1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 28 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org> 29 */ 30 31 #include <sys/dsl_scan.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_prop.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dnode.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/arc.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/zfs_context.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/spa_impl.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/zil_impl.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/ddt.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/zfeature.h> 54 #include <sys/abd.h> 55 #include <sys/range_tree.h> 56 #ifdef _KERNEL 57 #include <sys/zfs_vfsops.h> 58 #endif 59 60 /* 61 * Grand theory statement on scan queue sorting 62 * 63 * Scanning is implemented by recursively traversing all indirection levels 64 * in an object and reading all blocks referenced from said objects. This 65 * results in us approximately traversing the object from lowest logical 66 * offset to the highest. For best performance, we would want the logical 67 * blocks to be physically contiguous. However, this is frequently not the 68 * case with pools given the allocation patterns of copy-on-write filesystems. 69 * So instead, we put the I/Os into a reordering queue and issue them in a 70 * way that will most benefit physical disks (LBA-order). 71 * 72 * Queue management: 73 * 74 * Ideally, we would want to scan all metadata and queue up all block I/O 75 * prior to starting to issue it, because that allows us to do an optimal 76 * sorting job. This can however consume large amounts of memory. Therefore 77 * we continuously monitor the size of the queues and constrain them to 5% 78 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 79 * limit, we clear out a few of the largest extents at the head of the queues 80 * to make room for more scanning. Hopefully, these extents will be fairly 81 * large and contiguous, allowing us to approach sequential I/O throughput 82 * even without a fully sorted tree. 83 * 84 * Metadata scanning takes place in dsl_scan_visit(), which is called from 85 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 86 * metadata on the pool, or we need to make room in memory because our 87 * queues are too large, dsl_scan_visit() is postponed and 88 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 89 * that metadata scanning and queued I/O issuing are mutually exclusive. This 90 * allows us to provide maximum sequential I/O throughput for the majority of 91 * I/O's issued since sequential I/O performance is significantly negatively 92 * impacted if it is interleaved with random I/O. 93 * 94 * Implementation Notes 95 * 96 * One side effect of the queued scanning algorithm is that the scanning code 97 * needs to be notified whenever a block is freed. This is needed to allow 98 * the scanning code to remove these I/Os from the issuing queue. Additionally, 99 * we do not attempt to queue gang blocks to be issued sequentially since this 100 * is very hard to do and would have an extremely limited performance benefit. 101 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 102 * algorithm. 103 * 104 * Backwards compatibility 105 * 106 * This new algorithm is backwards compatible with the legacy on-disk data 107 * structures (and therefore does not require a new feature flag). 108 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 109 * will stop scanning metadata (in logical order) and wait for all outstanding 110 * sorted I/O to complete. Once this is done, we write out a checkpoint 111 * bookmark, indicating that we have scanned everything logically before it. 112 * If the pool is imported on a machine without the new sorting algorithm, 113 * the scan simply resumes from the last checkpoint using the legacy algorithm. 114 */ 115 116 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 117 const zbookmark_phys_t *); 118 119 static scan_cb_t dsl_scan_scrub_cb; 120 121 static int scan_ds_queue_compare(const void *a, const void *b); 122 static int scan_prefetch_queue_compare(const void *a, const void *b); 123 static void scan_ds_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 130 extern int zfs_vdev_async_write_active_min_dirty_percent; 131 132 /* 133 * By default zfs will check to ensure it is not over the hard memory 134 * limit before each txg. If finer-grained control of this is needed 135 * this value can be set to 1 to enable checking before scanning each 136 * block. 137 */ 138 int zfs_scan_strict_mem_lim = B_FALSE; 139 140 /* 141 * Maximum number of parallelly executing I/Os per top-level vdev. 142 * Tune with care. Very high settings (hundreds) are known to trigger 143 * some firmware bugs and resets on certain SSDs. 144 */ 145 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ 146 unsigned int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ 147 unsigned int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ 148 unsigned int zfs_scan_idle = 50; /* idle window in clock ticks */ 149 150 /* 151 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 152 * to strike a balance here between keeping the vdev queues full of I/Os 153 * at all times and not overflowing the queues to cause long latency, 154 * which would cause long txg sync times. No matter what, we will not 155 * overload the drives with I/O, since that is protected by 156 * zfs_vdev_scrub_max_active. 157 */ 158 unsigned long zfs_scan_vdev_limit = 4 << 20; 159 160 int zfs_scan_issue_strategy = 0; 161 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 162 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 163 164 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ 165 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) 166 167 /* 168 * fill_weight is non-tunable at runtime, so we copy it at module init from 169 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 170 * break queue sorting. 171 */ 172 uint64_t zfs_scan_fill_weight = 3; 173 static uint64_t fill_weight; 174 175 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 176 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 177 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 178 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 179 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 180 181 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 182 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 183 /* min millisecs to obsolete per txg */ 184 unsigned int zfs_obsolete_min_time_ms = 500; 185 /* min millisecs to resilver per txg */ 186 unsigned int zfs_resilver_min_time_ms = 3000; 187 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 188 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 189 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 190 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 191 /* max number of blocks to free in a single TXG */ 192 uint64_t zfs_async_block_max_blocks = UINT64_MAX; 193 194 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 195 196 /* 197 * We wait a few txgs after importing a pool to begin scanning so that 198 * the import / mounting code isn't held up by scrub / resilver IO. 199 * Unfortunately, it is a bit difficult to determine exactly how long 200 * this will take since userspace will trigger fs mounts asynchronously 201 * and the kernel will create zvol minors asynchronously. As a result, 202 * the value provided here is a bit arbitrary, but represents a 203 * reasonable estimate of how many txgs it will take to finish fully 204 * importing a pool 205 */ 206 #define SCAN_IMPORT_WAIT_TXGS 5 207 208 209 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 210 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 211 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 212 213 extern int zfs_txg_timeout; 214 215 /* 216 * Enable/disable the processing of the free_bpobj object. 217 */ 218 boolean_t zfs_free_bpobj_enabled = B_TRUE; 219 220 /* the order has to match pool_scan_type */ 221 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 222 NULL, 223 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 224 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 225 }; 226 227 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 228 typedef struct { 229 uint64_t sds_dsobj; 230 uint64_t sds_txg; 231 avl_node_t sds_node; 232 } scan_ds_t; 233 234 /* 235 * This controls what conditions are placed on dsl_scan_sync_state(): 236 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 237 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 238 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 239 * write out the scn_phys_cached version. 240 * See dsl_scan_sync_state for details. 241 */ 242 typedef enum { 243 SYNC_OPTIONAL, 244 SYNC_MANDATORY, 245 SYNC_CACHED 246 } state_sync_type_t; 247 248 /* 249 * This struct represents the minimum information needed to reconstruct a 250 * zio for sequential scanning. This is useful because many of these will 251 * accumulate in the sequential IO queues before being issued, so saving 252 * memory matters here. 253 */ 254 typedef struct scan_io { 255 /* fields from blkptr_t */ 256 uint64_t sio_blk_prop; 257 uint64_t sio_phys_birth; 258 uint64_t sio_birth; 259 zio_cksum_t sio_cksum; 260 uint32_t sio_nr_dvas; 261 262 /* fields from zio_t */ 263 uint32_t sio_flags; 264 zbookmark_phys_t sio_zb; 265 266 /* members for queue sorting */ 267 union { 268 avl_node_t sio_addr_node; /* link into issuing queue */ 269 list_node_t sio_list_node; /* link for issuing to disk */ 270 } sio_nodes; 271 272 /* 273 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 274 * depending on how many were in the original bp. Only the 275 * first DVA is really used for sorting and issuing purposes. 276 * The other DVAs (if provided) simply exist so that the zio 277 * layer can find additional copies to repair from in the 278 * event of an error. This array must go at the end of the 279 * struct to allow this for the variable number of elements. 280 */ 281 dva_t sio_dva[0]; 282 } scan_io_t; 283 284 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 285 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 286 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 287 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 288 #define SIO_GET_END_OFFSET(sio) \ 289 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 290 #define SIO_GET_MUSED(sio) \ 291 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 292 293 struct dsl_scan_io_queue { 294 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 295 vdev_t *q_vd; /* top-level vdev that this queue represents */ 296 297 /* trees used for sorting I/Os and extents of I/Os */ 298 range_tree_t *q_exts_by_addr; 299 zfs_btree_t q_exts_by_size; 300 avl_tree_t q_sios_by_addr; 301 uint64_t q_sio_memused; 302 303 /* members for zio rate limiting */ 304 uint64_t q_maxinflight_bytes; 305 uint64_t q_inflight_bytes; 306 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 307 308 /* per txg statistics */ 309 uint64_t q_total_seg_size_this_txg; 310 uint64_t q_segs_this_txg; 311 uint64_t q_total_zio_size_this_txg; 312 uint64_t q_zios_this_txg; 313 }; 314 315 /* private data for dsl_scan_prefetch_cb() */ 316 typedef struct scan_prefetch_ctx { 317 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 318 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 319 boolean_t spc_root; /* is this prefetch for an objset? */ 320 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 321 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 322 } scan_prefetch_ctx_t; 323 324 /* private data for dsl_scan_prefetch() */ 325 typedef struct scan_prefetch_issue_ctx { 326 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 327 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 328 blkptr_t spic_bp; /* bp to prefetch */ 329 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 330 } scan_prefetch_issue_ctx_t; 331 332 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 333 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 334 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 335 scan_io_t *sio); 336 337 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 338 static void scan_io_queues_destroy(dsl_scan_t *scn); 339 340 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 341 342 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 343 static void 344 sio_free(scan_io_t *sio) 345 { 346 ASSERT3U(sio->sio_nr_dvas, >, 0); 347 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 348 349 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 350 } 351 352 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 353 static scan_io_t * 354 sio_alloc(unsigned short nr_dvas) 355 { 356 ASSERT3U(nr_dvas, >, 0); 357 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 358 359 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 360 } 361 362 void 363 scan_init(void) 364 { 365 /* 366 * This is used in ext_size_compare() to weight segments 367 * based on how sparse they are. This cannot be changed 368 * mid-scan and the tree comparison functions don't currently 369 * have a mechansim for passing additional context to the 370 * compare functions. Thus we store this value globally and 371 * we only allow it to be set at module intiailization time 372 */ 373 fill_weight = zfs_scan_fill_weight; 374 375 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 376 char name[36]; 377 378 (void) sprintf(name, "sio_cache_%d", i); 379 sio_cache[i] = kmem_cache_create(name, 380 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 } 383 } 384 385 void 386 scan_fini(void) 387 { 388 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 389 kmem_cache_destroy(sio_cache[i]); 390 } 391 } 392 393 static inline boolean_t 394 dsl_scan_is_running(const dsl_scan_t *scn) 395 { 396 return (scn->scn_phys.scn_state == DSS_SCANNING); 397 } 398 399 boolean_t 400 dsl_scan_resilvering(dsl_pool_t *dp) 401 { 402 return (dsl_scan_is_running(dp->dp_scan) && 403 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 404 } 405 406 static inline void 407 sio2bp(const scan_io_t *sio, blkptr_t *bp) 408 { 409 bzero(bp, sizeof (*bp)); 410 bp->blk_prop = sio->sio_blk_prop; 411 bp->blk_phys_birth = sio->sio_phys_birth; 412 bp->blk_birth = sio->sio_birth; 413 bp->blk_fill = 1; /* we always only work with data pointers */ 414 bp->blk_cksum = sio->sio_cksum; 415 416 ASSERT3U(sio->sio_nr_dvas, >, 0); 417 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 418 419 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 420 } 421 422 static inline void 423 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 424 { 425 sio->sio_blk_prop = bp->blk_prop; 426 sio->sio_phys_birth = bp->blk_phys_birth; 427 sio->sio_birth = bp->blk_birth; 428 sio->sio_cksum = bp->blk_cksum; 429 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 430 431 /* 432 * Copy the DVAs to the sio. We need all copies of the block so 433 * that the self healing code can use the alternate copies if the 434 * first is corrupted. We want the DVA at index dva_i to be first 435 * in the sio since this is the primary one that we want to issue. 436 */ 437 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 438 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 439 } 440 } 441 442 int 443 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 444 { 445 int err; 446 dsl_scan_t *scn; 447 spa_t *spa = dp->dp_spa; 448 uint64_t f; 449 450 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 451 scn->scn_dp = dp; 452 453 /* 454 * It's possible that we're resuming a scan after a reboot so 455 * make sure that the scan_async_destroying flag is initialized 456 * appropriately. 457 */ 458 ASSERT(!scn->scn_async_destroying); 459 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 460 SPA_FEATURE_ASYNC_DESTROY); 461 462 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 463 offsetof(scan_ds_t, sds_node)); 464 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 465 sizeof (scan_prefetch_issue_ctx_t), 466 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 467 468 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 469 "scrub_func", sizeof (uint64_t), 1, &f); 470 if (err == 0) { 471 /* 472 * There was an old-style scrub in progress. Restart a 473 * new-style scrub from the beginning. 474 */ 475 scn->scn_restart_txg = txg; 476 zfs_dbgmsg("old-style scrub was in progress; " 477 "restarting new-style scrub in txg %llu", 478 (longlong_t)scn->scn_restart_txg); 479 480 /* 481 * Load the queue obj from the old location so that it 482 * can be freed by dsl_scan_done(). 483 */ 484 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 485 "scrub_queue", sizeof (uint64_t), 1, 486 &scn->scn_phys.scn_queue_obj); 487 } else { 488 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 489 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 490 &scn->scn_phys); 491 492 /* 493 * Detect if the pool contains the signature of #2094. If it 494 * does properly update the scn->scn_phys structure and notify 495 * the administrator by setting an errata for the pool. 496 */ 497 if (err == EOVERFLOW) { 498 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 499 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 500 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 501 (23 * sizeof (uint64_t))); 502 503 err = zap_lookup(dp->dp_meta_objset, 504 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 505 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 506 if (err == 0) { 507 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 508 509 if (overflow & ~DSF_VISIT_DS_AGAIN || 510 scn->scn_async_destroying) { 511 spa->spa_errata = 512 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 513 return (EOVERFLOW); 514 } 515 516 bcopy(zaptmp, &scn->scn_phys, 517 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 518 scn->scn_phys.scn_flags = overflow; 519 520 /* Required scrub already in progress. */ 521 if (scn->scn_phys.scn_state == DSS_FINISHED || 522 scn->scn_phys.scn_state == DSS_CANCELED) 523 spa->spa_errata = 524 ZPOOL_ERRATA_ZOL_2094_SCRUB; 525 } 526 } 527 528 if (err == ENOENT) 529 return (0); 530 else if (err) 531 return (err); 532 533 /* 534 * We might be restarting after a reboot, so jump the issued 535 * counter to how far we've scanned. We know we're consistent 536 * up to here. 537 */ 538 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 539 540 if (dsl_scan_is_running(scn) && 541 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 542 /* 543 * A new-type scrub was in progress on an old 544 * pool, and the pool was accessed by old 545 * software. Restart from the beginning, since 546 * the old software may have changed the pool in 547 * the meantime. 548 */ 549 scn->scn_restart_txg = txg; 550 zfs_dbgmsg("new-style scrub was modified " 551 "by old software; restarting in txg %llu", 552 (longlong_t)scn->scn_restart_txg); 553 } else if (dsl_scan_resilvering(dp)) { 554 /* 555 * If a resilver is in progress and there are already 556 * errors, restart it instead of finishing this scan and 557 * then restarting it. If there haven't been any errors 558 * then remember that the incore DTL is valid. 559 */ 560 if (scn->scn_phys.scn_errors > 0) { 561 scn->scn_restart_txg = txg; 562 zfs_dbgmsg("resilver can't excise DTL_MISSING " 563 "when finished; restarting in txg %llu", 564 (u_longlong_t)scn->scn_restart_txg); 565 } else { 566 /* it's safe to excise DTL when finished */ 567 spa->spa_scrub_started = B_TRUE; 568 } 569 } 570 } 571 572 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 573 574 /* reload the queue into the in-core state */ 575 if (scn->scn_phys.scn_queue_obj != 0) { 576 zap_cursor_t zc; 577 zap_attribute_t za; 578 579 for (zap_cursor_init(&zc, dp->dp_meta_objset, 580 scn->scn_phys.scn_queue_obj); 581 zap_cursor_retrieve(&zc, &za) == 0; 582 (void) zap_cursor_advance(&zc)) { 583 scan_ds_queue_insert(scn, 584 zfs_strtonum(za.za_name, NULL), 585 za.za_first_integer); 586 } 587 zap_cursor_fini(&zc); 588 } 589 590 spa_scan_stat_init(spa); 591 return (0); 592 } 593 594 void 595 dsl_scan_fini(dsl_pool_t *dp) 596 { 597 if (dp->dp_scan != NULL) { 598 dsl_scan_t *scn = dp->dp_scan; 599 600 if (scn->scn_taskq != NULL) 601 taskq_destroy(scn->scn_taskq); 602 scan_ds_queue_clear(scn); 603 avl_destroy(&scn->scn_queue); 604 avl_destroy(&scn->scn_prefetch_queue); 605 606 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 607 dp->dp_scan = NULL; 608 } 609 } 610 611 static boolean_t 612 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 613 { 614 return (scn->scn_restart_txg != 0 && 615 scn->scn_restart_txg <= tx->tx_txg); 616 } 617 618 boolean_t 619 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 620 { 621 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 622 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 623 } 624 625 boolean_t 626 dsl_scan_scrubbing(const dsl_pool_t *dp) 627 { 628 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 629 630 return (scn_phys->scn_state == DSS_SCANNING && 631 scn_phys->scn_func == POOL_SCAN_SCRUB); 632 } 633 634 boolean_t 635 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 636 { 637 return (dsl_scan_scrubbing(scn->scn_dp) && 638 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 639 } 640 641 /* 642 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 643 * Because we can be running in the block sorting algorithm, we do not always 644 * want to write out the record, only when it is "safe" to do so. This safety 645 * condition is achieved by making sure that the sorting queues are empty 646 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 647 * is inconsistent with how much actual scanning progress has been made. The 648 * kind of sync to be performed is specified by the sync_type argument. If the 649 * sync is optional, we only sync if the queues are empty. If the sync is 650 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 651 * third possible state is a "cached" sync. This is done in response to: 652 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 653 * destroyed, so we wouldn't be able to restart scanning from it. 654 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 655 * superseded by a newer snapshot. 656 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 657 * swapped with its clone. 658 * In all cases, a cached sync simply rewrites the last record we've written, 659 * just slightly modified. For the modifications that are performed to the 660 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 661 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 662 */ 663 static void 664 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 665 { 666 int i; 667 spa_t *spa = scn->scn_dp->dp_spa; 668 669 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 670 if (scn->scn_bytes_pending == 0) { 671 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 672 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 673 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 674 675 if (q == NULL) 676 continue; 677 678 mutex_enter(&vd->vdev_scan_io_queue_lock); 679 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 680 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 681 NULL); 682 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 683 mutex_exit(&vd->vdev_scan_io_queue_lock); 684 } 685 686 if (scn->scn_phys.scn_queue_obj != 0) 687 scan_ds_queue_sync(scn, tx); 688 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 689 DMU_POOL_DIRECTORY_OBJECT, 690 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 691 &scn->scn_phys, tx)); 692 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 693 sizeof (scn->scn_phys)); 694 695 if (scn->scn_checkpointing) 696 zfs_dbgmsg("finish scan checkpoint"); 697 698 scn->scn_checkpointing = B_FALSE; 699 scn->scn_last_checkpoint = ddi_get_lbolt(); 700 } else if (sync_type == SYNC_CACHED) { 701 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 702 DMU_POOL_DIRECTORY_OBJECT, 703 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 704 &scn->scn_phys_cached, tx)); 705 } 706 } 707 708 /* ARGSUSED */ 709 static int 710 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 711 { 712 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 713 714 if (dsl_scan_is_running(scn)) 715 return (SET_ERROR(EBUSY)); 716 717 return (0); 718 } 719 720 static void 721 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 722 { 723 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 724 pool_scan_func_t *funcp = arg; 725 dmu_object_type_t ot = 0; 726 dsl_pool_t *dp = scn->scn_dp; 727 spa_t *spa = dp->dp_spa; 728 729 ASSERT(!dsl_scan_is_running(scn)); 730 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 731 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 732 scn->scn_phys.scn_func = *funcp; 733 scn->scn_phys.scn_state = DSS_SCANNING; 734 scn->scn_phys.scn_min_txg = 0; 735 scn->scn_phys.scn_max_txg = tx->tx_txg; 736 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 737 scn->scn_phys.scn_start_time = gethrestime_sec(); 738 scn->scn_phys.scn_errors = 0; 739 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 740 scn->scn_issued_before_pass = 0; 741 scn->scn_restart_txg = 0; 742 scn->scn_done_txg = 0; 743 scn->scn_last_checkpoint = 0; 744 scn->scn_checkpointing = B_FALSE; 745 spa_scan_stat_init(spa); 746 747 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 748 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 749 750 /* rewrite all disk labels */ 751 vdev_config_dirty(spa->spa_root_vdev); 752 753 if (vdev_resilver_needed(spa->spa_root_vdev, 754 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 755 spa_event_notify(spa, NULL, NULL, 756 ESC_ZFS_RESILVER_START); 757 } else { 758 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 759 } 760 761 spa->spa_scrub_started = B_TRUE; 762 /* 763 * If this is an incremental scrub, limit the DDT scrub phase 764 * to just the auto-ditto class (for correctness); the rest 765 * of the scrub should go faster using top-down pruning. 766 */ 767 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 768 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 769 770 } 771 772 /* back to the generic stuff */ 773 774 if (dp->dp_blkstats == NULL) { 775 dp->dp_blkstats = 776 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 777 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 778 MUTEX_DEFAULT, NULL); 779 } 780 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 781 782 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 783 ot = DMU_OT_ZAP_OTHER; 784 785 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 786 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 787 788 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 789 790 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 791 792 spa_history_log_internal(spa, "scan setup", tx, 793 "func=%u mintxg=%llu maxtxg=%llu", 794 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); 795 } 796 797 /* 798 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 799 * Can also be called to resume a paused scrub. 800 */ 801 int 802 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 803 { 804 spa_t *spa = dp->dp_spa; 805 dsl_scan_t *scn = dp->dp_scan; 806 807 /* 808 * Purge all vdev caches and probe all devices. We do this here 809 * rather than in sync context because this requires a writer lock 810 * on the spa_config lock, which we can't do from sync context. The 811 * spa_scrub_reopen flag indicates that vdev_open() should not 812 * attempt to start another scrub. 813 */ 814 spa_vdev_state_enter(spa, SCL_NONE); 815 spa->spa_scrub_reopen = B_TRUE; 816 vdev_reopen(spa->spa_root_vdev); 817 spa->spa_scrub_reopen = B_FALSE; 818 (void) spa_vdev_state_exit(spa, NULL, 0); 819 820 if (func == POOL_SCAN_RESILVER) { 821 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 822 return (0); 823 } 824 825 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 826 /* got scrub start cmd, resume paused scrub */ 827 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 828 POOL_SCRUB_NORMAL); 829 if (err == 0) { 830 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 831 return (ECANCELED); 832 } 833 return (SET_ERROR(err)); 834 } 835 836 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 837 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 838 } 839 840 /* ARGSUSED */ 841 static void 842 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 843 { 844 static const char *old_names[] = { 845 "scrub_bookmark", 846 "scrub_ddt_bookmark", 847 "scrub_ddt_class_max", 848 "scrub_queue", 849 "scrub_min_txg", 850 "scrub_max_txg", 851 "scrub_func", 852 "scrub_errors", 853 NULL 854 }; 855 856 dsl_pool_t *dp = scn->scn_dp; 857 spa_t *spa = dp->dp_spa; 858 int i; 859 860 /* Remove any remnants of an old-style scrub. */ 861 for (i = 0; old_names[i]; i++) { 862 (void) zap_remove(dp->dp_meta_objset, 863 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 864 } 865 866 if (scn->scn_phys.scn_queue_obj != 0) { 867 VERIFY0(dmu_object_free(dp->dp_meta_objset, 868 scn->scn_phys.scn_queue_obj, tx)); 869 scn->scn_phys.scn_queue_obj = 0; 870 } 871 scan_ds_queue_clear(scn); 872 873 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 874 875 /* 876 * If we were "restarted" from a stopped state, don't bother 877 * with anything else. 878 */ 879 if (!dsl_scan_is_running(scn)) { 880 ASSERT(!scn->scn_is_sorted); 881 return; 882 } 883 884 if (scn->scn_is_sorted) { 885 scan_io_queues_destroy(scn); 886 scn->scn_is_sorted = B_FALSE; 887 888 if (scn->scn_taskq != NULL) { 889 taskq_destroy(scn->scn_taskq); 890 scn->scn_taskq = NULL; 891 } 892 } 893 894 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 895 896 if (dsl_scan_restarting(scn, tx)) 897 spa_history_log_internal(spa, "scan aborted, restarting", tx, 898 "errors=%llu", spa_get_errlog_size(spa)); 899 else if (!complete) 900 spa_history_log_internal(spa, "scan cancelled", tx, 901 "errors=%llu", spa_get_errlog_size(spa)); 902 else 903 spa_history_log_internal(spa, "scan done", tx, 904 "errors=%llu", spa_get_errlog_size(spa)); 905 906 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 907 spa->spa_scrub_active = B_FALSE; 908 909 /* 910 * If the scrub/resilver completed, update all DTLs to 911 * reflect this. Whether it succeeded or not, vacate 912 * all temporary scrub DTLs. 913 * 914 * As the scrub does not currently support traversing 915 * data that have been freed but are part of a checkpoint, 916 * we don't mark the scrub as done in the DTLs as faults 917 * may still exist in those vdevs. 918 */ 919 if (complete && 920 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 921 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 922 scn->scn_phys.scn_max_txg, B_TRUE); 923 924 spa_event_notify(spa, NULL, NULL, 925 scn->scn_phys.scn_min_txg ? 926 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); 927 } else { 928 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 929 0, B_TRUE); 930 } 931 spa_errlog_rotate(spa); 932 933 /* 934 * Don't clear flag until after vdev_dtl_reassess to ensure that 935 * DTL_MISSING will get updated when possible. 936 */ 937 spa->spa_scrub_started = B_FALSE; 938 939 /* 940 * We may have finished replacing a device. 941 * Let the async thread assess this and handle the detach. 942 */ 943 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 944 945 /* 946 * Clear any resilver_deferred flags in the config. 947 * If there are drives that need resilvering, kick 948 * off an asynchronous request to start resilver. 949 * vdev_clear_resilver_deferred() may update the config 950 * before the resilver can restart. In the event of 951 * a crash during this period, the spa loading code 952 * will find the drives that need to be resilvered 953 * and start the resilver then. 954 */ 955 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 956 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 957 spa_history_log_internal(spa, 958 "starting deferred resilver", tx, "errors=%llu", 959 (u_longlong_t)spa_get_errlog_size(spa)); 960 spa_async_request(spa, SPA_ASYNC_RESILVER); 961 } 962 } 963 964 scn->scn_phys.scn_end_time = gethrestime_sec(); 965 966 ASSERT(!dsl_scan_is_running(scn)); 967 } 968 969 /* ARGSUSED */ 970 static int 971 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 972 { 973 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 974 975 if (!dsl_scan_is_running(scn)) 976 return (SET_ERROR(ENOENT)); 977 return (0); 978 } 979 980 /* ARGSUSED */ 981 static void 982 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 983 { 984 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 985 986 dsl_scan_done(scn, B_FALSE, tx); 987 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 988 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 989 } 990 991 int 992 dsl_scan_cancel(dsl_pool_t *dp) 993 { 994 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 995 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 996 } 997 998 static int 999 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1000 { 1001 pool_scrub_cmd_t *cmd = arg; 1002 dsl_pool_t *dp = dmu_tx_pool(tx); 1003 dsl_scan_t *scn = dp->dp_scan; 1004 1005 if (*cmd == POOL_SCRUB_PAUSE) { 1006 /* can't pause a scrub when there is no in-progress scrub */ 1007 if (!dsl_scan_scrubbing(dp)) 1008 return (SET_ERROR(ENOENT)); 1009 1010 /* can't pause a paused scrub */ 1011 if (dsl_scan_is_paused_scrub(scn)) 1012 return (SET_ERROR(EBUSY)); 1013 } else if (*cmd != POOL_SCRUB_NORMAL) { 1014 return (SET_ERROR(ENOTSUP)); 1015 } 1016 1017 return (0); 1018 } 1019 1020 static void 1021 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1022 { 1023 pool_scrub_cmd_t *cmd = arg; 1024 dsl_pool_t *dp = dmu_tx_pool(tx); 1025 spa_t *spa = dp->dp_spa; 1026 dsl_scan_t *scn = dp->dp_scan; 1027 1028 if (*cmd == POOL_SCRUB_PAUSE) { 1029 /* can't pause a scrub when there is no in-progress scrub */ 1030 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1031 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1032 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1033 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1034 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1035 } else { 1036 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1037 if (dsl_scan_is_paused_scrub(scn)) { 1038 /* 1039 * We need to keep track of how much time we spend 1040 * paused per pass so that we can adjust the scrub rate 1041 * shown in the output of 'zpool status' 1042 */ 1043 spa->spa_scan_pass_scrub_spent_paused += 1044 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1045 spa->spa_scan_pass_scrub_pause = 0; 1046 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1047 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1048 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1049 } 1050 } 1051 } 1052 1053 /* 1054 * Set scrub pause/resume state if it makes sense to do so 1055 */ 1056 int 1057 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1058 { 1059 return (dsl_sync_task(spa_name(dp->dp_spa), 1060 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1061 ZFS_SPACE_CHECK_RESERVED)); 1062 } 1063 1064 1065 /* start a new scan, or restart an existing one. */ 1066 void 1067 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1068 { 1069 if (txg == 0) { 1070 dmu_tx_t *tx; 1071 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1072 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1073 1074 txg = dmu_tx_get_txg(tx); 1075 dp->dp_scan->scn_restart_txg = txg; 1076 dmu_tx_commit(tx); 1077 } else { 1078 dp->dp_scan->scn_restart_txg = txg; 1079 } 1080 zfs_dbgmsg("restarting resilver txg=%llu", txg); 1081 } 1082 1083 void 1084 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1085 { 1086 zio_free(dp->dp_spa, txg, bp); 1087 } 1088 1089 void 1090 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1091 { 1092 ASSERT(dsl_pool_sync_context(dp)); 1093 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1094 } 1095 1096 static int 1097 scan_ds_queue_compare(const void *a, const void *b) 1098 { 1099 const scan_ds_t *sds_a = a, *sds_b = b; 1100 1101 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1102 return (-1); 1103 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1104 return (0); 1105 return (1); 1106 } 1107 1108 static void 1109 scan_ds_queue_clear(dsl_scan_t *scn) 1110 { 1111 void *cookie = NULL; 1112 scan_ds_t *sds; 1113 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1114 kmem_free(sds, sizeof (*sds)); 1115 } 1116 } 1117 1118 static boolean_t 1119 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1120 { 1121 scan_ds_t srch, *sds; 1122 1123 srch.sds_dsobj = dsobj; 1124 sds = avl_find(&scn->scn_queue, &srch, NULL); 1125 if (sds != NULL && txg != NULL) 1126 *txg = sds->sds_txg; 1127 return (sds != NULL); 1128 } 1129 1130 static void 1131 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1132 { 1133 scan_ds_t *sds; 1134 avl_index_t where; 1135 1136 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1137 sds->sds_dsobj = dsobj; 1138 sds->sds_txg = txg; 1139 1140 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1141 avl_insert(&scn->scn_queue, sds, where); 1142 } 1143 1144 static void 1145 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1146 { 1147 scan_ds_t srch, *sds; 1148 1149 srch.sds_dsobj = dsobj; 1150 1151 sds = avl_find(&scn->scn_queue, &srch, NULL); 1152 VERIFY(sds != NULL); 1153 avl_remove(&scn->scn_queue, sds); 1154 kmem_free(sds, sizeof (*sds)); 1155 } 1156 1157 static void 1158 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1159 { 1160 dsl_pool_t *dp = scn->scn_dp; 1161 spa_t *spa = dp->dp_spa; 1162 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1163 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1164 1165 ASSERT0(scn->scn_bytes_pending); 1166 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1167 1168 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1169 scn->scn_phys.scn_queue_obj, tx)); 1170 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1171 DMU_OT_NONE, 0, tx); 1172 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1173 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1174 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1175 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1176 sds->sds_txg, tx)); 1177 } 1178 } 1179 1180 /* 1181 * Computes the memory limit state that we're currently in. A sorted scan 1182 * needs quite a bit of memory to hold the sorting queue, so we need to 1183 * reasonably constrain the size so it doesn't impact overall system 1184 * performance. We compute two limits: 1185 * 1) Hard memory limit: if the amount of memory used by the sorting 1186 * queues on a pool gets above this value, we stop the metadata 1187 * scanning portion and start issuing the queued up and sorted 1188 * I/Os to reduce memory usage. 1189 * This limit is calculated as a fraction of physmem (by default 5%). 1190 * We constrain the lower bound of the hard limit to an absolute 1191 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1192 * the upper bound to 5% of the total pool size - no chance we'll 1193 * ever need that much memory, but just to keep the value in check. 1194 * 2) Soft memory limit: once we hit the hard memory limit, we start 1195 * issuing I/O to reduce queue memory usage, but we don't want to 1196 * completely empty out the queues, since we might be able to find I/Os 1197 * that will fill in the gaps of our non-sequential IOs at some point 1198 * in the future. So we stop the issuing of I/Os once the amount of 1199 * memory used drops below the soft limit (at which point we stop issuing 1200 * I/O and start scanning metadata again). 1201 * 1202 * This limit is calculated by subtracting a fraction of the hard 1203 * limit from the hard limit. By default this fraction is 5%, so 1204 * the soft limit is 95% of the hard limit. We cap the size of the 1205 * difference between the hard and soft limits at an absolute 1206 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1207 * sufficient to not cause too frequent switching between the 1208 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1209 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1210 * that should take at least a decent fraction of a second). 1211 */ 1212 static boolean_t 1213 dsl_scan_should_clear(dsl_scan_t *scn) 1214 { 1215 spa_t *spa = scn->scn_dp->dp_spa; 1216 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1217 uint64_t alloc, mlim_hard, mlim_soft, mused; 1218 1219 if (arc_memory_is_low()) { 1220 /* 1221 * System memory is tight, and scanning requires allocation. 1222 * Throttle the scan until we have more headroom. 1223 */ 1224 return (B_TRUE); 1225 } 1226 1227 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1228 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1229 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1230 1231 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1232 zfs_scan_mem_lim_min); 1233 mlim_hard = MIN(mlim_hard, alloc / 20); 1234 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1235 zfs_scan_mem_lim_soft_max); 1236 mused = 0; 1237 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1238 vdev_t *tvd = rvd->vdev_child[i]; 1239 dsl_scan_io_queue_t *queue; 1240 1241 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1242 queue = tvd->vdev_scan_io_queue; 1243 if (queue != NULL) { 1244 /* 1245 * # of extents in exts_by_size = # in exts_by_addr. 1246 * B-tree efficiency is ~75%, but can be as low as 50%. 1247 */ 1248 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1249 3 * sizeof (range_seg_gap_t) + queue->q_sio_memused; 1250 } 1251 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1252 } 1253 1254 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1255 1256 if (mused == 0) 1257 ASSERT0(scn->scn_bytes_pending); 1258 1259 /* 1260 * If we are above our hard limit, we need to clear out memory. 1261 * If we are below our soft limit, we need to accumulate sequential IOs. 1262 * Otherwise, we should keep doing whatever we are currently doing. 1263 */ 1264 if (mused >= mlim_hard) 1265 return (B_TRUE); 1266 else if (mused < mlim_soft) 1267 return (B_FALSE); 1268 else 1269 return (scn->scn_clearing); 1270 } 1271 1272 static boolean_t 1273 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1274 { 1275 /* we never skip user/group accounting objects */ 1276 if (zb && (int64_t)zb->zb_object < 0) 1277 return (B_FALSE); 1278 1279 if (scn->scn_suspending) 1280 return (B_TRUE); /* we're already suspending */ 1281 1282 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1283 return (B_FALSE); /* we're resuming */ 1284 1285 /* We only know how to resume from level-0 blocks. */ 1286 if (zb && zb->zb_level != 0) 1287 return (B_FALSE); 1288 1289 /* 1290 * We suspend if: 1291 * - we have scanned for at least the minimum time (default 1 sec 1292 * for scrub, 3 sec for resilver), and either we have sufficient 1293 * dirty data that we are starting to write more quickly 1294 * (default 30%), or someone is explicitly waiting for this txg 1295 * to complete. 1296 * or 1297 * - the spa is shutting down because this pool is being exported 1298 * or the machine is rebooting. 1299 * or 1300 * - the scan queue has reached its memory use limit 1301 */ 1302 hrtime_t curr_time_ns = gethrtime(); 1303 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1304 uint64_t sync_time_ns = curr_time_ns - 1305 scn->scn_dp->dp_spa->spa_sync_starttime; 1306 1307 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1308 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1309 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1310 1311 if ((NSEC2MSEC(scan_time_ns) > mintime && 1312 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1313 txg_sync_waiting(scn->scn_dp) || 1314 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1315 spa_shutting_down(scn->scn_dp->dp_spa) || 1316 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1317 if (zb) { 1318 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1319 (longlong_t)zb->zb_objset, 1320 (longlong_t)zb->zb_object, 1321 (longlong_t)zb->zb_level, 1322 (longlong_t)zb->zb_blkid); 1323 scn->scn_phys.scn_bookmark = *zb; 1324 } else { 1325 dsl_scan_phys_t *scnp = &scn->scn_phys; 1326 1327 dprintf("suspending at DDT bookmark " 1328 "%llx/%llx/%llx/%llx\n", 1329 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1330 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1331 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1332 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1333 } 1334 scn->scn_suspending = B_TRUE; 1335 return (B_TRUE); 1336 } 1337 return (B_FALSE); 1338 } 1339 1340 typedef struct zil_scan_arg { 1341 dsl_pool_t *zsa_dp; 1342 zil_header_t *zsa_zh; 1343 } zil_scan_arg_t; 1344 1345 /* ARGSUSED */ 1346 static int 1347 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1348 { 1349 zil_scan_arg_t *zsa = arg; 1350 dsl_pool_t *dp = zsa->zsa_dp; 1351 dsl_scan_t *scn = dp->dp_scan; 1352 zil_header_t *zh = zsa->zsa_zh; 1353 zbookmark_phys_t zb; 1354 1355 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1356 return (0); 1357 1358 /* 1359 * One block ("stubby") can be allocated a long time ago; we 1360 * want to visit that one because it has been allocated 1361 * (on-disk) even if it hasn't been claimed (even though for 1362 * scrub there's nothing to do to it). 1363 */ 1364 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1365 return (0); 1366 1367 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1368 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1369 1370 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1371 return (0); 1372 } 1373 1374 /* ARGSUSED */ 1375 static int 1376 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1377 { 1378 if (lrc->lrc_txtype == TX_WRITE) { 1379 zil_scan_arg_t *zsa = arg; 1380 dsl_pool_t *dp = zsa->zsa_dp; 1381 dsl_scan_t *scn = dp->dp_scan; 1382 zil_header_t *zh = zsa->zsa_zh; 1383 lr_write_t *lr = (lr_write_t *)lrc; 1384 blkptr_t *bp = &lr->lr_blkptr; 1385 zbookmark_phys_t zb; 1386 1387 if (BP_IS_HOLE(bp) || 1388 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1389 return (0); 1390 1391 /* 1392 * birth can be < claim_txg if this record's txg is 1393 * already txg sync'ed (but this log block contains 1394 * other records that are not synced) 1395 */ 1396 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1397 return (0); 1398 1399 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1400 lr->lr_foid, ZB_ZIL_LEVEL, 1401 lr->lr_offset / BP_GET_LSIZE(bp)); 1402 1403 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1404 } 1405 return (0); 1406 } 1407 1408 static void 1409 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1410 { 1411 uint64_t claim_txg = zh->zh_claim_txg; 1412 zil_scan_arg_t zsa = { dp, zh }; 1413 zilog_t *zilog; 1414 1415 ASSERT(spa_writeable(dp->dp_spa)); 1416 1417 /* 1418 * We only want to visit blocks that have been claimed 1419 * but not yet replayed. 1420 */ 1421 if (claim_txg == 0) 1422 return; 1423 1424 zilog = zil_alloc(dp->dp_meta_objset, zh); 1425 1426 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1427 claim_txg, B_FALSE); 1428 1429 zil_free(zilog); 1430 } 1431 1432 /* 1433 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1434 * here is to sort the AVL tree by the order each block will be needed. 1435 */ 1436 static int 1437 scan_prefetch_queue_compare(const void *a, const void *b) 1438 { 1439 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1440 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1441 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1442 1443 return (zbookmark_compare(spc_a->spc_datablkszsec, 1444 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1445 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1446 } 1447 1448 static void 1449 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1450 { 1451 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1452 zfs_refcount_destroy(&spc->spc_refcnt); 1453 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1454 } 1455 } 1456 1457 static scan_prefetch_ctx_t * 1458 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1459 { 1460 scan_prefetch_ctx_t *spc; 1461 1462 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1463 zfs_refcount_create(&spc->spc_refcnt); 1464 zfs_refcount_add(&spc->spc_refcnt, tag); 1465 spc->spc_scn = scn; 1466 if (dnp != NULL) { 1467 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1468 spc->spc_indblkshift = dnp->dn_indblkshift; 1469 spc->spc_root = B_FALSE; 1470 } else { 1471 spc->spc_datablkszsec = 0; 1472 spc->spc_indblkshift = 0; 1473 spc->spc_root = B_TRUE; 1474 } 1475 1476 return (spc); 1477 } 1478 1479 static void 1480 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1481 { 1482 zfs_refcount_add(&spc->spc_refcnt, tag); 1483 } 1484 1485 static boolean_t 1486 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1487 const zbookmark_phys_t *zb) 1488 { 1489 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1490 dnode_phys_t tmp_dnp; 1491 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1492 1493 if (zb->zb_objset != last_zb->zb_objset) 1494 return (B_TRUE); 1495 if ((int64_t)zb->zb_object < 0) 1496 return (B_FALSE); 1497 1498 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1499 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1500 1501 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1502 return (B_TRUE); 1503 1504 return (B_FALSE); 1505 } 1506 1507 static void 1508 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1509 { 1510 avl_index_t idx; 1511 dsl_scan_t *scn = spc->spc_scn; 1512 spa_t *spa = scn->scn_dp->dp_spa; 1513 scan_prefetch_issue_ctx_t *spic; 1514 1515 if (zfs_no_scrub_prefetch) 1516 return; 1517 1518 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1519 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1520 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1521 return; 1522 1523 if (dsl_scan_check_prefetch_resume(spc, zb)) 1524 return; 1525 1526 scan_prefetch_ctx_add_ref(spc, scn); 1527 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1528 spic->spic_spc = spc; 1529 spic->spic_bp = *bp; 1530 spic->spic_zb = *zb; 1531 1532 /* 1533 * Add the IO to the queue of blocks to prefetch. This allows us to 1534 * prioritize blocks that we will need first for the main traversal 1535 * thread. 1536 */ 1537 mutex_enter(&spa->spa_scrub_lock); 1538 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1539 /* this block is already queued for prefetch */ 1540 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1541 scan_prefetch_ctx_rele(spc, scn); 1542 mutex_exit(&spa->spa_scrub_lock); 1543 return; 1544 } 1545 1546 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1547 cv_broadcast(&spa->spa_scrub_io_cv); 1548 mutex_exit(&spa->spa_scrub_lock); 1549 } 1550 1551 static void 1552 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1553 uint64_t objset, uint64_t object) 1554 { 1555 int i; 1556 zbookmark_phys_t zb; 1557 scan_prefetch_ctx_t *spc; 1558 1559 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1560 return; 1561 1562 SET_BOOKMARK(&zb, objset, object, 0, 0); 1563 1564 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1565 1566 for (i = 0; i < dnp->dn_nblkptr; i++) { 1567 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1568 zb.zb_blkid = i; 1569 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1570 } 1571 1572 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1573 zb.zb_level = 0; 1574 zb.zb_blkid = DMU_SPILL_BLKID; 1575 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); 1576 } 1577 1578 scan_prefetch_ctx_rele(spc, FTAG); 1579 } 1580 1581 void 1582 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1583 arc_buf_t *buf, void *private) 1584 { 1585 scan_prefetch_ctx_t *spc = private; 1586 dsl_scan_t *scn = spc->spc_scn; 1587 spa_t *spa = scn->scn_dp->dp_spa; 1588 1589 /* broadcast that the IO has completed for rate limitting purposes */ 1590 mutex_enter(&spa->spa_scrub_lock); 1591 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1592 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1593 cv_broadcast(&spa->spa_scrub_io_cv); 1594 mutex_exit(&spa->spa_scrub_lock); 1595 1596 /* if there was an error or we are done prefetching, just cleanup */ 1597 if (buf == NULL || scn->scn_suspending) 1598 goto out; 1599 1600 if (BP_GET_LEVEL(bp) > 0) { 1601 int i; 1602 blkptr_t *cbp; 1603 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1604 zbookmark_phys_t czb; 1605 1606 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1607 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1608 zb->zb_level - 1, zb->zb_blkid * epb + i); 1609 dsl_scan_prefetch(spc, cbp, &czb); 1610 } 1611 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1612 dnode_phys_t *cdnp = buf->b_data; 1613 int i; 1614 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1615 1616 for (i = 0, cdnp = buf->b_data; i < epb; 1617 i += cdnp->dn_extra_slots + 1, 1618 cdnp += cdnp->dn_extra_slots + 1) { 1619 dsl_scan_prefetch_dnode(scn, cdnp, 1620 zb->zb_objset, zb->zb_blkid * epb + i); 1621 } 1622 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1623 objset_phys_t *osp = buf->b_data; 1624 1625 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1626 zb->zb_objset, DMU_META_DNODE_OBJECT); 1627 1628 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1629 dsl_scan_prefetch_dnode(scn, 1630 &osp->os_groupused_dnode, zb->zb_objset, 1631 DMU_GROUPUSED_OBJECT); 1632 dsl_scan_prefetch_dnode(scn, 1633 &osp->os_userused_dnode, zb->zb_objset, 1634 DMU_USERUSED_OBJECT); 1635 } 1636 } 1637 1638 out: 1639 if (buf != NULL) 1640 arc_buf_destroy(buf, private); 1641 scan_prefetch_ctx_rele(spc, scn); 1642 } 1643 1644 /* ARGSUSED */ 1645 static void 1646 dsl_scan_prefetch_thread(void *arg) 1647 { 1648 dsl_scan_t *scn = arg; 1649 spa_t *spa = scn->scn_dp->dp_spa; 1650 vdev_t *rvd = spa->spa_root_vdev; 1651 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; 1652 scan_prefetch_issue_ctx_t *spic; 1653 1654 /* loop until we are told to stop */ 1655 while (!scn->scn_prefetch_stop) { 1656 arc_flags_t flags = ARC_FLAG_NOWAIT | 1657 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1658 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1659 1660 mutex_enter(&spa->spa_scrub_lock); 1661 1662 /* 1663 * Wait until we have an IO to issue and are not above our 1664 * maximum in flight limit. 1665 */ 1666 while (!scn->scn_prefetch_stop && 1667 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1668 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1669 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1670 } 1671 1672 /* recheck if we should stop since we waited for the cv */ 1673 if (scn->scn_prefetch_stop) { 1674 mutex_exit(&spa->spa_scrub_lock); 1675 break; 1676 } 1677 1678 /* remove the prefetch IO from the tree */ 1679 spic = avl_first(&scn->scn_prefetch_queue); 1680 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1681 avl_remove(&scn->scn_prefetch_queue, spic); 1682 1683 mutex_exit(&spa->spa_scrub_lock); 1684 1685 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1686 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1687 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1688 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1689 zio_flags |= ZIO_FLAG_RAW; 1690 } 1691 1692 /* issue the prefetch asynchronously */ 1693 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1694 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1695 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1696 1697 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1698 } 1699 1700 ASSERT(scn->scn_prefetch_stop); 1701 1702 /* free any prefetches we didn't get to complete */ 1703 mutex_enter(&spa->spa_scrub_lock); 1704 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1705 avl_remove(&scn->scn_prefetch_queue, spic); 1706 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1707 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1708 } 1709 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1710 mutex_exit(&spa->spa_scrub_lock); 1711 } 1712 1713 static boolean_t 1714 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1715 const zbookmark_phys_t *zb) 1716 { 1717 /* 1718 * We never skip over user/group accounting objects (obj<0) 1719 */ 1720 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1721 (int64_t)zb->zb_object >= 0) { 1722 /* 1723 * If we already visited this bp & everything below (in 1724 * a prior txg sync), don't bother doing it again. 1725 */ 1726 if (zbookmark_subtree_completed(dnp, zb, 1727 &scn->scn_phys.scn_bookmark)) 1728 return (B_TRUE); 1729 1730 /* 1731 * If we found the block we're trying to resume from, or 1732 * we went past it to a different object, zero it out to 1733 * indicate that it's OK to start checking for suspending 1734 * again. 1735 */ 1736 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1737 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1738 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1739 (longlong_t)zb->zb_objset, 1740 (longlong_t)zb->zb_object, 1741 (longlong_t)zb->zb_level, 1742 (longlong_t)zb->zb_blkid); 1743 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1744 } 1745 } 1746 return (B_FALSE); 1747 } 1748 1749 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1750 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1751 dmu_objset_type_t ostype, dmu_tx_t *tx); 1752 static void dsl_scan_visitdnode( 1753 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1754 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1755 1756 /* 1757 * Return nonzero on i/o error. 1758 * Return new buf to write out in *bufp. 1759 */ 1760 static int 1761 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1762 dnode_phys_t *dnp, const blkptr_t *bp, 1763 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1764 { 1765 dsl_pool_t *dp = scn->scn_dp; 1766 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1767 int err; 1768 1769 if (BP_GET_LEVEL(bp) > 0) { 1770 arc_flags_t flags = ARC_FLAG_WAIT; 1771 int i; 1772 blkptr_t *cbp; 1773 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1774 arc_buf_t *buf; 1775 1776 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1777 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1778 if (err) { 1779 scn->scn_phys.scn_errors++; 1780 return (err); 1781 } 1782 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1783 zbookmark_phys_t czb; 1784 1785 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1786 zb->zb_level - 1, 1787 zb->zb_blkid * epb + i); 1788 dsl_scan_visitbp(cbp, &czb, dnp, 1789 ds, scn, ostype, tx); 1790 } 1791 arc_buf_destroy(buf, &buf); 1792 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1793 arc_flags_t flags = ARC_FLAG_WAIT; 1794 dnode_phys_t *cdnp; 1795 int i; 1796 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1797 arc_buf_t *buf; 1798 1799 if (BP_IS_PROTECTED(bp)) { 1800 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1801 zio_flags |= ZIO_FLAG_RAW; 1802 } 1803 1804 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1805 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1806 if (err) { 1807 scn->scn_phys.scn_errors++; 1808 return (err); 1809 } 1810 for (i = 0, cdnp = buf->b_data; i < epb; 1811 i += cdnp->dn_extra_slots + 1, 1812 cdnp += cdnp->dn_extra_slots + 1) { 1813 dsl_scan_visitdnode(scn, ds, ostype, 1814 cdnp, zb->zb_blkid * epb + i, tx); 1815 } 1816 1817 arc_buf_destroy(buf, &buf); 1818 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1819 arc_flags_t flags = ARC_FLAG_WAIT; 1820 objset_phys_t *osp; 1821 arc_buf_t *buf; 1822 1823 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1824 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1825 if (err) { 1826 scn->scn_phys.scn_errors++; 1827 return (err); 1828 } 1829 1830 osp = buf->b_data; 1831 1832 dsl_scan_visitdnode(scn, ds, osp->os_type, 1833 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1834 1835 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1836 /* 1837 * We also always visit user/group/project accounting 1838 * objects, and never skip them, even if we are 1839 * suspending. This is necessary so that the space 1840 * deltas from this txg get integrated. 1841 */ 1842 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1843 dsl_scan_visitdnode(scn, ds, osp->os_type, 1844 &osp->os_projectused_dnode, 1845 DMU_PROJECTUSED_OBJECT, tx); 1846 dsl_scan_visitdnode(scn, ds, osp->os_type, 1847 &osp->os_groupused_dnode, 1848 DMU_GROUPUSED_OBJECT, tx); 1849 dsl_scan_visitdnode(scn, ds, osp->os_type, 1850 &osp->os_userused_dnode, 1851 DMU_USERUSED_OBJECT, tx); 1852 } 1853 arc_buf_destroy(buf, &buf); 1854 } 1855 1856 return (0); 1857 } 1858 1859 static void 1860 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1861 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1862 uint64_t object, dmu_tx_t *tx) 1863 { 1864 int j; 1865 1866 for (j = 0; j < dnp->dn_nblkptr; j++) { 1867 zbookmark_phys_t czb; 1868 1869 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1870 dnp->dn_nlevels - 1, j); 1871 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1872 &czb, dnp, ds, scn, ostype, tx); 1873 } 1874 1875 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1876 zbookmark_phys_t czb; 1877 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1878 0, DMU_SPILL_BLKID); 1879 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1880 &czb, dnp, ds, scn, ostype, tx); 1881 } 1882 } 1883 1884 /* 1885 * The arguments are in this order because mdb can only print the 1886 * first 5; we want them to be useful. 1887 */ 1888 static void 1889 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1890 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1891 dmu_objset_type_t ostype, dmu_tx_t *tx) 1892 { 1893 dsl_pool_t *dp = scn->scn_dp; 1894 blkptr_t *bp_toread = NULL; 1895 1896 if (dsl_scan_check_suspend(scn, zb)) 1897 return; 1898 1899 if (dsl_scan_check_resume(scn, dnp, zb)) 1900 return; 1901 1902 scn->scn_visited_this_txg++; 1903 1904 /* 1905 * This debugging is commented out to conserve stack space. This 1906 * function is called recursively and the debugging addes several 1907 * bytes to the stack for each call. It can be commented back in 1908 * if required to debug an issue in dsl_scan_visitbp(). 1909 * 1910 * dprintf_bp(bp, 1911 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1912 * ds, ds ? ds->ds_object : 0, 1913 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1914 * bp); 1915 */ 1916 1917 if (BP_IS_HOLE(bp)) { 1918 scn->scn_holes_this_txg++; 1919 return; 1920 } 1921 1922 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1923 scn->scn_lt_min_this_txg++; 1924 return; 1925 } 1926 1927 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1928 *bp_toread = *bp; 1929 1930 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1931 goto out; 1932 1933 /* 1934 * If dsl_scan_ddt() has already visited this block, it will have 1935 * already done any translations or scrubbing, so don't call the 1936 * callback again. 1937 */ 1938 if (ddt_class_contains(dp->dp_spa, 1939 scn->scn_phys.scn_ddt_class_max, bp)) { 1940 scn->scn_ddt_contained_this_txg++; 1941 goto out; 1942 } 1943 1944 /* 1945 * If this block is from the future (after cur_max_txg), then we 1946 * are doing this on behalf of a deleted snapshot, and we will 1947 * revisit the future block on the next pass of this dataset. 1948 * Don't scan it now unless we need to because something 1949 * under it was modified. 1950 */ 1951 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 1952 scn->scn_gt_max_this_txg++; 1953 goto out; 1954 } 1955 1956 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 1957 1958 out: 1959 kmem_free(bp_toread, sizeof (blkptr_t)); 1960 } 1961 1962 static void 1963 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 1964 dmu_tx_t *tx) 1965 { 1966 zbookmark_phys_t zb; 1967 scan_prefetch_ctx_t *spc; 1968 1969 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1970 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 1971 1972 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 1973 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 1974 zb.zb_objset, 0, 0, 0); 1975 } else { 1976 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 1977 } 1978 1979 scn->scn_objsets_visited_this_txg++; 1980 1981 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 1982 dsl_scan_prefetch(spc, bp, &zb); 1983 scan_prefetch_ctx_rele(spc, FTAG); 1984 1985 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 1986 1987 dprintf_ds(ds, "finished scan%s", ""); 1988 } 1989 1990 static void 1991 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 1992 { 1993 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 1994 if (ds->ds_is_snapshot) { 1995 /* 1996 * Note: 1997 * - scn_cur_{min,max}_txg stays the same. 1998 * - Setting the flag is not really necessary if 1999 * scn_cur_max_txg == scn_max_txg, because there 2000 * is nothing after this snapshot that we care 2001 * about. However, we set it anyway and then 2002 * ignore it when we retraverse it in 2003 * dsl_scan_visitds(). 2004 */ 2005 scn_phys->scn_bookmark.zb_objset = 2006 dsl_dataset_phys(ds)->ds_next_snap_obj; 2007 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2008 "reset zb_objset to %llu", 2009 (u_longlong_t)ds->ds_object, 2010 (u_longlong_t)dsl_dataset_phys(ds)-> 2011 ds_next_snap_obj); 2012 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2013 } else { 2014 SET_BOOKMARK(&scn_phys->scn_bookmark, 2015 ZB_DESTROYED_OBJSET, 0, 0, 0); 2016 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2017 "reset bookmark to -1,0,0,0", 2018 (u_longlong_t)ds->ds_object); 2019 } 2020 } 2021 } 2022 2023 /* 2024 * Invoked when a dataset is destroyed. We need to make sure that: 2025 * 2026 * 1) If it is the dataset that was currently being scanned, we write 2027 * a new dsl_scan_phys_t and marking the objset reference in it 2028 * as destroyed. 2029 * 2) Remove it from the work queue, if it was present. 2030 * 2031 * If the dataset was actually a snapshot, instead of marking the dataset 2032 * as destroyed, we instead substitute the next snapshot in line. 2033 */ 2034 void 2035 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2036 { 2037 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2038 dsl_scan_t *scn = dp->dp_scan; 2039 uint64_t mintxg; 2040 2041 if (!dsl_scan_is_running(scn)) 2042 return; 2043 2044 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2045 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2046 2047 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2048 scan_ds_queue_remove(scn, ds->ds_object); 2049 if (ds->ds_is_snapshot) 2050 scan_ds_queue_insert(scn, 2051 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2052 } 2053 2054 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2055 ds->ds_object, &mintxg) == 0) { 2056 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2057 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2058 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2059 if (ds->ds_is_snapshot) { 2060 /* 2061 * We keep the same mintxg; it could be > 2062 * ds_creation_txg if the previous snapshot was 2063 * deleted too. 2064 */ 2065 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2066 scn->scn_phys.scn_queue_obj, 2067 dsl_dataset_phys(ds)->ds_next_snap_obj, 2068 mintxg, tx) == 0); 2069 zfs_dbgmsg("destroying ds %llu; in queue; " 2070 "replacing with %llu", 2071 (u_longlong_t)ds->ds_object, 2072 (u_longlong_t)dsl_dataset_phys(ds)-> 2073 ds_next_snap_obj); 2074 } else { 2075 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2076 (u_longlong_t)ds->ds_object); 2077 } 2078 } 2079 2080 /* 2081 * dsl_scan_sync() should be called after this, and should sync 2082 * out our changed state, but just to be safe, do it here. 2083 */ 2084 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2085 } 2086 2087 static void 2088 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2089 { 2090 if (scn_bookmark->zb_objset == ds->ds_object) { 2091 scn_bookmark->zb_objset = 2092 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2093 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2094 "reset zb_objset to %llu", 2095 (u_longlong_t)ds->ds_object, 2096 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2097 } 2098 } 2099 2100 /* 2101 * Called when a dataset is snapshotted. If we were currently traversing 2102 * this snapshot, we reset our bookmark to point at the newly created 2103 * snapshot. We also modify our work queue to remove the old snapshot and 2104 * replace with the new one. 2105 */ 2106 void 2107 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2108 { 2109 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2110 dsl_scan_t *scn = dp->dp_scan; 2111 uint64_t mintxg; 2112 2113 if (!dsl_scan_is_running(scn)) 2114 return; 2115 2116 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2117 2118 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2119 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2120 2121 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2122 scan_ds_queue_remove(scn, ds->ds_object); 2123 scan_ds_queue_insert(scn, 2124 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2125 } 2126 2127 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2128 ds->ds_object, &mintxg) == 0) { 2129 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2130 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2131 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2132 scn->scn_phys.scn_queue_obj, 2133 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2134 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2135 "replacing with %llu", 2136 (u_longlong_t)ds->ds_object, 2137 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2138 } 2139 2140 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2141 } 2142 2143 static void 2144 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2145 zbookmark_phys_t *scn_bookmark) 2146 { 2147 if (scn_bookmark->zb_objset == ds1->ds_object) { 2148 scn_bookmark->zb_objset = ds2->ds_object; 2149 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2150 "reset zb_objset to %llu", 2151 (u_longlong_t)ds1->ds_object, 2152 (u_longlong_t)ds2->ds_object); 2153 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2154 scn_bookmark->zb_objset = ds1->ds_object; 2155 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2156 "reset zb_objset to %llu", 2157 (u_longlong_t)ds2->ds_object, 2158 (u_longlong_t)ds1->ds_object); 2159 } 2160 } 2161 2162 /* 2163 * Called when a parent dataset and its clone are swapped. If we were 2164 * currently traversing the dataset, we need to switch to traversing the 2165 * newly promoted parent. 2166 */ 2167 void 2168 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2169 { 2170 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2171 dsl_scan_t *scn = dp->dp_scan; 2172 uint64_t mintxg; 2173 2174 if (!dsl_scan_is_running(scn)) 2175 return; 2176 2177 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2178 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2179 2180 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) { 2181 scan_ds_queue_remove(scn, ds1->ds_object); 2182 scan_ds_queue_insert(scn, ds2->ds_object, mintxg); 2183 } 2184 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) { 2185 scan_ds_queue_remove(scn, ds2->ds_object); 2186 scan_ds_queue_insert(scn, ds1->ds_object, mintxg); 2187 } 2188 2189 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2190 ds1->ds_object, &mintxg) == 0) { 2191 int err; 2192 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2193 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2194 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2195 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2196 err = zap_add_int_key(dp->dp_meta_objset, 2197 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); 2198 VERIFY(err == 0 || err == EEXIST); 2199 if (err == EEXIST) { 2200 /* Both were there to begin with */ 2201 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2202 scn->scn_phys.scn_queue_obj, 2203 ds1->ds_object, mintxg, tx)); 2204 } 2205 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2206 "replacing with %llu", 2207 (u_longlong_t)ds1->ds_object, 2208 (u_longlong_t)ds2->ds_object); 2209 } 2210 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2211 ds2->ds_object, &mintxg) == 0) { 2212 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2213 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2214 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2215 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2216 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2217 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); 2218 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2219 "replacing with %llu", 2220 (u_longlong_t)ds2->ds_object, 2221 (u_longlong_t)ds1->ds_object); 2222 } 2223 2224 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2225 } 2226 2227 /* ARGSUSED */ 2228 static int 2229 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2230 { 2231 uint64_t originobj = *(uint64_t *)arg; 2232 dsl_dataset_t *ds; 2233 int err; 2234 dsl_scan_t *scn = dp->dp_scan; 2235 2236 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2237 return (0); 2238 2239 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2240 if (err) 2241 return (err); 2242 2243 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2244 dsl_dataset_t *prev; 2245 err = dsl_dataset_hold_obj(dp, 2246 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2247 2248 dsl_dataset_rele(ds, FTAG); 2249 if (err) 2250 return (err); 2251 ds = prev; 2252 } 2253 scan_ds_queue_insert(scn, ds->ds_object, 2254 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2255 dsl_dataset_rele(ds, FTAG); 2256 return (0); 2257 } 2258 2259 static void 2260 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2261 { 2262 dsl_pool_t *dp = scn->scn_dp; 2263 dsl_dataset_t *ds; 2264 2265 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2266 2267 if (scn->scn_phys.scn_cur_min_txg >= 2268 scn->scn_phys.scn_max_txg) { 2269 /* 2270 * This can happen if this snapshot was created after the 2271 * scan started, and we already completed a previous snapshot 2272 * that was created after the scan started. This snapshot 2273 * only references blocks with: 2274 * 2275 * birth < our ds_creation_txg 2276 * cur_min_txg is no less than ds_creation_txg. 2277 * We have already visited these blocks. 2278 * or 2279 * birth > scn_max_txg 2280 * The scan requested not to visit these blocks. 2281 * 2282 * Subsequent snapshots (and clones) can reference our 2283 * blocks, or blocks with even higher birth times. 2284 * Therefore we do not need to visit them either, 2285 * so we do not add them to the work queue. 2286 * 2287 * Note that checking for cur_min_txg >= cur_max_txg 2288 * is not sufficient, because in that case we may need to 2289 * visit subsequent snapshots. This happens when min_txg > 0, 2290 * which raises cur_min_txg. In this case we will visit 2291 * this dataset but skip all of its blocks, because the 2292 * rootbp's birth time is < cur_min_txg. Then we will 2293 * add the next snapshots/clones to the work queue. 2294 */ 2295 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); 2296 dsl_dataset_name(ds, dsname); 2297 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2298 "cur_min_txg (%llu) >= max_txg (%llu)", 2299 (longlong_t)dsobj, dsname, 2300 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2301 (longlong_t)scn->scn_phys.scn_max_txg); 2302 kmem_free(dsname, MAXNAMELEN); 2303 2304 goto out; 2305 } 2306 2307 /* 2308 * Only the ZIL in the head (non-snapshot) is valid. Even though 2309 * snapshots can have ZIL block pointers (which may be the same 2310 * BP as in the head), they must be ignored. In addition, $ORIGIN 2311 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2312 * need to look for a ZIL in it either. So we traverse the ZIL here, 2313 * rather than in scan_recurse(), because the regular snapshot 2314 * block-sharing rules don't apply to it. 2315 */ 2316 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && 2317 (dp->dp_origin_snap == NULL || 2318 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2319 objset_t *os; 2320 if (dmu_objset_from_ds(ds, &os) != 0) { 2321 goto out; 2322 } 2323 dsl_scan_zil(dp, &os->os_zil_header); 2324 } 2325 2326 /* 2327 * Iterate over the bps in this ds. 2328 */ 2329 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2330 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2331 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2332 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2333 2334 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2335 dsl_dataset_name(ds, dsname); 2336 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2337 "suspending=%u", 2338 (longlong_t)dsobj, dsname, 2339 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2340 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2341 (int)scn->scn_suspending); 2342 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2343 2344 if (scn->scn_suspending) 2345 goto out; 2346 2347 /* 2348 * We've finished this pass over this dataset. 2349 */ 2350 2351 /* 2352 * If we did not completely visit this dataset, do another pass. 2353 */ 2354 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2355 zfs_dbgmsg("incomplete pass; visiting again"); 2356 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2357 scan_ds_queue_insert(scn, ds->ds_object, 2358 scn->scn_phys.scn_cur_max_txg); 2359 goto out; 2360 } 2361 2362 /* 2363 * Add descendent datasets to work queue. 2364 */ 2365 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2366 scan_ds_queue_insert(scn, 2367 dsl_dataset_phys(ds)->ds_next_snap_obj, 2368 dsl_dataset_phys(ds)->ds_creation_txg); 2369 } 2370 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2371 boolean_t usenext = B_FALSE; 2372 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2373 uint64_t count; 2374 /* 2375 * A bug in a previous version of the code could 2376 * cause upgrade_clones_cb() to not set 2377 * ds_next_snap_obj when it should, leading to a 2378 * missing entry. Therefore we can only use the 2379 * next_clones_obj when its count is correct. 2380 */ 2381 int err = zap_count(dp->dp_meta_objset, 2382 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2383 if (err == 0 && 2384 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2385 usenext = B_TRUE; 2386 } 2387 2388 if (usenext) { 2389 zap_cursor_t zc; 2390 zap_attribute_t za; 2391 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2392 dsl_dataset_phys(ds)->ds_next_clones_obj); 2393 zap_cursor_retrieve(&zc, &za) == 0; 2394 (void) zap_cursor_advance(&zc)) { 2395 scan_ds_queue_insert(scn, 2396 zfs_strtonum(za.za_name, NULL), 2397 dsl_dataset_phys(ds)->ds_creation_txg); 2398 } 2399 zap_cursor_fini(&zc); 2400 } else { 2401 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2402 enqueue_clones_cb, &ds->ds_object, 2403 DS_FIND_CHILDREN)); 2404 } 2405 } 2406 2407 out: 2408 dsl_dataset_rele(ds, FTAG); 2409 } 2410 2411 /* ARGSUSED */ 2412 static int 2413 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2414 { 2415 dsl_dataset_t *ds; 2416 int err; 2417 dsl_scan_t *scn = dp->dp_scan; 2418 2419 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2420 if (err) 2421 return (err); 2422 2423 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2424 dsl_dataset_t *prev; 2425 err = dsl_dataset_hold_obj(dp, 2426 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2427 if (err) { 2428 dsl_dataset_rele(ds, FTAG); 2429 return (err); 2430 } 2431 2432 /* 2433 * If this is a clone, we don't need to worry about it for now. 2434 */ 2435 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2436 dsl_dataset_rele(ds, FTAG); 2437 dsl_dataset_rele(prev, FTAG); 2438 return (0); 2439 } 2440 dsl_dataset_rele(ds, FTAG); 2441 ds = prev; 2442 } 2443 2444 scan_ds_queue_insert(scn, ds->ds_object, 2445 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2446 dsl_dataset_rele(ds, FTAG); 2447 return (0); 2448 } 2449 2450 /* ARGSUSED */ 2451 void 2452 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2453 ddt_entry_t *dde, dmu_tx_t *tx) 2454 { 2455 const ddt_key_t *ddk = &dde->dde_key; 2456 ddt_phys_t *ddp = dde->dde_phys; 2457 blkptr_t bp; 2458 zbookmark_phys_t zb = { 0 }; 2459 int p; 2460 2461 if (scn->scn_phys.scn_state != DSS_SCANNING) 2462 return; 2463 2464 /* 2465 * This function is special because it is the only thing 2466 * that can add scan_io_t's to the vdev scan queues from 2467 * outside dsl_scan_sync(). For the most part this is ok 2468 * as long as it is called from within syncing context. 2469 * However, dsl_scan_sync() expects that no new sio's will 2470 * be added between when all the work for a scan is done 2471 * and the next txg when the scan is actually marked as 2472 * completed. This check ensures we do not issue new sio's 2473 * during this period. 2474 */ 2475 if (scn->scn_done_txg != 0) 2476 return; 2477 2478 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2479 if (ddp->ddp_phys_birth == 0 || 2480 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2481 continue; 2482 ddt_bp_create(checksum, ddk, ddp, &bp); 2483 2484 scn->scn_visited_this_txg++; 2485 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2486 } 2487 } 2488 2489 /* 2490 * Scrub/dedup interaction. 2491 * 2492 * If there are N references to a deduped block, we don't want to scrub it 2493 * N times -- ideally, we should scrub it exactly once. 2494 * 2495 * We leverage the fact that the dde's replication class (enum ddt_class) 2496 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2497 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2498 * 2499 * To prevent excess scrubbing, the scrub begins by walking the DDT 2500 * to find all blocks with refcnt > 1, and scrubs each of these once. 2501 * Since there are two replication classes which contain blocks with 2502 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2503 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2504 * 2505 * There would be nothing more to say if a block's refcnt couldn't change 2506 * during a scrub, but of course it can so we must account for changes 2507 * in a block's replication class. 2508 * 2509 * Here's an example of what can occur: 2510 * 2511 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2512 * when visited during the top-down scrub phase, it will be scrubbed twice. 2513 * This negates our scrub optimization, but is otherwise harmless. 2514 * 2515 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2516 * on each visit during the top-down scrub phase, it will never be scrubbed. 2517 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2518 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2519 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2520 * while a scrub is in progress, it scrubs the block right then. 2521 */ 2522 static void 2523 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2524 { 2525 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2526 ddt_entry_t dde = { 0 }; 2527 int error; 2528 uint64_t n = 0; 2529 2530 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2531 ddt_t *ddt; 2532 2533 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2534 break; 2535 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2536 (longlong_t)ddb->ddb_class, 2537 (longlong_t)ddb->ddb_type, 2538 (longlong_t)ddb->ddb_checksum, 2539 (longlong_t)ddb->ddb_cursor); 2540 2541 /* There should be no pending changes to the dedup table */ 2542 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2543 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2544 2545 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2546 n++; 2547 2548 if (dsl_scan_check_suspend(scn, NULL)) 2549 break; 2550 } 2551 2552 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2553 "suspending=%u", (longlong_t)n, 2554 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2555 2556 ASSERT(error == 0 || error == ENOENT); 2557 ASSERT(error != ENOENT || 2558 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2559 } 2560 2561 static uint64_t 2562 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2563 { 2564 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2565 if (ds->ds_is_snapshot) 2566 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2567 return (smt); 2568 } 2569 2570 static void 2571 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2572 { 2573 scan_ds_t *sds; 2574 dsl_pool_t *dp = scn->scn_dp; 2575 2576 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2577 scn->scn_phys.scn_ddt_class_max) { 2578 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2579 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2580 dsl_scan_ddt(scn, tx); 2581 if (scn->scn_suspending) 2582 return; 2583 } 2584 2585 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2586 /* First do the MOS & ORIGIN */ 2587 2588 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2589 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2590 dsl_scan_visit_rootbp(scn, NULL, 2591 &dp->dp_meta_rootbp, tx); 2592 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2593 if (scn->scn_suspending) 2594 return; 2595 2596 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2597 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2598 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2599 } else { 2600 dsl_scan_visitds(scn, 2601 dp->dp_origin_snap->ds_object, tx); 2602 } 2603 ASSERT(!scn->scn_suspending); 2604 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2605 ZB_DESTROYED_OBJSET) { 2606 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2607 /* 2608 * If we were suspended, continue from here. Note if the 2609 * ds we were suspended on was deleted, the zb_objset may 2610 * be -1, so we will skip this and find a new objset 2611 * below. 2612 */ 2613 dsl_scan_visitds(scn, dsobj, tx); 2614 if (scn->scn_suspending) 2615 return; 2616 } 2617 2618 /* 2619 * In case we suspended right at the end of the ds, zero the 2620 * bookmark so we don't think that we're still trying to resume. 2621 */ 2622 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2623 2624 /* 2625 * Keep pulling things out of the dataset avl queue. Updates to the 2626 * persistent zap-object-as-queue happen only at checkpoints. 2627 */ 2628 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2629 dsl_dataset_t *ds; 2630 uint64_t dsobj = sds->sds_dsobj; 2631 uint64_t txg = sds->sds_txg; 2632 2633 /* dequeue and free the ds from the queue */ 2634 scan_ds_queue_remove(scn, dsobj); 2635 sds = NULL; /* must not be touched after removal */ 2636 2637 /* Set up min / max txg */ 2638 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2639 if (txg != 0) { 2640 scn->scn_phys.scn_cur_min_txg = 2641 MAX(scn->scn_phys.scn_min_txg, txg); 2642 } else { 2643 scn->scn_phys.scn_cur_min_txg = 2644 MAX(scn->scn_phys.scn_min_txg, 2645 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2646 } 2647 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2648 dsl_dataset_rele(ds, FTAG); 2649 2650 dsl_scan_visitds(scn, dsobj, tx); 2651 if (scn->scn_suspending) 2652 return; 2653 } 2654 /* No more objsets to fetch, we're done */ 2655 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2656 ASSERT0(scn->scn_suspending); 2657 } 2658 2659 static uint64_t 2660 dsl_scan_count_leaves(vdev_t *vd) 2661 { 2662 uint64_t i, leaves = 0; 2663 2664 /* we only count leaves that belong to the main pool and are readable */ 2665 if (vd->vdev_islog || vd->vdev_isspare || 2666 vd->vdev_isl2cache || !vdev_readable(vd)) 2667 return (0); 2668 2669 if (vd->vdev_ops->vdev_op_leaf) 2670 return (1); 2671 2672 for (i = 0; i < vd->vdev_children; i++) { 2673 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2674 } 2675 2676 return (leaves); 2677 } 2678 2679 2680 static void 2681 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2682 { 2683 int i; 2684 uint64_t cur_size = 0; 2685 2686 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2687 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2688 } 2689 2690 q->q_total_zio_size_this_txg += cur_size; 2691 q->q_zios_this_txg++; 2692 } 2693 2694 static void 2695 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2696 uint64_t end) 2697 { 2698 q->q_total_seg_size_this_txg += end - start; 2699 q->q_segs_this_txg++; 2700 } 2701 2702 static boolean_t 2703 scan_io_queue_check_suspend(dsl_scan_t *scn) 2704 { 2705 /* See comment in dsl_scan_check_suspend() */ 2706 uint64_t curr_time_ns = gethrtime(); 2707 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2708 uint64_t sync_time_ns = curr_time_ns - 2709 scn->scn_dp->dp_spa->spa_sync_starttime; 2710 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2711 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2712 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2713 2714 return ((NSEC2MSEC(scan_time_ns) > mintime && 2715 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2716 txg_sync_waiting(scn->scn_dp) || 2717 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2718 spa_shutting_down(scn->scn_dp->dp_spa)); 2719 } 2720 2721 /* 2722 * Given a list of scan_io_t's in io_list, this issues the io's out to 2723 * disk. This consumes the io_list and frees the scan_io_t's. This is 2724 * called when emptying queues, either when we're up against the memory 2725 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2726 * processing the list before we finished. Any zios that were not issued 2727 * will remain in the io_list. 2728 */ 2729 static boolean_t 2730 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2731 { 2732 dsl_scan_t *scn = queue->q_scn; 2733 scan_io_t *sio; 2734 int64_t bytes_issued = 0; 2735 boolean_t suspended = B_FALSE; 2736 2737 while ((sio = list_head(io_list)) != NULL) { 2738 blkptr_t bp; 2739 2740 if (scan_io_queue_check_suspend(scn)) { 2741 suspended = B_TRUE; 2742 break; 2743 } 2744 2745 sio2bp(sio, &bp); 2746 bytes_issued += SIO_GET_ASIZE(sio); 2747 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2748 &sio->sio_zb, queue); 2749 (void) list_remove_head(io_list); 2750 scan_io_queues_update_zio_stats(queue, &bp); 2751 sio_free(sio); 2752 } 2753 2754 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2755 2756 return (suspended); 2757 } 2758 2759 /* 2760 * Given a range_seg_t (extent) and a list, this function passes over a 2761 * scan queue and gathers up the appropriate ios which fit into that 2762 * scan seg (starting from lowest LBA). At the end, we remove the segment 2763 * from the q_exts_by_addr range tree. 2764 */ 2765 static boolean_t 2766 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2767 { 2768 scan_io_t *srch_sio, *sio, *next_sio; 2769 avl_index_t idx; 2770 uint_t num_sios = 0; 2771 int64_t bytes_issued = 0; 2772 2773 ASSERT(rs != NULL); 2774 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2775 2776 srch_sio = sio_alloc(1); 2777 srch_sio->sio_nr_dvas = 1; 2778 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2779 2780 /* 2781 * The exact start of the extent might not contain any matching zios, 2782 * so if that's the case, examine the next one in the tree. 2783 */ 2784 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2785 sio_free(srch_sio); 2786 2787 if (sio == NULL) 2788 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2789 2790 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2791 queue->q_exts_by_addr) && num_sios <= 32) { 2792 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2793 queue->q_exts_by_addr)); 2794 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2795 queue->q_exts_by_addr)); 2796 2797 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2798 avl_remove(&queue->q_sios_by_addr, sio); 2799 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2800 2801 bytes_issued += SIO_GET_ASIZE(sio); 2802 num_sios++; 2803 list_insert_tail(list, sio); 2804 sio = next_sio; 2805 } 2806 2807 /* 2808 * We limit the number of sios we process at once to 32 to avoid 2809 * biting off more than we can chew. If we didn't take everything 2810 * in the segment we update it to reflect the work we were able to 2811 * complete. Otherwise, we remove it from the range tree entirely. 2812 */ 2813 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2814 queue->q_exts_by_addr)) { 2815 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2816 -bytes_issued); 2817 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2818 SIO_GET_OFFSET(sio), rs_get_end(rs, 2819 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2820 2821 return (B_TRUE); 2822 } else { 2823 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2824 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2825 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2826 return (B_FALSE); 2827 } 2828 } 2829 2830 2831 /* 2832 * This is called from the queue emptying thread and selects the next 2833 * extent from which we are to issue io's. The behavior of this function 2834 * depends on the state of the scan, the current memory consumption and 2835 * whether or not we are performing a scan shutdown. 2836 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2837 * needs to perform a checkpoint 2838 * 2) We select the largest available extent if we are up against the 2839 * memory limit. 2840 * 3) Otherwise we don't select any extents. 2841 */ 2842 static const range_seg_t * 2843 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2844 { 2845 dsl_scan_t *scn = queue->q_scn; 2846 range_tree_t *rt = queue->q_exts_by_addr; 2847 2848 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2849 ASSERT(scn->scn_is_sorted); 2850 2851 /* handle tunable overrides */ 2852 if (scn->scn_checkpointing || scn->scn_clearing) { 2853 if (zfs_scan_issue_strategy == 1) { 2854 return (range_tree_first(rt)); 2855 } else if (zfs_scan_issue_strategy == 2) { 2856 /* 2857 * We need to get the original entry in the by_addr 2858 * tree so we can modify it. 2859 */ 2860 range_seg_t *size_rs = 2861 zfs_btree_first(&queue->q_exts_by_size, NULL); 2862 if (size_rs == NULL) 2863 return (NULL); 2864 uint64_t start = rs_get_start(size_rs, rt); 2865 uint64_t size = rs_get_end(size_rs, rt) - start; 2866 range_seg_t *addr_rs = range_tree_find(rt, start, 2867 size); 2868 ASSERT3P(addr_rs, !=, NULL); 2869 ASSERT3U(rs_get_start(size_rs, rt), ==, 2870 rs_get_start(addr_rs, rt)); 2871 ASSERT3U(rs_get_end(size_rs, rt), ==, 2872 rs_get_end(addr_rs, rt)); 2873 return (addr_rs); 2874 } 2875 } 2876 2877 /* 2878 * During normal clearing, we want to issue our largest segments 2879 * first, keeping IO as sequential as possible, and leaving the 2880 * smaller extents for later with the hope that they might eventually 2881 * grow to larger sequential segments. However, when the scan is 2882 * checkpointing, no new extents will be added to the sorting queue, 2883 * so the way we are sorted now is as good as it will ever get. 2884 * In this case, we instead switch to issuing extents in LBA order. 2885 */ 2886 if (scn->scn_checkpointing) { 2887 return (range_tree_first(rt)); 2888 } else if (scn->scn_clearing) { 2889 /* 2890 * We need to get the original entry in the by_addr 2891 * tree so we can modify it. 2892 */ 2893 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2894 NULL); 2895 if (size_rs == NULL) 2896 return (NULL); 2897 uint64_t start = rs_get_start(size_rs, rt); 2898 uint64_t size = rs_get_end(size_rs, rt) - start; 2899 range_seg_t *addr_rs = range_tree_find(rt, start, size); 2900 ASSERT3P(addr_rs, !=, NULL); 2901 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 2902 rt)); 2903 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 2904 return (addr_rs); 2905 } else { 2906 return (NULL); 2907 } 2908 } 2909 2910 static void 2911 scan_io_queues_run_one(void *arg) 2912 { 2913 dsl_scan_io_queue_t *queue = arg; 2914 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 2915 boolean_t suspended = B_FALSE; 2916 range_seg_t *rs = NULL; 2917 scan_io_t *sio = NULL; 2918 list_t sio_list; 2919 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 2920 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 2921 2922 ASSERT(queue->q_scn->scn_is_sorted); 2923 2924 list_create(&sio_list, sizeof (scan_io_t), 2925 offsetof(scan_io_t, sio_nodes.sio_list_node)); 2926 mutex_enter(q_lock); 2927 2928 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 2929 queue->q_maxinflight_bytes = 2930 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 2931 2932 /* reset per-queue scan statistics for this txg */ 2933 queue->q_total_seg_size_this_txg = 0; 2934 queue->q_segs_this_txg = 0; 2935 queue->q_total_zio_size_this_txg = 0; 2936 queue->q_zios_this_txg = 0; 2937 2938 /* loop until we have run out of time or sios */ 2939 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) { 2940 uint64_t seg_start = 0, seg_end = 0; 2941 boolean_t more_left = B_TRUE; 2942 2943 ASSERT(list_is_empty(&sio_list)); 2944 2945 /* loop while we still have sios left to process in this rs */ 2946 while (more_left) { 2947 scan_io_t *first_sio, *last_sio; 2948 2949 /* 2950 * We have selected which extent needs to be 2951 * processed next. Gather up the corresponding sios. 2952 */ 2953 more_left = scan_io_queue_gather(queue, rs, &sio_list); 2954 ASSERT(!list_is_empty(&sio_list)); 2955 first_sio = list_head(&sio_list); 2956 last_sio = list_tail(&sio_list); 2957 2958 seg_end = SIO_GET_END_OFFSET(last_sio); 2959 if (seg_start == 0) 2960 seg_start = SIO_GET_OFFSET(first_sio); 2961 2962 /* 2963 * Issuing sios can take a long time so drop the 2964 * queue lock. The sio queue won't be updated by 2965 * other threads since we're in syncing context so 2966 * we can be sure that our trees will remain exactly 2967 * as we left them. 2968 */ 2969 mutex_exit(q_lock); 2970 suspended = scan_io_queue_issue(queue, &sio_list); 2971 mutex_enter(q_lock); 2972 2973 if (suspended) 2974 break; 2975 } 2976 /* update statistics for debugging purposes */ 2977 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 2978 2979 if (suspended) 2980 break; 2981 } 2982 2983 2984 /* 2985 * If we were suspended in the middle of processing, 2986 * requeue any unfinished sios and exit. 2987 */ 2988 while ((sio = list_head(&sio_list)) != NULL) { 2989 list_remove(&sio_list, sio); 2990 scan_io_queue_insert_impl(queue, sio); 2991 } 2992 2993 mutex_exit(q_lock); 2994 list_destroy(&sio_list); 2995 } 2996 2997 /* 2998 * Performs an emptying run on all scan queues in the pool. This just 2999 * punches out one thread per top-level vdev, each of which processes 3000 * only that vdev's scan queue. We can parallelize the I/O here because 3001 * we know that each queue's io's only affect its own top-level vdev. 3002 * 3003 * This function waits for the queue runs to complete, and must be 3004 * called from dsl_scan_sync (or in general, syncing context). 3005 */ 3006 static void 3007 scan_io_queues_run(dsl_scan_t *scn) 3008 { 3009 spa_t *spa = scn->scn_dp->dp_spa; 3010 3011 ASSERT(scn->scn_is_sorted); 3012 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3013 3014 if (scn->scn_bytes_pending == 0) 3015 return; 3016 3017 if (scn->scn_taskq == NULL) { 3018 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, 3019 KM_SLEEP); 3020 int nthreads = spa->spa_root_vdev->vdev_children; 3021 3022 /* 3023 * We need to make this taskq *always* execute as many 3024 * threads in parallel as we have top-level vdevs and no 3025 * less, otherwise strange serialization of the calls to 3026 * scan_io_queues_run_one can occur during spa_sync runs 3027 * and that significantly impacts performance. 3028 */ 3029 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, 3030 "dsl_scan_tq_%s", spa->spa_name); 3031 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, 3032 nthreads, nthreads, TASKQ_PREPOPULATE); 3033 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); 3034 } 3035 3036 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3037 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3038 3039 mutex_enter(&vd->vdev_scan_io_queue_lock); 3040 if (vd->vdev_scan_io_queue != NULL) { 3041 VERIFY(taskq_dispatch(scn->scn_taskq, 3042 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3043 TQ_SLEEP) != TASKQID_INVALID); 3044 } 3045 mutex_exit(&vd->vdev_scan_io_queue_lock); 3046 } 3047 3048 /* 3049 * Wait for the queues to finish issuing thir IOs for this run 3050 * before we return. There may still be IOs in flight at this 3051 * point. 3052 */ 3053 taskq_wait(scn->scn_taskq); 3054 } 3055 3056 static boolean_t 3057 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3058 { 3059 uint64_t elapsed_nanosecs; 3060 3061 if (zfs_recover) 3062 return (B_FALSE); 3063 3064 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) 3065 return (B_TRUE); 3066 3067 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3068 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3069 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3070 txg_sync_waiting(scn->scn_dp)) || 3071 spa_shutting_down(scn->scn_dp->dp_spa)); 3072 } 3073 3074 static int 3075 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3076 { 3077 dsl_scan_t *scn = arg; 3078 3079 if (!scn->scn_is_bptree || 3080 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3081 if (dsl_scan_async_block_should_pause(scn)) 3082 return (SET_ERROR(ERESTART)); 3083 } 3084 3085 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3086 dmu_tx_get_txg(tx), bp, 0)); 3087 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3088 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3089 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3090 scn->scn_visited_this_txg++; 3091 return (0); 3092 } 3093 3094 static void 3095 dsl_scan_update_stats(dsl_scan_t *scn) 3096 { 3097 spa_t *spa = scn->scn_dp->dp_spa; 3098 uint64_t i; 3099 uint64_t seg_size_total = 0, zio_size_total = 0; 3100 uint64_t seg_count_total = 0, zio_count_total = 0; 3101 3102 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3103 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3104 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3105 3106 if (queue == NULL) 3107 continue; 3108 3109 seg_size_total += queue->q_total_seg_size_this_txg; 3110 zio_size_total += queue->q_total_zio_size_this_txg; 3111 seg_count_total += queue->q_segs_this_txg; 3112 zio_count_total += queue->q_zios_this_txg; 3113 } 3114 3115 if (seg_count_total == 0 || zio_count_total == 0) { 3116 scn->scn_avg_seg_size_this_txg = 0; 3117 scn->scn_avg_zio_size_this_txg = 0; 3118 scn->scn_segs_this_txg = 0; 3119 scn->scn_zios_this_txg = 0; 3120 return; 3121 } 3122 3123 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3124 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3125 scn->scn_segs_this_txg = seg_count_total; 3126 scn->scn_zios_this_txg = zio_count_total; 3127 } 3128 3129 static int 3130 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3131 { 3132 dsl_scan_t *scn = arg; 3133 const dva_t *dva = &bp->blk_dva[0]; 3134 3135 if (dsl_scan_async_block_should_pause(scn)) 3136 return (SET_ERROR(ERESTART)); 3137 3138 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3139 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3140 DVA_GET_ASIZE(dva), tx); 3141 scn->scn_visited_this_txg++; 3142 return (0); 3143 } 3144 3145 boolean_t 3146 dsl_scan_active(dsl_scan_t *scn) 3147 { 3148 spa_t *spa = scn->scn_dp->dp_spa; 3149 uint64_t used = 0, comp, uncomp; 3150 3151 if (spa->spa_load_state != SPA_LOAD_NONE) 3152 return (B_FALSE); 3153 if (spa_shutting_down(spa)) 3154 return (B_FALSE); 3155 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3156 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3157 return (B_TRUE); 3158 3159 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3160 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3161 &used, &comp, &uncomp); 3162 } 3163 return (used != 0); 3164 } 3165 3166 static boolean_t 3167 dsl_scan_check_deferred(vdev_t *vd) 3168 { 3169 boolean_t need_resilver = B_FALSE; 3170 3171 for (int c = 0; c < vd->vdev_children; c++) { 3172 need_resilver |= 3173 dsl_scan_check_deferred(vd->vdev_child[c]); 3174 } 3175 3176 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3177 !vd->vdev_ops->vdev_op_leaf) 3178 return (need_resilver); 3179 3180 if (!vd->vdev_resilver_deferred) 3181 need_resilver = B_TRUE; 3182 3183 return (need_resilver); 3184 } 3185 3186 static boolean_t 3187 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3188 uint64_t phys_birth) 3189 { 3190 vdev_t *vd; 3191 3192 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3193 3194 if (vd->vdev_ops == &vdev_indirect_ops) { 3195 /* 3196 * The indirect vdev can point to multiple 3197 * vdevs. For simplicity, always create 3198 * the resilver zio_t. zio_vdev_io_start() 3199 * will bypass the child resilver i/o's if 3200 * they are on vdevs that don't have DTL's. 3201 */ 3202 return (B_TRUE); 3203 } 3204 3205 if (DVA_GET_GANG(dva)) { 3206 /* 3207 * Gang members may be spread across multiple 3208 * vdevs, so the best estimate we have is the 3209 * scrub range, which has already been checked. 3210 * XXX -- it would be better to change our 3211 * allocation policy to ensure that all 3212 * gang members reside on the same vdev. 3213 */ 3214 return (B_TRUE); 3215 } 3216 3217 /* 3218 * Check if the txg falls within the range which must be 3219 * resilvered. DVAs outside this range can always be skipped. 3220 */ 3221 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3222 return (B_FALSE); 3223 3224 /* 3225 * Check if the top-level vdev must resilver this offset. 3226 * When the offset does not intersect with a dirty leaf DTL 3227 * then it may be possible to skip the resilver IO. The psize 3228 * is provided instead of asize to simplify the check for RAIDZ. 3229 */ 3230 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3231 return (B_FALSE); 3232 3233 /* 3234 * Check that this top-level vdev has a device under it which 3235 * is resilvering and is not deferred. 3236 */ 3237 if (!dsl_scan_check_deferred(vd)) 3238 return (B_FALSE); 3239 3240 return (B_TRUE); 3241 } 3242 3243 static int 3244 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3245 { 3246 int err = 0; 3247 dsl_scan_t *scn = dp->dp_scan; 3248 spa_t *spa = dp->dp_spa; 3249 3250 if (spa_suspend_async_destroy(spa)) 3251 return (0); 3252 3253 if (zfs_free_bpobj_enabled && 3254 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3255 scn->scn_is_bptree = B_FALSE; 3256 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3257 scn->scn_zio_root = zio_root(spa, NULL, 3258 NULL, ZIO_FLAG_MUSTSUCCEED); 3259 err = bpobj_iterate(&dp->dp_free_bpobj, 3260 dsl_scan_free_block_cb, scn, tx); 3261 VERIFY0(zio_wait(scn->scn_zio_root)); 3262 scn->scn_zio_root = NULL; 3263 3264 if (err != 0 && err != ERESTART) 3265 zfs_panic_recover("error %u from bpobj_iterate()", err); 3266 } 3267 3268 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3269 ASSERT(scn->scn_async_destroying); 3270 scn->scn_is_bptree = B_TRUE; 3271 scn->scn_zio_root = zio_root(spa, NULL, 3272 NULL, ZIO_FLAG_MUSTSUCCEED); 3273 err = bptree_iterate(dp->dp_meta_objset, 3274 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3275 VERIFY0(zio_wait(scn->scn_zio_root)); 3276 scn->scn_zio_root = NULL; 3277 3278 if (err == EIO || err == ECKSUM) { 3279 err = 0; 3280 } else if (err != 0 && err != ERESTART) { 3281 zfs_panic_recover("error %u from " 3282 "traverse_dataset_destroyed()", err); 3283 } 3284 3285 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3286 /* finished; deactivate async destroy feature */ 3287 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3288 ASSERT(!spa_feature_is_active(spa, 3289 SPA_FEATURE_ASYNC_DESTROY)); 3290 VERIFY0(zap_remove(dp->dp_meta_objset, 3291 DMU_POOL_DIRECTORY_OBJECT, 3292 DMU_POOL_BPTREE_OBJ, tx)); 3293 VERIFY0(bptree_free(dp->dp_meta_objset, 3294 dp->dp_bptree_obj, tx)); 3295 dp->dp_bptree_obj = 0; 3296 scn->scn_async_destroying = B_FALSE; 3297 scn->scn_async_stalled = B_FALSE; 3298 } else { 3299 /* 3300 * If we didn't make progress, mark the async 3301 * destroy as stalled, so that we will not initiate 3302 * a spa_sync() on its behalf. Note that we only 3303 * check this if we are not finished, because if the 3304 * bptree had no blocks for us to visit, we can 3305 * finish without "making progress". 3306 */ 3307 scn->scn_async_stalled = 3308 (scn->scn_visited_this_txg == 0); 3309 } 3310 } 3311 if (scn->scn_visited_this_txg) { 3312 zfs_dbgmsg("freed %llu blocks in %llums from " 3313 "free_bpobj/bptree txg %llu; err=%d", 3314 (longlong_t)scn->scn_visited_this_txg, 3315 (longlong_t) 3316 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3317 (longlong_t)tx->tx_txg, err); 3318 scn->scn_visited_this_txg = 0; 3319 3320 /* 3321 * Write out changes to the DDT that may be required as a 3322 * result of the blocks freed. This ensures that the DDT 3323 * is clean when a scrub/resilver runs. 3324 */ 3325 ddt_sync(spa, tx->tx_txg); 3326 } 3327 if (err != 0) 3328 return (err); 3329 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3330 zfs_free_leak_on_eio && 3331 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3332 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3333 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3334 /* 3335 * We have finished background destroying, but there is still 3336 * some space left in the dp_free_dir. Transfer this leaked 3337 * space to the dp_leak_dir. 3338 */ 3339 if (dp->dp_leak_dir == NULL) { 3340 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3341 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3342 LEAK_DIR_NAME, tx); 3343 VERIFY0(dsl_pool_open_special_dir(dp, 3344 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3345 rrw_exit(&dp->dp_config_rwlock, FTAG); 3346 } 3347 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3348 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3349 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3350 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3351 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3352 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3353 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3354 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3355 } 3356 3357 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { 3358 /* finished; verify that space accounting went to zero */ 3359 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3360 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3361 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3362 } 3363 3364 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3365 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3366 DMU_POOL_OBSOLETE_BPOBJ)); 3367 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3368 ASSERT(spa_feature_is_active(dp->dp_spa, 3369 SPA_FEATURE_OBSOLETE_COUNTS)); 3370 3371 scn->scn_is_bptree = B_FALSE; 3372 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3373 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3374 dsl_scan_obsolete_block_cb, scn, tx); 3375 if (err != 0 && err != ERESTART) 3376 zfs_panic_recover("error %u from bpobj_iterate()", err); 3377 3378 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3379 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3380 } 3381 3382 return (0); 3383 } 3384 3385 /* 3386 * This is the primary entry point for scans that is called from syncing 3387 * context. Scans must happen entirely during syncing context so that we 3388 * cna guarantee that blocks we are currently scanning will not change out 3389 * from under us. While a scan is active, this funciton controls how quickly 3390 * transaction groups proceed, instead of the normal handling provided by 3391 * txg_sync_thread(). 3392 */ 3393 void 3394 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3395 { 3396 dsl_scan_t *scn = dp->dp_scan; 3397 spa_t *spa = dp->dp_spa; 3398 int err = 0; 3399 state_sync_type_t sync_type = SYNC_OPTIONAL; 3400 3401 if (spa->spa_resilver_deferred && 3402 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3403 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3404 3405 /* 3406 * Check for scn_restart_txg before checking spa_load_state, so 3407 * that we can restart an old-style scan while the pool is being 3408 * imported (see dsl_scan_init). We also restart scans if there 3409 * is a deferred resilver and the user has manually disabled 3410 * deferred resilvers via the tunable. 3411 */ 3412 if (dsl_scan_restarting(scn, tx) || 3413 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3414 pool_scan_func_t func = POOL_SCAN_SCRUB; 3415 dsl_scan_done(scn, B_FALSE, tx); 3416 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3417 func = POOL_SCAN_RESILVER; 3418 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3419 func, (longlong_t)tx->tx_txg); 3420 dsl_scan_setup_sync(&func, tx); 3421 } 3422 3423 /* 3424 * Only process scans in sync pass 1. 3425 */ 3426 if (spa_sync_pass(dp->dp_spa) > 1) 3427 return; 3428 3429 /* 3430 * If the spa is shutting down, then stop scanning. This will 3431 * ensure that the scan does not dirty any new data during the 3432 * shutdown phase. 3433 */ 3434 if (spa_shutting_down(spa)) 3435 return; 3436 3437 /* 3438 * If the scan is inactive due to a stalled async destroy, try again. 3439 */ 3440 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3441 return; 3442 3443 /* reset scan statistics */ 3444 scn->scn_visited_this_txg = 0; 3445 scn->scn_holes_this_txg = 0; 3446 scn->scn_lt_min_this_txg = 0; 3447 scn->scn_gt_max_this_txg = 0; 3448 scn->scn_ddt_contained_this_txg = 0; 3449 scn->scn_objsets_visited_this_txg = 0; 3450 scn->scn_avg_seg_size_this_txg = 0; 3451 scn->scn_segs_this_txg = 0; 3452 scn->scn_avg_zio_size_this_txg = 0; 3453 scn->scn_zios_this_txg = 0; 3454 scn->scn_suspending = B_FALSE; 3455 scn->scn_sync_start_time = gethrtime(); 3456 spa->spa_scrub_active = B_TRUE; 3457 3458 /* 3459 * First process the async destroys. If we pause, don't do 3460 * any scrubbing or resilvering. This ensures that there are no 3461 * async destroys while we are scanning, so the scan code doesn't 3462 * have to worry about traversing it. It is also faster to free the 3463 * blocks than to scrub them. 3464 */ 3465 err = dsl_process_async_destroys(dp, tx); 3466 if (err != 0) 3467 return; 3468 3469 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3470 return; 3471 3472 /* 3473 * Wait a few txgs after importing to begin scanning so that 3474 * we can get the pool imported quickly. 3475 */ 3476 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3477 return; 3478 3479 /* 3480 * zfs_scan_suspend_progress can be set to disable scan progress. 3481 * We don't want to spin the txg_sync thread, so we add a delay 3482 * here to simulate the time spent doing a scan. This is mostly 3483 * useful for testing and debugging. 3484 */ 3485 if (zfs_scan_suspend_progress) { 3486 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3487 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3488 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3489 3490 while (zfs_scan_suspend_progress && 3491 !txg_sync_waiting(scn->scn_dp) && 3492 !spa_shutting_down(scn->scn_dp->dp_spa) && 3493 NSEC2MSEC(scan_time_ns) < mintime) { 3494 delay(hz); 3495 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3496 } 3497 return; 3498 } 3499 3500 /* 3501 * It is possible to switch from unsorted to sorted at any time, 3502 * but afterwards the scan will remain sorted unless reloaded from 3503 * a checkpoint after a reboot. 3504 */ 3505 if (!zfs_scan_legacy) { 3506 scn->scn_is_sorted = B_TRUE; 3507 if (scn->scn_last_checkpoint == 0) 3508 scn->scn_last_checkpoint = ddi_get_lbolt(); 3509 } 3510 3511 /* 3512 * For sorted scans, determine what kind of work we will be doing 3513 * this txg based on our memory limitations and whether or not we 3514 * need to perform a checkpoint. 3515 */ 3516 if (scn->scn_is_sorted) { 3517 /* 3518 * If we are over our checkpoint interval, set scn_clearing 3519 * so that we can begin checkpointing immediately. The 3520 * checkpoint allows us to save a consisent bookmark 3521 * representing how much data we have scrubbed so far. 3522 * Otherwise, use the memory limit to determine if we should 3523 * scan for metadata or start issue scrub IOs. We accumulate 3524 * metadata until we hit our hard memory limit at which point 3525 * we issue scrub IOs until we are at our soft memory limit. 3526 */ 3527 if (scn->scn_checkpointing || 3528 ddi_get_lbolt() - scn->scn_last_checkpoint > 3529 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3530 if (!scn->scn_checkpointing) 3531 zfs_dbgmsg("begin scan checkpoint"); 3532 3533 scn->scn_checkpointing = B_TRUE; 3534 scn->scn_clearing = B_TRUE; 3535 } else { 3536 boolean_t should_clear = dsl_scan_should_clear(scn); 3537 if (should_clear && !scn->scn_clearing) { 3538 zfs_dbgmsg("begin scan clearing"); 3539 scn->scn_clearing = B_TRUE; 3540 } else if (!should_clear && scn->scn_clearing) { 3541 zfs_dbgmsg("finish scan clearing"); 3542 scn->scn_clearing = B_FALSE; 3543 } 3544 } 3545 } else { 3546 ASSERT0(scn->scn_checkpointing); 3547 ASSERT0(scn->scn_clearing); 3548 } 3549 3550 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3551 /* Need to scan metadata for more blocks to scrub */ 3552 dsl_scan_phys_t *scnp = &scn->scn_phys; 3553 taskqid_t prefetch_tqid; 3554 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3555 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3556 3557 /* 3558 * Calculate the max number of in-flight bytes for pool-wide 3559 * scanning operations (minimum 1MB). Limits for the issuing 3560 * phase are done per top-level vdev and are handled separately. 3561 */ 3562 scn->scn_maxinflight_bytes = 3563 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3564 3565 if (scnp->scn_ddt_bookmark.ddb_class <= 3566 scnp->scn_ddt_class_max) { 3567 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3568 zfs_dbgmsg("doing scan sync txg %llu; " 3569 "ddt bm=%llu/%llu/%llu/%llx", 3570 (longlong_t)tx->tx_txg, 3571 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3572 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3573 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3574 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3575 } else { 3576 zfs_dbgmsg("doing scan sync txg %llu; " 3577 "bm=%llu/%llu/%llu/%llu", 3578 (longlong_t)tx->tx_txg, 3579 (longlong_t)scnp->scn_bookmark.zb_objset, 3580 (longlong_t)scnp->scn_bookmark.zb_object, 3581 (longlong_t)scnp->scn_bookmark.zb_level, 3582 (longlong_t)scnp->scn_bookmark.zb_blkid); 3583 } 3584 3585 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3586 NULL, ZIO_FLAG_CANFAIL); 3587 3588 scn->scn_prefetch_stop = B_FALSE; 3589 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3590 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3591 ASSERT(prefetch_tqid != TASKQID_INVALID); 3592 3593 dsl_pool_config_enter(dp, FTAG); 3594 dsl_scan_visit(scn, tx); 3595 dsl_pool_config_exit(dp, FTAG); 3596 3597 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3598 scn->scn_prefetch_stop = B_TRUE; 3599 cv_broadcast(&spa->spa_scrub_io_cv); 3600 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3601 3602 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3603 (void) zio_wait(scn->scn_zio_root); 3604 scn->scn_zio_root = NULL; 3605 3606 zfs_dbgmsg("scan visited %llu blocks in %llums " 3607 "(%llu os's, %llu holes, %llu < mintxg, " 3608 "%llu in ddt, %llu > maxtxg)", 3609 (longlong_t)scn->scn_visited_this_txg, 3610 (longlong_t)NSEC2MSEC(gethrtime() - 3611 scn->scn_sync_start_time), 3612 (longlong_t)scn->scn_objsets_visited_this_txg, 3613 (longlong_t)scn->scn_holes_this_txg, 3614 (longlong_t)scn->scn_lt_min_this_txg, 3615 (longlong_t)scn->scn_ddt_contained_this_txg, 3616 (longlong_t)scn->scn_gt_max_this_txg); 3617 3618 if (!scn->scn_suspending) { 3619 ASSERT0(avl_numnodes(&scn->scn_queue)); 3620 scn->scn_done_txg = tx->tx_txg + 1; 3621 if (scn->scn_is_sorted) { 3622 scn->scn_checkpointing = B_TRUE; 3623 scn->scn_clearing = B_TRUE; 3624 } 3625 zfs_dbgmsg("scan complete txg %llu", 3626 (longlong_t)tx->tx_txg); 3627 } 3628 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3629 ASSERT(scn->scn_clearing); 3630 3631 /* need to issue scrubbing IOs from per-vdev queues */ 3632 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3633 NULL, ZIO_FLAG_CANFAIL); 3634 scan_io_queues_run(scn); 3635 (void) zio_wait(scn->scn_zio_root); 3636 scn->scn_zio_root = NULL; 3637 3638 /* calculate and dprintf the current memory usage */ 3639 (void) dsl_scan_should_clear(scn); 3640 dsl_scan_update_stats(scn); 3641 3642 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " 3643 "(avg_block_size = %llu, avg_seg_size = %llu)", 3644 (longlong_t)scn->scn_zios_this_txg, 3645 (longlong_t)scn->scn_segs_this_txg, 3646 (longlong_t)NSEC2MSEC(gethrtime() - 3647 scn->scn_sync_start_time), 3648 (longlong_t)scn->scn_avg_zio_size_this_txg, 3649 (longlong_t)scn->scn_avg_seg_size_this_txg); 3650 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3651 /* Finished with everything. Mark the scrub as complete */ 3652 zfs_dbgmsg("scan issuing complete txg %llu", 3653 (longlong_t)tx->tx_txg); 3654 ASSERT3U(scn->scn_done_txg, !=, 0); 3655 ASSERT0(spa->spa_scrub_inflight); 3656 ASSERT0(scn->scn_bytes_pending); 3657 dsl_scan_done(scn, B_TRUE, tx); 3658 sync_type = SYNC_MANDATORY; 3659 } 3660 3661 dsl_scan_sync_state(scn, tx, sync_type); 3662 } 3663 3664 static void 3665 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3666 { 3667 int i; 3668 3669 /* 3670 * Don't count embedded bp's, since we already did the work of 3671 * scanning these when we scanned the containing block. 3672 */ 3673 if (BP_IS_EMBEDDED(bp)) 3674 return; 3675 3676 /* 3677 * Update the spa's stats on how many bytes we have issued. 3678 * Sequential scrubs create a zio for each DVA of the bp. Each 3679 * of these will include all DVAs for repair purposes, but the 3680 * zio code will only try the first one unless there is an issue. 3681 * Therefore, we should only count the first DVA for these IOs. 3682 */ 3683 if (scn->scn_is_sorted) { 3684 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3685 DVA_GET_ASIZE(&bp->blk_dva[0])); 3686 } else { 3687 spa_t *spa = scn->scn_dp->dp_spa; 3688 3689 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3690 atomic_add_64(&spa->spa_scan_pass_issued, 3691 DVA_GET_ASIZE(&bp->blk_dva[i])); 3692 } 3693 } 3694 3695 /* 3696 * If we resume after a reboot, zab will be NULL; don't record 3697 * incomplete stats in that case. 3698 */ 3699 if (zab == NULL) 3700 return; 3701 3702 mutex_enter(&zab->zab_lock); 3703 3704 for (i = 0; i < 4; i++) { 3705 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3706 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3707 if (t & DMU_OT_NEWTYPE) 3708 t = DMU_OT_OTHER; 3709 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3710 int equal; 3711 3712 zb->zb_count++; 3713 zb->zb_asize += BP_GET_ASIZE(bp); 3714 zb->zb_lsize += BP_GET_LSIZE(bp); 3715 zb->zb_psize += BP_GET_PSIZE(bp); 3716 zb->zb_gangs += BP_COUNT_GANG(bp); 3717 3718 switch (BP_GET_NDVAS(bp)) { 3719 case 2: 3720 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3721 DVA_GET_VDEV(&bp->blk_dva[1])) 3722 zb->zb_ditto_2_of_2_samevdev++; 3723 break; 3724 case 3: 3725 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3726 DVA_GET_VDEV(&bp->blk_dva[1])) + 3727 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3728 DVA_GET_VDEV(&bp->blk_dva[2])) + 3729 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3730 DVA_GET_VDEV(&bp->blk_dva[2])); 3731 if (equal == 1) 3732 zb->zb_ditto_2_of_3_samevdev++; 3733 else if (equal == 3) 3734 zb->zb_ditto_3_of_3_samevdev++; 3735 break; 3736 } 3737 } 3738 3739 mutex_exit(&zab->zab_lock); 3740 } 3741 3742 static void 3743 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3744 { 3745 avl_index_t idx; 3746 int64_t asize = SIO_GET_ASIZE(sio); 3747 dsl_scan_t *scn = queue->q_scn; 3748 3749 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3750 3751 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3752 /* block is already scheduled for reading */ 3753 atomic_add_64(&scn->scn_bytes_pending, -asize); 3754 sio_free(sio); 3755 return; 3756 } 3757 avl_insert(&queue->q_sios_by_addr, sio, idx); 3758 queue->q_sio_memused += SIO_GET_MUSED(sio); 3759 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3760 } 3761 3762 /* 3763 * Given all the info we got from our metadata scanning process, we 3764 * construct a scan_io_t and insert it into the scan sorting queue. The 3765 * I/O must already be suitable for us to process. This is controlled 3766 * by dsl_scan_enqueue(). 3767 */ 3768 static void 3769 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3770 int zio_flags, const zbookmark_phys_t *zb) 3771 { 3772 dsl_scan_t *scn = queue->q_scn; 3773 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3774 3775 ASSERT0(BP_IS_GANG(bp)); 3776 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3777 3778 bp2sio(bp, sio, dva_i); 3779 sio->sio_flags = zio_flags; 3780 sio->sio_zb = *zb; 3781 3782 /* 3783 * Increment the bytes pending counter now so that we can't 3784 * get an integer underflow in case the worker processes the 3785 * zio before we get to incrementing this counter. 3786 */ 3787 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3788 3789 scan_io_queue_insert_impl(queue, sio); 3790 } 3791 3792 /* 3793 * Given a set of I/O parameters as discovered by the metadata traversal 3794 * process, attempts to place the I/O into the sorted queues (if allowed), 3795 * or immediately executes the I/O. 3796 */ 3797 static void 3798 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3799 const zbookmark_phys_t *zb) 3800 { 3801 spa_t *spa = dp->dp_spa; 3802 3803 ASSERT(!BP_IS_EMBEDDED(bp)); 3804 3805 /* 3806 * Gang blocks are hard to issue sequentially, so we just issue them 3807 * here immediately instead of queuing them. 3808 */ 3809 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3810 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3811 return; 3812 } 3813 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3814 dva_t dva; 3815 vdev_t *vdev; 3816 3817 dva = bp->blk_dva[i]; 3818 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3819 ASSERT(vdev != NULL); 3820 3821 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3822 if (vdev->vdev_scan_io_queue == NULL) 3823 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3824 ASSERT(dp->dp_scan != NULL); 3825 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3826 i, zio_flags, zb); 3827 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3828 } 3829 } 3830 3831 static int 3832 dsl_scan_scrub_cb(dsl_pool_t *dp, 3833 const blkptr_t *bp, const zbookmark_phys_t *zb) 3834 { 3835 dsl_scan_t *scn = dp->dp_scan; 3836 spa_t *spa = dp->dp_spa; 3837 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3838 size_t psize = BP_GET_PSIZE(bp); 3839 boolean_t needs_io; 3840 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3841 int d; 3842 3843 if (phys_birth <= scn->scn_phys.scn_min_txg || 3844 phys_birth >= scn->scn_phys.scn_max_txg) { 3845 count_block(scn, dp->dp_blkstats, bp); 3846 return (0); 3847 } 3848 3849 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3850 ASSERT(!BP_IS_EMBEDDED(bp)); 3851 3852 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3853 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3854 zio_flags |= ZIO_FLAG_SCRUB; 3855 needs_io = B_TRUE; 3856 } else { 3857 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3858 zio_flags |= ZIO_FLAG_RESILVER; 3859 needs_io = B_FALSE; 3860 } 3861 3862 /* If it's an intent log block, failure is expected. */ 3863 if (zb->zb_level == ZB_ZIL_LEVEL) 3864 zio_flags |= ZIO_FLAG_SPECULATIVE; 3865 3866 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3867 const dva_t *dva = &bp->blk_dva[d]; 3868 3869 /* 3870 * Keep track of how much data we've examined so that 3871 * zpool(8) status can make useful progress reports. 3872 */ 3873 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3874 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3875 3876 /* if it's a resilver, this may not be in the target range */ 3877 if (!needs_io) 3878 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3879 phys_birth); 3880 } 3881 3882 if (needs_io && !zfs_no_scrub_io) { 3883 dsl_scan_enqueue(dp, bp, zio_flags, zb); 3884 } else { 3885 count_block(scn, dp->dp_blkstats, bp); 3886 } 3887 3888 /* do not relocate this block */ 3889 return (0); 3890 } 3891 3892 static void 3893 dsl_scan_scrub_done(zio_t *zio) 3894 { 3895 spa_t *spa = zio->io_spa; 3896 blkptr_t *bp = zio->io_bp; 3897 dsl_scan_io_queue_t *queue = zio->io_private; 3898 3899 abd_free(zio->io_abd); 3900 3901 if (queue == NULL) { 3902 mutex_enter(&spa->spa_scrub_lock); 3903 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 3904 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 3905 cv_broadcast(&spa->spa_scrub_io_cv); 3906 mutex_exit(&spa->spa_scrub_lock); 3907 } else { 3908 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 3909 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 3910 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 3911 cv_broadcast(&queue->q_zio_cv); 3912 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 3913 } 3914 3915 if (zio->io_error && (zio->io_error != ECKSUM || 3916 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 3917 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 3918 } 3919 } 3920 3921 /* 3922 * Given a scanning zio's information, executes the zio. The zio need 3923 * not necessarily be only sortable, this function simply executes the 3924 * zio, no matter what it is. The optional queue argument allows the 3925 * caller to specify that they want per top level vdev IO rate limiting 3926 * instead of the legacy global limiting. 3927 */ 3928 static void 3929 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3930 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 3931 { 3932 spa_t *spa = dp->dp_spa; 3933 dsl_scan_t *scn = dp->dp_scan; 3934 size_t size = BP_GET_PSIZE(bp); 3935 abd_t *data = abd_alloc_for_io(size, B_FALSE); 3936 3937 if (queue == NULL) { 3938 mutex_enter(&spa->spa_scrub_lock); 3939 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 3940 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3941 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 3942 mutex_exit(&spa->spa_scrub_lock); 3943 } else { 3944 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3945 3946 mutex_enter(q_lock); 3947 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 3948 cv_wait(&queue->q_zio_cv, q_lock); 3949 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 3950 mutex_exit(q_lock); 3951 } 3952 3953 count_block(dp->dp_scan, dp->dp_blkstats, bp); 3954 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, 3955 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 3956 } 3957 3958 /* 3959 * This is the primary extent sorting algorithm. We balance two parameters: 3960 * 1) how many bytes of I/O are in an extent 3961 * 2) how well the extent is filled with I/O (as a fraction of its total size) 3962 * Since we allow extents to have gaps between their constituent I/Os, it's 3963 * possible to have a fairly large extent that contains the same amount of 3964 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 3965 * The algorithm sorts based on a score calculated from the extent's size, 3966 * the relative fill volume (in %) and a "fill weight" parameter that controls 3967 * the split between whether we prefer larger extents or more well populated 3968 * extents: 3969 * 3970 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 3971 * 3972 * Example: 3973 * 1) assume extsz = 64 MiB 3974 * 2) assume fill = 32 MiB (extent is half full) 3975 * 3) assume fill_weight = 3 3976 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 3977 * SCORE = 32M + (50 * 3 * 32M) / 100 3978 * SCORE = 32M + (4800M / 100) 3979 * SCORE = 32M + 48M 3980 * ^ ^ 3981 * | +--- final total relative fill-based score 3982 * +--------- final total fill-based score 3983 * SCORE = 80M 3984 * 3985 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 3986 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 3987 * Note that as an optimization, we replace multiplication and division by 3988 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). 3989 */ 3990 static int 3991 ext_size_compare(const void *x, const void *y) 3992 { 3993 const range_seg_gap_t *rsa = x, *rsb = y; 3994 3995 uint64_t sa = rsa->rs_end - rsa->rs_start; 3996 uint64_t sb = rsb->rs_end - rsb->rs_start; 3997 uint64_t score_a, score_b; 3998 3999 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 4000 fill_weight * rsa->rs_fill) >> 7); 4001 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 4002 fill_weight * rsb->rs_fill) >> 7); 4003 4004 if (score_a > score_b) 4005 return (-1); 4006 if (score_a == score_b) { 4007 if (rsa->rs_start < rsb->rs_start) 4008 return (-1); 4009 if (rsa->rs_start == rsb->rs_start) 4010 return (0); 4011 return (1); 4012 } 4013 return (1); 4014 } 4015 4016 /* 4017 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4018 * based on LBA-order (from lowest to highest). 4019 */ 4020 static int 4021 sio_addr_compare(const void *x, const void *y) 4022 { 4023 const scan_io_t *a = x, *b = y; 4024 4025 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4026 } 4027 4028 /* IO queues are created on demand when they are needed. */ 4029 static dsl_scan_io_queue_t * 4030 scan_io_queue_create(vdev_t *vd) 4031 { 4032 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4033 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4034 4035 q->q_scn = scn; 4036 q->q_vd = vd; 4037 q->q_sio_memused = 0; 4038 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4039 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4040 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4041 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4042 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4043 4044 return (q); 4045 } 4046 4047 /* 4048 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4049 * No further execution of I/O occurs, anything pending in the queue is 4050 * simply freed without being executed. 4051 */ 4052 void 4053 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4054 { 4055 dsl_scan_t *scn = queue->q_scn; 4056 scan_io_t *sio; 4057 void *cookie = NULL; 4058 int64_t bytes_dequeued = 0; 4059 4060 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4061 4062 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4063 NULL) { 4064 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4065 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4066 bytes_dequeued += SIO_GET_ASIZE(sio); 4067 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4068 sio_free(sio); 4069 } 4070 4071 ASSERT0(queue->q_sio_memused); 4072 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4073 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4074 range_tree_destroy(queue->q_exts_by_addr); 4075 avl_destroy(&queue->q_sios_by_addr); 4076 cv_destroy(&queue->q_zio_cv); 4077 4078 kmem_free(queue, sizeof (*queue)); 4079 } 4080 4081 /* 4082 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4083 * called on behalf of vdev_top_transfer when creating or destroying 4084 * a mirror vdev due to zpool attach/detach. 4085 */ 4086 void 4087 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4088 { 4089 mutex_enter(&svd->vdev_scan_io_queue_lock); 4090 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4091 4092 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4093 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4094 svd->vdev_scan_io_queue = NULL; 4095 if (tvd->vdev_scan_io_queue != NULL) 4096 tvd->vdev_scan_io_queue->q_vd = tvd; 4097 4098 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4099 mutex_exit(&svd->vdev_scan_io_queue_lock); 4100 } 4101 4102 static void 4103 scan_io_queues_destroy(dsl_scan_t *scn) 4104 { 4105 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4106 4107 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4108 vdev_t *tvd = rvd->vdev_child[i]; 4109 4110 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4111 if (tvd->vdev_scan_io_queue != NULL) 4112 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4113 tvd->vdev_scan_io_queue = NULL; 4114 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4115 } 4116 } 4117 4118 static void 4119 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4120 { 4121 dsl_pool_t *dp = spa->spa_dsl_pool; 4122 dsl_scan_t *scn = dp->dp_scan; 4123 vdev_t *vdev; 4124 kmutex_t *q_lock; 4125 dsl_scan_io_queue_t *queue; 4126 scan_io_t *srch_sio, *sio; 4127 avl_index_t idx; 4128 uint64_t start, size; 4129 4130 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4131 ASSERT(vdev != NULL); 4132 q_lock = &vdev->vdev_scan_io_queue_lock; 4133 queue = vdev->vdev_scan_io_queue; 4134 4135 mutex_enter(q_lock); 4136 if (queue == NULL) { 4137 mutex_exit(q_lock); 4138 return; 4139 } 4140 4141 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4142 bp2sio(bp, srch_sio, dva_i); 4143 start = SIO_GET_OFFSET(srch_sio); 4144 size = SIO_GET_ASIZE(srch_sio); 4145 4146 /* 4147 * We can find the zio in two states: 4148 * 1) Cold, just sitting in the queue of zio's to be issued at 4149 * some point in the future. In this case, all we do is 4150 * remove the zio from the q_sios_by_addr tree, decrement 4151 * its data volume from the containing range_seg_t and 4152 * resort the q_exts_by_size tree to reflect that the 4153 * range_seg_t has lost some of its 'fill'. We don't shorten 4154 * the range_seg_t - this is usually rare enough not to be 4155 * worth the extra hassle of trying keep track of precise 4156 * extent boundaries. 4157 * 2) Hot, where the zio is currently in-flight in 4158 * dsl_scan_issue_ios. In this case, we can't simply 4159 * reach in and stop the in-flight zio's, so we instead 4160 * block the caller. Eventually, dsl_scan_issue_ios will 4161 * be done with issuing the zio's it gathered and will 4162 * signal us. 4163 */ 4164 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4165 sio_free(srch_sio); 4166 4167 if (sio != NULL) { 4168 int64_t asize = SIO_GET_ASIZE(sio); 4169 blkptr_t tmpbp; 4170 4171 /* Got it while it was cold in the queue */ 4172 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4173 ASSERT3U(size, ==, asize); 4174 avl_remove(&queue->q_sios_by_addr, sio); 4175 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4176 4177 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4178 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4179 4180 /* 4181 * We only update scn_bytes_pending in the cold path, 4182 * otherwise it will already have been accounted for as 4183 * part of the zio's execution. 4184 */ 4185 atomic_add_64(&scn->scn_bytes_pending, -asize); 4186 4187 /* count the block as though we issued it */ 4188 sio2bp(sio, &tmpbp); 4189 count_block(scn, dp->dp_blkstats, &tmpbp); 4190 4191 sio_free(sio); 4192 } 4193 mutex_exit(q_lock); 4194 } 4195 4196 /* 4197 * Callback invoked when a zio_free() zio is executing. This needs to be 4198 * intercepted to prevent the zio from deallocating a particular portion 4199 * of disk space and it then getting reallocated and written to, while we 4200 * still have it queued up for processing. 4201 */ 4202 void 4203 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4204 { 4205 dsl_pool_t *dp = spa->spa_dsl_pool; 4206 dsl_scan_t *scn = dp->dp_scan; 4207 4208 ASSERT(!BP_IS_EMBEDDED(bp)); 4209 ASSERT(scn != NULL); 4210 if (!dsl_scan_is_running(scn)) 4211 return; 4212 4213 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4214 dsl_scan_freed_dva(spa, bp, i); 4215 } 4216 4217 /* 4218 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4219 * not started, start it. Otherwise, only restart if max txg in DTL range is 4220 * greater than the max txg in the current scan. If the DTL max is less than 4221 * the scan max, then the vdev has not missed any new data since the resilver 4222 * started, so a restart is not needed. 4223 */ 4224 void 4225 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4226 { 4227 uint64_t min, max; 4228 4229 if (!vdev_resilver_needed(vd, &min, &max)) 4230 return; 4231 4232 if (!dsl_scan_resilvering(dp)) { 4233 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4234 return; 4235 } 4236 4237 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4238 return; 4239 4240 /* restart is needed, check if it can be deferred */ 4241 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4242 vdev_defer_resilver(vd); 4243 else 4244 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4245 } 4246