1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 26 * Copyright 2017 Joyent, Inc. 27 * Copyright (c) 2017 Datto Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 124 uint64_t *txg); 125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 128 129 extern int zfs_vdev_async_write_active_min_dirty_percent; 130 131 /* 132 * By default zfs will check to ensure it is not over the hard memory 133 * limit before each txg. If finer-grained control of this is needed 134 * this value can be set to 1 to enable checking before scanning each 135 * block. 136 */ 137 int zfs_scan_strict_mem_lim = B_FALSE; 138 139 /* 140 * Maximum number of parallelly executing I/Os per top-level vdev. 141 * Tune with care. Very high settings (hundreds) are known to trigger 142 * some firmware bugs and resets on certain SSDs. 143 */ 144 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ 145 unsigned int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ 146 unsigned int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ 147 unsigned int zfs_scan_idle = 50; /* idle window in clock ticks */ 148 149 /* 150 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 151 * to strike a balance here between keeping the vdev queues full of I/Os 152 * at all times and not overflowing the queues to cause long latency, 153 * which would cause long txg sync times. No matter what, we will not 154 * overload the drives with I/O, since that is protected by 155 * zfs_vdev_scrub_max_active. 156 */ 157 unsigned long zfs_scan_vdev_limit = 4 << 20; 158 159 int zfs_scan_issue_strategy = 0; 160 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 161 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 162 163 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ 164 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) 165 166 /* 167 * fill_weight is non-tunable at runtime, so we copy it at module init from 168 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 169 * break queue sorting. 170 */ 171 uint64_t zfs_scan_fill_weight = 3; 172 static uint64_t fill_weight; 173 174 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 175 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 177 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 178 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 179 180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 182 /* min millisecs to obsolete per txg */ 183 unsigned int zfs_obsolete_min_time_ms = 500; 184 /* min millisecs to resilver per txg */ 185 unsigned int zfs_resilver_min_time_ms = 3000; 186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 190 /* max number of blocks to free in a single TXG */ 191 uint64_t zfs_async_block_max_blocks = UINT64_MAX; 192 193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 194 195 /* 196 * We wait a few txgs after importing a pool to begin scanning so that 197 * the import / mounting code isn't held up by scrub / resilver IO. 198 * Unfortunately, it is a bit difficult to determine exactly how long 199 * this will take since userspace will trigger fs mounts asynchronously 200 * and the kernel will create zvol minors asynchronously. As a result, 201 * the value provided here is a bit arbitrary, but represents a 202 * reasonable estimate of how many txgs it will take to finish fully 203 * importing a pool 204 */ 205 #define SCAN_IMPORT_WAIT_TXGS 5 206 207 208 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 209 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 210 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 211 212 extern int zfs_txg_timeout; 213 214 /* 215 * Enable/disable the processing of the free_bpobj object. 216 */ 217 boolean_t zfs_free_bpobj_enabled = B_TRUE; 218 219 /* the order has to match pool_scan_type */ 220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 221 NULL, 222 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 223 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 224 }; 225 226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 227 typedef struct { 228 uint64_t sds_dsobj; 229 uint64_t sds_txg; 230 avl_node_t sds_node; 231 } scan_ds_t; 232 233 /* 234 * This controls what conditions are placed on dsl_scan_sync_state(): 235 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 236 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 237 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 238 * write out the scn_phys_cached version. 239 * See dsl_scan_sync_state for details. 240 */ 241 typedef enum { 242 SYNC_OPTIONAL, 243 SYNC_MANDATORY, 244 SYNC_CACHED 245 } state_sync_type_t; 246 247 /* 248 * This struct represents the minimum information needed to reconstruct a 249 * zio for sequential scanning. This is useful because many of these will 250 * accumulate in the sequential IO queues before being issued, so saving 251 * memory matters here. 252 */ 253 typedef struct scan_io { 254 /* fields from blkptr_t */ 255 uint64_t sio_blk_prop; 256 uint64_t sio_phys_birth; 257 uint64_t sio_birth; 258 zio_cksum_t sio_cksum; 259 uint32_t sio_nr_dvas; 260 261 /* fields from zio_t */ 262 uint32_t sio_flags; 263 zbookmark_phys_t sio_zb; 264 265 /* members for queue sorting */ 266 union { 267 avl_node_t sio_addr_node; /* link into issuing queue */ 268 list_node_t sio_list_node; /* link for issuing to disk */ 269 } sio_nodes; 270 271 /* 272 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 273 * depending on how many were in the original bp. Only the 274 * first DVA is really used for sorting and issuing purposes. 275 * The other DVAs (if provided) simply exist so that the zio 276 * layer can find additional copies to repair from in the 277 * event of an error. This array must go at the end of the 278 * struct to allow this for the variable number of elements. 279 */ 280 dva_t sio_dva[0]; 281 } scan_io_t; 282 283 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 284 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 285 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 286 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 287 #define SIO_GET_END_OFFSET(sio) \ 288 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 289 #define SIO_GET_MUSED(sio) \ 290 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 291 292 struct dsl_scan_io_queue { 293 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 294 vdev_t *q_vd; /* top-level vdev that this queue represents */ 295 296 /* trees used for sorting I/Os and extents of I/Os */ 297 range_tree_t *q_exts_by_addr; 298 avl_tree_t q_exts_by_size; 299 avl_tree_t q_sios_by_addr; 300 uint64_t q_sio_memused; 301 302 /* members for zio rate limiting */ 303 uint64_t q_maxinflight_bytes; 304 uint64_t q_inflight_bytes; 305 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 306 307 /* per txg statistics */ 308 uint64_t q_total_seg_size_this_txg; 309 uint64_t q_segs_this_txg; 310 uint64_t q_total_zio_size_this_txg; 311 uint64_t q_zios_this_txg; 312 }; 313 314 /* private data for dsl_scan_prefetch_cb() */ 315 typedef struct scan_prefetch_ctx { 316 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 317 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 318 boolean_t spc_root; /* is this prefetch for an objset? */ 319 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 320 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 321 } scan_prefetch_ctx_t; 322 323 /* private data for dsl_scan_prefetch() */ 324 typedef struct scan_prefetch_issue_ctx { 325 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 326 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 327 blkptr_t spic_bp; /* bp to prefetch */ 328 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 329 } scan_prefetch_issue_ctx_t; 330 331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 332 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 334 scan_io_t *sio); 335 336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 337 static void scan_io_queues_destroy(dsl_scan_t *scn); 338 339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 340 341 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 342 static void 343 sio_free(scan_io_t *sio) 344 { 345 ASSERT3U(sio->sio_nr_dvas, >, 0); 346 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 347 348 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 349 } 350 351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 352 static scan_io_t * 353 sio_alloc(unsigned short nr_dvas) 354 { 355 ASSERT3U(nr_dvas, >, 0); 356 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 357 358 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 359 } 360 361 void 362 scan_init(void) 363 { 364 /* 365 * This is used in ext_size_compare() to weight segments 366 * based on how sparse they are. This cannot be changed 367 * mid-scan and the tree comparison functions don't currently 368 * have a mechansim for passing additional context to the 369 * compare functions. Thus we store this value globally and 370 * we only allow it to be set at module intiailization time 371 */ 372 fill_weight = zfs_scan_fill_weight; 373 374 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 375 char name[36]; 376 377 (void) sprintf(name, "sio_cache_%d", i); 378 sio_cache[i] = kmem_cache_create(name, 379 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 380 0, NULL, NULL, NULL, NULL, NULL, 0); 381 } 382 } 383 384 void 385 scan_fini(void) 386 { 387 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 388 kmem_cache_destroy(sio_cache[i]); 389 } 390 } 391 392 static inline boolean_t 393 dsl_scan_is_running(const dsl_scan_t *scn) 394 { 395 return (scn->scn_phys.scn_state == DSS_SCANNING); 396 } 397 398 boolean_t 399 dsl_scan_resilvering(dsl_pool_t *dp) 400 { 401 return (dsl_scan_is_running(dp->dp_scan) && 402 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 403 } 404 405 static inline void 406 sio2bp(const scan_io_t *sio, blkptr_t *bp) 407 { 408 bzero(bp, sizeof (*bp)); 409 bp->blk_prop = sio->sio_blk_prop; 410 bp->blk_phys_birth = sio->sio_phys_birth; 411 bp->blk_birth = sio->sio_birth; 412 bp->blk_fill = 1; /* we always only work with data pointers */ 413 bp->blk_cksum = sio->sio_cksum; 414 415 ASSERT3U(sio->sio_nr_dvas, >, 0); 416 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 417 418 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 419 } 420 421 static inline void 422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 423 { 424 sio->sio_blk_prop = bp->blk_prop; 425 sio->sio_phys_birth = bp->blk_phys_birth; 426 sio->sio_birth = bp->blk_birth; 427 sio->sio_cksum = bp->blk_cksum; 428 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 429 430 /* 431 * Copy the DVAs to the sio. We need all copies of the block so 432 * that the self healing code can use the alternate copies if the 433 * first is corrupted. We want the DVA at index dva_i to be first 434 * in the sio since this is the primary one that we want to issue. 435 */ 436 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 437 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 438 } 439 } 440 441 int 442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 443 { 444 int err; 445 dsl_scan_t *scn; 446 spa_t *spa = dp->dp_spa; 447 uint64_t f; 448 449 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 450 scn->scn_dp = dp; 451 452 /* 453 * It's possible that we're resuming a scan after a reboot so 454 * make sure that the scan_async_destroying flag is initialized 455 * appropriately. 456 */ 457 ASSERT(!scn->scn_async_destroying); 458 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 459 SPA_FEATURE_ASYNC_DESTROY); 460 461 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 462 offsetof(scan_ds_t, sds_node)); 463 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 464 sizeof (scan_prefetch_issue_ctx_t), 465 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 466 467 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 468 "scrub_func", sizeof (uint64_t), 1, &f); 469 if (err == 0) { 470 /* 471 * There was an old-style scrub in progress. Restart a 472 * new-style scrub from the beginning. 473 */ 474 scn->scn_restart_txg = txg; 475 zfs_dbgmsg("old-style scrub was in progress; " 476 "restarting new-style scrub in txg %llu", 477 (longlong_t)scn->scn_restart_txg); 478 479 /* 480 * Load the queue obj from the old location so that it 481 * can be freed by dsl_scan_done(). 482 */ 483 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 484 "scrub_queue", sizeof (uint64_t), 1, 485 &scn->scn_phys.scn_queue_obj); 486 } else { 487 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 488 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 489 &scn->scn_phys); 490 491 /* 492 * Detect if the pool contains the signature of #2094. If it 493 * does properly update the scn->scn_phys structure and notify 494 * the administrator by setting an errata for the pool. 495 */ 496 if (err == EOVERFLOW) { 497 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 498 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 499 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 500 (23 * sizeof (uint64_t))); 501 502 err = zap_lookup(dp->dp_meta_objset, 503 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 504 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 505 if (err == 0) { 506 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 507 508 if (overflow & ~DSF_VISIT_DS_AGAIN || 509 scn->scn_async_destroying) { 510 spa->spa_errata = 511 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 512 return (EOVERFLOW); 513 } 514 515 bcopy(zaptmp, &scn->scn_phys, 516 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 517 scn->scn_phys.scn_flags = overflow; 518 519 /* Required scrub already in progress. */ 520 if (scn->scn_phys.scn_state == DSS_FINISHED || 521 scn->scn_phys.scn_state == DSS_CANCELED) 522 spa->spa_errata = 523 ZPOOL_ERRATA_ZOL_2094_SCRUB; 524 } 525 } 526 527 if (err == ENOENT) 528 return (0); 529 else if (err) 530 return (err); 531 532 /* 533 * We might be restarting after a reboot, so jump the issued 534 * counter to how far we've scanned. We know we're consistent 535 * up to here. 536 */ 537 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 538 539 if (dsl_scan_is_running(scn) && 540 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 541 /* 542 * A new-type scrub was in progress on an old 543 * pool, and the pool was accessed by old 544 * software. Restart from the beginning, since 545 * the old software may have changed the pool in 546 * the meantime. 547 */ 548 scn->scn_restart_txg = txg; 549 zfs_dbgmsg("new-style scrub was modified " 550 "by old software; restarting in txg %llu", 551 (longlong_t)scn->scn_restart_txg); 552 } 553 } 554 555 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 556 557 /* reload the queue into the in-core state */ 558 if (scn->scn_phys.scn_queue_obj != 0) { 559 zap_cursor_t zc; 560 zap_attribute_t za; 561 562 for (zap_cursor_init(&zc, dp->dp_meta_objset, 563 scn->scn_phys.scn_queue_obj); 564 zap_cursor_retrieve(&zc, &za) == 0; 565 (void) zap_cursor_advance(&zc)) { 566 scan_ds_queue_insert(scn, 567 zfs_strtonum(za.za_name, NULL), 568 za.za_first_integer); 569 } 570 zap_cursor_fini(&zc); 571 } 572 573 spa_scan_stat_init(spa); 574 return (0); 575 } 576 577 void 578 dsl_scan_fini(dsl_pool_t *dp) 579 { 580 if (dp->dp_scan != NULL) { 581 dsl_scan_t *scn = dp->dp_scan; 582 583 if (scn->scn_taskq != NULL) 584 taskq_destroy(scn->scn_taskq); 585 scan_ds_queue_clear(scn); 586 avl_destroy(&scn->scn_queue); 587 avl_destroy(&scn->scn_prefetch_queue); 588 589 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 590 dp->dp_scan = NULL; 591 } 592 } 593 594 static boolean_t 595 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 596 { 597 return (scn->scn_restart_txg != 0 && 598 scn->scn_restart_txg <= tx->tx_txg); 599 } 600 601 boolean_t 602 dsl_scan_scrubbing(const dsl_pool_t *dp) 603 { 604 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 605 606 return (scn_phys->scn_state == DSS_SCANNING && 607 scn_phys->scn_func == POOL_SCAN_SCRUB); 608 } 609 610 boolean_t 611 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 612 { 613 return (dsl_scan_scrubbing(scn->scn_dp) && 614 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 615 } 616 617 /* 618 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 619 * Because we can be running in the block sorting algorithm, we do not always 620 * want to write out the record, only when it is "safe" to do so. This safety 621 * condition is achieved by making sure that the sorting queues are empty 622 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 623 * is inconsistent with how much actual scanning progress has been made. The 624 * kind of sync to be performed is specified by the sync_type argument. If the 625 * sync is optional, we only sync if the queues are empty. If the sync is 626 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 627 * third possible state is a "cached" sync. This is done in response to: 628 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 629 * destroyed, so we wouldn't be able to restart scanning from it. 630 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 631 * superseded by a newer snapshot. 632 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 633 * swapped with its clone. 634 * In all cases, a cached sync simply rewrites the last record we've written, 635 * just slightly modified. For the modifications that are performed to the 636 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 637 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 638 */ 639 static void 640 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 641 { 642 int i; 643 spa_t *spa = scn->scn_dp->dp_spa; 644 645 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 646 if (scn->scn_bytes_pending == 0) { 647 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 648 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 649 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 650 651 if (q == NULL) 652 continue; 653 654 mutex_enter(&vd->vdev_scan_io_queue_lock); 655 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 656 ASSERT3P(avl_first(&q->q_exts_by_size), ==, NULL); 657 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 658 mutex_exit(&vd->vdev_scan_io_queue_lock); 659 } 660 661 if (scn->scn_phys.scn_queue_obj != 0) 662 scan_ds_queue_sync(scn, tx); 663 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 664 DMU_POOL_DIRECTORY_OBJECT, 665 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 666 &scn->scn_phys, tx)); 667 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 668 sizeof (scn->scn_phys)); 669 670 if (scn->scn_checkpointing) 671 zfs_dbgmsg("finish scan checkpoint"); 672 673 scn->scn_checkpointing = B_FALSE; 674 scn->scn_last_checkpoint = ddi_get_lbolt(); 675 } else if (sync_type == SYNC_CACHED) { 676 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 677 DMU_POOL_DIRECTORY_OBJECT, 678 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 679 &scn->scn_phys_cached, tx)); 680 } 681 } 682 683 /* ARGSUSED */ 684 static int 685 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 686 { 687 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 688 689 if (dsl_scan_is_running(scn)) 690 return (SET_ERROR(EBUSY)); 691 692 return (0); 693 } 694 695 static void 696 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 697 { 698 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 699 pool_scan_func_t *funcp = arg; 700 dmu_object_type_t ot = 0; 701 dsl_pool_t *dp = scn->scn_dp; 702 spa_t *spa = dp->dp_spa; 703 704 ASSERT(!dsl_scan_is_running(scn)); 705 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 706 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 707 scn->scn_phys.scn_func = *funcp; 708 scn->scn_phys.scn_state = DSS_SCANNING; 709 scn->scn_phys.scn_min_txg = 0; 710 scn->scn_phys.scn_max_txg = tx->tx_txg; 711 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 712 scn->scn_phys.scn_start_time = gethrestime_sec(); 713 scn->scn_phys.scn_errors = 0; 714 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 715 scn->scn_issued_before_pass = 0; 716 scn->scn_restart_txg = 0; 717 scn->scn_done_txg = 0; 718 scn->scn_last_checkpoint = 0; 719 scn->scn_checkpointing = B_FALSE; 720 spa_scan_stat_init(spa); 721 722 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 723 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 724 725 /* rewrite all disk labels */ 726 vdev_config_dirty(spa->spa_root_vdev); 727 728 if (vdev_resilver_needed(spa->spa_root_vdev, 729 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 730 spa_event_notify(spa, NULL, NULL, 731 ESC_ZFS_RESILVER_START); 732 } else { 733 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 734 } 735 736 spa->spa_scrub_started = B_TRUE; 737 /* 738 * If this is an incremental scrub, limit the DDT scrub phase 739 * to just the auto-ditto class (for correctness); the rest 740 * of the scrub should go faster using top-down pruning. 741 */ 742 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 743 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 744 745 } 746 747 /* back to the generic stuff */ 748 749 if (dp->dp_blkstats == NULL) { 750 dp->dp_blkstats = 751 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 752 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 753 MUTEX_DEFAULT, NULL); 754 } 755 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 756 757 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 758 ot = DMU_OT_ZAP_OTHER; 759 760 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 761 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 762 763 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 764 765 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 766 767 spa_history_log_internal(spa, "scan setup", tx, 768 "func=%u mintxg=%llu maxtxg=%llu", 769 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); 770 } 771 772 /* 773 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 774 * Can also be called to resume a paused scrub. 775 */ 776 int 777 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 778 { 779 spa_t *spa = dp->dp_spa; 780 dsl_scan_t *scn = dp->dp_scan; 781 782 /* 783 * Purge all vdev caches and probe all devices. We do this here 784 * rather than in sync context because this requires a writer lock 785 * on the spa_config lock, which we can't do from sync context. The 786 * spa_scrub_reopen flag indicates that vdev_open() should not 787 * attempt to start another scrub. 788 */ 789 spa_vdev_state_enter(spa, SCL_NONE); 790 spa->spa_scrub_reopen = B_TRUE; 791 vdev_reopen(spa->spa_root_vdev); 792 spa->spa_scrub_reopen = B_FALSE; 793 (void) spa_vdev_state_exit(spa, NULL, 0); 794 795 if (func == POOL_SCAN_RESILVER) { 796 dsl_resilver_restart(spa->spa_dsl_pool, 0); 797 return (0); 798 } 799 800 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 801 /* got scrub start cmd, resume paused scrub */ 802 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 803 POOL_SCRUB_NORMAL); 804 if (err == 0) { 805 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 806 return (ECANCELED); 807 } 808 return (SET_ERROR(err)); 809 } 810 811 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 812 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 813 } 814 815 /* 816 * Sets the resilver defer flag to B_FALSE on all leaf devs under vd. Returns 817 * B_TRUE if we have devices that need to be resilvered and are available to 818 * accept resilver I/Os. 819 */ 820 static boolean_t 821 dsl_scan_clear_deferred(vdev_t *vd, dmu_tx_t *tx) 822 { 823 boolean_t resilver_needed = B_FALSE; 824 spa_t *spa = vd->vdev_spa; 825 826 for (int c = 0; c < vd->vdev_children; c++) { 827 resilver_needed |= 828 dsl_scan_clear_deferred(vd->vdev_child[c], tx); 829 } 830 831 if (vd == spa->spa_root_vdev && 832 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 833 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 834 vdev_config_dirty(vd); 835 spa->spa_resilver_deferred = B_FALSE; 836 return (resilver_needed); 837 } 838 839 if (!vdev_is_concrete(vd) || vd->vdev_aux || 840 !vd->vdev_ops->vdev_op_leaf) 841 return (resilver_needed); 842 843 if (vd->vdev_resilver_deferred) 844 vd->vdev_resilver_deferred = B_FALSE; 845 846 return (!vdev_is_dead(vd) && !vd->vdev_offline && 847 vdev_resilver_needed(vd, NULL, NULL)); 848 } 849 850 /* ARGSUSED */ 851 static void 852 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 853 { 854 static const char *old_names[] = { 855 "scrub_bookmark", 856 "scrub_ddt_bookmark", 857 "scrub_ddt_class_max", 858 "scrub_queue", 859 "scrub_min_txg", 860 "scrub_max_txg", 861 "scrub_func", 862 "scrub_errors", 863 NULL 864 }; 865 866 dsl_pool_t *dp = scn->scn_dp; 867 spa_t *spa = dp->dp_spa; 868 int i; 869 870 /* Remove any remnants of an old-style scrub. */ 871 for (i = 0; old_names[i]; i++) { 872 (void) zap_remove(dp->dp_meta_objset, 873 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 874 } 875 876 if (scn->scn_phys.scn_queue_obj != 0) { 877 VERIFY0(dmu_object_free(dp->dp_meta_objset, 878 scn->scn_phys.scn_queue_obj, tx)); 879 scn->scn_phys.scn_queue_obj = 0; 880 } 881 scan_ds_queue_clear(scn); 882 883 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 884 885 /* 886 * If we were "restarted" from a stopped state, don't bother 887 * with anything else. 888 */ 889 if (!dsl_scan_is_running(scn)) { 890 ASSERT(!scn->scn_is_sorted); 891 return; 892 } 893 894 if (scn->scn_is_sorted) { 895 scan_io_queues_destroy(scn); 896 scn->scn_is_sorted = B_FALSE; 897 898 if (scn->scn_taskq != NULL) { 899 taskq_destroy(scn->scn_taskq); 900 scn->scn_taskq = NULL; 901 } 902 } 903 904 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 905 906 if (dsl_scan_restarting(scn, tx)) 907 spa_history_log_internal(spa, "scan aborted, restarting", tx, 908 "errors=%llu", spa_get_errlog_size(spa)); 909 else if (!complete) 910 spa_history_log_internal(spa, "scan cancelled", tx, 911 "errors=%llu", spa_get_errlog_size(spa)); 912 else 913 spa_history_log_internal(spa, "scan done", tx, 914 "errors=%llu", spa_get_errlog_size(spa)); 915 916 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 917 spa->spa_scrub_started = B_FALSE; 918 spa->spa_scrub_active = B_FALSE; 919 920 /* 921 * If the scrub/resilver completed, update all DTLs to 922 * reflect this. Whether it succeeded or not, vacate 923 * all temporary scrub DTLs. 924 * 925 * As the scrub does not currently support traversing 926 * data that have been freed but are part of a checkpoint, 927 * we don't mark the scrub as done in the DTLs as faults 928 * may still exist in those vdevs. 929 */ 930 if (complete && 931 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 932 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 933 scn->scn_phys.scn_max_txg, B_TRUE); 934 935 spa_event_notify(spa, NULL, NULL, 936 scn->scn_phys.scn_min_txg ? 937 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); 938 } else { 939 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 940 0, B_TRUE); 941 } 942 spa_errlog_rotate(spa); 943 944 /* 945 * We may have finished replacing a device. 946 * Let the async thread assess this and handle the detach. 947 */ 948 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 949 950 /* 951 * Clear any deferred_resilver flags in the config. 952 * If there are drives that need resilvering, kick 953 * off an asynchronous request to start resilver. 954 * dsl_scan_clear_deferred() may update the config 955 * before the resilver can restart. In the event of 956 * a crash during this period, the spa loading code 957 * will find the drives that need to be resilvered 958 * when the machine reboots and start the resilver then. 959 */ 960 boolean_t resilver_needed = 961 dsl_scan_clear_deferred(spa->spa_root_vdev, tx); 962 if (resilver_needed) { 963 spa_history_log_internal(spa, 964 "starting deferred resilver", tx, 965 "errors=%llu", spa_get_errlog_size(spa)); 966 spa_async_request(spa, SPA_ASYNC_RESILVER); 967 } 968 } 969 970 scn->scn_phys.scn_end_time = gethrestime_sec(); 971 972 ASSERT(!dsl_scan_is_running(scn)); 973 } 974 975 /* ARGSUSED */ 976 static int 977 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 978 { 979 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 980 981 if (!dsl_scan_is_running(scn)) 982 return (SET_ERROR(ENOENT)); 983 return (0); 984 } 985 986 /* ARGSUSED */ 987 static void 988 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 989 { 990 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 991 992 dsl_scan_done(scn, B_FALSE, tx); 993 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 994 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 995 } 996 997 int 998 dsl_scan_cancel(dsl_pool_t *dp) 999 { 1000 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1001 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1002 } 1003 1004 static int 1005 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1006 { 1007 pool_scrub_cmd_t *cmd = arg; 1008 dsl_pool_t *dp = dmu_tx_pool(tx); 1009 dsl_scan_t *scn = dp->dp_scan; 1010 1011 if (*cmd == POOL_SCRUB_PAUSE) { 1012 /* can't pause a scrub when there is no in-progress scrub */ 1013 if (!dsl_scan_scrubbing(dp)) 1014 return (SET_ERROR(ENOENT)); 1015 1016 /* can't pause a paused scrub */ 1017 if (dsl_scan_is_paused_scrub(scn)) 1018 return (SET_ERROR(EBUSY)); 1019 } else if (*cmd != POOL_SCRUB_NORMAL) { 1020 return (SET_ERROR(ENOTSUP)); 1021 } 1022 1023 return (0); 1024 } 1025 1026 static void 1027 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1028 { 1029 pool_scrub_cmd_t *cmd = arg; 1030 dsl_pool_t *dp = dmu_tx_pool(tx); 1031 spa_t *spa = dp->dp_spa; 1032 dsl_scan_t *scn = dp->dp_scan; 1033 1034 if (*cmd == POOL_SCRUB_PAUSE) { 1035 /* can't pause a scrub when there is no in-progress scrub */ 1036 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1037 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1038 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1039 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1040 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1041 } else { 1042 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1043 if (dsl_scan_is_paused_scrub(scn)) { 1044 /* 1045 * We need to keep track of how much time we spend 1046 * paused per pass so that we can adjust the scrub rate 1047 * shown in the output of 'zpool status' 1048 */ 1049 spa->spa_scan_pass_scrub_spent_paused += 1050 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1051 spa->spa_scan_pass_scrub_pause = 0; 1052 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1053 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1054 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1055 } 1056 } 1057 } 1058 1059 /* 1060 * Set scrub pause/resume state if it makes sense to do so 1061 */ 1062 int 1063 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1064 { 1065 return (dsl_sync_task(spa_name(dp->dp_spa), 1066 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1067 ZFS_SPACE_CHECK_RESERVED)); 1068 } 1069 1070 1071 /* start a new scan, or restart an existing one. */ 1072 void 1073 dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg) 1074 { 1075 if (txg == 0) { 1076 dmu_tx_t *tx; 1077 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1078 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1079 1080 txg = dmu_tx_get_txg(tx); 1081 dp->dp_scan->scn_restart_txg = txg; 1082 dmu_tx_commit(tx); 1083 } else { 1084 dp->dp_scan->scn_restart_txg = txg; 1085 } 1086 zfs_dbgmsg("restarting resilver txg=%llu", txg); 1087 } 1088 1089 void 1090 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1091 { 1092 zio_free(dp->dp_spa, txg, bp); 1093 } 1094 1095 void 1096 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1097 { 1098 ASSERT(dsl_pool_sync_context(dp)); 1099 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1100 } 1101 1102 static int 1103 scan_ds_queue_compare(const void *a, const void *b) 1104 { 1105 const scan_ds_t *sds_a = a, *sds_b = b; 1106 1107 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1108 return (-1); 1109 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1110 return (0); 1111 return (1); 1112 } 1113 1114 static void 1115 scan_ds_queue_clear(dsl_scan_t *scn) 1116 { 1117 void *cookie = NULL; 1118 scan_ds_t *sds; 1119 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1120 kmem_free(sds, sizeof (*sds)); 1121 } 1122 } 1123 1124 static boolean_t 1125 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1126 { 1127 scan_ds_t srch, *sds; 1128 1129 srch.sds_dsobj = dsobj; 1130 sds = avl_find(&scn->scn_queue, &srch, NULL); 1131 if (sds != NULL && txg != NULL) 1132 *txg = sds->sds_txg; 1133 return (sds != NULL); 1134 } 1135 1136 static void 1137 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1138 { 1139 scan_ds_t *sds; 1140 avl_index_t where; 1141 1142 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1143 sds->sds_dsobj = dsobj; 1144 sds->sds_txg = txg; 1145 1146 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1147 avl_insert(&scn->scn_queue, sds, where); 1148 } 1149 1150 static void 1151 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1152 { 1153 scan_ds_t srch, *sds; 1154 1155 srch.sds_dsobj = dsobj; 1156 1157 sds = avl_find(&scn->scn_queue, &srch, NULL); 1158 VERIFY(sds != NULL); 1159 avl_remove(&scn->scn_queue, sds); 1160 kmem_free(sds, sizeof (*sds)); 1161 } 1162 1163 static void 1164 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1165 { 1166 dsl_pool_t *dp = scn->scn_dp; 1167 spa_t *spa = dp->dp_spa; 1168 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1169 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1170 1171 ASSERT0(scn->scn_bytes_pending); 1172 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1173 1174 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1175 scn->scn_phys.scn_queue_obj, tx)); 1176 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1177 DMU_OT_NONE, 0, tx); 1178 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1179 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1180 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1181 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1182 sds->sds_txg, tx)); 1183 } 1184 } 1185 1186 /* 1187 * Computes the memory limit state that we're currently in. A sorted scan 1188 * needs quite a bit of memory to hold the sorting queue, so we need to 1189 * reasonably constrain the size so it doesn't impact overall system 1190 * performance. We compute two limits: 1191 * 1) Hard memory limit: if the amount of memory used by the sorting 1192 * queues on a pool gets above this value, we stop the metadata 1193 * scanning portion and start issuing the queued up and sorted 1194 * I/Os to reduce memory usage. 1195 * This limit is calculated as a fraction of physmem (by default 5%). 1196 * We constrain the lower bound of the hard limit to an absolute 1197 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1198 * the upper bound to 5% of the total pool size - no chance we'll 1199 * ever need that much memory, but just to keep the value in check. 1200 * 2) Soft memory limit: once we hit the hard memory limit, we start 1201 * issuing I/O to reduce queue memory usage, but we don't want to 1202 * completely empty out the queues, since we might be able to find I/Os 1203 * that will fill in the gaps of our non-sequential IOs at some point 1204 * in the future. So we stop the issuing of I/Os once the amount of 1205 * memory used drops below the soft limit (at which point we stop issuing 1206 * I/O and start scanning metadata again). 1207 * 1208 * This limit is calculated by subtracting a fraction of the hard 1209 * limit from the hard limit. By default this fraction is 5%, so 1210 * the soft limit is 95% of the hard limit. We cap the size of the 1211 * difference between the hard and soft limits at an absolute 1212 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1213 * sufficient to not cause too frequent switching between the 1214 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1215 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1216 * that should take at least a decent fraction of a second). 1217 */ 1218 static boolean_t 1219 dsl_scan_should_clear(dsl_scan_t *scn) 1220 { 1221 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1222 uint64_t mlim_hard, mlim_soft, mused; 1223 uint64_t alloc = metaslab_class_get_alloc(spa_normal_class( 1224 scn->scn_dp->dp_spa)); 1225 1226 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1227 zfs_scan_mem_lim_min); 1228 mlim_hard = MIN(mlim_hard, alloc / 20); 1229 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1230 zfs_scan_mem_lim_soft_max); 1231 mused = 0; 1232 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1233 vdev_t *tvd = rvd->vdev_child[i]; 1234 dsl_scan_io_queue_t *queue; 1235 1236 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1237 queue = tvd->vdev_scan_io_queue; 1238 if (queue != NULL) { 1239 /* # extents in exts_by_size = # in exts_by_addr */ 1240 mused += avl_numnodes(&queue->q_exts_by_size) * 1241 sizeof (range_seg_t) + queue->q_sio_memused; 1242 } 1243 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1244 } 1245 1246 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1247 1248 if (mused == 0) 1249 ASSERT0(scn->scn_bytes_pending); 1250 1251 /* 1252 * If we are above our hard limit, we need to clear out memory. 1253 * If we are below our soft limit, we need to accumulate sequential IOs. 1254 * Otherwise, we should keep doing whatever we are currently doing. 1255 */ 1256 if (mused >= mlim_hard) 1257 return (B_TRUE); 1258 else if (mused < mlim_soft) 1259 return (B_FALSE); 1260 else 1261 return (scn->scn_clearing); 1262 } 1263 1264 static boolean_t 1265 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1266 { 1267 /* we never skip user/group accounting objects */ 1268 if (zb && (int64_t)zb->zb_object < 0) 1269 return (B_FALSE); 1270 1271 if (scn->scn_suspending) 1272 return (B_TRUE); /* we're already suspending */ 1273 1274 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1275 return (B_FALSE); /* we're resuming */ 1276 1277 /* We only know how to resume from level-0 blocks. */ 1278 if (zb && zb->zb_level != 0) 1279 return (B_FALSE); 1280 1281 /* 1282 * We suspend if: 1283 * - we have scanned for at least the minimum time (default 1 sec 1284 * for scrub, 3 sec for resilver), and either we have sufficient 1285 * dirty data that we are starting to write more quickly 1286 * (default 30%), or someone is explicitly waiting for this txg 1287 * to complete. 1288 * or 1289 * - the spa is shutting down because this pool is being exported 1290 * or the machine is rebooting. 1291 * or 1292 * - the scan queue has reached its memory use limit 1293 */ 1294 hrtime_t curr_time_ns = gethrtime(); 1295 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1296 uint64_t sync_time_ns = curr_time_ns - 1297 scn->scn_dp->dp_spa->spa_sync_starttime; 1298 1299 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1300 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1301 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1302 1303 if ((NSEC2MSEC(scan_time_ns) > mintime && 1304 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1305 txg_sync_waiting(scn->scn_dp) || 1306 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1307 spa_shutting_down(scn->scn_dp->dp_spa) || 1308 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1309 if (zb) { 1310 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1311 (longlong_t)zb->zb_objset, 1312 (longlong_t)zb->zb_object, 1313 (longlong_t)zb->zb_level, 1314 (longlong_t)zb->zb_blkid); 1315 scn->scn_phys.scn_bookmark = *zb; 1316 } else { 1317 dsl_scan_phys_t *scnp = &scn->scn_phys; 1318 1319 dprintf("suspending at DDT bookmark " 1320 "%llx/%llx/%llx/%llx\n", 1321 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1322 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1323 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1324 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1325 } 1326 scn->scn_suspending = B_TRUE; 1327 return (B_TRUE); 1328 } 1329 return (B_FALSE); 1330 } 1331 1332 typedef struct zil_scan_arg { 1333 dsl_pool_t *zsa_dp; 1334 zil_header_t *zsa_zh; 1335 } zil_scan_arg_t; 1336 1337 /* ARGSUSED */ 1338 static int 1339 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1340 { 1341 zil_scan_arg_t *zsa = arg; 1342 dsl_pool_t *dp = zsa->zsa_dp; 1343 dsl_scan_t *scn = dp->dp_scan; 1344 zil_header_t *zh = zsa->zsa_zh; 1345 zbookmark_phys_t zb; 1346 1347 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1348 return (0); 1349 1350 /* 1351 * One block ("stubby") can be allocated a long time ago; we 1352 * want to visit that one because it has been allocated 1353 * (on-disk) even if it hasn't been claimed (even though for 1354 * scrub there's nothing to do to it). 1355 */ 1356 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1357 return (0); 1358 1359 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1360 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1361 1362 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1363 return (0); 1364 } 1365 1366 /* ARGSUSED */ 1367 static int 1368 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1369 { 1370 if (lrc->lrc_txtype == TX_WRITE) { 1371 zil_scan_arg_t *zsa = arg; 1372 dsl_pool_t *dp = zsa->zsa_dp; 1373 dsl_scan_t *scn = dp->dp_scan; 1374 zil_header_t *zh = zsa->zsa_zh; 1375 lr_write_t *lr = (lr_write_t *)lrc; 1376 blkptr_t *bp = &lr->lr_blkptr; 1377 zbookmark_phys_t zb; 1378 1379 if (BP_IS_HOLE(bp) || 1380 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1381 return (0); 1382 1383 /* 1384 * birth can be < claim_txg if this record's txg is 1385 * already txg sync'ed (but this log block contains 1386 * other records that are not synced) 1387 */ 1388 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1389 return (0); 1390 1391 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1392 lr->lr_foid, ZB_ZIL_LEVEL, 1393 lr->lr_offset / BP_GET_LSIZE(bp)); 1394 1395 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1396 } 1397 return (0); 1398 } 1399 1400 static void 1401 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1402 { 1403 uint64_t claim_txg = zh->zh_claim_txg; 1404 zil_scan_arg_t zsa = { dp, zh }; 1405 zilog_t *zilog; 1406 1407 ASSERT(spa_writeable(dp->dp_spa)); 1408 1409 /* 1410 * We only want to visit blocks that have been claimed 1411 * but not yet replayed. 1412 */ 1413 if (claim_txg == 0) 1414 return; 1415 1416 zilog = zil_alloc(dp->dp_meta_objset, zh); 1417 1418 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1419 claim_txg, B_FALSE); 1420 1421 zil_free(zilog); 1422 } 1423 1424 /* 1425 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1426 * here is to sort the AVL tree by the order each block will be needed. 1427 */ 1428 static int 1429 scan_prefetch_queue_compare(const void *a, const void *b) 1430 { 1431 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1432 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1433 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1434 1435 return (zbookmark_compare(spc_a->spc_datablkszsec, 1436 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1437 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1438 } 1439 1440 static void 1441 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1442 { 1443 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1444 zfs_refcount_destroy(&spc->spc_refcnt); 1445 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1446 } 1447 } 1448 1449 static scan_prefetch_ctx_t * 1450 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1451 { 1452 scan_prefetch_ctx_t *spc; 1453 1454 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1455 zfs_refcount_create(&spc->spc_refcnt); 1456 zfs_refcount_add(&spc->spc_refcnt, tag); 1457 spc->spc_scn = scn; 1458 if (dnp != NULL) { 1459 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1460 spc->spc_indblkshift = dnp->dn_indblkshift; 1461 spc->spc_root = B_FALSE; 1462 } else { 1463 spc->spc_datablkszsec = 0; 1464 spc->spc_indblkshift = 0; 1465 spc->spc_root = B_TRUE; 1466 } 1467 1468 return (spc); 1469 } 1470 1471 static void 1472 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1473 { 1474 zfs_refcount_add(&spc->spc_refcnt, tag); 1475 } 1476 1477 static boolean_t 1478 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1479 const zbookmark_phys_t *zb) 1480 { 1481 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1482 dnode_phys_t tmp_dnp; 1483 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1484 1485 if (zb->zb_objset != last_zb->zb_objset) 1486 return (B_TRUE); 1487 if ((int64_t)zb->zb_object < 0) 1488 return (B_FALSE); 1489 1490 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1491 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1492 1493 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1494 return (B_TRUE); 1495 1496 return (B_FALSE); 1497 } 1498 1499 static void 1500 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1501 { 1502 avl_index_t idx; 1503 dsl_scan_t *scn = spc->spc_scn; 1504 spa_t *spa = scn->scn_dp->dp_spa; 1505 scan_prefetch_issue_ctx_t *spic; 1506 1507 if (zfs_no_scrub_prefetch) 1508 return; 1509 1510 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1511 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1512 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1513 return; 1514 1515 if (dsl_scan_check_prefetch_resume(spc, zb)) 1516 return; 1517 1518 scan_prefetch_ctx_add_ref(spc, scn); 1519 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1520 spic->spic_spc = spc; 1521 spic->spic_bp = *bp; 1522 spic->spic_zb = *zb; 1523 1524 /* 1525 * Add the IO to the queue of blocks to prefetch. This allows us to 1526 * prioritize blocks that we will need first for the main traversal 1527 * thread. 1528 */ 1529 mutex_enter(&spa->spa_scrub_lock); 1530 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1531 /* this block is already queued for prefetch */ 1532 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1533 scan_prefetch_ctx_rele(spc, scn); 1534 mutex_exit(&spa->spa_scrub_lock); 1535 return; 1536 } 1537 1538 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1539 cv_broadcast(&spa->spa_scrub_io_cv); 1540 mutex_exit(&spa->spa_scrub_lock); 1541 } 1542 1543 static void 1544 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1545 uint64_t objset, uint64_t object) 1546 { 1547 int i; 1548 zbookmark_phys_t zb; 1549 scan_prefetch_ctx_t *spc; 1550 1551 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1552 return; 1553 1554 SET_BOOKMARK(&zb, objset, object, 0, 0); 1555 1556 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1557 1558 for (i = 0; i < dnp->dn_nblkptr; i++) { 1559 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1560 zb.zb_blkid = i; 1561 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1562 } 1563 1564 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1565 zb.zb_level = 0; 1566 zb.zb_blkid = DMU_SPILL_BLKID; 1567 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); 1568 } 1569 1570 scan_prefetch_ctx_rele(spc, FTAG); 1571 } 1572 1573 void 1574 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1575 arc_buf_t *buf, void *private) 1576 { 1577 scan_prefetch_ctx_t *spc = private; 1578 dsl_scan_t *scn = spc->spc_scn; 1579 spa_t *spa = scn->scn_dp->dp_spa; 1580 1581 /* broadcast that the IO has completed for rate limitting purposes */ 1582 mutex_enter(&spa->spa_scrub_lock); 1583 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1584 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1585 cv_broadcast(&spa->spa_scrub_io_cv); 1586 mutex_exit(&spa->spa_scrub_lock); 1587 1588 /* if there was an error or we are done prefetching, just cleanup */ 1589 if (buf == NULL || scn->scn_suspending) 1590 goto out; 1591 1592 if (BP_GET_LEVEL(bp) > 0) { 1593 int i; 1594 blkptr_t *cbp; 1595 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1596 zbookmark_phys_t czb; 1597 1598 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1599 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1600 zb->zb_level - 1, zb->zb_blkid * epb + i); 1601 dsl_scan_prefetch(spc, cbp, &czb); 1602 } 1603 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1604 dnode_phys_t *cdnp = buf->b_data; 1605 int i; 1606 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1607 1608 for (i = 0, cdnp = buf->b_data; i < epb; 1609 i += cdnp->dn_extra_slots + 1, 1610 cdnp += cdnp->dn_extra_slots + 1) { 1611 dsl_scan_prefetch_dnode(scn, cdnp, 1612 zb->zb_objset, zb->zb_blkid * epb + i); 1613 } 1614 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1615 objset_phys_t *osp = buf->b_data; 1616 1617 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1618 zb->zb_objset, DMU_META_DNODE_OBJECT); 1619 1620 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1621 dsl_scan_prefetch_dnode(scn, 1622 &osp->os_groupused_dnode, zb->zb_objset, 1623 DMU_GROUPUSED_OBJECT); 1624 dsl_scan_prefetch_dnode(scn, 1625 &osp->os_userused_dnode, zb->zb_objset, 1626 DMU_USERUSED_OBJECT); 1627 } 1628 } 1629 1630 out: 1631 if (buf != NULL) 1632 arc_buf_destroy(buf, private); 1633 scan_prefetch_ctx_rele(spc, scn); 1634 } 1635 1636 /* ARGSUSED */ 1637 static void 1638 dsl_scan_prefetch_thread(void *arg) 1639 { 1640 dsl_scan_t *scn = arg; 1641 spa_t *spa = scn->scn_dp->dp_spa; 1642 vdev_t *rvd = spa->spa_root_vdev; 1643 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; 1644 scan_prefetch_issue_ctx_t *spic; 1645 1646 /* loop until we are told to stop */ 1647 while (!scn->scn_prefetch_stop) { 1648 arc_flags_t flags = ARC_FLAG_NOWAIT | 1649 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1650 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1651 1652 mutex_enter(&spa->spa_scrub_lock); 1653 1654 /* 1655 * Wait until we have an IO to issue and are not above our 1656 * maximum in flight limit. 1657 */ 1658 while (!scn->scn_prefetch_stop && 1659 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1660 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1661 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1662 } 1663 1664 /* recheck if we should stop since we waited for the cv */ 1665 if (scn->scn_prefetch_stop) { 1666 mutex_exit(&spa->spa_scrub_lock); 1667 break; 1668 } 1669 1670 /* remove the prefetch IO from the tree */ 1671 spic = avl_first(&scn->scn_prefetch_queue); 1672 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1673 avl_remove(&scn->scn_prefetch_queue, spic); 1674 1675 mutex_exit(&spa->spa_scrub_lock); 1676 1677 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1678 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1679 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1680 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1681 zio_flags |= ZIO_FLAG_RAW; 1682 } 1683 1684 /* issue the prefetch asynchronously */ 1685 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1686 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1687 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1688 1689 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1690 } 1691 1692 ASSERT(scn->scn_prefetch_stop); 1693 1694 /* free any prefetches we didn't get to complete */ 1695 mutex_enter(&spa->spa_scrub_lock); 1696 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1697 avl_remove(&scn->scn_prefetch_queue, spic); 1698 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1699 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1700 } 1701 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1702 mutex_exit(&spa->spa_scrub_lock); 1703 } 1704 1705 static boolean_t 1706 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1707 const zbookmark_phys_t *zb) 1708 { 1709 /* 1710 * We never skip over user/group accounting objects (obj<0) 1711 */ 1712 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1713 (int64_t)zb->zb_object >= 0) { 1714 /* 1715 * If we already visited this bp & everything below (in 1716 * a prior txg sync), don't bother doing it again. 1717 */ 1718 if (zbookmark_subtree_completed(dnp, zb, 1719 &scn->scn_phys.scn_bookmark)) 1720 return (B_TRUE); 1721 1722 /* 1723 * If we found the block we're trying to resume from, or 1724 * we went past it to a different object, zero it out to 1725 * indicate that it's OK to start checking for suspending 1726 * again. 1727 */ 1728 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1729 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1730 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1731 (longlong_t)zb->zb_objset, 1732 (longlong_t)zb->zb_object, 1733 (longlong_t)zb->zb_level, 1734 (longlong_t)zb->zb_blkid); 1735 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1736 } 1737 } 1738 return (B_FALSE); 1739 } 1740 1741 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1742 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1743 dmu_objset_type_t ostype, dmu_tx_t *tx); 1744 static void dsl_scan_visitdnode( 1745 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1746 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1747 1748 /* 1749 * Return nonzero on i/o error. 1750 * Return new buf to write out in *bufp. 1751 */ 1752 static int 1753 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1754 dnode_phys_t *dnp, const blkptr_t *bp, 1755 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1756 { 1757 dsl_pool_t *dp = scn->scn_dp; 1758 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1759 int err; 1760 1761 if (BP_GET_LEVEL(bp) > 0) { 1762 arc_flags_t flags = ARC_FLAG_WAIT; 1763 int i; 1764 blkptr_t *cbp; 1765 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1766 arc_buf_t *buf; 1767 1768 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1769 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1770 if (err) { 1771 scn->scn_phys.scn_errors++; 1772 return (err); 1773 } 1774 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1775 zbookmark_phys_t czb; 1776 1777 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1778 zb->zb_level - 1, 1779 zb->zb_blkid * epb + i); 1780 dsl_scan_visitbp(cbp, &czb, dnp, 1781 ds, scn, ostype, tx); 1782 } 1783 arc_buf_destroy(buf, &buf); 1784 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1785 arc_flags_t flags = ARC_FLAG_WAIT; 1786 dnode_phys_t *cdnp; 1787 int i; 1788 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1789 arc_buf_t *buf; 1790 1791 if (BP_IS_PROTECTED(bp)) { 1792 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1793 zio_flags |= ZIO_FLAG_RAW; 1794 } 1795 1796 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1797 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1798 if (err) { 1799 scn->scn_phys.scn_errors++; 1800 return (err); 1801 } 1802 for (i = 0, cdnp = buf->b_data; i < epb; 1803 i += cdnp->dn_extra_slots + 1, 1804 cdnp += cdnp->dn_extra_slots + 1) { 1805 dsl_scan_visitdnode(scn, ds, ostype, 1806 cdnp, zb->zb_blkid * epb + i, tx); 1807 } 1808 1809 arc_buf_destroy(buf, &buf); 1810 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1811 arc_flags_t flags = ARC_FLAG_WAIT; 1812 objset_phys_t *osp; 1813 arc_buf_t *buf; 1814 1815 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1816 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1817 if (err) { 1818 scn->scn_phys.scn_errors++; 1819 return (err); 1820 } 1821 1822 osp = buf->b_data; 1823 1824 dsl_scan_visitdnode(scn, ds, osp->os_type, 1825 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1826 1827 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1828 /* 1829 * We also always visit user/group/project accounting 1830 * objects, and never skip them, even if we are 1831 * suspending. This is necessary so that the space 1832 * deltas from this txg get integrated. 1833 */ 1834 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1835 dsl_scan_visitdnode(scn, ds, osp->os_type, 1836 &osp->os_projectused_dnode, 1837 DMU_PROJECTUSED_OBJECT, tx); 1838 dsl_scan_visitdnode(scn, ds, osp->os_type, 1839 &osp->os_groupused_dnode, 1840 DMU_GROUPUSED_OBJECT, tx); 1841 dsl_scan_visitdnode(scn, ds, osp->os_type, 1842 &osp->os_userused_dnode, 1843 DMU_USERUSED_OBJECT, tx); 1844 } 1845 arc_buf_destroy(buf, &buf); 1846 } 1847 1848 return (0); 1849 } 1850 1851 static void 1852 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1853 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1854 uint64_t object, dmu_tx_t *tx) 1855 { 1856 int j; 1857 1858 for (j = 0; j < dnp->dn_nblkptr; j++) { 1859 zbookmark_phys_t czb; 1860 1861 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1862 dnp->dn_nlevels - 1, j); 1863 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1864 &czb, dnp, ds, scn, ostype, tx); 1865 } 1866 1867 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1868 zbookmark_phys_t czb; 1869 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1870 0, DMU_SPILL_BLKID); 1871 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1872 &czb, dnp, ds, scn, ostype, tx); 1873 } 1874 } 1875 1876 /* 1877 * The arguments are in this order because mdb can only print the 1878 * first 5; we want them to be useful. 1879 */ 1880 static void 1881 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1882 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1883 dmu_objset_type_t ostype, dmu_tx_t *tx) 1884 { 1885 dsl_pool_t *dp = scn->scn_dp; 1886 blkptr_t *bp_toread = NULL; 1887 1888 if (dsl_scan_check_suspend(scn, zb)) 1889 return; 1890 1891 if (dsl_scan_check_resume(scn, dnp, zb)) 1892 return; 1893 1894 scn->scn_visited_this_txg++; 1895 1896 /* 1897 * This debugging is commented out to conserve stack space. This 1898 * function is called recursively and the debugging addes several 1899 * bytes to the stack for each call. It can be commented back in 1900 * if required to debug an issue in dsl_scan_visitbp(). 1901 * 1902 * dprintf_bp(bp, 1903 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1904 * ds, ds ? ds->ds_object : 0, 1905 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1906 * bp); 1907 */ 1908 1909 if (BP_IS_HOLE(bp)) { 1910 scn->scn_holes_this_txg++; 1911 return; 1912 } 1913 1914 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1915 scn->scn_lt_min_this_txg++; 1916 return; 1917 } 1918 1919 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1920 *bp_toread = *bp; 1921 1922 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1923 goto out; 1924 1925 /* 1926 * If dsl_scan_ddt() has already visited this block, it will have 1927 * already done any translations or scrubbing, so don't call the 1928 * callback again. 1929 */ 1930 if (ddt_class_contains(dp->dp_spa, 1931 scn->scn_phys.scn_ddt_class_max, bp)) { 1932 scn->scn_ddt_contained_this_txg++; 1933 goto out; 1934 } 1935 1936 /* 1937 * If this block is from the future (after cur_max_txg), then we 1938 * are doing this on behalf of a deleted snapshot, and we will 1939 * revisit the future block on the next pass of this dataset. 1940 * Don't scan it now unless we need to because something 1941 * under it was modified. 1942 */ 1943 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 1944 scn->scn_gt_max_this_txg++; 1945 goto out; 1946 } 1947 1948 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 1949 1950 out: 1951 kmem_free(bp_toread, sizeof (blkptr_t)); 1952 } 1953 1954 static void 1955 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 1956 dmu_tx_t *tx) 1957 { 1958 zbookmark_phys_t zb; 1959 scan_prefetch_ctx_t *spc; 1960 1961 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1962 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 1963 1964 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 1965 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 1966 zb.zb_objset, 0, 0, 0); 1967 } else { 1968 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 1969 } 1970 1971 scn->scn_objsets_visited_this_txg++; 1972 1973 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 1974 dsl_scan_prefetch(spc, bp, &zb); 1975 scan_prefetch_ctx_rele(spc, FTAG); 1976 1977 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 1978 1979 dprintf_ds(ds, "finished scan%s", ""); 1980 } 1981 1982 static void 1983 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 1984 { 1985 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 1986 if (ds->ds_is_snapshot) { 1987 /* 1988 * Note: 1989 * - scn_cur_{min,max}_txg stays the same. 1990 * - Setting the flag is not really necessary if 1991 * scn_cur_max_txg == scn_max_txg, because there 1992 * is nothing after this snapshot that we care 1993 * about. However, we set it anyway and then 1994 * ignore it when we retraverse it in 1995 * dsl_scan_visitds(). 1996 */ 1997 scn_phys->scn_bookmark.zb_objset = 1998 dsl_dataset_phys(ds)->ds_next_snap_obj; 1999 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2000 "reset zb_objset to %llu", 2001 (u_longlong_t)ds->ds_object, 2002 (u_longlong_t)dsl_dataset_phys(ds)-> 2003 ds_next_snap_obj); 2004 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2005 } else { 2006 SET_BOOKMARK(&scn_phys->scn_bookmark, 2007 ZB_DESTROYED_OBJSET, 0, 0, 0); 2008 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2009 "reset bookmark to -1,0,0,0", 2010 (u_longlong_t)ds->ds_object); 2011 } 2012 } 2013 } 2014 2015 /* 2016 * Invoked when a dataset is destroyed. We need to make sure that: 2017 * 2018 * 1) If it is the dataset that was currently being scanned, we write 2019 * a new dsl_scan_phys_t and marking the objset reference in it 2020 * as destroyed. 2021 * 2) Remove it from the work queue, if it was present. 2022 * 2023 * If the dataset was actually a snapshot, instead of marking the dataset 2024 * as destroyed, we instead substitute the next snapshot in line. 2025 */ 2026 void 2027 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2028 { 2029 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2030 dsl_scan_t *scn = dp->dp_scan; 2031 uint64_t mintxg; 2032 2033 if (!dsl_scan_is_running(scn)) 2034 return; 2035 2036 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2037 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2038 2039 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2040 scan_ds_queue_remove(scn, ds->ds_object); 2041 if (ds->ds_is_snapshot) 2042 scan_ds_queue_insert(scn, 2043 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2044 } 2045 2046 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2047 ds->ds_object, &mintxg) == 0) { 2048 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2049 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2050 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2051 if (ds->ds_is_snapshot) { 2052 /* 2053 * We keep the same mintxg; it could be > 2054 * ds_creation_txg if the previous snapshot was 2055 * deleted too. 2056 */ 2057 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2058 scn->scn_phys.scn_queue_obj, 2059 dsl_dataset_phys(ds)->ds_next_snap_obj, 2060 mintxg, tx) == 0); 2061 zfs_dbgmsg("destroying ds %llu; in queue; " 2062 "replacing with %llu", 2063 (u_longlong_t)ds->ds_object, 2064 (u_longlong_t)dsl_dataset_phys(ds)-> 2065 ds_next_snap_obj); 2066 } else { 2067 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2068 (u_longlong_t)ds->ds_object); 2069 } 2070 } 2071 2072 /* 2073 * dsl_scan_sync() should be called after this, and should sync 2074 * out our changed state, but just to be safe, do it here. 2075 */ 2076 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2077 } 2078 2079 static void 2080 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2081 { 2082 if (scn_bookmark->zb_objset == ds->ds_object) { 2083 scn_bookmark->zb_objset = 2084 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2085 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2086 "reset zb_objset to %llu", 2087 (u_longlong_t)ds->ds_object, 2088 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2089 } 2090 } 2091 2092 /* 2093 * Called when a dataset is snapshotted. If we were currently traversing 2094 * this snapshot, we reset our bookmark to point at the newly created 2095 * snapshot. We also modify our work queue to remove the old snapshot and 2096 * replace with the new one. 2097 */ 2098 void 2099 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2100 { 2101 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2102 dsl_scan_t *scn = dp->dp_scan; 2103 uint64_t mintxg; 2104 2105 if (!dsl_scan_is_running(scn)) 2106 return; 2107 2108 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2109 2110 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2111 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2112 2113 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2114 scan_ds_queue_remove(scn, ds->ds_object); 2115 scan_ds_queue_insert(scn, 2116 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2117 } 2118 2119 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2120 ds->ds_object, &mintxg) == 0) { 2121 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2122 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2123 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2124 scn->scn_phys.scn_queue_obj, 2125 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2126 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2127 "replacing with %llu", 2128 (u_longlong_t)ds->ds_object, 2129 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2130 } 2131 2132 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2133 } 2134 2135 static void 2136 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2137 zbookmark_phys_t *scn_bookmark) 2138 { 2139 if (scn_bookmark->zb_objset == ds1->ds_object) { 2140 scn_bookmark->zb_objset = ds2->ds_object; 2141 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2142 "reset zb_objset to %llu", 2143 (u_longlong_t)ds1->ds_object, 2144 (u_longlong_t)ds2->ds_object); 2145 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2146 scn_bookmark->zb_objset = ds1->ds_object; 2147 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2148 "reset zb_objset to %llu", 2149 (u_longlong_t)ds2->ds_object, 2150 (u_longlong_t)ds1->ds_object); 2151 } 2152 } 2153 2154 /* 2155 * Called when a parent dataset and its clone are swapped. If we were 2156 * currently traversing the dataset, we need to switch to traversing the 2157 * newly promoted parent. 2158 */ 2159 void 2160 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2161 { 2162 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2163 dsl_scan_t *scn = dp->dp_scan; 2164 uint64_t mintxg; 2165 2166 if (!dsl_scan_is_running(scn)) 2167 return; 2168 2169 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2170 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2171 2172 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) { 2173 scan_ds_queue_remove(scn, ds1->ds_object); 2174 scan_ds_queue_insert(scn, ds2->ds_object, mintxg); 2175 } 2176 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) { 2177 scan_ds_queue_remove(scn, ds2->ds_object); 2178 scan_ds_queue_insert(scn, ds1->ds_object, mintxg); 2179 } 2180 2181 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2182 ds1->ds_object, &mintxg) == 0) { 2183 int err; 2184 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2185 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2186 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2187 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2188 err = zap_add_int_key(dp->dp_meta_objset, 2189 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); 2190 VERIFY(err == 0 || err == EEXIST); 2191 if (err == EEXIST) { 2192 /* Both were there to begin with */ 2193 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2194 scn->scn_phys.scn_queue_obj, 2195 ds1->ds_object, mintxg, tx)); 2196 } 2197 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2198 "replacing with %llu", 2199 (u_longlong_t)ds1->ds_object, 2200 (u_longlong_t)ds2->ds_object); 2201 } 2202 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2203 ds2->ds_object, &mintxg) == 0) { 2204 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2205 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2206 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2207 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2208 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2209 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); 2210 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2211 "replacing with %llu", 2212 (u_longlong_t)ds2->ds_object, 2213 (u_longlong_t)ds1->ds_object); 2214 } 2215 2216 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2217 } 2218 2219 /* ARGSUSED */ 2220 static int 2221 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2222 { 2223 uint64_t originobj = *(uint64_t *)arg; 2224 dsl_dataset_t *ds; 2225 int err; 2226 dsl_scan_t *scn = dp->dp_scan; 2227 2228 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2229 return (0); 2230 2231 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2232 if (err) 2233 return (err); 2234 2235 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2236 dsl_dataset_t *prev; 2237 err = dsl_dataset_hold_obj(dp, 2238 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2239 2240 dsl_dataset_rele(ds, FTAG); 2241 if (err) 2242 return (err); 2243 ds = prev; 2244 } 2245 scan_ds_queue_insert(scn, ds->ds_object, 2246 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2247 dsl_dataset_rele(ds, FTAG); 2248 return (0); 2249 } 2250 2251 static void 2252 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2253 { 2254 dsl_pool_t *dp = scn->scn_dp; 2255 dsl_dataset_t *ds; 2256 2257 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2258 2259 if (scn->scn_phys.scn_cur_min_txg >= 2260 scn->scn_phys.scn_max_txg) { 2261 /* 2262 * This can happen if this snapshot was created after the 2263 * scan started, and we already completed a previous snapshot 2264 * that was created after the scan started. This snapshot 2265 * only references blocks with: 2266 * 2267 * birth < our ds_creation_txg 2268 * cur_min_txg is no less than ds_creation_txg. 2269 * We have already visited these blocks. 2270 * or 2271 * birth > scn_max_txg 2272 * The scan requested not to visit these blocks. 2273 * 2274 * Subsequent snapshots (and clones) can reference our 2275 * blocks, or blocks with even higher birth times. 2276 * Therefore we do not need to visit them either, 2277 * so we do not add them to the work queue. 2278 * 2279 * Note that checking for cur_min_txg >= cur_max_txg 2280 * is not sufficient, because in that case we may need to 2281 * visit subsequent snapshots. This happens when min_txg > 0, 2282 * which raises cur_min_txg. In this case we will visit 2283 * this dataset but skip all of its blocks, because the 2284 * rootbp's birth time is < cur_min_txg. Then we will 2285 * add the next snapshots/clones to the work queue. 2286 */ 2287 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); 2288 dsl_dataset_name(ds, dsname); 2289 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2290 "cur_min_txg (%llu) >= max_txg (%llu)", 2291 (longlong_t)dsobj, dsname, 2292 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2293 (longlong_t)scn->scn_phys.scn_max_txg); 2294 kmem_free(dsname, MAXNAMELEN); 2295 2296 goto out; 2297 } 2298 2299 /* 2300 * Only the ZIL in the head (non-snapshot) is valid. Even though 2301 * snapshots can have ZIL block pointers (which may be the same 2302 * BP as in the head), they must be ignored. In addition, $ORIGIN 2303 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2304 * need to look for a ZIL in it either. So we traverse the ZIL here, 2305 * rather than in scan_recurse(), because the regular snapshot 2306 * block-sharing rules don't apply to it. 2307 */ 2308 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && 2309 (dp->dp_origin_snap == NULL || 2310 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2311 objset_t *os; 2312 if (dmu_objset_from_ds(ds, &os) != 0) { 2313 goto out; 2314 } 2315 dsl_scan_zil(dp, &os->os_zil_header); 2316 } 2317 2318 /* 2319 * Iterate over the bps in this ds. 2320 */ 2321 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2322 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2323 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2324 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2325 2326 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2327 dsl_dataset_name(ds, dsname); 2328 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2329 "suspending=%u", 2330 (longlong_t)dsobj, dsname, 2331 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2332 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2333 (int)scn->scn_suspending); 2334 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2335 2336 if (scn->scn_suspending) 2337 goto out; 2338 2339 /* 2340 * We've finished this pass over this dataset. 2341 */ 2342 2343 /* 2344 * If we did not completely visit this dataset, do another pass. 2345 */ 2346 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2347 zfs_dbgmsg("incomplete pass; visiting again"); 2348 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2349 scan_ds_queue_insert(scn, ds->ds_object, 2350 scn->scn_phys.scn_cur_max_txg); 2351 goto out; 2352 } 2353 2354 /* 2355 * Add descendent datasets to work queue. 2356 */ 2357 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2358 scan_ds_queue_insert(scn, 2359 dsl_dataset_phys(ds)->ds_next_snap_obj, 2360 dsl_dataset_phys(ds)->ds_creation_txg); 2361 } 2362 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2363 boolean_t usenext = B_FALSE; 2364 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2365 uint64_t count; 2366 /* 2367 * A bug in a previous version of the code could 2368 * cause upgrade_clones_cb() to not set 2369 * ds_next_snap_obj when it should, leading to a 2370 * missing entry. Therefore we can only use the 2371 * next_clones_obj when its count is correct. 2372 */ 2373 int err = zap_count(dp->dp_meta_objset, 2374 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2375 if (err == 0 && 2376 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2377 usenext = B_TRUE; 2378 } 2379 2380 if (usenext) { 2381 zap_cursor_t zc; 2382 zap_attribute_t za; 2383 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2384 dsl_dataset_phys(ds)->ds_next_clones_obj); 2385 zap_cursor_retrieve(&zc, &za) == 0; 2386 (void) zap_cursor_advance(&zc)) { 2387 scan_ds_queue_insert(scn, 2388 zfs_strtonum(za.za_name, NULL), 2389 dsl_dataset_phys(ds)->ds_creation_txg); 2390 } 2391 zap_cursor_fini(&zc); 2392 } else { 2393 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2394 enqueue_clones_cb, &ds->ds_object, 2395 DS_FIND_CHILDREN)); 2396 } 2397 } 2398 2399 out: 2400 dsl_dataset_rele(ds, FTAG); 2401 } 2402 2403 /* ARGSUSED */ 2404 static int 2405 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2406 { 2407 dsl_dataset_t *ds; 2408 int err; 2409 dsl_scan_t *scn = dp->dp_scan; 2410 2411 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2412 if (err) 2413 return (err); 2414 2415 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2416 dsl_dataset_t *prev; 2417 err = dsl_dataset_hold_obj(dp, 2418 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2419 if (err) { 2420 dsl_dataset_rele(ds, FTAG); 2421 return (err); 2422 } 2423 2424 /* 2425 * If this is a clone, we don't need to worry about it for now. 2426 */ 2427 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2428 dsl_dataset_rele(ds, FTAG); 2429 dsl_dataset_rele(prev, FTAG); 2430 return (0); 2431 } 2432 dsl_dataset_rele(ds, FTAG); 2433 ds = prev; 2434 } 2435 2436 scan_ds_queue_insert(scn, ds->ds_object, 2437 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2438 dsl_dataset_rele(ds, FTAG); 2439 return (0); 2440 } 2441 2442 /* ARGSUSED */ 2443 void 2444 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2445 ddt_entry_t *dde, dmu_tx_t *tx) 2446 { 2447 const ddt_key_t *ddk = &dde->dde_key; 2448 ddt_phys_t *ddp = dde->dde_phys; 2449 blkptr_t bp; 2450 zbookmark_phys_t zb = { 0 }; 2451 int p; 2452 2453 if (scn->scn_phys.scn_state != DSS_SCANNING) 2454 return; 2455 2456 /* 2457 * This function is special because it is the only thing 2458 * that can add scan_io_t's to the vdev scan queues from 2459 * outside dsl_scan_sync(). For the most part this is ok 2460 * as long as it is called from within syncing context. 2461 * However, dsl_scan_sync() expects that no new sio's will 2462 * be added between when all the work for a scan is done 2463 * and the next txg when the scan is actually marked as 2464 * completed. This check ensures we do not issue new sio's 2465 * during this period. 2466 */ 2467 if (scn->scn_done_txg != 0) 2468 return; 2469 2470 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2471 if (ddp->ddp_phys_birth == 0 || 2472 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2473 continue; 2474 ddt_bp_create(checksum, ddk, ddp, &bp); 2475 2476 scn->scn_visited_this_txg++; 2477 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2478 } 2479 } 2480 2481 /* 2482 * Scrub/dedup interaction. 2483 * 2484 * If there are N references to a deduped block, we don't want to scrub it 2485 * N times -- ideally, we should scrub it exactly once. 2486 * 2487 * We leverage the fact that the dde's replication class (enum ddt_class) 2488 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2489 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2490 * 2491 * To prevent excess scrubbing, the scrub begins by walking the DDT 2492 * to find all blocks with refcnt > 1, and scrubs each of these once. 2493 * Since there are two replication classes which contain blocks with 2494 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2495 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2496 * 2497 * There would be nothing more to say if a block's refcnt couldn't change 2498 * during a scrub, but of course it can so we must account for changes 2499 * in a block's replication class. 2500 * 2501 * Here's an example of what can occur: 2502 * 2503 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2504 * when visited during the top-down scrub phase, it will be scrubbed twice. 2505 * This negates our scrub optimization, but is otherwise harmless. 2506 * 2507 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2508 * on each visit during the top-down scrub phase, it will never be scrubbed. 2509 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2510 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2511 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2512 * while a scrub is in progress, it scrubs the block right then. 2513 */ 2514 static void 2515 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2516 { 2517 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2518 ddt_entry_t dde = { 0 }; 2519 int error; 2520 uint64_t n = 0; 2521 2522 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2523 ddt_t *ddt; 2524 2525 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2526 break; 2527 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2528 (longlong_t)ddb->ddb_class, 2529 (longlong_t)ddb->ddb_type, 2530 (longlong_t)ddb->ddb_checksum, 2531 (longlong_t)ddb->ddb_cursor); 2532 2533 /* There should be no pending changes to the dedup table */ 2534 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2535 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2536 2537 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2538 n++; 2539 2540 if (dsl_scan_check_suspend(scn, NULL)) 2541 break; 2542 } 2543 2544 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2545 "suspending=%u", (longlong_t)n, 2546 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2547 2548 ASSERT(error == 0 || error == ENOENT); 2549 ASSERT(error != ENOENT || 2550 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2551 } 2552 2553 static uint64_t 2554 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2555 { 2556 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2557 if (ds->ds_is_snapshot) 2558 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2559 return (smt); 2560 } 2561 2562 static void 2563 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2564 { 2565 scan_ds_t *sds; 2566 dsl_pool_t *dp = scn->scn_dp; 2567 2568 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2569 scn->scn_phys.scn_ddt_class_max) { 2570 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2571 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2572 dsl_scan_ddt(scn, tx); 2573 if (scn->scn_suspending) 2574 return; 2575 } 2576 2577 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2578 /* First do the MOS & ORIGIN */ 2579 2580 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2581 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2582 dsl_scan_visit_rootbp(scn, NULL, 2583 &dp->dp_meta_rootbp, tx); 2584 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2585 if (scn->scn_suspending) 2586 return; 2587 2588 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2589 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2590 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2591 } else { 2592 dsl_scan_visitds(scn, 2593 dp->dp_origin_snap->ds_object, tx); 2594 } 2595 ASSERT(!scn->scn_suspending); 2596 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2597 ZB_DESTROYED_OBJSET) { 2598 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2599 /* 2600 * If we were suspended, continue from here. Note if the 2601 * ds we were suspended on was deleted, the zb_objset may 2602 * be -1, so we will skip this and find a new objset 2603 * below. 2604 */ 2605 dsl_scan_visitds(scn, dsobj, tx); 2606 if (scn->scn_suspending) 2607 return; 2608 } 2609 2610 /* 2611 * In case we suspended right at the end of the ds, zero the 2612 * bookmark so we don't think that we're still trying to resume. 2613 */ 2614 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2615 2616 /* 2617 * Keep pulling things out of the dataset avl queue. Updates to the 2618 * persistent zap-object-as-queue happen only at checkpoints. 2619 */ 2620 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2621 dsl_dataset_t *ds; 2622 uint64_t dsobj = sds->sds_dsobj; 2623 uint64_t txg = sds->sds_txg; 2624 2625 /* dequeue and free the ds from the queue */ 2626 scan_ds_queue_remove(scn, dsobj); 2627 sds = NULL; /* must not be touched after removal */ 2628 2629 /* Set up min / max txg */ 2630 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2631 if (txg != 0) { 2632 scn->scn_phys.scn_cur_min_txg = 2633 MAX(scn->scn_phys.scn_min_txg, txg); 2634 } else { 2635 scn->scn_phys.scn_cur_min_txg = 2636 MAX(scn->scn_phys.scn_min_txg, 2637 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2638 } 2639 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2640 dsl_dataset_rele(ds, FTAG); 2641 2642 dsl_scan_visitds(scn, dsobj, tx); 2643 if (scn->scn_suspending) 2644 return; 2645 } 2646 /* No more objsets to fetch, we're done */ 2647 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2648 ASSERT0(scn->scn_suspending); 2649 } 2650 2651 static uint64_t 2652 dsl_scan_count_leaves(vdev_t *vd) 2653 { 2654 uint64_t i, leaves = 0; 2655 2656 /* we only count leaves that belong to the main pool and are readable */ 2657 if (vd->vdev_islog || vd->vdev_isspare || 2658 vd->vdev_isl2cache || !vdev_readable(vd)) 2659 return (0); 2660 2661 if (vd->vdev_ops->vdev_op_leaf) 2662 return (1); 2663 2664 for (i = 0; i < vd->vdev_children; i++) { 2665 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2666 } 2667 2668 return (leaves); 2669 } 2670 2671 2672 static void 2673 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2674 { 2675 int i; 2676 uint64_t cur_size = 0; 2677 2678 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2679 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2680 } 2681 2682 q->q_total_zio_size_this_txg += cur_size; 2683 q->q_zios_this_txg++; 2684 } 2685 2686 static void 2687 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2688 uint64_t end) 2689 { 2690 q->q_total_seg_size_this_txg += end - start; 2691 q->q_segs_this_txg++; 2692 } 2693 2694 static boolean_t 2695 scan_io_queue_check_suspend(dsl_scan_t *scn) 2696 { 2697 /* See comment in dsl_scan_check_suspend() */ 2698 uint64_t curr_time_ns = gethrtime(); 2699 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2700 uint64_t sync_time_ns = curr_time_ns - 2701 scn->scn_dp->dp_spa->spa_sync_starttime; 2702 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2703 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2704 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2705 2706 return ((NSEC2MSEC(scan_time_ns) > mintime && 2707 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2708 txg_sync_waiting(scn->scn_dp) || 2709 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2710 spa_shutting_down(scn->scn_dp->dp_spa)); 2711 } 2712 2713 /* 2714 * Given a list of scan_io_t's in io_list, this issues the io's out to 2715 * disk. This consumes the io_list and frees the scan_io_t's. This is 2716 * called when emptying queues, either when we're up against the memory 2717 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2718 * processing the list before we finished. Any zios that were not issued 2719 * will remain in the io_list. 2720 */ 2721 static boolean_t 2722 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2723 { 2724 dsl_scan_t *scn = queue->q_scn; 2725 scan_io_t *sio; 2726 int64_t bytes_issued = 0; 2727 boolean_t suspended = B_FALSE; 2728 2729 while ((sio = list_head(io_list)) != NULL) { 2730 blkptr_t bp; 2731 2732 if (scan_io_queue_check_suspend(scn)) { 2733 suspended = B_TRUE; 2734 break; 2735 } 2736 2737 sio2bp(sio, &bp); 2738 bytes_issued += SIO_GET_ASIZE(sio); 2739 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2740 &sio->sio_zb, queue); 2741 (void) list_remove_head(io_list); 2742 scan_io_queues_update_zio_stats(queue, &bp); 2743 sio_free(sio); 2744 } 2745 2746 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2747 2748 return (suspended); 2749 } 2750 2751 /* 2752 * Given a range_seg_t (extent) and a list, this function passes over a 2753 * scan queue and gathers up the appropriate ios which fit into that 2754 * scan seg (starting from lowest LBA). At the end, we remove the segment 2755 * from the q_exts_by_addr range tree. 2756 */ 2757 static boolean_t 2758 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2759 { 2760 scan_io_t *srch_sio, *sio, *next_sio; 2761 avl_index_t idx; 2762 uint_t num_sios = 0; 2763 int64_t bytes_issued = 0; 2764 2765 ASSERT(rs != NULL); 2766 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2767 2768 srch_sio = sio_alloc(1); 2769 srch_sio->sio_nr_dvas = 1; 2770 SIO_SET_OFFSET(srch_sio, rs->rs_start); 2771 2772 /* 2773 * The exact start of the extent might not contain any matching zios, 2774 * so if that's the case, examine the next one in the tree. 2775 */ 2776 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2777 sio_free(srch_sio); 2778 2779 if (sio == NULL) 2780 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2781 2782 while (sio != NULL && 2783 SIO_GET_OFFSET(sio) < rs->rs_end && num_sios <= 32) { 2784 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs->rs_start); 2785 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs->rs_end); 2786 2787 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2788 avl_remove(&queue->q_sios_by_addr, sio); 2789 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2790 2791 bytes_issued += SIO_GET_ASIZE(sio); 2792 num_sios++; 2793 list_insert_tail(list, sio); 2794 sio = next_sio; 2795 } 2796 2797 /* 2798 * We limit the number of sios we process at once to 32 to avoid 2799 * biting off more than we can chew. If we didn't take everything 2800 * in the segment we update it to reflect the work we were able to 2801 * complete. Otherwise, we remove it from the range tree entirely. 2802 */ 2803 if (sio != NULL && SIO_GET_OFFSET(sio) < rs->rs_end) { 2804 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2805 -bytes_issued); 2806 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2807 SIO_GET_OFFSET(sio), rs->rs_end - SIO_GET_OFFSET(sio)); 2808 2809 return (B_TRUE); 2810 } else { 2811 range_tree_remove(queue->q_exts_by_addr, rs->rs_start, 2812 rs->rs_end - rs->rs_start); 2813 return (B_FALSE); 2814 } 2815 } 2816 2817 2818 /* 2819 * This is called from the queue emptying thread and selects the next 2820 * extent from which we are to issue io's. The behavior of this function 2821 * depends on the state of the scan, the current memory consumption and 2822 * whether or not we are performing a scan shutdown. 2823 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2824 * needs to perform a checkpoint 2825 * 2) We select the largest available extent if we are up against the 2826 * memory limit. 2827 * 3) Otherwise we don't select any extents. 2828 */ 2829 static const range_seg_t * 2830 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2831 { 2832 dsl_scan_t *scn = queue->q_scn; 2833 2834 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2835 ASSERT(scn->scn_is_sorted); 2836 2837 /* handle tunable overrides */ 2838 if (scn->scn_checkpointing || scn->scn_clearing) { 2839 if (zfs_scan_issue_strategy == 1) { 2840 return (range_tree_first(queue->q_exts_by_addr)); 2841 } else if (zfs_scan_issue_strategy == 2) { 2842 return (avl_first(&queue->q_exts_by_size)); 2843 } 2844 } 2845 2846 /* 2847 * During normal clearing, we want to issue our largest segments 2848 * first, keeping IO as sequential as possible, and leaving the 2849 * smaller extents for later with the hope that they might eventually 2850 * grow to larger sequential segments. However, when the scan is 2851 * checkpointing, no new extents will be added to the sorting queue, 2852 * so the way we are sorted now is as good as it will ever get. 2853 * In this case, we instead switch to issuing extents in LBA order. 2854 */ 2855 if (scn->scn_checkpointing) { 2856 return (range_tree_first(queue->q_exts_by_addr)); 2857 } else if (scn->scn_clearing) { 2858 return (avl_first(&queue->q_exts_by_size)); 2859 } else { 2860 return (NULL); 2861 } 2862 } 2863 2864 static void 2865 scan_io_queues_run_one(void *arg) 2866 { 2867 dsl_scan_io_queue_t *queue = arg; 2868 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 2869 boolean_t suspended = B_FALSE; 2870 range_seg_t *rs = NULL; 2871 scan_io_t *sio = NULL; 2872 list_t sio_list; 2873 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 2874 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 2875 2876 ASSERT(queue->q_scn->scn_is_sorted); 2877 2878 list_create(&sio_list, sizeof (scan_io_t), 2879 offsetof(scan_io_t, sio_nodes.sio_list_node)); 2880 mutex_enter(q_lock); 2881 2882 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 2883 queue->q_maxinflight_bytes = 2884 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 2885 2886 /* reset per-queue scan statistics for this txg */ 2887 queue->q_total_seg_size_this_txg = 0; 2888 queue->q_segs_this_txg = 0; 2889 queue->q_total_zio_size_this_txg = 0; 2890 queue->q_zios_this_txg = 0; 2891 2892 /* loop until we have run out of time or sios */ 2893 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) { 2894 uint64_t seg_start = 0, seg_end = 0; 2895 boolean_t more_left = B_TRUE; 2896 2897 ASSERT(list_is_empty(&sio_list)); 2898 2899 /* loop while we still have sios left to process in this rs */ 2900 while (more_left) { 2901 scan_io_t *first_sio, *last_sio; 2902 2903 /* 2904 * We have selected which extent needs to be 2905 * processed next. Gather up the corresponding sios. 2906 */ 2907 more_left = scan_io_queue_gather(queue, rs, &sio_list); 2908 ASSERT(!list_is_empty(&sio_list)); 2909 first_sio = list_head(&sio_list); 2910 last_sio = list_tail(&sio_list); 2911 2912 seg_end = SIO_GET_END_OFFSET(last_sio); 2913 if (seg_start == 0) 2914 seg_start = SIO_GET_OFFSET(first_sio); 2915 2916 /* 2917 * Issuing sios can take a long time so drop the 2918 * queue lock. The sio queue won't be updated by 2919 * other threads since we're in syncing context so 2920 * we can be sure that our trees will remain exactly 2921 * as we left them. 2922 */ 2923 mutex_exit(q_lock); 2924 suspended = scan_io_queue_issue(queue, &sio_list); 2925 mutex_enter(q_lock); 2926 2927 if (suspended) 2928 break; 2929 } 2930 /* update statistics for debugging purposes */ 2931 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 2932 2933 if (suspended) 2934 break; 2935 } 2936 2937 2938 /* 2939 * If we were suspended in the middle of processing, 2940 * requeue any unfinished sios and exit. 2941 */ 2942 while ((sio = list_head(&sio_list)) != NULL) { 2943 list_remove(&sio_list, sio); 2944 scan_io_queue_insert_impl(queue, sio); 2945 } 2946 2947 mutex_exit(q_lock); 2948 list_destroy(&sio_list); 2949 } 2950 2951 /* 2952 * Performs an emptying run on all scan queues in the pool. This just 2953 * punches out one thread per top-level vdev, each of which processes 2954 * only that vdev's scan queue. We can parallelize the I/O here because 2955 * we know that each queue's io's only affect its own top-level vdev. 2956 * 2957 * This function waits for the queue runs to complete, and must be 2958 * called from dsl_scan_sync (or in general, syncing context). 2959 */ 2960 static void 2961 scan_io_queues_run(dsl_scan_t *scn) 2962 { 2963 spa_t *spa = scn->scn_dp->dp_spa; 2964 2965 ASSERT(scn->scn_is_sorted); 2966 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2967 2968 if (scn->scn_bytes_pending == 0) 2969 return; 2970 2971 if (scn->scn_taskq == NULL) { 2972 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, 2973 KM_SLEEP); 2974 int nthreads = spa->spa_root_vdev->vdev_children; 2975 2976 /* 2977 * We need to make this taskq *always* execute as many 2978 * threads in parallel as we have top-level vdevs and no 2979 * less, otherwise strange serialization of the calls to 2980 * scan_io_queues_run_one can occur during spa_sync runs 2981 * and that significantly impacts performance. 2982 */ 2983 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, 2984 "dsl_scan_tq_%s", spa->spa_name); 2985 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, 2986 nthreads, nthreads, TASKQ_PREPOPULATE); 2987 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); 2988 } 2989 2990 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 2991 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 2992 2993 mutex_enter(&vd->vdev_scan_io_queue_lock); 2994 if (vd->vdev_scan_io_queue != NULL) { 2995 VERIFY(taskq_dispatch(scn->scn_taskq, 2996 scan_io_queues_run_one, vd->vdev_scan_io_queue, 2997 TQ_SLEEP) != TASKQID_INVALID); 2998 } 2999 mutex_exit(&vd->vdev_scan_io_queue_lock); 3000 } 3001 3002 /* 3003 * Wait for the queues to finish issuing thir IOs for this run 3004 * before we return. There may still be IOs in flight at this 3005 * point. 3006 */ 3007 taskq_wait(scn->scn_taskq); 3008 } 3009 3010 static boolean_t 3011 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3012 { 3013 uint64_t elapsed_nanosecs; 3014 3015 if (zfs_recover) 3016 return (B_FALSE); 3017 3018 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) 3019 return (B_TRUE); 3020 3021 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3022 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3023 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3024 txg_sync_waiting(scn->scn_dp)) || 3025 spa_shutting_down(scn->scn_dp->dp_spa)); 3026 } 3027 3028 static int 3029 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3030 { 3031 dsl_scan_t *scn = arg; 3032 3033 if (!scn->scn_is_bptree || 3034 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3035 if (dsl_scan_async_block_should_pause(scn)) 3036 return (SET_ERROR(ERESTART)); 3037 } 3038 3039 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3040 dmu_tx_get_txg(tx), bp, 0)); 3041 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3042 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3043 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3044 scn->scn_visited_this_txg++; 3045 return (0); 3046 } 3047 3048 static void 3049 dsl_scan_update_stats(dsl_scan_t *scn) 3050 { 3051 spa_t *spa = scn->scn_dp->dp_spa; 3052 uint64_t i; 3053 uint64_t seg_size_total = 0, zio_size_total = 0; 3054 uint64_t seg_count_total = 0, zio_count_total = 0; 3055 3056 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3057 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3058 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3059 3060 if (queue == NULL) 3061 continue; 3062 3063 seg_size_total += queue->q_total_seg_size_this_txg; 3064 zio_size_total += queue->q_total_zio_size_this_txg; 3065 seg_count_total += queue->q_segs_this_txg; 3066 zio_count_total += queue->q_zios_this_txg; 3067 } 3068 3069 if (seg_count_total == 0 || zio_count_total == 0) { 3070 scn->scn_avg_seg_size_this_txg = 0; 3071 scn->scn_avg_zio_size_this_txg = 0; 3072 scn->scn_segs_this_txg = 0; 3073 scn->scn_zios_this_txg = 0; 3074 return; 3075 } 3076 3077 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3078 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3079 scn->scn_segs_this_txg = seg_count_total; 3080 scn->scn_zios_this_txg = zio_count_total; 3081 } 3082 3083 static int 3084 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3085 { 3086 dsl_scan_t *scn = arg; 3087 const dva_t *dva = &bp->blk_dva[0]; 3088 3089 if (dsl_scan_async_block_should_pause(scn)) 3090 return (SET_ERROR(ERESTART)); 3091 3092 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3093 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3094 DVA_GET_ASIZE(dva), tx); 3095 scn->scn_visited_this_txg++; 3096 return (0); 3097 } 3098 3099 boolean_t 3100 dsl_scan_active(dsl_scan_t *scn) 3101 { 3102 spa_t *spa = scn->scn_dp->dp_spa; 3103 uint64_t used = 0, comp, uncomp; 3104 3105 if (spa->spa_load_state != SPA_LOAD_NONE) 3106 return (B_FALSE); 3107 if (spa_shutting_down(spa)) 3108 return (B_FALSE); 3109 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3110 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3111 return (B_TRUE); 3112 3113 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3114 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3115 &used, &comp, &uncomp); 3116 } 3117 return (used != 0); 3118 } 3119 3120 static boolean_t 3121 dsl_scan_check_deferred(vdev_t *vd) 3122 { 3123 boolean_t need_resilver = B_FALSE; 3124 3125 for (int c = 0; c < vd->vdev_children; c++) { 3126 need_resilver |= 3127 dsl_scan_check_deferred(vd->vdev_child[c]); 3128 } 3129 3130 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3131 !vd->vdev_ops->vdev_op_leaf) 3132 return (need_resilver); 3133 3134 if (!vd->vdev_resilver_deferred) 3135 need_resilver = B_TRUE; 3136 3137 return (need_resilver); 3138 } 3139 3140 static boolean_t 3141 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3142 uint64_t phys_birth) 3143 { 3144 vdev_t *vd; 3145 3146 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3147 3148 if (vd->vdev_ops == &vdev_indirect_ops) { 3149 /* 3150 * The indirect vdev can point to multiple 3151 * vdevs. For simplicity, always create 3152 * the resilver zio_t. zio_vdev_io_start() 3153 * will bypass the child resilver i/o's if 3154 * they are on vdevs that don't have DTL's. 3155 */ 3156 return (B_TRUE); 3157 } 3158 3159 if (DVA_GET_GANG(dva)) { 3160 /* 3161 * Gang members may be spread across multiple 3162 * vdevs, so the best estimate we have is the 3163 * scrub range, which has already been checked. 3164 * XXX -- it would be better to change our 3165 * allocation policy to ensure that all 3166 * gang members reside on the same vdev. 3167 */ 3168 return (B_TRUE); 3169 } 3170 3171 /* 3172 * Check if the txg falls within the range which must be 3173 * resilvered. DVAs outside this range can always be skipped. 3174 */ 3175 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3176 return (B_FALSE); 3177 3178 /* 3179 * Check if the top-level vdev must resilver this offset. 3180 * When the offset does not intersect with a dirty leaf DTL 3181 * then it may be possible to skip the resilver IO. The psize 3182 * is provided instead of asize to simplify the check for RAIDZ. 3183 */ 3184 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3185 return (B_FALSE); 3186 3187 /* 3188 * Check that this top-level vdev has a device under it which 3189 * is resilvering and is not deferred. 3190 */ 3191 if (!dsl_scan_check_deferred(vd)) 3192 return (B_FALSE); 3193 3194 return (B_TRUE); 3195 } 3196 3197 static int 3198 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3199 { 3200 int err = 0; 3201 dsl_scan_t *scn = dp->dp_scan; 3202 spa_t *spa = dp->dp_spa; 3203 3204 if (spa_suspend_async_destroy(spa)) 3205 return (0); 3206 3207 if (zfs_free_bpobj_enabled && 3208 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3209 scn->scn_is_bptree = B_FALSE; 3210 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3211 scn->scn_zio_root = zio_root(spa, NULL, 3212 NULL, ZIO_FLAG_MUSTSUCCEED); 3213 err = bpobj_iterate(&dp->dp_free_bpobj, 3214 dsl_scan_free_block_cb, scn, tx); 3215 VERIFY0(zio_wait(scn->scn_zio_root)); 3216 scn->scn_zio_root = NULL; 3217 3218 if (err != 0 && err != ERESTART) 3219 zfs_panic_recover("error %u from bpobj_iterate()", err); 3220 } 3221 3222 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3223 ASSERT(scn->scn_async_destroying); 3224 scn->scn_is_bptree = B_TRUE; 3225 scn->scn_zio_root = zio_root(spa, NULL, 3226 NULL, ZIO_FLAG_MUSTSUCCEED); 3227 err = bptree_iterate(dp->dp_meta_objset, 3228 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3229 VERIFY0(zio_wait(scn->scn_zio_root)); 3230 scn->scn_zio_root = NULL; 3231 3232 if (err == EIO || err == ECKSUM) { 3233 err = 0; 3234 } else if (err != 0 && err != ERESTART) { 3235 zfs_panic_recover("error %u from " 3236 "traverse_dataset_destroyed()", err); 3237 } 3238 3239 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3240 /* finished; deactivate async destroy feature */ 3241 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3242 ASSERT(!spa_feature_is_active(spa, 3243 SPA_FEATURE_ASYNC_DESTROY)); 3244 VERIFY0(zap_remove(dp->dp_meta_objset, 3245 DMU_POOL_DIRECTORY_OBJECT, 3246 DMU_POOL_BPTREE_OBJ, tx)); 3247 VERIFY0(bptree_free(dp->dp_meta_objset, 3248 dp->dp_bptree_obj, tx)); 3249 dp->dp_bptree_obj = 0; 3250 scn->scn_async_destroying = B_FALSE; 3251 scn->scn_async_stalled = B_FALSE; 3252 } else { 3253 /* 3254 * If we didn't make progress, mark the async 3255 * destroy as stalled, so that we will not initiate 3256 * a spa_sync() on its behalf. Note that we only 3257 * check this if we are not finished, because if the 3258 * bptree had no blocks for us to visit, we can 3259 * finish without "making progress". 3260 */ 3261 scn->scn_async_stalled = 3262 (scn->scn_visited_this_txg == 0); 3263 } 3264 } 3265 if (scn->scn_visited_this_txg) { 3266 zfs_dbgmsg("freed %llu blocks in %llums from " 3267 "free_bpobj/bptree txg %llu; err=%d", 3268 (longlong_t)scn->scn_visited_this_txg, 3269 (longlong_t) 3270 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3271 (longlong_t)tx->tx_txg, err); 3272 scn->scn_visited_this_txg = 0; 3273 3274 /* 3275 * Write out changes to the DDT that may be required as a 3276 * result of the blocks freed. This ensures that the DDT 3277 * is clean when a scrub/resilver runs. 3278 */ 3279 ddt_sync(spa, tx->tx_txg); 3280 } 3281 if (err != 0) 3282 return (err); 3283 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3284 zfs_free_leak_on_eio && 3285 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3286 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3287 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3288 /* 3289 * We have finished background destroying, but there is still 3290 * some space left in the dp_free_dir. Transfer this leaked 3291 * space to the dp_leak_dir. 3292 */ 3293 if (dp->dp_leak_dir == NULL) { 3294 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3295 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3296 LEAK_DIR_NAME, tx); 3297 VERIFY0(dsl_pool_open_special_dir(dp, 3298 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3299 rrw_exit(&dp->dp_config_rwlock, FTAG); 3300 } 3301 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3302 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3303 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3304 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3305 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3306 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3307 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3308 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3309 } 3310 3311 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { 3312 /* finished; verify that space accounting went to zero */ 3313 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3314 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3315 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3316 } 3317 3318 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3319 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3320 DMU_POOL_OBSOLETE_BPOBJ)); 3321 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3322 ASSERT(spa_feature_is_active(dp->dp_spa, 3323 SPA_FEATURE_OBSOLETE_COUNTS)); 3324 3325 scn->scn_is_bptree = B_FALSE; 3326 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3327 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3328 dsl_scan_obsolete_block_cb, scn, tx); 3329 if (err != 0 && err != ERESTART) 3330 zfs_panic_recover("error %u from bpobj_iterate()", err); 3331 3332 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3333 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3334 } 3335 3336 return (0); 3337 } 3338 3339 /* 3340 * This is the primary entry point for scans that is called from syncing 3341 * context. Scans must happen entirely during syncing context so that we 3342 * cna guarantee that blocks we are currently scanning will not change out 3343 * from under us. While a scan is active, this funciton controls how quickly 3344 * transaction groups proceed, instead of the normal handling provided by 3345 * txg_sync_thread(). 3346 */ 3347 void 3348 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3349 { 3350 dsl_scan_t *scn = dp->dp_scan; 3351 spa_t *spa = dp->dp_spa; 3352 int err = 0; 3353 state_sync_type_t sync_type = SYNC_OPTIONAL; 3354 3355 if (spa->spa_resilver_deferred && 3356 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3357 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3358 3359 /* 3360 * Check for scn_restart_txg before checking spa_load_state, so 3361 * that we can restart an old-style scan while the pool is being 3362 * imported (see dsl_scan_init). We also restart scans if there 3363 * is a deferred resilver and the user has manually disabled 3364 * deferred resilvers via the tunable. 3365 */ 3366 if (dsl_scan_restarting(scn, tx) || 3367 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3368 pool_scan_func_t func = POOL_SCAN_SCRUB; 3369 dsl_scan_done(scn, B_FALSE, tx); 3370 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3371 func = POOL_SCAN_RESILVER; 3372 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3373 func, (longlong_t)tx->tx_txg); 3374 dsl_scan_setup_sync(&func, tx); 3375 } 3376 3377 /* 3378 * Only process scans in sync pass 1. 3379 */ 3380 if (spa_sync_pass(dp->dp_spa) > 1) 3381 return; 3382 3383 /* 3384 * If the spa is shutting down, then stop scanning. This will 3385 * ensure that the scan does not dirty any new data during the 3386 * shutdown phase. 3387 */ 3388 if (spa_shutting_down(spa)) 3389 return; 3390 3391 /* 3392 * If the scan is inactive due to a stalled async destroy, try again. 3393 */ 3394 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3395 return; 3396 3397 /* reset scan statistics */ 3398 scn->scn_visited_this_txg = 0; 3399 scn->scn_holes_this_txg = 0; 3400 scn->scn_lt_min_this_txg = 0; 3401 scn->scn_gt_max_this_txg = 0; 3402 scn->scn_ddt_contained_this_txg = 0; 3403 scn->scn_objsets_visited_this_txg = 0; 3404 scn->scn_avg_seg_size_this_txg = 0; 3405 scn->scn_segs_this_txg = 0; 3406 scn->scn_avg_zio_size_this_txg = 0; 3407 scn->scn_zios_this_txg = 0; 3408 scn->scn_suspending = B_FALSE; 3409 scn->scn_sync_start_time = gethrtime(); 3410 spa->spa_scrub_active = B_TRUE; 3411 3412 /* 3413 * First process the async destroys. If we pause, don't do 3414 * any scrubbing or resilvering. This ensures that there are no 3415 * async destroys while we are scanning, so the scan code doesn't 3416 * have to worry about traversing it. It is also faster to free the 3417 * blocks than to scrub them. 3418 */ 3419 err = dsl_process_async_destroys(dp, tx); 3420 if (err != 0) 3421 return; 3422 3423 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3424 return; 3425 3426 /* 3427 * Wait a few txgs after importing to begin scanning so that 3428 * we can get the pool imported quickly. 3429 */ 3430 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3431 return; 3432 3433 /* 3434 * zfs_scan_suspend_progress can be set to disable scan progress. 3435 * We don't want to spin the txg_sync thread, so we add a delay 3436 * here to simulate the time spent doing a scan. This is mostly 3437 * useful for testing and debugging. 3438 */ 3439 if (zfs_scan_suspend_progress) { 3440 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3441 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3442 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3443 3444 while (zfs_scan_suspend_progress && 3445 !txg_sync_waiting(scn->scn_dp) && 3446 !spa_shutting_down(scn->scn_dp->dp_spa) && 3447 NSEC2MSEC(scan_time_ns) < mintime) { 3448 delay(hz); 3449 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3450 } 3451 return; 3452 } 3453 3454 /* 3455 * It is possible to switch from unsorted to sorted at any time, 3456 * but afterwards the scan will remain sorted unless reloaded from 3457 * a checkpoint after a reboot. 3458 */ 3459 if (!zfs_scan_legacy) { 3460 scn->scn_is_sorted = B_TRUE; 3461 if (scn->scn_last_checkpoint == 0) 3462 scn->scn_last_checkpoint = ddi_get_lbolt(); 3463 } 3464 3465 /* 3466 * For sorted scans, determine what kind of work we will be doing 3467 * this txg based on our memory limitations and whether or not we 3468 * need to perform a checkpoint. 3469 */ 3470 if (scn->scn_is_sorted) { 3471 /* 3472 * If we are over our checkpoint interval, set scn_clearing 3473 * so that we can begin checkpointing immediately. The 3474 * checkpoint allows us to save a consisent bookmark 3475 * representing how much data we have scrubbed so far. 3476 * Otherwise, use the memory limit to determine if we should 3477 * scan for metadata or start issue scrub IOs. We accumulate 3478 * metadata until we hit our hard memory limit at which point 3479 * we issue scrub IOs until we are at our soft memory limit. 3480 */ 3481 if (scn->scn_checkpointing || 3482 ddi_get_lbolt() - scn->scn_last_checkpoint > 3483 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3484 if (!scn->scn_checkpointing) 3485 zfs_dbgmsg("begin scan checkpoint"); 3486 3487 scn->scn_checkpointing = B_TRUE; 3488 scn->scn_clearing = B_TRUE; 3489 } else { 3490 boolean_t should_clear = dsl_scan_should_clear(scn); 3491 if (should_clear && !scn->scn_clearing) { 3492 zfs_dbgmsg("begin scan clearing"); 3493 scn->scn_clearing = B_TRUE; 3494 } else if (!should_clear && scn->scn_clearing) { 3495 zfs_dbgmsg("finish scan clearing"); 3496 scn->scn_clearing = B_FALSE; 3497 } 3498 } 3499 } else { 3500 ASSERT0(scn->scn_checkpointing); 3501 ASSERT0(scn->scn_clearing); 3502 } 3503 3504 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3505 /* Need to scan metadata for more blocks to scrub */ 3506 dsl_scan_phys_t *scnp = &scn->scn_phys; 3507 taskqid_t prefetch_tqid; 3508 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3509 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3510 3511 /* 3512 * Calculate the max number of in-flight bytes for pool-wide 3513 * scanning operations (minimum 1MB). Limits for the issuing 3514 * phase are done per top-level vdev and are handled separately. 3515 */ 3516 scn->scn_maxinflight_bytes = 3517 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3518 3519 if (scnp->scn_ddt_bookmark.ddb_class <= 3520 scnp->scn_ddt_class_max) { 3521 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3522 zfs_dbgmsg("doing scan sync txg %llu; " 3523 "ddt bm=%llu/%llu/%llu/%llx", 3524 (longlong_t)tx->tx_txg, 3525 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3526 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3527 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3528 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3529 } else { 3530 zfs_dbgmsg("doing scan sync txg %llu; " 3531 "bm=%llu/%llu/%llu/%llu", 3532 (longlong_t)tx->tx_txg, 3533 (longlong_t)scnp->scn_bookmark.zb_objset, 3534 (longlong_t)scnp->scn_bookmark.zb_object, 3535 (longlong_t)scnp->scn_bookmark.zb_level, 3536 (longlong_t)scnp->scn_bookmark.zb_blkid); 3537 } 3538 3539 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3540 NULL, ZIO_FLAG_CANFAIL); 3541 3542 scn->scn_prefetch_stop = B_FALSE; 3543 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3544 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3545 ASSERT(prefetch_tqid != TASKQID_INVALID); 3546 3547 dsl_pool_config_enter(dp, FTAG); 3548 dsl_scan_visit(scn, tx); 3549 dsl_pool_config_exit(dp, FTAG); 3550 3551 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3552 scn->scn_prefetch_stop = B_TRUE; 3553 cv_broadcast(&spa->spa_scrub_io_cv); 3554 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3555 3556 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3557 (void) zio_wait(scn->scn_zio_root); 3558 scn->scn_zio_root = NULL; 3559 3560 zfs_dbgmsg("scan visited %llu blocks in %llums " 3561 "(%llu os's, %llu holes, %llu < mintxg, " 3562 "%llu in ddt, %llu > maxtxg)", 3563 (longlong_t)scn->scn_visited_this_txg, 3564 (longlong_t)NSEC2MSEC(gethrtime() - 3565 scn->scn_sync_start_time), 3566 (longlong_t)scn->scn_objsets_visited_this_txg, 3567 (longlong_t)scn->scn_holes_this_txg, 3568 (longlong_t)scn->scn_lt_min_this_txg, 3569 (longlong_t)scn->scn_ddt_contained_this_txg, 3570 (longlong_t)scn->scn_gt_max_this_txg); 3571 3572 if (!scn->scn_suspending) { 3573 ASSERT0(avl_numnodes(&scn->scn_queue)); 3574 scn->scn_done_txg = tx->tx_txg + 1; 3575 if (scn->scn_is_sorted) { 3576 scn->scn_checkpointing = B_TRUE; 3577 scn->scn_clearing = B_TRUE; 3578 } 3579 zfs_dbgmsg("scan complete txg %llu", 3580 (longlong_t)tx->tx_txg); 3581 } 3582 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3583 ASSERT(scn->scn_clearing); 3584 3585 /* need to issue scrubbing IOs from per-vdev queues */ 3586 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3587 NULL, ZIO_FLAG_CANFAIL); 3588 scan_io_queues_run(scn); 3589 (void) zio_wait(scn->scn_zio_root); 3590 scn->scn_zio_root = NULL; 3591 3592 /* calculate and dprintf the current memory usage */ 3593 (void) dsl_scan_should_clear(scn); 3594 dsl_scan_update_stats(scn); 3595 3596 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " 3597 "(avg_block_size = %llu, avg_seg_size = %llu)", 3598 (longlong_t)scn->scn_zios_this_txg, 3599 (longlong_t)scn->scn_segs_this_txg, 3600 (longlong_t)NSEC2MSEC(gethrtime() - 3601 scn->scn_sync_start_time), 3602 (longlong_t)scn->scn_avg_zio_size_this_txg, 3603 (longlong_t)scn->scn_avg_seg_size_this_txg); 3604 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3605 /* Finished with everything. Mark the scrub as complete */ 3606 zfs_dbgmsg("scan issuing complete txg %llu", 3607 (longlong_t)tx->tx_txg); 3608 ASSERT3U(scn->scn_done_txg, !=, 0); 3609 ASSERT0(spa->spa_scrub_inflight); 3610 ASSERT0(scn->scn_bytes_pending); 3611 dsl_scan_done(scn, B_TRUE, tx); 3612 sync_type = SYNC_MANDATORY; 3613 } 3614 3615 dsl_scan_sync_state(scn, tx, sync_type); 3616 } 3617 3618 static void 3619 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3620 { 3621 int i; 3622 3623 /* 3624 * Don't count embedded bp's, since we already did the work of 3625 * scanning these when we scanned the containing block. 3626 */ 3627 if (BP_IS_EMBEDDED(bp)) 3628 return; 3629 3630 /* 3631 * Update the spa's stats on how many bytes we have issued. 3632 * Sequential scrubs create a zio for each DVA of the bp. Each 3633 * of these will include all DVAs for repair purposes, but the 3634 * zio code will only try the first one unless there is an issue. 3635 * Therefore, we should only count the first DVA for these IOs. 3636 */ 3637 if (scn->scn_is_sorted) { 3638 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3639 DVA_GET_ASIZE(&bp->blk_dva[0])); 3640 } else { 3641 spa_t *spa = scn->scn_dp->dp_spa; 3642 3643 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3644 atomic_add_64(&spa->spa_scan_pass_issued, 3645 DVA_GET_ASIZE(&bp->blk_dva[i])); 3646 } 3647 } 3648 3649 /* 3650 * If we resume after a reboot, zab will be NULL; don't record 3651 * incomplete stats in that case. 3652 */ 3653 if (zab == NULL) 3654 return; 3655 3656 mutex_enter(&zab->zab_lock); 3657 3658 for (i = 0; i < 4; i++) { 3659 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3660 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3661 if (t & DMU_OT_NEWTYPE) 3662 t = DMU_OT_OTHER; 3663 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3664 int equal; 3665 3666 zb->zb_count++; 3667 zb->zb_asize += BP_GET_ASIZE(bp); 3668 zb->zb_lsize += BP_GET_LSIZE(bp); 3669 zb->zb_psize += BP_GET_PSIZE(bp); 3670 zb->zb_gangs += BP_COUNT_GANG(bp); 3671 3672 switch (BP_GET_NDVAS(bp)) { 3673 case 2: 3674 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3675 DVA_GET_VDEV(&bp->blk_dva[1])) 3676 zb->zb_ditto_2_of_2_samevdev++; 3677 break; 3678 case 3: 3679 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3680 DVA_GET_VDEV(&bp->blk_dva[1])) + 3681 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3682 DVA_GET_VDEV(&bp->blk_dva[2])) + 3683 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3684 DVA_GET_VDEV(&bp->blk_dva[2])); 3685 if (equal == 1) 3686 zb->zb_ditto_2_of_3_samevdev++; 3687 else if (equal == 3) 3688 zb->zb_ditto_3_of_3_samevdev++; 3689 break; 3690 } 3691 } 3692 3693 mutex_exit(&zab->zab_lock); 3694 } 3695 3696 static void 3697 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3698 { 3699 avl_index_t idx; 3700 int64_t asize = SIO_GET_ASIZE(sio); 3701 dsl_scan_t *scn = queue->q_scn; 3702 3703 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3704 3705 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3706 /* block is already scheduled for reading */ 3707 atomic_add_64(&scn->scn_bytes_pending, -asize); 3708 sio_free(sio); 3709 return; 3710 } 3711 avl_insert(&queue->q_sios_by_addr, sio, idx); 3712 queue->q_sio_memused += SIO_GET_MUSED(sio); 3713 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3714 } 3715 3716 /* 3717 * Given all the info we got from our metadata scanning process, we 3718 * construct a scan_io_t and insert it into the scan sorting queue. The 3719 * I/O must already be suitable for us to process. This is controlled 3720 * by dsl_scan_enqueue(). 3721 */ 3722 static void 3723 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3724 int zio_flags, const zbookmark_phys_t *zb) 3725 { 3726 dsl_scan_t *scn = queue->q_scn; 3727 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3728 3729 ASSERT0(BP_IS_GANG(bp)); 3730 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3731 3732 bp2sio(bp, sio, dva_i); 3733 sio->sio_flags = zio_flags; 3734 sio->sio_zb = *zb; 3735 3736 /* 3737 * Increment the bytes pending counter now so that we can't 3738 * get an integer underflow in case the worker processes the 3739 * zio before we get to incrementing this counter. 3740 */ 3741 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3742 3743 scan_io_queue_insert_impl(queue, sio); 3744 } 3745 3746 /* 3747 * Given a set of I/O parameters as discovered by the metadata traversal 3748 * process, attempts to place the I/O into the sorted queues (if allowed), 3749 * or immediately executes the I/O. 3750 */ 3751 static void 3752 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3753 const zbookmark_phys_t *zb) 3754 { 3755 spa_t *spa = dp->dp_spa; 3756 3757 ASSERT(!BP_IS_EMBEDDED(bp)); 3758 3759 /* 3760 * Gang blocks are hard to issue sequentially, so we just issue them 3761 * here immediately instead of queuing them. 3762 */ 3763 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3764 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3765 return; 3766 } 3767 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3768 dva_t dva; 3769 vdev_t *vdev; 3770 3771 dva = bp->blk_dva[i]; 3772 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3773 ASSERT(vdev != NULL); 3774 3775 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3776 if (vdev->vdev_scan_io_queue == NULL) 3777 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3778 ASSERT(dp->dp_scan != NULL); 3779 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3780 i, zio_flags, zb); 3781 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3782 } 3783 } 3784 3785 static int 3786 dsl_scan_scrub_cb(dsl_pool_t *dp, 3787 const blkptr_t *bp, const zbookmark_phys_t *zb) 3788 { 3789 dsl_scan_t *scn = dp->dp_scan; 3790 spa_t *spa = dp->dp_spa; 3791 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3792 size_t psize = BP_GET_PSIZE(bp); 3793 boolean_t needs_io; 3794 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3795 int d; 3796 3797 if (phys_birth <= scn->scn_phys.scn_min_txg || 3798 phys_birth >= scn->scn_phys.scn_max_txg) { 3799 count_block(scn, dp->dp_blkstats, bp); 3800 return (0); 3801 } 3802 3803 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3804 ASSERT(!BP_IS_EMBEDDED(bp)); 3805 3806 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3807 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3808 zio_flags |= ZIO_FLAG_SCRUB; 3809 needs_io = B_TRUE; 3810 } else { 3811 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3812 zio_flags |= ZIO_FLAG_RESILVER; 3813 needs_io = B_FALSE; 3814 } 3815 3816 /* If it's an intent log block, failure is expected. */ 3817 if (zb->zb_level == ZB_ZIL_LEVEL) 3818 zio_flags |= ZIO_FLAG_SPECULATIVE; 3819 3820 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3821 const dva_t *dva = &bp->blk_dva[d]; 3822 3823 /* 3824 * Keep track of how much data we've examined so that 3825 * zpool(1M) status can make useful progress reports. 3826 */ 3827 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3828 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3829 3830 /* if it's a resilver, this may not be in the target range */ 3831 if (!needs_io) 3832 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3833 phys_birth); 3834 } 3835 3836 if (needs_io && !zfs_no_scrub_io) { 3837 dsl_scan_enqueue(dp, bp, zio_flags, zb); 3838 } else { 3839 count_block(scn, dp->dp_blkstats, bp); 3840 } 3841 3842 /* do not relocate this block */ 3843 return (0); 3844 } 3845 3846 static void 3847 dsl_scan_scrub_done(zio_t *zio) 3848 { 3849 spa_t *spa = zio->io_spa; 3850 blkptr_t *bp = zio->io_bp; 3851 dsl_scan_io_queue_t *queue = zio->io_private; 3852 3853 abd_free(zio->io_abd); 3854 3855 if (queue == NULL) { 3856 mutex_enter(&spa->spa_scrub_lock); 3857 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 3858 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 3859 cv_broadcast(&spa->spa_scrub_io_cv); 3860 mutex_exit(&spa->spa_scrub_lock); 3861 } else { 3862 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 3863 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 3864 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 3865 cv_broadcast(&queue->q_zio_cv); 3866 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 3867 } 3868 3869 if (zio->io_error && (zio->io_error != ECKSUM || 3870 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 3871 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 3872 } 3873 } 3874 3875 /* 3876 * Given a scanning zio's information, executes the zio. The zio need 3877 * not necessarily be only sortable, this function simply executes the 3878 * zio, no matter what it is. The optional queue argument allows the 3879 * caller to specify that they want per top level vdev IO rate limiting 3880 * instead of the legacy global limiting. 3881 */ 3882 static void 3883 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3884 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 3885 { 3886 spa_t *spa = dp->dp_spa; 3887 dsl_scan_t *scn = dp->dp_scan; 3888 size_t size = BP_GET_PSIZE(bp); 3889 abd_t *data = abd_alloc_for_io(size, B_FALSE); 3890 3891 if (queue == NULL) { 3892 mutex_enter(&spa->spa_scrub_lock); 3893 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 3894 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3895 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 3896 mutex_exit(&spa->spa_scrub_lock); 3897 } else { 3898 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3899 3900 mutex_enter(q_lock); 3901 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 3902 cv_wait(&queue->q_zio_cv, q_lock); 3903 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 3904 mutex_exit(q_lock); 3905 } 3906 3907 count_block(dp->dp_scan, dp->dp_blkstats, bp); 3908 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, 3909 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 3910 } 3911 3912 /* 3913 * This is the primary extent sorting algorithm. We balance two parameters: 3914 * 1) how many bytes of I/O are in an extent 3915 * 2) how well the extent is filled with I/O (as a fraction of its total size) 3916 * Since we allow extents to have gaps between their constituent I/Os, it's 3917 * possible to have a fairly large extent that contains the same amount of 3918 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 3919 * The algorithm sorts based on a score calculated from the extent's size, 3920 * the relative fill volume (in %) and a "fill weight" parameter that controls 3921 * the split between whether we prefer larger extents or more well populated 3922 * extents: 3923 * 3924 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 3925 * 3926 * Example: 3927 * 1) assume extsz = 64 MiB 3928 * 2) assume fill = 32 MiB (extent is half full) 3929 * 3) assume fill_weight = 3 3930 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 3931 * SCORE = 32M + (50 * 3 * 32M) / 100 3932 * SCORE = 32M + (4800M / 100) 3933 * SCORE = 32M + 48M 3934 * ^ ^ 3935 * | +--- final total relative fill-based score 3936 * +--------- final total fill-based score 3937 * SCORE = 80M 3938 * 3939 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 3940 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 3941 * Note that as an optimization, we replace multiplication and division by 3942 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). 3943 */ 3944 static int 3945 ext_size_compare(const void *x, const void *y) 3946 { 3947 const range_seg_t *rsa = x, *rsb = y; 3948 uint64_t sa = rsa->rs_end - rsa->rs_start, 3949 sb = rsb->rs_end - rsb->rs_start; 3950 uint64_t score_a, score_b; 3951 3952 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 3953 fill_weight * rsa->rs_fill) >> 7); 3954 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 3955 fill_weight * rsb->rs_fill) >> 7); 3956 3957 if (score_a > score_b) 3958 return (-1); 3959 if (score_a == score_b) { 3960 if (rsa->rs_start < rsb->rs_start) 3961 return (-1); 3962 if (rsa->rs_start == rsb->rs_start) 3963 return (0); 3964 return (1); 3965 } 3966 return (1); 3967 } 3968 3969 /* 3970 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 3971 * based on LBA-order (from lowest to highest). 3972 */ 3973 static int 3974 sio_addr_compare(const void *x, const void *y) 3975 { 3976 const scan_io_t *a = x, *b = y; 3977 3978 return (AVL_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 3979 } 3980 3981 /* IO queues are created on demand when they are needed. */ 3982 static dsl_scan_io_queue_t * 3983 scan_io_queue_create(vdev_t *vd) 3984 { 3985 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3986 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 3987 3988 q->q_scn = scn; 3989 q->q_vd = vd; 3990 q->q_sio_memused = 0; 3991 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 3992 q->q_exts_by_addr = range_tree_create_impl(&rt_avl_ops, 3993 &q->q_exts_by_size, ext_size_compare, zfs_scan_max_ext_gap); 3994 avl_create(&q->q_sios_by_addr, sio_addr_compare, 3995 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 3996 3997 return (q); 3998 } 3999 4000 /* 4001 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4002 * No further execution of I/O occurs, anything pending in the queue is 4003 * simply freed without being executed. 4004 */ 4005 void 4006 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4007 { 4008 dsl_scan_t *scn = queue->q_scn; 4009 scan_io_t *sio; 4010 void *cookie = NULL; 4011 int64_t bytes_dequeued = 0; 4012 4013 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4014 4015 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4016 NULL) { 4017 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4018 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4019 bytes_dequeued += SIO_GET_ASIZE(sio); 4020 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4021 sio_free(sio); 4022 } 4023 4024 ASSERT0(queue->q_sio_memused); 4025 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4026 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4027 range_tree_destroy(queue->q_exts_by_addr); 4028 avl_destroy(&queue->q_sios_by_addr); 4029 cv_destroy(&queue->q_zio_cv); 4030 4031 kmem_free(queue, sizeof (*queue)); 4032 } 4033 4034 /* 4035 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4036 * called on behalf of vdev_top_transfer when creating or destroying 4037 * a mirror vdev due to zpool attach/detach. 4038 */ 4039 void 4040 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4041 { 4042 mutex_enter(&svd->vdev_scan_io_queue_lock); 4043 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4044 4045 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4046 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4047 svd->vdev_scan_io_queue = NULL; 4048 if (tvd->vdev_scan_io_queue != NULL) 4049 tvd->vdev_scan_io_queue->q_vd = tvd; 4050 4051 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4052 mutex_exit(&svd->vdev_scan_io_queue_lock); 4053 } 4054 4055 static void 4056 scan_io_queues_destroy(dsl_scan_t *scn) 4057 { 4058 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4059 4060 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4061 vdev_t *tvd = rvd->vdev_child[i]; 4062 4063 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4064 if (tvd->vdev_scan_io_queue != NULL) 4065 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4066 tvd->vdev_scan_io_queue = NULL; 4067 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4068 } 4069 } 4070 4071 static void 4072 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4073 { 4074 dsl_pool_t *dp = spa->spa_dsl_pool; 4075 dsl_scan_t *scn = dp->dp_scan; 4076 vdev_t *vdev; 4077 kmutex_t *q_lock; 4078 dsl_scan_io_queue_t *queue; 4079 scan_io_t *srch_sio, *sio; 4080 avl_index_t idx; 4081 uint64_t start, size; 4082 4083 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4084 ASSERT(vdev != NULL); 4085 q_lock = &vdev->vdev_scan_io_queue_lock; 4086 queue = vdev->vdev_scan_io_queue; 4087 4088 mutex_enter(q_lock); 4089 if (queue == NULL) { 4090 mutex_exit(q_lock); 4091 return; 4092 } 4093 4094 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4095 bp2sio(bp, srch_sio, dva_i); 4096 start = SIO_GET_OFFSET(srch_sio); 4097 size = SIO_GET_ASIZE(srch_sio); 4098 4099 /* 4100 * We can find the zio in two states: 4101 * 1) Cold, just sitting in the queue of zio's to be issued at 4102 * some point in the future. In this case, all we do is 4103 * remove the zio from the q_sios_by_addr tree, decrement 4104 * its data volume from the containing range_seg_t and 4105 * resort the q_exts_by_size tree to reflect that the 4106 * range_seg_t has lost some of its 'fill'. We don't shorten 4107 * the range_seg_t - this is usually rare enough not to be 4108 * worth the extra hassle of trying keep track of precise 4109 * extent boundaries. 4110 * 2) Hot, where the zio is currently in-flight in 4111 * dsl_scan_issue_ios. In this case, we can't simply 4112 * reach in and stop the in-flight zio's, so we instead 4113 * block the caller. Eventually, dsl_scan_issue_ios will 4114 * be done with issuing the zio's it gathered and will 4115 * signal us. 4116 */ 4117 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4118 sio_free(srch_sio); 4119 4120 if (sio != NULL) { 4121 int64_t asize = SIO_GET_ASIZE(sio); 4122 blkptr_t tmpbp; 4123 4124 /* Got it while it was cold in the queue */ 4125 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4126 ASSERT3U(size, ==, asize); 4127 avl_remove(&queue->q_sios_by_addr, sio); 4128 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4129 4130 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4131 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4132 4133 /* 4134 * We only update scn_bytes_pending in the cold path, 4135 * otherwise it will already have been accounted for as 4136 * part of the zio's execution. 4137 */ 4138 atomic_add_64(&scn->scn_bytes_pending, -asize); 4139 4140 /* count the block as though we issued it */ 4141 sio2bp(sio, &tmpbp); 4142 count_block(scn, dp->dp_blkstats, &tmpbp); 4143 4144 sio_free(sio); 4145 } 4146 mutex_exit(q_lock); 4147 } 4148 4149 /* 4150 * Callback invoked when a zio_free() zio is executing. This needs to be 4151 * intercepted to prevent the zio from deallocating a particular portion 4152 * of disk space and it then getting reallocated and written to, while we 4153 * still have it queued up for processing. 4154 */ 4155 void 4156 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4157 { 4158 dsl_pool_t *dp = spa->spa_dsl_pool; 4159 dsl_scan_t *scn = dp->dp_scan; 4160 4161 ASSERT(!BP_IS_EMBEDDED(bp)); 4162 ASSERT(scn != NULL); 4163 if (!dsl_scan_is_running(scn)) 4164 return; 4165 4166 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4167 dsl_scan_freed_dva(spa, bp, i); 4168 } 4169