if (scn->scn_suspending) 2654 return; 2655 } 2656 /* No more objsets to fetch, we're done */ 2657 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2658 ASSERT0(scn->scn_suspending); 2659 } 2660 2661 static uint64_t 2662 dsl_scan_count_leaves(vdev_t *vd) 2663 { 2664 uint64_t i, leaves = 0; 2665 2666 /* we only count leaves that belong to the main pool and are readable */ 2667 if (vd->vdev_islog || vd->vdev_isspare || 2668 vd->vdev_isl2cache || !vdev_readable(vd)) 2669 return (0); 2670 2671 if (vd->vdev_ops->vdev_op_leaf) 2672 return (1); 2673 2674 for (i = 0; i < vd->vdev_children; i++) { 2675 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2676 } 2677 2678 return (leaves); 2679 } 2680 2681 2682 static void 2683 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2684 { 2685 int i; 2686 uint64_t cur_size = 0; 2687 2688 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2689 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2690 } 2691 2692 q->q_total_zio_size_this_txg += cur_size; 2693 q->q_zios_this_txg++; 2694 } 2695 2696 static void 2697 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2698 uint64_t end) 2699 { 2700 q->q_total_seg_size_this_txg += end - start; 2701 q->q_segs_this_txg++; 2702 } 2703 2704 static boolean_t 2705 scan_io_queue_check_suspend(dsl_scan_t *scn) 2706 { 2707 /* See comment in dsl_scan_check_suspend() */ 2708 uint64_t curr_time_ns = gethrtime(); 2709 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2710 uint64_t sync_time_ns = curr_time_ns - 2711 scn->scn_dp->dp_spa->spa_sync_starttime; 2712 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2713 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2714 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2715 2716 return ((NSEC2MSEC(scan_time_ns) > mintime && 2717 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2718 txg_sync_waiting(scn->scn_dp) || 2719 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2720 spa_shutting_down(scn->scn_dp->dp_spa)); 2721 } 2722 2723 /* 2724 * Given a list of scan_io_t's in io_list, this issues the io's out to 2725 * disk. This consumes the io_list and frees the scan_io_t's. This is 2726 * called when emptying queues, either when we're up against the memory 2727 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2728 * processing the list before we finished. Any zios that were not issued 2729 * will remain in the io_list. 2730 */ 2731 static boolean_t 2732 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2733 { 2734 dsl_scan_t *scn = queue->q_scn; 2735 scan_io_t *sio; 2736 int64_t bytes_issued = 0; 2737 boolean_t suspended = B_FALSE; 2738 2739 while ((sio = list_head(io_list)) != NULL) { 2740 blkptr_t bp; 2741 2742 if (scan_io_queue_check_suspend(scn)) { 2743 suspended = B_TRUE; 2744 break; 2745 } 2746 2747 sio2bp(sio, &bp); 2748 bytes_issued += SIO_GET_ASIZE(sio); 2749 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2750 &sio->sio_zb, queue); 2751 (void) list_remove_head(io_list); 2752 scan_io_queues_update_zio_stats(queue, &bp); 2753 sio_free(sio); 2754 } 2755 2756 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2757 2758 return (suspended); 2759 } 2760 2761 /* 2762 * Given a range_seg_t (extent) and a list, this function passes over a 2763 * scan queue and gathers up the appropriate ios which fit into that 2764 * scan seg (starting from lowest LBA). At the end, we remove the segment 2765 * from the q_exts_by_addr range tree. 2766 */ 2767 static boolean_t 2768 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2769 { 2770 scan_io_t *srch_sio, *sio, *next_sio; 2771 avl_index_t idx; 2772 uint_t num_sios = 0; 2773 int64_t bytes_issued = 0; 2774 2775 ASSERT(rs != NULL); 2776 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2777 2778 srch_sio = sio_alloc(1); 2779 srch_sio->sio_nr_dvas = 1; 2780 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2781 2782 /* 2783 * The exact start of the extent might not contain any matching zios, 2784 * so if that's the case, examine the next one in the tree. 2785 */ 2786 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2787 sio_free(srch_sio); 2788 2789 if (sio == NULL) 2790 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2791 2792 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2793 queue->q_exts_by_addr) && num_sios <= 32) { 2794 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2795 queue->q_exts_by_addr)); 2796 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2797 queue->q_exts_by_addr)); 2798 2799 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2800 avl_remove(&queue->q_sios_by_addr, sio); 2801 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2802 2803 bytes_issued += SIO_GET_ASIZE(sio); 2804 num_sios++; 2805 list_insert_tail(list, sio); 2806 sio = next_sio; 2807 } 2808 2809 /* 2810 * We limit the number of sios we process at once to 32 to avoid 2811 * biting off more than we can chew. If we didn't take everything 2812 * in the segment we update it to reflect the work we were able to 2813 * complete. Otherwise, we remove it from the range tree entirely. 2814 */ 2815 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2816 queue->q_exts_by_addr)) { 2817 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2818 -bytes_issued); 2819 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2820 SIO_GET_OFFSET(sio), rs_get_end(rs, 2821 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2822 2823 return (B_TRUE); 2824 } else { 2825 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2826 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2827 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2828 return (B_FALSE); 2829 } 2830 } 2831 2832 2833 /* 2834 * This is called from the queue emptying thread and selects the next 2835 * extent from which we are to issue io's. The behavior of this function 2836 * depends on the state of the scan, the current memory consumption and 2837 * whether or not we are performing a scan shutdown. 2838 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2839 * needs to perform a checkpoint 2840 * 2) We select the largest available extent if we are up against the 2841 * memory limit. 2842 * 3) Otherwise we don't select any extents. 2843 */ 2844 static const range_seg_t * 2845 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2846 { 2847 dsl_scan_t *scn = queue->q_scn; 2848 range_tree_t *rt = queue->q_exts_by_addr; 2849 2850 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2851 ASSERT(scn->scn_is_sorted); 2852 2853 /* handle tunable overrides */ 2854 if (scn->scn_checkpointing || scn->scn_clearing) { 2855 if (zfs_scan_issue_strategy == 1) { 2856 return (range_tree_first(rt)); 2857 } else if (zfs_scan_issue_strategy == 2) { 2858 /* 2859 * We need to get the original entry in the by_addr 2860 * tree so we can modify it. 2861 */ 2862 range_seg_t *size_rs = 2863 zfs_btree_first(&queue->q_exts_by_size, NULL); 2864 if (size_rs == NULL) 2865 return (NULL); 2866 uint64_t start = rs_get_start(size_rs, rt); 2867 uint64_t size = rs_get_end(size_rs, rt) - start; 2868 range_seg_t *addr_rs = range_tree_find(rt, start, 2869 size); 2870 ASSERT3P(addr_rs, !=, NULL); 2871 ASSERT3U(rs_get_start(size_rs, rt), ==, 2872 rs_get_start(addr_rs, rt)); 2873 ASSERT3U(rs_get_end(size_rs, rt), ==, 2874 rs_get_end(addr_rs, rt)); 2875 return (addr_rs); 2876 } 2877 } 2878 2879 /* 2880 * During normal clearing, we want to issue our largest segments 2881 * first, keeping IO as sequential as possible, and leaving the 2882 * smaller extents for later with the hope that they might eventually 2883 * grow to larger sequential segments. However, when the scan is 2884 * checkpointing, no new extents will be added to the sorting queue, 2885 * so the way we are sorted now is as good as it will ever get. 2886 * In this case, we instead switch to issuing extents in LBA order. 2887 */ 2888 if (scn->scn_checkpointing) { 2889 return (range_tree_first(rt)); 2890 } else if (scn->scn_clearing) { 2891 /* 2892 * We need to get the original entry in the by_addr 2893 * tree so we can modify it. 2894 */ 2895 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2896 NULL); 2897 if (size_rs == NULL) 2898 return (NULL); 2899 uint64_t start = rs_get_start(size_rs, rt); 2900 uint64_t size = rs_get_end(size_rs, rt) - start; 2901 range_seg_t *addr_rs = range_tree_find(rt, start, size); 2902 ASSERT3P(addr_rs, !=, NULL); 2903 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 2904 rt)); 2905 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 2906 return (addr_rs); 2907 } else { 2908 return (NULL); 2909 } 2910 } 2911 2912 static void 2913 scan_io_queues_run_one(void *arg) 2914 { 2915 dsl_scan_io_queue_t *queue = arg; 2916 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 2917 boolean_t suspended = B_FALSE; 2918 range_seg_t *rs = NULL; 2919 scan_io_t *sio = NULL; 2920 list_t sio_list; 2921 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 2922 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 2923 2924 ASSERT(queue->q_scn->scn_is_sorted); 2925 2926 list_create(&sio_list, sizeof (scan_io_t), 2927 offsetof(scan_io_t, sio_nodes.sio_list_node)); 2928 mutex_enter(q_lock); 2929 2930 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 2931 queue->q_maxinflight_bytes = 2932 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 2933 2934 /* reset per-queue scan statistics for this txg */ 2935 queue->q_total_seg_size_this_txg = 0; 2936 queue->q_segs_this_txg = 0; 2937 queue->q_total_zio_size_this_txg = 0; 2938 queue->q_zios_this_txg = 0; 2939 2940 /* loop until we have run out of time or sios */ 2941 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) { 2942 uint64_t seg_start = 0, seg_end = 0; 2943 boolean_t more_left = B_TRUE; 2944 2945 ASSERT(list_is_empty(&sio_list)); 2946 2947 /* loop while we still have sios left to process in this rs */ 2948 while (more_left) { 2949 scan_io_t *first_sio, *last_sio; 2950 2951 /* 2952 * We have selected which extent needs to be 2953 * processed next. Gather up the corresponding sios. 2954 */ 2955 more_left = scan_io_queue_gather(queue, rs, &sio_list); 2956 ASSERT(!list_is_empty(&sio_list)); 2957 first_sio = list_head(&sio_list); 2958 last_sio = list_tail(&sio_list); 2959 2960 seg_end = SIO_GET_END_OFFSET(last_sio); 2961 if (seg_start == 0) 2962 seg_start = SIO_GET_OFFSET(first_sio); 2963 2964 /* 2965 * Issuing sios can take a long time so drop the 2966 * queue lock. The sio queue won't be updated by 2967 * other threads since we're in syncing context so 2968 * we can be sure that our trees will remain exactly 2969 * as we left them. 2970 */ 2971 mutex_exit(q_lock); 2972 suspended = scan_io_queue_issue(queue, &sio_list); 2973 mutex_enter(q_lock); 2974 2975 if (suspended) 2976 break; 2977 } 2978 /* update statistics for debugging purposes */ 2979 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 2980 2981 if (suspended) 2982 break; 2983 } 2984 2985 2986 /* 2987 * If we were suspended in the middle of processing, 2988 * requeue any unfinished sios and exit. 2989 */ 2990 while ((sio = list_head(&sio_list)) != NULL) { 2991 list_remove(&sio_list, sio); 2992 scan_io_queue_insert_impl(queue, sio); 2993 } 2994 2995 mutex_exit(q_lock); 2996 list_destroy(&sio_list); 2997 } 2998 2999 /* 3000 * Performs an emptying run on all scan queues in the pool. This just 3001 * punches out one thread per top-level vdev, each of which processes 3002 * only that vdev's scan queue. We can parallelize the I/O here because 3003 * we know that each queue's io's only affect its own top-level vdev. 3004 * 3005 * This function waits for the queue runs to complete, and must be 3006 * called from dsl_scan_sync (or in general, syncing context). 3007 */ 3008 static void 3009 scan_io_queues_run(dsl_scan_t *scn) 3010 { 3011 spa_t *spa = scn->scn_dp->dp_spa; 3012 3013 ASSERT(scn->scn_is_sorted); 3014 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3015 3016 if (scn->scn_bytes_pending == 0) 3017 return; 3018 3019 if (scn->scn_taskq == NULL) { 3020 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, 3021 KM_SLEEP); 3022 int nthreads = spa->spa_root_vdev->vdev_children; 3023 3024 /* 3025 * We need to make this taskq *always* execute as many 3026 * threads in parallel as we have top-level vdevs and no 3027 * less, otherwise strange serialization of the calls to 3028 * scan_io_queues_run_one can occur during spa_sync runs 3029 * and that significantly impacts performance. 3030 */ 3031 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, 3032 "dsl_scan_tq_%s", spa->spa_name); 3033 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, 3034 nthreads, nthreads, TASKQ_PREPOPULATE); 3035 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); 3036 } 3037 3038 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3039 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3040 3041 mutex_enter(&vd->vdev_scan_io_queue_lock); 3042 if (vd->vdev_scan_io_queue != NULL) { 3043 VERIFY(taskq_dispatch(scn->scn_taskq, 3044 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3045 TQ_SLEEP) != TASKQID_INVALID); 3046 } 3047 mutex_exit(&vd->vdev_scan_io_queue_lock); 3048 } 3049 3050 /* 3051 * Wait for the queues to finish issuing thir IOs for this run 3052 * before we return. There may still be IOs in flight at this 3053 * point. 3054 */ 3055 taskq_wait(scn->scn_taskq); 3056 } 3057 3058 static boolean_t 3059 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3060 { 3061 uint64_t elapsed_nanosecs; 3062 3063 if (zfs_recover) 3064 return (B_FALSE); 3065 3066 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) 3067 return (B_TRUE); 3068 3069 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3070 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3071 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3072 txg_sync_waiting(scn->scn_dp)) || 3073 spa_shutting_down(scn->scn_dp->dp_spa)); 3074 } 3075 3076 static int 3077 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3078 { 3079 dsl_scan_t *scn = arg; 3080 3081 if (!scn->scn_is_bptree || 3082 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3083 if (dsl_scan_async_block_should_pause(scn)) 3084 return (SET_ERROR(ERESTART)); 3085 } 3086 3087 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3088 dmu_tx_get_txg(tx), bp, 0)); 3089 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3090 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3091 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3092 scn->scn_visited_this_txg++; 3093 return (0); 3094 } 3095 3096 static void 3097 dsl_scan_update_stats(dsl_scan_t *scn) 3098 { 3099 spa_t *spa = scn->scn_dp->dp_spa; 3100 uint64_t i; 3101 uint64_t seg_size_total = 0, zio_size_total = 0; 3102 uint64_t seg_count_total = 0, zio_count_total = 0; 3103 3104 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3105 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3106 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3107 3108 if (queue == NULL) 3109 continue; 3110 3111 seg_size_total += queue->q_total_seg_size_this_txg; 3112 zio_size_total += queue->q_total_zio_size_this_txg; 3113 seg_count_total += queue->q_segs_this_txg; 3114 zio_count_total += queue->q_zios_this_txg; 3115 } 3116 3117 if (seg_count_total == 0 || zio_count_total == 0) { 3118 scn->scn_avg_seg_size_this_txg = 0; 3119 scn->scn_avg_zio_size_this_txg = 0; 3120 scn->scn_segs_this_txg = 0; 3121 scn->scn_zios_this_txg = 0; 3122 return; 3123 } 3124 3125 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3126 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3127 scn->scn_segs_this_txg = seg_count_total; 3128 scn->scn_zios_this_txg = zio_count_total; 3129 } 3130 3131 static int 3132 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3133 { 3134 dsl_scan_t *scn = arg; 3135 const dva_t *dva = &bp->blk_dva[0]; 3136 3137 if (dsl_scan_async_block_should_pause(scn)) 3138 return (SET_ERROR(ERESTART)); 3139 3140 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3141 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3142 DVA_GET_ASIZE(dva), tx); 3143 scn->scn_visited_this_txg++; 3144 return (0); 3145 } 3146 3147 boolean_t 3148 dsl_scan_active(dsl_scan_t *scn) 3149 { 3150 spa_t *spa = scn->scn_dp->dp_spa; 3151 uint64_t used = 0, comp, uncomp; 3152 3153 if (spa->spa_load_state != SPA_LOAD_NONE) 3154 return (B_FALSE); 3155 if (spa_shutting_down(spa)) 3156 return (B_FALSE); 3157 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3158 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3159 return (B_TRUE); 3160 3161 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3162 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3163 &used, &comp, &uncomp); 3164 } 3165 return (used != 0); 3166 } 3167 3168 static boolean_t 3169 dsl_scan_check_deferred(vdev_t *vd) 3170 { 3171 boolean_t need_resilver = B_FALSE; 3172 3173 for (int c = 0; c < vd->vdev_children; c++) { 3174 need_resilver |= 3175 dsl_scan_check_deferred(vd->vdev_child[c]); 3176 } 3177 3178 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3179 !vd->vdev_ops->vdev_op_leaf) 3180 return (need_resilver); 3181 3182 if (!vd->vdev_resilver_deferred) 3183 need_resilver = B_TRUE; 3184 3185 return (need_resilver); 3186 } 3187 3188 static boolean_t 3189 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3190 uint64_t phys_birth) 3191 { 3192 vdev_t *vd; 3193 3194 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3195 3196 if (vd->vdev_ops == &vdev_indirect_ops) { 3197 /* 3198 * The indirect vdev can point to multiple 3199 * vdevs. For simplicity, always create 3200 * the resilver zio_t. zio_vdev_io_start() 3201 * will bypass the child resilver i/o's if 3202 * they are on vdevs that don't have DTL's. 3203 */ 3204 return (B_TRUE); 3205 } 3206 3207 if (DVA_GET_GANG(dva)) { 3208 /* 3209 * Gang members may be spread across multiple 3210 * vdevs, so the best estimate we have is the 3211 * scrub range, which has already been checked. 3212 * XXX -- it would be better to change our 3213 * allocation policy to ensure that all 3214 * gang members reside on the same vdev. 3215 */ 3216 return (B_TRUE); 3217 } 3218 3219 /* 3220 * Check if the txg falls within the range which must be 3221 * resilvered. DVAs outside this range can always be skipped. 3222 */ 3223 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3224 return (B_FALSE); 3225 3226 /* 3227 * Check if the top-level vdev must resilver this offset. 3228 * When the offset does not intersect with a dirty leaf DTL 3229 * then it may be possible to skip the resilver IO. The psize 3230 * is provided instead of asize to simplify the check for RAIDZ. 3231 */ 3232 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3233 return (B_FALSE); 3234 3235 /* 3236 * Check that this top-level vdev has a device under it which 3237 * is resilvering and is not deferred. 3238 */ 3239 if (!dsl_scan_check_deferred(vd)) 3240 return (B_FALSE); 3241 3242 return (B_TRUE); 3243 } 3244 3245 static int 3246 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3247 { 3248 int err = 0; 3249 dsl_scan_t *scn = dp->dp_scan; 3250 spa_t *spa = dp->dp_spa; 3251 3252 if (spa_suspend_async_destroy(spa)) 3253 return (0); 3254 3255 if (zfs_free_bpobj_enabled && 3256 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3257 scn->scn_is_bptree = B_FALSE; 3258 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3259 scn->scn_zio_root = zio_root(spa, NULL, 3260 NULL, ZIO_FLAG_MUSTSUCCEED); 3261 err = bpobj_iterate(&dp->dp_free_bpobj, 3262 dsl_scan_free_block_cb, scn, tx); 3263 VERIFY0(zio_wait(scn->scn_zio_root)); 3264 scn->scn_zio_root = NULL; 3265 3266 if (err != 0 && err != ERESTART) 3267 zfs_panic_recover("error %u from bpobj_iterate()", err); 3268 } 3269 3270 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3271 ASSERT(scn->scn_async_destroying); 3272 scn->scn_is_bptree = B_TRUE; 3273 scn->scn_zio_root = zio_root(spa, NULL, 3274 NULL, ZIO_FLAG_MUSTSUCCEED); 3275 err = bptree_iterate(dp->dp_meta_objset, 3276 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3277 VERIFY0(zio_wait(scn->scn_zio_root)); 3278 scn->scn_zio_root = NULL; 3279 3280 if (err == EIO || err == ECKSUM) { 3281 err = 0; 3282 } else if (err != 0 && err != ERESTART) { 3283 zfs_panic_recover("error %u from " 3284 "traverse_dataset_destroyed()", err); 3285 } 3286 3287 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3288 /* finished; deactivate async destroy feature */ 3289 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3290 ASSERT(!spa_feature_is_active(spa, 3291 SPA_FEATURE_ASYNC_DESTROY)); 3292 VERIFY0(zap_remove(dp->dp_meta_objset, 3293 DMU_POOL_DIRECTORY_OBJECT, 3294 DMU_POOL_BPTREE_OBJ, tx)); 3295 VERIFY0(bptree_free(dp->dp_meta_objset, 3296 dp->dp_bptree_obj, tx)); 3297 dp->dp_bptree_obj = 0; 3298 scn->scn_async_destroying = B_FALSE; 3299 scn->scn_async_stalled = B_FALSE; 3300 } else { 3301 /* 3302 * If we didn't make progress, mark the async 3303 * destroy as stalled, so that we will not initiate 3304 * a spa_sync() on its behalf. Note that we only 3305 * check this if we are not finished, because if the 3306 * bptree had no blocks for us to visit, we can 3307 * finish without "making progress". 3308 */ 3309 scn->scn_async_stalled = 3310 (scn->scn_visited_this_txg == 0); 3311 } 3312 } 3313 if (scn->scn_visited_this_txg) { 3314 zfs_dbgmsg("freed %llu blocks in %llums from " 3315 "free_bpobj/bptree txg %llu; err=%d", 3316 (longlong_t)scn->scn_visited_this_txg, 3317 (longlong_t) 3318 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3319 (longlong_t)tx->tx_txg, err); 3320 scn->scn_visited_this_txg = 0; 3321 3322 /* 3323 * Write out changes to the DDT that may be required as a 3324 * result of the blocks freed. This ensures that the DDT 3325 * is clean when a scrub/resilver runs. 3326 */ 3327 ddt_sync(spa, tx->tx_txg); 3328 } 3329 if (err != 0) 3330 return (err); 3331 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3332 zfs_free_leak_on_eio && 3333 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3334 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3335 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3336 /* 3337 * We have finished background destroying, but there is still 3338 * some space left in the dp_free_dir. Transfer this leaked 3339 * space to the dp_leak_dir. 3340 */ 3341 if (dp->dp_leak_dir == NULL) { 3342 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3343 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3344 LEAK_DIR_NAME, tx); 3345 VERIFY0(dsl_pool_open_special_dir(dp, 3346 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3347 rrw_exit(&dp->dp_config_rwlock, FTAG); 3348 } 3349 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3350 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3351 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3352 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3353 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3354 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3355 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3356 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3357 } 3358 3359 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { 3360 /* finished; verify that space accounting went to zero */ 3361 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3362 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3363 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3364 } 3365 3366 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3367 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3368 DMU_POOL_OBSOLETE_BPOBJ)); 3369 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3370 ASSERT(spa_feature_is_active(dp->dp_spa, 3371 SPA_FEATURE_OBSOLETE_COUNTS)); 3372 3373 scn->scn_is_bptree = B_FALSE; 3374 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3375 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3376 dsl_scan_obsolete_block_cb, scn, tx); 3377 if (err != 0 && err != ERESTART) 3378 zfs_panic_recover("error %u from bpobj_iterate()", err); 3379 3380 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3381 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3382 } 3383 3384 return (0); 3385 } 3386 3387 /* 3388 * This is the primary entry point for scans that is called from syncing 3389 * context. Scans must happen entirely during syncing context so that we 3390 * cna guarantee that blocks we are currently scanning will not change out 3391 * from under us. While a scan is active, this funciton controls how quickly 3392 * transaction groups proceed, instead of the normal handling provided by 3393 * txg_sync_thread(). 3394 */ 3395 void 3396 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3397 { 3398 dsl_scan_t *scn = dp->dp_scan; 3399 spa_t *spa = dp->dp_spa; 3400 int err = 0; 3401 state_sync_type_t sync_type = SYNC_OPTIONAL; 3402 3403 if (spa->spa_resilver_deferred && 3404 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3405 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3406 3407 /* 3408 * Check for scn_restart_txg before checking spa_load_state, so 3409 * that we can restart an old-style scan while the pool is being 3410 * imported (see dsl_scan_init). We also restart scans if there 3411 * is a deferred resilver and the user has manually disabled 3412 * deferred resilvers via the tunable. 3413 */ 3414 if (dsl_scan_restarting(scn, tx) || 3415 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3416 pool_scan_func_t func = POOL_SCAN_SCRUB; 3417 dsl_scan_done(scn, B_FALSE, tx); 3418 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3419 func = POOL_SCAN_RESILVER; 3420 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3421 func, (longlong_t)tx->tx_txg); 3422 dsl_scan_setup_sync(&func, tx); 3423 } 3424 3425 /* 3426 * Only process scans in sync pass 1. 3427 */ 3428 if (spa_sync_pass(dp->dp_spa) > 1) 3429 return; 3430 3431 /* 3432 * If the spa is shutting down, then stop scanning. This will 3433 * ensure that the scan does not dirty any new data during the 3434 * shutdown phase. 3435 */ 3436 if (spa_shutting_down(spa)) 3437 return; 3438 3439 /* 3440 * If the scan is inactive due to a stalled async destroy, try again. 3441 */ 3442 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3443 return; 3444 3445 /* reset scan statistics */ 3446 scn->scn_visited_this_txg = 0; 3447 scn->scn_holes_this_txg = 0; 3448 scn->scn_lt_min_this_txg = 0; 3449 scn->scn_gt_max_this_txg = 0; 3450 scn->scn_ddt_contained_this_txg = 0; 3451 scn->scn_objsets_visited_this_txg = 0; 3452 scn->scn_avg_seg_size_this_txg = 0; 3453 scn->scn_segs_this_txg = 0; 3454 scn->scn_avg_zio_size_this_txg = 0; 3455 scn->scn_zios_this_txg = 0; 3456 scn->scn_suspending = B_FALSE; 3457 scn->scn_sync_start_time = gethrtime(); 3458 spa->spa_scrub_active = B_TRUE; 3459 3460 /* 3461 * First process the async destroys. If we pause, don't do 3462 * any scrubbing or resilvering. This ensures that there are no 3463 * async destroys while we are scanning, so the scan code doesn't 3464 * have to worry about traversing it. It is also faster to free the 3465 * blocks than to scrub them. 3466 */ 3467 err = dsl_process_async_destroys(dp, tx); 3468 if (err != 0) 3469 return; 3470 3471 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3472 return; 3473 3474 /* 3475 * Wait a few txgs after importing to begin scanning so that 3476 * we can get the pool imported quickly. 3477 */ 3478 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3479 return; 3480 3481 /* 3482 * zfs_scan_suspend_progress can be set to disable scan progress. 3483 * We don't want to spin the txg_sync thread, so we add a delay 3484 * here to simulate the time spent doing a scan. This is mostly 3485 * useful for testing and debugging. 3486 */ 3487 if (zfs_scan_suspend_progress) { 3488 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3489 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3490 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3491 3492 while (zfs_scan_suspend_progress && 3493 !txg_sync_waiting(scn->scn_dp) && 3494 !spa_shutting_down(scn->scn_dp->dp_spa) && 3495 NSEC2MSEC(scan_time_ns) < mintime) { 3496 delay(hz); 3497 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3498 } 3499 return; 3500 } 3501 3502 /* 3503 * It is possible to switch from unsorted to sorted at any time, 3504 * but afterwards the scan will remain sorted unless reloaded from 3505 * a checkpoint after a reboot. 3506 */ 3507 if (!zfs_scan_legacy) { 3508 scn->scn_is_sorted = B_TRUE; 3509 if (scn->scn_last_checkpoint == 0) 3510 scn->scn_last_checkpoint = ddi_get_lbolt(); 3511 } 3512 3513 /* 3514 * For sorted scans, determine what kind of work we will be doing 3515 * this txg based on our memory limitations and whether or not we 3516 * need to perform a checkpoint. 3517 */ 3518 if (scn->scn_is_sorted) { 3519 /* 3520 * If we are over our checkpoint interval, set scn_clearing 3521 * so that we can begin checkpointing immediately. The 3522 * checkpoint allows us to save a consisent bookmark 3523 * representing how much data we have scrubbed so far. 3524 * Otherwise, use the memory limit to determine if we should 3525 * scan for metadata or start issue scrub IOs. We accumulate 3526 * metadata until we hit our hard memory limit at which point 3527 * we issue scrub IOs until we are at our soft memory limit. 3528 */ 3529 if (scn->scn_checkpointing || 3530 ddi_get_lbolt() - scn->scn_last_checkpoint > 3531 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3532 if (!scn->scn_checkpointing) 3533 zfs_dbgmsg("begin scan checkpoint"); 3534 3535 scn->scn_checkpointing = B_TRUE; 3536 scn->scn_clearing = B_TRUE; 3537 } else { 3538 boolean_t should_clear = dsl_scan_should_clear(scn); 3539 if (should_clear && !scn->scn_clearing) { 3540 zfs_dbgmsg("begin scan clearing"); 3541 scn->scn_clearing = B_TRUE; 3542 } else if (!should_clear && scn->scn_clearing) { 3543 zfs_dbgmsg("finish scan clearing"); 3544 scn->scn_clearing = B_FALSE; 3545 } 3546 } 3547 } else { 3548 ASSERT0(scn->scn_checkpointing); 3549 ASSERT0(scn->scn_clearing); 3550 } 3551 3552 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3553 /* Need to scan metadata for more blocks to scrub */ 3554 dsl_scan_phys_t *scnp = &scn->scn_phys; 3555 taskqid_t prefetch_tqid; 3556 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3557 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3558 3559 /* 3560 * Calculate the max number of in-flight bytes for pool-wide 3561 * scanning operations (minimum 1MB). Limits for the issuing 3562 * phase are done per top-level vdev and are handled separately. 3563 */ 3564 scn->scn_maxinflight_bytes = 3565 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3566 3567 if (scnp->scn_ddt_bookmark.ddb_class <= 3568 scnp->scn_ddt_class_max) { 3569 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3570 zfs_dbgmsg("doing scan sync txg %llu; " 3571 "ddt bm=%llu/%llu/%llu/%llx", 3572 (longlong_t)tx->tx_txg, 3573 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3574 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3575 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3576 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3577 } else { 3578 zfs_dbgmsg("doing scan sync txg %llu; " 3579 "bm=%llu/%llu/%llu/%llu", 3580 (longlong_t)tx->tx_txg, 3581 (longlong_t)scnp->scn_bookmark.zb_objset, 3582 (longlong_t)scnp->scn_bookmark.zb_object, 3583 (longlong_t)scnp->scn_bookmark.zb_level, 3584 (longlong_t)scnp->scn_bookmark.zb_blkid); 3585 } 3586 3587 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3588 NULL, ZIO_FLAG_CANFAIL); 3589 3590 scn->scn_prefetch_stop = B_FALSE; 3591 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3592 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3593 ASSERT(prefetch_tqid != TASKQID_INVALID); 3594 3595 dsl_pool_config_enter(dp, FTAG); 3596 dsl_scan_visit(scn, tx); 3597 dsl_pool_config_exit(dp, FTAG); 3598 3599 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3600 scn->scn_prefetch_stop = B_TRUE; 3601 cv_broadcast(&spa->spa_scrub_io_cv); 3602 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3603 3604 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3605 (void) zio_wait(scn->scn_zio_root); 3606 scn->scn_zio_root = NULL; 3607 3608 zfs_dbgmsg("scan visited %llu blocks in %llums " 3609 "(%llu os's, %llu holes, %llu < mintxg, " 3610 "%llu in ddt, %llu > maxtxg)", 3611 (longlong_t)scn->scn_visited_this_txg, 3612 (longlong_t)NSEC2MSEC(gethrtime() - 3613 scn->scn_sync_start_time), 3614 (longlong_t)scn->scn_objsets_visited_this_txg, 3615 (longlong_t)scn->scn_holes_this_txg, 3616 (longlong_t)scn->scn_lt_min_this_txg, 3617 (longlong_t)scn->scn_ddt_contained_this_txg, 3618 (longlong_t)scn->scn_gt_max_this_txg); 3619 3620 if (!scn->scn_suspending) { 3621 ASSERT0(avl_numnodes(&scn->scn_queue)); 3622 scn->scn_done_txg = tx->tx_txg + 1; 3623 if (scn->scn_is_sorted) { 3624 scn->scn_checkpointing = B_TRUE; 3625 scn->scn_clearing = B_TRUE; 3626 } 3627 zfs_dbgmsg("scan complete txg %llu", 3628 (longlong_t)tx->tx_txg); 3629 } 3630 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3631 ASSERT(scn->scn_clearing); 3632 3633 /* need to issue scrubbing IOs from per-vdev queues */ 3634 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3635 NULL, ZIO_FLAG_CANFAIL); 3636 scan_io_queues_run(scn); 3637 (void) zio_wait(scn->scn_zio_root); 3638 scn->scn_zio_root = NULL; 3639 3640 /* calculate and dprintf the current memory usage */ 3641 (void) dsl_scan_should_clear(scn); 3642 dsl_scan_update_stats(scn); 3643 3644 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " 3645 "(avg_block_size = %llu, avg_seg_size = %llu)", 3646 (longlong_t)scn->scn_zios_this_txg, 3647 (longlong_t)scn->scn_segs_this_txg, 3648 (longlong_t)NSEC2MSEC(gethrtime() - 3649 scn->scn_sync_start_time), 3650 (longlong_t)scn->scn_avg_zio_size_this_txg, 3651 (longlong_t)scn->scn_avg_seg_size_this_txg); 3652 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3653 /* Finished with everything. Mark the scrub as complete */ 3654 zfs_dbgmsg("scan issuing complete txg %llu", 3655 (longlong_t)tx->tx_txg); 3656 ASSERT3U(scn->scn_done_txg, !=, 0); 3657 ASSERT0(spa->spa_scrub_inflight); 3658 ASSERT0(scn->scn_bytes_pending); 3659 dsl_scan_done(scn, B_TRUE, tx); 3660 sync_type = SYNC_MANDATORY; 3661 } 3662 3663 dsl_scan_sync_state(scn, tx, sync_type); 3664 } 3665 3666 static void 3667 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3668 { 3669 int i; 3670 3671 /* 3672 * Don't count embedded bp's, since we already did the work of 3673 * scanning these when we scanned the containing block. 3674 */ 3675 if (BP_IS_EMBEDDED(bp)) 3676 return; 3677 3678 /* 3679 * Update the spa's stats on how many bytes we have issued. 3680 * Sequential scrubs create a zio for each DVA of the bp. Each 3681 * of these will include all DVAs for repair purposes, but the 3682 * zio code will only try the first one unless there is an issue. 3683 * Therefore, we should only count the first DVA for these IOs. 3684 */ 3685 if (scn->scn_is_sorted) { 3686 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3687 DVA_GET_ASIZE(&bp->blk_dva[0])); 3688 } else { 3689 spa_t *spa = scn->scn_dp->dp_spa; 3690 3691 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3692 atomic_add_64(&spa->spa_scan_pass_issued, 3693 DVA_GET_ASIZE(&bp->blk_dva[i])); 3694 } 3695 } 3696 3697 /* 3698 * If we resume after a reboot, zab will be NULL; don't record 3699 * incomplete stats in that case. 3700 */ 3701 if (zab == NULL) 3702 return; 3703 3704 mutex_enter(&zab->zab_lock); 3705 3706 for (i = 0; i < 4; i++) { 3707 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3708 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3709 if (t & DMU_OT_NEWTYPE) 3710 t = DMU_OT_OTHER; 3711 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3712 int equal; 3713 3714 zb->zb_count++; 3715 zb->zb_asize += BP_GET_ASIZE(bp); 3716 zb->zb_lsize += BP_GET_LSIZE(bp); 3717 zb->zb_psize += BP_GET_PSIZE(bp); 3718 zb->zb_gangs += BP_COUNT_GANG(bp); 3719 3720 switch (BP_GET_NDVAS(bp)) { 3721 case 2: 3722 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3723 DVA_GET_VDEV(&bp->blk_dva[1])) 3724 zb->zb_ditto_2_of_2_samevdev++; 3725 break; 3726 case 3: 3727 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3728 DVA_GET_VDEV(&bp->blk_dva[1])) + 3729 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3730 DVA_GET_VDEV(&bp->blk_dva[2])) + 3731 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3732 DVA_GET_VDEV(&bp->blk_dva[2])); 3733 if (equal == 1) 3734 zb->zb_ditto_2_of_3_samevdev++; 3735 else if (equal == 3) 3736 zb->zb_ditto_3_of_3_samevdev++; 3737 break; 3738 } 3739 } 3740 3741 mutex_exit(&zab->zab_lock); 3742 } 3743 3744 static void 3745 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3746 { 3747 avl_index_t idx; 3748 int64_t asize = SIO_GET_ASIZE(sio); 3749 dsl_scan_t *scn = queue->q_scn; 3750 3751 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3752 3753 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3754 /* block is already scheduled for reading */ 3755 atomic_add_64(&scn->scn_bytes_pending, -asize); 3756 sio_free(sio); 3757 return; 3758 } 3759 avl_insert(&queue->q_sios_by_addr, sio, idx); 3760 queue->q_sio_memused += SIO_GET_MUSED(sio); 3761 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3762 } 3763 3764 /* 3765 * Given all the info we got from our metadata scanning process, we 3766 * construct a scan_io_t and insert it into the scan sorting queue. The 3767 * I/O must already be suitable for us to process. This is controlled 3768 * by dsl_scan_enqueue(). 3769 */ 3770 static void 3771 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3772 int zio_flags, const zbookmark_phys_t *zb) 3773 { 3774 dsl_scan_t *scn = queue->q_scn; 3775 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3776 3777 ASSERT0(BP_IS_GANG(bp)); 3778 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3779 3780 bp2sio(bp, sio, dva_i); 3781 sio->sio_flags = zio_flags; 3782 sio->sio_zb = *zb; 3783 3784 /* 3785 * Increment the bytes pending counter now so that we can't 3786 * get an integer underflow in case the worker processes the 3787 * zio before we get to incrementing this counter. 3788 */ 3789 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3790 3791 scan_io_queue_insert_impl(queue, sio); 3792 } 3793 3794 /* 3795 * Given a set of I/O parameters as discovered by the metadata traversal 3796 * process, attempts to place the I/O into the sorted queues (if allowed), 3797 * or immediately executes the I/O. 3798 */ 3799 static void 3800 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3801 const zbookmark_phys_t *zb) 3802 { 3803 spa_t *spa = dp->dp_spa; 3804 3805 ASSERT(!BP_IS_EMBEDDED(bp)); 3806 3807 /* 3808 * Gang blocks are hard to issue sequentially, so we just issue them 3809 * here immediately instead of queuing them. 3810 */ 3811 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3812 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3813 return; 3814 } 3815 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3816 dva_t dva; 3817 vdev_t *vdev; 3818 3819 dva = bp->blk_dva[i]; 3820 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3821 ASSERT(vdev != NULL); 3822 3823 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3824 if (vdev->vdev_scan_io_queue == NULL) 3825 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3826 ASSERT(dp->dp_scan != NULL); 3827 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3828 i, zio_flags, zb); 3829 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3830 } 3831 } 3832 3833 static int 3834 dsl_scan_scrub_cb(dsl_pool_t *dp, 3835 const blkptr_t *bp, const zbookmark_phys_t *zb) 3836 { 3837 dsl_scan_t *scn = dp->dp_scan; 3838 spa_t *spa = dp->dp_spa; 3839 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3840 size_t psize = BP_GET_PSIZE(bp); 3841 boolean_t needs_io; 3842 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3843 int d; 3844 3845 if (phys_birth <= scn->scn_phys.scn_min_txg || 3846 phys_birth >= scn->scn_phys.scn_max_txg) { 3847 count_block(scn, dp->dp_blkstats, bp); 3848 return (0); 3849 } 3850 3851 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3852 ASSERT(!BP_IS_EMBEDDED(bp)); 3853 3854 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3855 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3856 zio_flags |= ZIO_FLAG_SCRUB; 3857 needs_io = B_TRUE; 3858 } else { 3859 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3860 zio_flags |= ZIO_FLAG_RESILVER; 3861 needs_io = B_FALSE; 3862 } 3863 3864 /* If it's an intent log block, failure is expected. */ 3865 if (zb->zb_level == ZB_ZIL_LEVEL) 3866 zio_flags |= ZIO_FLAG_SPECULATIVE; 3867 3868 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3869 const dva_t *dva = &bp->blk_dva[d]; 3870 3871 /* 3872 * Keep track of how much data we've examined so that 3873 * zpool(8) status can make useful progress reports. 3874 */ 3875 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3876 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3877 3878 /* if it's a resilver, this may not be in the target range */ 3879 if (!needs_io) 3880 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3881 phys_birth); 3882 } 3883 3884 if (needs_io && !zfs_no_scrub_io) { 3885 dsl_scan_enqueue(dp, bp, zio_flags, zb); 3886 } else { 3887 count_block(scn, dp->dp_blkstats, bp); 3888 } 3889 3890 /* do not relocate this block */ 3891 return (0); 3892 } 3893 3894 static void 3895 dsl_scan_scrub_done(zio_t *zio) 3896 { 3897 spa_t *spa = zio->io_spa; 3898 blkptr_t *bp = zio->io_bp; 3899 dsl_scan_io_queue_t *queue = zio->io_private; 3900 3901 abd_free(zio->io_abd); 3902 3903 if (queue == NULL) { 3904 mutex_enter(&spa->spa_scrub_lock); 3905 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 3906 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 3907 cv_broadcast(&spa->spa_scrub_io_cv); 3908 mutex_exit(&spa->spa_scrub_lock); 3909 } else { 3910 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 3911 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 3912 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 3913 cv_broadcast(&queue->q_zio_cv); 3914 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 3915 } 3916 3917 if (zio->io_error && (zio->io_error != ECKSUM || 3918 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 3919 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 3920 } 3921 } 3922 3923 /* 3924 * Given a scanning zio's information, executes the zio. The zio need 3925 * not necessarily be only sortable, this function simply executes the 3926 * zio, no matter what it is. The optional queue argument allows the 3927 * caller to specify that they want per top level vdev IO rate limiting 3928 * instead of the legacy global limiting. 3929 */ 3930 static void 3931 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3932 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 3933 { 3934 spa_t *spa = dp->dp_spa; 3935 dsl_scan_t *scn = dp->dp_scan; 3936 size_t size = BP_GET_PSIZE(bp); 3937 abd_t *data = abd_alloc_for_io(size, B_FALSE); 3938 3939 if (queue == NULL) { 3940 mutex_enter(&spa->spa_scrub_lock); 3941 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 3942 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3943 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 3944 mutex_exit(&spa->spa_scrub_lock); 3945 } else { 3946 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3947 3948 mutex_enter(q_lock); 3949 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 3950 cv_wait(&queue->q_zio_cv, q_lock); 3951 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 3952 mutex_exit(q_lock); 3953 } 3954 3955 count_block(dp->dp_scan, dp->dp_blkstats, bp); 3956 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, 3957 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 3958 } 3959 3960 /* 3961 * This is the primary extent sorting algorithm. We balance two parameters: 3962 * 1) how many bytes of I/O are in an extent 3963 * 2) how well the extent is filled with I/O (as a fraction of its total size) 3964 * Since we allow extents to have gaps between their constituent I/Os, it's 3965 * possible to have a fairly large extent that contains the same amount of 3966 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 3967 * The algorithm sorts based on a score calculated from the extent's size, 3968 * the relative fill volume (in %) and a "fill weight" parameter that controls 3969 * the split between whether we prefer larger extents or more well populated 3970 * extents: 3971 * 3972 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 3973 * 3974 * Example: 3975 * 1) assume extsz = 64 MiB 3976 * 2) assume fill = 32 MiB (extent is half full) 3977 * 3) assume fill_weight = 3 3978 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 3979 * SCORE = 32M + (50 * 3 * 32M) / 100 3980 * SCORE = 32M + (4800M / 100) 3981 * SCORE = 32M + 48M 3982 * ^ ^ 3983 * | +--- final total relative fill-based score 3984 * +--------- final total fill-based score 3985 * SCORE = 80M 3986 * 3987 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 3988 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 3989 * Note that as an optimization, we replace multiplication and division by 3990 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). 3991 */ 3992 static int 3993 ext_size_compare(const void *x, const void *y) 3994 { 3995 const range_seg_gap_t *rsa = x, *rsb = y; 3996 3997 uint64_t sa = rsa->rs_end - rsa->rs_start; 3998 uint64_t sb = rsb->rs_end - rsb->rs_start; 3999 uint64_t score_a, score_b; 4000 4001 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 4002 fill_weight * rsa->rs_fill) >> 7); 4003 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 4004 fill_weight * rsb->rs_fill) >> 7); 4005 4006 if (score_a > score_b) 4007 return (-1); 4008 if (score_a == score_b) { 4009 if (rsa->rs_start < rsb->rs_start) 4010 return (-1); 4011 if (rsa->rs_start == rsb->rs_start) 4012 return (0); 4013 return (1); 4014 } 4015 return (1); 4016 } 4017 4018 /* 4019 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4020 * based on LBA-order (from lowest to highest). 4021 */ 4022 static int 4023 sio_addr_compare(const void *x, const void *y) 4024 { 4025 const scan_io_t *a = x, *b = y; 4026 4027 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4028 } 4029 4030 /* IO queues are created on demand when they are needed. */ 4031 static dsl_scan_io_queue_t * 4032 scan_io_queue_create(vdev_t *vd) 4033 { 4034 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4035 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4036 4037 q->q_scn = scn; 4038 q->q_vd = vd; 4039 q->q_sio_memused = 0; 4040 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4041 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4042 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4043 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4044 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4045 4046 return (q); 4047 } 4048 4049 /* 4050 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4051 * No further execution of I/O occurs, anything pending in the queue is 4052 * simply freed without being executed. 4053 */ 4054 void 4055 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4056 { 4057 dsl_scan_t *scn = queue->q_scn; 4058 scan_io_t *sio; 4059 void *cookie = NULL; 4060 int64_t bytes_dequeued = 0; 4061 4062 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4063 4064 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4065 NULL) { 4066 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4067 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4068 bytes_dequeued += SIO_GET_ASIZE(sio); 4069 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4070 sio_free(sio); 4071 } 4072 4073 ASSERT0(queue->q_sio_memused); 4074 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4075 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4076 range_tree_destroy(queue->q_exts_by_addr); 4077 avl_destroy(&queue->q_sios_by_addr); 4078 cv_destroy(&queue->q_zio_cv); 4079 4080 kmem_free(queue, sizeof (*queue)); 4081 } 4082 4083 /* 4084 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4085 * called on behalf of vdev_top_transfer when creating or destroying 4086 * a mirror vdev due to zpool attach/detach. 4087 */ 4088 void 4089 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4090 { 4091 mutex_enter(&svd->vdev_scan_io_queue_lock); 4092 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4093 4094 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4095 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4096 svd->vdev_scan_io_queue = NULL; 4097 if (tvd->vdev_scan_io_queue != NULL) 4098 tvd->vdev_scan_io_queue->q_vd = tvd; 4099 4100 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4101 mutex_exit(&svd->vdev_scan_io_queue_lock); 4102 } 4103 4104 static void 4105 scan_io_queues_destroy(dsl_scan_t *scn) 4106 { 4107 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4108 4109 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4110 vdev_t *tvd = rvd->vdev_child[i]; 4111 4112 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4113 if (tvd->vdev_scan_io_queue != NULL) 4114 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4115 tvd->vdev_scan_io_queue = NULL; 4116 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4117 } 4118 } 4119 4120 static void 4121 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4122 { 4123 dsl_pool_t *dp = spa->spa_dsl_pool; 4124 dsl_scan_t *scn = dp->dp_scan; 4125 vdev_t *vdev; 4126 kmutex_t *q_lock; 4127 dsl_scan_io_queue_t *queue; 4128 scan_io_t *srch_sio, *sio; 4129 avl_index_t idx; 4130 uint64_t start, size; 4131 4132 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4133 ASSERT(vdev != NULL); 4134 q_lock = &vdev->vdev_scan_io_queue_lock; 4135 queue = vdev->vdev_scan_io_queue; 4136 4137 mutex_enter(q_lock); 4138 if (queue == NULL) { 4139 mutex_exit(q_lock); 4140 return; 4141 } 4142 4143 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4144 bp2sio(bp, srch_sio, dva_i); 4145 start = SIO_GET_OFFSET(srch_sio); 4146 size = SIO_GET_ASIZE(srch_sio); 4147 4148 /* 4149 * We can find the zio in two states: 4150 * 1) Cold, just sitting in the queue of zio's to be issued at 4151 * some point in the future. In this case, all we do is 4152 * remove the zio from the q_sios_by_addr tree, decrement 4153 * its data volume from the containing range_seg_t and 4154 * resort the q_exts_by_size tree to reflect that the 4155 * range_seg_t has lost some of its 'fill'. We don't shorten 4156 * the range_seg_t - this is usually rare enough not to be 4157 * worth the extra hassle of trying keep track of precise 4158 * extent boundaries. 4159 * 2) Hot, where the zio is currently in-flight in 4160 * dsl_scan_issue_ios. In this case, we can't simply 4161 * reach in and stop the in-flight zio's, so we instead 4162 * block the caller. Eventually, dsl_scan_issue_ios will 4163 * be done with issuing the zio's it gathered and will 4164 * signal us. 4165 */ 4166 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4167 sio_free(srch_sio); 4168 4169 if (sio != NULL) { 4170 int64_t asize = SIO_GET_ASIZE(sio); 4171 blkptr_t tmpbp; 4172 4173 /* Got it while it was cold in the queue */ 4174 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4175 ASSERT3U(size, ==, asize); 4176 avl_remove(&queue->q_sios_by_addr, sio); 4177 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4178 4179 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4180 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4181 4182 /* 4183 * We only update scn_bytes_pending in the cold path, 4184 * otherwise it will already have been accounted for as 4185 * part of the zio's execution. 4186 */ 4187 atomic_add_64(&scn->scn_bytes_pending, -asize); 4188 4189 /* count the block as though we issued it */ 4190 sio2bp(sio, &tmpbp); 4191 count_block(scn, dp->dp_blkstats, &tmpbp); 4192 4193 sio_free(sio); 4194 } 4195 mutex_exit(q_lock); 4196 } 4197 4198 /* 4199 * Callback invoked when a zio_free() zio is executing. This needs to be 4200 * intercepted to prevent the zio from deallocating a particular portion 4201 * of disk space and it then getting reallocated and written to, while we 4202 * still have it queued up for processing. 4203 */ 4204 void 4205 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4206 { 4207 dsl_pool_t *dp = spa->spa_dsl_pool; 4208 dsl_scan_t *scn = dp->dp_scan; 4209 4210 ASSERT(!BP_IS_EMBEDDED(bp)); 4211 ASSERT(scn != NULL); 4212 if (!dsl_scan_is_running(scn)) 4213 return; 4214 4215 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4216 dsl_scan_freed_dva(spa, bp, i); 4217 } 4218 4219 /* 4220 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4221 * not started, start it. Otherwise, only restart if max txg in DTL range is 4222 * greater than the max txg in the current scan. If the DTL max is less than 4223 * the scan max, then the vdev has not missed any new data since the resilver 4224 * started, so a restart is not needed. 4225 */ 4226 void 4227 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4228 { 4229 uint64_t min, max; 4230 4231 if (!vdev_resilver_needed(vd, &min, &max)) 4232 return; 4233 4234 if (!dsl_scan_resilvering(dp)) { 4235 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4236 return; 4237 } 4238 4239 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4240 return; 4241 4242 /* restart is needed, check if it can be deferred */ 4243 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4244 vdev_defer_resilver(vd); 4245 else 4246 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4247 } 4248