1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 124 uint64_t *txg); 125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 128 129 extern int zfs_vdev_async_write_active_min_dirty_percent; 130 131 /* 132 * By default zfs will check to ensure it is not over the hard memory 133 * limit before each txg. If finer-grained control of this is needed 134 * this value can be set to 1 to enable checking before scanning each 135 * block. 136 */ 137 int zfs_scan_strict_mem_lim = B_FALSE; 138 139 /* 140 * Maximum number of parallelly executing I/Os per top-level vdev. 141 * Tune with care. Very high settings (hundreds) are known to trigger 142 * some firmware bugs and resets on certain SSDs. 143 */ 144 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ 145 unsigned int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ 146 unsigned int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ 147 unsigned int zfs_scan_idle = 50; /* idle window in clock ticks */ 148 149 /* 150 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 151 * to strike a balance here between keeping the vdev queues full of I/Os 152 * at all times and not overflowing the queues to cause long latency, 153 * which would cause long txg sync times. No matter what, we will not 154 * overload the drives with I/O, since that is protected by 155 * zfs_vdev_scrub_max_active. 156 */ 157 unsigned long zfs_scan_vdev_limit = 4 << 20; 158 159 int zfs_scan_issue_strategy = 0; 160 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 161 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 162 163 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ 164 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) 165 166 /* 167 * fill_weight is non-tunable at runtime, so we copy it at module init from 168 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 169 * break queue sorting. 170 */ 171 uint64_t zfs_scan_fill_weight = 3; 172 static uint64_t fill_weight; 173 174 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 175 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 177 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 178 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 179 180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 182 /* min millisecs to obsolete per txg */ 183 unsigned int zfs_obsolete_min_time_ms = 500; 184 /* min millisecs to resilver per txg */ 185 unsigned int zfs_resilver_min_time_ms = 3000; 186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 190 /* max number of blocks to free in a single TXG */ 191 uint64_t zfs_async_block_max_blocks = UINT64_MAX; 192 193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 194 195 /* 196 * We wait a few txgs after importing a pool to begin scanning so that 197 * the import / mounting code isn't held up by scrub / resilver IO. 198 * Unfortunately, it is a bit difficult to determine exactly how long 199 * this will take since userspace will trigger fs mounts asynchronously 200 * and the kernel will create zvol minors asynchronously. As a result, 201 * the value provided here is a bit arbitrary, but represents a 202 * reasonable estimate of how many txgs it will take to finish fully 203 * importing a pool 204 */ 205 #define SCAN_IMPORT_WAIT_TXGS 5 206 207 208 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 209 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 210 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 211 212 extern int zfs_txg_timeout; 213 214 /* 215 * Enable/disable the processing of the free_bpobj object. 216 */ 217 boolean_t zfs_free_bpobj_enabled = B_TRUE; 218 219 /* the order has to match pool_scan_type */ 220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 221 NULL, 222 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 223 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 224 }; 225 226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 227 typedef struct { 228 uint64_t sds_dsobj; 229 uint64_t sds_txg; 230 avl_node_t sds_node; 231 } scan_ds_t; 232 233 /* 234 * This controls what conditions are placed on dsl_scan_sync_state(): 235 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 236 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 237 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 238 * write out the scn_phys_cached version. 239 * See dsl_scan_sync_state for details. 240 */ 241 typedef enum { 242 SYNC_OPTIONAL, 243 SYNC_MANDATORY, 244 SYNC_CACHED 245 } state_sync_type_t; 246 247 /* 248 * This struct represents the minimum information needed to reconstruct a 249 * zio for sequential scanning. This is useful because many of these will 250 * accumulate in the sequential IO queues before being issued, so saving 251 * memory matters here. 252 */ 253 typedef struct scan_io { 254 /* fields from blkptr_t */ 255 uint64_t sio_blk_prop; 256 uint64_t sio_phys_birth; 257 uint64_t sio_birth; 258 zio_cksum_t sio_cksum; 259 uint32_t sio_nr_dvas; 260 261 /* fields from zio_t */ 262 uint32_t sio_flags; 263 zbookmark_phys_t sio_zb; 264 265 /* members for queue sorting */ 266 union { 267 avl_node_t sio_addr_node; /* link into issuing queue */ 268 list_node_t sio_list_node; /* link for issuing to disk */ 269 } sio_nodes; 270 271 /* 272 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 273 * depending on how many were in the original bp. Only the 274 * first DVA is really used for sorting and issuing purposes. 275 * The other DVAs (if provided) simply exist so that the zio 276 * layer can find additional copies to repair from in the 277 * event of an error. This array must go at the end of the 278 * struct to allow this for the variable number of elements. 279 */ 280 dva_t sio_dva[0]; 281 } scan_io_t; 282 283 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 284 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 285 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 286 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 287 #define SIO_GET_END_OFFSET(sio) \ 288 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 289 #define SIO_GET_MUSED(sio) \ 290 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 291 292 struct dsl_scan_io_queue { 293 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 294 vdev_t *q_vd; /* top-level vdev that this queue represents */ 295 296 /* trees used for sorting I/Os and extents of I/Os */ 297 range_tree_t *q_exts_by_addr; 298 zfs_btree_t q_exts_by_size; 299 avl_tree_t q_sios_by_addr; 300 uint64_t q_sio_memused; 301 302 /* members for zio rate limiting */ 303 uint64_t q_maxinflight_bytes; 304 uint64_t q_inflight_bytes; 305 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 306 307 /* per txg statistics */ 308 uint64_t q_total_seg_size_this_txg; 309 uint64_t q_segs_this_txg; 310 uint64_t q_total_zio_size_this_txg; 311 uint64_t q_zios_this_txg; 312 }; 313 314 /* private data for dsl_scan_prefetch_cb() */ 315 typedef struct scan_prefetch_ctx { 316 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 317 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 318 boolean_t spc_root; /* is this prefetch for an objset? */ 319 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 320 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 321 } scan_prefetch_ctx_t; 322 323 /* private data for dsl_scan_prefetch() */ 324 typedef struct scan_prefetch_issue_ctx { 325 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 326 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 327 blkptr_t spic_bp; /* bp to prefetch */ 328 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 329 } scan_prefetch_issue_ctx_t; 330 331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 332 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 334 scan_io_t *sio); 335 336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 337 static void scan_io_queues_destroy(dsl_scan_t *scn); 338 339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 340 341 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 342 static void 343 sio_free(scan_io_t *sio) 344 { 345 ASSERT3U(sio->sio_nr_dvas, >, 0); 346 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 347 348 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 349 } 350 351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 352 static scan_io_t * 353 sio_alloc(unsigned short nr_dvas) 354 { 355 ASSERT3U(nr_dvas, >, 0); 356 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 357 358 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 359 } 360 361 void 362 scan_init(void) 363 { 364 /* 365 * This is used in ext_size_compare() to weight segments 366 * based on how sparse they are. This cannot be changed 367 * mid-scan and the tree comparison functions don't currently 368 * have a mechansim for passing additional context to the 369 * compare functions. Thus we store this value globally and 370 * we only allow it to be set at module intiailization time 371 */ 372 fill_weight = zfs_scan_fill_weight; 373 374 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 375 char name[36]; 376 377 (void) sprintf(name, "sio_cache_%d", i); 378 sio_cache[i] = kmem_cache_create(name, 379 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 380 0, NULL, NULL, NULL, NULL, NULL, 0); 381 } 382 } 383 384 void 385 scan_fini(void) 386 { 387 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 388 kmem_cache_destroy(sio_cache[i]); 389 } 390 } 391 392 static inline boolean_t 393 dsl_scan_is_running(const dsl_scan_t *scn) 394 { 395 return (scn->scn_phys.scn_state == DSS_SCANNING); 396 } 397 398 boolean_t 399 dsl_scan_resilvering(dsl_pool_t *dp) 400 { 401 return (dsl_scan_is_running(dp->dp_scan) && 402 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 403 } 404 405 static inline void 406 sio2bp(const scan_io_t *sio, blkptr_t *bp) 407 { 408 bzero(bp, sizeof (*bp)); 409 bp->blk_prop = sio->sio_blk_prop; 410 bp->blk_phys_birth = sio->sio_phys_birth; 411 bp->blk_birth = sio->sio_birth; 412 bp->blk_fill = 1; /* we always only work with data pointers */ 413 bp->blk_cksum = sio->sio_cksum; 414 415 ASSERT3U(sio->sio_nr_dvas, >, 0); 416 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 417 418 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 419 } 420 421 static inline void 422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 423 { 424 sio->sio_blk_prop = bp->blk_prop; 425 sio->sio_phys_birth = bp->blk_phys_birth; 426 sio->sio_birth = bp->blk_birth; 427 sio->sio_cksum = bp->blk_cksum; 428 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 429 430 /* 431 * Copy the DVAs to the sio. We need all copies of the block so 432 * that the self healing code can use the alternate copies if the 433 * first is corrupted. We want the DVA at index dva_i to be first 434 * in the sio since this is the primary one that we want to issue. 435 */ 436 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 437 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 438 } 439 } 440 441 int 442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 443 { 444 int err; 445 dsl_scan_t *scn; 446 spa_t *spa = dp->dp_spa; 447 uint64_t f; 448 449 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 450 scn->scn_dp = dp; 451 452 /* 453 * It's possible that we're resuming a scan after a reboot so 454 * make sure that the scan_async_destroying flag is initialized 455 * appropriately. 456 */ 457 ASSERT(!scn->scn_async_destroying); 458 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 459 SPA_FEATURE_ASYNC_DESTROY); 460 461 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 462 offsetof(scan_ds_t, sds_node)); 463 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 464 sizeof (scan_prefetch_issue_ctx_t), 465 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 466 467 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 468 "scrub_func", sizeof (uint64_t), 1, &f); 469 if (err == 0) { 470 /* 471 * There was an old-style scrub in progress. Restart a 472 * new-style scrub from the beginning. 473 */ 474 scn->scn_restart_txg = txg; 475 zfs_dbgmsg("old-style scrub was in progress; " 476 "restarting new-style scrub in txg %llu", 477 (longlong_t)scn->scn_restart_txg); 478 479 /* 480 * Load the queue obj from the old location so that it 481 * can be freed by dsl_scan_done(). 482 */ 483 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 484 "scrub_queue", sizeof (uint64_t), 1, 485 &scn->scn_phys.scn_queue_obj); 486 } else { 487 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 488 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 489 &scn->scn_phys); 490 491 /* 492 * Detect if the pool contains the signature of #2094. If it 493 * does properly update the scn->scn_phys structure and notify 494 * the administrator by setting an errata for the pool. 495 */ 496 if (err == EOVERFLOW) { 497 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 498 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 499 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 500 (23 * sizeof (uint64_t))); 501 502 err = zap_lookup(dp->dp_meta_objset, 503 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 504 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 505 if (err == 0) { 506 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 507 508 if (overflow & ~DSF_VISIT_DS_AGAIN || 509 scn->scn_async_destroying) { 510 spa->spa_errata = 511 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 512 return (EOVERFLOW); 513 } 514 515 bcopy(zaptmp, &scn->scn_phys, 516 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 517 scn->scn_phys.scn_flags = overflow; 518 519 /* Required scrub already in progress. */ 520 if (scn->scn_phys.scn_state == DSS_FINISHED || 521 scn->scn_phys.scn_state == DSS_CANCELED) 522 spa->spa_errata = 523 ZPOOL_ERRATA_ZOL_2094_SCRUB; 524 } 525 } 526 527 if (err == ENOENT) 528 return (0); 529 else if (err) 530 return (err); 531 532 /* 533 * We might be restarting after a reboot, so jump the issued 534 * counter to how far we've scanned. We know we're consistent 535 * up to here. 536 */ 537 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 538 539 if (dsl_scan_is_running(scn) && 540 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 541 /* 542 * A new-type scrub was in progress on an old 543 * pool, and the pool was accessed by old 544 * software. Restart from the beginning, since 545 * the old software may have changed the pool in 546 * the meantime. 547 */ 548 scn->scn_restart_txg = txg; 549 zfs_dbgmsg("new-style scrub was modified " 550 "by old software; restarting in txg %llu", 551 (longlong_t)scn->scn_restart_txg); 552 } 553 } 554 555 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 556 557 /* reload the queue into the in-core state */ 558 if (scn->scn_phys.scn_queue_obj != 0) { 559 zap_cursor_t zc; 560 zap_attribute_t za; 561 562 for (zap_cursor_init(&zc, dp->dp_meta_objset, 563 scn->scn_phys.scn_queue_obj); 564 zap_cursor_retrieve(&zc, &za) == 0; 565 (void) zap_cursor_advance(&zc)) { 566 scan_ds_queue_insert(scn, 567 zfs_strtonum(za.za_name, NULL), 568 za.za_first_integer); 569 } 570 zap_cursor_fini(&zc); 571 } 572 573 spa_scan_stat_init(spa); 574 return (0); 575 } 576 577 void 578 dsl_scan_fini(dsl_pool_t *dp) 579 { 580 if (dp->dp_scan != NULL) { 581 dsl_scan_t *scn = dp->dp_scan; 582 583 if (scn->scn_taskq != NULL) 584 taskq_destroy(scn->scn_taskq); 585 scan_ds_queue_clear(scn); 586 avl_destroy(&scn->scn_queue); 587 avl_destroy(&scn->scn_prefetch_queue); 588 589 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 590 dp->dp_scan = NULL; 591 } 592 } 593 594 static boolean_t 595 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 596 { 597 return (scn->scn_restart_txg != 0 && 598 scn->scn_restart_txg <= tx->tx_txg); 599 } 600 601 boolean_t 602 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 603 { 604 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 605 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 606 } 607 608 boolean_t 609 dsl_scan_scrubbing(const dsl_pool_t *dp) 610 { 611 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 612 613 return (scn_phys->scn_state == DSS_SCANNING && 614 scn_phys->scn_func == POOL_SCAN_SCRUB); 615 } 616 617 boolean_t 618 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 619 { 620 return (dsl_scan_scrubbing(scn->scn_dp) && 621 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 622 } 623 624 /* 625 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 626 * Because we can be running in the block sorting algorithm, we do not always 627 * want to write out the record, only when it is "safe" to do so. This safety 628 * condition is achieved by making sure that the sorting queues are empty 629 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 630 * is inconsistent with how much actual scanning progress has been made. The 631 * kind of sync to be performed is specified by the sync_type argument. If the 632 * sync is optional, we only sync if the queues are empty. If the sync is 633 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 634 * third possible state is a "cached" sync. This is done in response to: 635 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 636 * destroyed, so we wouldn't be able to restart scanning from it. 637 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 638 * superseded by a newer snapshot. 639 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 640 * swapped with its clone. 641 * In all cases, a cached sync simply rewrites the last record we've written, 642 * just slightly modified. For the modifications that are performed to the 643 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 644 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 645 */ 646 static void 647 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 648 { 649 int i; 650 spa_t *spa = scn->scn_dp->dp_spa; 651 652 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 653 if (scn->scn_bytes_pending == 0) { 654 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 655 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 656 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 657 658 if (q == NULL) 659 continue; 660 661 mutex_enter(&vd->vdev_scan_io_queue_lock); 662 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 663 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 664 NULL); 665 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 666 mutex_exit(&vd->vdev_scan_io_queue_lock); 667 } 668 669 if (scn->scn_phys.scn_queue_obj != 0) 670 scan_ds_queue_sync(scn, tx); 671 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 672 DMU_POOL_DIRECTORY_OBJECT, 673 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 674 &scn->scn_phys, tx)); 675 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 676 sizeof (scn->scn_phys)); 677 678 if (scn->scn_checkpointing) 679 zfs_dbgmsg("finish scan checkpoint"); 680 681 scn->scn_checkpointing = B_FALSE; 682 scn->scn_last_checkpoint = ddi_get_lbolt(); 683 } else if (sync_type == SYNC_CACHED) { 684 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 685 DMU_POOL_DIRECTORY_OBJECT, 686 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 687 &scn->scn_phys_cached, tx)); 688 } 689 } 690 691 /* ARGSUSED */ 692 static int 693 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 694 { 695 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 696 697 if (dsl_scan_is_running(scn)) 698 return (SET_ERROR(EBUSY)); 699 700 return (0); 701 } 702 703 static void 704 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 705 { 706 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 707 pool_scan_func_t *funcp = arg; 708 dmu_object_type_t ot = 0; 709 dsl_pool_t *dp = scn->scn_dp; 710 spa_t *spa = dp->dp_spa; 711 712 ASSERT(!dsl_scan_is_running(scn)); 713 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 714 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 715 scn->scn_phys.scn_func = *funcp; 716 scn->scn_phys.scn_state = DSS_SCANNING; 717 scn->scn_phys.scn_min_txg = 0; 718 scn->scn_phys.scn_max_txg = tx->tx_txg; 719 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 720 scn->scn_phys.scn_start_time = gethrestime_sec(); 721 scn->scn_phys.scn_errors = 0; 722 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 723 scn->scn_issued_before_pass = 0; 724 scn->scn_restart_txg = 0; 725 scn->scn_done_txg = 0; 726 scn->scn_last_checkpoint = 0; 727 scn->scn_checkpointing = B_FALSE; 728 spa_scan_stat_init(spa); 729 730 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 731 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 732 733 /* rewrite all disk labels */ 734 vdev_config_dirty(spa->spa_root_vdev); 735 736 if (vdev_resilver_needed(spa->spa_root_vdev, 737 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 738 spa_event_notify(spa, NULL, NULL, 739 ESC_ZFS_RESILVER_START); 740 } else { 741 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 742 } 743 744 spa->spa_scrub_started = B_TRUE; 745 /* 746 * If this is an incremental scrub, limit the DDT scrub phase 747 * to just the auto-ditto class (for correctness); the rest 748 * of the scrub should go faster using top-down pruning. 749 */ 750 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 751 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 752 753 } 754 755 /* back to the generic stuff */ 756 757 if (dp->dp_blkstats == NULL) { 758 dp->dp_blkstats = 759 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 760 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 761 MUTEX_DEFAULT, NULL); 762 } 763 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 764 765 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 766 ot = DMU_OT_ZAP_OTHER; 767 768 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 769 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 770 771 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 772 773 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 774 775 spa_history_log_internal(spa, "scan setup", tx, 776 "func=%u mintxg=%llu maxtxg=%llu", 777 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); 778 } 779 780 /* 781 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 782 * Can also be called to resume a paused scrub. 783 */ 784 int 785 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 786 { 787 spa_t *spa = dp->dp_spa; 788 dsl_scan_t *scn = dp->dp_scan; 789 790 /* 791 * Purge all vdev caches and probe all devices. We do this here 792 * rather than in sync context because this requires a writer lock 793 * on the spa_config lock, which we can't do from sync context. The 794 * spa_scrub_reopen flag indicates that vdev_open() should not 795 * attempt to start another scrub. 796 */ 797 spa_vdev_state_enter(spa, SCL_NONE); 798 spa->spa_scrub_reopen = B_TRUE; 799 vdev_reopen(spa->spa_root_vdev); 800 spa->spa_scrub_reopen = B_FALSE; 801 (void) spa_vdev_state_exit(spa, NULL, 0); 802 803 if (func == POOL_SCAN_RESILVER) { 804 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 805 return (0); 806 } 807 808 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 809 /* got scrub start cmd, resume paused scrub */ 810 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 811 POOL_SCRUB_NORMAL); 812 if (err == 0) { 813 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 814 return (ECANCELED); 815 } 816 return (SET_ERROR(err)); 817 } 818 819 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 820 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 821 } 822 823 /* ARGSUSED */ 824 static void 825 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 826 { 827 static const char *old_names[] = { 828 "scrub_bookmark", 829 "scrub_ddt_bookmark", 830 "scrub_ddt_class_max", 831 "scrub_queue", 832 "scrub_min_txg", 833 "scrub_max_txg", 834 "scrub_func", 835 "scrub_errors", 836 NULL 837 }; 838 839 dsl_pool_t *dp = scn->scn_dp; 840 spa_t *spa = dp->dp_spa; 841 int i; 842 843 /* Remove any remnants of an old-style scrub. */ 844 for (i = 0; old_names[i]; i++) { 845 (void) zap_remove(dp->dp_meta_objset, 846 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 847 } 848 849 if (scn->scn_phys.scn_queue_obj != 0) { 850 VERIFY0(dmu_object_free(dp->dp_meta_objset, 851 scn->scn_phys.scn_queue_obj, tx)); 852 scn->scn_phys.scn_queue_obj = 0; 853 } 854 scan_ds_queue_clear(scn); 855 856 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 857 858 /* 859 * If we were "restarted" from a stopped state, don't bother 860 * with anything else. 861 */ 862 if (!dsl_scan_is_running(scn)) { 863 ASSERT(!scn->scn_is_sorted); 864 return; 865 } 866 867 if (scn->scn_is_sorted) { 868 scan_io_queues_destroy(scn); 869 scn->scn_is_sorted = B_FALSE; 870 871 if (scn->scn_taskq != NULL) { 872 taskq_destroy(scn->scn_taskq); 873 scn->scn_taskq = NULL; 874 } 875 } 876 877 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 878 879 if (dsl_scan_restarting(scn, tx)) 880 spa_history_log_internal(spa, "scan aborted, restarting", tx, 881 "errors=%llu", spa_get_errlog_size(spa)); 882 else if (!complete) 883 spa_history_log_internal(spa, "scan cancelled", tx, 884 "errors=%llu", spa_get_errlog_size(spa)); 885 else 886 spa_history_log_internal(spa, "scan done", tx, 887 "errors=%llu", spa_get_errlog_size(spa)); 888 889 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 890 spa->spa_scrub_started = B_FALSE; 891 spa->spa_scrub_active = B_FALSE; 892 893 /* 894 * If the scrub/resilver completed, update all DTLs to 895 * reflect this. Whether it succeeded or not, vacate 896 * all temporary scrub DTLs. 897 * 898 * As the scrub does not currently support traversing 899 * data that have been freed but are part of a checkpoint, 900 * we don't mark the scrub as done in the DTLs as faults 901 * may still exist in those vdevs. 902 */ 903 if (complete && 904 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 905 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 906 scn->scn_phys.scn_max_txg, B_TRUE); 907 908 spa_event_notify(spa, NULL, NULL, 909 scn->scn_phys.scn_min_txg ? 910 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); 911 } else { 912 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 913 0, B_TRUE); 914 } 915 spa_errlog_rotate(spa); 916 917 /* 918 * We may have finished replacing a device. 919 * Let the async thread assess this and handle the detach. 920 */ 921 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 922 923 /* 924 * Clear any resilver_deferred flags in the config. 925 * If there are drives that need resilvering, kick 926 * off an asynchronous request to start resilver. 927 * vdev_clear_resilver_deferred() may update the config 928 * before the resilver can restart. In the event of 929 * a crash during this period, the spa loading code 930 * will find the drives that need to be resilvered 931 * and start the resilver then. 932 */ 933 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 934 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 935 spa_history_log_internal(spa, 936 "starting deferred resilver", tx, "errors=%llu", 937 (u_longlong_t)spa_get_errlog_size(spa)); 938 spa_async_request(spa, SPA_ASYNC_RESILVER); 939 } 940 } 941 942 scn->scn_phys.scn_end_time = gethrestime_sec(); 943 944 ASSERT(!dsl_scan_is_running(scn)); 945 } 946 947 /* ARGSUSED */ 948 static int 949 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 950 { 951 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 952 953 if (!dsl_scan_is_running(scn)) 954 return (SET_ERROR(ENOENT)); 955 return (0); 956 } 957 958 /* ARGSUSED */ 959 static void 960 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 961 { 962 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 963 964 dsl_scan_done(scn, B_FALSE, tx); 965 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 966 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 967 } 968 969 int 970 dsl_scan_cancel(dsl_pool_t *dp) 971 { 972 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 973 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 974 } 975 976 static int 977 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 978 { 979 pool_scrub_cmd_t *cmd = arg; 980 dsl_pool_t *dp = dmu_tx_pool(tx); 981 dsl_scan_t *scn = dp->dp_scan; 982 983 if (*cmd == POOL_SCRUB_PAUSE) { 984 /* can't pause a scrub when there is no in-progress scrub */ 985 if (!dsl_scan_scrubbing(dp)) 986 return (SET_ERROR(ENOENT)); 987 988 /* can't pause a paused scrub */ 989 if (dsl_scan_is_paused_scrub(scn)) 990 return (SET_ERROR(EBUSY)); 991 } else if (*cmd != POOL_SCRUB_NORMAL) { 992 return (SET_ERROR(ENOTSUP)); 993 } 994 995 return (0); 996 } 997 998 static void 999 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1000 { 1001 pool_scrub_cmd_t *cmd = arg; 1002 dsl_pool_t *dp = dmu_tx_pool(tx); 1003 spa_t *spa = dp->dp_spa; 1004 dsl_scan_t *scn = dp->dp_scan; 1005 1006 if (*cmd == POOL_SCRUB_PAUSE) { 1007 /* can't pause a scrub when there is no in-progress scrub */ 1008 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1009 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1010 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1011 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1012 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1013 } else { 1014 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1015 if (dsl_scan_is_paused_scrub(scn)) { 1016 /* 1017 * We need to keep track of how much time we spend 1018 * paused per pass so that we can adjust the scrub rate 1019 * shown in the output of 'zpool status' 1020 */ 1021 spa->spa_scan_pass_scrub_spent_paused += 1022 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1023 spa->spa_scan_pass_scrub_pause = 0; 1024 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1025 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1026 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1027 } 1028 } 1029 } 1030 1031 /* 1032 * Set scrub pause/resume state if it makes sense to do so 1033 */ 1034 int 1035 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1036 { 1037 return (dsl_sync_task(spa_name(dp->dp_spa), 1038 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1039 ZFS_SPACE_CHECK_RESERVED)); 1040 } 1041 1042 1043 /* start a new scan, or restart an existing one. */ 1044 void 1045 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1046 { 1047 if (txg == 0) { 1048 dmu_tx_t *tx; 1049 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1050 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1051 1052 txg = dmu_tx_get_txg(tx); 1053 dp->dp_scan->scn_restart_txg = txg; 1054 dmu_tx_commit(tx); 1055 } else { 1056 dp->dp_scan->scn_restart_txg = txg; 1057 } 1058 zfs_dbgmsg("restarting resilver txg=%llu", txg); 1059 } 1060 1061 void 1062 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1063 { 1064 zio_free(dp->dp_spa, txg, bp); 1065 } 1066 1067 void 1068 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1069 { 1070 ASSERT(dsl_pool_sync_context(dp)); 1071 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1072 } 1073 1074 static int 1075 scan_ds_queue_compare(const void *a, const void *b) 1076 { 1077 const scan_ds_t *sds_a = a, *sds_b = b; 1078 1079 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1080 return (-1); 1081 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1082 return (0); 1083 return (1); 1084 } 1085 1086 static void 1087 scan_ds_queue_clear(dsl_scan_t *scn) 1088 { 1089 void *cookie = NULL; 1090 scan_ds_t *sds; 1091 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1092 kmem_free(sds, sizeof (*sds)); 1093 } 1094 } 1095 1096 static boolean_t 1097 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1098 { 1099 scan_ds_t srch, *sds; 1100 1101 srch.sds_dsobj = dsobj; 1102 sds = avl_find(&scn->scn_queue, &srch, NULL); 1103 if (sds != NULL && txg != NULL) 1104 *txg = sds->sds_txg; 1105 return (sds != NULL); 1106 } 1107 1108 static void 1109 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1110 { 1111 scan_ds_t *sds; 1112 avl_index_t where; 1113 1114 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1115 sds->sds_dsobj = dsobj; 1116 sds->sds_txg = txg; 1117 1118 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1119 avl_insert(&scn->scn_queue, sds, where); 1120 } 1121 1122 static void 1123 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1124 { 1125 scan_ds_t srch, *sds; 1126 1127 srch.sds_dsobj = dsobj; 1128 1129 sds = avl_find(&scn->scn_queue, &srch, NULL); 1130 VERIFY(sds != NULL); 1131 avl_remove(&scn->scn_queue, sds); 1132 kmem_free(sds, sizeof (*sds)); 1133 } 1134 1135 static void 1136 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1137 { 1138 dsl_pool_t *dp = scn->scn_dp; 1139 spa_t *spa = dp->dp_spa; 1140 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1141 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1142 1143 ASSERT0(scn->scn_bytes_pending); 1144 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1145 1146 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1147 scn->scn_phys.scn_queue_obj, tx)); 1148 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1149 DMU_OT_NONE, 0, tx); 1150 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1151 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1152 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1153 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1154 sds->sds_txg, tx)); 1155 } 1156 } 1157 1158 /* 1159 * Computes the memory limit state that we're currently in. A sorted scan 1160 * needs quite a bit of memory to hold the sorting queue, so we need to 1161 * reasonably constrain the size so it doesn't impact overall system 1162 * performance. We compute two limits: 1163 * 1) Hard memory limit: if the amount of memory used by the sorting 1164 * queues on a pool gets above this value, we stop the metadata 1165 * scanning portion and start issuing the queued up and sorted 1166 * I/Os to reduce memory usage. 1167 * This limit is calculated as a fraction of physmem (by default 5%). 1168 * We constrain the lower bound of the hard limit to an absolute 1169 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1170 * the upper bound to 5% of the total pool size - no chance we'll 1171 * ever need that much memory, but just to keep the value in check. 1172 * 2) Soft memory limit: once we hit the hard memory limit, we start 1173 * issuing I/O to reduce queue memory usage, but we don't want to 1174 * completely empty out the queues, since we might be able to find I/Os 1175 * that will fill in the gaps of our non-sequential IOs at some point 1176 * in the future. So we stop the issuing of I/Os once the amount of 1177 * memory used drops below the soft limit (at which point we stop issuing 1178 * I/O and start scanning metadata again). 1179 * 1180 * This limit is calculated by subtracting a fraction of the hard 1181 * limit from the hard limit. By default this fraction is 5%, so 1182 * the soft limit is 95% of the hard limit. We cap the size of the 1183 * difference between the hard and soft limits at an absolute 1184 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1185 * sufficient to not cause too frequent switching between the 1186 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1187 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1188 * that should take at least a decent fraction of a second). 1189 */ 1190 static boolean_t 1191 dsl_scan_should_clear(dsl_scan_t *scn) 1192 { 1193 spa_t *spa = scn->scn_dp->dp_spa; 1194 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1195 uint64_t alloc, mlim_hard, mlim_soft, mused; 1196 1197 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1198 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1199 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1200 1201 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1202 zfs_scan_mem_lim_min); 1203 mlim_hard = MIN(mlim_hard, alloc / 20); 1204 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1205 zfs_scan_mem_lim_soft_max); 1206 mused = 0; 1207 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1208 vdev_t *tvd = rvd->vdev_child[i]; 1209 dsl_scan_io_queue_t *queue; 1210 1211 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1212 queue = tvd->vdev_scan_io_queue; 1213 if (queue != NULL) { 1214 /* # extents in exts_by_size = # in exts_by_addr */ 1215 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1216 sizeof (range_seg_gap_t) + queue->q_sio_memused; 1217 } 1218 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1219 } 1220 1221 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1222 1223 if (mused == 0) 1224 ASSERT0(scn->scn_bytes_pending); 1225 1226 /* 1227 * If we are above our hard limit, we need to clear out memory. 1228 * If we are below our soft limit, we need to accumulate sequential IOs. 1229 * Otherwise, we should keep doing whatever we are currently doing. 1230 */ 1231 if (mused >= mlim_hard) 1232 return (B_TRUE); 1233 else if (mused < mlim_soft) 1234 return (B_FALSE); 1235 else 1236 return (scn->scn_clearing); 1237 } 1238 1239 static boolean_t 1240 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1241 { 1242 /* we never skip user/group accounting objects */ 1243 if (zb && (int64_t)zb->zb_object < 0) 1244 return (B_FALSE); 1245 1246 if (scn->scn_suspending) 1247 return (B_TRUE); /* we're already suspending */ 1248 1249 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1250 return (B_FALSE); /* we're resuming */ 1251 1252 /* We only know how to resume from level-0 blocks. */ 1253 if (zb && zb->zb_level != 0) 1254 return (B_FALSE); 1255 1256 /* 1257 * We suspend if: 1258 * - we have scanned for at least the minimum time (default 1 sec 1259 * for scrub, 3 sec for resilver), and either we have sufficient 1260 * dirty data that we are starting to write more quickly 1261 * (default 30%), or someone is explicitly waiting for this txg 1262 * to complete. 1263 * or 1264 * - the spa is shutting down because this pool is being exported 1265 * or the machine is rebooting. 1266 * or 1267 * - the scan queue has reached its memory use limit 1268 */ 1269 hrtime_t curr_time_ns = gethrtime(); 1270 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1271 uint64_t sync_time_ns = curr_time_ns - 1272 scn->scn_dp->dp_spa->spa_sync_starttime; 1273 1274 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1275 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1276 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1277 1278 if ((NSEC2MSEC(scan_time_ns) > mintime && 1279 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1280 txg_sync_waiting(scn->scn_dp) || 1281 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1282 spa_shutting_down(scn->scn_dp->dp_spa) || 1283 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1284 if (zb) { 1285 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1286 (longlong_t)zb->zb_objset, 1287 (longlong_t)zb->zb_object, 1288 (longlong_t)zb->zb_level, 1289 (longlong_t)zb->zb_blkid); 1290 scn->scn_phys.scn_bookmark = *zb; 1291 } else { 1292 dsl_scan_phys_t *scnp = &scn->scn_phys; 1293 1294 dprintf("suspending at DDT bookmark " 1295 "%llx/%llx/%llx/%llx\n", 1296 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1297 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1298 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1299 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1300 } 1301 scn->scn_suspending = B_TRUE; 1302 return (B_TRUE); 1303 } 1304 return (B_FALSE); 1305 } 1306 1307 typedef struct zil_scan_arg { 1308 dsl_pool_t *zsa_dp; 1309 zil_header_t *zsa_zh; 1310 } zil_scan_arg_t; 1311 1312 /* ARGSUSED */ 1313 static int 1314 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1315 { 1316 zil_scan_arg_t *zsa = arg; 1317 dsl_pool_t *dp = zsa->zsa_dp; 1318 dsl_scan_t *scn = dp->dp_scan; 1319 zil_header_t *zh = zsa->zsa_zh; 1320 zbookmark_phys_t zb; 1321 1322 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1323 return (0); 1324 1325 /* 1326 * One block ("stubby") can be allocated a long time ago; we 1327 * want to visit that one because it has been allocated 1328 * (on-disk) even if it hasn't been claimed (even though for 1329 * scrub there's nothing to do to it). 1330 */ 1331 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1332 return (0); 1333 1334 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1335 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1336 1337 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1338 return (0); 1339 } 1340 1341 /* ARGSUSED */ 1342 static int 1343 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1344 { 1345 if (lrc->lrc_txtype == TX_WRITE) { 1346 zil_scan_arg_t *zsa = arg; 1347 dsl_pool_t *dp = zsa->zsa_dp; 1348 dsl_scan_t *scn = dp->dp_scan; 1349 zil_header_t *zh = zsa->zsa_zh; 1350 lr_write_t *lr = (lr_write_t *)lrc; 1351 blkptr_t *bp = &lr->lr_blkptr; 1352 zbookmark_phys_t zb; 1353 1354 if (BP_IS_HOLE(bp) || 1355 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1356 return (0); 1357 1358 /* 1359 * birth can be < claim_txg if this record's txg is 1360 * already txg sync'ed (but this log block contains 1361 * other records that are not synced) 1362 */ 1363 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1364 return (0); 1365 1366 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1367 lr->lr_foid, ZB_ZIL_LEVEL, 1368 lr->lr_offset / BP_GET_LSIZE(bp)); 1369 1370 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1371 } 1372 return (0); 1373 } 1374 1375 static void 1376 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1377 { 1378 uint64_t claim_txg = zh->zh_claim_txg; 1379 zil_scan_arg_t zsa = { dp, zh }; 1380 zilog_t *zilog; 1381 1382 ASSERT(spa_writeable(dp->dp_spa)); 1383 1384 /* 1385 * We only want to visit blocks that have been claimed 1386 * but not yet replayed. 1387 */ 1388 if (claim_txg == 0) 1389 return; 1390 1391 zilog = zil_alloc(dp->dp_meta_objset, zh); 1392 1393 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1394 claim_txg, B_FALSE); 1395 1396 zil_free(zilog); 1397 } 1398 1399 /* 1400 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1401 * here is to sort the AVL tree by the order each block will be needed. 1402 */ 1403 static int 1404 scan_prefetch_queue_compare(const void *a, const void *b) 1405 { 1406 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1407 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1408 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1409 1410 return (zbookmark_compare(spc_a->spc_datablkszsec, 1411 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1412 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1413 } 1414 1415 static void 1416 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1417 { 1418 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1419 zfs_refcount_destroy(&spc->spc_refcnt); 1420 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1421 } 1422 } 1423 1424 static scan_prefetch_ctx_t * 1425 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1426 { 1427 scan_prefetch_ctx_t *spc; 1428 1429 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1430 zfs_refcount_create(&spc->spc_refcnt); 1431 zfs_refcount_add(&spc->spc_refcnt, tag); 1432 spc->spc_scn = scn; 1433 if (dnp != NULL) { 1434 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1435 spc->spc_indblkshift = dnp->dn_indblkshift; 1436 spc->spc_root = B_FALSE; 1437 } else { 1438 spc->spc_datablkszsec = 0; 1439 spc->spc_indblkshift = 0; 1440 spc->spc_root = B_TRUE; 1441 } 1442 1443 return (spc); 1444 } 1445 1446 static void 1447 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1448 { 1449 zfs_refcount_add(&spc->spc_refcnt, tag); 1450 } 1451 1452 static boolean_t 1453 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1454 const zbookmark_phys_t *zb) 1455 { 1456 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1457 dnode_phys_t tmp_dnp; 1458 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1459 1460 if (zb->zb_objset != last_zb->zb_objset) 1461 return (B_TRUE); 1462 if ((int64_t)zb->zb_object < 0) 1463 return (B_FALSE); 1464 1465 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1466 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1467 1468 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1469 return (B_TRUE); 1470 1471 return (B_FALSE); 1472 } 1473 1474 static void 1475 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1476 { 1477 avl_index_t idx; 1478 dsl_scan_t *scn = spc->spc_scn; 1479 spa_t *spa = scn->scn_dp->dp_spa; 1480 scan_prefetch_issue_ctx_t *spic; 1481 1482 if (zfs_no_scrub_prefetch) 1483 return; 1484 1485 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1486 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1487 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1488 return; 1489 1490 if (dsl_scan_check_prefetch_resume(spc, zb)) 1491 return; 1492 1493 scan_prefetch_ctx_add_ref(spc, scn); 1494 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1495 spic->spic_spc = spc; 1496 spic->spic_bp = *bp; 1497 spic->spic_zb = *zb; 1498 1499 /* 1500 * Add the IO to the queue of blocks to prefetch. This allows us to 1501 * prioritize blocks that we will need first for the main traversal 1502 * thread. 1503 */ 1504 mutex_enter(&spa->spa_scrub_lock); 1505 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1506 /* this block is already queued for prefetch */ 1507 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1508 scan_prefetch_ctx_rele(spc, scn); 1509 mutex_exit(&spa->spa_scrub_lock); 1510 return; 1511 } 1512 1513 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1514 cv_broadcast(&spa->spa_scrub_io_cv); 1515 mutex_exit(&spa->spa_scrub_lock); 1516 } 1517 1518 static void 1519 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1520 uint64_t objset, uint64_t object) 1521 { 1522 int i; 1523 zbookmark_phys_t zb; 1524 scan_prefetch_ctx_t *spc; 1525 1526 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1527 return; 1528 1529 SET_BOOKMARK(&zb, objset, object, 0, 0); 1530 1531 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1532 1533 for (i = 0; i < dnp->dn_nblkptr; i++) { 1534 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1535 zb.zb_blkid = i; 1536 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1537 } 1538 1539 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1540 zb.zb_level = 0; 1541 zb.zb_blkid = DMU_SPILL_BLKID; 1542 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); 1543 } 1544 1545 scan_prefetch_ctx_rele(spc, FTAG); 1546 } 1547 1548 void 1549 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1550 arc_buf_t *buf, void *private) 1551 { 1552 scan_prefetch_ctx_t *spc = private; 1553 dsl_scan_t *scn = spc->spc_scn; 1554 spa_t *spa = scn->scn_dp->dp_spa; 1555 1556 /* broadcast that the IO has completed for rate limitting purposes */ 1557 mutex_enter(&spa->spa_scrub_lock); 1558 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1559 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1560 cv_broadcast(&spa->spa_scrub_io_cv); 1561 mutex_exit(&spa->spa_scrub_lock); 1562 1563 /* if there was an error or we are done prefetching, just cleanup */ 1564 if (buf == NULL || scn->scn_suspending) 1565 goto out; 1566 1567 if (BP_GET_LEVEL(bp) > 0) { 1568 int i; 1569 blkptr_t *cbp; 1570 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1571 zbookmark_phys_t czb; 1572 1573 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1574 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1575 zb->zb_level - 1, zb->zb_blkid * epb + i); 1576 dsl_scan_prefetch(spc, cbp, &czb); 1577 } 1578 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1579 dnode_phys_t *cdnp = buf->b_data; 1580 int i; 1581 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1582 1583 for (i = 0, cdnp = buf->b_data; i < epb; 1584 i += cdnp->dn_extra_slots + 1, 1585 cdnp += cdnp->dn_extra_slots + 1) { 1586 dsl_scan_prefetch_dnode(scn, cdnp, 1587 zb->zb_objset, zb->zb_blkid * epb + i); 1588 } 1589 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1590 objset_phys_t *osp = buf->b_data; 1591 1592 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1593 zb->zb_objset, DMU_META_DNODE_OBJECT); 1594 1595 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1596 dsl_scan_prefetch_dnode(scn, 1597 &osp->os_groupused_dnode, zb->zb_objset, 1598 DMU_GROUPUSED_OBJECT); 1599 dsl_scan_prefetch_dnode(scn, 1600 &osp->os_userused_dnode, zb->zb_objset, 1601 DMU_USERUSED_OBJECT); 1602 } 1603 } 1604 1605 out: 1606 if (buf != NULL) 1607 arc_buf_destroy(buf, private); 1608 scan_prefetch_ctx_rele(spc, scn); 1609 } 1610 1611 /* ARGSUSED */ 1612 static void 1613 dsl_scan_prefetch_thread(void *arg) 1614 { 1615 dsl_scan_t *scn = arg; 1616 spa_t *spa = scn->scn_dp->dp_spa; 1617 vdev_t *rvd = spa->spa_root_vdev; 1618 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; 1619 scan_prefetch_issue_ctx_t *spic; 1620 1621 /* loop until we are told to stop */ 1622 while (!scn->scn_prefetch_stop) { 1623 arc_flags_t flags = ARC_FLAG_NOWAIT | 1624 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1625 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1626 1627 mutex_enter(&spa->spa_scrub_lock); 1628 1629 /* 1630 * Wait until we have an IO to issue and are not above our 1631 * maximum in flight limit. 1632 */ 1633 while (!scn->scn_prefetch_stop && 1634 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1635 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1636 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1637 } 1638 1639 /* recheck if we should stop since we waited for the cv */ 1640 if (scn->scn_prefetch_stop) { 1641 mutex_exit(&spa->spa_scrub_lock); 1642 break; 1643 } 1644 1645 /* remove the prefetch IO from the tree */ 1646 spic = avl_first(&scn->scn_prefetch_queue); 1647 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1648 avl_remove(&scn->scn_prefetch_queue, spic); 1649 1650 mutex_exit(&spa->spa_scrub_lock); 1651 1652 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1653 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1654 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1655 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1656 zio_flags |= ZIO_FLAG_RAW; 1657 } 1658 1659 /* issue the prefetch asynchronously */ 1660 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1661 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1662 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1663 1664 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1665 } 1666 1667 ASSERT(scn->scn_prefetch_stop); 1668 1669 /* free any prefetches we didn't get to complete */ 1670 mutex_enter(&spa->spa_scrub_lock); 1671 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1672 avl_remove(&scn->scn_prefetch_queue, spic); 1673 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1674 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1675 } 1676 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1677 mutex_exit(&spa->spa_scrub_lock); 1678 } 1679 1680 static boolean_t 1681 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1682 const zbookmark_phys_t *zb) 1683 { 1684 /* 1685 * We never skip over user/group accounting objects (obj<0) 1686 */ 1687 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1688 (int64_t)zb->zb_object >= 0) { 1689 /* 1690 * If we already visited this bp & everything below (in 1691 * a prior txg sync), don't bother doing it again. 1692 */ 1693 if (zbookmark_subtree_completed(dnp, zb, 1694 &scn->scn_phys.scn_bookmark)) 1695 return (B_TRUE); 1696 1697 /* 1698 * If we found the block we're trying to resume from, or 1699 * we went past it to a different object, zero it out to 1700 * indicate that it's OK to start checking for suspending 1701 * again. 1702 */ 1703 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1704 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1705 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1706 (longlong_t)zb->zb_objset, 1707 (longlong_t)zb->zb_object, 1708 (longlong_t)zb->zb_level, 1709 (longlong_t)zb->zb_blkid); 1710 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1711 } 1712 } 1713 return (B_FALSE); 1714 } 1715 1716 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1717 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1718 dmu_objset_type_t ostype, dmu_tx_t *tx); 1719 static void dsl_scan_visitdnode( 1720 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1721 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1722 1723 /* 1724 * Return nonzero on i/o error. 1725 * Return new buf to write out in *bufp. 1726 */ 1727 static int 1728 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1729 dnode_phys_t *dnp, const blkptr_t *bp, 1730 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1731 { 1732 dsl_pool_t *dp = scn->scn_dp; 1733 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1734 int err; 1735 1736 if (BP_GET_LEVEL(bp) > 0) { 1737 arc_flags_t flags = ARC_FLAG_WAIT; 1738 int i; 1739 blkptr_t *cbp; 1740 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1741 arc_buf_t *buf; 1742 1743 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1744 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1745 if (err) { 1746 scn->scn_phys.scn_errors++; 1747 return (err); 1748 } 1749 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1750 zbookmark_phys_t czb; 1751 1752 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1753 zb->zb_level - 1, 1754 zb->zb_blkid * epb + i); 1755 dsl_scan_visitbp(cbp, &czb, dnp, 1756 ds, scn, ostype, tx); 1757 } 1758 arc_buf_destroy(buf, &buf); 1759 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1760 arc_flags_t flags = ARC_FLAG_WAIT; 1761 dnode_phys_t *cdnp; 1762 int i; 1763 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1764 arc_buf_t *buf; 1765 1766 if (BP_IS_PROTECTED(bp)) { 1767 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1768 zio_flags |= ZIO_FLAG_RAW; 1769 } 1770 1771 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1772 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1773 if (err) { 1774 scn->scn_phys.scn_errors++; 1775 return (err); 1776 } 1777 for (i = 0, cdnp = buf->b_data; i < epb; 1778 i += cdnp->dn_extra_slots + 1, 1779 cdnp += cdnp->dn_extra_slots + 1) { 1780 dsl_scan_visitdnode(scn, ds, ostype, 1781 cdnp, zb->zb_blkid * epb + i, tx); 1782 } 1783 1784 arc_buf_destroy(buf, &buf); 1785 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1786 arc_flags_t flags = ARC_FLAG_WAIT; 1787 objset_phys_t *osp; 1788 arc_buf_t *buf; 1789 1790 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1791 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1792 if (err) { 1793 scn->scn_phys.scn_errors++; 1794 return (err); 1795 } 1796 1797 osp = buf->b_data; 1798 1799 dsl_scan_visitdnode(scn, ds, osp->os_type, 1800 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1801 1802 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1803 /* 1804 * We also always visit user/group/project accounting 1805 * objects, and never skip them, even if we are 1806 * suspending. This is necessary so that the space 1807 * deltas from this txg get integrated. 1808 */ 1809 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1810 dsl_scan_visitdnode(scn, ds, osp->os_type, 1811 &osp->os_projectused_dnode, 1812 DMU_PROJECTUSED_OBJECT, tx); 1813 dsl_scan_visitdnode(scn, ds, osp->os_type, 1814 &osp->os_groupused_dnode, 1815 DMU_GROUPUSED_OBJECT, tx); 1816 dsl_scan_visitdnode(scn, ds, osp->os_type, 1817 &osp->os_userused_dnode, 1818 DMU_USERUSED_OBJECT, tx); 1819 } 1820 arc_buf_destroy(buf, &buf); 1821 } 1822 1823 return (0); 1824 } 1825 1826 static void 1827 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1828 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1829 uint64_t object, dmu_tx_t *tx) 1830 { 1831 int j; 1832 1833 for (j = 0; j < dnp->dn_nblkptr; j++) { 1834 zbookmark_phys_t czb; 1835 1836 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1837 dnp->dn_nlevels - 1, j); 1838 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1839 &czb, dnp, ds, scn, ostype, tx); 1840 } 1841 1842 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1843 zbookmark_phys_t czb; 1844 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1845 0, DMU_SPILL_BLKID); 1846 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1847 &czb, dnp, ds, scn, ostype, tx); 1848 } 1849 } 1850 1851 /* 1852 * The arguments are in this order because mdb can only print the 1853 * first 5; we want them to be useful. 1854 */ 1855 static void 1856 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1857 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1858 dmu_objset_type_t ostype, dmu_tx_t *tx) 1859 { 1860 dsl_pool_t *dp = scn->scn_dp; 1861 blkptr_t *bp_toread = NULL; 1862 1863 if (dsl_scan_check_suspend(scn, zb)) 1864 return; 1865 1866 if (dsl_scan_check_resume(scn, dnp, zb)) 1867 return; 1868 1869 scn->scn_visited_this_txg++; 1870 1871 /* 1872 * This debugging is commented out to conserve stack space. This 1873 * function is called recursively and the debugging addes several 1874 * bytes to the stack for each call. It can be commented back in 1875 * if required to debug an issue in dsl_scan_visitbp(). 1876 * 1877 * dprintf_bp(bp, 1878 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1879 * ds, ds ? ds->ds_object : 0, 1880 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1881 * bp); 1882 */ 1883 1884 if (BP_IS_HOLE(bp)) { 1885 scn->scn_holes_this_txg++; 1886 return; 1887 } 1888 1889 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1890 scn->scn_lt_min_this_txg++; 1891 return; 1892 } 1893 1894 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1895 *bp_toread = *bp; 1896 1897 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1898 goto out; 1899 1900 /* 1901 * If dsl_scan_ddt() has already visited this block, it will have 1902 * already done any translations or scrubbing, so don't call the 1903 * callback again. 1904 */ 1905 if (ddt_class_contains(dp->dp_spa, 1906 scn->scn_phys.scn_ddt_class_max, bp)) { 1907 scn->scn_ddt_contained_this_txg++; 1908 goto out; 1909 } 1910 1911 /* 1912 * If this block is from the future (after cur_max_txg), then we 1913 * are doing this on behalf of a deleted snapshot, and we will 1914 * revisit the future block on the next pass of this dataset. 1915 * Don't scan it now unless we need to because something 1916 * under it was modified. 1917 */ 1918 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 1919 scn->scn_gt_max_this_txg++; 1920 goto out; 1921 } 1922 1923 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 1924 1925 out: 1926 kmem_free(bp_toread, sizeof (blkptr_t)); 1927 } 1928 1929 static void 1930 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 1931 dmu_tx_t *tx) 1932 { 1933 zbookmark_phys_t zb; 1934 scan_prefetch_ctx_t *spc; 1935 1936 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1937 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 1938 1939 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 1940 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 1941 zb.zb_objset, 0, 0, 0); 1942 } else { 1943 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 1944 } 1945 1946 scn->scn_objsets_visited_this_txg++; 1947 1948 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 1949 dsl_scan_prefetch(spc, bp, &zb); 1950 scan_prefetch_ctx_rele(spc, FTAG); 1951 1952 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 1953 1954 dprintf_ds(ds, "finished scan%s", ""); 1955 } 1956 1957 static void 1958 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 1959 { 1960 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 1961 if (ds->ds_is_snapshot) { 1962 /* 1963 * Note: 1964 * - scn_cur_{min,max}_txg stays the same. 1965 * - Setting the flag is not really necessary if 1966 * scn_cur_max_txg == scn_max_txg, because there 1967 * is nothing after this snapshot that we care 1968 * about. However, we set it anyway and then 1969 * ignore it when we retraverse it in 1970 * dsl_scan_visitds(). 1971 */ 1972 scn_phys->scn_bookmark.zb_objset = 1973 dsl_dataset_phys(ds)->ds_next_snap_obj; 1974 zfs_dbgmsg("destroying ds %llu; currently traversing; " 1975 "reset zb_objset to %llu", 1976 (u_longlong_t)ds->ds_object, 1977 (u_longlong_t)dsl_dataset_phys(ds)-> 1978 ds_next_snap_obj); 1979 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 1980 } else { 1981 SET_BOOKMARK(&scn_phys->scn_bookmark, 1982 ZB_DESTROYED_OBJSET, 0, 0, 0); 1983 zfs_dbgmsg("destroying ds %llu; currently traversing; " 1984 "reset bookmark to -1,0,0,0", 1985 (u_longlong_t)ds->ds_object); 1986 } 1987 } 1988 } 1989 1990 /* 1991 * Invoked when a dataset is destroyed. We need to make sure that: 1992 * 1993 * 1) If it is the dataset that was currently being scanned, we write 1994 * a new dsl_scan_phys_t and marking the objset reference in it 1995 * as destroyed. 1996 * 2) Remove it from the work queue, if it was present. 1997 * 1998 * If the dataset was actually a snapshot, instead of marking the dataset 1999 * as destroyed, we instead substitute the next snapshot in line. 2000 */ 2001 void 2002 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2003 { 2004 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2005 dsl_scan_t *scn = dp->dp_scan; 2006 uint64_t mintxg; 2007 2008 if (!dsl_scan_is_running(scn)) 2009 return; 2010 2011 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2012 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2013 2014 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2015 scan_ds_queue_remove(scn, ds->ds_object); 2016 if (ds->ds_is_snapshot) 2017 scan_ds_queue_insert(scn, 2018 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2019 } 2020 2021 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2022 ds->ds_object, &mintxg) == 0) { 2023 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2024 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2025 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2026 if (ds->ds_is_snapshot) { 2027 /* 2028 * We keep the same mintxg; it could be > 2029 * ds_creation_txg if the previous snapshot was 2030 * deleted too. 2031 */ 2032 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2033 scn->scn_phys.scn_queue_obj, 2034 dsl_dataset_phys(ds)->ds_next_snap_obj, 2035 mintxg, tx) == 0); 2036 zfs_dbgmsg("destroying ds %llu; in queue; " 2037 "replacing with %llu", 2038 (u_longlong_t)ds->ds_object, 2039 (u_longlong_t)dsl_dataset_phys(ds)-> 2040 ds_next_snap_obj); 2041 } else { 2042 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2043 (u_longlong_t)ds->ds_object); 2044 } 2045 } 2046 2047 /* 2048 * dsl_scan_sync() should be called after this, and should sync 2049 * out our changed state, but just to be safe, do it here. 2050 */ 2051 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2052 } 2053 2054 static void 2055 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2056 { 2057 if (scn_bookmark->zb_objset == ds->ds_object) { 2058 scn_bookmark->zb_objset = 2059 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2060 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2061 "reset zb_objset to %llu", 2062 (u_longlong_t)ds->ds_object, 2063 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2064 } 2065 } 2066 2067 /* 2068 * Called when a dataset is snapshotted. If we were currently traversing 2069 * this snapshot, we reset our bookmark to point at the newly created 2070 * snapshot. We also modify our work queue to remove the old snapshot and 2071 * replace with the new one. 2072 */ 2073 void 2074 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2075 { 2076 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2077 dsl_scan_t *scn = dp->dp_scan; 2078 uint64_t mintxg; 2079 2080 if (!dsl_scan_is_running(scn)) 2081 return; 2082 2083 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2084 2085 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2086 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2087 2088 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2089 scan_ds_queue_remove(scn, ds->ds_object); 2090 scan_ds_queue_insert(scn, 2091 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2092 } 2093 2094 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2095 ds->ds_object, &mintxg) == 0) { 2096 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2097 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2098 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2099 scn->scn_phys.scn_queue_obj, 2100 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2101 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2102 "replacing with %llu", 2103 (u_longlong_t)ds->ds_object, 2104 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2105 } 2106 2107 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2108 } 2109 2110 static void 2111 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2112 zbookmark_phys_t *scn_bookmark) 2113 { 2114 if (scn_bookmark->zb_objset == ds1->ds_object) { 2115 scn_bookmark->zb_objset = ds2->ds_object; 2116 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2117 "reset zb_objset to %llu", 2118 (u_longlong_t)ds1->ds_object, 2119 (u_longlong_t)ds2->ds_object); 2120 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2121 scn_bookmark->zb_objset = ds1->ds_object; 2122 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2123 "reset zb_objset to %llu", 2124 (u_longlong_t)ds2->ds_object, 2125 (u_longlong_t)ds1->ds_object); 2126 } 2127 } 2128 2129 /* 2130 * Called when a parent dataset and its clone are swapped. If we were 2131 * currently traversing the dataset, we need to switch to traversing the 2132 * newly promoted parent. 2133 */ 2134 void 2135 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2136 { 2137 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2138 dsl_scan_t *scn = dp->dp_scan; 2139 uint64_t mintxg; 2140 2141 if (!dsl_scan_is_running(scn)) 2142 return; 2143 2144 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2145 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2146 2147 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) { 2148 scan_ds_queue_remove(scn, ds1->ds_object); 2149 scan_ds_queue_insert(scn, ds2->ds_object, mintxg); 2150 } 2151 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) { 2152 scan_ds_queue_remove(scn, ds2->ds_object); 2153 scan_ds_queue_insert(scn, ds1->ds_object, mintxg); 2154 } 2155 2156 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2157 ds1->ds_object, &mintxg) == 0) { 2158 int err; 2159 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2160 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2161 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2162 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2163 err = zap_add_int_key(dp->dp_meta_objset, 2164 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); 2165 VERIFY(err == 0 || err == EEXIST); 2166 if (err == EEXIST) { 2167 /* Both were there to begin with */ 2168 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2169 scn->scn_phys.scn_queue_obj, 2170 ds1->ds_object, mintxg, tx)); 2171 } 2172 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2173 "replacing with %llu", 2174 (u_longlong_t)ds1->ds_object, 2175 (u_longlong_t)ds2->ds_object); 2176 } 2177 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2178 ds2->ds_object, &mintxg) == 0) { 2179 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2180 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2181 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2182 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2183 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2184 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); 2185 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2186 "replacing with %llu", 2187 (u_longlong_t)ds2->ds_object, 2188 (u_longlong_t)ds1->ds_object); 2189 } 2190 2191 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2192 } 2193 2194 /* ARGSUSED */ 2195 static int 2196 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2197 { 2198 uint64_t originobj = *(uint64_t *)arg; 2199 dsl_dataset_t *ds; 2200 int err; 2201 dsl_scan_t *scn = dp->dp_scan; 2202 2203 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2204 return (0); 2205 2206 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2207 if (err) 2208 return (err); 2209 2210 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2211 dsl_dataset_t *prev; 2212 err = dsl_dataset_hold_obj(dp, 2213 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2214 2215 dsl_dataset_rele(ds, FTAG); 2216 if (err) 2217 return (err); 2218 ds = prev; 2219 } 2220 scan_ds_queue_insert(scn, ds->ds_object, 2221 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2222 dsl_dataset_rele(ds, FTAG); 2223 return (0); 2224 } 2225 2226 static void 2227 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2228 { 2229 dsl_pool_t *dp = scn->scn_dp; 2230 dsl_dataset_t *ds; 2231 2232 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2233 2234 if (scn->scn_phys.scn_cur_min_txg >= 2235 scn->scn_phys.scn_max_txg) { 2236 /* 2237 * This can happen if this snapshot was created after the 2238 * scan started, and we already completed a previous snapshot 2239 * that was created after the scan started. This snapshot 2240 * only references blocks with: 2241 * 2242 * birth < our ds_creation_txg 2243 * cur_min_txg is no less than ds_creation_txg. 2244 * We have already visited these blocks. 2245 * or 2246 * birth > scn_max_txg 2247 * The scan requested not to visit these blocks. 2248 * 2249 * Subsequent snapshots (and clones) can reference our 2250 * blocks, or blocks with even higher birth times. 2251 * Therefore we do not need to visit them either, 2252 * so we do not add them to the work queue. 2253 * 2254 * Note that checking for cur_min_txg >= cur_max_txg 2255 * is not sufficient, because in that case we may need to 2256 * visit subsequent snapshots. This happens when min_txg > 0, 2257 * which raises cur_min_txg. In this case we will visit 2258 * this dataset but skip all of its blocks, because the 2259 * rootbp's birth time is < cur_min_txg. Then we will 2260 * add the next snapshots/clones to the work queue. 2261 */ 2262 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); 2263 dsl_dataset_name(ds, dsname); 2264 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2265 "cur_min_txg (%llu) >= max_txg (%llu)", 2266 (longlong_t)dsobj, dsname, 2267 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2268 (longlong_t)scn->scn_phys.scn_max_txg); 2269 kmem_free(dsname, MAXNAMELEN); 2270 2271 goto out; 2272 } 2273 2274 /* 2275 * Only the ZIL in the head (non-snapshot) is valid. Even though 2276 * snapshots can have ZIL block pointers (which may be the same 2277 * BP as in the head), they must be ignored. In addition, $ORIGIN 2278 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2279 * need to look for a ZIL in it either. So we traverse the ZIL here, 2280 * rather than in scan_recurse(), because the regular snapshot 2281 * block-sharing rules don't apply to it. 2282 */ 2283 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && 2284 (dp->dp_origin_snap == NULL || 2285 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2286 objset_t *os; 2287 if (dmu_objset_from_ds(ds, &os) != 0) { 2288 goto out; 2289 } 2290 dsl_scan_zil(dp, &os->os_zil_header); 2291 } 2292 2293 /* 2294 * Iterate over the bps in this ds. 2295 */ 2296 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2297 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2298 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2299 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2300 2301 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2302 dsl_dataset_name(ds, dsname); 2303 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2304 "suspending=%u", 2305 (longlong_t)dsobj, dsname, 2306 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2307 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2308 (int)scn->scn_suspending); 2309 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2310 2311 if (scn->scn_suspending) 2312 goto out; 2313 2314 /* 2315 * We've finished this pass over this dataset. 2316 */ 2317 2318 /* 2319 * If we did not completely visit this dataset, do another pass. 2320 */ 2321 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2322 zfs_dbgmsg("incomplete pass; visiting again"); 2323 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2324 scan_ds_queue_insert(scn, ds->ds_object, 2325 scn->scn_phys.scn_cur_max_txg); 2326 goto out; 2327 } 2328 2329 /* 2330 * Add descendent datasets to work queue. 2331 */ 2332 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2333 scan_ds_queue_insert(scn, 2334 dsl_dataset_phys(ds)->ds_next_snap_obj, 2335 dsl_dataset_phys(ds)->ds_creation_txg); 2336 } 2337 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2338 boolean_t usenext = B_FALSE; 2339 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2340 uint64_t count; 2341 /* 2342 * A bug in a previous version of the code could 2343 * cause upgrade_clones_cb() to not set 2344 * ds_next_snap_obj when it should, leading to a 2345 * missing entry. Therefore we can only use the 2346 * next_clones_obj when its count is correct. 2347 */ 2348 int err = zap_count(dp->dp_meta_objset, 2349 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2350 if (err == 0 && 2351 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2352 usenext = B_TRUE; 2353 } 2354 2355 if (usenext) { 2356 zap_cursor_t zc; 2357 zap_attribute_t za; 2358 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2359 dsl_dataset_phys(ds)->ds_next_clones_obj); 2360 zap_cursor_retrieve(&zc, &za) == 0; 2361 (void) zap_cursor_advance(&zc)) { 2362 scan_ds_queue_insert(scn, 2363 zfs_strtonum(za.za_name, NULL), 2364 dsl_dataset_phys(ds)->ds_creation_txg); 2365 } 2366 zap_cursor_fini(&zc); 2367 } else { 2368 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2369 enqueue_clones_cb, &ds->ds_object, 2370 DS_FIND_CHILDREN)); 2371 } 2372 } 2373 2374 out: 2375 dsl_dataset_rele(ds, FTAG); 2376 } 2377 2378 /* ARGSUSED */ 2379 static int 2380 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2381 { 2382 dsl_dataset_t *ds; 2383 int err; 2384 dsl_scan_t *scn = dp->dp_scan; 2385 2386 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2387 if (err) 2388 return (err); 2389 2390 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2391 dsl_dataset_t *prev; 2392 err = dsl_dataset_hold_obj(dp, 2393 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2394 if (err) { 2395 dsl_dataset_rele(ds, FTAG); 2396 return (err); 2397 } 2398 2399 /* 2400 * If this is a clone, we don't need to worry about it for now. 2401 */ 2402 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2403 dsl_dataset_rele(ds, FTAG); 2404 dsl_dataset_rele(prev, FTAG); 2405 return (0); 2406 } 2407 dsl_dataset_rele(ds, FTAG); 2408 ds = prev; 2409 } 2410 2411 scan_ds_queue_insert(scn, ds->ds_object, 2412 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2413 dsl_dataset_rele(ds, FTAG); 2414 return (0); 2415 } 2416 2417 /* ARGSUSED */ 2418 void 2419 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2420 ddt_entry_t *dde, dmu_tx_t *tx) 2421 { 2422 const ddt_key_t *ddk = &dde->dde_key; 2423 ddt_phys_t *ddp = dde->dde_phys; 2424 blkptr_t bp; 2425 zbookmark_phys_t zb = { 0 }; 2426 int p; 2427 2428 if (scn->scn_phys.scn_state != DSS_SCANNING) 2429 return; 2430 2431 /* 2432 * This function is special because it is the only thing 2433 * that can add scan_io_t's to the vdev scan queues from 2434 * outside dsl_scan_sync(). For the most part this is ok 2435 * as long as it is called from within syncing context. 2436 * However, dsl_scan_sync() expects that no new sio's will 2437 * be added between when all the work for a scan is done 2438 * and the next txg when the scan is actually marked as 2439 * completed. This check ensures we do not issue new sio's 2440 * during this period. 2441 */ 2442 if (scn->scn_done_txg != 0) 2443 return; 2444 2445 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2446 if (ddp->ddp_phys_birth == 0 || 2447 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2448 continue; 2449 ddt_bp_create(checksum, ddk, ddp, &bp); 2450 2451 scn->scn_visited_this_txg++; 2452 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2453 } 2454 } 2455 2456 /* 2457 * Scrub/dedup interaction. 2458 * 2459 * If there are N references to a deduped block, we don't want to scrub it 2460 * N times -- ideally, we should scrub it exactly once. 2461 * 2462 * We leverage the fact that the dde's replication class (enum ddt_class) 2463 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2464 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2465 * 2466 * To prevent excess scrubbing, the scrub begins by walking the DDT 2467 * to find all blocks with refcnt > 1, and scrubs each of these once. 2468 * Since there are two replication classes which contain blocks with 2469 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2470 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2471 * 2472 * There would be nothing more to say if a block's refcnt couldn't change 2473 * during a scrub, but of course it can so we must account for changes 2474 * in a block's replication class. 2475 * 2476 * Here's an example of what can occur: 2477 * 2478 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2479 * when visited during the top-down scrub phase, it will be scrubbed twice. 2480 * This negates our scrub optimization, but is otherwise harmless. 2481 * 2482 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2483 * on each visit during the top-down scrub phase, it will never be scrubbed. 2484 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2485 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2486 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2487 * while a scrub is in progress, it scrubs the block right then. 2488 */ 2489 static void 2490 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2491 { 2492 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2493 ddt_entry_t dde = { 0 }; 2494 int error; 2495 uint64_t n = 0; 2496 2497 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2498 ddt_t *ddt; 2499 2500 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2501 break; 2502 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2503 (longlong_t)ddb->ddb_class, 2504 (longlong_t)ddb->ddb_type, 2505 (longlong_t)ddb->ddb_checksum, 2506 (longlong_t)ddb->ddb_cursor); 2507 2508 /* There should be no pending changes to the dedup table */ 2509 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2510 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2511 2512 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2513 n++; 2514 2515 if (dsl_scan_check_suspend(scn, NULL)) 2516 break; 2517 } 2518 2519 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2520 "suspending=%u", (longlong_t)n, 2521 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2522 2523 ASSERT(error == 0 || error == ENOENT); 2524 ASSERT(error != ENOENT || 2525 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2526 } 2527 2528 static uint64_t 2529 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2530 { 2531 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2532 if (ds->ds_is_snapshot) 2533 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2534 return (smt); 2535 } 2536 2537 static void 2538 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2539 { 2540 scan_ds_t *sds; 2541 dsl_pool_t *dp = scn->scn_dp; 2542 2543 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2544 scn->scn_phys.scn_ddt_class_max) { 2545 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2546 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2547 dsl_scan_ddt(scn, tx); 2548 if (scn->scn_suspending) 2549 return; 2550 } 2551 2552 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2553 /* First do the MOS & ORIGIN */ 2554 2555 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2556 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2557 dsl_scan_visit_rootbp(scn, NULL, 2558 &dp->dp_meta_rootbp, tx); 2559 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2560 if (scn->scn_suspending) 2561 return; 2562 2563 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2564 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2565 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2566 } else { 2567 dsl_scan_visitds(scn, 2568 dp->dp_origin_snap->ds_object, tx); 2569 } 2570 ASSERT(!scn->scn_suspending); 2571 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2572 ZB_DESTROYED_OBJSET) { 2573 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2574 /* 2575 * If we were suspended, continue from here. Note if the 2576 * ds we were suspended on was deleted, the zb_objset may 2577 * be -1, so we will skip this and find a new objset 2578 * below. 2579 */ 2580 dsl_scan_visitds(scn, dsobj, tx); 2581 if (scn->scn_suspending) 2582 return; 2583 } 2584 2585 /* 2586 * In case we suspended right at the end of the ds, zero the 2587 * bookmark so we don't think that we're still trying to resume. 2588 */ 2589 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2590 2591 /* 2592 * Keep pulling things out of the dataset avl queue. Updates to the 2593 * persistent zap-object-as-queue happen only at checkpoints. 2594 */ 2595 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2596 dsl_dataset_t *ds; 2597 uint64_t dsobj = sds->sds_dsobj; 2598 uint64_t txg = sds->sds_txg; 2599 2600 /* dequeue and free the ds from the queue */ 2601 scan_ds_queue_remove(scn, dsobj); 2602 sds = NULL; /* must not be touched after removal */ 2603 2604 /* Set up min / max txg */ 2605 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2606 if (txg != 0) { 2607 scn->scn_phys.scn_cur_min_txg = 2608 MAX(scn->scn_phys.scn_min_txg, txg); 2609 } else { 2610 scn->scn_phys.scn_cur_min_txg = 2611 MAX(scn->scn_phys.scn_min_txg, 2612 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2613 } 2614 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2615 dsl_dataset_rele(ds, FTAG); 2616 2617 dsl_scan_visitds(scn, dsobj, tx); 2618 if (scn->scn_suspending) 2619 return; 2620 } 2621 /* No more objsets to fetch, we're done */ 2622 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2623 ASSERT0(scn->scn_suspending); 2624 } 2625 2626 static uint64_t 2627 dsl_scan_count_leaves(vdev_t *vd) 2628 { 2629 uint64_t i, leaves = 0; 2630 2631 /* we only count leaves that belong to the main pool and are readable */ 2632 if (vd->vdev_islog || vd->vdev_isspare || 2633 vd->vdev_isl2cache || !vdev_readable(vd)) 2634 return (0); 2635 2636 if (vd->vdev_ops->vdev_op_leaf) 2637 return (1); 2638 2639 for (i = 0; i < vd->vdev_children; i++) { 2640 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2641 } 2642 2643 return (leaves); 2644 } 2645 2646 2647 static void 2648 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2649 { 2650 int i; 2651 uint64_t cur_size = 0; 2652 2653 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2654 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2655 } 2656 2657 q->q_total_zio_size_this_txg += cur_size; 2658 q->q_zios_this_txg++; 2659 } 2660 2661 static void 2662 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2663 uint64_t end) 2664 { 2665 q->q_total_seg_size_this_txg += end - start; 2666 q->q_segs_this_txg++; 2667 } 2668 2669 static boolean_t 2670 scan_io_queue_check_suspend(dsl_scan_t *scn) 2671 { 2672 /* See comment in dsl_scan_check_suspend() */ 2673 uint64_t curr_time_ns = gethrtime(); 2674 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2675 uint64_t sync_time_ns = curr_time_ns - 2676 scn->scn_dp->dp_spa->spa_sync_starttime; 2677 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2678 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2679 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2680 2681 return ((NSEC2MSEC(scan_time_ns) > mintime && 2682 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2683 txg_sync_waiting(scn->scn_dp) || 2684 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2685 spa_shutting_down(scn->scn_dp->dp_spa)); 2686 } 2687 2688 /* 2689 * Given a list of scan_io_t's in io_list, this issues the io's out to 2690 * disk. This consumes the io_list and frees the scan_io_t's. This is 2691 * called when emptying queues, either when we're up against the memory 2692 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2693 * processing the list before we finished. Any zios that were not issued 2694 * will remain in the io_list. 2695 */ 2696 static boolean_t 2697 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2698 { 2699 dsl_scan_t *scn = queue->q_scn; 2700 scan_io_t *sio; 2701 int64_t bytes_issued = 0; 2702 boolean_t suspended = B_FALSE; 2703 2704 while ((sio = list_head(io_list)) != NULL) { 2705 blkptr_t bp; 2706 2707 if (scan_io_queue_check_suspend(scn)) { 2708 suspended = B_TRUE; 2709 break; 2710 } 2711 2712 sio2bp(sio, &bp); 2713 bytes_issued += SIO_GET_ASIZE(sio); 2714 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2715 &sio->sio_zb, queue); 2716 (void) list_remove_head(io_list); 2717 scan_io_queues_update_zio_stats(queue, &bp); 2718 sio_free(sio); 2719 } 2720 2721 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2722 2723 return (suspended); 2724 } 2725 2726 /* 2727 * Given a range_seg_t (extent) and a list, this function passes over a 2728 * scan queue and gathers up the appropriate ios which fit into that 2729 * scan seg (starting from lowest LBA). At the end, we remove the segment 2730 * from the q_exts_by_addr range tree. 2731 */ 2732 static boolean_t 2733 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2734 { 2735 scan_io_t *srch_sio, *sio, *next_sio; 2736 avl_index_t idx; 2737 uint_t num_sios = 0; 2738 int64_t bytes_issued = 0; 2739 2740 ASSERT(rs != NULL); 2741 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2742 2743 srch_sio = sio_alloc(1); 2744 srch_sio->sio_nr_dvas = 1; 2745 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2746 2747 /* 2748 * The exact start of the extent might not contain any matching zios, 2749 * so if that's the case, examine the next one in the tree. 2750 */ 2751 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2752 sio_free(srch_sio); 2753 2754 if (sio == NULL) 2755 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2756 2757 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2758 queue->q_exts_by_addr) && num_sios <= 32) { 2759 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2760 queue->q_exts_by_addr)); 2761 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2762 queue->q_exts_by_addr)); 2763 2764 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2765 avl_remove(&queue->q_sios_by_addr, sio); 2766 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2767 2768 bytes_issued += SIO_GET_ASIZE(sio); 2769 num_sios++; 2770 list_insert_tail(list, sio); 2771 sio = next_sio; 2772 } 2773 2774 /* 2775 * We limit the number of sios we process at once to 32 to avoid 2776 * biting off more than we can chew. If we didn't take everything 2777 * in the segment we update it to reflect the work we were able to 2778 * complete. Otherwise, we remove it from the range tree entirely. 2779 */ 2780 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2781 queue->q_exts_by_addr)) { 2782 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2783 -bytes_issued); 2784 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2785 SIO_GET_OFFSET(sio), rs_get_end(rs, 2786 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2787 2788 return (B_TRUE); 2789 } else { 2790 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2791 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2792 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2793 return (B_FALSE); 2794 } 2795 } 2796 2797 2798 /* 2799 * This is called from the queue emptying thread and selects the next 2800 * extent from which we are to issue io's. The behavior of this function 2801 * depends on the state of the scan, the current memory consumption and 2802 * whether or not we are performing a scan shutdown. 2803 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2804 * needs to perform a checkpoint 2805 * 2) We select the largest available extent if we are up against the 2806 * memory limit. 2807 * 3) Otherwise we don't select any extents. 2808 */ 2809 static const range_seg_t * 2810 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2811 { 2812 dsl_scan_t *scn = queue->q_scn; 2813 range_tree_t *rt = queue->q_exts_by_addr; 2814 2815 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2816 ASSERT(scn->scn_is_sorted); 2817 2818 /* handle tunable overrides */ 2819 if (scn->scn_checkpointing || scn->scn_clearing) { 2820 if (zfs_scan_issue_strategy == 1) { 2821 return (range_tree_first(rt)); 2822 } else if (zfs_scan_issue_strategy == 2) { 2823 /* 2824 * We need to get the original entry in the by_addr 2825 * tree so we can modify it. 2826 */ 2827 range_seg_t *size_rs = 2828 zfs_btree_first(&queue->q_exts_by_size, NULL); 2829 if (size_rs == NULL) 2830 return (NULL); 2831 uint64_t start = rs_get_start(size_rs, rt); 2832 uint64_t size = rs_get_end(size_rs, rt) - start; 2833 range_seg_t *addr_rs = range_tree_find(rt, start, 2834 size); 2835 ASSERT3P(addr_rs, !=, NULL); 2836 ASSERT3U(rs_get_start(size_rs, rt), ==, 2837 rs_get_start(addr_rs, rt)); 2838 ASSERT3U(rs_get_end(size_rs, rt), ==, 2839 rs_get_end(addr_rs, rt)); 2840 return (addr_rs); 2841 } 2842 } 2843 2844 /* 2845 * During normal clearing, we want to issue our largest segments 2846 * first, keeping IO as sequential as possible, and leaving the 2847 * smaller extents for later with the hope that they might eventually 2848 * grow to larger sequential segments. However, when the scan is 2849 * checkpointing, no new extents will be added to the sorting queue, 2850 * so the way we are sorted now is as good as it will ever get. 2851 * In this case, we instead switch to issuing extents in LBA order. 2852 */ 2853 if (scn->scn_checkpointing) { 2854 return (range_tree_first(rt)); 2855 } else if (scn->scn_clearing) { 2856 /* 2857 * We need to get the original entry in the by_addr 2858 * tree so we can modify it. 2859 */ 2860 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2861 NULL); 2862 if (size_rs == NULL) 2863 return (NULL); 2864 uint64_t start = rs_get_start(size_rs, rt); 2865 uint64_t size = rs_get_end(size_rs, rt) - start; 2866 range_seg_t *addr_rs = range_tree_find(rt, start, size); 2867 ASSERT3P(addr_rs, !=, NULL); 2868 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 2869 rt)); 2870 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 2871 return (addr_rs); 2872 } else { 2873 return (NULL); 2874 } 2875 } 2876 2877 static void 2878 scan_io_queues_run_one(void *arg) 2879 { 2880 dsl_scan_io_queue_t *queue = arg; 2881 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 2882 boolean_t suspended = B_FALSE; 2883 range_seg_t *rs = NULL; 2884 scan_io_t *sio = NULL; 2885 list_t sio_list; 2886 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 2887 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 2888 2889 ASSERT(queue->q_scn->scn_is_sorted); 2890 2891 list_create(&sio_list, sizeof (scan_io_t), 2892 offsetof(scan_io_t, sio_nodes.sio_list_node)); 2893 mutex_enter(q_lock); 2894 2895 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 2896 queue->q_maxinflight_bytes = 2897 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 2898 2899 /* reset per-queue scan statistics for this txg */ 2900 queue->q_total_seg_size_this_txg = 0; 2901 queue->q_segs_this_txg = 0; 2902 queue->q_total_zio_size_this_txg = 0; 2903 queue->q_zios_this_txg = 0; 2904 2905 /* loop until we have run out of time or sios */ 2906 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) { 2907 uint64_t seg_start = 0, seg_end = 0; 2908 boolean_t more_left = B_TRUE; 2909 2910 ASSERT(list_is_empty(&sio_list)); 2911 2912 /* loop while we still have sios left to process in this rs */ 2913 while (more_left) { 2914 scan_io_t *first_sio, *last_sio; 2915 2916 /* 2917 * We have selected which extent needs to be 2918 * processed next. Gather up the corresponding sios. 2919 */ 2920 more_left = scan_io_queue_gather(queue, rs, &sio_list); 2921 ASSERT(!list_is_empty(&sio_list)); 2922 first_sio = list_head(&sio_list); 2923 last_sio = list_tail(&sio_list); 2924 2925 seg_end = SIO_GET_END_OFFSET(last_sio); 2926 if (seg_start == 0) 2927 seg_start = SIO_GET_OFFSET(first_sio); 2928 2929 /* 2930 * Issuing sios can take a long time so drop the 2931 * queue lock. The sio queue won't be updated by 2932 * other threads since we're in syncing context so 2933 * we can be sure that our trees will remain exactly 2934 * as we left them. 2935 */ 2936 mutex_exit(q_lock); 2937 suspended = scan_io_queue_issue(queue, &sio_list); 2938 mutex_enter(q_lock); 2939 2940 if (suspended) 2941 break; 2942 } 2943 /* update statistics for debugging purposes */ 2944 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 2945 2946 if (suspended) 2947 break; 2948 } 2949 2950 2951 /* 2952 * If we were suspended in the middle of processing, 2953 * requeue any unfinished sios and exit. 2954 */ 2955 while ((sio = list_head(&sio_list)) != NULL) { 2956 list_remove(&sio_list, sio); 2957 scan_io_queue_insert_impl(queue, sio); 2958 } 2959 2960 mutex_exit(q_lock); 2961 list_destroy(&sio_list); 2962 } 2963 2964 /* 2965 * Performs an emptying run on all scan queues in the pool. This just 2966 * punches out one thread per top-level vdev, each of which processes 2967 * only that vdev's scan queue. We can parallelize the I/O here because 2968 * we know that each queue's io's only affect its own top-level vdev. 2969 * 2970 * This function waits for the queue runs to complete, and must be 2971 * called from dsl_scan_sync (or in general, syncing context). 2972 */ 2973 static void 2974 scan_io_queues_run(dsl_scan_t *scn) 2975 { 2976 spa_t *spa = scn->scn_dp->dp_spa; 2977 2978 ASSERT(scn->scn_is_sorted); 2979 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2980 2981 if (scn->scn_bytes_pending == 0) 2982 return; 2983 2984 if (scn->scn_taskq == NULL) { 2985 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, 2986 KM_SLEEP); 2987 int nthreads = spa->spa_root_vdev->vdev_children; 2988 2989 /* 2990 * We need to make this taskq *always* execute as many 2991 * threads in parallel as we have top-level vdevs and no 2992 * less, otherwise strange serialization of the calls to 2993 * scan_io_queues_run_one can occur during spa_sync runs 2994 * and that significantly impacts performance. 2995 */ 2996 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, 2997 "dsl_scan_tq_%s", spa->spa_name); 2998 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, 2999 nthreads, nthreads, TASKQ_PREPOPULATE); 3000 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); 3001 } 3002 3003 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3004 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3005 3006 mutex_enter(&vd->vdev_scan_io_queue_lock); 3007 if (vd->vdev_scan_io_queue != NULL) { 3008 VERIFY(taskq_dispatch(scn->scn_taskq, 3009 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3010 TQ_SLEEP) != TASKQID_INVALID); 3011 } 3012 mutex_exit(&vd->vdev_scan_io_queue_lock); 3013 } 3014 3015 /* 3016 * Wait for the queues to finish issuing thir IOs for this run 3017 * before we return. There may still be IOs in flight at this 3018 * point. 3019 */ 3020 taskq_wait(scn->scn_taskq); 3021 } 3022 3023 static boolean_t 3024 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3025 { 3026 uint64_t elapsed_nanosecs; 3027 3028 if (zfs_recover) 3029 return (B_FALSE); 3030 3031 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) 3032 return (B_TRUE); 3033 3034 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3035 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3036 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3037 txg_sync_waiting(scn->scn_dp)) || 3038 spa_shutting_down(scn->scn_dp->dp_spa)); 3039 } 3040 3041 static int 3042 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3043 { 3044 dsl_scan_t *scn = arg; 3045 3046 if (!scn->scn_is_bptree || 3047 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3048 if (dsl_scan_async_block_should_pause(scn)) 3049 return (SET_ERROR(ERESTART)); 3050 } 3051 3052 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3053 dmu_tx_get_txg(tx), bp, 0)); 3054 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3055 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3056 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3057 scn->scn_visited_this_txg++; 3058 return (0); 3059 } 3060 3061 static void 3062 dsl_scan_update_stats(dsl_scan_t *scn) 3063 { 3064 spa_t *spa = scn->scn_dp->dp_spa; 3065 uint64_t i; 3066 uint64_t seg_size_total = 0, zio_size_total = 0; 3067 uint64_t seg_count_total = 0, zio_count_total = 0; 3068 3069 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3070 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3071 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3072 3073 if (queue == NULL) 3074 continue; 3075 3076 seg_size_total += queue->q_total_seg_size_this_txg; 3077 zio_size_total += queue->q_total_zio_size_this_txg; 3078 seg_count_total += queue->q_segs_this_txg; 3079 zio_count_total += queue->q_zios_this_txg; 3080 } 3081 3082 if (seg_count_total == 0 || zio_count_total == 0) { 3083 scn->scn_avg_seg_size_this_txg = 0; 3084 scn->scn_avg_zio_size_this_txg = 0; 3085 scn->scn_segs_this_txg = 0; 3086 scn->scn_zios_this_txg = 0; 3087 return; 3088 } 3089 3090 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3091 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3092 scn->scn_segs_this_txg = seg_count_total; 3093 scn->scn_zios_this_txg = zio_count_total; 3094 } 3095 3096 static int 3097 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3098 { 3099 dsl_scan_t *scn = arg; 3100 const dva_t *dva = &bp->blk_dva[0]; 3101 3102 if (dsl_scan_async_block_should_pause(scn)) 3103 return (SET_ERROR(ERESTART)); 3104 3105 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3106 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3107 DVA_GET_ASIZE(dva), tx); 3108 scn->scn_visited_this_txg++; 3109 return (0); 3110 } 3111 3112 boolean_t 3113 dsl_scan_active(dsl_scan_t *scn) 3114 { 3115 spa_t *spa = scn->scn_dp->dp_spa; 3116 uint64_t used = 0, comp, uncomp; 3117 3118 if (spa->spa_load_state != SPA_LOAD_NONE) 3119 return (B_FALSE); 3120 if (spa_shutting_down(spa)) 3121 return (B_FALSE); 3122 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3123 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3124 return (B_TRUE); 3125 3126 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3127 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3128 &used, &comp, &uncomp); 3129 } 3130 return (used != 0); 3131 } 3132 3133 static boolean_t 3134 dsl_scan_check_deferred(vdev_t *vd) 3135 { 3136 boolean_t need_resilver = B_FALSE; 3137 3138 for (int c = 0; c < vd->vdev_children; c++) { 3139 need_resilver |= 3140 dsl_scan_check_deferred(vd->vdev_child[c]); 3141 } 3142 3143 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3144 !vd->vdev_ops->vdev_op_leaf) 3145 return (need_resilver); 3146 3147 if (!vd->vdev_resilver_deferred) 3148 need_resilver = B_TRUE; 3149 3150 return (need_resilver); 3151 } 3152 3153 static boolean_t 3154 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3155 uint64_t phys_birth) 3156 { 3157 vdev_t *vd; 3158 3159 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3160 3161 if (vd->vdev_ops == &vdev_indirect_ops) { 3162 /* 3163 * The indirect vdev can point to multiple 3164 * vdevs. For simplicity, always create 3165 * the resilver zio_t. zio_vdev_io_start() 3166 * will bypass the child resilver i/o's if 3167 * they are on vdevs that don't have DTL's. 3168 */ 3169 return (B_TRUE); 3170 } 3171 3172 if (DVA_GET_GANG(dva)) { 3173 /* 3174 * Gang members may be spread across multiple 3175 * vdevs, so the best estimate we have is the 3176 * scrub range, which has already been checked. 3177 * XXX -- it would be better to change our 3178 * allocation policy to ensure that all 3179 * gang members reside on the same vdev. 3180 */ 3181 return (B_TRUE); 3182 } 3183 3184 /* 3185 * Check if the txg falls within the range which must be 3186 * resilvered. DVAs outside this range can always be skipped. 3187 */ 3188 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3189 return (B_FALSE); 3190 3191 /* 3192 * Check if the top-level vdev must resilver this offset. 3193 * When the offset does not intersect with a dirty leaf DTL 3194 * then it may be possible to skip the resilver IO. The psize 3195 * is provided instead of asize to simplify the check for RAIDZ. 3196 */ 3197 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3198 return (B_FALSE); 3199 3200 /* 3201 * Check that this top-level vdev has a device under it which 3202 * is resilvering and is not deferred. 3203 */ 3204 if (!dsl_scan_check_deferred(vd)) 3205 return (B_FALSE); 3206 3207 return (B_TRUE); 3208 } 3209 3210 static int 3211 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3212 { 3213 int err = 0; 3214 dsl_scan_t *scn = dp->dp_scan; 3215 spa_t *spa = dp->dp_spa; 3216 3217 if (spa_suspend_async_destroy(spa)) 3218 return (0); 3219 3220 if (zfs_free_bpobj_enabled && 3221 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3222 scn->scn_is_bptree = B_FALSE; 3223 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3224 scn->scn_zio_root = zio_root(spa, NULL, 3225 NULL, ZIO_FLAG_MUSTSUCCEED); 3226 err = bpobj_iterate(&dp->dp_free_bpobj, 3227 dsl_scan_free_block_cb, scn, tx); 3228 VERIFY0(zio_wait(scn->scn_zio_root)); 3229 scn->scn_zio_root = NULL; 3230 3231 if (err != 0 && err != ERESTART) 3232 zfs_panic_recover("error %u from bpobj_iterate()", err); 3233 } 3234 3235 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3236 ASSERT(scn->scn_async_destroying); 3237 scn->scn_is_bptree = B_TRUE; 3238 scn->scn_zio_root = zio_root(spa, NULL, 3239 NULL, ZIO_FLAG_MUSTSUCCEED); 3240 err = bptree_iterate(dp->dp_meta_objset, 3241 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3242 VERIFY0(zio_wait(scn->scn_zio_root)); 3243 scn->scn_zio_root = NULL; 3244 3245 if (err == EIO || err == ECKSUM) { 3246 err = 0; 3247 } else if (err != 0 && err != ERESTART) { 3248 zfs_panic_recover("error %u from " 3249 "traverse_dataset_destroyed()", err); 3250 } 3251 3252 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3253 /* finished; deactivate async destroy feature */ 3254 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3255 ASSERT(!spa_feature_is_active(spa, 3256 SPA_FEATURE_ASYNC_DESTROY)); 3257 VERIFY0(zap_remove(dp->dp_meta_objset, 3258 DMU_POOL_DIRECTORY_OBJECT, 3259 DMU_POOL_BPTREE_OBJ, tx)); 3260 VERIFY0(bptree_free(dp->dp_meta_objset, 3261 dp->dp_bptree_obj, tx)); 3262 dp->dp_bptree_obj = 0; 3263 scn->scn_async_destroying = B_FALSE; 3264 scn->scn_async_stalled = B_FALSE; 3265 } else { 3266 /* 3267 * If we didn't make progress, mark the async 3268 * destroy as stalled, so that we will not initiate 3269 * a spa_sync() on its behalf. Note that we only 3270 * check this if we are not finished, because if the 3271 * bptree had no blocks for us to visit, we can 3272 * finish without "making progress". 3273 */ 3274 scn->scn_async_stalled = 3275 (scn->scn_visited_this_txg == 0); 3276 } 3277 } 3278 if (scn->scn_visited_this_txg) { 3279 zfs_dbgmsg("freed %llu blocks in %llums from " 3280 "free_bpobj/bptree txg %llu; err=%d", 3281 (longlong_t)scn->scn_visited_this_txg, 3282 (longlong_t) 3283 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3284 (longlong_t)tx->tx_txg, err); 3285 scn->scn_visited_this_txg = 0; 3286 3287 /* 3288 * Write out changes to the DDT that may be required as a 3289 * result of the blocks freed. This ensures that the DDT 3290 * is clean when a scrub/resilver runs. 3291 */ 3292 ddt_sync(spa, tx->tx_txg); 3293 } 3294 if (err != 0) 3295 return (err); 3296 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3297 zfs_free_leak_on_eio && 3298 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3299 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3300 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3301 /* 3302 * We have finished background destroying, but there is still 3303 * some space left in the dp_free_dir. Transfer this leaked 3304 * space to the dp_leak_dir. 3305 */ 3306 if (dp->dp_leak_dir == NULL) { 3307 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3308 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3309 LEAK_DIR_NAME, tx); 3310 VERIFY0(dsl_pool_open_special_dir(dp, 3311 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3312 rrw_exit(&dp->dp_config_rwlock, FTAG); 3313 } 3314 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3315 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3316 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3317 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3318 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3319 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3320 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3321 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3322 } 3323 3324 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { 3325 /* finished; verify that space accounting went to zero */ 3326 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3327 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3328 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3329 } 3330 3331 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3332 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3333 DMU_POOL_OBSOLETE_BPOBJ)); 3334 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3335 ASSERT(spa_feature_is_active(dp->dp_spa, 3336 SPA_FEATURE_OBSOLETE_COUNTS)); 3337 3338 scn->scn_is_bptree = B_FALSE; 3339 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3340 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3341 dsl_scan_obsolete_block_cb, scn, tx); 3342 if (err != 0 && err != ERESTART) 3343 zfs_panic_recover("error %u from bpobj_iterate()", err); 3344 3345 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3346 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3347 } 3348 3349 return (0); 3350 } 3351 3352 /* 3353 * This is the primary entry point for scans that is called from syncing 3354 * context. Scans must happen entirely during syncing context so that we 3355 * cna guarantee that blocks we are currently scanning will not change out 3356 * from under us. While a scan is active, this funciton controls how quickly 3357 * transaction groups proceed, instead of the normal handling provided by 3358 * txg_sync_thread(). 3359 */ 3360 void 3361 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3362 { 3363 dsl_scan_t *scn = dp->dp_scan; 3364 spa_t *spa = dp->dp_spa; 3365 int err = 0; 3366 state_sync_type_t sync_type = SYNC_OPTIONAL; 3367 3368 if (spa->spa_resilver_deferred && 3369 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3370 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3371 3372 /* 3373 * Check for scn_restart_txg before checking spa_load_state, so 3374 * that we can restart an old-style scan while the pool is being 3375 * imported (see dsl_scan_init). We also restart scans if there 3376 * is a deferred resilver and the user has manually disabled 3377 * deferred resilvers via the tunable. 3378 */ 3379 if (dsl_scan_restarting(scn, tx) || 3380 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3381 pool_scan_func_t func = POOL_SCAN_SCRUB; 3382 dsl_scan_done(scn, B_FALSE, tx); 3383 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3384 func = POOL_SCAN_RESILVER; 3385 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3386 func, (longlong_t)tx->tx_txg); 3387 dsl_scan_setup_sync(&func, tx); 3388 } 3389 3390 /* 3391 * Only process scans in sync pass 1. 3392 */ 3393 if (spa_sync_pass(dp->dp_spa) > 1) 3394 return; 3395 3396 /* 3397 * If the spa is shutting down, then stop scanning. This will 3398 * ensure that the scan does not dirty any new data during the 3399 * shutdown phase. 3400 */ 3401 if (spa_shutting_down(spa)) 3402 return; 3403 3404 /* 3405 * If the scan is inactive due to a stalled async destroy, try again. 3406 */ 3407 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3408 return; 3409 3410 /* reset scan statistics */ 3411 scn->scn_visited_this_txg = 0; 3412 scn->scn_holes_this_txg = 0; 3413 scn->scn_lt_min_this_txg = 0; 3414 scn->scn_gt_max_this_txg = 0; 3415 scn->scn_ddt_contained_this_txg = 0; 3416 scn->scn_objsets_visited_this_txg = 0; 3417 scn->scn_avg_seg_size_this_txg = 0; 3418 scn->scn_segs_this_txg = 0; 3419 scn->scn_avg_zio_size_this_txg = 0; 3420 scn->scn_zios_this_txg = 0; 3421 scn->scn_suspending = B_FALSE; 3422 scn->scn_sync_start_time = gethrtime(); 3423 spa->spa_scrub_active = B_TRUE; 3424 3425 /* 3426 * First process the async destroys. If we pause, don't do 3427 * any scrubbing or resilvering. This ensures that there are no 3428 * async destroys while we are scanning, so the scan code doesn't 3429 * have to worry about traversing it. It is also faster to free the 3430 * blocks than to scrub them. 3431 */ 3432 err = dsl_process_async_destroys(dp, tx); 3433 if (err != 0) 3434 return; 3435 3436 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3437 return; 3438 3439 /* 3440 * Wait a few txgs after importing to begin scanning so that 3441 * we can get the pool imported quickly. 3442 */ 3443 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3444 return; 3445 3446 /* 3447 * zfs_scan_suspend_progress can be set to disable scan progress. 3448 * We don't want to spin the txg_sync thread, so we add a delay 3449 * here to simulate the time spent doing a scan. This is mostly 3450 * useful for testing and debugging. 3451 */ 3452 if (zfs_scan_suspend_progress) { 3453 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3454 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3455 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3456 3457 while (zfs_scan_suspend_progress && 3458 !txg_sync_waiting(scn->scn_dp) && 3459 !spa_shutting_down(scn->scn_dp->dp_spa) && 3460 NSEC2MSEC(scan_time_ns) < mintime) { 3461 delay(hz); 3462 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3463 } 3464 return; 3465 } 3466 3467 /* 3468 * It is possible to switch from unsorted to sorted at any time, 3469 * but afterwards the scan will remain sorted unless reloaded from 3470 * a checkpoint after a reboot. 3471 */ 3472 if (!zfs_scan_legacy) { 3473 scn->scn_is_sorted = B_TRUE; 3474 if (scn->scn_last_checkpoint == 0) 3475 scn->scn_last_checkpoint = ddi_get_lbolt(); 3476 } 3477 3478 /* 3479 * For sorted scans, determine what kind of work we will be doing 3480 * this txg based on our memory limitations and whether or not we 3481 * need to perform a checkpoint. 3482 */ 3483 if (scn->scn_is_sorted) { 3484 /* 3485 * If we are over our checkpoint interval, set scn_clearing 3486 * so that we can begin checkpointing immediately. The 3487 * checkpoint allows us to save a consisent bookmark 3488 * representing how much data we have scrubbed so far. 3489 * Otherwise, use the memory limit to determine if we should 3490 * scan for metadata or start issue scrub IOs. We accumulate 3491 * metadata until we hit our hard memory limit at which point 3492 * we issue scrub IOs until we are at our soft memory limit. 3493 */ 3494 if (scn->scn_checkpointing || 3495 ddi_get_lbolt() - scn->scn_last_checkpoint > 3496 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3497 if (!scn->scn_checkpointing) 3498 zfs_dbgmsg("begin scan checkpoint"); 3499 3500 scn->scn_checkpointing = B_TRUE; 3501 scn->scn_clearing = B_TRUE; 3502 } else { 3503 boolean_t should_clear = dsl_scan_should_clear(scn); 3504 if (should_clear && !scn->scn_clearing) { 3505 zfs_dbgmsg("begin scan clearing"); 3506 scn->scn_clearing = B_TRUE; 3507 } else if (!should_clear && scn->scn_clearing) { 3508 zfs_dbgmsg("finish scan clearing"); 3509 scn->scn_clearing = B_FALSE; 3510 } 3511 } 3512 } else { 3513 ASSERT0(scn->scn_checkpointing); 3514 ASSERT0(scn->scn_clearing); 3515 } 3516 3517 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3518 /* Need to scan metadata for more blocks to scrub */ 3519 dsl_scan_phys_t *scnp = &scn->scn_phys; 3520 taskqid_t prefetch_tqid; 3521 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3522 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3523 3524 /* 3525 * Calculate the max number of in-flight bytes for pool-wide 3526 * scanning operations (minimum 1MB). Limits for the issuing 3527 * phase are done per top-level vdev and are handled separately. 3528 */ 3529 scn->scn_maxinflight_bytes = 3530 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3531 3532 if (scnp->scn_ddt_bookmark.ddb_class <= 3533 scnp->scn_ddt_class_max) { 3534 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3535 zfs_dbgmsg("doing scan sync txg %llu; " 3536 "ddt bm=%llu/%llu/%llu/%llx", 3537 (longlong_t)tx->tx_txg, 3538 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3539 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3540 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3541 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3542 } else { 3543 zfs_dbgmsg("doing scan sync txg %llu; " 3544 "bm=%llu/%llu/%llu/%llu", 3545 (longlong_t)tx->tx_txg, 3546 (longlong_t)scnp->scn_bookmark.zb_objset, 3547 (longlong_t)scnp->scn_bookmark.zb_object, 3548 (longlong_t)scnp->scn_bookmark.zb_level, 3549 (longlong_t)scnp->scn_bookmark.zb_blkid); 3550 } 3551 3552 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3553 NULL, ZIO_FLAG_CANFAIL); 3554 3555 scn->scn_prefetch_stop = B_FALSE; 3556 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3557 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3558 ASSERT(prefetch_tqid != TASKQID_INVALID); 3559 3560 dsl_pool_config_enter(dp, FTAG); 3561 dsl_scan_visit(scn, tx); 3562 dsl_pool_config_exit(dp, FTAG); 3563 3564 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3565 scn->scn_prefetch_stop = B_TRUE; 3566 cv_broadcast(&spa->spa_scrub_io_cv); 3567 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3568 3569 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3570 (void) zio_wait(scn->scn_zio_root); 3571 scn->scn_zio_root = NULL; 3572 3573 zfs_dbgmsg("scan visited %llu blocks in %llums " 3574 "(%llu os's, %llu holes, %llu < mintxg, " 3575 "%llu in ddt, %llu > maxtxg)", 3576 (longlong_t)scn->scn_visited_this_txg, 3577 (longlong_t)NSEC2MSEC(gethrtime() - 3578 scn->scn_sync_start_time), 3579 (longlong_t)scn->scn_objsets_visited_this_txg, 3580 (longlong_t)scn->scn_holes_this_txg, 3581 (longlong_t)scn->scn_lt_min_this_txg, 3582 (longlong_t)scn->scn_ddt_contained_this_txg, 3583 (longlong_t)scn->scn_gt_max_this_txg); 3584 3585 if (!scn->scn_suspending) { 3586 ASSERT0(avl_numnodes(&scn->scn_queue)); 3587 scn->scn_done_txg = tx->tx_txg + 1; 3588 if (scn->scn_is_sorted) { 3589 scn->scn_checkpointing = B_TRUE; 3590 scn->scn_clearing = B_TRUE; 3591 } 3592 zfs_dbgmsg("scan complete txg %llu", 3593 (longlong_t)tx->tx_txg); 3594 } 3595 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3596 ASSERT(scn->scn_clearing); 3597 3598 /* need to issue scrubbing IOs from per-vdev queues */ 3599 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3600 NULL, ZIO_FLAG_CANFAIL); 3601 scan_io_queues_run(scn); 3602 (void) zio_wait(scn->scn_zio_root); 3603 scn->scn_zio_root = NULL; 3604 3605 /* calculate and dprintf the current memory usage */ 3606 (void) dsl_scan_should_clear(scn); 3607 dsl_scan_update_stats(scn); 3608 3609 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " 3610 "(avg_block_size = %llu, avg_seg_size = %llu)", 3611 (longlong_t)scn->scn_zios_this_txg, 3612 (longlong_t)scn->scn_segs_this_txg, 3613 (longlong_t)NSEC2MSEC(gethrtime() - 3614 scn->scn_sync_start_time), 3615 (longlong_t)scn->scn_avg_zio_size_this_txg, 3616 (longlong_t)scn->scn_avg_seg_size_this_txg); 3617 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3618 /* Finished with everything. Mark the scrub as complete */ 3619 zfs_dbgmsg("scan issuing complete txg %llu", 3620 (longlong_t)tx->tx_txg); 3621 ASSERT3U(scn->scn_done_txg, !=, 0); 3622 ASSERT0(spa->spa_scrub_inflight); 3623 ASSERT0(scn->scn_bytes_pending); 3624 dsl_scan_done(scn, B_TRUE, tx); 3625 sync_type = SYNC_MANDATORY; 3626 } 3627 3628 dsl_scan_sync_state(scn, tx, sync_type); 3629 } 3630 3631 static void 3632 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3633 { 3634 int i; 3635 3636 /* 3637 * Don't count embedded bp's, since we already did the work of 3638 * scanning these when we scanned the containing block. 3639 */ 3640 if (BP_IS_EMBEDDED(bp)) 3641 return; 3642 3643 /* 3644 * Update the spa's stats on how many bytes we have issued. 3645 * Sequential scrubs create a zio for each DVA of the bp. Each 3646 * of these will include all DVAs for repair purposes, but the 3647 * zio code will only try the first one unless there is an issue. 3648 * Therefore, we should only count the first DVA for these IOs. 3649 */ 3650 if (scn->scn_is_sorted) { 3651 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3652 DVA_GET_ASIZE(&bp->blk_dva[0])); 3653 } else { 3654 spa_t *spa = scn->scn_dp->dp_spa; 3655 3656 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3657 atomic_add_64(&spa->spa_scan_pass_issued, 3658 DVA_GET_ASIZE(&bp->blk_dva[i])); 3659 } 3660 } 3661 3662 /* 3663 * If we resume after a reboot, zab will be NULL; don't record 3664 * incomplete stats in that case. 3665 */ 3666 if (zab == NULL) 3667 return; 3668 3669 mutex_enter(&zab->zab_lock); 3670 3671 for (i = 0; i < 4; i++) { 3672 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3673 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3674 if (t & DMU_OT_NEWTYPE) 3675 t = DMU_OT_OTHER; 3676 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3677 int equal; 3678 3679 zb->zb_count++; 3680 zb->zb_asize += BP_GET_ASIZE(bp); 3681 zb->zb_lsize += BP_GET_LSIZE(bp); 3682 zb->zb_psize += BP_GET_PSIZE(bp); 3683 zb->zb_gangs += BP_COUNT_GANG(bp); 3684 3685 switch (BP_GET_NDVAS(bp)) { 3686 case 2: 3687 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3688 DVA_GET_VDEV(&bp->blk_dva[1])) 3689 zb->zb_ditto_2_of_2_samevdev++; 3690 break; 3691 case 3: 3692 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3693 DVA_GET_VDEV(&bp->blk_dva[1])) + 3694 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3695 DVA_GET_VDEV(&bp->blk_dva[2])) + 3696 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3697 DVA_GET_VDEV(&bp->blk_dva[2])); 3698 if (equal == 1) 3699 zb->zb_ditto_2_of_3_samevdev++; 3700 else if (equal == 3) 3701 zb->zb_ditto_3_of_3_samevdev++; 3702 break; 3703 } 3704 } 3705 3706 mutex_exit(&zab->zab_lock); 3707 } 3708 3709 static void 3710 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3711 { 3712 avl_index_t idx; 3713 int64_t asize = SIO_GET_ASIZE(sio); 3714 dsl_scan_t *scn = queue->q_scn; 3715 3716 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3717 3718 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3719 /* block is already scheduled for reading */ 3720 atomic_add_64(&scn->scn_bytes_pending, -asize); 3721 sio_free(sio); 3722 return; 3723 } 3724 avl_insert(&queue->q_sios_by_addr, sio, idx); 3725 queue->q_sio_memused += SIO_GET_MUSED(sio); 3726 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3727 } 3728 3729 /* 3730 * Given all the info we got from our metadata scanning process, we 3731 * construct a scan_io_t and insert it into the scan sorting queue. The 3732 * I/O must already be suitable for us to process. This is controlled 3733 * by dsl_scan_enqueue(). 3734 */ 3735 static void 3736 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3737 int zio_flags, const zbookmark_phys_t *zb) 3738 { 3739 dsl_scan_t *scn = queue->q_scn; 3740 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3741 3742 ASSERT0(BP_IS_GANG(bp)); 3743 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3744 3745 bp2sio(bp, sio, dva_i); 3746 sio->sio_flags = zio_flags; 3747 sio->sio_zb = *zb; 3748 3749 /* 3750 * Increment the bytes pending counter now so that we can't 3751 * get an integer underflow in case the worker processes the 3752 * zio before we get to incrementing this counter. 3753 */ 3754 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3755 3756 scan_io_queue_insert_impl(queue, sio); 3757 } 3758 3759 /* 3760 * Given a set of I/O parameters as discovered by the metadata traversal 3761 * process, attempts to place the I/O into the sorted queues (if allowed), 3762 * or immediately executes the I/O. 3763 */ 3764 static void 3765 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3766 const zbookmark_phys_t *zb) 3767 { 3768 spa_t *spa = dp->dp_spa; 3769 3770 ASSERT(!BP_IS_EMBEDDED(bp)); 3771 3772 /* 3773 * Gang blocks are hard to issue sequentially, so we just issue them 3774 * here immediately instead of queuing them. 3775 */ 3776 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3777 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3778 return; 3779 } 3780 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3781 dva_t dva; 3782 vdev_t *vdev; 3783 3784 dva = bp->blk_dva[i]; 3785 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3786 ASSERT(vdev != NULL); 3787 3788 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3789 if (vdev->vdev_scan_io_queue == NULL) 3790 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3791 ASSERT(dp->dp_scan != NULL); 3792 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3793 i, zio_flags, zb); 3794 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3795 } 3796 } 3797 3798 static int 3799 dsl_scan_scrub_cb(dsl_pool_t *dp, 3800 const blkptr_t *bp, const zbookmark_phys_t *zb) 3801 { 3802 dsl_scan_t *scn = dp->dp_scan; 3803 spa_t *spa = dp->dp_spa; 3804 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3805 size_t psize = BP_GET_PSIZE(bp); 3806 boolean_t needs_io; 3807 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3808 int d; 3809 3810 if (phys_birth <= scn->scn_phys.scn_min_txg || 3811 phys_birth >= scn->scn_phys.scn_max_txg) { 3812 count_block(scn, dp->dp_blkstats, bp); 3813 return (0); 3814 } 3815 3816 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3817 ASSERT(!BP_IS_EMBEDDED(bp)); 3818 3819 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3820 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3821 zio_flags |= ZIO_FLAG_SCRUB; 3822 needs_io = B_TRUE; 3823 } else { 3824 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3825 zio_flags |= ZIO_FLAG_RESILVER; 3826 needs_io = B_FALSE; 3827 } 3828 3829 /* If it's an intent log block, failure is expected. */ 3830 if (zb->zb_level == ZB_ZIL_LEVEL) 3831 zio_flags |= ZIO_FLAG_SPECULATIVE; 3832 3833 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3834 const dva_t *dva = &bp->blk_dva[d]; 3835 3836 /* 3837 * Keep track of how much data we've examined so that 3838 * zpool(1M) status can make useful progress reports. 3839 */ 3840 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3841 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3842 3843 /* if it's a resilver, this may not be in the target range */ 3844 if (!needs_io) 3845 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3846 phys_birth); 3847 } 3848 3849 if (needs_io && !zfs_no_scrub_io) { 3850 dsl_scan_enqueue(dp, bp, zio_flags, zb); 3851 } else { 3852 count_block(scn, dp->dp_blkstats, bp); 3853 } 3854 3855 /* do not relocate this block */ 3856 return (0); 3857 } 3858 3859 static void 3860 dsl_scan_scrub_done(zio_t *zio) 3861 { 3862 spa_t *spa = zio->io_spa; 3863 blkptr_t *bp = zio->io_bp; 3864 dsl_scan_io_queue_t *queue = zio->io_private; 3865 3866 abd_free(zio->io_abd); 3867 3868 if (queue == NULL) { 3869 mutex_enter(&spa->spa_scrub_lock); 3870 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 3871 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 3872 cv_broadcast(&spa->spa_scrub_io_cv); 3873 mutex_exit(&spa->spa_scrub_lock); 3874 } else { 3875 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 3876 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 3877 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 3878 cv_broadcast(&queue->q_zio_cv); 3879 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 3880 } 3881 3882 if (zio->io_error && (zio->io_error != ECKSUM || 3883 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 3884 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 3885 } 3886 } 3887 3888 /* 3889 * Given a scanning zio's information, executes the zio. The zio need 3890 * not necessarily be only sortable, this function simply executes the 3891 * zio, no matter what it is. The optional queue argument allows the 3892 * caller to specify that they want per top level vdev IO rate limiting 3893 * instead of the legacy global limiting. 3894 */ 3895 static void 3896 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3897 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 3898 { 3899 spa_t *spa = dp->dp_spa; 3900 dsl_scan_t *scn = dp->dp_scan; 3901 size_t size = BP_GET_PSIZE(bp); 3902 abd_t *data = abd_alloc_for_io(size, B_FALSE); 3903 3904 if (queue == NULL) { 3905 mutex_enter(&spa->spa_scrub_lock); 3906 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 3907 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3908 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 3909 mutex_exit(&spa->spa_scrub_lock); 3910 } else { 3911 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3912 3913 mutex_enter(q_lock); 3914 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 3915 cv_wait(&queue->q_zio_cv, q_lock); 3916 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 3917 mutex_exit(q_lock); 3918 } 3919 3920 count_block(dp->dp_scan, dp->dp_blkstats, bp); 3921 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, 3922 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 3923 } 3924 3925 /* 3926 * This is the primary extent sorting algorithm. We balance two parameters: 3927 * 1) how many bytes of I/O are in an extent 3928 * 2) how well the extent is filled with I/O (as a fraction of its total size) 3929 * Since we allow extents to have gaps between their constituent I/Os, it's 3930 * possible to have a fairly large extent that contains the same amount of 3931 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 3932 * The algorithm sorts based on a score calculated from the extent's size, 3933 * the relative fill volume (in %) and a "fill weight" parameter that controls 3934 * the split between whether we prefer larger extents or more well populated 3935 * extents: 3936 * 3937 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 3938 * 3939 * Example: 3940 * 1) assume extsz = 64 MiB 3941 * 2) assume fill = 32 MiB (extent is half full) 3942 * 3) assume fill_weight = 3 3943 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 3944 * SCORE = 32M + (50 * 3 * 32M) / 100 3945 * SCORE = 32M + (4800M / 100) 3946 * SCORE = 32M + 48M 3947 * ^ ^ 3948 * | +--- final total relative fill-based score 3949 * +--------- final total fill-based score 3950 * SCORE = 80M 3951 * 3952 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 3953 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 3954 * Note that as an optimization, we replace multiplication and division by 3955 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). 3956 */ 3957 static int 3958 ext_size_compare(const void *x, const void *y) 3959 { 3960 const range_seg_gap_t *rsa = x, *rsb = y; 3961 3962 uint64_t sa = rsa->rs_end - rsa->rs_start; 3963 uint64_t sb = rsb->rs_end - rsb->rs_start; 3964 uint64_t score_a, score_b; 3965 3966 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 3967 fill_weight * rsa->rs_fill) >> 7); 3968 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 3969 fill_weight * rsb->rs_fill) >> 7); 3970 3971 if (score_a > score_b) 3972 return (-1); 3973 if (score_a == score_b) { 3974 if (rsa->rs_start < rsb->rs_start) 3975 return (-1); 3976 if (rsa->rs_start == rsb->rs_start) 3977 return (0); 3978 return (1); 3979 } 3980 return (1); 3981 } 3982 3983 /* 3984 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 3985 * based on LBA-order (from lowest to highest). 3986 */ 3987 static int 3988 sio_addr_compare(const void *x, const void *y) 3989 { 3990 const scan_io_t *a = x, *b = y; 3991 3992 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 3993 } 3994 3995 /* IO queues are created on demand when they are needed. */ 3996 static dsl_scan_io_queue_t * 3997 scan_io_queue_create(vdev_t *vd) 3998 { 3999 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4000 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4001 4002 q->q_scn = scn; 4003 q->q_vd = vd; 4004 q->q_sio_memused = 0; 4005 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4006 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4007 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4008 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4009 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4010 4011 return (q); 4012 } 4013 4014 /* 4015 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4016 * No further execution of I/O occurs, anything pending in the queue is 4017 * simply freed without being executed. 4018 */ 4019 void 4020 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4021 { 4022 dsl_scan_t *scn = queue->q_scn; 4023 scan_io_t *sio; 4024 void *cookie = NULL; 4025 int64_t bytes_dequeued = 0; 4026 4027 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4028 4029 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4030 NULL) { 4031 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4032 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4033 bytes_dequeued += SIO_GET_ASIZE(sio); 4034 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4035 sio_free(sio); 4036 } 4037 4038 ASSERT0(queue->q_sio_memused); 4039 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4040 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4041 range_tree_destroy(queue->q_exts_by_addr); 4042 avl_destroy(&queue->q_sios_by_addr); 4043 cv_destroy(&queue->q_zio_cv); 4044 4045 kmem_free(queue, sizeof (*queue)); 4046 } 4047 4048 /* 4049 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4050 * called on behalf of vdev_top_transfer when creating or destroying 4051 * a mirror vdev due to zpool attach/detach. 4052 */ 4053 void 4054 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4055 { 4056 mutex_enter(&svd->vdev_scan_io_queue_lock); 4057 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4058 4059 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4060 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4061 svd->vdev_scan_io_queue = NULL; 4062 if (tvd->vdev_scan_io_queue != NULL) 4063 tvd->vdev_scan_io_queue->q_vd = tvd; 4064 4065 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4066 mutex_exit(&svd->vdev_scan_io_queue_lock); 4067 } 4068 4069 static void 4070 scan_io_queues_destroy(dsl_scan_t *scn) 4071 { 4072 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4073 4074 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4075 vdev_t *tvd = rvd->vdev_child[i]; 4076 4077 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4078 if (tvd->vdev_scan_io_queue != NULL) 4079 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4080 tvd->vdev_scan_io_queue = NULL; 4081 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4082 } 4083 } 4084 4085 static void 4086 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4087 { 4088 dsl_pool_t *dp = spa->spa_dsl_pool; 4089 dsl_scan_t *scn = dp->dp_scan; 4090 vdev_t *vdev; 4091 kmutex_t *q_lock; 4092 dsl_scan_io_queue_t *queue; 4093 scan_io_t *srch_sio, *sio; 4094 avl_index_t idx; 4095 uint64_t start, size; 4096 4097 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4098 ASSERT(vdev != NULL); 4099 q_lock = &vdev->vdev_scan_io_queue_lock; 4100 queue = vdev->vdev_scan_io_queue; 4101 4102 mutex_enter(q_lock); 4103 if (queue == NULL) { 4104 mutex_exit(q_lock); 4105 return; 4106 } 4107 4108 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4109 bp2sio(bp, srch_sio, dva_i); 4110 start = SIO_GET_OFFSET(srch_sio); 4111 size = SIO_GET_ASIZE(srch_sio); 4112 4113 /* 4114 * We can find the zio in two states: 4115 * 1) Cold, just sitting in the queue of zio's to be issued at 4116 * some point in the future. In this case, all we do is 4117 * remove the zio from the q_sios_by_addr tree, decrement 4118 * its data volume from the containing range_seg_t and 4119 * resort the q_exts_by_size tree to reflect that the 4120 * range_seg_t has lost some of its 'fill'. We don't shorten 4121 * the range_seg_t - this is usually rare enough not to be 4122 * worth the extra hassle of trying keep track of precise 4123 * extent boundaries. 4124 * 2) Hot, where the zio is currently in-flight in 4125 * dsl_scan_issue_ios. In this case, we can't simply 4126 * reach in and stop the in-flight zio's, so we instead 4127 * block the caller. Eventually, dsl_scan_issue_ios will 4128 * be done with issuing the zio's it gathered and will 4129 * signal us. 4130 */ 4131 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4132 sio_free(srch_sio); 4133 4134 if (sio != NULL) { 4135 int64_t asize = SIO_GET_ASIZE(sio); 4136 blkptr_t tmpbp; 4137 4138 /* Got it while it was cold in the queue */ 4139 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4140 ASSERT3U(size, ==, asize); 4141 avl_remove(&queue->q_sios_by_addr, sio); 4142 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4143 4144 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4145 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4146 4147 /* 4148 * We only update scn_bytes_pending in the cold path, 4149 * otherwise it will already have been accounted for as 4150 * part of the zio's execution. 4151 */ 4152 atomic_add_64(&scn->scn_bytes_pending, -asize); 4153 4154 /* count the block as though we issued it */ 4155 sio2bp(sio, &tmpbp); 4156 count_block(scn, dp->dp_blkstats, &tmpbp); 4157 4158 sio_free(sio); 4159 } 4160 mutex_exit(q_lock); 4161 } 4162 4163 /* 4164 * Callback invoked when a zio_free() zio is executing. This needs to be 4165 * intercepted to prevent the zio from deallocating a particular portion 4166 * of disk space and it then getting reallocated and written to, while we 4167 * still have it queued up for processing. 4168 */ 4169 void 4170 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4171 { 4172 dsl_pool_t *dp = spa->spa_dsl_pool; 4173 dsl_scan_t *scn = dp->dp_scan; 4174 4175 ASSERT(!BP_IS_EMBEDDED(bp)); 4176 ASSERT(scn != NULL); 4177 if (!dsl_scan_is_running(scn)) 4178 return; 4179 4180 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4181 dsl_scan_freed_dva(spa, bp, i); 4182 } 4183 4184 /* 4185 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4186 * not started, start it. Otherwise, only restart if max txg in DTL range is 4187 * greater than the max txg in the current scan. If the DTL max is less than 4188 * the scan max, then the vdev has not missed any new data since the resilver 4189 * started, so a restart is not needed. 4190 */ 4191 void 4192 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4193 { 4194 uint64_t min, max; 4195 4196 if (!vdev_resilver_needed(vd, &min, &max)) 4197 return; 4198 4199 if (!dsl_scan_resilvering(dp)) { 4200 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4201 return; 4202 } 4203 4204 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4205 return; 4206 4207 /* restart is needed, check if it can be deferred */ 4208 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4209 vdev_defer_resilver(vd); 4210 else 4211 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4212 } 4213