1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 28 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org> 29 */ 30 31 #include <sys/dsl_scan.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_prop.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dnode.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/arc.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/zfs_context.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/spa_impl.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/zil_impl.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/ddt.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/zfeature.h> 54 #include <sys/abd.h> 55 #include <sys/range_tree.h> 56 #ifdef _KERNEL 57 #include <sys/zfs_vfsops.h> 58 #endif 59 60 /* 61 * Grand theory statement on scan queue sorting 62 * 63 * Scanning is implemented by recursively traversing all indirection levels 64 * in an object and reading all blocks referenced from said objects. This 65 * results in us approximately traversing the object from lowest logical 66 * offset to the highest. For best performance, we would want the logical 67 * blocks to be physically contiguous. However, this is frequently not the 68 * case with pools given the allocation patterns of copy-on-write filesystems. 69 * So instead, we put the I/Os into a reordering queue and issue them in a 70 * way that will most benefit physical disks (LBA-order). 71 * 72 * Queue management: 73 * 74 * Ideally, we would want to scan all metadata and queue up all block I/O 75 * prior to starting to issue it, because that allows us to do an optimal 76 * sorting job. This can however consume large amounts of memory. Therefore 77 * we continuously monitor the size of the queues and constrain them to 5% 78 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 79 * limit, we clear out a few of the largest extents at the head of the queues 80 * to make room for more scanning. Hopefully, these extents will be fairly 81 * large and contiguous, allowing us to approach sequential I/O throughput 82 * even without a fully sorted tree. 83 * 84 * Metadata scanning takes place in dsl_scan_visit(), which is called from 85 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 86 * metadata on the pool, or we need to make room in memory because our 87 * queues are too large, dsl_scan_visit() is postponed and 88 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 89 * that metadata scanning and queued I/O issuing are mutually exclusive. This 90 * allows us to provide maximum sequential I/O throughput for the majority of 91 * I/O's issued since sequential I/O performance is significantly negatively 92 * impacted if it is interleaved with random I/O. 93 * 94 * Implementation Notes 95 * 96 * One side effect of the queued scanning algorithm is that the scanning code 97 * needs to be notified whenever a block is freed. This is needed to allow 98 * the scanning code to remove these I/Os from the issuing queue. Additionally, 99 * we do not attempt to queue gang blocks to be issued sequentially since this 100 * is very hard to do and would have an extremely limited performance benefit. 101 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 102 * algorithm. 103 * 104 * Backwards compatibility 105 * 106 * This new algorithm is backwards compatible with the legacy on-disk data 107 * structures (and therefore does not require a new feature flag). 108 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 109 * will stop scanning metadata (in logical order) and wait for all outstanding 110 * sorted I/O to complete. Once this is done, we write out a checkpoint 111 * bookmark, indicating that we have scanned everything logically before it. 112 * If the pool is imported on a machine without the new sorting algorithm, 113 * the scan simply resumes from the last checkpoint using the legacy algorithm. 114 */ 115 116 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 117 const zbookmark_phys_t *); 118 119 static scan_cb_t dsl_scan_scrub_cb; 120 121 static int scan_ds_queue_compare(const void *a, const void *b); 122 static int scan_prefetch_queue_compare(const void *a, const void *b); 123 static void scan_ds_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 130 extern int zfs_vdev_async_write_active_min_dirty_percent; 131 132 /* 133 * By default zfs will check to ensure it is not over the hard memory 134 * limit before each txg. If finer-grained control of this is needed 135 * this value can be set to 1 to enable checking before scanning each 136 * block. 137 */ 138 int zfs_scan_strict_mem_lim = B_FALSE; 139 140 /* 141 * Maximum number of parallelly executing I/Os per top-level vdev. 142 * Tune with care. Very high settings (hundreds) are known to trigger 143 * some firmware bugs and resets on certain SSDs. 144 */ 145 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ 146 unsigned int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ 147 unsigned int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ 148 unsigned int zfs_scan_idle = 50; /* idle window in clock ticks */ 149 150 /* 151 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 152 * to strike a balance here between keeping the vdev queues full of I/Os 153 * at all times and not overflowing the queues to cause long latency, 154 * which would cause long txg sync times. No matter what, we will not 155 * overload the drives with I/O, since that is protected by 156 * zfs_vdev_scrub_max_active. 157 */ 158 unsigned long zfs_scan_vdev_limit = 4 << 20; 159 160 int zfs_scan_issue_strategy = 0; 161 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 162 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 163 164 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ 165 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) 166 167 /* 168 * fill_weight is non-tunable at runtime, so we copy it at module init from 169 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 170 * break queue sorting. 171 */ 172 uint64_t zfs_scan_fill_weight = 3; 173 static uint64_t fill_weight; 174 175 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 176 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 177 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 178 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 179 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 180 181 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 182 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 183 /* min millisecs to obsolete per txg */ 184 unsigned int zfs_obsolete_min_time_ms = 500; 185 /* min millisecs to resilver per txg */ 186 unsigned int zfs_resilver_min_time_ms = 3000; 187 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 188 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 189 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 190 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 191 /* max number of blocks to free in a single TXG */ 192 uint64_t zfs_async_block_max_blocks = UINT64_MAX; 193 194 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 195 196 /* 197 * We wait a few txgs after importing a pool to begin scanning so that 198 * the import / mounting code isn't held up by scrub / resilver IO. 199 * Unfortunately, it is a bit difficult to determine exactly how long 200 * this will take since userspace will trigger fs mounts asynchronously 201 * and the kernel will create zvol minors asynchronously. As a result, 202 * the value provided here is a bit arbitrary, but represents a 203 * reasonable estimate of how many txgs it will take to finish fully 204 * importing a pool 205 */ 206 #define SCAN_IMPORT_WAIT_TXGS 5 207 208 209 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 210 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 211 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 212 213 extern int zfs_txg_timeout; 214 215 /* 216 * Enable/disable the processing of the free_bpobj object. 217 */ 218 boolean_t zfs_free_bpobj_enabled = B_TRUE; 219 220 /* the order has to match pool_scan_type */ 221 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 222 NULL, 223 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 224 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 225 }; 226 227 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 228 typedef struct { 229 uint64_t sds_dsobj; 230 uint64_t sds_txg; 231 avl_node_t sds_node; 232 } scan_ds_t; 233 234 /* 235 * This controls what conditions are placed on dsl_scan_sync_state(): 236 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 237 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 238 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 239 * write out the scn_phys_cached version. 240 * See dsl_scan_sync_state for details. 241 */ 242 typedef enum { 243 SYNC_OPTIONAL, 244 SYNC_MANDATORY, 245 SYNC_CACHED 246 } state_sync_type_t; 247 248 /* 249 * This struct represents the minimum information needed to reconstruct a 250 * zio for sequential scanning. This is useful because many of these will 251 * accumulate in the sequential IO queues before being issued, so saving 252 * memory matters here. 253 */ 254 typedef struct scan_io { 255 /* fields from blkptr_t */ 256 uint64_t sio_blk_prop; 257 uint64_t sio_phys_birth; 258 uint64_t sio_birth; 259 zio_cksum_t sio_cksum; 260 uint32_t sio_nr_dvas; 261 262 /* fields from zio_t */ 263 uint32_t sio_flags; 264 zbookmark_phys_t sio_zb; 265 266 /* members for queue sorting */ 267 union { 268 avl_node_t sio_addr_node; /* link into issuing queue */ 269 list_node_t sio_list_node; /* link for issuing to disk */ 270 } sio_nodes; 271 272 /* 273 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 274 * depending on how many were in the original bp. Only the 275 * first DVA is really used for sorting and issuing purposes. 276 * The other DVAs (if provided) simply exist so that the zio 277 * layer can find additional copies to repair from in the 278 * event of an error. This array must go at the end of the 279 * struct to allow this for the variable number of elements. 280 */ 281 dva_t sio_dva[0]; 282 } scan_io_t; 283 284 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 285 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 286 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 287 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 288 #define SIO_GET_END_OFFSET(sio) \ 289 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 290 #define SIO_GET_MUSED(sio) \ 291 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 292 293 struct dsl_scan_io_queue { 294 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 295 vdev_t *q_vd; /* top-level vdev that this queue represents */ 296 297 /* trees used for sorting I/Os and extents of I/Os */ 298 range_tree_t *q_exts_by_addr; 299 zfs_btree_t q_exts_by_size; 300 avl_tree_t q_sios_by_addr; 301 uint64_t q_sio_memused; 302 303 /* members for zio rate limiting */ 304 uint64_t q_maxinflight_bytes; 305 uint64_t q_inflight_bytes; 306 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 307 308 /* per txg statistics */ 309 uint64_t q_total_seg_size_this_txg; 310 uint64_t q_segs_this_txg; 311 uint64_t q_total_zio_size_this_txg; 312 uint64_t q_zios_this_txg; 313 }; 314 315 /* private data for dsl_scan_prefetch_cb() */ 316 typedef struct scan_prefetch_ctx { 317 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 318 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 319 boolean_t spc_root; /* is this prefetch for an objset? */ 320 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 321 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 322 } scan_prefetch_ctx_t; 323 324 /* private data for dsl_scan_prefetch() */ 325 typedef struct scan_prefetch_issue_ctx { 326 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 327 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 328 blkptr_t spic_bp; /* bp to prefetch */ 329 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 330 } scan_prefetch_issue_ctx_t; 331 332 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 333 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 334 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 335 scan_io_t *sio); 336 337 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 338 static void scan_io_queues_destroy(dsl_scan_t *scn); 339 340 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 341 342 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 343 static void 344 sio_free(scan_io_t *sio) 345 { 346 ASSERT3U(sio->sio_nr_dvas, >, 0); 347 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 348 349 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 350 } 351 352 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 353 static scan_io_t * 354 sio_alloc(unsigned short nr_dvas) 355 { 356 ASSERT3U(nr_dvas, >, 0); 357 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 358 359 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 360 } 361 362 void 363 scan_init(void) 364 { 365 /* 366 * This is used in ext_size_compare() to weight segments 367 * based on how sparse they are. This cannot be changed 368 * mid-scan and the tree comparison functions don't currently 369 * have a mechansim for passing additional context to the 370 * compare functions. Thus we store this value globally and 371 * we only allow it to be set at module intiailization time 372 */ 373 fill_weight = zfs_scan_fill_weight; 374 375 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 376 char name[36]; 377 378 (void) sprintf(name, "sio_cache_%d", i); 379 sio_cache[i] = kmem_cache_create(name, 380 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 } 383 } 384 385 void 386 scan_fini(void) 387 { 388 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 389 kmem_cache_destroy(sio_cache[i]); 390 } 391 } 392 393 static inline boolean_t 394 dsl_scan_is_running(const dsl_scan_t *scn) 395 { 396 return (scn->scn_phys.scn_state == DSS_SCANNING); 397 } 398 399 boolean_t 400 dsl_scan_resilvering(dsl_pool_t *dp) 401 { 402 return (dsl_scan_is_running(dp->dp_scan) && 403 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 404 } 405 406 static inline void 407 sio2bp(const scan_io_t *sio, blkptr_t *bp) 408 { 409 bzero(bp, sizeof (*bp)); 410 bp->blk_prop = sio->sio_blk_prop; 411 bp->blk_phys_birth = sio->sio_phys_birth; 412 bp->blk_birth = sio->sio_birth; 413 bp->blk_fill = 1; /* we always only work with data pointers */ 414 bp->blk_cksum = sio->sio_cksum; 415 416 ASSERT3U(sio->sio_nr_dvas, >, 0); 417 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 418 419 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 420 } 421 422 static inline void 423 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 424 { 425 sio->sio_blk_prop = bp->blk_prop; 426 sio->sio_phys_birth = bp->blk_phys_birth; 427 sio->sio_birth = bp->blk_birth; 428 sio->sio_cksum = bp->blk_cksum; 429 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 430 431 /* 432 * Copy the DVAs to the sio. We need all copies of the block so 433 * that the self healing code can use the alternate copies if the 434 * first is corrupted. We want the DVA at index dva_i to be first 435 * in the sio since this is the primary one that we want to issue. 436 */ 437 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 438 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 439 } 440 } 441 442 int 443 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 444 { 445 int err; 446 dsl_scan_t *scn; 447 spa_t *spa = dp->dp_spa; 448 uint64_t f; 449 450 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 451 scn->scn_dp = dp; 452 453 /* 454 * It's possible that we're resuming a scan after a reboot so 455 * make sure that the scan_async_destroying flag is initialized 456 * appropriately. 457 */ 458 ASSERT(!scn->scn_async_destroying); 459 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 460 SPA_FEATURE_ASYNC_DESTROY); 461 462 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 463 offsetof(scan_ds_t, sds_node)); 464 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 465 sizeof (scan_prefetch_issue_ctx_t), 466 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 467 468 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 469 "scrub_func", sizeof (uint64_t), 1, &f); 470 if (err == 0) { 471 /* 472 * There was an old-style scrub in progress. Restart a 473 * new-style scrub from the beginning. 474 */ 475 scn->scn_restart_txg = txg; 476 zfs_dbgmsg("old-style scrub was in progress; " 477 "restarting new-style scrub in txg %llu", 478 (longlong_t)scn->scn_restart_txg); 479 480 /* 481 * Load the queue obj from the old location so that it 482 * can be freed by dsl_scan_done(). 483 */ 484 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 485 "scrub_queue", sizeof (uint64_t), 1, 486 &scn->scn_phys.scn_queue_obj); 487 } else { 488 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 489 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 490 &scn->scn_phys); 491 492 /* 493 * Detect if the pool contains the signature of #2094. If it 494 * does properly update the scn->scn_phys structure and notify 495 * the administrator by setting an errata for the pool. 496 */ 497 if (err == EOVERFLOW) { 498 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 499 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 500 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 501 (23 * sizeof (uint64_t))); 502 503 err = zap_lookup(dp->dp_meta_objset, 504 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 505 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 506 if (err == 0) { 507 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 508 509 if (overflow & ~DSF_VISIT_DS_AGAIN || 510 scn->scn_async_destroying) { 511 spa->spa_errata = 512 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 513 return (EOVERFLOW); 514 } 515 516 bcopy(zaptmp, &scn->scn_phys, 517 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 518 scn->scn_phys.scn_flags = overflow; 519 520 /* Required scrub already in progress. */ 521 if (scn->scn_phys.scn_state == DSS_FINISHED || 522 scn->scn_phys.scn_state == DSS_CANCELED) 523 spa->spa_errata = 524 ZPOOL_ERRATA_ZOL_2094_SCRUB; 525 } 526 } 527 528 if (err == ENOENT) 529 return (0); 530 else if (err) 531 return (err); 532 533 /* 534 * We might be restarting after a reboot, so jump the issued 535 * counter to how far we've scanned. We know we're consistent 536 * up to here. 537 */ 538 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 539 540 if (dsl_scan_is_running(scn) && 541 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 542 /* 543 * A new-type scrub was in progress on an old 544 * pool, and the pool was accessed by old 545 * software. Restart from the beginning, since 546 * the old software may have changed the pool in 547 * the meantime. 548 */ 549 scn->scn_restart_txg = txg; 550 zfs_dbgmsg("new-style scrub was modified " 551 "by old software; restarting in txg %llu", 552 (longlong_t)scn->scn_restart_txg); 553 } else if (dsl_scan_resilvering(dp)) { 554 /* 555 * If a resilver is in progress and there are already 556 * errors, restart it instead of finishing this scan and 557 * then restarting it. If there haven't been any errors 558 * then remember that the incore DTL is valid. 559 */ 560 if (scn->scn_phys.scn_errors > 0) { 561 scn->scn_restart_txg = txg; 562 zfs_dbgmsg("resilver can't excise DTL_MISSING " 563 "when finished; restarting in txg %llu", 564 (u_longlong_t)scn->scn_restart_txg); 565 } else { 566 /* it's safe to excise DTL when finished */ 567 spa->spa_scrub_started = B_TRUE; 568 } 569 } 570 } 571 572 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 573 574 /* reload the queue into the in-core state */ 575 if (scn->scn_phys.scn_queue_obj != 0) { 576 zap_cursor_t zc; 577 zap_attribute_t za; 578 579 for (zap_cursor_init(&zc, dp->dp_meta_objset, 580 scn->scn_phys.scn_queue_obj); 581 zap_cursor_retrieve(&zc, &za) == 0; 582 (void) zap_cursor_advance(&zc)) { 583 scan_ds_queue_insert(scn, 584 zfs_strtonum(za.za_name, NULL), 585 za.za_first_integer); 586 } 587 zap_cursor_fini(&zc); 588 } 589 590 spa_scan_stat_init(spa); 591 return (0); 592 } 593 594 void 595 dsl_scan_fini(dsl_pool_t *dp) 596 { 597 if (dp->dp_scan != NULL) { 598 dsl_scan_t *scn = dp->dp_scan; 599 600 if (scn->scn_taskq != NULL) 601 taskq_destroy(scn->scn_taskq); 602 scan_ds_queue_clear(scn); 603 avl_destroy(&scn->scn_queue); 604 avl_destroy(&scn->scn_prefetch_queue); 605 606 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 607 dp->dp_scan = NULL; 608 } 609 } 610 611 static boolean_t 612 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 613 { 614 return (scn->scn_restart_txg != 0 && 615 scn->scn_restart_txg <= tx->tx_txg); 616 } 617 618 boolean_t 619 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 620 { 621 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 622 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 623 } 624 625 boolean_t 626 dsl_scan_scrubbing(const dsl_pool_t *dp) 627 { 628 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 629 630 return (scn_phys->scn_state == DSS_SCANNING && 631 scn_phys->scn_func == POOL_SCAN_SCRUB); 632 } 633 634 boolean_t 635 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 636 { 637 return (dsl_scan_scrubbing(scn->scn_dp) && 638 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 639 } 640 641 /* 642 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 643 * Because we can be running in the block sorting algorithm, we do not always 644 * want to write out the record, only when it is "safe" to do so. This safety 645 * condition is achieved by making sure that the sorting queues are empty 646 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 647 * is inconsistent with how much actual scanning progress has been made. The 648 * kind of sync to be performed is specified by the sync_type argument. If the 649 * sync is optional, we only sync if the queues are empty. If the sync is 650 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 651 * third possible state is a "cached" sync. This is done in response to: 652 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 653 * destroyed, so we wouldn't be able to restart scanning from it. 654 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 655 * superseded by a newer snapshot. 656 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 657 * swapped with its clone. 658 * In all cases, a cached sync simply rewrites the last record we've written, 659 * just slightly modified. For the modifications that are performed to the 660 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 661 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 662 */ 663 static void 664 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 665 { 666 int i; 667 spa_t *spa = scn->scn_dp->dp_spa; 668 669 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 670 if (scn->scn_bytes_pending == 0) { 671 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 672 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 673 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 674 675 if (q == NULL) 676 continue; 677 678 mutex_enter(&vd->vdev_scan_io_queue_lock); 679 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 680 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 681 NULL); 682 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 683 mutex_exit(&vd->vdev_scan_io_queue_lock); 684 } 685 686 if (scn->scn_phys.scn_queue_obj != 0) 687 scan_ds_queue_sync(scn, tx); 688 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 689 DMU_POOL_DIRECTORY_OBJECT, 690 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 691 &scn->scn_phys, tx)); 692 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 693 sizeof (scn->scn_phys)); 694 695 if (scn->scn_checkpointing) 696 zfs_dbgmsg("finish scan checkpoint"); 697 698 scn->scn_checkpointing = B_FALSE; 699 scn->scn_last_checkpoint = ddi_get_lbolt(); 700 } else if (sync_type == SYNC_CACHED) { 701 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 702 DMU_POOL_DIRECTORY_OBJECT, 703 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 704 &scn->scn_phys_cached, tx)); 705 } 706 } 707 708 /* ARGSUSED */ 709 static int 710 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 711 { 712 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 713 714 if (dsl_scan_is_running(scn)) 715 return (SET_ERROR(EBUSY)); 716 717 return (0); 718 } 719 720 static void 721 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 722 { 723 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 724 pool_scan_func_t *funcp = arg; 725 dmu_object_type_t ot = 0; 726 dsl_pool_t *dp = scn->scn_dp; 727 spa_t *spa = dp->dp_spa; 728 729 ASSERT(!dsl_scan_is_running(scn)); 730 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 731 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 732 scn->scn_phys.scn_func = *funcp; 733 scn->scn_phys.scn_state = DSS_SCANNING; 734 scn->scn_phys.scn_min_txg = 0; 735 scn->scn_phys.scn_max_txg = tx->tx_txg; 736 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 737 scn->scn_phys.scn_start_time = gethrestime_sec(); 738 scn->scn_phys.scn_errors = 0; 739 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 740 scn->scn_issued_before_pass = 0; 741 scn->scn_restart_txg = 0; 742 scn->scn_done_txg = 0; 743 scn->scn_last_checkpoint = 0; 744 scn->scn_checkpointing = B_FALSE; 745 spa_scan_stat_init(spa); 746 747 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 748 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 749 750 /* rewrite all disk labels */ 751 vdev_config_dirty(spa->spa_root_vdev); 752 753 if (vdev_resilver_needed(spa->spa_root_vdev, 754 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 755 spa_event_notify(spa, NULL, NULL, 756 ESC_ZFS_RESILVER_START); 757 } else { 758 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 759 } 760 761 spa->spa_scrub_started = B_TRUE; 762 /* 763 * If this is an incremental scrub, limit the DDT scrub phase 764 * to just the auto-ditto class (for correctness); the rest 765 * of the scrub should go faster using top-down pruning. 766 */ 767 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 768 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 769 770 } 771 772 /* back to the generic stuff */ 773 774 if (dp->dp_blkstats == NULL) { 775 dp->dp_blkstats = 776 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 777 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 778 MUTEX_DEFAULT, NULL); 779 } 780 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 781 782 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 783 ot = DMU_OT_ZAP_OTHER; 784 785 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 786 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 787 788 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 789 790 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 791 792 spa_history_log_internal(spa, "scan setup", tx, 793 "func=%u mintxg=%llu maxtxg=%llu", 794 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); 795 } 796 797 /* 798 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 799 * Can also be called to resume a paused scrub. 800 */ 801 int 802 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 803 { 804 spa_t *spa = dp->dp_spa; 805 dsl_scan_t *scn = dp->dp_scan; 806 807 /* 808 * Purge all vdev caches and probe all devices. We do this here 809 * rather than in sync context because this requires a writer lock 810 * on the spa_config lock, which we can't do from sync context. The 811 * spa_scrub_reopen flag indicates that vdev_open() should not 812 * attempt to start another scrub. 813 */ 814 spa_vdev_state_enter(spa, SCL_NONE); 815 spa->spa_scrub_reopen = B_TRUE; 816 vdev_reopen(spa->spa_root_vdev); 817 spa->spa_scrub_reopen = B_FALSE; 818 (void) spa_vdev_state_exit(spa, NULL, 0); 819 820 if (func == POOL_SCAN_RESILVER) { 821 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 822 return (0); 823 } 824 825 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 826 /* got scrub start cmd, resume paused scrub */ 827 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 828 POOL_SCRUB_NORMAL); 829 if (err == 0) { 830 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 831 return (ECANCELED); 832 } 833 return (SET_ERROR(err)); 834 } 835 836 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 837 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 838 } 839 840 /* ARGSUSED */ 841 static void 842 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 843 { 844 static const char *old_names[] = { 845 "scrub_bookmark", 846 "scrub_ddt_bookmark", 847 "scrub_ddt_class_max", 848 "scrub_queue", 849 "scrub_min_txg", 850 "scrub_max_txg", 851 "scrub_func", 852 "scrub_errors", 853 NULL 854 }; 855 856 dsl_pool_t *dp = scn->scn_dp; 857 spa_t *spa = dp->dp_spa; 858 int i; 859 860 /* Remove any remnants of an old-style scrub. */ 861 for (i = 0; old_names[i]; i++) { 862 (void) zap_remove(dp->dp_meta_objset, 863 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 864 } 865 866 if (scn->scn_phys.scn_queue_obj != 0) { 867 VERIFY0(dmu_object_free(dp->dp_meta_objset, 868 scn->scn_phys.scn_queue_obj, tx)); 869 scn->scn_phys.scn_queue_obj = 0; 870 } 871 scan_ds_queue_clear(scn); 872 873 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 874 875 /* 876 * If we were "restarted" from a stopped state, don't bother 877 * with anything else. 878 */ 879 if (!dsl_scan_is_running(scn)) { 880 ASSERT(!scn->scn_is_sorted); 881 return; 882 } 883 884 if (scn->scn_is_sorted) { 885 scan_io_queues_destroy(scn); 886 scn->scn_is_sorted = B_FALSE; 887 888 if (scn->scn_taskq != NULL) { 889 taskq_destroy(scn->scn_taskq); 890 scn->scn_taskq = NULL; 891 } 892 } 893 894 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 895 896 if (dsl_scan_restarting(scn, tx)) 897 spa_history_log_internal(spa, "scan aborted, restarting", tx, 898 "errors=%llu", spa_get_errlog_size(spa)); 899 else if (!complete) 900 spa_history_log_internal(spa, "scan cancelled", tx, 901 "errors=%llu", spa_get_errlog_size(spa)); 902 else 903 spa_history_log_internal(spa, "scan done", tx, 904 "errors=%llu", spa_get_errlog_size(spa)); 905 906 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 907 spa->spa_scrub_active = B_FALSE; 908 909 /* 910 * If the scrub/resilver completed, update all DTLs to 911 * reflect this. Whether it succeeded or not, vacate 912 * all temporary scrub DTLs. 913 * 914 * As the scrub does not currently support traversing 915 * data that have been freed but are part of a checkpoint, 916 * we don't mark the scrub as done in the DTLs as faults 917 * may still exist in those vdevs. 918 */ 919 if (complete && 920 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 921 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 922 scn->scn_phys.scn_max_txg, B_TRUE); 923 924 spa_event_notify(spa, NULL, NULL, 925 scn->scn_phys.scn_min_txg ? 926 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); 927 } else { 928 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 929 0, B_TRUE); 930 } 931 spa_errlog_rotate(spa); 932 933 /* 934 * Don't clear flag until after vdev_dtl_reassess to ensure that 935 * DTL_MISSING will get updated when possible. 936 */ 937 spa->spa_scrub_started = B_FALSE; 938 939 /* 940 * We may have finished replacing a device. 941 * Let the async thread assess this and handle the detach. 942 */ 943 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 944 945 /* 946 * Clear any resilver_deferred flags in the config. 947 * If there are drives that need resilvering, kick 948 * off an asynchronous request to start resilver. 949 * vdev_clear_resilver_deferred() may update the config 950 * before the resilver can restart. In the event of 951 * a crash during this period, the spa loading code 952 * will find the drives that need to be resilvered 953 * and start the resilver then. 954 */ 955 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 956 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 957 spa_history_log_internal(spa, 958 "starting deferred resilver", tx, "errors=%llu", 959 (u_longlong_t)spa_get_errlog_size(spa)); 960 spa_async_request(spa, SPA_ASYNC_RESILVER); 961 } 962 } 963 964 scn->scn_phys.scn_end_time = gethrestime_sec(); 965 966 ASSERT(!dsl_scan_is_running(scn)); 967 } 968 969 /* ARGSUSED */ 970 static int 971 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 972 { 973 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 974 975 if (!dsl_scan_is_running(scn)) 976 return (SET_ERROR(ENOENT)); 977 return (0); 978 } 979 980 /* ARGSUSED */ 981 static void 982 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 983 { 984 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 985 986 dsl_scan_done(scn, B_FALSE, tx); 987 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 988 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 989 } 990 991 int 992 dsl_scan_cancel(dsl_pool_t *dp) 993 { 994 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 995 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 996 } 997 998 static int 999 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1000 { 1001 pool_scrub_cmd_t *cmd = arg; 1002 dsl_pool_t *dp = dmu_tx_pool(tx); 1003 dsl_scan_t *scn = dp->dp_scan; 1004 1005 if (*cmd == POOL_SCRUB_PAUSE) { 1006 /* can't pause a scrub when there is no in-progress scrub */ 1007 if (!dsl_scan_scrubbing(dp)) 1008 return (SET_ERROR(ENOENT)); 1009 1010 /* can't pause a paused scrub */ 1011 if (dsl_scan_is_paused_scrub(scn)) 1012 return (SET_ERROR(EBUSY)); 1013 } else if (*cmd != POOL_SCRUB_NORMAL) { 1014 return (SET_ERROR(ENOTSUP)); 1015 } 1016 1017 return (0); 1018 } 1019 1020 static void 1021 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1022 { 1023 pool_scrub_cmd_t *cmd = arg; 1024 dsl_pool_t *dp = dmu_tx_pool(tx); 1025 spa_t *spa = dp->dp_spa; 1026 dsl_scan_t *scn = dp->dp_scan; 1027 1028 if (*cmd == POOL_SCRUB_PAUSE) { 1029 /* can't pause a scrub when there is no in-progress scrub */ 1030 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1031 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1032 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1033 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1034 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1035 } else { 1036 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1037 if (dsl_scan_is_paused_scrub(scn)) { 1038 /* 1039 * We need to keep track of how much time we spend 1040 * paused per pass so that we can adjust the scrub rate 1041 * shown in the output of 'zpool status' 1042 */ 1043 spa->spa_scan_pass_scrub_spent_paused += 1044 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1045 spa->spa_scan_pass_scrub_pause = 0; 1046 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1047 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1048 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1049 } 1050 } 1051 } 1052 1053 /* 1054 * Set scrub pause/resume state if it makes sense to do so 1055 */ 1056 int 1057 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1058 { 1059 return (dsl_sync_task(spa_name(dp->dp_spa), 1060 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1061 ZFS_SPACE_CHECK_RESERVED)); 1062 } 1063 1064 1065 /* start a new scan, or restart an existing one. */ 1066 void 1067 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1068 { 1069 if (txg == 0) { 1070 dmu_tx_t *tx; 1071 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1072 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1073 1074 txg = dmu_tx_get_txg(tx); 1075 dp->dp_scan->scn_restart_txg = txg; 1076 dmu_tx_commit(tx); 1077 } else { 1078 dp->dp_scan->scn_restart_txg = txg; 1079 } 1080 zfs_dbgmsg("restarting resilver txg=%llu", txg); 1081 } 1082 1083 void 1084 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1085 { 1086 zio_free(dp->dp_spa, txg, bp); 1087 } 1088 1089 void 1090 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1091 { 1092 ASSERT(dsl_pool_sync_context(dp)); 1093 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1094 } 1095 1096 static int 1097 scan_ds_queue_compare(const void *a, const void *b) 1098 { 1099 const scan_ds_t *sds_a = a, *sds_b = b; 1100 1101 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1102 return (-1); 1103 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1104 return (0); 1105 return (1); 1106 } 1107 1108 static void 1109 scan_ds_queue_clear(dsl_scan_t *scn) 1110 { 1111 void *cookie = NULL; 1112 scan_ds_t *sds; 1113 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1114 kmem_free(sds, sizeof (*sds)); 1115 } 1116 } 1117 1118 static boolean_t 1119 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1120 { 1121 scan_ds_t srch, *sds; 1122 1123 srch.sds_dsobj = dsobj; 1124 sds = avl_find(&scn->scn_queue, &srch, NULL); 1125 if (sds != NULL && txg != NULL) 1126 *txg = sds->sds_txg; 1127 return (sds != NULL); 1128 } 1129 1130 static void 1131 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1132 { 1133 scan_ds_t *sds; 1134 avl_index_t where; 1135 1136 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1137 sds->sds_dsobj = dsobj; 1138 sds->sds_txg = txg; 1139 1140 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1141 avl_insert(&scn->scn_queue, sds, where); 1142 } 1143 1144 static void 1145 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1146 { 1147 scan_ds_t srch, *sds; 1148 1149 srch.sds_dsobj = dsobj; 1150 1151 sds = avl_find(&scn->scn_queue, &srch, NULL); 1152 VERIFY(sds != NULL); 1153 avl_remove(&scn->scn_queue, sds); 1154 kmem_free(sds, sizeof (*sds)); 1155 } 1156 1157 static void 1158 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1159 { 1160 dsl_pool_t *dp = scn->scn_dp; 1161 spa_t *spa = dp->dp_spa; 1162 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1163 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1164 1165 ASSERT0(scn->scn_bytes_pending); 1166 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1167 1168 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1169 scn->scn_phys.scn_queue_obj, tx)); 1170 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1171 DMU_OT_NONE, 0, tx); 1172 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1173 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1174 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1175 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1176 sds->sds_txg, tx)); 1177 } 1178 } 1179 1180 /* 1181 * Computes the memory limit state that we're currently in. A sorted scan 1182 * needs quite a bit of memory to hold the sorting queue, so we need to 1183 * reasonably constrain the size so it doesn't impact overall system 1184 * performance. We compute two limits: 1185 * 1) Hard memory limit: if the amount of memory used by the sorting 1186 * queues on a pool gets above this value, we stop the metadata 1187 * scanning portion and start issuing the queued up and sorted 1188 * I/Os to reduce memory usage. 1189 * This limit is calculated as a fraction of physmem (by default 5%). 1190 * We constrain the lower bound of the hard limit to an absolute 1191 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1192 * the upper bound to 5% of the total pool size - no chance we'll 1193 * ever need that much memory, but just to keep the value in check. 1194 * 2) Soft memory limit: once we hit the hard memory limit, we start 1195 * issuing I/O to reduce queue memory usage, but we don't want to 1196 * completely empty out the queues, since we might be able to find I/Os 1197 * that will fill in the gaps of our non-sequential IOs at some point 1198 * in the future. So we stop the issuing of I/Os once the amount of 1199 * memory used drops below the soft limit (at which point we stop issuing 1200 * I/O and start scanning metadata again). 1201 * 1202 * This limit is calculated by subtracting a fraction of the hard 1203 * limit from the hard limit. By default this fraction is 5%, so 1204 * the soft limit is 95% of the hard limit. We cap the size of the 1205 * difference between the hard and soft limits at an absolute 1206 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1207 * sufficient to not cause too frequent switching between the 1208 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1209 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1210 * that should take at least a decent fraction of a second). 1211 */ 1212 static boolean_t 1213 dsl_scan_should_clear(dsl_scan_t *scn) 1214 { 1215 spa_t *spa = scn->scn_dp->dp_spa; 1216 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1217 uint64_t alloc, mlim_hard, mlim_soft, mused; 1218 1219 if (arc_memory_is_low()) { 1220 /* 1221 * System memory is tight, and scanning requires allocation. 1222 * Throttle the scan until we have more headroom. 1223 */ 1224 return (B_TRUE); 1225 } 1226 1227 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1228 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1229 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1230 1231 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1232 zfs_scan_mem_lim_min); 1233 mlim_hard = MIN(mlim_hard, alloc / 20); 1234 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1235 zfs_scan_mem_lim_soft_max); 1236 mused = 0; 1237 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1238 vdev_t *tvd = rvd->vdev_child[i]; 1239 dsl_scan_io_queue_t *queue; 1240 1241 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1242 queue = tvd->vdev_scan_io_queue; 1243 if (queue != NULL) { 1244 /* # extents in exts_by_size = # in exts_by_addr */ 1245 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1246 sizeof (range_seg_gap_t) + queue->q_sio_memused; 1247 } 1248 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1249 } 1250 1251 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1252 1253 if (mused == 0) 1254 ASSERT0(scn->scn_bytes_pending); 1255 1256 /* 1257 * If we are above our hard limit, we need to clear out memory. 1258 * If we are below our soft limit, we need to accumulate sequential IOs. 1259 * Otherwise, we should keep doing whatever we are currently doing. 1260 */ 1261 if (mused >= mlim_hard) 1262 return (B_TRUE); 1263 else if (mused < mlim_soft) 1264 return (B_FALSE); 1265 else 1266 return (scn->scn_clearing); 1267 } 1268 1269 static boolean_t 1270 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1271 { 1272 /* we never skip user/group accounting objects */ 1273 if (zb && (int64_t)zb->zb_object < 0) 1274 return (B_FALSE); 1275 1276 if (scn->scn_suspending) 1277 return (B_TRUE); /* we're already suspending */ 1278 1279 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1280 return (B_FALSE); /* we're resuming */ 1281 1282 /* We only know how to resume from level-0 blocks. */ 1283 if (zb && zb->zb_level != 0) 1284 return (B_FALSE); 1285 1286 /* 1287 * We suspend if: 1288 * - we have scanned for at least the minimum time (default 1 sec 1289 * for scrub, 3 sec for resilver), and either we have sufficient 1290 * dirty data that we are starting to write more quickly 1291 * (default 30%), or someone is explicitly waiting for this txg 1292 * to complete. 1293 * or 1294 * - the spa is shutting down because this pool is being exported 1295 * or the machine is rebooting. 1296 * or 1297 * - the scan queue has reached its memory use limit 1298 */ 1299 hrtime_t curr_time_ns = gethrtime(); 1300 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1301 uint64_t sync_time_ns = curr_time_ns - 1302 scn->scn_dp->dp_spa->spa_sync_starttime; 1303 1304 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1305 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1306 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1307 1308 if ((NSEC2MSEC(scan_time_ns) > mintime && 1309 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1310 txg_sync_waiting(scn->scn_dp) || 1311 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1312 spa_shutting_down(scn->scn_dp->dp_spa) || 1313 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1314 if (zb) { 1315 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1316 (longlong_t)zb->zb_objset, 1317 (longlong_t)zb->zb_object, 1318 (longlong_t)zb->zb_level, 1319 (longlong_t)zb->zb_blkid); 1320 scn->scn_phys.scn_bookmark = *zb; 1321 } else { 1322 dsl_scan_phys_t *scnp = &scn->scn_phys; 1323 1324 dprintf("suspending at DDT bookmark " 1325 "%llx/%llx/%llx/%llx\n", 1326 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1327 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1328 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1329 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1330 } 1331 scn->scn_suspending = B_TRUE; 1332 return (B_TRUE); 1333 } 1334 return (B_FALSE); 1335 } 1336 1337 typedef struct zil_scan_arg { 1338 dsl_pool_t *zsa_dp; 1339 zil_header_t *zsa_zh; 1340 } zil_scan_arg_t; 1341 1342 /* ARGSUSED */ 1343 static int 1344 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1345 { 1346 zil_scan_arg_t *zsa = arg; 1347 dsl_pool_t *dp = zsa->zsa_dp; 1348 dsl_scan_t *scn = dp->dp_scan; 1349 zil_header_t *zh = zsa->zsa_zh; 1350 zbookmark_phys_t zb; 1351 1352 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1353 return (0); 1354 1355 /* 1356 * One block ("stubby") can be allocated a long time ago; we 1357 * want to visit that one because it has been allocated 1358 * (on-disk) even if it hasn't been claimed (even though for 1359 * scrub there's nothing to do to it). 1360 */ 1361 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1362 return (0); 1363 1364 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1365 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1366 1367 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1368 return (0); 1369 } 1370 1371 /* ARGSUSED */ 1372 static int 1373 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1374 { 1375 if (lrc->lrc_txtype == TX_WRITE) { 1376 zil_scan_arg_t *zsa = arg; 1377 dsl_pool_t *dp = zsa->zsa_dp; 1378 dsl_scan_t *scn = dp->dp_scan; 1379 zil_header_t *zh = zsa->zsa_zh; 1380 lr_write_t *lr = (lr_write_t *)lrc; 1381 blkptr_t *bp = &lr->lr_blkptr; 1382 zbookmark_phys_t zb; 1383 1384 if (BP_IS_HOLE(bp) || 1385 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1386 return (0); 1387 1388 /* 1389 * birth can be < claim_txg if this record's txg is 1390 * already txg sync'ed (but this log block contains 1391 * other records that are not synced) 1392 */ 1393 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1394 return (0); 1395 1396 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1397 lr->lr_foid, ZB_ZIL_LEVEL, 1398 lr->lr_offset / BP_GET_LSIZE(bp)); 1399 1400 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1401 } 1402 return (0); 1403 } 1404 1405 static void 1406 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1407 { 1408 uint64_t claim_txg = zh->zh_claim_txg; 1409 zil_scan_arg_t zsa = { dp, zh }; 1410 zilog_t *zilog; 1411 1412 ASSERT(spa_writeable(dp->dp_spa)); 1413 1414 /* 1415 * We only want to visit blocks that have been claimed 1416 * but not yet replayed. 1417 */ 1418 if (claim_txg == 0) 1419 return; 1420 1421 zilog = zil_alloc(dp->dp_meta_objset, zh); 1422 1423 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1424 claim_txg, B_FALSE); 1425 1426 zil_free(zilog); 1427 } 1428 1429 /* 1430 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1431 * here is to sort the AVL tree by the order each block will be needed. 1432 */ 1433 static int 1434 scan_prefetch_queue_compare(const void *a, const void *b) 1435 { 1436 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1437 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1438 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1439 1440 return (zbookmark_compare(spc_a->spc_datablkszsec, 1441 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1442 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1443 } 1444 1445 static void 1446 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1447 { 1448 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1449 zfs_refcount_destroy(&spc->spc_refcnt); 1450 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1451 } 1452 } 1453 1454 static scan_prefetch_ctx_t * 1455 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1456 { 1457 scan_prefetch_ctx_t *spc; 1458 1459 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1460 zfs_refcount_create(&spc->spc_refcnt); 1461 zfs_refcount_add(&spc->spc_refcnt, tag); 1462 spc->spc_scn = scn; 1463 if (dnp != NULL) { 1464 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1465 spc->spc_indblkshift = dnp->dn_indblkshift; 1466 spc->spc_root = B_FALSE; 1467 } else { 1468 spc->spc_datablkszsec = 0; 1469 spc->spc_indblkshift = 0; 1470 spc->spc_root = B_TRUE; 1471 } 1472 1473 return (spc); 1474 } 1475 1476 static void 1477 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1478 { 1479 zfs_refcount_add(&spc->spc_refcnt, tag); 1480 } 1481 1482 static boolean_t 1483 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1484 const zbookmark_phys_t *zb) 1485 { 1486 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1487 dnode_phys_t tmp_dnp; 1488 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1489 1490 if (zb->zb_objset != last_zb->zb_objset) 1491 return (B_TRUE); 1492 if ((int64_t)zb->zb_object < 0) 1493 return (B_FALSE); 1494 1495 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1496 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1497 1498 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1499 return (B_TRUE); 1500 1501 return (B_FALSE); 1502 } 1503 1504 static void 1505 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1506 { 1507 avl_index_t idx; 1508 dsl_scan_t *scn = spc->spc_scn; 1509 spa_t *spa = scn->scn_dp->dp_spa; 1510 scan_prefetch_issue_ctx_t *spic; 1511 1512 if (zfs_no_scrub_prefetch) 1513 return; 1514 1515 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1516 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1517 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1518 return; 1519 1520 if (dsl_scan_check_prefetch_resume(spc, zb)) 1521 return; 1522 1523 scan_prefetch_ctx_add_ref(spc, scn); 1524 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1525 spic->spic_spc = spc; 1526 spic->spic_bp = *bp; 1527 spic->spic_zb = *zb; 1528 1529 /* 1530 * Add the IO to the queue of blocks to prefetch. This allows us to 1531 * prioritize blocks that we will need first for the main traversal 1532 * thread. 1533 */ 1534 mutex_enter(&spa->spa_scrub_lock); 1535 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1536 /* this block is already queued for prefetch */ 1537 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1538 scan_prefetch_ctx_rele(spc, scn); 1539 mutex_exit(&spa->spa_scrub_lock); 1540 return; 1541 } 1542 1543 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1544 cv_broadcast(&spa->spa_scrub_io_cv); 1545 mutex_exit(&spa->spa_scrub_lock); 1546 } 1547 1548 static void 1549 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1550 uint64_t objset, uint64_t object) 1551 { 1552 int i; 1553 zbookmark_phys_t zb; 1554 scan_prefetch_ctx_t *spc; 1555 1556 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1557 return; 1558 1559 SET_BOOKMARK(&zb, objset, object, 0, 0); 1560 1561 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1562 1563 for (i = 0; i < dnp->dn_nblkptr; i++) { 1564 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1565 zb.zb_blkid = i; 1566 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1567 } 1568 1569 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1570 zb.zb_level = 0; 1571 zb.zb_blkid = DMU_SPILL_BLKID; 1572 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); 1573 } 1574 1575 scan_prefetch_ctx_rele(spc, FTAG); 1576 } 1577 1578 void 1579 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1580 arc_buf_t *buf, void *private) 1581 { 1582 scan_prefetch_ctx_t *spc = private; 1583 dsl_scan_t *scn = spc->spc_scn; 1584 spa_t *spa = scn->scn_dp->dp_spa; 1585 1586 /* broadcast that the IO has completed for rate limitting purposes */ 1587 mutex_enter(&spa->spa_scrub_lock); 1588 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1589 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1590 cv_broadcast(&spa->spa_scrub_io_cv); 1591 mutex_exit(&spa->spa_scrub_lock); 1592 1593 /* if there was an error or we are done prefetching, just cleanup */ 1594 if (buf == NULL || scn->scn_suspending) 1595 goto out; 1596 1597 if (BP_GET_LEVEL(bp) > 0) { 1598 int i; 1599 blkptr_t *cbp; 1600 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1601 zbookmark_phys_t czb; 1602 1603 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1604 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1605 zb->zb_level - 1, zb->zb_blkid * epb + i); 1606 dsl_scan_prefetch(spc, cbp, &czb); 1607 } 1608 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1609 dnode_phys_t *cdnp = buf->b_data; 1610 int i; 1611 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1612 1613 for (i = 0, cdnp = buf->b_data; i < epb; 1614 i += cdnp->dn_extra_slots + 1, 1615 cdnp += cdnp->dn_extra_slots + 1) { 1616 dsl_scan_prefetch_dnode(scn, cdnp, 1617 zb->zb_objset, zb->zb_blkid * epb + i); 1618 } 1619 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1620 objset_phys_t *osp = buf->b_data; 1621 1622 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1623 zb->zb_objset, DMU_META_DNODE_OBJECT); 1624 1625 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1626 dsl_scan_prefetch_dnode(scn, 1627 &osp->os_groupused_dnode, zb->zb_objset, 1628 DMU_GROUPUSED_OBJECT); 1629 dsl_scan_prefetch_dnode(scn, 1630 &osp->os_userused_dnode, zb->zb_objset, 1631 DMU_USERUSED_OBJECT); 1632 } 1633 } 1634 1635 out: 1636 if (buf != NULL) 1637 arc_buf_destroy(buf, private); 1638 scan_prefetch_ctx_rele(spc, scn); 1639 } 1640 1641 /* ARGSUSED */ 1642 static void 1643 dsl_scan_prefetch_thread(void *arg) 1644 { 1645 dsl_scan_t *scn = arg; 1646 spa_t *spa = scn->scn_dp->dp_spa; 1647 vdev_t *rvd = spa->spa_root_vdev; 1648 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; 1649 scan_prefetch_issue_ctx_t *spic; 1650 1651 /* loop until we are told to stop */ 1652 while (!scn->scn_prefetch_stop) { 1653 arc_flags_t flags = ARC_FLAG_NOWAIT | 1654 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1655 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1656 1657 mutex_enter(&spa->spa_scrub_lock); 1658 1659 /* 1660 * Wait until we have an IO to issue and are not above our 1661 * maximum in flight limit. 1662 */ 1663 while (!scn->scn_prefetch_stop && 1664 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1665 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1666 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1667 } 1668 1669 /* recheck if we should stop since we waited for the cv */ 1670 if (scn->scn_prefetch_stop) { 1671 mutex_exit(&spa->spa_scrub_lock); 1672 break; 1673 } 1674 1675 /* remove the prefetch IO from the tree */ 1676 spic = avl_first(&scn->scn_prefetch_queue); 1677 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1678 avl_remove(&scn->scn_prefetch_queue, spic); 1679 1680 mutex_exit(&spa->spa_scrub_lock); 1681 1682 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1683 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1684 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1685 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1686 zio_flags |= ZIO_FLAG_RAW; 1687 } 1688 1689 /* issue the prefetch asynchronously */ 1690 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1691 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1692 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1693 1694 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1695 } 1696 1697 ASSERT(scn->scn_prefetch_stop); 1698 1699 /* free any prefetches we didn't get to complete */ 1700 mutex_enter(&spa->spa_scrub_lock); 1701 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1702 avl_remove(&scn->scn_prefetch_queue, spic); 1703 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1704 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1705 } 1706 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1707 mutex_exit(&spa->spa_scrub_lock); 1708 } 1709 1710 static boolean_t 1711 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1712 const zbookmark_phys_t *zb) 1713 { 1714 /* 1715 * We never skip over user/group accounting objects (obj<0) 1716 */ 1717 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1718 (int64_t)zb->zb_object >= 0) { 1719 /* 1720 * If we already visited this bp & everything below (in 1721 * a prior txg sync), don't bother doing it again. 1722 */ 1723 if (zbookmark_subtree_completed(dnp, zb, 1724 &scn->scn_phys.scn_bookmark)) 1725 return (B_TRUE); 1726 1727 /* 1728 * If we found the block we're trying to resume from, or 1729 * we went past it to a different object, zero it out to 1730 * indicate that it's OK to start checking for suspending 1731 * again. 1732 */ 1733 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1734 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1735 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1736 (longlong_t)zb->zb_objset, 1737 (longlong_t)zb->zb_object, 1738 (longlong_t)zb->zb_level, 1739 (longlong_t)zb->zb_blkid); 1740 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1741 } 1742 } 1743 return (B_FALSE); 1744 } 1745 1746 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1747 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1748 dmu_objset_type_t ostype, dmu_tx_t *tx); 1749 static void dsl_scan_visitdnode( 1750 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1751 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1752 1753 /* 1754 * Return nonzero on i/o error. 1755 * Return new buf to write out in *bufp. 1756 */ 1757 static int 1758 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1759 dnode_phys_t *dnp, const blkptr_t *bp, 1760 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1761 { 1762 dsl_pool_t *dp = scn->scn_dp; 1763 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1764 int err; 1765 1766 if (BP_GET_LEVEL(bp) > 0) { 1767 arc_flags_t flags = ARC_FLAG_WAIT; 1768 int i; 1769 blkptr_t *cbp; 1770 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1771 arc_buf_t *buf; 1772 1773 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1774 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1775 if (err) { 1776 scn->scn_phys.scn_errors++; 1777 return (err); 1778 } 1779 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1780 zbookmark_phys_t czb; 1781 1782 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1783 zb->zb_level - 1, 1784 zb->zb_blkid * epb + i); 1785 dsl_scan_visitbp(cbp, &czb, dnp, 1786 ds, scn, ostype, tx); 1787 } 1788 arc_buf_destroy(buf, &buf); 1789 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1790 arc_flags_t flags = ARC_FLAG_WAIT; 1791 dnode_phys_t *cdnp; 1792 int i; 1793 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1794 arc_buf_t *buf; 1795 1796 if (BP_IS_PROTECTED(bp)) { 1797 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1798 zio_flags |= ZIO_FLAG_RAW; 1799 } 1800 1801 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1802 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1803 if (err) { 1804 scn->scn_phys.scn_errors++; 1805 return (err); 1806 } 1807 for (i = 0, cdnp = buf->b_data; i < epb; 1808 i += cdnp->dn_extra_slots + 1, 1809 cdnp += cdnp->dn_extra_slots + 1) { 1810 dsl_scan_visitdnode(scn, ds, ostype, 1811 cdnp, zb->zb_blkid * epb + i, tx); 1812 } 1813 1814 arc_buf_destroy(buf, &buf); 1815 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1816 arc_flags_t flags = ARC_FLAG_WAIT; 1817 objset_phys_t *osp; 1818 arc_buf_t *buf; 1819 1820 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1821 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1822 if (err) { 1823 scn->scn_phys.scn_errors++; 1824 return (err); 1825 } 1826 1827 osp = buf->b_data; 1828 1829 dsl_scan_visitdnode(scn, ds, osp->os_type, 1830 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1831 1832 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1833 /* 1834 * We also always visit user/group/project accounting 1835 * objects, and never skip them, even if we are 1836 * suspending. This is necessary so that the space 1837 * deltas from this txg get integrated. 1838 */ 1839 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1840 dsl_scan_visitdnode(scn, ds, osp->os_type, 1841 &osp->os_projectused_dnode, 1842 DMU_PROJECTUSED_OBJECT, tx); 1843 dsl_scan_visitdnode(scn, ds, osp->os_type, 1844 &osp->os_groupused_dnode, 1845 DMU_GROUPUSED_OBJECT, tx); 1846 dsl_scan_visitdnode(scn, ds, osp->os_type, 1847 &osp->os_userused_dnode, 1848 DMU_USERUSED_OBJECT, tx); 1849 } 1850 arc_buf_destroy(buf, &buf); 1851 } 1852 1853 return (0); 1854 } 1855 1856 static void 1857 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1858 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1859 uint64_t object, dmu_tx_t *tx) 1860 { 1861 int j; 1862 1863 for (j = 0; j < dnp->dn_nblkptr; j++) { 1864 zbookmark_phys_t czb; 1865 1866 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1867 dnp->dn_nlevels - 1, j); 1868 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1869 &czb, dnp, ds, scn, ostype, tx); 1870 } 1871 1872 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1873 zbookmark_phys_t czb; 1874 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1875 0, DMU_SPILL_BLKID); 1876 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1877 &czb, dnp, ds, scn, ostype, tx); 1878 } 1879 } 1880 1881 /* 1882 * The arguments are in this order because mdb can only print the 1883 * first 5; we want them to be useful. 1884 */ 1885 static void 1886 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1887 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1888 dmu_objset_type_t ostype, dmu_tx_t *tx) 1889 { 1890 dsl_pool_t *dp = scn->scn_dp; 1891 blkptr_t *bp_toread = NULL; 1892 1893 if (dsl_scan_check_suspend(scn, zb)) 1894 return; 1895 1896 if (dsl_scan_check_resume(scn, dnp, zb)) 1897 return; 1898 1899 scn->scn_visited_this_txg++; 1900 1901 /* 1902 * This debugging is commented out to conserve stack space. This 1903 * function is called recursively and the debugging addes several 1904 * bytes to the stack for each call. It can be commented back in 1905 * if required to debug an issue in dsl_scan_visitbp(). 1906 * 1907 * dprintf_bp(bp, 1908 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1909 * ds, ds ? ds->ds_object : 0, 1910 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1911 * bp); 1912 */ 1913 1914 if (BP_IS_HOLE(bp)) { 1915 scn->scn_holes_this_txg++; 1916 return; 1917 } 1918 1919 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1920 scn->scn_lt_min_this_txg++; 1921 return; 1922 } 1923 1924 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1925 *bp_toread = *bp; 1926 1927 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1928 goto out; 1929 1930 /* 1931 * If dsl_scan_ddt() has already visited this block, it will have 1932 * already done any translations or scrubbing, so don't call the 1933 * callback again. 1934 */ 1935 if (ddt_class_contains(dp->dp_spa, 1936 scn->scn_phys.scn_ddt_class_max, bp)) { 1937 scn->scn_ddt_contained_this_txg++; 1938 goto out; 1939 } 1940 1941 /* 1942 * If this block is from the future (after cur_max_txg), then we 1943 * are doing this on behalf of a deleted snapshot, and we will 1944 * revisit the future block on the next pass of this dataset. 1945 * Don't scan it now unless we need to because something 1946 * under it was modified. 1947 */ 1948 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 1949 scn->scn_gt_max_this_txg++; 1950 goto out; 1951 } 1952 1953 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 1954 1955 out: 1956 kmem_free(bp_toread, sizeof (blkptr_t)); 1957 } 1958 1959 static void 1960 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 1961 dmu_tx_t *tx) 1962 { 1963 zbookmark_phys_t zb; 1964 scan_prefetch_ctx_t *spc; 1965 1966 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1967 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 1968 1969 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 1970 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 1971 zb.zb_objset, 0, 0, 0); 1972 } else { 1973 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 1974 } 1975 1976 scn->scn_objsets_visited_this_txg++; 1977 1978 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 1979 dsl_scan_prefetch(spc, bp, &zb); 1980 scan_prefetch_ctx_rele(spc, FTAG); 1981 1982 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 1983 1984 dprintf_ds(ds, "finished scan%s", ""); 1985 } 1986 1987 static void 1988 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 1989 { 1990 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 1991 if (ds->ds_is_snapshot) { 1992 /* 1993 * Note: 1994 * - scn_cur_{min,max}_txg stays the same. 1995 * - Setting the flag is not really necessary if 1996 * scn_cur_max_txg == scn_max_txg, because there 1997 * is nothing after this snapshot that we care 1998 * about. However, we set it anyway and then 1999 * ignore it when we retraverse it in 2000 * dsl_scan_visitds(). 2001 */ 2002 scn_phys->scn_bookmark.zb_objset = 2003 dsl_dataset_phys(ds)->ds_next_snap_obj; 2004 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2005 "reset zb_objset to %llu", 2006 (u_longlong_t)ds->ds_object, 2007 (u_longlong_t)dsl_dataset_phys(ds)-> 2008 ds_next_snap_obj); 2009 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2010 } else { 2011 SET_BOOKMARK(&scn_phys->scn_bookmark, 2012 ZB_DESTROYED_OBJSET, 0, 0, 0); 2013 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2014 "reset bookmark to -1,0,0,0", 2015 (u_longlong_t)ds->ds_object); 2016 } 2017 } 2018 } 2019 2020 /* 2021 * Invoked when a dataset is destroyed. We need to make sure that: 2022 * 2023 * 1) If it is the dataset that was currently being scanned, we write 2024 * a new dsl_scan_phys_t and marking the objset reference in it 2025 * as destroyed. 2026 * 2) Remove it from the work queue, if it was present. 2027 * 2028 * If the dataset was actually a snapshot, instead of marking the dataset 2029 * as destroyed, we instead substitute the next snapshot in line. 2030 */ 2031 void 2032 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2033 { 2034 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2035 dsl_scan_t *scn = dp->dp_scan; 2036 uint64_t mintxg; 2037 2038 if (!dsl_scan_is_running(scn)) 2039 return; 2040 2041 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2042 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2043 2044 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2045 scan_ds_queue_remove(scn, ds->ds_object); 2046 if (ds->ds_is_snapshot) 2047 scan_ds_queue_insert(scn, 2048 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2049 } 2050 2051 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2052 ds->ds_object, &mintxg) == 0) { 2053 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2054 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2055 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2056 if (ds->ds_is_snapshot) { 2057 /* 2058 * We keep the same mintxg; it could be > 2059 * ds_creation_txg if the previous snapshot was 2060 * deleted too. 2061 */ 2062 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2063 scn->scn_phys.scn_queue_obj, 2064 dsl_dataset_phys(ds)->ds_next_snap_obj, 2065 mintxg, tx) == 0); 2066 zfs_dbgmsg("destroying ds %llu; in queue; " 2067 "replacing with %llu", 2068 (u_longlong_t)ds->ds_object, 2069 (u_longlong_t)dsl_dataset_phys(ds)-> 2070 ds_next_snap_obj); 2071 } else { 2072 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2073 (u_longlong_t)ds->ds_object); 2074 } 2075 } 2076 2077 /* 2078 * dsl_scan_sync() should be called after this, and should sync 2079 * out our changed state, but just to be safe, do it here. 2080 */ 2081 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2082 } 2083 2084 static void 2085 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2086 { 2087 if (scn_bookmark->zb_objset == ds->ds_object) { 2088 scn_bookmark->zb_objset = 2089 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2090 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2091 "reset zb_objset to %llu", 2092 (u_longlong_t)ds->ds_object, 2093 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2094 } 2095 } 2096 2097 /* 2098 * Called when a dataset is snapshotted. If we were currently traversing 2099 * this snapshot, we reset our bookmark to point at the newly created 2100 * snapshot. We also modify our work queue to remove the old snapshot and 2101 * replace with the new one. 2102 */ 2103 void 2104 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2105 { 2106 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2107 dsl_scan_t *scn = dp->dp_scan; 2108 uint64_t mintxg; 2109 2110 if (!dsl_scan_is_running(scn)) 2111 return; 2112 2113 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2114 2115 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2116 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2117 2118 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2119 scan_ds_queue_remove(scn, ds->ds_object); 2120 scan_ds_queue_insert(scn, 2121 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2122 } 2123 2124 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2125 ds->ds_object, &mintxg) == 0) { 2126 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2127 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2128 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2129 scn->scn_phys.scn_queue_obj, 2130 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2131 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2132 "replacing with %llu", 2133 (u_longlong_t)ds->ds_object, 2134 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2135 } 2136 2137 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2138 } 2139 2140 static void 2141 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2142 zbookmark_phys_t *scn_bookmark) 2143 { 2144 if (scn_bookmark->zb_objset == ds1->ds_object) { 2145 scn_bookmark->zb_objset = ds2->ds_object; 2146 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2147 "reset zb_objset to %llu", 2148 (u_longlong_t)ds1->ds_object, 2149 (u_longlong_t)ds2->ds_object); 2150 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2151 scn_bookmark->zb_objset = ds1->ds_object; 2152 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2153 "reset zb_objset to %llu", 2154 (u_longlong_t)ds2->ds_object, 2155 (u_longlong_t)ds1->ds_object); 2156 } 2157 } 2158 2159 /* 2160 * Called when a parent dataset and its clone are swapped. If we were 2161 * currently traversing the dataset, we need to switch to traversing the 2162 * newly promoted parent. 2163 */ 2164 void 2165 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2166 { 2167 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2168 dsl_scan_t *scn = dp->dp_scan; 2169 uint64_t mintxg; 2170 2171 if (!dsl_scan_is_running(scn)) 2172 return; 2173 2174 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2175 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2176 2177 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) { 2178 scan_ds_queue_remove(scn, ds1->ds_object); 2179 scan_ds_queue_insert(scn, ds2->ds_object, mintxg); 2180 } 2181 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) { 2182 scan_ds_queue_remove(scn, ds2->ds_object); 2183 scan_ds_queue_insert(scn, ds1->ds_object, mintxg); 2184 } 2185 2186 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2187 ds1->ds_object, &mintxg) == 0) { 2188 int err; 2189 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2190 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2191 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2192 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2193 err = zap_add_int_key(dp->dp_meta_objset, 2194 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); 2195 VERIFY(err == 0 || err == EEXIST); 2196 if (err == EEXIST) { 2197 /* Both were there to begin with */ 2198 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2199 scn->scn_phys.scn_queue_obj, 2200 ds1->ds_object, mintxg, tx)); 2201 } 2202 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2203 "replacing with %llu", 2204 (u_longlong_t)ds1->ds_object, 2205 (u_longlong_t)ds2->ds_object); 2206 } 2207 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2208 ds2->ds_object, &mintxg) == 0) { 2209 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2210 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2211 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2212 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2213 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2214 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); 2215 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2216 "replacing with %llu", 2217 (u_longlong_t)ds2->ds_object, 2218 (u_longlong_t)ds1->ds_object); 2219 } 2220 2221 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2222 } 2223 2224 /* ARGSUSED */ 2225 static int 2226 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2227 { 2228 uint64_t originobj = *(uint64_t *)arg; 2229 dsl_dataset_t *ds; 2230 int err; 2231 dsl_scan_t *scn = dp->dp_scan; 2232 2233 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2234 return (0); 2235 2236 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2237 if (err) 2238 return (err); 2239 2240 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2241 dsl_dataset_t *prev; 2242 err = dsl_dataset_hold_obj(dp, 2243 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2244 2245 dsl_dataset_rele(ds, FTAG); 2246 if (err) 2247 return (err); 2248 ds = prev; 2249 } 2250 scan_ds_queue_insert(scn, ds->ds_object, 2251 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2252 dsl_dataset_rele(ds, FTAG); 2253 return (0); 2254 } 2255 2256 static void 2257 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2258 { 2259 dsl_pool_t *dp = scn->scn_dp; 2260 dsl_dataset_t *ds; 2261 2262 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2263 2264 if (scn->scn_phys.scn_cur_min_txg >= 2265 scn->scn_phys.scn_max_txg) { 2266 /* 2267 * This can happen if this snapshot was created after the 2268 * scan started, and we already completed a previous snapshot 2269 * that was created after the scan started. This snapshot 2270 * only references blocks with: 2271 * 2272 * birth < our ds_creation_txg 2273 * cur_min_txg is no less than ds_creation_txg. 2274 * We have already visited these blocks. 2275 * or 2276 * birth > scn_max_txg 2277 * The scan requested not to visit these blocks. 2278 * 2279 * Subsequent snapshots (and clones) can reference our 2280 * blocks, or blocks with even higher birth times. 2281 * Therefore we do not need to visit them either, 2282 * so we do not add them to the work queue. 2283 * 2284 * Note that checking for cur_min_txg >= cur_max_txg 2285 * is not sufficient, because in that case we may need to 2286 * visit subsequent snapshots. This happens when min_txg > 0, 2287 * which raises cur_min_txg. In this case we will visit 2288 * this dataset but skip all of its blocks, because the 2289 * rootbp's birth time is < cur_min_txg. Then we will 2290 * add the next snapshots/clones to the work queue. 2291 */ 2292 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); 2293 dsl_dataset_name(ds, dsname); 2294 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2295 "cur_min_txg (%llu) >= max_txg (%llu)", 2296 (longlong_t)dsobj, dsname, 2297 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2298 (longlong_t)scn->scn_phys.scn_max_txg); 2299 kmem_free(dsname, MAXNAMELEN); 2300 2301 goto out; 2302 } 2303 2304 /* 2305 * Only the ZIL in the head (non-snapshot) is valid. Even though 2306 * snapshots can have ZIL block pointers (which may be the same 2307 * BP as in the head), they must be ignored. In addition, $ORIGIN 2308 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2309 * need to look for a ZIL in it either. So we traverse the ZIL here, 2310 * rather than in scan_recurse(), because the regular snapshot 2311 * block-sharing rules don't apply to it. 2312 */ 2313 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && 2314 (dp->dp_origin_snap == NULL || 2315 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2316 objset_t *os; 2317 if (dmu_objset_from_ds(ds, &os) != 0) { 2318 goto out; 2319 } 2320 dsl_scan_zil(dp, &os->os_zil_header); 2321 } 2322 2323 /* 2324 * Iterate over the bps in this ds. 2325 */ 2326 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2327 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2328 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2329 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2330 2331 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2332 dsl_dataset_name(ds, dsname); 2333 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2334 "suspending=%u", 2335 (longlong_t)dsobj, dsname, 2336 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2337 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2338 (int)scn->scn_suspending); 2339 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2340 2341 if (scn->scn_suspending) 2342 goto out; 2343 2344 /* 2345 * We've finished this pass over this dataset. 2346 */ 2347 2348 /* 2349 * If we did not completely visit this dataset, do another pass. 2350 */ 2351 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2352 zfs_dbgmsg("incomplete pass; visiting again"); 2353 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2354 scan_ds_queue_insert(scn, ds->ds_object, 2355 scn->scn_phys.scn_cur_max_txg); 2356 goto out; 2357 } 2358 2359 /* 2360 * Add descendent datasets to work queue. 2361 */ 2362 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2363 scan_ds_queue_insert(scn, 2364 dsl_dataset_phys(ds)->ds_next_snap_obj, 2365 dsl_dataset_phys(ds)->ds_creation_txg); 2366 } 2367 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2368 boolean_t usenext = B_FALSE; 2369 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2370 uint64_t count; 2371 /* 2372 * A bug in a previous version of the code could 2373 * cause upgrade_clones_cb() to not set 2374 * ds_next_snap_obj when it should, leading to a 2375 * missing entry. Therefore we can only use the 2376 * next_clones_obj when its count is correct. 2377 */ 2378 int err = zap_count(dp->dp_meta_objset, 2379 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2380 if (err == 0 && 2381 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2382 usenext = B_TRUE; 2383 } 2384 2385 if (usenext) { 2386 zap_cursor_t zc; 2387 zap_attribute_t za; 2388 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2389 dsl_dataset_phys(ds)->ds_next_clones_obj); 2390 zap_cursor_retrieve(&zc, &za) == 0; 2391 (void) zap_cursor_advance(&zc)) { 2392 scan_ds_queue_insert(scn, 2393 zfs_strtonum(za.za_name, NULL), 2394 dsl_dataset_phys(ds)->ds_creation_txg); 2395 } 2396 zap_cursor_fini(&zc); 2397 } else { 2398 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2399 enqueue_clones_cb, &ds->ds_object, 2400 DS_FIND_CHILDREN)); 2401 } 2402 } 2403 2404 out: 2405 dsl_dataset_rele(ds, FTAG); 2406 } 2407 2408 /* ARGSUSED */ 2409 static int 2410 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2411 { 2412 dsl_dataset_t *ds; 2413 int err; 2414 dsl_scan_t *scn = dp->dp_scan; 2415 2416 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2417 if (err) 2418 return (err); 2419 2420 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2421 dsl_dataset_t *prev; 2422 err = dsl_dataset_hold_obj(dp, 2423 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2424 if (err) { 2425 dsl_dataset_rele(ds, FTAG); 2426 return (err); 2427 } 2428 2429 /* 2430 * If this is a clone, we don't need to worry about it for now. 2431 */ 2432 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2433 dsl_dataset_rele(ds, FTAG); 2434 dsl_dataset_rele(prev, FTAG); 2435 return (0); 2436 } 2437 dsl_dataset_rele(ds, FTAG); 2438 ds = prev; 2439 } 2440 2441 scan_ds_queue_insert(scn, ds->ds_object, 2442 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2443 dsl_dataset_rele(ds, FTAG); 2444 return (0); 2445 } 2446 2447 /* ARGSUSED */ 2448 void 2449 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2450 ddt_entry_t *dde, dmu_tx_t *tx) 2451 { 2452 const ddt_key_t *ddk = &dde->dde_key; 2453 ddt_phys_t *ddp = dde->dde_phys; 2454 blkptr_t bp; 2455 zbookmark_phys_t zb = { 0 }; 2456 int p; 2457 2458 if (scn->scn_phys.scn_state != DSS_SCANNING) 2459 return; 2460 2461 /* 2462 * This function is special because it is the only thing 2463 * that can add scan_io_t's to the vdev scan queues from 2464 * outside dsl_scan_sync(). For the most part this is ok 2465 * as long as it is called from within syncing context. 2466 * However, dsl_scan_sync() expects that no new sio's will 2467 * be added between when all the work for a scan is done 2468 * and the next txg when the scan is actually marked as 2469 * completed. This check ensures we do not issue new sio's 2470 * during this period. 2471 */ 2472 if (scn->scn_done_txg != 0) 2473 return; 2474 2475 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2476 if (ddp->ddp_phys_birth == 0 || 2477 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2478 continue; 2479 ddt_bp_create(checksum, ddk, ddp, &bp); 2480 2481 scn->scn_visited_this_txg++; 2482 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2483 } 2484 } 2485 2486 /* 2487 * Scrub/dedup interaction. 2488 * 2489 * If there are N references to a deduped block, we don't want to scrub it 2490 * N times -- ideally, we should scrub it exactly once. 2491 * 2492 * We leverage the fact that the dde's replication class (enum ddt_class) 2493 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2494 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2495 * 2496 * To prevent excess scrubbing, the scrub begins by walking the DDT 2497 * to find all blocks with refcnt > 1, and scrubs each of these once. 2498 * Since there are two replication classes which contain blocks with 2499 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2500 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2501 * 2502 * There would be nothing more to say if a block's refcnt couldn't change 2503 * during a scrub, but of course it can so we must account for changes 2504 * in a block's replication class. 2505 * 2506 * Here's an example of what can occur: 2507 * 2508 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2509 * when visited during the top-down scrub phase, it will be scrubbed twice. 2510 * This negates our scrub optimization, but is otherwise harmless. 2511 * 2512 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2513 * on each visit during the top-down scrub phase, it will never be scrubbed. 2514 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2515 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2516 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2517 * while a scrub is in progress, it scrubs the block right then. 2518 */ 2519 static void 2520 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2521 { 2522 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2523 ddt_entry_t dde = { 0 }; 2524 int error; 2525 uint64_t n = 0; 2526 2527 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2528 ddt_t *ddt; 2529 2530 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2531 break; 2532 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2533 (longlong_t)ddb->ddb_class, 2534 (longlong_t)ddb->ddb_type, 2535 (longlong_t)ddb->ddb_checksum, 2536 (longlong_t)ddb->ddb_cursor); 2537 2538 /* There should be no pending changes to the dedup table */ 2539 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2540 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2541 2542 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2543 n++; 2544 2545 if (dsl_scan_check_suspend(scn, NULL)) 2546 break; 2547 } 2548 2549 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2550 "suspending=%u", (longlong_t)n, 2551 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2552 2553 ASSERT(error == 0 || error == ENOENT); 2554 ASSERT(error != ENOENT || 2555 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2556 } 2557 2558 static uint64_t 2559 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2560 { 2561 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2562 if (ds->ds_is_snapshot) 2563 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2564 return (smt); 2565 } 2566 2567 static void 2568 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2569 { 2570 scan_ds_t *sds; 2571 dsl_pool_t *dp = scn->scn_dp; 2572 2573 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2574 scn->scn_phys.scn_ddt_class_max) { 2575 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2576 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2577 dsl_scan_ddt(scn, tx); 2578 if (scn->scn_suspending) 2579 return; 2580 } 2581 2582 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2583 /* First do the MOS & ORIGIN */ 2584 2585 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2586 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2587 dsl_scan_visit_rootbp(scn, NULL, 2588 &dp->dp_meta_rootbp, tx); 2589 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2590 if (scn->scn_suspending) 2591 return; 2592 2593 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2594 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2595 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2596 } else { 2597 dsl_scan_visitds(scn, 2598 dp->dp_origin_snap->ds_object, tx); 2599 } 2600 ASSERT(!scn->scn_suspending); 2601 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2602 ZB_DESTROYED_OBJSET) { 2603 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2604 /* 2605 * If we were suspended, continue from here. Note if the 2606 * ds we were suspended on was deleted, the zb_objset may 2607 * be -1, so we will skip this and find a new objset 2608 * below. 2609 */ 2610 dsl_scan_visitds(scn, dsobj, tx); 2611 if (scn->scn_suspending) 2612 return; 2613 } 2614 2615 /* 2616 * In case we suspended right at the end of the ds, zero the 2617 * bookmark so we don't think that we're still trying to resume. 2618 */ 2619 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2620 2621 /* 2622 * Keep pulling things out of the dataset avl queue. Updates to the 2623 * persistent zap-object-as-queue happen only at checkpoints. 2624 */ 2625 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2626 dsl_dataset_t *ds; 2627 uint64_t dsobj = sds->sds_dsobj; 2628 uint64_t txg = sds->sds_txg; 2629 2630 /* dequeue and free the ds from the queue */ 2631 scan_ds_queue_remove(scn, dsobj); 2632 sds = NULL; /* must not be touched after removal */ 2633 2634 /* Set up min / max txg */ 2635 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2636 if (txg != 0) { 2637 scn->scn_phys.scn_cur_min_txg = 2638 MAX(scn->scn_phys.scn_min_txg, txg); 2639 } else { 2640 scn->scn_phys.scn_cur_min_txg = 2641 MAX(scn->scn_phys.scn_min_txg, 2642 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2643 } 2644 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2645 dsl_dataset_rele(ds, FTAG); 2646 2647 dsl_scan_visitds(scn, dsobj, tx); 2648 if (scn->scn_suspending) 2649 return; 2650 } 2651 /* No more objsets to fetch, we're done */ 2652 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2653 ASSERT0(scn->scn_suspending); 2654 } 2655 2656 static uint64_t 2657 dsl_scan_count_leaves(vdev_t *vd) 2658 { 2659 uint64_t i, leaves = 0; 2660 2661 /* we only count leaves that belong to the main pool and are readable */ 2662 if (vd->vdev_islog || vd->vdev_isspare || 2663 vd->vdev_isl2cache || !vdev_readable(vd)) 2664 return (0); 2665 2666 if (vd->vdev_ops->vdev_op_leaf) 2667 return (1); 2668 2669 for (i = 0; i < vd->vdev_children; i++) { 2670 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2671 } 2672 2673 return (leaves); 2674 } 2675 2676 2677 static void 2678 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2679 { 2680 int i; 2681 uint64_t cur_size = 0; 2682 2683 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2684 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2685 } 2686 2687 q->q_total_zio_size_this_txg += cur_size; 2688 q->q_zios_this_txg++; 2689 } 2690 2691 static void 2692 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2693 uint64_t end) 2694 { 2695 q->q_total_seg_size_this_txg += end - start; 2696 q->q_segs_this_txg++; 2697 } 2698 2699 static boolean_t 2700 scan_io_queue_check_suspend(dsl_scan_t *scn) 2701 { 2702 /* See comment in dsl_scan_check_suspend() */ 2703 uint64_t curr_time_ns = gethrtime(); 2704 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2705 uint64_t sync_time_ns = curr_time_ns - 2706 scn->scn_dp->dp_spa->spa_sync_starttime; 2707 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2708 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2709 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2710 2711 return ((NSEC2MSEC(scan_time_ns) > mintime && 2712 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2713 txg_sync_waiting(scn->scn_dp) || 2714 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2715 spa_shutting_down(scn->scn_dp->dp_spa)); 2716 } 2717 2718 /* 2719 * Given a list of scan_io_t's in io_list, this issues the io's out to 2720 * disk. This consumes the io_list and frees the scan_io_t's. This is 2721 * called when emptying queues, either when we're up against the memory 2722 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2723 * processing the list before we finished. Any zios that were not issued 2724 * will remain in the io_list. 2725 */ 2726 static boolean_t 2727 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2728 { 2729 dsl_scan_t *scn = queue->q_scn; 2730 scan_io_t *sio; 2731 int64_t bytes_issued = 0; 2732 boolean_t suspended = B_FALSE; 2733 2734 while ((sio = list_head(io_list)) != NULL) { 2735 blkptr_t bp; 2736 2737 if (scan_io_queue_check_suspend(scn)) { 2738 suspended = B_TRUE; 2739 break; 2740 } 2741 2742 sio2bp(sio, &bp); 2743 bytes_issued += SIO_GET_ASIZE(sio); 2744 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2745 &sio->sio_zb, queue); 2746 (void) list_remove_head(io_list); 2747 scan_io_queues_update_zio_stats(queue, &bp); 2748 sio_free(sio); 2749 } 2750 2751 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2752 2753 return (suspended); 2754 } 2755 2756 /* 2757 * Given a range_seg_t (extent) and a list, this function passes over a 2758 * scan queue and gathers up the appropriate ios which fit into that 2759 * scan seg (starting from lowest LBA). At the end, we remove the segment 2760 * from the q_exts_by_addr range tree. 2761 */ 2762 static boolean_t 2763 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2764 { 2765 scan_io_t *srch_sio, *sio, *next_sio; 2766 avl_index_t idx; 2767 uint_t num_sios = 0; 2768 int64_t bytes_issued = 0; 2769 2770 ASSERT(rs != NULL); 2771 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2772 2773 srch_sio = sio_alloc(1); 2774 srch_sio->sio_nr_dvas = 1; 2775 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2776 2777 /* 2778 * The exact start of the extent might not contain any matching zios, 2779 * so if that's the case, examine the next one in the tree. 2780 */ 2781 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2782 sio_free(srch_sio); 2783 2784 if (sio == NULL) 2785 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2786 2787 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2788 queue->q_exts_by_addr) && num_sios <= 32) { 2789 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2790 queue->q_exts_by_addr)); 2791 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2792 queue->q_exts_by_addr)); 2793 2794 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2795 avl_remove(&queue->q_sios_by_addr, sio); 2796 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2797 2798 bytes_issued += SIO_GET_ASIZE(sio); 2799 num_sios++; 2800 list_insert_tail(list, sio); 2801 sio = next_sio; 2802 } 2803 2804 /* 2805 * We limit the number of sios we process at once to 32 to avoid 2806 * biting off more than we can chew. If we didn't take everything 2807 * in the segment we update it to reflect the work we were able to 2808 * complete. Otherwise, we remove it from the range tree entirely. 2809 */ 2810 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2811 queue->q_exts_by_addr)) { 2812 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2813 -bytes_issued); 2814 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2815 SIO_GET_OFFSET(sio), rs_get_end(rs, 2816 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2817 2818 return (B_TRUE); 2819 } else { 2820 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2821 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2822 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2823 return (B_FALSE); 2824 } 2825 } 2826 2827 2828 /* 2829 * This is called from the queue emptying thread and selects the next 2830 * extent from which we are to issue io's. The behavior of this function 2831 * depends on the state of the scan, the current memory consumption and 2832 * whether or not we are performing a scan shutdown. 2833 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2834 * needs to perform a checkpoint 2835 * 2) We select the largest available extent if we are up against the 2836 * memory limit. 2837 * 3) Otherwise we don't select any extents. 2838 */ 2839 static const range_seg_t * 2840 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2841 { 2842 dsl_scan_t *scn = queue->q_scn; 2843 range_tree_t *rt = queue->q_exts_by_addr; 2844 2845 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2846 ASSERT(scn->scn_is_sorted); 2847 2848 /* handle tunable overrides */ 2849 if (scn->scn_checkpointing || scn->scn_clearing) { 2850 if (zfs_scan_issue_strategy == 1) { 2851 return (range_tree_first(rt)); 2852 } else if (zfs_scan_issue_strategy == 2) { 2853 /* 2854 * We need to get the original entry in the by_addr 2855 * tree so we can modify it. 2856 */ 2857 range_seg_t *size_rs = 2858 zfs_btree_first(&queue->q_exts_by_size, NULL); 2859 if (size_rs == NULL) 2860 return (NULL); 2861 uint64_t start = rs_get_start(size_rs, rt); 2862 uint64_t size = rs_get_end(size_rs, rt) - start; 2863 range_seg_t *addr_rs = range_tree_find(rt, start, 2864 size); 2865 ASSERT3P(addr_rs, !=, NULL); 2866 ASSERT3U(rs_get_start(size_rs, rt), ==, 2867 rs_get_start(addr_rs, rt)); 2868 ASSERT3U(rs_get_end(size_rs, rt), ==, 2869 rs_get_end(addr_rs, rt)); 2870 return (addr_rs); 2871 } 2872 } 2873 2874 /* 2875 * During normal clearing, we want to issue our largest segments 2876 * first, keeping IO as sequential as possible, and leaving the 2877 * smaller extents for later with the hope that they might eventually 2878 * grow to larger sequential segments. However, when the scan is 2879 * checkpointing, no new extents will be added to the sorting queue, 2880 * so the way we are sorted now is as good as it will ever get. 2881 * In this case, we instead switch to issuing extents in LBA order. 2882 */ 2883 if (scn->scn_checkpointing) { 2884 return (range_tree_first(rt)); 2885 } else if (scn->scn_clearing) { 2886 /* 2887 * We need to get the original entry in the by_addr 2888 * tree so we can modify it. 2889 */ 2890 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2891 NULL); 2892 if (size_rs == NULL) 2893 return (NULL); 2894 uint64_t start = rs_get_start(size_rs, rt); 2895 uint64_t size = rs_get_end(size_rs, rt) - start; 2896 range_seg_t *addr_rs = range_tree_find(rt, start, size); 2897 ASSERT3P(addr_rs, !=, NULL); 2898 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 2899 rt)); 2900 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 2901 return (addr_rs); 2902 } else { 2903 return (NULL); 2904 } 2905 } 2906 2907 static void 2908 scan_io_queues_run_one(void *arg) 2909 { 2910 dsl_scan_io_queue_t *queue = arg; 2911 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 2912 boolean_t suspended = B_FALSE; 2913 range_seg_t *rs = NULL; 2914 scan_io_t *sio = NULL; 2915 list_t sio_list; 2916 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 2917 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 2918 2919 ASSERT(queue->q_scn->scn_is_sorted); 2920 2921 list_create(&sio_list, sizeof (scan_io_t), 2922 offsetof(scan_io_t, sio_nodes.sio_list_node)); 2923 mutex_enter(q_lock); 2924 2925 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 2926 queue->q_maxinflight_bytes = 2927 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 2928 2929 /* reset per-queue scan statistics for this txg */ 2930 queue->q_total_seg_size_this_txg = 0; 2931 queue->q_segs_this_txg = 0; 2932 queue->q_total_zio_size_this_txg = 0; 2933 queue->q_zios_this_txg = 0; 2934 2935 /* loop until we have run out of time or sios */ 2936 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) { 2937 uint64_t seg_start = 0, seg_end = 0; 2938 boolean_t more_left = B_TRUE; 2939 2940 ASSERT(list_is_empty(&sio_list)); 2941 2942 /* loop while we still have sios left to process in this rs */ 2943 while (more_left) { 2944 scan_io_t *first_sio, *last_sio; 2945 2946 /* 2947 * We have selected which extent needs to be 2948 * processed next. Gather up the corresponding sios. 2949 */ 2950 more_left = scan_io_queue_gather(queue, rs, &sio_list); 2951 ASSERT(!list_is_empty(&sio_list)); 2952 first_sio = list_head(&sio_list); 2953 last_sio = list_tail(&sio_list); 2954 2955 seg_end = SIO_GET_END_OFFSET(last_sio); 2956 if (seg_start == 0) 2957 seg_start = SIO_GET_OFFSET(first_sio); 2958 2959 /* 2960 * Issuing sios can take a long time so drop the 2961 * queue lock. The sio queue won't be updated by 2962 * other threads since we're in syncing context so 2963 * we can be sure that our trees will remain exactly 2964 * as we left them. 2965 */ 2966 mutex_exit(q_lock); 2967 suspended = scan_io_queue_issue(queue, &sio_list); 2968 mutex_enter(q_lock); 2969 2970 if (suspended) 2971 break; 2972 } 2973 /* update statistics for debugging purposes */ 2974 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 2975 2976 if (suspended) 2977 break; 2978 } 2979 2980 2981 /* 2982 * If we were suspended in the middle of processing, 2983 * requeue any unfinished sios and exit. 2984 */ 2985 while ((sio = list_head(&sio_list)) != NULL) { 2986 list_remove(&sio_list, sio); 2987 scan_io_queue_insert_impl(queue, sio); 2988 } 2989 2990 mutex_exit(q_lock); 2991 list_destroy(&sio_list); 2992 } 2993 2994 /* 2995 * Performs an emptying run on all scan queues in the pool. This just 2996 * punches out one thread per top-level vdev, each of which processes 2997 * only that vdev's scan queue. We can parallelize the I/O here because 2998 * we know that each queue's io's only affect its own top-level vdev. 2999 * 3000 * This function waits for the queue runs to complete, and must be 3001 * called from dsl_scan_sync (or in general, syncing context). 3002 */ 3003 static void 3004 scan_io_queues_run(dsl_scan_t *scn) 3005 { 3006 spa_t *spa = scn->scn_dp->dp_spa; 3007 3008 ASSERT(scn->scn_is_sorted); 3009 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3010 3011 if (scn->scn_bytes_pending == 0) 3012 return; 3013 3014 if (scn->scn_taskq == NULL) { 3015 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, 3016 KM_SLEEP); 3017 int nthreads = spa->spa_root_vdev->vdev_children; 3018 3019 /* 3020 * We need to make this taskq *always* execute as many 3021 * threads in parallel as we have top-level vdevs and no 3022 * less, otherwise strange serialization of the calls to 3023 * scan_io_queues_run_one can occur during spa_sync runs 3024 * and that significantly impacts performance. 3025 */ 3026 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, 3027 "dsl_scan_tq_%s", spa->spa_name); 3028 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, 3029 nthreads, nthreads, TASKQ_PREPOPULATE); 3030 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); 3031 } 3032 3033 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3034 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3035 3036 mutex_enter(&vd->vdev_scan_io_queue_lock); 3037 if (vd->vdev_scan_io_queue != NULL) { 3038 VERIFY(taskq_dispatch(scn->scn_taskq, 3039 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3040 TQ_SLEEP) != TASKQID_INVALID); 3041 } 3042 mutex_exit(&vd->vdev_scan_io_queue_lock); 3043 } 3044 3045 /* 3046 * Wait for the queues to finish issuing thir IOs for this run 3047 * before we return. There may still be IOs in flight at this 3048 * point. 3049 */ 3050 taskq_wait(scn->scn_taskq); 3051 } 3052 3053 static boolean_t 3054 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3055 { 3056 uint64_t elapsed_nanosecs; 3057 3058 if (zfs_recover) 3059 return (B_FALSE); 3060 3061 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) 3062 return (B_TRUE); 3063 3064 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3065 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3066 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3067 txg_sync_waiting(scn->scn_dp)) || 3068 spa_shutting_down(scn->scn_dp->dp_spa)); 3069 } 3070 3071 static int 3072 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3073 { 3074 dsl_scan_t *scn = arg; 3075 3076 if (!scn->scn_is_bptree || 3077 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3078 if (dsl_scan_async_block_should_pause(scn)) 3079 return (SET_ERROR(ERESTART)); 3080 } 3081 3082 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3083 dmu_tx_get_txg(tx), bp, 0)); 3084 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3085 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3086 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3087 scn->scn_visited_this_txg++; 3088 return (0); 3089 } 3090 3091 static void 3092 dsl_scan_update_stats(dsl_scan_t *scn) 3093 { 3094 spa_t *spa = scn->scn_dp->dp_spa; 3095 uint64_t i; 3096 uint64_t seg_size_total = 0, zio_size_total = 0; 3097 uint64_t seg_count_total = 0, zio_count_total = 0; 3098 3099 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3100 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3101 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3102 3103 if (queue == NULL) 3104 continue; 3105 3106 seg_size_total += queue->q_total_seg_size_this_txg; 3107 zio_size_total += queue->q_total_zio_size_this_txg; 3108 seg_count_total += queue->q_segs_this_txg; 3109 zio_count_total += queue->q_zios_this_txg; 3110 } 3111 3112 if (seg_count_total == 0 || zio_count_total == 0) { 3113 scn->scn_avg_seg_size_this_txg = 0; 3114 scn->scn_avg_zio_size_this_txg = 0; 3115 scn->scn_segs_this_txg = 0; 3116 scn->scn_zios_this_txg = 0; 3117 return; 3118 } 3119 3120 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3121 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3122 scn->scn_segs_this_txg = seg_count_total; 3123 scn->scn_zios_this_txg = zio_count_total; 3124 } 3125 3126 static int 3127 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3128 { 3129 dsl_scan_t *scn = arg; 3130 const dva_t *dva = &bp->blk_dva[0]; 3131 3132 if (dsl_scan_async_block_should_pause(scn)) 3133 return (SET_ERROR(ERESTART)); 3134 3135 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3136 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3137 DVA_GET_ASIZE(dva), tx); 3138 scn->scn_visited_this_txg++; 3139 return (0); 3140 } 3141 3142 boolean_t 3143 dsl_scan_active(dsl_scan_t *scn) 3144 { 3145 spa_t *spa = scn->scn_dp->dp_spa; 3146 uint64_t used = 0, comp, uncomp; 3147 3148 if (spa->spa_load_state != SPA_LOAD_NONE) 3149 return (B_FALSE); 3150 if (spa_shutting_down(spa)) 3151 return (B_FALSE); 3152 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3153 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3154 return (B_TRUE); 3155 3156 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3157 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3158 &used, &comp, &uncomp); 3159 } 3160 return (used != 0); 3161 } 3162 3163 static boolean_t 3164 dsl_scan_check_deferred(vdev_t *vd) 3165 { 3166 boolean_t need_resilver = B_FALSE; 3167 3168 for (int c = 0; c < vd->vdev_children; c++) { 3169 need_resilver |= 3170 dsl_scan_check_deferred(vd->vdev_child[c]); 3171 } 3172 3173 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3174 !vd->vdev_ops->vdev_op_leaf) 3175 return (need_resilver); 3176 3177 if (!vd->vdev_resilver_deferred) 3178 need_resilver = B_TRUE; 3179 3180 return (need_resilver); 3181 } 3182 3183 static boolean_t 3184 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3185 uint64_t phys_birth) 3186 { 3187 vdev_t *vd; 3188 3189 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3190 3191 if (vd->vdev_ops == &vdev_indirect_ops) { 3192 /* 3193 * The indirect vdev can point to multiple 3194 * vdevs. For simplicity, always create 3195 * the resilver zio_t. zio_vdev_io_start() 3196 * will bypass the child resilver i/o's if 3197 * they are on vdevs that don't have DTL's. 3198 */ 3199 return (B_TRUE); 3200 } 3201 3202 if (DVA_GET_GANG(dva)) { 3203 /* 3204 * Gang members may be spread across multiple 3205 * vdevs, so the best estimate we have is the 3206 * scrub range, which has already been checked. 3207 * XXX -- it would be better to change our 3208 * allocation policy to ensure that all 3209 * gang members reside on the same vdev. 3210 */ 3211 return (B_TRUE); 3212 } 3213 3214 /* 3215 * Check if the txg falls within the range which must be 3216 * resilvered. DVAs outside this range can always be skipped. 3217 */ 3218 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3219 return (B_FALSE); 3220 3221 /* 3222 * Check if the top-level vdev must resilver this offset. 3223 * When the offset does not intersect with a dirty leaf DTL 3224 * then it may be possible to skip the resilver IO. The psize 3225 * is provided instead of asize to simplify the check for RAIDZ. 3226 */ 3227 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3228 return (B_FALSE); 3229 3230 /* 3231 * Check that this top-level vdev has a device under it which 3232 * is resilvering and is not deferred. 3233 */ 3234 if (!dsl_scan_check_deferred(vd)) 3235 return (B_FALSE); 3236 3237 return (B_TRUE); 3238 } 3239 3240 static int 3241 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3242 { 3243 int err = 0; 3244 dsl_scan_t *scn = dp->dp_scan; 3245 spa_t *spa = dp->dp_spa; 3246 3247 if (spa_suspend_async_destroy(spa)) 3248 return (0); 3249 3250 if (zfs_free_bpobj_enabled && 3251 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3252 scn->scn_is_bptree = B_FALSE; 3253 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3254 scn->scn_zio_root = zio_root(spa, NULL, 3255 NULL, ZIO_FLAG_MUSTSUCCEED); 3256 err = bpobj_iterate(&dp->dp_free_bpobj, 3257 dsl_scan_free_block_cb, scn, tx); 3258 VERIFY0(zio_wait(scn->scn_zio_root)); 3259 scn->scn_zio_root = NULL; 3260 3261 if (err != 0 && err != ERESTART) 3262 zfs_panic_recover("error %u from bpobj_iterate()", err); 3263 } 3264 3265 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3266 ASSERT(scn->scn_async_destroying); 3267 scn->scn_is_bptree = B_TRUE; 3268 scn->scn_zio_root = zio_root(spa, NULL, 3269 NULL, ZIO_FLAG_MUSTSUCCEED); 3270 err = bptree_iterate(dp->dp_meta_objset, 3271 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3272 VERIFY0(zio_wait(scn->scn_zio_root)); 3273 scn->scn_zio_root = NULL; 3274 3275 if (err == EIO || err == ECKSUM) { 3276 err = 0; 3277 } else if (err != 0 && err != ERESTART) { 3278 zfs_panic_recover("error %u from " 3279 "traverse_dataset_destroyed()", err); 3280 } 3281 3282 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3283 /* finished; deactivate async destroy feature */ 3284 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3285 ASSERT(!spa_feature_is_active(spa, 3286 SPA_FEATURE_ASYNC_DESTROY)); 3287 VERIFY0(zap_remove(dp->dp_meta_objset, 3288 DMU_POOL_DIRECTORY_OBJECT, 3289 DMU_POOL_BPTREE_OBJ, tx)); 3290 VERIFY0(bptree_free(dp->dp_meta_objset, 3291 dp->dp_bptree_obj, tx)); 3292 dp->dp_bptree_obj = 0; 3293 scn->scn_async_destroying = B_FALSE; 3294 scn->scn_async_stalled = B_FALSE; 3295 } else { 3296 /* 3297 * If we didn't make progress, mark the async 3298 * destroy as stalled, so that we will not initiate 3299 * a spa_sync() on its behalf. Note that we only 3300 * check this if we are not finished, because if the 3301 * bptree had no blocks for us to visit, we can 3302 * finish without "making progress". 3303 */ 3304 scn->scn_async_stalled = 3305 (scn->scn_visited_this_txg == 0); 3306 } 3307 } 3308 if (scn->scn_visited_this_txg) { 3309 zfs_dbgmsg("freed %llu blocks in %llums from " 3310 "free_bpobj/bptree txg %llu; err=%d", 3311 (longlong_t)scn->scn_visited_this_txg, 3312 (longlong_t) 3313 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3314 (longlong_t)tx->tx_txg, err); 3315 scn->scn_visited_this_txg = 0; 3316 3317 /* 3318 * Write out changes to the DDT that may be required as a 3319 * result of the blocks freed. This ensures that the DDT 3320 * is clean when a scrub/resilver runs. 3321 */ 3322 ddt_sync(spa, tx->tx_txg); 3323 } 3324 if (err != 0) 3325 return (err); 3326 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3327 zfs_free_leak_on_eio && 3328 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3329 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3330 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3331 /* 3332 * We have finished background destroying, but there is still 3333 * some space left in the dp_free_dir. Transfer this leaked 3334 * space to the dp_leak_dir. 3335 */ 3336 if (dp->dp_leak_dir == NULL) { 3337 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3338 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3339 LEAK_DIR_NAME, tx); 3340 VERIFY0(dsl_pool_open_special_dir(dp, 3341 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3342 rrw_exit(&dp->dp_config_rwlock, FTAG); 3343 } 3344 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3345 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3346 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3347 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3348 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3349 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3350 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3351 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3352 } 3353 3354 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { 3355 /* finished; verify that space accounting went to zero */ 3356 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3357 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3358 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3359 } 3360 3361 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3362 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3363 DMU_POOL_OBSOLETE_BPOBJ)); 3364 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3365 ASSERT(spa_feature_is_active(dp->dp_spa, 3366 SPA_FEATURE_OBSOLETE_COUNTS)); 3367 3368 scn->scn_is_bptree = B_FALSE; 3369 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3370 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3371 dsl_scan_obsolete_block_cb, scn, tx); 3372 if (err != 0 && err != ERESTART) 3373 zfs_panic_recover("error %u from bpobj_iterate()", err); 3374 3375 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3376 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3377 } 3378 3379 return (0); 3380 } 3381 3382 /* 3383 * This is the primary entry point for scans that is called from syncing 3384 * context. Scans must happen entirely during syncing context so that we 3385 * cna guarantee that blocks we are currently scanning will not change out 3386 * from under us. While a scan is active, this funciton controls how quickly 3387 * transaction groups proceed, instead of the normal handling provided by 3388 * txg_sync_thread(). 3389 */ 3390 void 3391 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3392 { 3393 dsl_scan_t *scn = dp->dp_scan; 3394 spa_t *spa = dp->dp_spa; 3395 int err = 0; 3396 state_sync_type_t sync_type = SYNC_OPTIONAL; 3397 3398 if (spa->spa_resilver_deferred && 3399 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3400 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3401 3402 /* 3403 * Check for scn_restart_txg before checking spa_load_state, so 3404 * that we can restart an old-style scan while the pool is being 3405 * imported (see dsl_scan_init). We also restart scans if there 3406 * is a deferred resilver and the user has manually disabled 3407 * deferred resilvers via the tunable. 3408 */ 3409 if (dsl_scan_restarting(scn, tx) || 3410 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3411 pool_scan_func_t func = POOL_SCAN_SCRUB; 3412 dsl_scan_done(scn, B_FALSE, tx); 3413 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3414 func = POOL_SCAN_RESILVER; 3415 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3416 func, (longlong_t)tx->tx_txg); 3417 dsl_scan_setup_sync(&func, tx); 3418 } 3419 3420 /* 3421 * Only process scans in sync pass 1. 3422 */ 3423 if (spa_sync_pass(dp->dp_spa) > 1) 3424 return; 3425 3426 /* 3427 * If the spa is shutting down, then stop scanning. This will 3428 * ensure that the scan does not dirty any new data during the 3429 * shutdown phase. 3430 */ 3431 if (spa_shutting_down(spa)) 3432 return; 3433 3434 /* 3435 * If the scan is inactive due to a stalled async destroy, try again. 3436 */ 3437 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3438 return; 3439 3440 /* reset scan statistics */ 3441 scn->scn_visited_this_txg = 0; 3442 scn->scn_holes_this_txg = 0; 3443 scn->scn_lt_min_this_txg = 0; 3444 scn->scn_gt_max_this_txg = 0; 3445 scn->scn_ddt_contained_this_txg = 0; 3446 scn->scn_objsets_visited_this_txg = 0; 3447 scn->scn_avg_seg_size_this_txg = 0; 3448 scn->scn_segs_this_txg = 0; 3449 scn->scn_avg_zio_size_this_txg = 0; 3450 scn->scn_zios_this_txg = 0; 3451 scn->scn_suspending = B_FALSE; 3452 scn->scn_sync_start_time = gethrtime(); 3453 spa->spa_scrub_active = B_TRUE; 3454 3455 /* 3456 * First process the async destroys. If we pause, don't do 3457 * any scrubbing or resilvering. This ensures that there are no 3458 * async destroys while we are scanning, so the scan code doesn't 3459 * have to worry about traversing it. It is also faster to free the 3460 * blocks than to scrub them. 3461 */ 3462 err = dsl_process_async_destroys(dp, tx); 3463 if (err != 0) 3464 return; 3465 3466 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3467 return; 3468 3469 /* 3470 * Wait a few txgs after importing to begin scanning so that 3471 * we can get the pool imported quickly. 3472 */ 3473 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3474 return; 3475 3476 /* 3477 * zfs_scan_suspend_progress can be set to disable scan progress. 3478 * We don't want to spin the txg_sync thread, so we add a delay 3479 * here to simulate the time spent doing a scan. This is mostly 3480 * useful for testing and debugging. 3481 */ 3482 if (zfs_scan_suspend_progress) { 3483 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3484 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3485 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3486 3487 while (zfs_scan_suspend_progress && 3488 !txg_sync_waiting(scn->scn_dp) && 3489 !spa_shutting_down(scn->scn_dp->dp_spa) && 3490 NSEC2MSEC(scan_time_ns) < mintime) { 3491 delay(hz); 3492 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3493 } 3494 return; 3495 } 3496 3497 /* 3498 * It is possible to switch from unsorted to sorted at any time, 3499 * but afterwards the scan will remain sorted unless reloaded from 3500 * a checkpoint after a reboot. 3501 */ 3502 if (!zfs_scan_legacy) { 3503 scn->scn_is_sorted = B_TRUE; 3504 if (scn->scn_last_checkpoint == 0) 3505 scn->scn_last_checkpoint = ddi_get_lbolt(); 3506 } 3507 3508 /* 3509 * For sorted scans, determine what kind of work we will be doing 3510 * this txg based on our memory limitations and whether or not we 3511 * need to perform a checkpoint. 3512 */ 3513 if (scn->scn_is_sorted) { 3514 /* 3515 * If we are over our checkpoint interval, set scn_clearing 3516 * so that we can begin checkpointing immediately. The 3517 * checkpoint allows us to save a consisent bookmark 3518 * representing how much data we have scrubbed so far. 3519 * Otherwise, use the memory limit to determine if we should 3520 * scan for metadata or start issue scrub IOs. We accumulate 3521 * metadata until we hit our hard memory limit at which point 3522 * we issue scrub IOs until we are at our soft memory limit. 3523 */ 3524 if (scn->scn_checkpointing || 3525 ddi_get_lbolt() - scn->scn_last_checkpoint > 3526 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3527 if (!scn->scn_checkpointing) 3528 zfs_dbgmsg("begin scan checkpoint"); 3529 3530 scn->scn_checkpointing = B_TRUE; 3531 scn->scn_clearing = B_TRUE; 3532 } else { 3533 boolean_t should_clear = dsl_scan_should_clear(scn); 3534 if (should_clear && !scn->scn_clearing) { 3535 zfs_dbgmsg("begin scan clearing"); 3536 scn->scn_clearing = B_TRUE; 3537 } else if (!should_clear && scn->scn_clearing) { 3538 zfs_dbgmsg("finish scan clearing"); 3539 scn->scn_clearing = B_FALSE; 3540 } 3541 } 3542 } else { 3543 ASSERT0(scn->scn_checkpointing); 3544 ASSERT0(scn->scn_clearing); 3545 } 3546 3547 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3548 /* Need to scan metadata for more blocks to scrub */ 3549 dsl_scan_phys_t *scnp = &scn->scn_phys; 3550 taskqid_t prefetch_tqid; 3551 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3552 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3553 3554 /* 3555 * Calculate the max number of in-flight bytes for pool-wide 3556 * scanning operations (minimum 1MB). Limits for the issuing 3557 * phase are done per top-level vdev and are handled separately. 3558 */ 3559 scn->scn_maxinflight_bytes = 3560 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3561 3562 if (scnp->scn_ddt_bookmark.ddb_class <= 3563 scnp->scn_ddt_class_max) { 3564 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3565 zfs_dbgmsg("doing scan sync txg %llu; " 3566 "ddt bm=%llu/%llu/%llu/%llx", 3567 (longlong_t)tx->tx_txg, 3568 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3569 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3570 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3571 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3572 } else { 3573 zfs_dbgmsg("doing scan sync txg %llu; " 3574 "bm=%llu/%llu/%llu/%llu", 3575 (longlong_t)tx->tx_txg, 3576 (longlong_t)scnp->scn_bookmark.zb_objset, 3577 (longlong_t)scnp->scn_bookmark.zb_object, 3578 (longlong_t)scnp->scn_bookmark.zb_level, 3579 (longlong_t)scnp->scn_bookmark.zb_blkid); 3580 } 3581 3582 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3583 NULL, ZIO_FLAG_CANFAIL); 3584 3585 scn->scn_prefetch_stop = B_FALSE; 3586 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3587 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3588 ASSERT(prefetch_tqid != TASKQID_INVALID); 3589 3590 dsl_pool_config_enter(dp, FTAG); 3591 dsl_scan_visit(scn, tx); 3592 dsl_pool_config_exit(dp, FTAG); 3593 3594 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3595 scn->scn_prefetch_stop = B_TRUE; 3596 cv_broadcast(&spa->spa_scrub_io_cv); 3597 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3598 3599 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3600 (void) zio_wait(scn->scn_zio_root); 3601 scn->scn_zio_root = NULL; 3602 3603 zfs_dbgmsg("scan visited %llu blocks in %llums " 3604 "(%llu os's, %llu holes, %llu < mintxg, " 3605 "%llu in ddt, %llu > maxtxg)", 3606 (longlong_t)scn->scn_visited_this_txg, 3607 (longlong_t)NSEC2MSEC(gethrtime() - 3608 scn->scn_sync_start_time), 3609 (longlong_t)scn->scn_objsets_visited_this_txg, 3610 (longlong_t)scn->scn_holes_this_txg, 3611 (longlong_t)scn->scn_lt_min_this_txg, 3612 (longlong_t)scn->scn_ddt_contained_this_txg, 3613 (longlong_t)scn->scn_gt_max_this_txg); 3614 3615 if (!scn->scn_suspending) { 3616 ASSERT0(avl_numnodes(&scn->scn_queue)); 3617 scn->scn_done_txg = tx->tx_txg + 1; 3618 if (scn->scn_is_sorted) { 3619 scn->scn_checkpointing = B_TRUE; 3620 scn->scn_clearing = B_TRUE; 3621 } 3622 zfs_dbgmsg("scan complete txg %llu", 3623 (longlong_t)tx->tx_txg); 3624 } 3625 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3626 ASSERT(scn->scn_clearing); 3627 3628 /* need to issue scrubbing IOs from per-vdev queues */ 3629 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3630 NULL, ZIO_FLAG_CANFAIL); 3631 scan_io_queues_run(scn); 3632 (void) zio_wait(scn->scn_zio_root); 3633 scn->scn_zio_root = NULL; 3634 3635 /* calculate and dprintf the current memory usage */ 3636 (void) dsl_scan_should_clear(scn); 3637 dsl_scan_update_stats(scn); 3638 3639 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " 3640 "(avg_block_size = %llu, avg_seg_size = %llu)", 3641 (longlong_t)scn->scn_zios_this_txg, 3642 (longlong_t)scn->scn_segs_this_txg, 3643 (longlong_t)NSEC2MSEC(gethrtime() - 3644 scn->scn_sync_start_time), 3645 (longlong_t)scn->scn_avg_zio_size_this_txg, 3646 (longlong_t)scn->scn_avg_seg_size_this_txg); 3647 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3648 /* Finished with everything. Mark the scrub as complete */ 3649 zfs_dbgmsg("scan issuing complete txg %llu", 3650 (longlong_t)tx->tx_txg); 3651 ASSERT3U(scn->scn_done_txg, !=, 0); 3652 ASSERT0(spa->spa_scrub_inflight); 3653 ASSERT0(scn->scn_bytes_pending); 3654 dsl_scan_done(scn, B_TRUE, tx); 3655 sync_type = SYNC_MANDATORY; 3656 } 3657 3658 dsl_scan_sync_state(scn, tx, sync_type); 3659 } 3660 3661 static void 3662 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3663 { 3664 int i; 3665 3666 /* 3667 * Don't count embedded bp's, since we already did the work of 3668 * scanning these when we scanned the containing block. 3669 */ 3670 if (BP_IS_EMBEDDED(bp)) 3671 return; 3672 3673 /* 3674 * Update the spa's stats on how many bytes we have issued. 3675 * Sequential scrubs create a zio for each DVA of the bp. Each 3676 * of these will include all DVAs for repair purposes, but the 3677 * zio code will only try the first one unless there is an issue. 3678 * Therefore, we should only count the first DVA for these IOs. 3679 */ 3680 if (scn->scn_is_sorted) { 3681 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3682 DVA_GET_ASIZE(&bp->blk_dva[0])); 3683 } else { 3684 spa_t *spa = scn->scn_dp->dp_spa; 3685 3686 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3687 atomic_add_64(&spa->spa_scan_pass_issued, 3688 DVA_GET_ASIZE(&bp->blk_dva[i])); 3689 } 3690 } 3691 3692 /* 3693 * If we resume after a reboot, zab will be NULL; don't record 3694 * incomplete stats in that case. 3695 */ 3696 if (zab == NULL) 3697 return; 3698 3699 mutex_enter(&zab->zab_lock); 3700 3701 for (i = 0; i < 4; i++) { 3702 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3703 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3704 if (t & DMU_OT_NEWTYPE) 3705 t = DMU_OT_OTHER; 3706 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3707 int equal; 3708 3709 zb->zb_count++; 3710 zb->zb_asize += BP_GET_ASIZE(bp); 3711 zb->zb_lsize += BP_GET_LSIZE(bp); 3712 zb->zb_psize += BP_GET_PSIZE(bp); 3713 zb->zb_gangs += BP_COUNT_GANG(bp); 3714 3715 switch (BP_GET_NDVAS(bp)) { 3716 case 2: 3717 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3718 DVA_GET_VDEV(&bp->blk_dva[1])) 3719 zb->zb_ditto_2_of_2_samevdev++; 3720 break; 3721 case 3: 3722 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3723 DVA_GET_VDEV(&bp->blk_dva[1])) + 3724 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3725 DVA_GET_VDEV(&bp->blk_dva[2])) + 3726 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3727 DVA_GET_VDEV(&bp->blk_dva[2])); 3728 if (equal == 1) 3729 zb->zb_ditto_2_of_3_samevdev++; 3730 else if (equal == 3) 3731 zb->zb_ditto_3_of_3_samevdev++; 3732 break; 3733 } 3734 } 3735 3736 mutex_exit(&zab->zab_lock); 3737 } 3738 3739 static void 3740 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3741 { 3742 avl_index_t idx; 3743 int64_t asize = SIO_GET_ASIZE(sio); 3744 dsl_scan_t *scn = queue->q_scn; 3745 3746 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3747 3748 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3749 /* block is already scheduled for reading */ 3750 atomic_add_64(&scn->scn_bytes_pending, -asize); 3751 sio_free(sio); 3752 return; 3753 } 3754 avl_insert(&queue->q_sios_by_addr, sio, idx); 3755 queue->q_sio_memused += SIO_GET_MUSED(sio); 3756 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3757 } 3758 3759 /* 3760 * Given all the info we got from our metadata scanning process, we 3761 * construct a scan_io_t and insert it into the scan sorting queue. The 3762 * I/O must already be suitable for us to process. This is controlled 3763 * by dsl_scan_enqueue(). 3764 */ 3765 static void 3766 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3767 int zio_flags, const zbookmark_phys_t *zb) 3768 { 3769 dsl_scan_t *scn = queue->q_scn; 3770 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3771 3772 ASSERT0(BP_IS_GANG(bp)); 3773 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3774 3775 bp2sio(bp, sio, dva_i); 3776 sio->sio_flags = zio_flags; 3777 sio->sio_zb = *zb; 3778 3779 /* 3780 * Increment the bytes pending counter now so that we can't 3781 * get an integer underflow in case the worker processes the 3782 * zio before we get to incrementing this counter. 3783 */ 3784 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3785 3786 scan_io_queue_insert_impl(queue, sio); 3787 } 3788 3789 /* 3790 * Given a set of I/O parameters as discovered by the metadata traversal 3791 * process, attempts to place the I/O into the sorted queues (if allowed), 3792 * or immediately executes the I/O. 3793 */ 3794 static void 3795 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3796 const zbookmark_phys_t *zb) 3797 { 3798 spa_t *spa = dp->dp_spa; 3799 3800 ASSERT(!BP_IS_EMBEDDED(bp)); 3801 3802 /* 3803 * Gang blocks are hard to issue sequentially, so we just issue them 3804 * here immediately instead of queuing them. 3805 */ 3806 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3807 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3808 return; 3809 } 3810 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3811 dva_t dva; 3812 vdev_t *vdev; 3813 3814 dva = bp->blk_dva[i]; 3815 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3816 ASSERT(vdev != NULL); 3817 3818 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3819 if (vdev->vdev_scan_io_queue == NULL) 3820 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3821 ASSERT(dp->dp_scan != NULL); 3822 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3823 i, zio_flags, zb); 3824 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3825 } 3826 } 3827 3828 static int 3829 dsl_scan_scrub_cb(dsl_pool_t *dp, 3830 const blkptr_t *bp, const zbookmark_phys_t *zb) 3831 { 3832 dsl_scan_t *scn = dp->dp_scan; 3833 spa_t *spa = dp->dp_spa; 3834 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3835 size_t psize = BP_GET_PSIZE(bp); 3836 boolean_t needs_io; 3837 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3838 int d; 3839 3840 if (phys_birth <= scn->scn_phys.scn_min_txg || 3841 phys_birth >= scn->scn_phys.scn_max_txg) { 3842 count_block(scn, dp->dp_blkstats, bp); 3843 return (0); 3844 } 3845 3846 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3847 ASSERT(!BP_IS_EMBEDDED(bp)); 3848 3849 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3850 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3851 zio_flags |= ZIO_FLAG_SCRUB; 3852 needs_io = B_TRUE; 3853 } else { 3854 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3855 zio_flags |= ZIO_FLAG_RESILVER; 3856 needs_io = B_FALSE; 3857 } 3858 3859 /* If it's an intent log block, failure is expected. */ 3860 if (zb->zb_level == ZB_ZIL_LEVEL) 3861 zio_flags |= ZIO_FLAG_SPECULATIVE; 3862 3863 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3864 const dva_t *dva = &bp->blk_dva[d]; 3865 3866 /* 3867 * Keep track of how much data we've examined so that 3868 * zpool(8) status can make useful progress reports. 3869 */ 3870 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3871 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3872 3873 /* if it's a resilver, this may not be in the target range */ 3874 if (!needs_io) 3875 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3876 phys_birth); 3877 } 3878 3879 if (needs_io && !zfs_no_scrub_io) { 3880 dsl_scan_enqueue(dp, bp, zio_flags, zb); 3881 } else { 3882 count_block(scn, dp->dp_blkstats, bp); 3883 } 3884 3885 /* do not relocate this block */ 3886 return (0); 3887 } 3888 3889 static void 3890 dsl_scan_scrub_done(zio_t *zio) 3891 { 3892 spa_t *spa = zio->io_spa; 3893 blkptr_t *bp = zio->io_bp; 3894 dsl_scan_io_queue_t *queue = zio->io_private; 3895 3896 abd_free(zio->io_abd); 3897 3898 if (queue == NULL) { 3899 mutex_enter(&spa->spa_scrub_lock); 3900 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 3901 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 3902 cv_broadcast(&spa->spa_scrub_io_cv); 3903 mutex_exit(&spa->spa_scrub_lock); 3904 } else { 3905 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 3906 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 3907 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 3908 cv_broadcast(&queue->q_zio_cv); 3909 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 3910 } 3911 3912 if (zio->io_error && (zio->io_error != ECKSUM || 3913 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 3914 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 3915 } 3916 } 3917 3918 /* 3919 * Given a scanning zio's information, executes the zio. The zio need 3920 * not necessarily be only sortable, this function simply executes the 3921 * zio, no matter what it is. The optional queue argument allows the 3922 * caller to specify that they want per top level vdev IO rate limiting 3923 * instead of the legacy global limiting. 3924 */ 3925 static void 3926 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3927 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 3928 { 3929 spa_t *spa = dp->dp_spa; 3930 dsl_scan_t *scn = dp->dp_scan; 3931 size_t size = BP_GET_PSIZE(bp); 3932 abd_t *data = abd_alloc_for_io(size, B_FALSE); 3933 3934 if (queue == NULL) { 3935 mutex_enter(&spa->spa_scrub_lock); 3936 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 3937 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3938 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 3939 mutex_exit(&spa->spa_scrub_lock); 3940 } else { 3941 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3942 3943 mutex_enter(q_lock); 3944 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 3945 cv_wait(&queue->q_zio_cv, q_lock); 3946 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 3947 mutex_exit(q_lock); 3948 } 3949 3950 count_block(dp->dp_scan, dp->dp_blkstats, bp); 3951 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, 3952 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 3953 } 3954 3955 /* 3956 * This is the primary extent sorting algorithm. We balance two parameters: 3957 * 1) how many bytes of I/O are in an extent 3958 * 2) how well the extent is filled with I/O (as a fraction of its total size) 3959 * Since we allow extents to have gaps between their constituent I/Os, it's 3960 * possible to have a fairly large extent that contains the same amount of 3961 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 3962 * The algorithm sorts based on a score calculated from the extent's size, 3963 * the relative fill volume (in %) and a "fill weight" parameter that controls 3964 * the split between whether we prefer larger extents or more well populated 3965 * extents: 3966 * 3967 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 3968 * 3969 * Example: 3970 * 1) assume extsz = 64 MiB 3971 * 2) assume fill = 32 MiB (extent is half full) 3972 * 3) assume fill_weight = 3 3973 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 3974 * SCORE = 32M + (50 * 3 * 32M) / 100 3975 * SCORE = 32M + (4800M / 100) 3976 * SCORE = 32M + 48M 3977 * ^ ^ 3978 * | +--- final total relative fill-based score 3979 * +--------- final total fill-based score 3980 * SCORE = 80M 3981 * 3982 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 3983 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 3984 * Note that as an optimization, we replace multiplication and division by 3985 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). 3986 */ 3987 static int 3988 ext_size_compare(const void *x, const void *y) 3989 { 3990 const range_seg_gap_t *rsa = x, *rsb = y; 3991 3992 uint64_t sa = rsa->rs_end - rsa->rs_start; 3993 uint64_t sb = rsb->rs_end - rsb->rs_start; 3994 uint64_t score_a, score_b; 3995 3996 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 3997 fill_weight * rsa->rs_fill) >> 7); 3998 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 3999 fill_weight * rsb->rs_fill) >> 7); 4000 4001 if (score_a > score_b) 4002 return (-1); 4003 if (score_a == score_b) { 4004 if (rsa->rs_start < rsb->rs_start) 4005 return (-1); 4006 if (rsa->rs_start == rsb->rs_start) 4007 return (0); 4008 return (1); 4009 } 4010 return (1); 4011 } 4012 4013 /* 4014 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4015 * based on LBA-order (from lowest to highest). 4016 */ 4017 static int 4018 sio_addr_compare(const void *x, const void *y) 4019 { 4020 const scan_io_t *a = x, *b = y; 4021 4022 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4023 } 4024 4025 /* IO queues are created on demand when they are needed. */ 4026 static dsl_scan_io_queue_t * 4027 scan_io_queue_create(vdev_t *vd) 4028 { 4029 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4030 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4031 4032 q->q_scn = scn; 4033 q->q_vd = vd; 4034 q->q_sio_memused = 0; 4035 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4036 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4037 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4038 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4039 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4040 4041 return (q); 4042 } 4043 4044 /* 4045 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4046 * No further execution of I/O occurs, anything pending in the queue is 4047 * simply freed without being executed. 4048 */ 4049 void 4050 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4051 { 4052 dsl_scan_t *scn = queue->q_scn; 4053 scan_io_t *sio; 4054 void *cookie = NULL; 4055 int64_t bytes_dequeued = 0; 4056 4057 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4058 4059 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4060 NULL) { 4061 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4062 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4063 bytes_dequeued += SIO_GET_ASIZE(sio); 4064 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4065 sio_free(sio); 4066 } 4067 4068 ASSERT0(queue->q_sio_memused); 4069 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4070 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4071 range_tree_destroy(queue->q_exts_by_addr); 4072 avl_destroy(&queue->q_sios_by_addr); 4073 cv_destroy(&queue->q_zio_cv); 4074 4075 kmem_free(queue, sizeof (*queue)); 4076 } 4077 4078 /* 4079 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4080 * called on behalf of vdev_top_transfer when creating or destroying 4081 * a mirror vdev due to zpool attach/detach. 4082 */ 4083 void 4084 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4085 { 4086 mutex_enter(&svd->vdev_scan_io_queue_lock); 4087 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4088 4089 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4090 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4091 svd->vdev_scan_io_queue = NULL; 4092 if (tvd->vdev_scan_io_queue != NULL) 4093 tvd->vdev_scan_io_queue->q_vd = tvd; 4094 4095 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4096 mutex_exit(&svd->vdev_scan_io_queue_lock); 4097 } 4098 4099 static void 4100 scan_io_queues_destroy(dsl_scan_t *scn) 4101 { 4102 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4103 4104 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4105 vdev_t *tvd = rvd->vdev_child[i]; 4106 4107 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4108 if (tvd->vdev_scan_io_queue != NULL) 4109 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4110 tvd->vdev_scan_io_queue = NULL; 4111 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4112 } 4113 } 4114 4115 static void 4116 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4117 { 4118 dsl_pool_t *dp = spa->spa_dsl_pool; 4119 dsl_scan_t *scn = dp->dp_scan; 4120 vdev_t *vdev; 4121 kmutex_t *q_lock; 4122 dsl_scan_io_queue_t *queue; 4123 scan_io_t *srch_sio, *sio; 4124 avl_index_t idx; 4125 uint64_t start, size; 4126 4127 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4128 ASSERT(vdev != NULL); 4129 q_lock = &vdev->vdev_scan_io_queue_lock; 4130 queue = vdev->vdev_scan_io_queue; 4131 4132 mutex_enter(q_lock); 4133 if (queue == NULL) { 4134 mutex_exit(q_lock); 4135 return; 4136 } 4137 4138 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4139 bp2sio(bp, srch_sio, dva_i); 4140 start = SIO_GET_OFFSET(srch_sio); 4141 size = SIO_GET_ASIZE(srch_sio); 4142 4143 /* 4144 * We can find the zio in two states: 4145 * 1) Cold, just sitting in the queue of zio's to be issued at 4146 * some point in the future. In this case, all we do is 4147 * remove the zio from the q_sios_by_addr tree, decrement 4148 * its data volume from the containing range_seg_t and 4149 * resort the q_exts_by_size tree to reflect that the 4150 * range_seg_t has lost some of its 'fill'. We don't shorten 4151 * the range_seg_t - this is usually rare enough not to be 4152 * worth the extra hassle of trying keep track of precise 4153 * extent boundaries. 4154 * 2) Hot, where the zio is currently in-flight in 4155 * dsl_scan_issue_ios. In this case, we can't simply 4156 * reach in and stop the in-flight zio's, so we instead 4157 * block the caller. Eventually, dsl_scan_issue_ios will 4158 * be done with issuing the zio's it gathered and will 4159 * signal us. 4160 */ 4161 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4162 sio_free(srch_sio); 4163 4164 if (sio != NULL) { 4165 int64_t asize = SIO_GET_ASIZE(sio); 4166 blkptr_t tmpbp; 4167 4168 /* Got it while it was cold in the queue */ 4169 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4170 ASSERT3U(size, ==, asize); 4171 avl_remove(&queue->q_sios_by_addr, sio); 4172 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4173 4174 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4175 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4176 4177 /* 4178 * We only update scn_bytes_pending in the cold path, 4179 * otherwise it will already have been accounted for as 4180 * part of the zio's execution. 4181 */ 4182 atomic_add_64(&scn->scn_bytes_pending, -asize); 4183 4184 /* count the block as though we issued it */ 4185 sio2bp(sio, &tmpbp); 4186 count_block(scn, dp->dp_blkstats, &tmpbp); 4187 4188 sio_free(sio); 4189 } 4190 mutex_exit(q_lock); 4191 } 4192 4193 /* 4194 * Callback invoked when a zio_free() zio is executing. This needs to be 4195 * intercepted to prevent the zio from deallocating a particular portion 4196 * of disk space and it then getting reallocated and written to, while we 4197 * still have it queued up for processing. 4198 */ 4199 void 4200 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4201 { 4202 dsl_pool_t *dp = spa->spa_dsl_pool; 4203 dsl_scan_t *scn = dp->dp_scan; 4204 4205 ASSERT(!BP_IS_EMBEDDED(bp)); 4206 ASSERT(scn != NULL); 4207 if (!dsl_scan_is_running(scn)) 4208 return; 4209 4210 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4211 dsl_scan_freed_dva(spa, bp, i); 4212 } 4213 4214 /* 4215 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4216 * not started, start it. Otherwise, only restart if max txg in DTL range is 4217 * greater than the max txg in the current scan. If the DTL max is less than 4218 * the scan max, then the vdev has not missed any new data since the resilver 4219 * started, so a restart is not needed. 4220 */ 4221 void 4222 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4223 { 4224 uint64_t min, max; 4225 4226 if (!vdev_resilver_needed(vd, &min, &max)) 4227 return; 4228 4229 if (!dsl_scan_resilvering(dp)) { 4230 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4231 return; 4232 } 4233 4234 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4235 return; 4236 4237 /* restart is needed, check if it can be deferred */ 4238 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4239 vdev_defer_resilver(vd); 4240 else 4241 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4242 } 4243