1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 124 uint64_t *txg); 125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 128 129 extern int zfs_vdev_async_write_active_min_dirty_percent; 130 131 /* 132 * By default zfs will check to ensure it is not over the hard memory 133 * limit before each txg. If finer-grained control of this is needed 134 * this value can be set to 1 to enable checking before scanning each 135 * block. 136 */ 137 int zfs_scan_strict_mem_lim = B_FALSE; 138 139 /* 140 * Maximum number of parallelly executing I/Os per top-level vdev. 141 * Tune with care. Very high settings (hundreds) are known to trigger 142 * some firmware bugs and resets on certain SSDs. 143 */ 144 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ 145 unsigned int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ 146 unsigned int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ 147 unsigned int zfs_scan_idle = 50; /* idle window in clock ticks */ 148 149 /* 150 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 151 * to strike a balance here between keeping the vdev queues full of I/Os 152 * at all times and not overflowing the queues to cause long latency, 153 * which would cause long txg sync times. No matter what, we will not 154 * overload the drives with I/O, since that is protected by 155 * zfs_vdev_scrub_max_active. 156 */ 157 unsigned long zfs_scan_vdev_limit = 4 << 20; 158 159 int zfs_scan_issue_strategy = 0; 160 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 161 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 162 163 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ 164 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) 165 166 /* 167 * fill_weight is non-tunable at runtime, so we copy it at module init from 168 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 169 * break queue sorting. 170 */ 171 uint64_t zfs_scan_fill_weight = 3; 172 static uint64_t fill_weight; 173 174 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 175 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 177 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 178 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 179 180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 182 /* min millisecs to obsolete per txg */ 183 unsigned int zfs_obsolete_min_time_ms = 500; 184 /* min millisecs to resilver per txg */ 185 unsigned int zfs_resilver_min_time_ms = 3000; 186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 190 /* max number of blocks to free in a single TXG */ 191 uint64_t zfs_async_block_max_blocks = UINT64_MAX; 192 193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 194 195 /* 196 * We wait a few txgs after importing a pool to begin scanning so that 197 * the import / mounting code isn't held up by scrub / resilver IO. 198 * Unfortunately, it is a bit difficult to determine exactly how long 199 * this will take since userspace will trigger fs mounts asynchronously 200 * and the kernel will create zvol minors asynchronously. As a result, 201 * the value provided here is a bit arbitrary, but represents a 202 * reasonable estimate of how many txgs it will take to finish fully 203 * importing a pool 204 */ 205 #define SCAN_IMPORT_WAIT_TXGS 5 206 207 208 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 209 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 210 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 211 212 extern int zfs_txg_timeout; 213 214 /* 215 * Enable/disable the processing of the free_bpobj object. 216 */ 217 boolean_t zfs_free_bpobj_enabled = B_TRUE; 218 219 /* the order has to match pool_scan_type */ 220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 221 NULL, 222 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 223 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 224 }; 225 226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 227 typedef struct { 228 uint64_t sds_dsobj; 229 uint64_t sds_txg; 230 avl_node_t sds_node; 231 } scan_ds_t; 232 233 /* 234 * This controls what conditions are placed on dsl_scan_sync_state(): 235 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 236 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 237 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 238 * write out the scn_phys_cached version. 239 * See dsl_scan_sync_state for details. 240 */ 241 typedef enum { 242 SYNC_OPTIONAL, 243 SYNC_MANDATORY, 244 SYNC_CACHED 245 } state_sync_type_t; 246 247 /* 248 * This struct represents the minimum information needed to reconstruct a 249 * zio for sequential scanning. This is useful because many of these will 250 * accumulate in the sequential IO queues before being issued, so saving 251 * memory matters here. 252 */ 253 typedef struct scan_io { 254 /* fields from blkptr_t */ 255 uint64_t sio_blk_prop; 256 uint64_t sio_phys_birth; 257 uint64_t sio_birth; 258 zio_cksum_t sio_cksum; 259 uint32_t sio_nr_dvas; 260 261 /* fields from zio_t */ 262 uint32_t sio_flags; 263 zbookmark_phys_t sio_zb; 264 265 /* members for queue sorting */ 266 union { 267 avl_node_t sio_addr_node; /* link into issuing queue */ 268 list_node_t sio_list_node; /* link for issuing to disk */ 269 } sio_nodes; 270 271 /* 272 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 273 * depending on how many were in the original bp. Only the 274 * first DVA is really used for sorting and issuing purposes. 275 * The other DVAs (if provided) simply exist so that the zio 276 * layer can find additional copies to repair from in the 277 * event of an error. This array must go at the end of the 278 * struct to allow this for the variable number of elements. 279 */ 280 dva_t sio_dva[0]; 281 } scan_io_t; 282 283 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 284 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 285 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 286 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 287 #define SIO_GET_END_OFFSET(sio) \ 288 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 289 #define SIO_GET_MUSED(sio) \ 290 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 291 292 struct dsl_scan_io_queue { 293 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 294 vdev_t *q_vd; /* top-level vdev that this queue represents */ 295 296 /* trees used for sorting I/Os and extents of I/Os */ 297 range_tree_t *q_exts_by_addr; 298 zfs_btree_t q_exts_by_size; 299 avl_tree_t q_sios_by_addr; 300 uint64_t q_sio_memused; 301 302 /* members for zio rate limiting */ 303 uint64_t q_maxinflight_bytes; 304 uint64_t q_inflight_bytes; 305 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 306 307 /* per txg statistics */ 308 uint64_t q_total_seg_size_this_txg; 309 uint64_t q_segs_this_txg; 310 uint64_t q_total_zio_size_this_txg; 311 uint64_t q_zios_this_txg; 312 }; 313 314 /* private data for dsl_scan_prefetch_cb() */ 315 typedef struct scan_prefetch_ctx { 316 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 317 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 318 boolean_t spc_root; /* is this prefetch for an objset? */ 319 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 320 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 321 } scan_prefetch_ctx_t; 322 323 /* private data for dsl_scan_prefetch() */ 324 typedef struct scan_prefetch_issue_ctx { 325 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 326 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 327 blkptr_t spic_bp; /* bp to prefetch */ 328 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 329 } scan_prefetch_issue_ctx_t; 330 331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 332 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 334 scan_io_t *sio); 335 336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 337 static void scan_io_queues_destroy(dsl_scan_t *scn); 338 339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 340 341 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 342 static void 343 sio_free(scan_io_t *sio) 344 { 345 ASSERT3U(sio->sio_nr_dvas, >, 0); 346 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 347 348 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 349 } 350 351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 352 static scan_io_t * 353 sio_alloc(unsigned short nr_dvas) 354 { 355 ASSERT3U(nr_dvas, >, 0); 356 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 357 358 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 359 } 360 361 void 362 scan_init(void) 363 { 364 /* 365 * This is used in ext_size_compare() to weight segments 366 * based on how sparse they are. This cannot be changed 367 * mid-scan and the tree comparison functions don't currently 368 * have a mechansim for passing additional context to the 369 * compare functions. Thus we store this value globally and 370 * we only allow it to be set at module intiailization time 371 */ 372 fill_weight = zfs_scan_fill_weight; 373 374 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 375 char name[36]; 376 377 (void) sprintf(name, "sio_cache_%d", i); 378 sio_cache[i] = kmem_cache_create(name, 379 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 380 0, NULL, NULL, NULL, NULL, NULL, 0); 381 } 382 } 383 384 void 385 scan_fini(void) 386 { 387 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 388 kmem_cache_destroy(sio_cache[i]); 389 } 390 } 391 392 static inline boolean_t 393 dsl_scan_is_running(const dsl_scan_t *scn) 394 { 395 return (scn->scn_phys.scn_state == DSS_SCANNING); 396 } 397 398 boolean_t 399 dsl_scan_resilvering(dsl_pool_t *dp) 400 { 401 return (dsl_scan_is_running(dp->dp_scan) && 402 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 403 } 404 405 static inline void 406 sio2bp(const scan_io_t *sio, blkptr_t *bp) 407 { 408 bzero(bp, sizeof (*bp)); 409 bp->blk_prop = sio->sio_blk_prop; 410 bp->blk_phys_birth = sio->sio_phys_birth; 411 bp->blk_birth = sio->sio_birth; 412 bp->blk_fill = 1; /* we always only work with data pointers */ 413 bp->blk_cksum = sio->sio_cksum; 414 415 ASSERT3U(sio->sio_nr_dvas, >, 0); 416 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 417 418 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 419 } 420 421 static inline void 422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 423 { 424 sio->sio_blk_prop = bp->blk_prop; 425 sio->sio_phys_birth = bp->blk_phys_birth; 426 sio->sio_birth = bp->blk_birth; 427 sio->sio_cksum = bp->blk_cksum; 428 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 429 430 /* 431 * Copy the DVAs to the sio. We need all copies of the block so 432 * that the self healing code can use the alternate copies if the 433 * first is corrupted. We want the DVA at index dva_i to be first 434 * in the sio since this is the primary one that we want to issue. 435 */ 436 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 437 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 438 } 439 } 440 441 int 442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 443 { 444 int err; 445 dsl_scan_t *scn; 446 spa_t *spa = dp->dp_spa; 447 uint64_t f; 448 449 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 450 scn->scn_dp = dp; 451 452 /* 453 * It's possible that we're resuming a scan after a reboot so 454 * make sure that the scan_async_destroying flag is initialized 455 * appropriately. 456 */ 457 ASSERT(!scn->scn_async_destroying); 458 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 459 SPA_FEATURE_ASYNC_DESTROY); 460 461 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 462 offsetof(scan_ds_t, sds_node)); 463 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 464 sizeof (scan_prefetch_issue_ctx_t), 465 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 466 467 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 468 "scrub_func", sizeof (uint64_t), 1, &f); 469 if (err == 0) { 470 /* 471 * There was an old-style scrub in progress. Restart a 472 * new-style scrub from the beginning. 473 */ 474 scn->scn_restart_txg = txg; 475 zfs_dbgmsg("old-style scrub was in progress; " 476 "restarting new-style scrub in txg %llu", 477 (longlong_t)scn->scn_restart_txg); 478 479 /* 480 * Load the queue obj from the old location so that it 481 * can be freed by dsl_scan_done(). 482 */ 483 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 484 "scrub_queue", sizeof (uint64_t), 1, 485 &scn->scn_phys.scn_queue_obj); 486 } else { 487 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 488 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 489 &scn->scn_phys); 490 491 /* 492 * Detect if the pool contains the signature of #2094. If it 493 * does properly update the scn->scn_phys structure and notify 494 * the administrator by setting an errata for the pool. 495 */ 496 if (err == EOVERFLOW) { 497 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 498 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 499 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 500 (23 * sizeof (uint64_t))); 501 502 err = zap_lookup(dp->dp_meta_objset, 503 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 504 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 505 if (err == 0) { 506 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 507 508 if (overflow & ~DSF_VISIT_DS_AGAIN || 509 scn->scn_async_destroying) { 510 spa->spa_errata = 511 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 512 return (EOVERFLOW); 513 } 514 515 bcopy(zaptmp, &scn->scn_phys, 516 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 517 scn->scn_phys.scn_flags = overflow; 518 519 /* Required scrub already in progress. */ 520 if (scn->scn_phys.scn_state == DSS_FINISHED || 521 scn->scn_phys.scn_state == DSS_CANCELED) 522 spa->spa_errata = 523 ZPOOL_ERRATA_ZOL_2094_SCRUB; 524 } 525 } 526 527 if (err == ENOENT) 528 return (0); 529 else if (err) 530 return (err); 531 532 /* 533 * We might be restarting after a reboot, so jump the issued 534 * counter to how far we've scanned. We know we're consistent 535 * up to here. 536 */ 537 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 538 539 if (dsl_scan_is_running(scn) && 540 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 541 /* 542 * A new-type scrub was in progress on an old 543 * pool, and the pool was accessed by old 544 * software. Restart from the beginning, since 545 * the old software may have changed the pool in 546 * the meantime. 547 */ 548 scn->scn_restart_txg = txg; 549 zfs_dbgmsg("new-style scrub was modified " 550 "by old software; restarting in txg %llu", 551 (longlong_t)scn->scn_restart_txg); 552 } else if (dsl_scan_resilvering(dp)) { 553 /* 554 * If a resilver is in progress and there are already 555 * errors, restart it instead of finishing this scan and 556 * then restarting it. If there haven't been any errors 557 * then remember that the incore DTL is valid. 558 */ 559 if (scn->scn_phys.scn_errors > 0) { 560 scn->scn_restart_txg = txg; 561 zfs_dbgmsg("resilver can't excise DTL_MISSING " 562 "when finished; restarting in txg %llu", 563 (u_longlong_t)scn->scn_restart_txg); 564 } else { 565 /* it's safe to excise DTL when finished */ 566 spa->spa_scrub_started = B_TRUE; 567 } 568 } 569 } 570 571 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 572 573 /* reload the queue into the in-core state */ 574 if (scn->scn_phys.scn_queue_obj != 0) { 575 zap_cursor_t zc; 576 zap_attribute_t za; 577 578 for (zap_cursor_init(&zc, dp->dp_meta_objset, 579 scn->scn_phys.scn_queue_obj); 580 zap_cursor_retrieve(&zc, &za) == 0; 581 (void) zap_cursor_advance(&zc)) { 582 scan_ds_queue_insert(scn, 583 zfs_strtonum(za.za_name, NULL), 584 za.za_first_integer); 585 } 586 zap_cursor_fini(&zc); 587 } 588 589 spa_scan_stat_init(spa); 590 return (0); 591 } 592 593 void 594 dsl_scan_fini(dsl_pool_t *dp) 595 { 596 if (dp->dp_scan != NULL) { 597 dsl_scan_t *scn = dp->dp_scan; 598 599 if (scn->scn_taskq != NULL) 600 taskq_destroy(scn->scn_taskq); 601 scan_ds_queue_clear(scn); 602 avl_destroy(&scn->scn_queue); 603 avl_destroy(&scn->scn_prefetch_queue); 604 605 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 606 dp->dp_scan = NULL; 607 } 608 } 609 610 static boolean_t 611 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 612 { 613 return (scn->scn_restart_txg != 0 && 614 scn->scn_restart_txg <= tx->tx_txg); 615 } 616 617 boolean_t 618 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 619 { 620 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 621 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 622 } 623 624 boolean_t 625 dsl_scan_scrubbing(const dsl_pool_t *dp) 626 { 627 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 628 629 return (scn_phys->scn_state == DSS_SCANNING && 630 scn_phys->scn_func == POOL_SCAN_SCRUB); 631 } 632 633 boolean_t 634 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 635 { 636 return (dsl_scan_scrubbing(scn->scn_dp) && 637 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 638 } 639 640 /* 641 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 642 * Because we can be running in the block sorting algorithm, we do not always 643 * want to write out the record, only when it is "safe" to do so. This safety 644 * condition is achieved by making sure that the sorting queues are empty 645 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 646 * is inconsistent with how much actual scanning progress has been made. The 647 * kind of sync to be performed is specified by the sync_type argument. If the 648 * sync is optional, we only sync if the queues are empty. If the sync is 649 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 650 * third possible state is a "cached" sync. This is done in response to: 651 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 652 * destroyed, so we wouldn't be able to restart scanning from it. 653 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 654 * superseded by a newer snapshot. 655 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 656 * swapped with its clone. 657 * In all cases, a cached sync simply rewrites the last record we've written, 658 * just slightly modified. For the modifications that are performed to the 659 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 660 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 661 */ 662 static void 663 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 664 { 665 int i; 666 spa_t *spa = scn->scn_dp->dp_spa; 667 668 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 669 if (scn->scn_bytes_pending == 0) { 670 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 671 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 672 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 673 674 if (q == NULL) 675 continue; 676 677 mutex_enter(&vd->vdev_scan_io_queue_lock); 678 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 679 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 680 NULL); 681 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 682 mutex_exit(&vd->vdev_scan_io_queue_lock); 683 } 684 685 if (scn->scn_phys.scn_queue_obj != 0) 686 scan_ds_queue_sync(scn, tx); 687 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 688 DMU_POOL_DIRECTORY_OBJECT, 689 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 690 &scn->scn_phys, tx)); 691 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 692 sizeof (scn->scn_phys)); 693 694 if (scn->scn_checkpointing) 695 zfs_dbgmsg("finish scan checkpoint"); 696 697 scn->scn_checkpointing = B_FALSE; 698 scn->scn_last_checkpoint = ddi_get_lbolt(); 699 } else if (sync_type == SYNC_CACHED) { 700 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 701 DMU_POOL_DIRECTORY_OBJECT, 702 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 703 &scn->scn_phys_cached, tx)); 704 } 705 } 706 707 /* ARGSUSED */ 708 static int 709 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 710 { 711 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 712 713 if (dsl_scan_is_running(scn)) 714 return (SET_ERROR(EBUSY)); 715 716 return (0); 717 } 718 719 static void 720 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 721 { 722 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 723 pool_scan_func_t *funcp = arg; 724 dmu_object_type_t ot = 0; 725 dsl_pool_t *dp = scn->scn_dp; 726 spa_t *spa = dp->dp_spa; 727 728 ASSERT(!dsl_scan_is_running(scn)); 729 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 730 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 731 scn->scn_phys.scn_func = *funcp; 732 scn->scn_phys.scn_state = DSS_SCANNING; 733 scn->scn_phys.scn_min_txg = 0; 734 scn->scn_phys.scn_max_txg = tx->tx_txg; 735 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 736 scn->scn_phys.scn_start_time = gethrestime_sec(); 737 scn->scn_phys.scn_errors = 0; 738 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 739 scn->scn_issued_before_pass = 0; 740 scn->scn_restart_txg = 0; 741 scn->scn_done_txg = 0; 742 scn->scn_last_checkpoint = 0; 743 scn->scn_checkpointing = B_FALSE; 744 spa_scan_stat_init(spa); 745 746 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 747 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 748 749 /* rewrite all disk labels */ 750 vdev_config_dirty(spa->spa_root_vdev); 751 752 if (vdev_resilver_needed(spa->spa_root_vdev, 753 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 754 spa_event_notify(spa, NULL, NULL, 755 ESC_ZFS_RESILVER_START); 756 } else { 757 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 758 } 759 760 spa->spa_scrub_started = B_TRUE; 761 /* 762 * If this is an incremental scrub, limit the DDT scrub phase 763 * to just the auto-ditto class (for correctness); the rest 764 * of the scrub should go faster using top-down pruning. 765 */ 766 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 767 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 768 769 } 770 771 /* back to the generic stuff */ 772 773 if (dp->dp_blkstats == NULL) { 774 dp->dp_blkstats = 775 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 776 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 777 MUTEX_DEFAULT, NULL); 778 } 779 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 780 781 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 782 ot = DMU_OT_ZAP_OTHER; 783 784 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 785 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 786 787 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 788 789 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 790 791 spa_history_log_internal(spa, "scan setup", tx, 792 "func=%u mintxg=%llu maxtxg=%llu", 793 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); 794 } 795 796 /* 797 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 798 * Can also be called to resume a paused scrub. 799 */ 800 int 801 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 802 { 803 spa_t *spa = dp->dp_spa; 804 dsl_scan_t *scn = dp->dp_scan; 805 806 /* 807 * Purge all vdev caches and probe all devices. We do this here 808 * rather than in sync context because this requires a writer lock 809 * on the spa_config lock, which we can't do from sync context. The 810 * spa_scrub_reopen flag indicates that vdev_open() should not 811 * attempt to start another scrub. 812 */ 813 spa_vdev_state_enter(spa, SCL_NONE); 814 spa->spa_scrub_reopen = B_TRUE; 815 vdev_reopen(spa->spa_root_vdev); 816 spa->spa_scrub_reopen = B_FALSE; 817 (void) spa_vdev_state_exit(spa, NULL, 0); 818 819 if (func == POOL_SCAN_RESILVER) { 820 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 821 return (0); 822 } 823 824 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 825 /* got scrub start cmd, resume paused scrub */ 826 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 827 POOL_SCRUB_NORMAL); 828 if (err == 0) { 829 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 830 return (ECANCELED); 831 } 832 return (SET_ERROR(err)); 833 } 834 835 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 836 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 837 } 838 839 /* ARGSUSED */ 840 static void 841 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 842 { 843 static const char *old_names[] = { 844 "scrub_bookmark", 845 "scrub_ddt_bookmark", 846 "scrub_ddt_class_max", 847 "scrub_queue", 848 "scrub_min_txg", 849 "scrub_max_txg", 850 "scrub_func", 851 "scrub_errors", 852 NULL 853 }; 854 855 dsl_pool_t *dp = scn->scn_dp; 856 spa_t *spa = dp->dp_spa; 857 int i; 858 859 /* Remove any remnants of an old-style scrub. */ 860 for (i = 0; old_names[i]; i++) { 861 (void) zap_remove(dp->dp_meta_objset, 862 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 863 } 864 865 if (scn->scn_phys.scn_queue_obj != 0) { 866 VERIFY0(dmu_object_free(dp->dp_meta_objset, 867 scn->scn_phys.scn_queue_obj, tx)); 868 scn->scn_phys.scn_queue_obj = 0; 869 } 870 scan_ds_queue_clear(scn); 871 872 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 873 874 /* 875 * If we were "restarted" from a stopped state, don't bother 876 * with anything else. 877 */ 878 if (!dsl_scan_is_running(scn)) { 879 ASSERT(!scn->scn_is_sorted); 880 return; 881 } 882 883 if (scn->scn_is_sorted) { 884 scan_io_queues_destroy(scn); 885 scn->scn_is_sorted = B_FALSE; 886 887 if (scn->scn_taskq != NULL) { 888 taskq_destroy(scn->scn_taskq); 889 scn->scn_taskq = NULL; 890 } 891 } 892 893 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 894 895 if (dsl_scan_restarting(scn, tx)) 896 spa_history_log_internal(spa, "scan aborted, restarting", tx, 897 "errors=%llu", spa_get_errlog_size(spa)); 898 else if (!complete) 899 spa_history_log_internal(spa, "scan cancelled", tx, 900 "errors=%llu", spa_get_errlog_size(spa)); 901 else 902 spa_history_log_internal(spa, "scan done", tx, 903 "errors=%llu", spa_get_errlog_size(spa)); 904 905 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 906 spa->spa_scrub_active = B_FALSE; 907 908 /* 909 * If the scrub/resilver completed, update all DTLs to 910 * reflect this. Whether it succeeded or not, vacate 911 * all temporary scrub DTLs. 912 * 913 * As the scrub does not currently support traversing 914 * data that have been freed but are part of a checkpoint, 915 * we don't mark the scrub as done in the DTLs as faults 916 * may still exist in those vdevs. 917 */ 918 if (complete && 919 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 920 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 921 scn->scn_phys.scn_max_txg, B_TRUE); 922 923 spa_event_notify(spa, NULL, NULL, 924 scn->scn_phys.scn_min_txg ? 925 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); 926 } else { 927 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 928 0, B_TRUE); 929 } 930 spa_errlog_rotate(spa); 931 932 /* 933 * Don't clear flag until after vdev_dtl_reassess to ensure that 934 * DTL_MISSING will get updated when possible. 935 */ 936 spa->spa_scrub_started = B_FALSE; 937 938 /* 939 * We may have finished replacing a device. 940 * Let the async thread assess this and handle the detach. 941 */ 942 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 943 944 /* 945 * Clear any resilver_deferred flags in the config. 946 * If there are drives that need resilvering, kick 947 * off an asynchronous request to start resilver. 948 * vdev_clear_resilver_deferred() may update the config 949 * before the resilver can restart. In the event of 950 * a crash during this period, the spa loading code 951 * will find the drives that need to be resilvered 952 * and start the resilver then. 953 */ 954 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 955 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 956 spa_history_log_internal(spa, 957 "starting deferred resilver", tx, "errors=%llu", 958 (u_longlong_t)spa_get_errlog_size(spa)); 959 spa_async_request(spa, SPA_ASYNC_RESILVER); 960 } 961 } 962 963 scn->scn_phys.scn_end_time = gethrestime_sec(); 964 965 ASSERT(!dsl_scan_is_running(scn)); 966 } 967 968 /* ARGSUSED */ 969 static int 970 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 971 { 972 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 973 974 if (!dsl_scan_is_running(scn)) 975 return (SET_ERROR(ENOENT)); 976 return (0); 977 } 978 979 /* ARGSUSED */ 980 static void 981 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 982 { 983 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 984 985 dsl_scan_done(scn, B_FALSE, tx); 986 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 987 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 988 } 989 990 int 991 dsl_scan_cancel(dsl_pool_t *dp) 992 { 993 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 994 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 995 } 996 997 static int 998 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 999 { 1000 pool_scrub_cmd_t *cmd = arg; 1001 dsl_pool_t *dp = dmu_tx_pool(tx); 1002 dsl_scan_t *scn = dp->dp_scan; 1003 1004 if (*cmd == POOL_SCRUB_PAUSE) { 1005 /* can't pause a scrub when there is no in-progress scrub */ 1006 if (!dsl_scan_scrubbing(dp)) 1007 return (SET_ERROR(ENOENT)); 1008 1009 /* can't pause a paused scrub */ 1010 if (dsl_scan_is_paused_scrub(scn)) 1011 return (SET_ERROR(EBUSY)); 1012 } else if (*cmd != POOL_SCRUB_NORMAL) { 1013 return (SET_ERROR(ENOTSUP)); 1014 } 1015 1016 return (0); 1017 } 1018 1019 static void 1020 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1021 { 1022 pool_scrub_cmd_t *cmd = arg; 1023 dsl_pool_t *dp = dmu_tx_pool(tx); 1024 spa_t *spa = dp->dp_spa; 1025 dsl_scan_t *scn = dp->dp_scan; 1026 1027 if (*cmd == POOL_SCRUB_PAUSE) { 1028 /* can't pause a scrub when there is no in-progress scrub */ 1029 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1030 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1031 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1032 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1033 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1034 } else { 1035 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1036 if (dsl_scan_is_paused_scrub(scn)) { 1037 /* 1038 * We need to keep track of how much time we spend 1039 * paused per pass so that we can adjust the scrub rate 1040 * shown in the output of 'zpool status' 1041 */ 1042 spa->spa_scan_pass_scrub_spent_paused += 1043 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1044 spa->spa_scan_pass_scrub_pause = 0; 1045 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1046 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1047 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1048 } 1049 } 1050 } 1051 1052 /* 1053 * Set scrub pause/resume state if it makes sense to do so 1054 */ 1055 int 1056 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1057 { 1058 return (dsl_sync_task(spa_name(dp->dp_spa), 1059 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1060 ZFS_SPACE_CHECK_RESERVED)); 1061 } 1062 1063 1064 /* start a new scan, or restart an existing one. */ 1065 void 1066 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1067 { 1068 if (txg == 0) { 1069 dmu_tx_t *tx; 1070 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1071 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1072 1073 txg = dmu_tx_get_txg(tx); 1074 dp->dp_scan->scn_restart_txg = txg; 1075 dmu_tx_commit(tx); 1076 } else { 1077 dp->dp_scan->scn_restart_txg = txg; 1078 } 1079 zfs_dbgmsg("restarting resilver txg=%llu", txg); 1080 } 1081 1082 void 1083 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1084 { 1085 zio_free(dp->dp_spa, txg, bp); 1086 } 1087 1088 void 1089 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1090 { 1091 ASSERT(dsl_pool_sync_context(dp)); 1092 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1093 } 1094 1095 static int 1096 scan_ds_queue_compare(const void *a, const void *b) 1097 { 1098 const scan_ds_t *sds_a = a, *sds_b = b; 1099 1100 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1101 return (-1); 1102 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1103 return (0); 1104 return (1); 1105 } 1106 1107 static void 1108 scan_ds_queue_clear(dsl_scan_t *scn) 1109 { 1110 void *cookie = NULL; 1111 scan_ds_t *sds; 1112 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1113 kmem_free(sds, sizeof (*sds)); 1114 } 1115 } 1116 1117 static boolean_t 1118 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1119 { 1120 scan_ds_t srch, *sds; 1121 1122 srch.sds_dsobj = dsobj; 1123 sds = avl_find(&scn->scn_queue, &srch, NULL); 1124 if (sds != NULL && txg != NULL) 1125 *txg = sds->sds_txg; 1126 return (sds != NULL); 1127 } 1128 1129 static void 1130 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1131 { 1132 scan_ds_t *sds; 1133 avl_index_t where; 1134 1135 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1136 sds->sds_dsobj = dsobj; 1137 sds->sds_txg = txg; 1138 1139 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1140 avl_insert(&scn->scn_queue, sds, where); 1141 } 1142 1143 static void 1144 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1145 { 1146 scan_ds_t srch, *sds; 1147 1148 srch.sds_dsobj = dsobj; 1149 1150 sds = avl_find(&scn->scn_queue, &srch, NULL); 1151 VERIFY(sds != NULL); 1152 avl_remove(&scn->scn_queue, sds); 1153 kmem_free(sds, sizeof (*sds)); 1154 } 1155 1156 static void 1157 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1158 { 1159 dsl_pool_t *dp = scn->scn_dp; 1160 spa_t *spa = dp->dp_spa; 1161 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1162 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1163 1164 ASSERT0(scn->scn_bytes_pending); 1165 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1166 1167 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1168 scn->scn_phys.scn_queue_obj, tx)); 1169 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1170 DMU_OT_NONE, 0, tx); 1171 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1172 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1173 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1174 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1175 sds->sds_txg, tx)); 1176 } 1177 } 1178 1179 /* 1180 * Computes the memory limit state that we're currently in. A sorted scan 1181 * needs quite a bit of memory to hold the sorting queue, so we need to 1182 * reasonably constrain the size so it doesn't impact overall system 1183 * performance. We compute two limits: 1184 * 1) Hard memory limit: if the amount of memory used by the sorting 1185 * queues on a pool gets above this value, we stop the metadata 1186 * scanning portion and start issuing the queued up and sorted 1187 * I/Os to reduce memory usage. 1188 * This limit is calculated as a fraction of physmem (by default 5%). 1189 * We constrain the lower bound of the hard limit to an absolute 1190 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1191 * the upper bound to 5% of the total pool size - no chance we'll 1192 * ever need that much memory, but just to keep the value in check. 1193 * 2) Soft memory limit: once we hit the hard memory limit, we start 1194 * issuing I/O to reduce queue memory usage, but we don't want to 1195 * completely empty out the queues, since we might be able to find I/Os 1196 * that will fill in the gaps of our non-sequential IOs at some point 1197 * in the future. So we stop the issuing of I/Os once the amount of 1198 * memory used drops below the soft limit (at which point we stop issuing 1199 * I/O and start scanning metadata again). 1200 * 1201 * This limit is calculated by subtracting a fraction of the hard 1202 * limit from the hard limit. By default this fraction is 5%, so 1203 * the soft limit is 95% of the hard limit. We cap the size of the 1204 * difference between the hard and soft limits at an absolute 1205 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1206 * sufficient to not cause too frequent switching between the 1207 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1208 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1209 * that should take at least a decent fraction of a second). 1210 */ 1211 static boolean_t 1212 dsl_scan_should_clear(dsl_scan_t *scn) 1213 { 1214 spa_t *spa = scn->scn_dp->dp_spa; 1215 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1216 uint64_t alloc, mlim_hard, mlim_soft, mused; 1217 1218 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1219 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1220 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1221 1222 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1223 zfs_scan_mem_lim_min); 1224 mlim_hard = MIN(mlim_hard, alloc / 20); 1225 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1226 zfs_scan_mem_lim_soft_max); 1227 mused = 0; 1228 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1229 vdev_t *tvd = rvd->vdev_child[i]; 1230 dsl_scan_io_queue_t *queue; 1231 1232 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1233 queue = tvd->vdev_scan_io_queue; 1234 if (queue != NULL) { 1235 /* # extents in exts_by_size = # in exts_by_addr */ 1236 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1237 sizeof (range_seg_gap_t) + queue->q_sio_memused; 1238 } 1239 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1240 } 1241 1242 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1243 1244 if (mused == 0) 1245 ASSERT0(scn->scn_bytes_pending); 1246 1247 /* 1248 * If we are above our hard limit, we need to clear out memory. 1249 * If we are below our soft limit, we need to accumulate sequential IOs. 1250 * Otherwise, we should keep doing whatever we are currently doing. 1251 */ 1252 if (mused >= mlim_hard) 1253 return (B_TRUE); 1254 else if (mused < mlim_soft) 1255 return (B_FALSE); 1256 else 1257 return (scn->scn_clearing); 1258 } 1259 1260 static boolean_t 1261 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1262 { 1263 /* we never skip user/group accounting objects */ 1264 if (zb && (int64_t)zb->zb_object < 0) 1265 return (B_FALSE); 1266 1267 if (scn->scn_suspending) 1268 return (B_TRUE); /* we're already suspending */ 1269 1270 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1271 return (B_FALSE); /* we're resuming */ 1272 1273 /* We only know how to resume from level-0 blocks. */ 1274 if (zb && zb->zb_level != 0) 1275 return (B_FALSE); 1276 1277 /* 1278 * We suspend if: 1279 * - we have scanned for at least the minimum time (default 1 sec 1280 * for scrub, 3 sec for resilver), and either we have sufficient 1281 * dirty data that we are starting to write more quickly 1282 * (default 30%), or someone is explicitly waiting for this txg 1283 * to complete. 1284 * or 1285 * - the spa is shutting down because this pool is being exported 1286 * or the machine is rebooting. 1287 * or 1288 * - the scan queue has reached its memory use limit 1289 */ 1290 hrtime_t curr_time_ns = gethrtime(); 1291 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1292 uint64_t sync_time_ns = curr_time_ns - 1293 scn->scn_dp->dp_spa->spa_sync_starttime; 1294 1295 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1296 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1297 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1298 1299 if ((NSEC2MSEC(scan_time_ns) > mintime && 1300 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1301 txg_sync_waiting(scn->scn_dp) || 1302 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1303 spa_shutting_down(scn->scn_dp->dp_spa) || 1304 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1305 if (zb) { 1306 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1307 (longlong_t)zb->zb_objset, 1308 (longlong_t)zb->zb_object, 1309 (longlong_t)zb->zb_level, 1310 (longlong_t)zb->zb_blkid); 1311 scn->scn_phys.scn_bookmark = *zb; 1312 } else { 1313 dsl_scan_phys_t *scnp = &scn->scn_phys; 1314 1315 dprintf("suspending at DDT bookmark " 1316 "%llx/%llx/%llx/%llx\n", 1317 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1318 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1319 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1320 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1321 } 1322 scn->scn_suspending = B_TRUE; 1323 return (B_TRUE); 1324 } 1325 return (B_FALSE); 1326 } 1327 1328 typedef struct zil_scan_arg { 1329 dsl_pool_t *zsa_dp; 1330 zil_header_t *zsa_zh; 1331 } zil_scan_arg_t; 1332 1333 /* ARGSUSED */ 1334 static int 1335 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1336 { 1337 zil_scan_arg_t *zsa = arg; 1338 dsl_pool_t *dp = zsa->zsa_dp; 1339 dsl_scan_t *scn = dp->dp_scan; 1340 zil_header_t *zh = zsa->zsa_zh; 1341 zbookmark_phys_t zb; 1342 1343 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1344 return (0); 1345 1346 /* 1347 * One block ("stubby") can be allocated a long time ago; we 1348 * want to visit that one because it has been allocated 1349 * (on-disk) even if it hasn't been claimed (even though for 1350 * scrub there's nothing to do to it). 1351 */ 1352 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1353 return (0); 1354 1355 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1356 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1357 1358 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1359 return (0); 1360 } 1361 1362 /* ARGSUSED */ 1363 static int 1364 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1365 { 1366 if (lrc->lrc_txtype == TX_WRITE) { 1367 zil_scan_arg_t *zsa = arg; 1368 dsl_pool_t *dp = zsa->zsa_dp; 1369 dsl_scan_t *scn = dp->dp_scan; 1370 zil_header_t *zh = zsa->zsa_zh; 1371 lr_write_t *lr = (lr_write_t *)lrc; 1372 blkptr_t *bp = &lr->lr_blkptr; 1373 zbookmark_phys_t zb; 1374 1375 if (BP_IS_HOLE(bp) || 1376 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1377 return (0); 1378 1379 /* 1380 * birth can be < claim_txg if this record's txg is 1381 * already txg sync'ed (but this log block contains 1382 * other records that are not synced) 1383 */ 1384 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1385 return (0); 1386 1387 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1388 lr->lr_foid, ZB_ZIL_LEVEL, 1389 lr->lr_offset / BP_GET_LSIZE(bp)); 1390 1391 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1392 } 1393 return (0); 1394 } 1395 1396 static void 1397 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1398 { 1399 uint64_t claim_txg = zh->zh_claim_txg; 1400 zil_scan_arg_t zsa = { dp, zh }; 1401 zilog_t *zilog; 1402 1403 ASSERT(spa_writeable(dp->dp_spa)); 1404 1405 /* 1406 * We only want to visit blocks that have been claimed 1407 * but not yet replayed. 1408 */ 1409 if (claim_txg == 0) 1410 return; 1411 1412 zilog = zil_alloc(dp->dp_meta_objset, zh); 1413 1414 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1415 claim_txg, B_FALSE); 1416 1417 zil_free(zilog); 1418 } 1419 1420 /* 1421 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1422 * here is to sort the AVL tree by the order each block will be needed. 1423 */ 1424 static int 1425 scan_prefetch_queue_compare(const void *a, const void *b) 1426 { 1427 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1428 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1429 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1430 1431 return (zbookmark_compare(spc_a->spc_datablkszsec, 1432 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1433 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1434 } 1435 1436 static void 1437 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1438 { 1439 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1440 zfs_refcount_destroy(&spc->spc_refcnt); 1441 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1442 } 1443 } 1444 1445 static scan_prefetch_ctx_t * 1446 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1447 { 1448 scan_prefetch_ctx_t *spc; 1449 1450 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1451 zfs_refcount_create(&spc->spc_refcnt); 1452 zfs_refcount_add(&spc->spc_refcnt, tag); 1453 spc->spc_scn = scn; 1454 if (dnp != NULL) { 1455 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1456 spc->spc_indblkshift = dnp->dn_indblkshift; 1457 spc->spc_root = B_FALSE; 1458 } else { 1459 spc->spc_datablkszsec = 0; 1460 spc->spc_indblkshift = 0; 1461 spc->spc_root = B_TRUE; 1462 } 1463 1464 return (spc); 1465 } 1466 1467 static void 1468 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1469 { 1470 zfs_refcount_add(&spc->spc_refcnt, tag); 1471 } 1472 1473 static boolean_t 1474 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1475 const zbookmark_phys_t *zb) 1476 { 1477 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1478 dnode_phys_t tmp_dnp; 1479 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1480 1481 if (zb->zb_objset != last_zb->zb_objset) 1482 return (B_TRUE); 1483 if ((int64_t)zb->zb_object < 0) 1484 return (B_FALSE); 1485 1486 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1487 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1488 1489 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1490 return (B_TRUE); 1491 1492 return (B_FALSE); 1493 } 1494 1495 static void 1496 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1497 { 1498 avl_index_t idx; 1499 dsl_scan_t *scn = spc->spc_scn; 1500 spa_t *spa = scn->scn_dp->dp_spa; 1501 scan_prefetch_issue_ctx_t *spic; 1502 1503 if (zfs_no_scrub_prefetch) 1504 return; 1505 1506 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1507 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1508 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1509 return; 1510 1511 if (dsl_scan_check_prefetch_resume(spc, zb)) 1512 return; 1513 1514 scan_prefetch_ctx_add_ref(spc, scn); 1515 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1516 spic->spic_spc = spc; 1517 spic->spic_bp = *bp; 1518 spic->spic_zb = *zb; 1519 1520 /* 1521 * Add the IO to the queue of blocks to prefetch. This allows us to 1522 * prioritize blocks that we will need first for the main traversal 1523 * thread. 1524 */ 1525 mutex_enter(&spa->spa_scrub_lock); 1526 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1527 /* this block is already queued for prefetch */ 1528 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1529 scan_prefetch_ctx_rele(spc, scn); 1530 mutex_exit(&spa->spa_scrub_lock); 1531 return; 1532 } 1533 1534 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1535 cv_broadcast(&spa->spa_scrub_io_cv); 1536 mutex_exit(&spa->spa_scrub_lock); 1537 } 1538 1539 static void 1540 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1541 uint64_t objset, uint64_t object) 1542 { 1543 int i; 1544 zbookmark_phys_t zb; 1545 scan_prefetch_ctx_t *spc; 1546 1547 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1548 return; 1549 1550 SET_BOOKMARK(&zb, objset, object, 0, 0); 1551 1552 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1553 1554 for (i = 0; i < dnp->dn_nblkptr; i++) { 1555 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1556 zb.zb_blkid = i; 1557 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1558 } 1559 1560 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1561 zb.zb_level = 0; 1562 zb.zb_blkid = DMU_SPILL_BLKID; 1563 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); 1564 } 1565 1566 scan_prefetch_ctx_rele(spc, FTAG); 1567 } 1568 1569 void 1570 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1571 arc_buf_t *buf, void *private) 1572 { 1573 scan_prefetch_ctx_t *spc = private; 1574 dsl_scan_t *scn = spc->spc_scn; 1575 spa_t *spa = scn->scn_dp->dp_spa; 1576 1577 /* broadcast that the IO has completed for rate limitting purposes */ 1578 mutex_enter(&spa->spa_scrub_lock); 1579 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1580 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1581 cv_broadcast(&spa->spa_scrub_io_cv); 1582 mutex_exit(&spa->spa_scrub_lock); 1583 1584 /* if there was an error or we are done prefetching, just cleanup */ 1585 if (buf == NULL || scn->scn_suspending) 1586 goto out; 1587 1588 if (BP_GET_LEVEL(bp) > 0) { 1589 int i; 1590 blkptr_t *cbp; 1591 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1592 zbookmark_phys_t czb; 1593 1594 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1595 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1596 zb->zb_level - 1, zb->zb_blkid * epb + i); 1597 dsl_scan_prefetch(spc, cbp, &czb); 1598 } 1599 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1600 dnode_phys_t *cdnp = buf->b_data; 1601 int i; 1602 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1603 1604 for (i = 0, cdnp = buf->b_data; i < epb; 1605 i += cdnp->dn_extra_slots + 1, 1606 cdnp += cdnp->dn_extra_slots + 1) { 1607 dsl_scan_prefetch_dnode(scn, cdnp, 1608 zb->zb_objset, zb->zb_blkid * epb + i); 1609 } 1610 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1611 objset_phys_t *osp = buf->b_data; 1612 1613 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1614 zb->zb_objset, DMU_META_DNODE_OBJECT); 1615 1616 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1617 dsl_scan_prefetch_dnode(scn, 1618 &osp->os_groupused_dnode, zb->zb_objset, 1619 DMU_GROUPUSED_OBJECT); 1620 dsl_scan_prefetch_dnode(scn, 1621 &osp->os_userused_dnode, zb->zb_objset, 1622 DMU_USERUSED_OBJECT); 1623 } 1624 } 1625 1626 out: 1627 if (buf != NULL) 1628 arc_buf_destroy(buf, private); 1629 scan_prefetch_ctx_rele(spc, scn); 1630 } 1631 1632 /* ARGSUSED */ 1633 static void 1634 dsl_scan_prefetch_thread(void *arg) 1635 { 1636 dsl_scan_t *scn = arg; 1637 spa_t *spa = scn->scn_dp->dp_spa; 1638 vdev_t *rvd = spa->spa_root_vdev; 1639 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; 1640 scan_prefetch_issue_ctx_t *spic; 1641 1642 /* loop until we are told to stop */ 1643 while (!scn->scn_prefetch_stop) { 1644 arc_flags_t flags = ARC_FLAG_NOWAIT | 1645 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1646 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1647 1648 mutex_enter(&spa->spa_scrub_lock); 1649 1650 /* 1651 * Wait until we have an IO to issue and are not above our 1652 * maximum in flight limit. 1653 */ 1654 while (!scn->scn_prefetch_stop && 1655 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1656 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1657 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1658 } 1659 1660 /* recheck if we should stop since we waited for the cv */ 1661 if (scn->scn_prefetch_stop) { 1662 mutex_exit(&spa->spa_scrub_lock); 1663 break; 1664 } 1665 1666 /* remove the prefetch IO from the tree */ 1667 spic = avl_first(&scn->scn_prefetch_queue); 1668 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1669 avl_remove(&scn->scn_prefetch_queue, spic); 1670 1671 mutex_exit(&spa->spa_scrub_lock); 1672 1673 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1674 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1675 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1676 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1677 zio_flags |= ZIO_FLAG_RAW; 1678 } 1679 1680 /* issue the prefetch asynchronously */ 1681 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1682 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1683 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1684 1685 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1686 } 1687 1688 ASSERT(scn->scn_prefetch_stop); 1689 1690 /* free any prefetches we didn't get to complete */ 1691 mutex_enter(&spa->spa_scrub_lock); 1692 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1693 avl_remove(&scn->scn_prefetch_queue, spic); 1694 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1695 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1696 } 1697 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1698 mutex_exit(&spa->spa_scrub_lock); 1699 } 1700 1701 static boolean_t 1702 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1703 const zbookmark_phys_t *zb) 1704 { 1705 /* 1706 * We never skip over user/group accounting objects (obj<0) 1707 */ 1708 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1709 (int64_t)zb->zb_object >= 0) { 1710 /* 1711 * If we already visited this bp & everything below (in 1712 * a prior txg sync), don't bother doing it again. 1713 */ 1714 if (zbookmark_subtree_completed(dnp, zb, 1715 &scn->scn_phys.scn_bookmark)) 1716 return (B_TRUE); 1717 1718 /* 1719 * If we found the block we're trying to resume from, or 1720 * we went past it to a different object, zero it out to 1721 * indicate that it's OK to start checking for suspending 1722 * again. 1723 */ 1724 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1725 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1726 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1727 (longlong_t)zb->zb_objset, 1728 (longlong_t)zb->zb_object, 1729 (longlong_t)zb->zb_level, 1730 (longlong_t)zb->zb_blkid); 1731 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1732 } 1733 } 1734 return (B_FALSE); 1735 } 1736 1737 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1738 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1739 dmu_objset_type_t ostype, dmu_tx_t *tx); 1740 static void dsl_scan_visitdnode( 1741 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1742 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1743 1744 /* 1745 * Return nonzero on i/o error. 1746 * Return new buf to write out in *bufp. 1747 */ 1748 static int 1749 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1750 dnode_phys_t *dnp, const blkptr_t *bp, 1751 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1752 { 1753 dsl_pool_t *dp = scn->scn_dp; 1754 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1755 int err; 1756 1757 if (BP_GET_LEVEL(bp) > 0) { 1758 arc_flags_t flags = ARC_FLAG_WAIT; 1759 int i; 1760 blkptr_t *cbp; 1761 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1762 arc_buf_t *buf; 1763 1764 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1765 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1766 if (err) { 1767 scn->scn_phys.scn_errors++; 1768 return (err); 1769 } 1770 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1771 zbookmark_phys_t czb; 1772 1773 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1774 zb->zb_level - 1, 1775 zb->zb_blkid * epb + i); 1776 dsl_scan_visitbp(cbp, &czb, dnp, 1777 ds, scn, ostype, tx); 1778 } 1779 arc_buf_destroy(buf, &buf); 1780 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1781 arc_flags_t flags = ARC_FLAG_WAIT; 1782 dnode_phys_t *cdnp; 1783 int i; 1784 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1785 arc_buf_t *buf; 1786 1787 if (BP_IS_PROTECTED(bp)) { 1788 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1789 zio_flags |= ZIO_FLAG_RAW; 1790 } 1791 1792 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1793 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1794 if (err) { 1795 scn->scn_phys.scn_errors++; 1796 return (err); 1797 } 1798 for (i = 0, cdnp = buf->b_data; i < epb; 1799 i += cdnp->dn_extra_slots + 1, 1800 cdnp += cdnp->dn_extra_slots + 1) { 1801 dsl_scan_visitdnode(scn, ds, ostype, 1802 cdnp, zb->zb_blkid * epb + i, tx); 1803 } 1804 1805 arc_buf_destroy(buf, &buf); 1806 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1807 arc_flags_t flags = ARC_FLAG_WAIT; 1808 objset_phys_t *osp; 1809 arc_buf_t *buf; 1810 1811 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1812 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1813 if (err) { 1814 scn->scn_phys.scn_errors++; 1815 return (err); 1816 } 1817 1818 osp = buf->b_data; 1819 1820 dsl_scan_visitdnode(scn, ds, osp->os_type, 1821 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1822 1823 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1824 /* 1825 * We also always visit user/group/project accounting 1826 * objects, and never skip them, even if we are 1827 * suspending. This is necessary so that the space 1828 * deltas from this txg get integrated. 1829 */ 1830 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1831 dsl_scan_visitdnode(scn, ds, osp->os_type, 1832 &osp->os_projectused_dnode, 1833 DMU_PROJECTUSED_OBJECT, tx); 1834 dsl_scan_visitdnode(scn, ds, osp->os_type, 1835 &osp->os_groupused_dnode, 1836 DMU_GROUPUSED_OBJECT, tx); 1837 dsl_scan_visitdnode(scn, ds, osp->os_type, 1838 &osp->os_userused_dnode, 1839 DMU_USERUSED_OBJECT, tx); 1840 } 1841 arc_buf_destroy(buf, &buf); 1842 } 1843 1844 return (0); 1845 } 1846 1847 static void 1848 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1849 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1850 uint64_t object, dmu_tx_t *tx) 1851 { 1852 int j; 1853 1854 for (j = 0; j < dnp->dn_nblkptr; j++) { 1855 zbookmark_phys_t czb; 1856 1857 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1858 dnp->dn_nlevels - 1, j); 1859 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1860 &czb, dnp, ds, scn, ostype, tx); 1861 } 1862 1863 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1864 zbookmark_phys_t czb; 1865 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1866 0, DMU_SPILL_BLKID); 1867 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1868 &czb, dnp, ds, scn, ostype, tx); 1869 } 1870 } 1871 1872 /* 1873 * The arguments are in this order because mdb can only print the 1874 * first 5; we want them to be useful. 1875 */ 1876 static void 1877 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1878 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1879 dmu_objset_type_t ostype, dmu_tx_t *tx) 1880 { 1881 dsl_pool_t *dp = scn->scn_dp; 1882 blkptr_t *bp_toread = NULL; 1883 1884 if (dsl_scan_check_suspend(scn, zb)) 1885 return; 1886 1887 if (dsl_scan_check_resume(scn, dnp, zb)) 1888 return; 1889 1890 scn->scn_visited_this_txg++; 1891 1892 /* 1893 * This debugging is commented out to conserve stack space. This 1894 * function is called recursively and the debugging addes several 1895 * bytes to the stack for each call. It can be commented back in 1896 * if required to debug an issue in dsl_scan_visitbp(). 1897 * 1898 * dprintf_bp(bp, 1899 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1900 * ds, ds ? ds->ds_object : 0, 1901 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1902 * bp); 1903 */ 1904 1905 if (BP_IS_HOLE(bp)) { 1906 scn->scn_holes_this_txg++; 1907 return; 1908 } 1909 1910 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1911 scn->scn_lt_min_this_txg++; 1912 return; 1913 } 1914 1915 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1916 *bp_toread = *bp; 1917 1918 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1919 goto out; 1920 1921 /* 1922 * If dsl_scan_ddt() has already visited this block, it will have 1923 * already done any translations or scrubbing, so don't call the 1924 * callback again. 1925 */ 1926 if (ddt_class_contains(dp->dp_spa, 1927 scn->scn_phys.scn_ddt_class_max, bp)) { 1928 scn->scn_ddt_contained_this_txg++; 1929 goto out; 1930 } 1931 1932 /* 1933 * If this block is from the future (after cur_max_txg), then we 1934 * are doing this on behalf of a deleted snapshot, and we will 1935 * revisit the future block on the next pass of this dataset. 1936 * Don't scan it now unless we need to because something 1937 * under it was modified. 1938 */ 1939 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 1940 scn->scn_gt_max_this_txg++; 1941 goto out; 1942 } 1943 1944 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 1945 1946 out: 1947 kmem_free(bp_toread, sizeof (blkptr_t)); 1948 } 1949 1950 static void 1951 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 1952 dmu_tx_t *tx) 1953 { 1954 zbookmark_phys_t zb; 1955 scan_prefetch_ctx_t *spc; 1956 1957 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1958 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 1959 1960 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 1961 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 1962 zb.zb_objset, 0, 0, 0); 1963 } else { 1964 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 1965 } 1966 1967 scn->scn_objsets_visited_this_txg++; 1968 1969 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 1970 dsl_scan_prefetch(spc, bp, &zb); 1971 scan_prefetch_ctx_rele(spc, FTAG); 1972 1973 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 1974 1975 dprintf_ds(ds, "finished scan%s", ""); 1976 } 1977 1978 static void 1979 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 1980 { 1981 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 1982 if (ds->ds_is_snapshot) { 1983 /* 1984 * Note: 1985 * - scn_cur_{min,max}_txg stays the same. 1986 * - Setting the flag is not really necessary if 1987 * scn_cur_max_txg == scn_max_txg, because there 1988 * is nothing after this snapshot that we care 1989 * about. However, we set it anyway and then 1990 * ignore it when we retraverse it in 1991 * dsl_scan_visitds(). 1992 */ 1993 scn_phys->scn_bookmark.zb_objset = 1994 dsl_dataset_phys(ds)->ds_next_snap_obj; 1995 zfs_dbgmsg("destroying ds %llu; currently traversing; " 1996 "reset zb_objset to %llu", 1997 (u_longlong_t)ds->ds_object, 1998 (u_longlong_t)dsl_dataset_phys(ds)-> 1999 ds_next_snap_obj); 2000 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2001 } else { 2002 SET_BOOKMARK(&scn_phys->scn_bookmark, 2003 ZB_DESTROYED_OBJSET, 0, 0, 0); 2004 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2005 "reset bookmark to -1,0,0,0", 2006 (u_longlong_t)ds->ds_object); 2007 } 2008 } 2009 } 2010 2011 /* 2012 * Invoked when a dataset is destroyed. We need to make sure that: 2013 * 2014 * 1) If it is the dataset that was currently being scanned, we write 2015 * a new dsl_scan_phys_t and marking the objset reference in it 2016 * as destroyed. 2017 * 2) Remove it from the work queue, if it was present. 2018 * 2019 * If the dataset was actually a snapshot, instead of marking the dataset 2020 * as destroyed, we instead substitute the next snapshot in line. 2021 */ 2022 void 2023 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2024 { 2025 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2026 dsl_scan_t *scn = dp->dp_scan; 2027 uint64_t mintxg; 2028 2029 if (!dsl_scan_is_running(scn)) 2030 return; 2031 2032 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2033 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2034 2035 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2036 scan_ds_queue_remove(scn, ds->ds_object); 2037 if (ds->ds_is_snapshot) 2038 scan_ds_queue_insert(scn, 2039 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2040 } 2041 2042 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2043 ds->ds_object, &mintxg) == 0) { 2044 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2045 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2046 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2047 if (ds->ds_is_snapshot) { 2048 /* 2049 * We keep the same mintxg; it could be > 2050 * ds_creation_txg if the previous snapshot was 2051 * deleted too. 2052 */ 2053 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2054 scn->scn_phys.scn_queue_obj, 2055 dsl_dataset_phys(ds)->ds_next_snap_obj, 2056 mintxg, tx) == 0); 2057 zfs_dbgmsg("destroying ds %llu; in queue; " 2058 "replacing with %llu", 2059 (u_longlong_t)ds->ds_object, 2060 (u_longlong_t)dsl_dataset_phys(ds)-> 2061 ds_next_snap_obj); 2062 } else { 2063 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2064 (u_longlong_t)ds->ds_object); 2065 } 2066 } 2067 2068 /* 2069 * dsl_scan_sync() should be called after this, and should sync 2070 * out our changed state, but just to be safe, do it here. 2071 */ 2072 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2073 } 2074 2075 static void 2076 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2077 { 2078 if (scn_bookmark->zb_objset == ds->ds_object) { 2079 scn_bookmark->zb_objset = 2080 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2081 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2082 "reset zb_objset to %llu", 2083 (u_longlong_t)ds->ds_object, 2084 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2085 } 2086 } 2087 2088 /* 2089 * Called when a dataset is snapshotted. If we were currently traversing 2090 * this snapshot, we reset our bookmark to point at the newly created 2091 * snapshot. We also modify our work queue to remove the old snapshot and 2092 * replace with the new one. 2093 */ 2094 void 2095 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2096 { 2097 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2098 dsl_scan_t *scn = dp->dp_scan; 2099 uint64_t mintxg; 2100 2101 if (!dsl_scan_is_running(scn)) 2102 return; 2103 2104 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2105 2106 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2107 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2108 2109 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2110 scan_ds_queue_remove(scn, ds->ds_object); 2111 scan_ds_queue_insert(scn, 2112 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2113 } 2114 2115 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2116 ds->ds_object, &mintxg) == 0) { 2117 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2118 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2119 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2120 scn->scn_phys.scn_queue_obj, 2121 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2122 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2123 "replacing with %llu", 2124 (u_longlong_t)ds->ds_object, 2125 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2126 } 2127 2128 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2129 } 2130 2131 static void 2132 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2133 zbookmark_phys_t *scn_bookmark) 2134 { 2135 if (scn_bookmark->zb_objset == ds1->ds_object) { 2136 scn_bookmark->zb_objset = ds2->ds_object; 2137 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2138 "reset zb_objset to %llu", 2139 (u_longlong_t)ds1->ds_object, 2140 (u_longlong_t)ds2->ds_object); 2141 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2142 scn_bookmark->zb_objset = ds1->ds_object; 2143 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2144 "reset zb_objset to %llu", 2145 (u_longlong_t)ds2->ds_object, 2146 (u_longlong_t)ds1->ds_object); 2147 } 2148 } 2149 2150 /* 2151 * Called when a parent dataset and its clone are swapped. If we were 2152 * currently traversing the dataset, we need to switch to traversing the 2153 * newly promoted parent. 2154 */ 2155 void 2156 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2157 { 2158 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2159 dsl_scan_t *scn = dp->dp_scan; 2160 uint64_t mintxg; 2161 2162 if (!dsl_scan_is_running(scn)) 2163 return; 2164 2165 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2166 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2167 2168 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) { 2169 scan_ds_queue_remove(scn, ds1->ds_object); 2170 scan_ds_queue_insert(scn, ds2->ds_object, mintxg); 2171 } 2172 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) { 2173 scan_ds_queue_remove(scn, ds2->ds_object); 2174 scan_ds_queue_insert(scn, ds1->ds_object, mintxg); 2175 } 2176 2177 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2178 ds1->ds_object, &mintxg) == 0) { 2179 int err; 2180 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2181 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2182 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2183 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2184 err = zap_add_int_key(dp->dp_meta_objset, 2185 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); 2186 VERIFY(err == 0 || err == EEXIST); 2187 if (err == EEXIST) { 2188 /* Both were there to begin with */ 2189 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2190 scn->scn_phys.scn_queue_obj, 2191 ds1->ds_object, mintxg, tx)); 2192 } 2193 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2194 "replacing with %llu", 2195 (u_longlong_t)ds1->ds_object, 2196 (u_longlong_t)ds2->ds_object); 2197 } 2198 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2199 ds2->ds_object, &mintxg) == 0) { 2200 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2201 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2202 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2203 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2204 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2205 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); 2206 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2207 "replacing with %llu", 2208 (u_longlong_t)ds2->ds_object, 2209 (u_longlong_t)ds1->ds_object); 2210 } 2211 2212 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2213 } 2214 2215 /* ARGSUSED */ 2216 static int 2217 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2218 { 2219 uint64_t originobj = *(uint64_t *)arg; 2220 dsl_dataset_t *ds; 2221 int err; 2222 dsl_scan_t *scn = dp->dp_scan; 2223 2224 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2225 return (0); 2226 2227 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2228 if (err) 2229 return (err); 2230 2231 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2232 dsl_dataset_t *prev; 2233 err = dsl_dataset_hold_obj(dp, 2234 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2235 2236 dsl_dataset_rele(ds, FTAG); 2237 if (err) 2238 return (err); 2239 ds = prev; 2240 } 2241 scan_ds_queue_insert(scn, ds->ds_object, 2242 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2243 dsl_dataset_rele(ds, FTAG); 2244 return (0); 2245 } 2246 2247 static void 2248 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2249 { 2250 dsl_pool_t *dp = scn->scn_dp; 2251 dsl_dataset_t *ds; 2252 2253 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2254 2255 if (scn->scn_phys.scn_cur_min_txg >= 2256 scn->scn_phys.scn_max_txg) { 2257 /* 2258 * This can happen if this snapshot was created after the 2259 * scan started, and we already completed a previous snapshot 2260 * that was created after the scan started. This snapshot 2261 * only references blocks with: 2262 * 2263 * birth < our ds_creation_txg 2264 * cur_min_txg is no less than ds_creation_txg. 2265 * We have already visited these blocks. 2266 * or 2267 * birth > scn_max_txg 2268 * The scan requested not to visit these blocks. 2269 * 2270 * Subsequent snapshots (and clones) can reference our 2271 * blocks, or blocks with even higher birth times. 2272 * Therefore we do not need to visit them either, 2273 * so we do not add them to the work queue. 2274 * 2275 * Note that checking for cur_min_txg >= cur_max_txg 2276 * is not sufficient, because in that case we may need to 2277 * visit subsequent snapshots. This happens when min_txg > 0, 2278 * which raises cur_min_txg. In this case we will visit 2279 * this dataset but skip all of its blocks, because the 2280 * rootbp's birth time is < cur_min_txg. Then we will 2281 * add the next snapshots/clones to the work queue. 2282 */ 2283 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); 2284 dsl_dataset_name(ds, dsname); 2285 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2286 "cur_min_txg (%llu) >= max_txg (%llu)", 2287 (longlong_t)dsobj, dsname, 2288 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2289 (longlong_t)scn->scn_phys.scn_max_txg); 2290 kmem_free(dsname, MAXNAMELEN); 2291 2292 goto out; 2293 } 2294 2295 /* 2296 * Only the ZIL in the head (non-snapshot) is valid. Even though 2297 * snapshots can have ZIL block pointers (which may be the same 2298 * BP as in the head), they must be ignored. In addition, $ORIGIN 2299 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2300 * need to look for a ZIL in it either. So we traverse the ZIL here, 2301 * rather than in scan_recurse(), because the regular snapshot 2302 * block-sharing rules don't apply to it. 2303 */ 2304 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && 2305 (dp->dp_origin_snap == NULL || 2306 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2307 objset_t *os; 2308 if (dmu_objset_from_ds(ds, &os) != 0) { 2309 goto out; 2310 } 2311 dsl_scan_zil(dp, &os->os_zil_header); 2312 } 2313 2314 /* 2315 * Iterate over the bps in this ds. 2316 */ 2317 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2318 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2319 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2320 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2321 2322 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2323 dsl_dataset_name(ds, dsname); 2324 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2325 "suspending=%u", 2326 (longlong_t)dsobj, dsname, 2327 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2328 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2329 (int)scn->scn_suspending); 2330 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2331 2332 if (scn->scn_suspending) 2333 goto out; 2334 2335 /* 2336 * We've finished this pass over this dataset. 2337 */ 2338 2339 /* 2340 * If we did not completely visit this dataset, do another pass. 2341 */ 2342 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2343 zfs_dbgmsg("incomplete pass; visiting again"); 2344 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2345 scan_ds_queue_insert(scn, ds->ds_object, 2346 scn->scn_phys.scn_cur_max_txg); 2347 goto out; 2348 } 2349 2350 /* 2351 * Add descendent datasets to work queue. 2352 */ 2353 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2354 scan_ds_queue_insert(scn, 2355 dsl_dataset_phys(ds)->ds_next_snap_obj, 2356 dsl_dataset_phys(ds)->ds_creation_txg); 2357 } 2358 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2359 boolean_t usenext = B_FALSE; 2360 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2361 uint64_t count; 2362 /* 2363 * A bug in a previous version of the code could 2364 * cause upgrade_clones_cb() to not set 2365 * ds_next_snap_obj when it should, leading to a 2366 * missing entry. Therefore we can only use the 2367 * next_clones_obj when its count is correct. 2368 */ 2369 int err = zap_count(dp->dp_meta_objset, 2370 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2371 if (err == 0 && 2372 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2373 usenext = B_TRUE; 2374 } 2375 2376 if (usenext) { 2377 zap_cursor_t zc; 2378 zap_attribute_t za; 2379 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2380 dsl_dataset_phys(ds)->ds_next_clones_obj); 2381 zap_cursor_retrieve(&zc, &za) == 0; 2382 (void) zap_cursor_advance(&zc)) { 2383 scan_ds_queue_insert(scn, 2384 zfs_strtonum(za.za_name, NULL), 2385 dsl_dataset_phys(ds)->ds_creation_txg); 2386 } 2387 zap_cursor_fini(&zc); 2388 } else { 2389 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2390 enqueue_clones_cb, &ds->ds_object, 2391 DS_FIND_CHILDREN)); 2392 } 2393 } 2394 2395 out: 2396 dsl_dataset_rele(ds, FTAG); 2397 } 2398 2399 /* ARGSUSED */ 2400 static int 2401 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2402 { 2403 dsl_dataset_t *ds; 2404 int err; 2405 dsl_scan_t *scn = dp->dp_scan; 2406 2407 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2408 if (err) 2409 return (err); 2410 2411 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2412 dsl_dataset_t *prev; 2413 err = dsl_dataset_hold_obj(dp, 2414 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2415 if (err) { 2416 dsl_dataset_rele(ds, FTAG); 2417 return (err); 2418 } 2419 2420 /* 2421 * If this is a clone, we don't need to worry about it for now. 2422 */ 2423 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2424 dsl_dataset_rele(ds, FTAG); 2425 dsl_dataset_rele(prev, FTAG); 2426 return (0); 2427 } 2428 dsl_dataset_rele(ds, FTAG); 2429 ds = prev; 2430 } 2431 2432 scan_ds_queue_insert(scn, ds->ds_object, 2433 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2434 dsl_dataset_rele(ds, FTAG); 2435 return (0); 2436 } 2437 2438 /* ARGSUSED */ 2439 void 2440 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2441 ddt_entry_t *dde, dmu_tx_t *tx) 2442 { 2443 const ddt_key_t *ddk = &dde->dde_key; 2444 ddt_phys_t *ddp = dde->dde_phys; 2445 blkptr_t bp; 2446 zbookmark_phys_t zb = { 0 }; 2447 int p; 2448 2449 if (scn->scn_phys.scn_state != DSS_SCANNING) 2450 return; 2451 2452 /* 2453 * This function is special because it is the only thing 2454 * that can add scan_io_t's to the vdev scan queues from 2455 * outside dsl_scan_sync(). For the most part this is ok 2456 * as long as it is called from within syncing context. 2457 * However, dsl_scan_sync() expects that no new sio's will 2458 * be added between when all the work for a scan is done 2459 * and the next txg when the scan is actually marked as 2460 * completed. This check ensures we do not issue new sio's 2461 * during this period. 2462 */ 2463 if (scn->scn_done_txg != 0) 2464 return; 2465 2466 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2467 if (ddp->ddp_phys_birth == 0 || 2468 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2469 continue; 2470 ddt_bp_create(checksum, ddk, ddp, &bp); 2471 2472 scn->scn_visited_this_txg++; 2473 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2474 } 2475 } 2476 2477 /* 2478 * Scrub/dedup interaction. 2479 * 2480 * If there are N references to a deduped block, we don't want to scrub it 2481 * N times -- ideally, we should scrub it exactly once. 2482 * 2483 * We leverage the fact that the dde's replication class (enum ddt_class) 2484 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2485 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2486 * 2487 * To prevent excess scrubbing, the scrub begins by walking the DDT 2488 * to find all blocks with refcnt > 1, and scrubs each of these once. 2489 * Since there are two replication classes which contain blocks with 2490 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2491 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2492 * 2493 * There would be nothing more to say if a block's refcnt couldn't change 2494 * during a scrub, but of course it can so we must account for changes 2495 * in a block's replication class. 2496 * 2497 * Here's an example of what can occur: 2498 * 2499 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2500 * when visited during the top-down scrub phase, it will be scrubbed twice. 2501 * This negates our scrub optimization, but is otherwise harmless. 2502 * 2503 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2504 * on each visit during the top-down scrub phase, it will never be scrubbed. 2505 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2506 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2507 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2508 * while a scrub is in progress, it scrubs the block right then. 2509 */ 2510 static void 2511 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2512 { 2513 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2514 ddt_entry_t dde = { 0 }; 2515 int error; 2516 uint64_t n = 0; 2517 2518 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2519 ddt_t *ddt; 2520 2521 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2522 break; 2523 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2524 (longlong_t)ddb->ddb_class, 2525 (longlong_t)ddb->ddb_type, 2526 (longlong_t)ddb->ddb_checksum, 2527 (longlong_t)ddb->ddb_cursor); 2528 2529 /* There should be no pending changes to the dedup table */ 2530 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2531 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2532 2533 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2534 n++; 2535 2536 if (dsl_scan_check_suspend(scn, NULL)) 2537 break; 2538 } 2539 2540 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2541 "suspending=%u", (longlong_t)n, 2542 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2543 2544 ASSERT(error == 0 || error == ENOENT); 2545 ASSERT(error != ENOENT || 2546 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2547 } 2548 2549 static uint64_t 2550 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2551 { 2552 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2553 if (ds->ds_is_snapshot) 2554 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2555 return (smt); 2556 } 2557 2558 static void 2559 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2560 { 2561 scan_ds_t *sds; 2562 dsl_pool_t *dp = scn->scn_dp; 2563 2564 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2565 scn->scn_phys.scn_ddt_class_max) { 2566 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2567 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2568 dsl_scan_ddt(scn, tx); 2569 if (scn->scn_suspending) 2570 return; 2571 } 2572 2573 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2574 /* First do the MOS & ORIGIN */ 2575 2576 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2577 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2578 dsl_scan_visit_rootbp(scn, NULL, 2579 &dp->dp_meta_rootbp, tx); 2580 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2581 if (scn->scn_suspending) 2582 return; 2583 2584 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2585 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2586 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2587 } else { 2588 dsl_scan_visitds(scn, 2589 dp->dp_origin_snap->ds_object, tx); 2590 } 2591 ASSERT(!scn->scn_suspending); 2592 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2593 ZB_DESTROYED_OBJSET) { 2594 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2595 /* 2596 * If we were suspended, continue from here. Note if the 2597 * ds we were suspended on was deleted, the zb_objset may 2598 * be -1, so we will skip this and find a new objset 2599 * below. 2600 */ 2601 dsl_scan_visitds(scn, dsobj, tx); 2602 if (scn->scn_suspending) 2603 return; 2604 } 2605 2606 /* 2607 * In case we suspended right at the end of the ds, zero the 2608 * bookmark so we don't think that we're still trying to resume. 2609 */ 2610 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2611 2612 /* 2613 * Keep pulling things out of the dataset avl queue. Updates to the 2614 * persistent zap-object-as-queue happen only at checkpoints. 2615 */ 2616 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2617 dsl_dataset_t *ds; 2618 uint64_t dsobj = sds->sds_dsobj; 2619 uint64_t txg = sds->sds_txg; 2620 2621 /* dequeue and free the ds from the queue */ 2622 scan_ds_queue_remove(scn, dsobj); 2623 sds = NULL; /* must not be touched after removal */ 2624 2625 /* Set up min / max txg */ 2626 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2627 if (txg != 0) { 2628 scn->scn_phys.scn_cur_min_txg = 2629 MAX(scn->scn_phys.scn_min_txg, txg); 2630 } else { 2631 scn->scn_phys.scn_cur_min_txg = 2632 MAX(scn->scn_phys.scn_min_txg, 2633 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2634 } 2635 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2636 dsl_dataset_rele(ds, FTAG); 2637 2638 dsl_scan_visitds(scn, dsobj, tx); 2639 if (scn->scn_suspending) 2640 return; 2641 } 2642 /* No more objsets to fetch, we're done */ 2643 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2644 ASSERT0(scn->scn_suspending); 2645 } 2646 2647 static uint64_t 2648 dsl_scan_count_leaves(vdev_t *vd) 2649 { 2650 uint64_t i, leaves = 0; 2651 2652 /* we only count leaves that belong to the main pool and are readable */ 2653 if (vd->vdev_islog || vd->vdev_isspare || 2654 vd->vdev_isl2cache || !vdev_readable(vd)) 2655 return (0); 2656 2657 if (vd->vdev_ops->vdev_op_leaf) 2658 return (1); 2659 2660 for (i = 0; i < vd->vdev_children; i++) { 2661 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2662 } 2663 2664 return (leaves); 2665 } 2666 2667 2668 static void 2669 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2670 { 2671 int i; 2672 uint64_t cur_size = 0; 2673 2674 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2675 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2676 } 2677 2678 q->q_total_zio_size_this_txg += cur_size; 2679 q->q_zios_this_txg++; 2680 } 2681 2682 static void 2683 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2684 uint64_t end) 2685 { 2686 q->q_total_seg_size_this_txg += end - start; 2687 q->q_segs_this_txg++; 2688 } 2689 2690 static boolean_t 2691 scan_io_queue_check_suspend(dsl_scan_t *scn) 2692 { 2693 /* See comment in dsl_scan_check_suspend() */ 2694 uint64_t curr_time_ns = gethrtime(); 2695 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2696 uint64_t sync_time_ns = curr_time_ns - 2697 scn->scn_dp->dp_spa->spa_sync_starttime; 2698 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2699 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2700 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2701 2702 return ((NSEC2MSEC(scan_time_ns) > mintime && 2703 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2704 txg_sync_waiting(scn->scn_dp) || 2705 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2706 spa_shutting_down(scn->scn_dp->dp_spa)); 2707 } 2708 2709 /* 2710 * Given a list of scan_io_t's in io_list, this issues the io's out to 2711 * disk. This consumes the io_list and frees the scan_io_t's. This is 2712 * called when emptying queues, either when we're up against the memory 2713 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2714 * processing the list before we finished. Any zios that were not issued 2715 * will remain in the io_list. 2716 */ 2717 static boolean_t 2718 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2719 { 2720 dsl_scan_t *scn = queue->q_scn; 2721 scan_io_t *sio; 2722 int64_t bytes_issued = 0; 2723 boolean_t suspended = B_FALSE; 2724 2725 while ((sio = list_head(io_list)) != NULL) { 2726 blkptr_t bp; 2727 2728 if (scan_io_queue_check_suspend(scn)) { 2729 suspended = B_TRUE; 2730 break; 2731 } 2732 2733 sio2bp(sio, &bp); 2734 bytes_issued += SIO_GET_ASIZE(sio); 2735 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2736 &sio->sio_zb, queue); 2737 (void) list_remove_head(io_list); 2738 scan_io_queues_update_zio_stats(queue, &bp); 2739 sio_free(sio); 2740 } 2741 2742 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2743 2744 return (suspended); 2745 } 2746 2747 /* 2748 * Given a range_seg_t (extent) and a list, this function passes over a 2749 * scan queue and gathers up the appropriate ios which fit into that 2750 * scan seg (starting from lowest LBA). At the end, we remove the segment 2751 * from the q_exts_by_addr range tree. 2752 */ 2753 static boolean_t 2754 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2755 { 2756 scan_io_t *srch_sio, *sio, *next_sio; 2757 avl_index_t idx; 2758 uint_t num_sios = 0; 2759 int64_t bytes_issued = 0; 2760 2761 ASSERT(rs != NULL); 2762 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2763 2764 srch_sio = sio_alloc(1); 2765 srch_sio->sio_nr_dvas = 1; 2766 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2767 2768 /* 2769 * The exact start of the extent might not contain any matching zios, 2770 * so if that's the case, examine the next one in the tree. 2771 */ 2772 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2773 sio_free(srch_sio); 2774 2775 if (sio == NULL) 2776 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2777 2778 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2779 queue->q_exts_by_addr) && num_sios <= 32) { 2780 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2781 queue->q_exts_by_addr)); 2782 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2783 queue->q_exts_by_addr)); 2784 2785 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2786 avl_remove(&queue->q_sios_by_addr, sio); 2787 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2788 2789 bytes_issued += SIO_GET_ASIZE(sio); 2790 num_sios++; 2791 list_insert_tail(list, sio); 2792 sio = next_sio; 2793 } 2794 2795 /* 2796 * We limit the number of sios we process at once to 32 to avoid 2797 * biting off more than we can chew. If we didn't take everything 2798 * in the segment we update it to reflect the work we were able to 2799 * complete. Otherwise, we remove it from the range tree entirely. 2800 */ 2801 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2802 queue->q_exts_by_addr)) { 2803 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2804 -bytes_issued); 2805 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2806 SIO_GET_OFFSET(sio), rs_get_end(rs, 2807 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2808 2809 return (B_TRUE); 2810 } else { 2811 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2812 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2813 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2814 return (B_FALSE); 2815 } 2816 } 2817 2818 2819 /* 2820 * This is called from the queue emptying thread and selects the next 2821 * extent from which we are to issue io's. The behavior of this function 2822 * depends on the state of the scan, the current memory consumption and 2823 * whether or not we are performing a scan shutdown. 2824 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2825 * needs to perform a checkpoint 2826 * 2) We select the largest available extent if we are up against the 2827 * memory limit. 2828 * 3) Otherwise we don't select any extents. 2829 */ 2830 static const range_seg_t * 2831 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2832 { 2833 dsl_scan_t *scn = queue->q_scn; 2834 range_tree_t *rt = queue->q_exts_by_addr; 2835 2836 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2837 ASSERT(scn->scn_is_sorted); 2838 2839 /* handle tunable overrides */ 2840 if (scn->scn_checkpointing || scn->scn_clearing) { 2841 if (zfs_scan_issue_strategy == 1) { 2842 return (range_tree_first(rt)); 2843 } else if (zfs_scan_issue_strategy == 2) { 2844 /* 2845 * We need to get the original entry in the by_addr 2846 * tree so we can modify it. 2847 */ 2848 range_seg_t *size_rs = 2849 zfs_btree_first(&queue->q_exts_by_size, NULL); 2850 if (size_rs == NULL) 2851 return (NULL); 2852 uint64_t start = rs_get_start(size_rs, rt); 2853 uint64_t size = rs_get_end(size_rs, rt) - start; 2854 range_seg_t *addr_rs = range_tree_find(rt, start, 2855 size); 2856 ASSERT3P(addr_rs, !=, NULL); 2857 ASSERT3U(rs_get_start(size_rs, rt), ==, 2858 rs_get_start(addr_rs, rt)); 2859 ASSERT3U(rs_get_end(size_rs, rt), ==, 2860 rs_get_end(addr_rs, rt)); 2861 return (addr_rs); 2862 } 2863 } 2864 2865 /* 2866 * During normal clearing, we want to issue our largest segments 2867 * first, keeping IO as sequential as possible, and leaving the 2868 * smaller extents for later with the hope that they might eventually 2869 * grow to larger sequential segments. However, when the scan is 2870 * checkpointing, no new extents will be added to the sorting queue, 2871 * so the way we are sorted now is as good as it will ever get. 2872 * In this case, we instead switch to issuing extents in LBA order. 2873 */ 2874 if (scn->scn_checkpointing) { 2875 return (range_tree_first(rt)); 2876 } else if (scn->scn_clearing) { 2877 /* 2878 * We need to get the original entry in the by_addr 2879 * tree so we can modify it. 2880 */ 2881 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2882 NULL); 2883 if (size_rs == NULL) 2884 return (NULL); 2885 uint64_t start = rs_get_start(size_rs, rt); 2886 uint64_t size = rs_get_end(size_rs, rt) - start; 2887 range_seg_t *addr_rs = range_tree_find(rt, start, size); 2888 ASSERT3P(addr_rs, !=, NULL); 2889 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 2890 rt)); 2891 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 2892 return (addr_rs); 2893 } else { 2894 return (NULL); 2895 } 2896 } 2897 2898 static void 2899 scan_io_queues_run_one(void *arg) 2900 { 2901 dsl_scan_io_queue_t *queue = arg; 2902 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 2903 boolean_t suspended = B_FALSE; 2904 range_seg_t *rs = NULL; 2905 scan_io_t *sio = NULL; 2906 list_t sio_list; 2907 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 2908 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 2909 2910 ASSERT(queue->q_scn->scn_is_sorted); 2911 2912 list_create(&sio_list, sizeof (scan_io_t), 2913 offsetof(scan_io_t, sio_nodes.sio_list_node)); 2914 mutex_enter(q_lock); 2915 2916 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 2917 queue->q_maxinflight_bytes = 2918 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 2919 2920 /* reset per-queue scan statistics for this txg */ 2921 queue->q_total_seg_size_this_txg = 0; 2922 queue->q_segs_this_txg = 0; 2923 queue->q_total_zio_size_this_txg = 0; 2924 queue->q_zios_this_txg = 0; 2925 2926 /* loop until we have run out of time or sios */ 2927 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) { 2928 uint64_t seg_start = 0, seg_end = 0; 2929 boolean_t more_left = B_TRUE; 2930 2931 ASSERT(list_is_empty(&sio_list)); 2932 2933 /* loop while we still have sios left to process in this rs */ 2934 while (more_left) { 2935 scan_io_t *first_sio, *last_sio; 2936 2937 /* 2938 * We have selected which extent needs to be 2939 * processed next. Gather up the corresponding sios. 2940 */ 2941 more_left = scan_io_queue_gather(queue, rs, &sio_list); 2942 ASSERT(!list_is_empty(&sio_list)); 2943 first_sio = list_head(&sio_list); 2944 last_sio = list_tail(&sio_list); 2945 2946 seg_end = SIO_GET_END_OFFSET(last_sio); 2947 if (seg_start == 0) 2948 seg_start = SIO_GET_OFFSET(first_sio); 2949 2950 /* 2951 * Issuing sios can take a long time so drop the 2952 * queue lock. The sio queue won't be updated by 2953 * other threads since we're in syncing context so 2954 * we can be sure that our trees will remain exactly 2955 * as we left them. 2956 */ 2957 mutex_exit(q_lock); 2958 suspended = scan_io_queue_issue(queue, &sio_list); 2959 mutex_enter(q_lock); 2960 2961 if (suspended) 2962 break; 2963 } 2964 /* update statistics for debugging purposes */ 2965 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 2966 2967 if (suspended) 2968 break; 2969 } 2970 2971 2972 /* 2973 * If we were suspended in the middle of processing, 2974 * requeue any unfinished sios and exit. 2975 */ 2976 while ((sio = list_head(&sio_list)) != NULL) { 2977 list_remove(&sio_list, sio); 2978 scan_io_queue_insert_impl(queue, sio); 2979 } 2980 2981 mutex_exit(q_lock); 2982 list_destroy(&sio_list); 2983 } 2984 2985 /* 2986 * Performs an emptying run on all scan queues in the pool. This just 2987 * punches out one thread per top-level vdev, each of which processes 2988 * only that vdev's scan queue. We can parallelize the I/O here because 2989 * we know that each queue's io's only affect its own top-level vdev. 2990 * 2991 * This function waits for the queue runs to complete, and must be 2992 * called from dsl_scan_sync (or in general, syncing context). 2993 */ 2994 static void 2995 scan_io_queues_run(dsl_scan_t *scn) 2996 { 2997 spa_t *spa = scn->scn_dp->dp_spa; 2998 2999 ASSERT(scn->scn_is_sorted); 3000 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3001 3002 if (scn->scn_bytes_pending == 0) 3003 return; 3004 3005 if (scn->scn_taskq == NULL) { 3006 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, 3007 KM_SLEEP); 3008 int nthreads = spa->spa_root_vdev->vdev_children; 3009 3010 /* 3011 * We need to make this taskq *always* execute as many 3012 * threads in parallel as we have top-level vdevs and no 3013 * less, otherwise strange serialization of the calls to 3014 * scan_io_queues_run_one can occur during spa_sync runs 3015 * and that significantly impacts performance. 3016 */ 3017 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, 3018 "dsl_scan_tq_%s", spa->spa_name); 3019 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, 3020 nthreads, nthreads, TASKQ_PREPOPULATE); 3021 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); 3022 } 3023 3024 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3025 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3026 3027 mutex_enter(&vd->vdev_scan_io_queue_lock); 3028 if (vd->vdev_scan_io_queue != NULL) { 3029 VERIFY(taskq_dispatch(scn->scn_taskq, 3030 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3031 TQ_SLEEP) != TASKQID_INVALID); 3032 } 3033 mutex_exit(&vd->vdev_scan_io_queue_lock); 3034 } 3035 3036 /* 3037 * Wait for the queues to finish issuing thir IOs for this run 3038 * before we return. There may still be IOs in flight at this 3039 * point. 3040 */ 3041 taskq_wait(scn->scn_taskq); 3042 } 3043 3044 static boolean_t 3045 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3046 { 3047 uint64_t elapsed_nanosecs; 3048 3049 if (zfs_recover) 3050 return (B_FALSE); 3051 3052 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) 3053 return (B_TRUE); 3054 3055 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3056 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3057 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3058 txg_sync_waiting(scn->scn_dp)) || 3059 spa_shutting_down(scn->scn_dp->dp_spa)); 3060 } 3061 3062 static int 3063 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3064 { 3065 dsl_scan_t *scn = arg; 3066 3067 if (!scn->scn_is_bptree || 3068 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3069 if (dsl_scan_async_block_should_pause(scn)) 3070 return (SET_ERROR(ERESTART)); 3071 } 3072 3073 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3074 dmu_tx_get_txg(tx), bp, 0)); 3075 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3076 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3077 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3078 scn->scn_visited_this_txg++; 3079 return (0); 3080 } 3081 3082 static void 3083 dsl_scan_update_stats(dsl_scan_t *scn) 3084 { 3085 spa_t *spa = scn->scn_dp->dp_spa; 3086 uint64_t i; 3087 uint64_t seg_size_total = 0, zio_size_total = 0; 3088 uint64_t seg_count_total = 0, zio_count_total = 0; 3089 3090 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3091 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3092 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3093 3094 if (queue == NULL) 3095 continue; 3096 3097 seg_size_total += queue->q_total_seg_size_this_txg; 3098 zio_size_total += queue->q_total_zio_size_this_txg; 3099 seg_count_total += queue->q_segs_this_txg; 3100 zio_count_total += queue->q_zios_this_txg; 3101 } 3102 3103 if (seg_count_total == 0 || zio_count_total == 0) { 3104 scn->scn_avg_seg_size_this_txg = 0; 3105 scn->scn_avg_zio_size_this_txg = 0; 3106 scn->scn_segs_this_txg = 0; 3107 scn->scn_zios_this_txg = 0; 3108 return; 3109 } 3110 3111 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3112 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3113 scn->scn_segs_this_txg = seg_count_total; 3114 scn->scn_zios_this_txg = zio_count_total; 3115 } 3116 3117 static int 3118 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3119 { 3120 dsl_scan_t *scn = arg; 3121 const dva_t *dva = &bp->blk_dva[0]; 3122 3123 if (dsl_scan_async_block_should_pause(scn)) 3124 return (SET_ERROR(ERESTART)); 3125 3126 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3127 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3128 DVA_GET_ASIZE(dva), tx); 3129 scn->scn_visited_this_txg++; 3130 return (0); 3131 } 3132 3133 boolean_t 3134 dsl_scan_active(dsl_scan_t *scn) 3135 { 3136 spa_t *spa = scn->scn_dp->dp_spa; 3137 uint64_t used = 0, comp, uncomp; 3138 3139 if (spa->spa_load_state != SPA_LOAD_NONE) 3140 return (B_FALSE); 3141 if (spa_shutting_down(spa)) 3142 return (B_FALSE); 3143 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3144 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3145 return (B_TRUE); 3146 3147 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3148 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3149 &used, &comp, &uncomp); 3150 } 3151 return (used != 0); 3152 } 3153 3154 static boolean_t 3155 dsl_scan_check_deferred(vdev_t *vd) 3156 { 3157 boolean_t need_resilver = B_FALSE; 3158 3159 for (int c = 0; c < vd->vdev_children; c++) { 3160 need_resilver |= 3161 dsl_scan_check_deferred(vd->vdev_child[c]); 3162 } 3163 3164 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3165 !vd->vdev_ops->vdev_op_leaf) 3166 return (need_resilver); 3167 3168 if (!vd->vdev_resilver_deferred) 3169 need_resilver = B_TRUE; 3170 3171 return (need_resilver); 3172 } 3173 3174 static boolean_t 3175 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3176 uint64_t phys_birth) 3177 { 3178 vdev_t *vd; 3179 3180 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3181 3182 if (vd->vdev_ops == &vdev_indirect_ops) { 3183 /* 3184 * The indirect vdev can point to multiple 3185 * vdevs. For simplicity, always create 3186 * the resilver zio_t. zio_vdev_io_start() 3187 * will bypass the child resilver i/o's if 3188 * they are on vdevs that don't have DTL's. 3189 */ 3190 return (B_TRUE); 3191 } 3192 3193 if (DVA_GET_GANG(dva)) { 3194 /* 3195 * Gang members may be spread across multiple 3196 * vdevs, so the best estimate we have is the 3197 * scrub range, which has already been checked. 3198 * XXX -- it would be better to change our 3199 * allocation policy to ensure that all 3200 * gang members reside on the same vdev. 3201 */ 3202 return (B_TRUE); 3203 } 3204 3205 /* 3206 * Check if the txg falls within the range which must be 3207 * resilvered. DVAs outside this range can always be skipped. 3208 */ 3209 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3210 return (B_FALSE); 3211 3212 /* 3213 * Check if the top-level vdev must resilver this offset. 3214 * When the offset does not intersect with a dirty leaf DTL 3215 * then it may be possible to skip the resilver IO. The psize 3216 * is provided instead of asize to simplify the check for RAIDZ. 3217 */ 3218 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3219 return (B_FALSE); 3220 3221 /* 3222 * Check that this top-level vdev has a device under it which 3223 * is resilvering and is not deferred. 3224 */ 3225 if (!dsl_scan_check_deferred(vd)) 3226 return (B_FALSE); 3227 3228 return (B_TRUE); 3229 } 3230 3231 static int 3232 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3233 { 3234 int err = 0; 3235 dsl_scan_t *scn = dp->dp_scan; 3236 spa_t *spa = dp->dp_spa; 3237 3238 if (spa_suspend_async_destroy(spa)) 3239 return (0); 3240 3241 if (zfs_free_bpobj_enabled && 3242 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3243 scn->scn_is_bptree = B_FALSE; 3244 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3245 scn->scn_zio_root = zio_root(spa, NULL, 3246 NULL, ZIO_FLAG_MUSTSUCCEED); 3247 err = bpobj_iterate(&dp->dp_free_bpobj, 3248 dsl_scan_free_block_cb, scn, tx); 3249 VERIFY0(zio_wait(scn->scn_zio_root)); 3250 scn->scn_zio_root = NULL; 3251 3252 if (err != 0 && err != ERESTART) 3253 zfs_panic_recover("error %u from bpobj_iterate()", err); 3254 } 3255 3256 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3257 ASSERT(scn->scn_async_destroying); 3258 scn->scn_is_bptree = B_TRUE; 3259 scn->scn_zio_root = zio_root(spa, NULL, 3260 NULL, ZIO_FLAG_MUSTSUCCEED); 3261 err = bptree_iterate(dp->dp_meta_objset, 3262 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3263 VERIFY0(zio_wait(scn->scn_zio_root)); 3264 scn->scn_zio_root = NULL; 3265 3266 if (err == EIO || err == ECKSUM) { 3267 err = 0; 3268 } else if (err != 0 && err != ERESTART) { 3269 zfs_panic_recover("error %u from " 3270 "traverse_dataset_destroyed()", err); 3271 } 3272 3273 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3274 /* finished; deactivate async destroy feature */ 3275 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3276 ASSERT(!spa_feature_is_active(spa, 3277 SPA_FEATURE_ASYNC_DESTROY)); 3278 VERIFY0(zap_remove(dp->dp_meta_objset, 3279 DMU_POOL_DIRECTORY_OBJECT, 3280 DMU_POOL_BPTREE_OBJ, tx)); 3281 VERIFY0(bptree_free(dp->dp_meta_objset, 3282 dp->dp_bptree_obj, tx)); 3283 dp->dp_bptree_obj = 0; 3284 scn->scn_async_destroying = B_FALSE; 3285 scn->scn_async_stalled = B_FALSE; 3286 } else { 3287 /* 3288 * If we didn't make progress, mark the async 3289 * destroy as stalled, so that we will not initiate 3290 * a spa_sync() on its behalf. Note that we only 3291 * check this if we are not finished, because if the 3292 * bptree had no blocks for us to visit, we can 3293 * finish without "making progress". 3294 */ 3295 scn->scn_async_stalled = 3296 (scn->scn_visited_this_txg == 0); 3297 } 3298 } 3299 if (scn->scn_visited_this_txg) { 3300 zfs_dbgmsg("freed %llu blocks in %llums from " 3301 "free_bpobj/bptree txg %llu; err=%d", 3302 (longlong_t)scn->scn_visited_this_txg, 3303 (longlong_t) 3304 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3305 (longlong_t)tx->tx_txg, err); 3306 scn->scn_visited_this_txg = 0; 3307 3308 /* 3309 * Write out changes to the DDT that may be required as a 3310 * result of the blocks freed. This ensures that the DDT 3311 * is clean when a scrub/resilver runs. 3312 */ 3313 ddt_sync(spa, tx->tx_txg); 3314 } 3315 if (err != 0) 3316 return (err); 3317 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3318 zfs_free_leak_on_eio && 3319 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3320 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3321 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3322 /* 3323 * We have finished background destroying, but there is still 3324 * some space left in the dp_free_dir. Transfer this leaked 3325 * space to the dp_leak_dir. 3326 */ 3327 if (dp->dp_leak_dir == NULL) { 3328 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3329 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3330 LEAK_DIR_NAME, tx); 3331 VERIFY0(dsl_pool_open_special_dir(dp, 3332 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3333 rrw_exit(&dp->dp_config_rwlock, FTAG); 3334 } 3335 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3336 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3337 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3338 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3339 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3340 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3341 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3342 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3343 } 3344 3345 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { 3346 /* finished; verify that space accounting went to zero */ 3347 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3348 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3349 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3350 } 3351 3352 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3353 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3354 DMU_POOL_OBSOLETE_BPOBJ)); 3355 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3356 ASSERT(spa_feature_is_active(dp->dp_spa, 3357 SPA_FEATURE_OBSOLETE_COUNTS)); 3358 3359 scn->scn_is_bptree = B_FALSE; 3360 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3361 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3362 dsl_scan_obsolete_block_cb, scn, tx); 3363 if (err != 0 && err != ERESTART) 3364 zfs_panic_recover("error %u from bpobj_iterate()", err); 3365 3366 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3367 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3368 } 3369 3370 return (0); 3371 } 3372 3373 /* 3374 * This is the primary entry point for scans that is called from syncing 3375 * context. Scans must happen entirely during syncing context so that we 3376 * cna guarantee that blocks we are currently scanning will not change out 3377 * from under us. While a scan is active, this funciton controls how quickly 3378 * transaction groups proceed, instead of the normal handling provided by 3379 * txg_sync_thread(). 3380 */ 3381 void 3382 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3383 { 3384 dsl_scan_t *scn = dp->dp_scan; 3385 spa_t *spa = dp->dp_spa; 3386 int err = 0; 3387 state_sync_type_t sync_type = SYNC_OPTIONAL; 3388 3389 if (spa->spa_resilver_deferred && 3390 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3391 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3392 3393 /* 3394 * Check for scn_restart_txg before checking spa_load_state, so 3395 * that we can restart an old-style scan while the pool is being 3396 * imported (see dsl_scan_init). We also restart scans if there 3397 * is a deferred resilver and the user has manually disabled 3398 * deferred resilvers via the tunable. 3399 */ 3400 if (dsl_scan_restarting(scn, tx) || 3401 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3402 pool_scan_func_t func = POOL_SCAN_SCRUB; 3403 dsl_scan_done(scn, B_FALSE, tx); 3404 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3405 func = POOL_SCAN_RESILVER; 3406 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3407 func, (longlong_t)tx->tx_txg); 3408 dsl_scan_setup_sync(&func, tx); 3409 } 3410 3411 /* 3412 * Only process scans in sync pass 1. 3413 */ 3414 if (spa_sync_pass(dp->dp_spa) > 1) 3415 return; 3416 3417 /* 3418 * If the spa is shutting down, then stop scanning. This will 3419 * ensure that the scan does not dirty any new data during the 3420 * shutdown phase. 3421 */ 3422 if (spa_shutting_down(spa)) 3423 return; 3424 3425 /* 3426 * If the scan is inactive due to a stalled async destroy, try again. 3427 */ 3428 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3429 return; 3430 3431 /* reset scan statistics */ 3432 scn->scn_visited_this_txg = 0; 3433 scn->scn_holes_this_txg = 0; 3434 scn->scn_lt_min_this_txg = 0; 3435 scn->scn_gt_max_this_txg = 0; 3436 scn->scn_ddt_contained_this_txg = 0; 3437 scn->scn_objsets_visited_this_txg = 0; 3438 scn->scn_avg_seg_size_this_txg = 0; 3439 scn->scn_segs_this_txg = 0; 3440 scn->scn_avg_zio_size_this_txg = 0; 3441 scn->scn_zios_this_txg = 0; 3442 scn->scn_suspending = B_FALSE; 3443 scn->scn_sync_start_time = gethrtime(); 3444 spa->spa_scrub_active = B_TRUE; 3445 3446 /* 3447 * First process the async destroys. If we pause, don't do 3448 * any scrubbing or resilvering. This ensures that there are no 3449 * async destroys while we are scanning, so the scan code doesn't 3450 * have to worry about traversing it. It is also faster to free the 3451 * blocks than to scrub them. 3452 */ 3453 err = dsl_process_async_destroys(dp, tx); 3454 if (err != 0) 3455 return; 3456 3457 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3458 return; 3459 3460 /* 3461 * Wait a few txgs after importing to begin scanning so that 3462 * we can get the pool imported quickly. 3463 */ 3464 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3465 return; 3466 3467 /* 3468 * zfs_scan_suspend_progress can be set to disable scan progress. 3469 * We don't want to spin the txg_sync thread, so we add a delay 3470 * here to simulate the time spent doing a scan. This is mostly 3471 * useful for testing and debugging. 3472 */ 3473 if (zfs_scan_suspend_progress) { 3474 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3475 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3476 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3477 3478 while (zfs_scan_suspend_progress && 3479 !txg_sync_waiting(scn->scn_dp) && 3480 !spa_shutting_down(scn->scn_dp->dp_spa) && 3481 NSEC2MSEC(scan_time_ns) < mintime) { 3482 delay(hz); 3483 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3484 } 3485 return; 3486 } 3487 3488 /* 3489 * It is possible to switch from unsorted to sorted at any time, 3490 * but afterwards the scan will remain sorted unless reloaded from 3491 * a checkpoint after a reboot. 3492 */ 3493 if (!zfs_scan_legacy) { 3494 scn->scn_is_sorted = B_TRUE; 3495 if (scn->scn_last_checkpoint == 0) 3496 scn->scn_last_checkpoint = ddi_get_lbolt(); 3497 } 3498 3499 /* 3500 * For sorted scans, determine what kind of work we will be doing 3501 * this txg based on our memory limitations and whether or not we 3502 * need to perform a checkpoint. 3503 */ 3504 if (scn->scn_is_sorted) { 3505 /* 3506 * If we are over our checkpoint interval, set scn_clearing 3507 * so that we can begin checkpointing immediately. The 3508 * checkpoint allows us to save a consisent bookmark 3509 * representing how much data we have scrubbed so far. 3510 * Otherwise, use the memory limit to determine if we should 3511 * scan for metadata or start issue scrub IOs. We accumulate 3512 * metadata until we hit our hard memory limit at which point 3513 * we issue scrub IOs until we are at our soft memory limit. 3514 */ 3515 if (scn->scn_checkpointing || 3516 ddi_get_lbolt() - scn->scn_last_checkpoint > 3517 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3518 if (!scn->scn_checkpointing) 3519 zfs_dbgmsg("begin scan checkpoint"); 3520 3521 scn->scn_checkpointing = B_TRUE; 3522 scn->scn_clearing = B_TRUE; 3523 } else { 3524 boolean_t should_clear = dsl_scan_should_clear(scn); 3525 if (should_clear && !scn->scn_clearing) { 3526 zfs_dbgmsg("begin scan clearing"); 3527 scn->scn_clearing = B_TRUE; 3528 } else if (!should_clear && scn->scn_clearing) { 3529 zfs_dbgmsg("finish scan clearing"); 3530 scn->scn_clearing = B_FALSE; 3531 } 3532 } 3533 } else { 3534 ASSERT0(scn->scn_checkpointing); 3535 ASSERT0(scn->scn_clearing); 3536 } 3537 3538 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3539 /* Need to scan metadata for more blocks to scrub */ 3540 dsl_scan_phys_t *scnp = &scn->scn_phys; 3541 taskqid_t prefetch_tqid; 3542 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3543 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3544 3545 /* 3546 * Calculate the max number of in-flight bytes for pool-wide 3547 * scanning operations (minimum 1MB). Limits for the issuing 3548 * phase are done per top-level vdev and are handled separately. 3549 */ 3550 scn->scn_maxinflight_bytes = 3551 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3552 3553 if (scnp->scn_ddt_bookmark.ddb_class <= 3554 scnp->scn_ddt_class_max) { 3555 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3556 zfs_dbgmsg("doing scan sync txg %llu; " 3557 "ddt bm=%llu/%llu/%llu/%llx", 3558 (longlong_t)tx->tx_txg, 3559 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3560 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3561 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3562 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3563 } else { 3564 zfs_dbgmsg("doing scan sync txg %llu; " 3565 "bm=%llu/%llu/%llu/%llu", 3566 (longlong_t)tx->tx_txg, 3567 (longlong_t)scnp->scn_bookmark.zb_objset, 3568 (longlong_t)scnp->scn_bookmark.zb_object, 3569 (longlong_t)scnp->scn_bookmark.zb_level, 3570 (longlong_t)scnp->scn_bookmark.zb_blkid); 3571 } 3572 3573 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3574 NULL, ZIO_FLAG_CANFAIL); 3575 3576 scn->scn_prefetch_stop = B_FALSE; 3577 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3578 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3579 ASSERT(prefetch_tqid != TASKQID_INVALID); 3580 3581 dsl_pool_config_enter(dp, FTAG); 3582 dsl_scan_visit(scn, tx); 3583 dsl_pool_config_exit(dp, FTAG); 3584 3585 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3586 scn->scn_prefetch_stop = B_TRUE; 3587 cv_broadcast(&spa->spa_scrub_io_cv); 3588 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3589 3590 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3591 (void) zio_wait(scn->scn_zio_root); 3592 scn->scn_zio_root = NULL; 3593 3594 zfs_dbgmsg("scan visited %llu blocks in %llums " 3595 "(%llu os's, %llu holes, %llu < mintxg, " 3596 "%llu in ddt, %llu > maxtxg)", 3597 (longlong_t)scn->scn_visited_this_txg, 3598 (longlong_t)NSEC2MSEC(gethrtime() - 3599 scn->scn_sync_start_time), 3600 (longlong_t)scn->scn_objsets_visited_this_txg, 3601 (longlong_t)scn->scn_holes_this_txg, 3602 (longlong_t)scn->scn_lt_min_this_txg, 3603 (longlong_t)scn->scn_ddt_contained_this_txg, 3604 (longlong_t)scn->scn_gt_max_this_txg); 3605 3606 if (!scn->scn_suspending) { 3607 ASSERT0(avl_numnodes(&scn->scn_queue)); 3608 scn->scn_done_txg = tx->tx_txg + 1; 3609 if (scn->scn_is_sorted) { 3610 scn->scn_checkpointing = B_TRUE; 3611 scn->scn_clearing = B_TRUE; 3612 } 3613 zfs_dbgmsg("scan complete txg %llu", 3614 (longlong_t)tx->tx_txg); 3615 } 3616 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3617 ASSERT(scn->scn_clearing); 3618 3619 /* need to issue scrubbing IOs from per-vdev queues */ 3620 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3621 NULL, ZIO_FLAG_CANFAIL); 3622 scan_io_queues_run(scn); 3623 (void) zio_wait(scn->scn_zio_root); 3624 scn->scn_zio_root = NULL; 3625 3626 /* calculate and dprintf the current memory usage */ 3627 (void) dsl_scan_should_clear(scn); 3628 dsl_scan_update_stats(scn); 3629 3630 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " 3631 "(avg_block_size = %llu, avg_seg_size = %llu)", 3632 (longlong_t)scn->scn_zios_this_txg, 3633 (longlong_t)scn->scn_segs_this_txg, 3634 (longlong_t)NSEC2MSEC(gethrtime() - 3635 scn->scn_sync_start_time), 3636 (longlong_t)scn->scn_avg_zio_size_this_txg, 3637 (longlong_t)scn->scn_avg_seg_size_this_txg); 3638 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3639 /* Finished with everything. Mark the scrub as complete */ 3640 zfs_dbgmsg("scan issuing complete txg %llu", 3641 (longlong_t)tx->tx_txg); 3642 ASSERT3U(scn->scn_done_txg, !=, 0); 3643 ASSERT0(spa->spa_scrub_inflight); 3644 ASSERT0(scn->scn_bytes_pending); 3645 dsl_scan_done(scn, B_TRUE, tx); 3646 sync_type = SYNC_MANDATORY; 3647 } 3648 3649 dsl_scan_sync_state(scn, tx, sync_type); 3650 } 3651 3652 static void 3653 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3654 { 3655 int i; 3656 3657 /* 3658 * Don't count embedded bp's, since we already did the work of 3659 * scanning these when we scanned the containing block. 3660 */ 3661 if (BP_IS_EMBEDDED(bp)) 3662 return; 3663 3664 /* 3665 * Update the spa's stats on how many bytes we have issued. 3666 * Sequential scrubs create a zio for each DVA of the bp. Each 3667 * of these will include all DVAs for repair purposes, but the 3668 * zio code will only try the first one unless there is an issue. 3669 * Therefore, we should only count the first DVA for these IOs. 3670 */ 3671 if (scn->scn_is_sorted) { 3672 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3673 DVA_GET_ASIZE(&bp->blk_dva[0])); 3674 } else { 3675 spa_t *spa = scn->scn_dp->dp_spa; 3676 3677 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3678 atomic_add_64(&spa->spa_scan_pass_issued, 3679 DVA_GET_ASIZE(&bp->blk_dva[i])); 3680 } 3681 } 3682 3683 /* 3684 * If we resume after a reboot, zab will be NULL; don't record 3685 * incomplete stats in that case. 3686 */ 3687 if (zab == NULL) 3688 return; 3689 3690 mutex_enter(&zab->zab_lock); 3691 3692 for (i = 0; i < 4; i++) { 3693 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3694 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3695 if (t & DMU_OT_NEWTYPE) 3696 t = DMU_OT_OTHER; 3697 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3698 int equal; 3699 3700 zb->zb_count++; 3701 zb->zb_asize += BP_GET_ASIZE(bp); 3702 zb->zb_lsize += BP_GET_LSIZE(bp); 3703 zb->zb_psize += BP_GET_PSIZE(bp); 3704 zb->zb_gangs += BP_COUNT_GANG(bp); 3705 3706 switch (BP_GET_NDVAS(bp)) { 3707 case 2: 3708 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3709 DVA_GET_VDEV(&bp->blk_dva[1])) 3710 zb->zb_ditto_2_of_2_samevdev++; 3711 break; 3712 case 3: 3713 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3714 DVA_GET_VDEV(&bp->blk_dva[1])) + 3715 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3716 DVA_GET_VDEV(&bp->blk_dva[2])) + 3717 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3718 DVA_GET_VDEV(&bp->blk_dva[2])); 3719 if (equal == 1) 3720 zb->zb_ditto_2_of_3_samevdev++; 3721 else if (equal == 3) 3722 zb->zb_ditto_3_of_3_samevdev++; 3723 break; 3724 } 3725 } 3726 3727 mutex_exit(&zab->zab_lock); 3728 } 3729 3730 static void 3731 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3732 { 3733 avl_index_t idx; 3734 int64_t asize = SIO_GET_ASIZE(sio); 3735 dsl_scan_t *scn = queue->q_scn; 3736 3737 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3738 3739 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3740 /* block is already scheduled for reading */ 3741 atomic_add_64(&scn->scn_bytes_pending, -asize); 3742 sio_free(sio); 3743 return; 3744 } 3745 avl_insert(&queue->q_sios_by_addr, sio, idx); 3746 queue->q_sio_memused += SIO_GET_MUSED(sio); 3747 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3748 } 3749 3750 /* 3751 * Given all the info we got from our metadata scanning process, we 3752 * construct a scan_io_t and insert it into the scan sorting queue. The 3753 * I/O must already be suitable for us to process. This is controlled 3754 * by dsl_scan_enqueue(). 3755 */ 3756 static void 3757 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3758 int zio_flags, const zbookmark_phys_t *zb) 3759 { 3760 dsl_scan_t *scn = queue->q_scn; 3761 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3762 3763 ASSERT0(BP_IS_GANG(bp)); 3764 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3765 3766 bp2sio(bp, sio, dva_i); 3767 sio->sio_flags = zio_flags; 3768 sio->sio_zb = *zb; 3769 3770 /* 3771 * Increment the bytes pending counter now so that we can't 3772 * get an integer underflow in case the worker processes the 3773 * zio before we get to incrementing this counter. 3774 */ 3775 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3776 3777 scan_io_queue_insert_impl(queue, sio); 3778 } 3779 3780 /* 3781 * Given a set of I/O parameters as discovered by the metadata traversal 3782 * process, attempts to place the I/O into the sorted queues (if allowed), 3783 * or immediately executes the I/O. 3784 */ 3785 static void 3786 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3787 const zbookmark_phys_t *zb) 3788 { 3789 spa_t *spa = dp->dp_spa; 3790 3791 ASSERT(!BP_IS_EMBEDDED(bp)); 3792 3793 /* 3794 * Gang blocks are hard to issue sequentially, so we just issue them 3795 * here immediately instead of queuing them. 3796 */ 3797 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3798 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3799 return; 3800 } 3801 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3802 dva_t dva; 3803 vdev_t *vdev; 3804 3805 dva = bp->blk_dva[i]; 3806 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3807 ASSERT(vdev != NULL); 3808 3809 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3810 if (vdev->vdev_scan_io_queue == NULL) 3811 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3812 ASSERT(dp->dp_scan != NULL); 3813 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3814 i, zio_flags, zb); 3815 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3816 } 3817 } 3818 3819 static int 3820 dsl_scan_scrub_cb(dsl_pool_t *dp, 3821 const blkptr_t *bp, const zbookmark_phys_t *zb) 3822 { 3823 dsl_scan_t *scn = dp->dp_scan; 3824 spa_t *spa = dp->dp_spa; 3825 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3826 size_t psize = BP_GET_PSIZE(bp); 3827 boolean_t needs_io; 3828 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3829 int d; 3830 3831 if (phys_birth <= scn->scn_phys.scn_min_txg || 3832 phys_birth >= scn->scn_phys.scn_max_txg) { 3833 count_block(scn, dp->dp_blkstats, bp); 3834 return (0); 3835 } 3836 3837 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3838 ASSERT(!BP_IS_EMBEDDED(bp)); 3839 3840 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3841 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3842 zio_flags |= ZIO_FLAG_SCRUB; 3843 needs_io = B_TRUE; 3844 } else { 3845 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3846 zio_flags |= ZIO_FLAG_RESILVER; 3847 needs_io = B_FALSE; 3848 } 3849 3850 /* If it's an intent log block, failure is expected. */ 3851 if (zb->zb_level == ZB_ZIL_LEVEL) 3852 zio_flags |= ZIO_FLAG_SPECULATIVE; 3853 3854 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3855 const dva_t *dva = &bp->blk_dva[d]; 3856 3857 /* 3858 * Keep track of how much data we've examined so that 3859 * zpool(1M) status can make useful progress reports. 3860 */ 3861 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3862 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3863 3864 /* if it's a resilver, this may not be in the target range */ 3865 if (!needs_io) 3866 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3867 phys_birth); 3868 } 3869 3870 if (needs_io && !zfs_no_scrub_io) { 3871 dsl_scan_enqueue(dp, bp, zio_flags, zb); 3872 } else { 3873 count_block(scn, dp->dp_blkstats, bp); 3874 } 3875 3876 /* do not relocate this block */ 3877 return (0); 3878 } 3879 3880 static void 3881 dsl_scan_scrub_done(zio_t *zio) 3882 { 3883 spa_t *spa = zio->io_spa; 3884 blkptr_t *bp = zio->io_bp; 3885 dsl_scan_io_queue_t *queue = zio->io_private; 3886 3887 abd_free(zio->io_abd); 3888 3889 if (queue == NULL) { 3890 mutex_enter(&spa->spa_scrub_lock); 3891 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 3892 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 3893 cv_broadcast(&spa->spa_scrub_io_cv); 3894 mutex_exit(&spa->spa_scrub_lock); 3895 } else { 3896 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 3897 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 3898 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 3899 cv_broadcast(&queue->q_zio_cv); 3900 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 3901 } 3902 3903 if (zio->io_error && (zio->io_error != ECKSUM || 3904 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 3905 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 3906 } 3907 } 3908 3909 /* 3910 * Given a scanning zio's information, executes the zio. The zio need 3911 * not necessarily be only sortable, this function simply executes the 3912 * zio, no matter what it is. The optional queue argument allows the 3913 * caller to specify that they want per top level vdev IO rate limiting 3914 * instead of the legacy global limiting. 3915 */ 3916 static void 3917 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3918 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 3919 { 3920 spa_t *spa = dp->dp_spa; 3921 dsl_scan_t *scn = dp->dp_scan; 3922 size_t size = BP_GET_PSIZE(bp); 3923 abd_t *data = abd_alloc_for_io(size, B_FALSE); 3924 3925 if (queue == NULL) { 3926 mutex_enter(&spa->spa_scrub_lock); 3927 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 3928 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3929 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 3930 mutex_exit(&spa->spa_scrub_lock); 3931 } else { 3932 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3933 3934 mutex_enter(q_lock); 3935 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 3936 cv_wait(&queue->q_zio_cv, q_lock); 3937 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 3938 mutex_exit(q_lock); 3939 } 3940 3941 count_block(dp->dp_scan, dp->dp_blkstats, bp); 3942 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, 3943 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 3944 } 3945 3946 /* 3947 * This is the primary extent sorting algorithm. We balance two parameters: 3948 * 1) how many bytes of I/O are in an extent 3949 * 2) how well the extent is filled with I/O (as a fraction of its total size) 3950 * Since we allow extents to have gaps between their constituent I/Os, it's 3951 * possible to have a fairly large extent that contains the same amount of 3952 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 3953 * The algorithm sorts based on a score calculated from the extent's size, 3954 * the relative fill volume (in %) and a "fill weight" parameter that controls 3955 * the split between whether we prefer larger extents or more well populated 3956 * extents: 3957 * 3958 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 3959 * 3960 * Example: 3961 * 1) assume extsz = 64 MiB 3962 * 2) assume fill = 32 MiB (extent is half full) 3963 * 3) assume fill_weight = 3 3964 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 3965 * SCORE = 32M + (50 * 3 * 32M) / 100 3966 * SCORE = 32M + (4800M / 100) 3967 * SCORE = 32M + 48M 3968 * ^ ^ 3969 * | +--- final total relative fill-based score 3970 * +--------- final total fill-based score 3971 * SCORE = 80M 3972 * 3973 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 3974 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 3975 * Note that as an optimization, we replace multiplication and division by 3976 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). 3977 */ 3978 static int 3979 ext_size_compare(const void *x, const void *y) 3980 { 3981 const range_seg_gap_t *rsa = x, *rsb = y; 3982 3983 uint64_t sa = rsa->rs_end - rsa->rs_start; 3984 uint64_t sb = rsb->rs_end - rsb->rs_start; 3985 uint64_t score_a, score_b; 3986 3987 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 3988 fill_weight * rsa->rs_fill) >> 7); 3989 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 3990 fill_weight * rsb->rs_fill) >> 7); 3991 3992 if (score_a > score_b) 3993 return (-1); 3994 if (score_a == score_b) { 3995 if (rsa->rs_start < rsb->rs_start) 3996 return (-1); 3997 if (rsa->rs_start == rsb->rs_start) 3998 return (0); 3999 return (1); 4000 } 4001 return (1); 4002 } 4003 4004 /* 4005 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4006 * based on LBA-order (from lowest to highest). 4007 */ 4008 static int 4009 sio_addr_compare(const void *x, const void *y) 4010 { 4011 const scan_io_t *a = x, *b = y; 4012 4013 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4014 } 4015 4016 /* IO queues are created on demand when they are needed. */ 4017 static dsl_scan_io_queue_t * 4018 scan_io_queue_create(vdev_t *vd) 4019 { 4020 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4021 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4022 4023 q->q_scn = scn; 4024 q->q_vd = vd; 4025 q->q_sio_memused = 0; 4026 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4027 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4028 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4029 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4030 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4031 4032 return (q); 4033 } 4034 4035 /* 4036 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4037 * No further execution of I/O occurs, anything pending in the queue is 4038 * simply freed without being executed. 4039 */ 4040 void 4041 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4042 { 4043 dsl_scan_t *scn = queue->q_scn; 4044 scan_io_t *sio; 4045 void *cookie = NULL; 4046 int64_t bytes_dequeued = 0; 4047 4048 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4049 4050 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4051 NULL) { 4052 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4053 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4054 bytes_dequeued += SIO_GET_ASIZE(sio); 4055 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4056 sio_free(sio); 4057 } 4058 4059 ASSERT0(queue->q_sio_memused); 4060 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4061 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4062 range_tree_destroy(queue->q_exts_by_addr); 4063 avl_destroy(&queue->q_sios_by_addr); 4064 cv_destroy(&queue->q_zio_cv); 4065 4066 kmem_free(queue, sizeof (*queue)); 4067 } 4068 4069 /* 4070 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4071 * called on behalf of vdev_top_transfer when creating or destroying 4072 * a mirror vdev due to zpool attach/detach. 4073 */ 4074 void 4075 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4076 { 4077 mutex_enter(&svd->vdev_scan_io_queue_lock); 4078 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4079 4080 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4081 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4082 svd->vdev_scan_io_queue = NULL; 4083 if (tvd->vdev_scan_io_queue != NULL) 4084 tvd->vdev_scan_io_queue->q_vd = tvd; 4085 4086 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4087 mutex_exit(&svd->vdev_scan_io_queue_lock); 4088 } 4089 4090 static void 4091 scan_io_queues_destroy(dsl_scan_t *scn) 4092 { 4093 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4094 4095 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4096 vdev_t *tvd = rvd->vdev_child[i]; 4097 4098 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4099 if (tvd->vdev_scan_io_queue != NULL) 4100 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4101 tvd->vdev_scan_io_queue = NULL; 4102 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4103 } 4104 } 4105 4106 static void 4107 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4108 { 4109 dsl_pool_t *dp = spa->spa_dsl_pool; 4110 dsl_scan_t *scn = dp->dp_scan; 4111 vdev_t *vdev; 4112 kmutex_t *q_lock; 4113 dsl_scan_io_queue_t *queue; 4114 scan_io_t *srch_sio, *sio; 4115 avl_index_t idx; 4116 uint64_t start, size; 4117 4118 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4119 ASSERT(vdev != NULL); 4120 q_lock = &vdev->vdev_scan_io_queue_lock; 4121 queue = vdev->vdev_scan_io_queue; 4122 4123 mutex_enter(q_lock); 4124 if (queue == NULL) { 4125 mutex_exit(q_lock); 4126 return; 4127 } 4128 4129 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4130 bp2sio(bp, srch_sio, dva_i); 4131 start = SIO_GET_OFFSET(srch_sio); 4132 size = SIO_GET_ASIZE(srch_sio); 4133 4134 /* 4135 * We can find the zio in two states: 4136 * 1) Cold, just sitting in the queue of zio's to be issued at 4137 * some point in the future. In this case, all we do is 4138 * remove the zio from the q_sios_by_addr tree, decrement 4139 * its data volume from the containing range_seg_t and 4140 * resort the q_exts_by_size tree to reflect that the 4141 * range_seg_t has lost some of its 'fill'. We don't shorten 4142 * the range_seg_t - this is usually rare enough not to be 4143 * worth the extra hassle of trying keep track of precise 4144 * extent boundaries. 4145 * 2) Hot, where the zio is currently in-flight in 4146 * dsl_scan_issue_ios. In this case, we can't simply 4147 * reach in and stop the in-flight zio's, so we instead 4148 * block the caller. Eventually, dsl_scan_issue_ios will 4149 * be done with issuing the zio's it gathered and will 4150 * signal us. 4151 */ 4152 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4153 sio_free(srch_sio); 4154 4155 if (sio != NULL) { 4156 int64_t asize = SIO_GET_ASIZE(sio); 4157 blkptr_t tmpbp; 4158 4159 /* Got it while it was cold in the queue */ 4160 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4161 ASSERT3U(size, ==, asize); 4162 avl_remove(&queue->q_sios_by_addr, sio); 4163 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4164 4165 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4166 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4167 4168 /* 4169 * We only update scn_bytes_pending in the cold path, 4170 * otherwise it will already have been accounted for as 4171 * part of the zio's execution. 4172 */ 4173 atomic_add_64(&scn->scn_bytes_pending, -asize); 4174 4175 /* count the block as though we issued it */ 4176 sio2bp(sio, &tmpbp); 4177 count_block(scn, dp->dp_blkstats, &tmpbp); 4178 4179 sio_free(sio); 4180 } 4181 mutex_exit(q_lock); 4182 } 4183 4184 /* 4185 * Callback invoked when a zio_free() zio is executing. This needs to be 4186 * intercepted to prevent the zio from deallocating a particular portion 4187 * of disk space and it then getting reallocated and written to, while we 4188 * still have it queued up for processing. 4189 */ 4190 void 4191 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4192 { 4193 dsl_pool_t *dp = spa->spa_dsl_pool; 4194 dsl_scan_t *scn = dp->dp_scan; 4195 4196 ASSERT(!BP_IS_EMBEDDED(bp)); 4197 ASSERT(scn != NULL); 4198 if (!dsl_scan_is_running(scn)) 4199 return; 4200 4201 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4202 dsl_scan_freed_dva(spa, bp, i); 4203 } 4204 4205 /* 4206 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4207 * not started, start it. Otherwise, only restart if max txg in DTL range is 4208 * greater than the max txg in the current scan. If the DTL max is less than 4209 * the scan max, then the vdev has not missed any new data since the resilver 4210 * started, so a restart is not needed. 4211 */ 4212 void 4213 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4214 { 4215 uint64_t min, max; 4216 4217 if (!vdev_resilver_needed(vd, &min, &max)) 4218 return; 4219 4220 if (!dsl_scan_resilvering(dp)) { 4221 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4222 return; 4223 } 4224 4225 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4226 return; 4227 4228 /* restart is needed, check if it can be deferred */ 4229 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4230 vdev_defer_resilver(vd); 4231 else 4232 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4233 } 4234