1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright (c) 2017 Datto Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 124 uint64_t *txg); 125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 128 129 extern int zfs_vdev_async_write_active_min_dirty_percent; 130 131 /* 132 * By default zfs will check to ensure it is not over the hard memory 133 * limit before each txg. If finer-grained control of this is needed 134 * this value can be set to 1 to enable checking before scanning each 135 * block. 136 */ 137 int zfs_scan_strict_mem_lim = B_FALSE; 138 139 /* 140 * Maximum number of parallelly executing I/Os per top-level vdev. 141 * Tune with care. Very high settings (hundreds) are known to trigger 142 * some firmware bugs and resets on certain SSDs. 143 */ 144 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ 145 unsigned int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ 146 unsigned int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ 147 unsigned int zfs_scan_idle = 50; /* idle window in clock ticks */ 148 149 /* 150 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 151 * to strike a balance here between keeping the vdev queues full of I/Os 152 * at all times and not overflowing the queues to cause long latency, 153 * which would cause long txg sync times. No matter what, we will not 154 * overload the drives with I/O, since that is protected by 155 * zfs_vdev_scrub_max_active. 156 */ 157 unsigned long zfs_scan_vdev_limit = 4 << 20; 158 159 int zfs_scan_issue_strategy = 0; 160 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 161 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 162 163 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ 164 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) 165 166 /* 167 * fill_weight is non-tunable at runtime, so we copy it at module init from 168 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 169 * break queue sorting. 170 */ 171 uint64_t zfs_scan_fill_weight = 3; 172 static uint64_t fill_weight; 173 174 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 175 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 177 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 178 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 179 180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 182 /* min millisecs to obsolete per txg */ 183 unsigned int zfs_obsolete_min_time_ms = 500; 184 /* min millisecs to resilver per txg */ 185 unsigned int zfs_resilver_min_time_ms = 3000; 186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 190 /* max number of blocks to free in a single TXG */ 191 uint64_t zfs_async_block_max_blocks = UINT64_MAX; 192 193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 194 195 /* 196 * We wait a few txgs after importing a pool to begin scanning so that 197 * the import / mounting code isn't held up by scrub / resilver IO. 198 * Unfortunately, it is a bit difficult to determine exactly how long 199 * this will take since userspace will trigger fs mounts asynchronously 200 * and the kernel will create zvol minors asynchronously. As a result, 201 * the value provided here is a bit arbitrary, but represents a 202 * reasonable estimate of how many txgs it will take to finish fully 203 * importing a pool 204 */ 205 #define SCAN_IMPORT_WAIT_TXGS 5 206 207 208 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 209 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 210 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 211 212 extern int zfs_txg_timeout; 213 214 /* 215 * Enable/disable the processing of the free_bpobj object. 216 */ 217 boolean_t zfs_free_bpobj_enabled = B_TRUE; 218 219 /* the order has to match pool_scan_type */ 220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 221 NULL, 222 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 223 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 224 }; 225 226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 227 typedef struct { 228 uint64_t sds_dsobj; 229 uint64_t sds_txg; 230 avl_node_t sds_node; 231 } scan_ds_t; 232 233 /* 234 * This controls what conditions are placed on dsl_scan_sync_state(): 235 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 236 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 237 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 238 * write out the scn_phys_cached version. 239 * See dsl_scan_sync_state for details. 240 */ 241 typedef enum { 242 SYNC_OPTIONAL, 243 SYNC_MANDATORY, 244 SYNC_CACHED 245 } state_sync_type_t; 246 247 /* 248 * This struct represents the minimum information needed to reconstruct a 249 * zio for sequential scanning. This is useful because many of these will 250 * accumulate in the sequential IO queues before being issued, so saving 251 * memory matters here. 252 */ 253 typedef struct scan_io { 254 /* fields from blkptr_t */ 255 uint64_t sio_blk_prop; 256 uint64_t sio_phys_birth; 257 uint64_t sio_birth; 258 zio_cksum_t sio_cksum; 259 uint32_t sio_nr_dvas; 260 261 /* fields from zio_t */ 262 uint32_t sio_flags; 263 zbookmark_phys_t sio_zb; 264 265 /* members for queue sorting */ 266 union { 267 avl_node_t sio_addr_node; /* link into issuing queue */ 268 list_node_t sio_list_node; /* link for issuing to disk */ 269 } sio_nodes; 270 271 /* 272 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 273 * depending on how many were in the original bp. Only the 274 * first DVA is really used for sorting and issuing purposes. 275 * The other DVAs (if provided) simply exist so that the zio 276 * layer can find additional copies to repair from in the 277 * event of an error. This array must go at the end of the 278 * struct to allow this for the variable number of elements. 279 */ 280 dva_t sio_dva[0]; 281 } scan_io_t; 282 283 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 284 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 285 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 286 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 287 #define SIO_GET_END_OFFSET(sio) \ 288 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 289 #define SIO_GET_MUSED(sio) \ 290 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 291 292 struct dsl_scan_io_queue { 293 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 294 vdev_t *q_vd; /* top-level vdev that this queue represents */ 295 296 /* trees used for sorting I/Os and extents of I/Os */ 297 range_tree_t *q_exts_by_addr; 298 zfs_btree_t q_exts_by_size; 299 avl_tree_t q_sios_by_addr; 300 uint64_t q_sio_memused; 301 302 /* members for zio rate limiting */ 303 uint64_t q_maxinflight_bytes; 304 uint64_t q_inflight_bytes; 305 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 306 307 /* per txg statistics */ 308 uint64_t q_total_seg_size_this_txg; 309 uint64_t q_segs_this_txg; 310 uint64_t q_total_zio_size_this_txg; 311 uint64_t q_zios_this_txg; 312 }; 313 314 /* private data for dsl_scan_prefetch_cb() */ 315 typedef struct scan_prefetch_ctx { 316 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 317 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 318 boolean_t spc_root; /* is this prefetch for an objset? */ 319 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 320 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 321 } scan_prefetch_ctx_t; 322 323 /* private data for dsl_scan_prefetch() */ 324 typedef struct scan_prefetch_issue_ctx { 325 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 326 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 327 blkptr_t spic_bp; /* bp to prefetch */ 328 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 329 } scan_prefetch_issue_ctx_t; 330 331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 332 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 334 scan_io_t *sio); 335 336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 337 static void scan_io_queues_destroy(dsl_scan_t *scn); 338 339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 340 341 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 342 static void 343 sio_free(scan_io_t *sio) 344 { 345 ASSERT3U(sio->sio_nr_dvas, >, 0); 346 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 347 348 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 349 } 350 351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 352 static scan_io_t * 353 sio_alloc(unsigned short nr_dvas) 354 { 355 ASSERT3U(nr_dvas, >, 0); 356 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 357 358 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 359 } 360 361 void 362 scan_init(void) 363 { 364 /* 365 * This is used in ext_size_compare() to weight segments 366 * based on how sparse they are. This cannot be changed 367 * mid-scan and the tree comparison functions don't currently 368 * have a mechansim for passing additional context to the 369 * compare functions. Thus we store this value globally and 370 * we only allow it to be set at module intiailization time 371 */ 372 fill_weight = zfs_scan_fill_weight; 373 374 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 375 char name[36]; 376 377 (void) sprintf(name, "sio_cache_%d", i); 378 sio_cache[i] = kmem_cache_create(name, 379 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 380 0, NULL, NULL, NULL, NULL, NULL, 0); 381 } 382 } 383 384 void 385 scan_fini(void) 386 { 387 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 388 kmem_cache_destroy(sio_cache[i]); 389 } 390 } 391 392 static inline boolean_t 393 dsl_scan_is_running(const dsl_scan_t *scn) 394 { 395 return (scn->scn_phys.scn_state == DSS_SCANNING); 396 } 397 398 boolean_t 399 dsl_scan_resilvering(dsl_pool_t *dp) 400 { 401 return (dsl_scan_is_running(dp->dp_scan) && 402 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 403 } 404 405 static inline void 406 sio2bp(const scan_io_t *sio, blkptr_t *bp) 407 { 408 bzero(bp, sizeof (*bp)); 409 bp->blk_prop = sio->sio_blk_prop; 410 bp->blk_phys_birth = sio->sio_phys_birth; 411 bp->blk_birth = sio->sio_birth; 412 bp->blk_fill = 1; /* we always only work with data pointers */ 413 bp->blk_cksum = sio->sio_cksum; 414 415 ASSERT3U(sio->sio_nr_dvas, >, 0); 416 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 417 418 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 419 } 420 421 static inline void 422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 423 { 424 sio->sio_blk_prop = bp->blk_prop; 425 sio->sio_phys_birth = bp->blk_phys_birth; 426 sio->sio_birth = bp->blk_birth; 427 sio->sio_cksum = bp->blk_cksum; 428 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 429 430 /* 431 * Copy the DVAs to the sio. We need all copies of the block so 432 * that the self healing code can use the alternate copies if the 433 * first is corrupted. We want the DVA at index dva_i to be first 434 * in the sio since this is the primary one that we want to issue. 435 */ 436 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 437 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 438 } 439 } 440 441 int 442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 443 { 444 int err; 445 dsl_scan_t *scn; 446 spa_t *spa = dp->dp_spa; 447 uint64_t f; 448 449 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 450 scn->scn_dp = dp; 451 452 /* 453 * It's possible that we're resuming a scan after a reboot so 454 * make sure that the scan_async_destroying flag is initialized 455 * appropriately. 456 */ 457 ASSERT(!scn->scn_async_destroying); 458 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 459 SPA_FEATURE_ASYNC_DESTROY); 460 461 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 462 offsetof(scan_ds_t, sds_node)); 463 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 464 sizeof (scan_prefetch_issue_ctx_t), 465 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 466 467 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 468 "scrub_func", sizeof (uint64_t), 1, &f); 469 if (err == 0) { 470 /* 471 * There was an old-style scrub in progress. Restart a 472 * new-style scrub from the beginning. 473 */ 474 scn->scn_restart_txg = txg; 475 zfs_dbgmsg("old-style scrub was in progress; " 476 "restarting new-style scrub in txg %llu", 477 (longlong_t)scn->scn_restart_txg); 478 479 /* 480 * Load the queue obj from the old location so that it 481 * can be freed by dsl_scan_done(). 482 */ 483 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 484 "scrub_queue", sizeof (uint64_t), 1, 485 &scn->scn_phys.scn_queue_obj); 486 } else { 487 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 488 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 489 &scn->scn_phys); 490 491 /* 492 * Detect if the pool contains the signature of #2094. If it 493 * does properly update the scn->scn_phys structure and notify 494 * the administrator by setting an errata for the pool. 495 */ 496 if (err == EOVERFLOW) { 497 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 498 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 499 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 500 (23 * sizeof (uint64_t))); 501 502 err = zap_lookup(dp->dp_meta_objset, 503 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 504 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 505 if (err == 0) { 506 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 507 508 if (overflow & ~DSF_VISIT_DS_AGAIN || 509 scn->scn_async_destroying) { 510 spa->spa_errata = 511 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 512 return (EOVERFLOW); 513 } 514 515 bcopy(zaptmp, &scn->scn_phys, 516 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 517 scn->scn_phys.scn_flags = overflow; 518 519 /* Required scrub already in progress. */ 520 if (scn->scn_phys.scn_state == DSS_FINISHED || 521 scn->scn_phys.scn_state == DSS_CANCELED) 522 spa->spa_errata = 523 ZPOOL_ERRATA_ZOL_2094_SCRUB; 524 } 525 } 526 527 if (err == ENOENT) 528 return (0); 529 else if (err) 530 return (err); 531 532 /* 533 * We might be restarting after a reboot, so jump the issued 534 * counter to how far we've scanned. We know we're consistent 535 * up to here. 536 */ 537 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 538 539 if (dsl_scan_is_running(scn) && 540 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 541 /* 542 * A new-type scrub was in progress on an old 543 * pool, and the pool was accessed by old 544 * software. Restart from the beginning, since 545 * the old software may have changed the pool in 546 * the meantime. 547 */ 548 scn->scn_restart_txg = txg; 549 zfs_dbgmsg("new-style scrub was modified " 550 "by old software; restarting in txg %llu", 551 (longlong_t)scn->scn_restart_txg); 552 } 553 } 554 555 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 556 557 /* reload the queue into the in-core state */ 558 if (scn->scn_phys.scn_queue_obj != 0) { 559 zap_cursor_t zc; 560 zap_attribute_t za; 561 562 for (zap_cursor_init(&zc, dp->dp_meta_objset, 563 scn->scn_phys.scn_queue_obj); 564 zap_cursor_retrieve(&zc, &za) == 0; 565 (void) zap_cursor_advance(&zc)) { 566 scan_ds_queue_insert(scn, 567 zfs_strtonum(za.za_name, NULL), 568 za.za_first_integer); 569 } 570 zap_cursor_fini(&zc); 571 } 572 573 spa_scan_stat_init(spa); 574 return (0); 575 } 576 577 void 578 dsl_scan_fini(dsl_pool_t *dp) 579 { 580 if (dp->dp_scan != NULL) { 581 dsl_scan_t *scn = dp->dp_scan; 582 583 if (scn->scn_taskq != NULL) 584 taskq_destroy(scn->scn_taskq); 585 scan_ds_queue_clear(scn); 586 avl_destroy(&scn->scn_queue); 587 avl_destroy(&scn->scn_prefetch_queue); 588 589 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 590 dp->dp_scan = NULL; 591 } 592 } 593 594 static boolean_t 595 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 596 { 597 return (scn->scn_restart_txg != 0 && 598 scn->scn_restart_txg <= tx->tx_txg); 599 } 600 601 boolean_t 602 dsl_scan_scrubbing(const dsl_pool_t *dp) 603 { 604 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 605 606 return (scn_phys->scn_state == DSS_SCANNING && 607 scn_phys->scn_func == POOL_SCAN_SCRUB); 608 } 609 610 boolean_t 611 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 612 { 613 return (dsl_scan_scrubbing(scn->scn_dp) && 614 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 615 } 616 617 /* 618 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 619 * Because we can be running in the block sorting algorithm, we do not always 620 * want to write out the record, only when it is "safe" to do so. This safety 621 * condition is achieved by making sure that the sorting queues are empty 622 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 623 * is inconsistent with how much actual scanning progress has been made. The 624 * kind of sync to be performed is specified by the sync_type argument. If the 625 * sync is optional, we only sync if the queues are empty. If the sync is 626 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 627 * third possible state is a "cached" sync. This is done in response to: 628 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 629 * destroyed, so we wouldn't be able to restart scanning from it. 630 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 631 * superseded by a newer snapshot. 632 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 633 * swapped with its clone. 634 * In all cases, a cached sync simply rewrites the last record we've written, 635 * just slightly modified. For the modifications that are performed to the 636 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 637 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 638 */ 639 static void 640 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 641 { 642 int i; 643 spa_t *spa = scn->scn_dp->dp_spa; 644 645 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 646 if (scn->scn_bytes_pending == 0) { 647 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 648 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 649 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 650 651 if (q == NULL) 652 continue; 653 654 mutex_enter(&vd->vdev_scan_io_queue_lock); 655 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 656 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 657 NULL); 658 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 659 mutex_exit(&vd->vdev_scan_io_queue_lock); 660 } 661 662 if (scn->scn_phys.scn_queue_obj != 0) 663 scan_ds_queue_sync(scn, tx); 664 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 665 DMU_POOL_DIRECTORY_OBJECT, 666 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 667 &scn->scn_phys, tx)); 668 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 669 sizeof (scn->scn_phys)); 670 671 if (scn->scn_checkpointing) 672 zfs_dbgmsg("finish scan checkpoint"); 673 674 scn->scn_checkpointing = B_FALSE; 675 scn->scn_last_checkpoint = ddi_get_lbolt(); 676 } else if (sync_type == SYNC_CACHED) { 677 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 678 DMU_POOL_DIRECTORY_OBJECT, 679 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 680 &scn->scn_phys_cached, tx)); 681 } 682 } 683 684 /* ARGSUSED */ 685 static int 686 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 687 { 688 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 689 690 if (dsl_scan_is_running(scn)) 691 return (SET_ERROR(EBUSY)); 692 693 return (0); 694 } 695 696 static void 697 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 698 { 699 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 700 pool_scan_func_t *funcp = arg; 701 dmu_object_type_t ot = 0; 702 dsl_pool_t *dp = scn->scn_dp; 703 spa_t *spa = dp->dp_spa; 704 705 ASSERT(!dsl_scan_is_running(scn)); 706 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 707 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 708 scn->scn_phys.scn_func = *funcp; 709 scn->scn_phys.scn_state = DSS_SCANNING; 710 scn->scn_phys.scn_min_txg = 0; 711 scn->scn_phys.scn_max_txg = tx->tx_txg; 712 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 713 scn->scn_phys.scn_start_time = gethrestime_sec(); 714 scn->scn_phys.scn_errors = 0; 715 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 716 scn->scn_issued_before_pass = 0; 717 scn->scn_restart_txg = 0; 718 scn->scn_done_txg = 0; 719 scn->scn_last_checkpoint = 0; 720 scn->scn_checkpointing = B_FALSE; 721 spa_scan_stat_init(spa); 722 723 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 724 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 725 726 /* rewrite all disk labels */ 727 vdev_config_dirty(spa->spa_root_vdev); 728 729 if (vdev_resilver_needed(spa->spa_root_vdev, 730 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 731 spa_event_notify(spa, NULL, NULL, 732 ESC_ZFS_RESILVER_START); 733 } else { 734 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 735 } 736 737 spa->spa_scrub_started = B_TRUE; 738 /* 739 * If this is an incremental scrub, limit the DDT scrub phase 740 * to just the auto-ditto class (for correctness); the rest 741 * of the scrub should go faster using top-down pruning. 742 */ 743 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 744 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 745 746 } 747 748 /* back to the generic stuff */ 749 750 if (dp->dp_blkstats == NULL) { 751 dp->dp_blkstats = 752 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 753 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 754 MUTEX_DEFAULT, NULL); 755 } 756 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 757 758 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 759 ot = DMU_OT_ZAP_OTHER; 760 761 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 762 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 763 764 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 765 766 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 767 768 spa_history_log_internal(spa, "scan setup", tx, 769 "func=%u mintxg=%llu maxtxg=%llu", 770 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); 771 } 772 773 /* 774 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 775 * Can also be called to resume a paused scrub. 776 */ 777 int 778 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 779 { 780 spa_t *spa = dp->dp_spa; 781 dsl_scan_t *scn = dp->dp_scan; 782 783 /* 784 * Purge all vdev caches and probe all devices. We do this here 785 * rather than in sync context because this requires a writer lock 786 * on the spa_config lock, which we can't do from sync context. The 787 * spa_scrub_reopen flag indicates that vdev_open() should not 788 * attempt to start another scrub. 789 */ 790 spa_vdev_state_enter(spa, SCL_NONE); 791 spa->spa_scrub_reopen = B_TRUE; 792 vdev_reopen(spa->spa_root_vdev); 793 spa->spa_scrub_reopen = B_FALSE; 794 (void) spa_vdev_state_exit(spa, NULL, 0); 795 796 if (func == POOL_SCAN_RESILVER) { 797 dsl_resilver_restart(spa->spa_dsl_pool, 0); 798 return (0); 799 } 800 801 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 802 /* got scrub start cmd, resume paused scrub */ 803 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 804 POOL_SCRUB_NORMAL); 805 if (err == 0) { 806 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 807 return (ECANCELED); 808 } 809 return (SET_ERROR(err)); 810 } 811 812 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 813 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 814 } 815 816 /* 817 * Sets the resilver defer flag to B_FALSE on all leaf devs under vd. Returns 818 * B_TRUE if we have devices that need to be resilvered and are available to 819 * accept resilver I/Os. 820 */ 821 static boolean_t 822 dsl_scan_clear_deferred(vdev_t *vd, dmu_tx_t *tx) 823 { 824 boolean_t resilver_needed = B_FALSE; 825 spa_t *spa = vd->vdev_spa; 826 827 for (int c = 0; c < vd->vdev_children; c++) { 828 resilver_needed |= 829 dsl_scan_clear_deferred(vd->vdev_child[c], tx); 830 } 831 832 if (vd == spa->spa_root_vdev && 833 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 834 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 835 vdev_config_dirty(vd); 836 spa->spa_resilver_deferred = B_FALSE; 837 return (resilver_needed); 838 } 839 840 if (!vdev_is_concrete(vd) || vd->vdev_aux || 841 !vd->vdev_ops->vdev_op_leaf) 842 return (resilver_needed); 843 844 if (vd->vdev_resilver_deferred) 845 vd->vdev_resilver_deferred = B_FALSE; 846 847 return (!vdev_is_dead(vd) && !vd->vdev_offline && 848 vdev_resilver_needed(vd, NULL, NULL)); 849 } 850 851 /* ARGSUSED */ 852 static void 853 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 854 { 855 static const char *old_names[] = { 856 "scrub_bookmark", 857 "scrub_ddt_bookmark", 858 "scrub_ddt_class_max", 859 "scrub_queue", 860 "scrub_min_txg", 861 "scrub_max_txg", 862 "scrub_func", 863 "scrub_errors", 864 NULL 865 }; 866 867 dsl_pool_t *dp = scn->scn_dp; 868 spa_t *spa = dp->dp_spa; 869 int i; 870 871 /* Remove any remnants of an old-style scrub. */ 872 for (i = 0; old_names[i]; i++) { 873 (void) zap_remove(dp->dp_meta_objset, 874 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 875 } 876 877 if (scn->scn_phys.scn_queue_obj != 0) { 878 VERIFY0(dmu_object_free(dp->dp_meta_objset, 879 scn->scn_phys.scn_queue_obj, tx)); 880 scn->scn_phys.scn_queue_obj = 0; 881 } 882 scan_ds_queue_clear(scn); 883 884 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 885 886 /* 887 * If we were "restarted" from a stopped state, don't bother 888 * with anything else. 889 */ 890 if (!dsl_scan_is_running(scn)) { 891 ASSERT(!scn->scn_is_sorted); 892 return; 893 } 894 895 if (scn->scn_is_sorted) { 896 scan_io_queues_destroy(scn); 897 scn->scn_is_sorted = B_FALSE; 898 899 if (scn->scn_taskq != NULL) { 900 taskq_destroy(scn->scn_taskq); 901 scn->scn_taskq = NULL; 902 } 903 } 904 905 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 906 907 if (dsl_scan_restarting(scn, tx)) 908 spa_history_log_internal(spa, "scan aborted, restarting", tx, 909 "errors=%llu", spa_get_errlog_size(spa)); 910 else if (!complete) 911 spa_history_log_internal(spa, "scan cancelled", tx, 912 "errors=%llu", spa_get_errlog_size(spa)); 913 else 914 spa_history_log_internal(spa, "scan done", tx, 915 "errors=%llu", spa_get_errlog_size(spa)); 916 917 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 918 spa->spa_scrub_started = B_FALSE; 919 spa->spa_scrub_active = B_FALSE; 920 921 /* 922 * If the scrub/resilver completed, update all DTLs to 923 * reflect this. Whether it succeeded or not, vacate 924 * all temporary scrub DTLs. 925 * 926 * As the scrub does not currently support traversing 927 * data that have been freed but are part of a checkpoint, 928 * we don't mark the scrub as done in the DTLs as faults 929 * may still exist in those vdevs. 930 */ 931 if (complete && 932 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 933 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 934 scn->scn_phys.scn_max_txg, B_TRUE); 935 936 spa_event_notify(spa, NULL, NULL, 937 scn->scn_phys.scn_min_txg ? 938 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); 939 } else { 940 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 941 0, B_TRUE); 942 } 943 spa_errlog_rotate(spa); 944 945 /* 946 * We may have finished replacing a device. 947 * Let the async thread assess this and handle the detach. 948 */ 949 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 950 951 /* 952 * Clear any deferred_resilver flags in the config. 953 * If there are drives that need resilvering, kick 954 * off an asynchronous request to start resilver. 955 * dsl_scan_clear_deferred() may update the config 956 * before the resilver can restart. In the event of 957 * a crash during this period, the spa loading code 958 * will find the drives that need to be resilvered 959 * when the machine reboots and start the resilver then. 960 */ 961 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { 962 boolean_t resilver_needed = 963 dsl_scan_clear_deferred(spa->spa_root_vdev, tx); 964 if (resilver_needed) { 965 spa_history_log_internal(spa, 966 "starting deferred resilver", tx, 967 "errors=%llu", spa_get_errlog_size(spa)); 968 spa_async_request(spa, SPA_ASYNC_RESILVER); 969 } 970 } 971 } 972 973 scn->scn_phys.scn_end_time = gethrestime_sec(); 974 975 ASSERT(!dsl_scan_is_running(scn)); 976 } 977 978 /* ARGSUSED */ 979 static int 980 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 981 { 982 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 983 984 if (!dsl_scan_is_running(scn)) 985 return (SET_ERROR(ENOENT)); 986 return (0); 987 } 988 989 /* ARGSUSED */ 990 static void 991 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 992 { 993 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 994 995 dsl_scan_done(scn, B_FALSE, tx); 996 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 997 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 998 } 999 1000 int 1001 dsl_scan_cancel(dsl_pool_t *dp) 1002 { 1003 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1004 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1005 } 1006 1007 static int 1008 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1009 { 1010 pool_scrub_cmd_t *cmd = arg; 1011 dsl_pool_t *dp = dmu_tx_pool(tx); 1012 dsl_scan_t *scn = dp->dp_scan; 1013 1014 if (*cmd == POOL_SCRUB_PAUSE) { 1015 /* can't pause a scrub when there is no in-progress scrub */ 1016 if (!dsl_scan_scrubbing(dp)) 1017 return (SET_ERROR(ENOENT)); 1018 1019 /* can't pause a paused scrub */ 1020 if (dsl_scan_is_paused_scrub(scn)) 1021 return (SET_ERROR(EBUSY)); 1022 } else if (*cmd != POOL_SCRUB_NORMAL) { 1023 return (SET_ERROR(ENOTSUP)); 1024 } 1025 1026 return (0); 1027 } 1028 1029 static void 1030 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1031 { 1032 pool_scrub_cmd_t *cmd = arg; 1033 dsl_pool_t *dp = dmu_tx_pool(tx); 1034 spa_t *spa = dp->dp_spa; 1035 dsl_scan_t *scn = dp->dp_scan; 1036 1037 if (*cmd == POOL_SCRUB_PAUSE) { 1038 /* can't pause a scrub when there is no in-progress scrub */ 1039 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1040 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1041 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1042 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1043 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1044 } else { 1045 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1046 if (dsl_scan_is_paused_scrub(scn)) { 1047 /* 1048 * We need to keep track of how much time we spend 1049 * paused per pass so that we can adjust the scrub rate 1050 * shown in the output of 'zpool status' 1051 */ 1052 spa->spa_scan_pass_scrub_spent_paused += 1053 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1054 spa->spa_scan_pass_scrub_pause = 0; 1055 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1056 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1057 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1058 } 1059 } 1060 } 1061 1062 /* 1063 * Set scrub pause/resume state if it makes sense to do so 1064 */ 1065 int 1066 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1067 { 1068 return (dsl_sync_task(spa_name(dp->dp_spa), 1069 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1070 ZFS_SPACE_CHECK_RESERVED)); 1071 } 1072 1073 1074 /* start a new scan, or restart an existing one. */ 1075 void 1076 dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg) 1077 { 1078 if (txg == 0) { 1079 dmu_tx_t *tx; 1080 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1081 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1082 1083 txg = dmu_tx_get_txg(tx); 1084 dp->dp_scan->scn_restart_txg = txg; 1085 dmu_tx_commit(tx); 1086 } else { 1087 dp->dp_scan->scn_restart_txg = txg; 1088 } 1089 zfs_dbgmsg("restarting resilver txg=%llu", txg); 1090 } 1091 1092 void 1093 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1094 { 1095 zio_free(dp->dp_spa, txg, bp); 1096 } 1097 1098 void 1099 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1100 { 1101 ASSERT(dsl_pool_sync_context(dp)); 1102 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1103 } 1104 1105 static int 1106 scan_ds_queue_compare(const void *a, const void *b) 1107 { 1108 const scan_ds_t *sds_a = a, *sds_b = b; 1109 1110 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1111 return (-1); 1112 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1113 return (0); 1114 return (1); 1115 } 1116 1117 static void 1118 scan_ds_queue_clear(dsl_scan_t *scn) 1119 { 1120 void *cookie = NULL; 1121 scan_ds_t *sds; 1122 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1123 kmem_free(sds, sizeof (*sds)); 1124 } 1125 } 1126 1127 static boolean_t 1128 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1129 { 1130 scan_ds_t srch, *sds; 1131 1132 srch.sds_dsobj = dsobj; 1133 sds = avl_find(&scn->scn_queue, &srch, NULL); 1134 if (sds != NULL && txg != NULL) 1135 *txg = sds->sds_txg; 1136 return (sds != NULL); 1137 } 1138 1139 static void 1140 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1141 { 1142 scan_ds_t *sds; 1143 avl_index_t where; 1144 1145 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1146 sds->sds_dsobj = dsobj; 1147 sds->sds_txg = txg; 1148 1149 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1150 avl_insert(&scn->scn_queue, sds, where); 1151 } 1152 1153 static void 1154 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1155 { 1156 scan_ds_t srch, *sds; 1157 1158 srch.sds_dsobj = dsobj; 1159 1160 sds = avl_find(&scn->scn_queue, &srch, NULL); 1161 VERIFY(sds != NULL); 1162 avl_remove(&scn->scn_queue, sds); 1163 kmem_free(sds, sizeof (*sds)); 1164 } 1165 1166 static void 1167 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1168 { 1169 dsl_pool_t *dp = scn->scn_dp; 1170 spa_t *spa = dp->dp_spa; 1171 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1172 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1173 1174 ASSERT0(scn->scn_bytes_pending); 1175 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1176 1177 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1178 scn->scn_phys.scn_queue_obj, tx)); 1179 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1180 DMU_OT_NONE, 0, tx); 1181 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1182 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1183 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1184 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1185 sds->sds_txg, tx)); 1186 } 1187 } 1188 1189 /* 1190 * Computes the memory limit state that we're currently in. A sorted scan 1191 * needs quite a bit of memory to hold the sorting queue, so we need to 1192 * reasonably constrain the size so it doesn't impact overall system 1193 * performance. We compute two limits: 1194 * 1) Hard memory limit: if the amount of memory used by the sorting 1195 * queues on a pool gets above this value, we stop the metadata 1196 * scanning portion and start issuing the queued up and sorted 1197 * I/Os to reduce memory usage. 1198 * This limit is calculated as a fraction of physmem (by default 5%). 1199 * We constrain the lower bound of the hard limit to an absolute 1200 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1201 * the upper bound to 5% of the total pool size - no chance we'll 1202 * ever need that much memory, but just to keep the value in check. 1203 * 2) Soft memory limit: once we hit the hard memory limit, we start 1204 * issuing I/O to reduce queue memory usage, but we don't want to 1205 * completely empty out the queues, since we might be able to find I/Os 1206 * that will fill in the gaps of our non-sequential IOs at some point 1207 * in the future. So we stop the issuing of I/Os once the amount of 1208 * memory used drops below the soft limit (at which point we stop issuing 1209 * I/O and start scanning metadata again). 1210 * 1211 * This limit is calculated by subtracting a fraction of the hard 1212 * limit from the hard limit. By default this fraction is 5%, so 1213 * the soft limit is 95% of the hard limit. We cap the size of the 1214 * difference between the hard and soft limits at an absolute 1215 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1216 * sufficient to not cause too frequent switching between the 1217 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1218 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1219 * that should take at least a decent fraction of a second). 1220 */ 1221 static boolean_t 1222 dsl_scan_should_clear(dsl_scan_t *scn) 1223 { 1224 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1225 uint64_t mlim_hard, mlim_soft, mused; 1226 uint64_t alloc = metaslab_class_get_alloc(spa_normal_class( 1227 scn->scn_dp->dp_spa)); 1228 1229 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1230 zfs_scan_mem_lim_min); 1231 mlim_hard = MIN(mlim_hard, alloc / 20); 1232 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1233 zfs_scan_mem_lim_soft_max); 1234 mused = 0; 1235 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1236 vdev_t *tvd = rvd->vdev_child[i]; 1237 dsl_scan_io_queue_t *queue; 1238 1239 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1240 queue = tvd->vdev_scan_io_queue; 1241 if (queue != NULL) { 1242 /* # extents in exts_by_size = # in exts_by_addr */ 1243 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1244 sizeof (range_seg_gap_t) + queue->q_sio_memused; 1245 } 1246 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1247 } 1248 1249 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1250 1251 if (mused == 0) 1252 ASSERT0(scn->scn_bytes_pending); 1253 1254 /* 1255 * If we are above our hard limit, we need to clear out memory. 1256 * If we are below our soft limit, we need to accumulate sequential IOs. 1257 * Otherwise, we should keep doing whatever we are currently doing. 1258 */ 1259 if (mused >= mlim_hard) 1260 return (B_TRUE); 1261 else if (mused < mlim_soft) 1262 return (B_FALSE); 1263 else 1264 return (scn->scn_clearing); 1265 } 1266 1267 static boolean_t 1268 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1269 { 1270 /* we never skip user/group accounting objects */ 1271 if (zb && (int64_t)zb->zb_object < 0) 1272 return (B_FALSE); 1273 1274 if (scn->scn_suspending) 1275 return (B_TRUE); /* we're already suspending */ 1276 1277 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1278 return (B_FALSE); /* we're resuming */ 1279 1280 /* We only know how to resume from level-0 blocks. */ 1281 if (zb && zb->zb_level != 0) 1282 return (B_FALSE); 1283 1284 /* 1285 * We suspend if: 1286 * - we have scanned for at least the minimum time (default 1 sec 1287 * for scrub, 3 sec for resilver), and either we have sufficient 1288 * dirty data that we are starting to write more quickly 1289 * (default 30%), or someone is explicitly waiting for this txg 1290 * to complete. 1291 * or 1292 * - the spa is shutting down because this pool is being exported 1293 * or the machine is rebooting. 1294 * or 1295 * - the scan queue has reached its memory use limit 1296 */ 1297 hrtime_t curr_time_ns = gethrtime(); 1298 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1299 uint64_t sync_time_ns = curr_time_ns - 1300 scn->scn_dp->dp_spa->spa_sync_starttime; 1301 1302 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1303 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1304 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1305 1306 if ((NSEC2MSEC(scan_time_ns) > mintime && 1307 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1308 txg_sync_waiting(scn->scn_dp) || 1309 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1310 spa_shutting_down(scn->scn_dp->dp_spa) || 1311 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1312 if (zb) { 1313 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1314 (longlong_t)zb->zb_objset, 1315 (longlong_t)zb->zb_object, 1316 (longlong_t)zb->zb_level, 1317 (longlong_t)zb->zb_blkid); 1318 scn->scn_phys.scn_bookmark = *zb; 1319 } else { 1320 dsl_scan_phys_t *scnp = &scn->scn_phys; 1321 1322 dprintf("suspending at DDT bookmark " 1323 "%llx/%llx/%llx/%llx\n", 1324 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1325 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1326 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1327 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1328 } 1329 scn->scn_suspending = B_TRUE; 1330 return (B_TRUE); 1331 } 1332 return (B_FALSE); 1333 } 1334 1335 typedef struct zil_scan_arg { 1336 dsl_pool_t *zsa_dp; 1337 zil_header_t *zsa_zh; 1338 } zil_scan_arg_t; 1339 1340 /* ARGSUSED */ 1341 static int 1342 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1343 { 1344 zil_scan_arg_t *zsa = arg; 1345 dsl_pool_t *dp = zsa->zsa_dp; 1346 dsl_scan_t *scn = dp->dp_scan; 1347 zil_header_t *zh = zsa->zsa_zh; 1348 zbookmark_phys_t zb; 1349 1350 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1351 return (0); 1352 1353 /* 1354 * One block ("stubby") can be allocated a long time ago; we 1355 * want to visit that one because it has been allocated 1356 * (on-disk) even if it hasn't been claimed (even though for 1357 * scrub there's nothing to do to it). 1358 */ 1359 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1360 return (0); 1361 1362 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1363 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1364 1365 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1366 return (0); 1367 } 1368 1369 /* ARGSUSED */ 1370 static int 1371 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1372 { 1373 if (lrc->lrc_txtype == TX_WRITE) { 1374 zil_scan_arg_t *zsa = arg; 1375 dsl_pool_t *dp = zsa->zsa_dp; 1376 dsl_scan_t *scn = dp->dp_scan; 1377 zil_header_t *zh = zsa->zsa_zh; 1378 lr_write_t *lr = (lr_write_t *)lrc; 1379 blkptr_t *bp = &lr->lr_blkptr; 1380 zbookmark_phys_t zb; 1381 1382 if (BP_IS_HOLE(bp) || 1383 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1384 return (0); 1385 1386 /* 1387 * birth can be < claim_txg if this record's txg is 1388 * already txg sync'ed (but this log block contains 1389 * other records that are not synced) 1390 */ 1391 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1392 return (0); 1393 1394 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1395 lr->lr_foid, ZB_ZIL_LEVEL, 1396 lr->lr_offset / BP_GET_LSIZE(bp)); 1397 1398 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1399 } 1400 return (0); 1401 } 1402 1403 static void 1404 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1405 { 1406 uint64_t claim_txg = zh->zh_claim_txg; 1407 zil_scan_arg_t zsa = { dp, zh }; 1408 zilog_t *zilog; 1409 1410 ASSERT(spa_writeable(dp->dp_spa)); 1411 1412 /* 1413 * We only want to visit blocks that have been claimed 1414 * but not yet replayed. 1415 */ 1416 if (claim_txg == 0) 1417 return; 1418 1419 zilog = zil_alloc(dp->dp_meta_objset, zh); 1420 1421 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1422 claim_txg, B_FALSE); 1423 1424 zil_free(zilog); 1425 } 1426 1427 /* 1428 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1429 * here is to sort the AVL tree by the order each block will be needed. 1430 */ 1431 static int 1432 scan_prefetch_queue_compare(const void *a, const void *b) 1433 { 1434 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1435 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1436 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1437 1438 return (zbookmark_compare(spc_a->spc_datablkszsec, 1439 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1440 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1441 } 1442 1443 static void 1444 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1445 { 1446 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1447 zfs_refcount_destroy(&spc->spc_refcnt); 1448 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1449 } 1450 } 1451 1452 static scan_prefetch_ctx_t * 1453 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1454 { 1455 scan_prefetch_ctx_t *spc; 1456 1457 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1458 zfs_refcount_create(&spc->spc_refcnt); 1459 zfs_refcount_add(&spc->spc_refcnt, tag); 1460 spc->spc_scn = scn; 1461 if (dnp != NULL) { 1462 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1463 spc->spc_indblkshift = dnp->dn_indblkshift; 1464 spc->spc_root = B_FALSE; 1465 } else { 1466 spc->spc_datablkszsec = 0; 1467 spc->spc_indblkshift = 0; 1468 spc->spc_root = B_TRUE; 1469 } 1470 1471 return (spc); 1472 } 1473 1474 static void 1475 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1476 { 1477 zfs_refcount_add(&spc->spc_refcnt, tag); 1478 } 1479 1480 static boolean_t 1481 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1482 const zbookmark_phys_t *zb) 1483 { 1484 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1485 dnode_phys_t tmp_dnp; 1486 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1487 1488 if (zb->zb_objset != last_zb->zb_objset) 1489 return (B_TRUE); 1490 if ((int64_t)zb->zb_object < 0) 1491 return (B_FALSE); 1492 1493 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1494 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1495 1496 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1497 return (B_TRUE); 1498 1499 return (B_FALSE); 1500 } 1501 1502 static void 1503 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1504 { 1505 avl_index_t idx; 1506 dsl_scan_t *scn = spc->spc_scn; 1507 spa_t *spa = scn->scn_dp->dp_spa; 1508 scan_prefetch_issue_ctx_t *spic; 1509 1510 if (zfs_no_scrub_prefetch) 1511 return; 1512 1513 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1514 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1515 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1516 return; 1517 1518 if (dsl_scan_check_prefetch_resume(spc, zb)) 1519 return; 1520 1521 scan_prefetch_ctx_add_ref(spc, scn); 1522 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1523 spic->spic_spc = spc; 1524 spic->spic_bp = *bp; 1525 spic->spic_zb = *zb; 1526 1527 /* 1528 * Add the IO to the queue of blocks to prefetch. This allows us to 1529 * prioritize blocks that we will need first for the main traversal 1530 * thread. 1531 */ 1532 mutex_enter(&spa->spa_scrub_lock); 1533 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1534 /* this block is already queued for prefetch */ 1535 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1536 scan_prefetch_ctx_rele(spc, scn); 1537 mutex_exit(&spa->spa_scrub_lock); 1538 return; 1539 } 1540 1541 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1542 cv_broadcast(&spa->spa_scrub_io_cv); 1543 mutex_exit(&spa->spa_scrub_lock); 1544 } 1545 1546 static void 1547 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1548 uint64_t objset, uint64_t object) 1549 { 1550 int i; 1551 zbookmark_phys_t zb; 1552 scan_prefetch_ctx_t *spc; 1553 1554 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1555 return; 1556 1557 SET_BOOKMARK(&zb, objset, object, 0, 0); 1558 1559 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1560 1561 for (i = 0; i < dnp->dn_nblkptr; i++) { 1562 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1563 zb.zb_blkid = i; 1564 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1565 } 1566 1567 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1568 zb.zb_level = 0; 1569 zb.zb_blkid = DMU_SPILL_BLKID; 1570 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); 1571 } 1572 1573 scan_prefetch_ctx_rele(spc, FTAG); 1574 } 1575 1576 void 1577 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1578 arc_buf_t *buf, void *private) 1579 { 1580 scan_prefetch_ctx_t *spc = private; 1581 dsl_scan_t *scn = spc->spc_scn; 1582 spa_t *spa = scn->scn_dp->dp_spa; 1583 1584 /* broadcast that the IO has completed for rate limitting purposes */ 1585 mutex_enter(&spa->spa_scrub_lock); 1586 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1587 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1588 cv_broadcast(&spa->spa_scrub_io_cv); 1589 mutex_exit(&spa->spa_scrub_lock); 1590 1591 /* if there was an error or we are done prefetching, just cleanup */ 1592 if (buf == NULL || scn->scn_suspending) 1593 goto out; 1594 1595 if (BP_GET_LEVEL(bp) > 0) { 1596 int i; 1597 blkptr_t *cbp; 1598 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1599 zbookmark_phys_t czb; 1600 1601 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1602 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1603 zb->zb_level - 1, zb->zb_blkid * epb + i); 1604 dsl_scan_prefetch(spc, cbp, &czb); 1605 } 1606 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1607 dnode_phys_t *cdnp = buf->b_data; 1608 int i; 1609 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1610 1611 for (i = 0, cdnp = buf->b_data; i < epb; 1612 i += cdnp->dn_extra_slots + 1, 1613 cdnp += cdnp->dn_extra_slots + 1) { 1614 dsl_scan_prefetch_dnode(scn, cdnp, 1615 zb->zb_objset, zb->zb_blkid * epb + i); 1616 } 1617 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1618 objset_phys_t *osp = buf->b_data; 1619 1620 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1621 zb->zb_objset, DMU_META_DNODE_OBJECT); 1622 1623 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1624 dsl_scan_prefetch_dnode(scn, 1625 &osp->os_groupused_dnode, zb->zb_objset, 1626 DMU_GROUPUSED_OBJECT); 1627 dsl_scan_prefetch_dnode(scn, 1628 &osp->os_userused_dnode, zb->zb_objset, 1629 DMU_USERUSED_OBJECT); 1630 } 1631 } 1632 1633 out: 1634 if (buf != NULL) 1635 arc_buf_destroy(buf, private); 1636 scan_prefetch_ctx_rele(spc, scn); 1637 } 1638 1639 /* ARGSUSED */ 1640 static void 1641 dsl_scan_prefetch_thread(void *arg) 1642 { 1643 dsl_scan_t *scn = arg; 1644 spa_t *spa = scn->scn_dp->dp_spa; 1645 vdev_t *rvd = spa->spa_root_vdev; 1646 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; 1647 scan_prefetch_issue_ctx_t *spic; 1648 1649 /* loop until we are told to stop */ 1650 while (!scn->scn_prefetch_stop) { 1651 arc_flags_t flags = ARC_FLAG_NOWAIT | 1652 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1653 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1654 1655 mutex_enter(&spa->spa_scrub_lock); 1656 1657 /* 1658 * Wait until we have an IO to issue and are not above our 1659 * maximum in flight limit. 1660 */ 1661 while (!scn->scn_prefetch_stop && 1662 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1663 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1664 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1665 } 1666 1667 /* recheck if we should stop since we waited for the cv */ 1668 if (scn->scn_prefetch_stop) { 1669 mutex_exit(&spa->spa_scrub_lock); 1670 break; 1671 } 1672 1673 /* remove the prefetch IO from the tree */ 1674 spic = avl_first(&scn->scn_prefetch_queue); 1675 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1676 avl_remove(&scn->scn_prefetch_queue, spic); 1677 1678 mutex_exit(&spa->spa_scrub_lock); 1679 1680 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1681 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1682 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1683 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1684 zio_flags |= ZIO_FLAG_RAW; 1685 } 1686 1687 /* issue the prefetch asynchronously */ 1688 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1689 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1690 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1691 1692 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1693 } 1694 1695 ASSERT(scn->scn_prefetch_stop); 1696 1697 /* free any prefetches we didn't get to complete */ 1698 mutex_enter(&spa->spa_scrub_lock); 1699 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1700 avl_remove(&scn->scn_prefetch_queue, spic); 1701 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1702 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1703 } 1704 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1705 mutex_exit(&spa->spa_scrub_lock); 1706 } 1707 1708 static boolean_t 1709 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1710 const zbookmark_phys_t *zb) 1711 { 1712 /* 1713 * We never skip over user/group accounting objects (obj<0) 1714 */ 1715 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1716 (int64_t)zb->zb_object >= 0) { 1717 /* 1718 * If we already visited this bp & everything below (in 1719 * a prior txg sync), don't bother doing it again. 1720 */ 1721 if (zbookmark_subtree_completed(dnp, zb, 1722 &scn->scn_phys.scn_bookmark)) 1723 return (B_TRUE); 1724 1725 /* 1726 * If we found the block we're trying to resume from, or 1727 * we went past it to a different object, zero it out to 1728 * indicate that it's OK to start checking for suspending 1729 * again. 1730 */ 1731 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1732 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1733 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1734 (longlong_t)zb->zb_objset, 1735 (longlong_t)zb->zb_object, 1736 (longlong_t)zb->zb_level, 1737 (longlong_t)zb->zb_blkid); 1738 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1739 } 1740 } 1741 return (B_FALSE); 1742 } 1743 1744 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1745 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1746 dmu_objset_type_t ostype, dmu_tx_t *tx); 1747 static void dsl_scan_visitdnode( 1748 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1749 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1750 1751 /* 1752 * Return nonzero on i/o error. 1753 * Return new buf to write out in *bufp. 1754 */ 1755 static int 1756 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1757 dnode_phys_t *dnp, const blkptr_t *bp, 1758 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1759 { 1760 dsl_pool_t *dp = scn->scn_dp; 1761 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1762 int err; 1763 1764 if (BP_GET_LEVEL(bp) > 0) { 1765 arc_flags_t flags = ARC_FLAG_WAIT; 1766 int i; 1767 blkptr_t *cbp; 1768 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1769 arc_buf_t *buf; 1770 1771 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1772 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1773 if (err) { 1774 scn->scn_phys.scn_errors++; 1775 return (err); 1776 } 1777 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1778 zbookmark_phys_t czb; 1779 1780 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1781 zb->zb_level - 1, 1782 zb->zb_blkid * epb + i); 1783 dsl_scan_visitbp(cbp, &czb, dnp, 1784 ds, scn, ostype, tx); 1785 } 1786 arc_buf_destroy(buf, &buf); 1787 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1788 arc_flags_t flags = ARC_FLAG_WAIT; 1789 dnode_phys_t *cdnp; 1790 int i; 1791 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1792 arc_buf_t *buf; 1793 1794 if (BP_IS_PROTECTED(bp)) { 1795 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1796 zio_flags |= ZIO_FLAG_RAW; 1797 } 1798 1799 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1800 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1801 if (err) { 1802 scn->scn_phys.scn_errors++; 1803 return (err); 1804 } 1805 for (i = 0, cdnp = buf->b_data; i < epb; 1806 i += cdnp->dn_extra_slots + 1, 1807 cdnp += cdnp->dn_extra_slots + 1) { 1808 dsl_scan_visitdnode(scn, ds, ostype, 1809 cdnp, zb->zb_blkid * epb + i, tx); 1810 } 1811 1812 arc_buf_destroy(buf, &buf); 1813 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1814 arc_flags_t flags = ARC_FLAG_WAIT; 1815 objset_phys_t *osp; 1816 arc_buf_t *buf; 1817 1818 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1819 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1820 if (err) { 1821 scn->scn_phys.scn_errors++; 1822 return (err); 1823 } 1824 1825 osp = buf->b_data; 1826 1827 dsl_scan_visitdnode(scn, ds, osp->os_type, 1828 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1829 1830 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1831 /* 1832 * We also always visit user/group/project accounting 1833 * objects, and never skip them, even if we are 1834 * suspending. This is necessary so that the space 1835 * deltas from this txg get integrated. 1836 */ 1837 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1838 dsl_scan_visitdnode(scn, ds, osp->os_type, 1839 &osp->os_projectused_dnode, 1840 DMU_PROJECTUSED_OBJECT, tx); 1841 dsl_scan_visitdnode(scn, ds, osp->os_type, 1842 &osp->os_groupused_dnode, 1843 DMU_GROUPUSED_OBJECT, tx); 1844 dsl_scan_visitdnode(scn, ds, osp->os_type, 1845 &osp->os_userused_dnode, 1846 DMU_USERUSED_OBJECT, tx); 1847 } 1848 arc_buf_destroy(buf, &buf); 1849 } 1850 1851 return (0); 1852 } 1853 1854 static void 1855 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1856 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1857 uint64_t object, dmu_tx_t *tx) 1858 { 1859 int j; 1860 1861 for (j = 0; j < dnp->dn_nblkptr; j++) { 1862 zbookmark_phys_t czb; 1863 1864 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1865 dnp->dn_nlevels - 1, j); 1866 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1867 &czb, dnp, ds, scn, ostype, tx); 1868 } 1869 1870 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1871 zbookmark_phys_t czb; 1872 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1873 0, DMU_SPILL_BLKID); 1874 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1875 &czb, dnp, ds, scn, ostype, tx); 1876 } 1877 } 1878 1879 /* 1880 * The arguments are in this order because mdb can only print the 1881 * first 5; we want them to be useful. 1882 */ 1883 static void 1884 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1885 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1886 dmu_objset_type_t ostype, dmu_tx_t *tx) 1887 { 1888 dsl_pool_t *dp = scn->scn_dp; 1889 blkptr_t *bp_toread = NULL; 1890 1891 if (dsl_scan_check_suspend(scn, zb)) 1892 return; 1893 1894 if (dsl_scan_check_resume(scn, dnp, zb)) 1895 return; 1896 1897 scn->scn_visited_this_txg++; 1898 1899 /* 1900 * This debugging is commented out to conserve stack space. This 1901 * function is called recursively and the debugging addes several 1902 * bytes to the stack for each call. It can be commented back in 1903 * if required to debug an issue in dsl_scan_visitbp(). 1904 * 1905 * dprintf_bp(bp, 1906 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1907 * ds, ds ? ds->ds_object : 0, 1908 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1909 * bp); 1910 */ 1911 1912 if (BP_IS_HOLE(bp)) { 1913 scn->scn_holes_this_txg++; 1914 return; 1915 } 1916 1917 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1918 scn->scn_lt_min_this_txg++; 1919 return; 1920 } 1921 1922 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1923 *bp_toread = *bp; 1924 1925 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1926 goto out; 1927 1928 /* 1929 * If dsl_scan_ddt() has already visited this block, it will have 1930 * already done any translations or scrubbing, so don't call the 1931 * callback again. 1932 */ 1933 if (ddt_class_contains(dp->dp_spa, 1934 scn->scn_phys.scn_ddt_class_max, bp)) { 1935 scn->scn_ddt_contained_this_txg++; 1936 goto out; 1937 } 1938 1939 /* 1940 * If this block is from the future (after cur_max_txg), then we 1941 * are doing this on behalf of a deleted snapshot, and we will 1942 * revisit the future block on the next pass of this dataset. 1943 * Don't scan it now unless we need to because something 1944 * under it was modified. 1945 */ 1946 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 1947 scn->scn_gt_max_this_txg++; 1948 goto out; 1949 } 1950 1951 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 1952 1953 out: 1954 kmem_free(bp_toread, sizeof (blkptr_t)); 1955 } 1956 1957 static void 1958 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 1959 dmu_tx_t *tx) 1960 { 1961 zbookmark_phys_t zb; 1962 scan_prefetch_ctx_t *spc; 1963 1964 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1965 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 1966 1967 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 1968 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 1969 zb.zb_objset, 0, 0, 0); 1970 } else { 1971 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 1972 } 1973 1974 scn->scn_objsets_visited_this_txg++; 1975 1976 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 1977 dsl_scan_prefetch(spc, bp, &zb); 1978 scan_prefetch_ctx_rele(spc, FTAG); 1979 1980 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 1981 1982 dprintf_ds(ds, "finished scan%s", ""); 1983 } 1984 1985 static void 1986 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 1987 { 1988 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 1989 if (ds->ds_is_snapshot) { 1990 /* 1991 * Note: 1992 * - scn_cur_{min,max}_txg stays the same. 1993 * - Setting the flag is not really necessary if 1994 * scn_cur_max_txg == scn_max_txg, because there 1995 * is nothing after this snapshot that we care 1996 * about. However, we set it anyway and then 1997 * ignore it when we retraverse it in 1998 * dsl_scan_visitds(). 1999 */ 2000 scn_phys->scn_bookmark.zb_objset = 2001 dsl_dataset_phys(ds)->ds_next_snap_obj; 2002 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2003 "reset zb_objset to %llu", 2004 (u_longlong_t)ds->ds_object, 2005 (u_longlong_t)dsl_dataset_phys(ds)-> 2006 ds_next_snap_obj); 2007 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2008 } else { 2009 SET_BOOKMARK(&scn_phys->scn_bookmark, 2010 ZB_DESTROYED_OBJSET, 0, 0, 0); 2011 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2012 "reset bookmark to -1,0,0,0", 2013 (u_longlong_t)ds->ds_object); 2014 } 2015 } 2016 } 2017 2018 /* 2019 * Invoked when a dataset is destroyed. We need to make sure that: 2020 * 2021 * 1) If it is the dataset that was currently being scanned, we write 2022 * a new dsl_scan_phys_t and marking the objset reference in it 2023 * as destroyed. 2024 * 2) Remove it from the work queue, if it was present. 2025 * 2026 * If the dataset was actually a snapshot, instead of marking the dataset 2027 * as destroyed, we instead substitute the next snapshot in line. 2028 */ 2029 void 2030 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2031 { 2032 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2033 dsl_scan_t *scn = dp->dp_scan; 2034 uint64_t mintxg; 2035 2036 if (!dsl_scan_is_running(scn)) 2037 return; 2038 2039 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2040 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2041 2042 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2043 scan_ds_queue_remove(scn, ds->ds_object); 2044 if (ds->ds_is_snapshot) 2045 scan_ds_queue_insert(scn, 2046 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2047 } 2048 2049 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2050 ds->ds_object, &mintxg) == 0) { 2051 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2052 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2053 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2054 if (ds->ds_is_snapshot) { 2055 /* 2056 * We keep the same mintxg; it could be > 2057 * ds_creation_txg if the previous snapshot was 2058 * deleted too. 2059 */ 2060 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2061 scn->scn_phys.scn_queue_obj, 2062 dsl_dataset_phys(ds)->ds_next_snap_obj, 2063 mintxg, tx) == 0); 2064 zfs_dbgmsg("destroying ds %llu; in queue; " 2065 "replacing with %llu", 2066 (u_longlong_t)ds->ds_object, 2067 (u_longlong_t)dsl_dataset_phys(ds)-> 2068 ds_next_snap_obj); 2069 } else { 2070 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2071 (u_longlong_t)ds->ds_object); 2072 } 2073 } 2074 2075 /* 2076 * dsl_scan_sync() should be called after this, and should sync 2077 * out our changed state, but just to be safe, do it here. 2078 */ 2079 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2080 } 2081 2082 static void 2083 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2084 { 2085 if (scn_bookmark->zb_objset == ds->ds_object) { 2086 scn_bookmark->zb_objset = 2087 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2088 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2089 "reset zb_objset to %llu", 2090 (u_longlong_t)ds->ds_object, 2091 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2092 } 2093 } 2094 2095 /* 2096 * Called when a dataset is snapshotted. If we were currently traversing 2097 * this snapshot, we reset our bookmark to point at the newly created 2098 * snapshot. We also modify our work queue to remove the old snapshot and 2099 * replace with the new one. 2100 */ 2101 void 2102 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2103 { 2104 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2105 dsl_scan_t *scn = dp->dp_scan; 2106 uint64_t mintxg; 2107 2108 if (!dsl_scan_is_running(scn)) 2109 return; 2110 2111 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2112 2113 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2114 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2115 2116 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2117 scan_ds_queue_remove(scn, ds->ds_object); 2118 scan_ds_queue_insert(scn, 2119 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2120 } 2121 2122 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2123 ds->ds_object, &mintxg) == 0) { 2124 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2125 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2126 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2127 scn->scn_phys.scn_queue_obj, 2128 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2129 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2130 "replacing with %llu", 2131 (u_longlong_t)ds->ds_object, 2132 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2133 } 2134 2135 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2136 } 2137 2138 static void 2139 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2140 zbookmark_phys_t *scn_bookmark) 2141 { 2142 if (scn_bookmark->zb_objset == ds1->ds_object) { 2143 scn_bookmark->zb_objset = ds2->ds_object; 2144 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2145 "reset zb_objset to %llu", 2146 (u_longlong_t)ds1->ds_object, 2147 (u_longlong_t)ds2->ds_object); 2148 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2149 scn_bookmark->zb_objset = ds1->ds_object; 2150 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2151 "reset zb_objset to %llu", 2152 (u_longlong_t)ds2->ds_object, 2153 (u_longlong_t)ds1->ds_object); 2154 } 2155 } 2156 2157 /* 2158 * Called when a parent dataset and its clone are swapped. If we were 2159 * currently traversing the dataset, we need to switch to traversing the 2160 * newly promoted parent. 2161 */ 2162 void 2163 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2164 { 2165 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2166 dsl_scan_t *scn = dp->dp_scan; 2167 uint64_t mintxg; 2168 2169 if (!dsl_scan_is_running(scn)) 2170 return; 2171 2172 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2173 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2174 2175 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) { 2176 scan_ds_queue_remove(scn, ds1->ds_object); 2177 scan_ds_queue_insert(scn, ds2->ds_object, mintxg); 2178 } 2179 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) { 2180 scan_ds_queue_remove(scn, ds2->ds_object); 2181 scan_ds_queue_insert(scn, ds1->ds_object, mintxg); 2182 } 2183 2184 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2185 ds1->ds_object, &mintxg) == 0) { 2186 int err; 2187 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2188 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2189 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2190 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2191 err = zap_add_int_key(dp->dp_meta_objset, 2192 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); 2193 VERIFY(err == 0 || err == EEXIST); 2194 if (err == EEXIST) { 2195 /* Both were there to begin with */ 2196 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2197 scn->scn_phys.scn_queue_obj, 2198 ds1->ds_object, mintxg, tx)); 2199 } 2200 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2201 "replacing with %llu", 2202 (u_longlong_t)ds1->ds_object, 2203 (u_longlong_t)ds2->ds_object); 2204 } 2205 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2206 ds2->ds_object, &mintxg) == 0) { 2207 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2208 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2209 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2210 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2211 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2212 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); 2213 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2214 "replacing with %llu", 2215 (u_longlong_t)ds2->ds_object, 2216 (u_longlong_t)ds1->ds_object); 2217 } 2218 2219 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2220 } 2221 2222 /* ARGSUSED */ 2223 static int 2224 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2225 { 2226 uint64_t originobj = *(uint64_t *)arg; 2227 dsl_dataset_t *ds; 2228 int err; 2229 dsl_scan_t *scn = dp->dp_scan; 2230 2231 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2232 return (0); 2233 2234 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2235 if (err) 2236 return (err); 2237 2238 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2239 dsl_dataset_t *prev; 2240 err = dsl_dataset_hold_obj(dp, 2241 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2242 2243 dsl_dataset_rele(ds, FTAG); 2244 if (err) 2245 return (err); 2246 ds = prev; 2247 } 2248 scan_ds_queue_insert(scn, ds->ds_object, 2249 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2250 dsl_dataset_rele(ds, FTAG); 2251 return (0); 2252 } 2253 2254 static void 2255 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2256 { 2257 dsl_pool_t *dp = scn->scn_dp; 2258 dsl_dataset_t *ds; 2259 2260 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2261 2262 if (scn->scn_phys.scn_cur_min_txg >= 2263 scn->scn_phys.scn_max_txg) { 2264 /* 2265 * This can happen if this snapshot was created after the 2266 * scan started, and we already completed a previous snapshot 2267 * that was created after the scan started. This snapshot 2268 * only references blocks with: 2269 * 2270 * birth < our ds_creation_txg 2271 * cur_min_txg is no less than ds_creation_txg. 2272 * We have already visited these blocks. 2273 * or 2274 * birth > scn_max_txg 2275 * The scan requested not to visit these blocks. 2276 * 2277 * Subsequent snapshots (and clones) can reference our 2278 * blocks, or blocks with even higher birth times. 2279 * Therefore we do not need to visit them either, 2280 * so we do not add them to the work queue. 2281 * 2282 * Note that checking for cur_min_txg >= cur_max_txg 2283 * is not sufficient, because in that case we may need to 2284 * visit subsequent snapshots. This happens when min_txg > 0, 2285 * which raises cur_min_txg. In this case we will visit 2286 * this dataset but skip all of its blocks, because the 2287 * rootbp's birth time is < cur_min_txg. Then we will 2288 * add the next snapshots/clones to the work queue. 2289 */ 2290 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); 2291 dsl_dataset_name(ds, dsname); 2292 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2293 "cur_min_txg (%llu) >= max_txg (%llu)", 2294 (longlong_t)dsobj, dsname, 2295 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2296 (longlong_t)scn->scn_phys.scn_max_txg); 2297 kmem_free(dsname, MAXNAMELEN); 2298 2299 goto out; 2300 } 2301 2302 /* 2303 * Only the ZIL in the head (non-snapshot) is valid. Even though 2304 * snapshots can have ZIL block pointers (which may be the same 2305 * BP as in the head), they must be ignored. In addition, $ORIGIN 2306 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2307 * need to look for a ZIL in it either. So we traverse the ZIL here, 2308 * rather than in scan_recurse(), because the regular snapshot 2309 * block-sharing rules don't apply to it. 2310 */ 2311 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && 2312 (dp->dp_origin_snap == NULL || 2313 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2314 objset_t *os; 2315 if (dmu_objset_from_ds(ds, &os) != 0) { 2316 goto out; 2317 } 2318 dsl_scan_zil(dp, &os->os_zil_header); 2319 } 2320 2321 /* 2322 * Iterate over the bps in this ds. 2323 */ 2324 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2325 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2326 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2327 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2328 2329 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2330 dsl_dataset_name(ds, dsname); 2331 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2332 "suspending=%u", 2333 (longlong_t)dsobj, dsname, 2334 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2335 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2336 (int)scn->scn_suspending); 2337 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2338 2339 if (scn->scn_suspending) 2340 goto out; 2341 2342 /* 2343 * We've finished this pass over this dataset. 2344 */ 2345 2346 /* 2347 * If we did not completely visit this dataset, do another pass. 2348 */ 2349 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2350 zfs_dbgmsg("incomplete pass; visiting again"); 2351 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2352 scan_ds_queue_insert(scn, ds->ds_object, 2353 scn->scn_phys.scn_cur_max_txg); 2354 goto out; 2355 } 2356 2357 /* 2358 * Add descendent datasets to work queue. 2359 */ 2360 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2361 scan_ds_queue_insert(scn, 2362 dsl_dataset_phys(ds)->ds_next_snap_obj, 2363 dsl_dataset_phys(ds)->ds_creation_txg); 2364 } 2365 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2366 boolean_t usenext = B_FALSE; 2367 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2368 uint64_t count; 2369 /* 2370 * A bug in a previous version of the code could 2371 * cause upgrade_clones_cb() to not set 2372 * ds_next_snap_obj when it should, leading to a 2373 * missing entry. Therefore we can only use the 2374 * next_clones_obj when its count is correct. 2375 */ 2376 int err = zap_count(dp->dp_meta_objset, 2377 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2378 if (err == 0 && 2379 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2380 usenext = B_TRUE; 2381 } 2382 2383 if (usenext) { 2384 zap_cursor_t zc; 2385 zap_attribute_t za; 2386 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2387 dsl_dataset_phys(ds)->ds_next_clones_obj); 2388 zap_cursor_retrieve(&zc, &za) == 0; 2389 (void) zap_cursor_advance(&zc)) { 2390 scan_ds_queue_insert(scn, 2391 zfs_strtonum(za.za_name, NULL), 2392 dsl_dataset_phys(ds)->ds_creation_txg); 2393 } 2394 zap_cursor_fini(&zc); 2395 } else { 2396 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2397 enqueue_clones_cb, &ds->ds_object, 2398 DS_FIND_CHILDREN)); 2399 } 2400 } 2401 2402 out: 2403 dsl_dataset_rele(ds, FTAG); 2404 } 2405 2406 /* ARGSUSED */ 2407 static int 2408 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2409 { 2410 dsl_dataset_t *ds; 2411 int err; 2412 dsl_scan_t *scn = dp->dp_scan; 2413 2414 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2415 if (err) 2416 return (err); 2417 2418 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2419 dsl_dataset_t *prev; 2420 err = dsl_dataset_hold_obj(dp, 2421 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2422 if (err) { 2423 dsl_dataset_rele(ds, FTAG); 2424 return (err); 2425 } 2426 2427 /* 2428 * If this is a clone, we don't need to worry about it for now. 2429 */ 2430 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2431 dsl_dataset_rele(ds, FTAG); 2432 dsl_dataset_rele(prev, FTAG); 2433 return (0); 2434 } 2435 dsl_dataset_rele(ds, FTAG); 2436 ds = prev; 2437 } 2438 2439 scan_ds_queue_insert(scn, ds->ds_object, 2440 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2441 dsl_dataset_rele(ds, FTAG); 2442 return (0); 2443 } 2444 2445 /* ARGSUSED */ 2446 void 2447 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2448 ddt_entry_t *dde, dmu_tx_t *tx) 2449 { 2450 const ddt_key_t *ddk = &dde->dde_key; 2451 ddt_phys_t *ddp = dde->dde_phys; 2452 blkptr_t bp; 2453 zbookmark_phys_t zb = { 0 }; 2454 int p; 2455 2456 if (scn->scn_phys.scn_state != DSS_SCANNING) 2457 return; 2458 2459 /* 2460 * This function is special because it is the only thing 2461 * that can add scan_io_t's to the vdev scan queues from 2462 * outside dsl_scan_sync(). For the most part this is ok 2463 * as long as it is called from within syncing context. 2464 * However, dsl_scan_sync() expects that no new sio's will 2465 * be added between when all the work for a scan is done 2466 * and the next txg when the scan is actually marked as 2467 * completed. This check ensures we do not issue new sio's 2468 * during this period. 2469 */ 2470 if (scn->scn_done_txg != 0) 2471 return; 2472 2473 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2474 if (ddp->ddp_phys_birth == 0 || 2475 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2476 continue; 2477 ddt_bp_create(checksum, ddk, ddp, &bp); 2478 2479 scn->scn_visited_this_txg++; 2480 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2481 } 2482 } 2483 2484 /* 2485 * Scrub/dedup interaction. 2486 * 2487 * If there are N references to a deduped block, we don't want to scrub it 2488 * N times -- ideally, we should scrub it exactly once. 2489 * 2490 * We leverage the fact that the dde's replication class (enum ddt_class) 2491 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2492 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2493 * 2494 * To prevent excess scrubbing, the scrub begins by walking the DDT 2495 * to find all blocks with refcnt > 1, and scrubs each of these once. 2496 * Since there are two replication classes which contain blocks with 2497 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2498 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2499 * 2500 * There would be nothing more to say if a block's refcnt couldn't change 2501 * during a scrub, but of course it can so we must account for changes 2502 * in a block's replication class. 2503 * 2504 * Here's an example of what can occur: 2505 * 2506 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2507 * when visited during the top-down scrub phase, it will be scrubbed twice. 2508 * This negates our scrub optimization, but is otherwise harmless. 2509 * 2510 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2511 * on each visit during the top-down scrub phase, it will never be scrubbed. 2512 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2513 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2514 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2515 * while a scrub is in progress, it scrubs the block right then. 2516 */ 2517 static void 2518 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2519 { 2520 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2521 ddt_entry_t dde = { 0 }; 2522 int error; 2523 uint64_t n = 0; 2524 2525 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2526 ddt_t *ddt; 2527 2528 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2529 break; 2530 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2531 (longlong_t)ddb->ddb_class, 2532 (longlong_t)ddb->ddb_type, 2533 (longlong_t)ddb->ddb_checksum, 2534 (longlong_t)ddb->ddb_cursor); 2535 2536 /* There should be no pending changes to the dedup table */ 2537 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2538 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2539 2540 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2541 n++; 2542 2543 if (dsl_scan_check_suspend(scn, NULL)) 2544 break; 2545 } 2546 2547 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2548 "suspending=%u", (longlong_t)n, 2549 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2550 2551 ASSERT(error == 0 || error == ENOENT); 2552 ASSERT(error != ENOENT || 2553 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2554 } 2555 2556 static uint64_t 2557 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2558 { 2559 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2560 if (ds->ds_is_snapshot) 2561 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2562 return (smt); 2563 } 2564 2565 static void 2566 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2567 { 2568 scan_ds_t *sds; 2569 dsl_pool_t *dp = scn->scn_dp; 2570 2571 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2572 scn->scn_phys.scn_ddt_class_max) { 2573 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2574 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2575 dsl_scan_ddt(scn, tx); 2576 if (scn->scn_suspending) 2577 return; 2578 } 2579 2580 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2581 /* First do the MOS & ORIGIN */ 2582 2583 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2584 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2585 dsl_scan_visit_rootbp(scn, NULL, 2586 &dp->dp_meta_rootbp, tx); 2587 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2588 if (scn->scn_suspending) 2589 return; 2590 2591 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2592 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2593 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2594 } else { 2595 dsl_scan_visitds(scn, 2596 dp->dp_origin_snap->ds_object, tx); 2597 } 2598 ASSERT(!scn->scn_suspending); 2599 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2600 ZB_DESTROYED_OBJSET) { 2601 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2602 /* 2603 * If we were suspended, continue from here. Note if the 2604 * ds we were suspended on was deleted, the zb_objset may 2605 * be -1, so we will skip this and find a new objset 2606 * below. 2607 */ 2608 dsl_scan_visitds(scn, dsobj, tx); 2609 if (scn->scn_suspending) 2610 return; 2611 } 2612 2613 /* 2614 * In case we suspended right at the end of the ds, zero the 2615 * bookmark so we don't think that we're still trying to resume. 2616 */ 2617 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2618 2619 /* 2620 * Keep pulling things out of the dataset avl queue. Updates to the 2621 * persistent zap-object-as-queue happen only at checkpoints. 2622 */ 2623 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2624 dsl_dataset_t *ds; 2625 uint64_t dsobj = sds->sds_dsobj; 2626 uint64_t txg = sds->sds_txg; 2627 2628 /* dequeue and free the ds from the queue */ 2629 scan_ds_queue_remove(scn, dsobj); 2630 sds = NULL; /* must not be touched after removal */ 2631 2632 /* Set up min / max txg */ 2633 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2634 if (txg != 0) { 2635 scn->scn_phys.scn_cur_min_txg = 2636 MAX(scn->scn_phys.scn_min_txg, txg); 2637 } else { 2638 scn->scn_phys.scn_cur_min_txg = 2639 MAX(scn->scn_phys.scn_min_txg, 2640 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2641 } 2642 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2643 dsl_dataset_rele(ds, FTAG); 2644 2645 dsl_scan_visitds(scn, dsobj, tx); 2646 if (scn->scn_suspending) 2647 return; 2648 } 2649 /* No more objsets to fetch, we're done */ 2650 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2651 ASSERT0(scn->scn_suspending); 2652 } 2653 2654 static uint64_t 2655 dsl_scan_count_leaves(vdev_t *vd) 2656 { 2657 uint64_t i, leaves = 0; 2658 2659 /* we only count leaves that belong to the main pool and are readable */ 2660 if (vd->vdev_islog || vd->vdev_isspare || 2661 vd->vdev_isl2cache || !vdev_readable(vd)) 2662 return (0); 2663 2664 if (vd->vdev_ops->vdev_op_leaf) 2665 return (1); 2666 2667 for (i = 0; i < vd->vdev_children; i++) { 2668 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2669 } 2670 2671 return (leaves); 2672 } 2673 2674 2675 static void 2676 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2677 { 2678 int i; 2679 uint64_t cur_size = 0; 2680 2681 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2682 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2683 } 2684 2685 q->q_total_zio_size_this_txg += cur_size; 2686 q->q_zios_this_txg++; 2687 } 2688 2689 static void 2690 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2691 uint64_t end) 2692 { 2693 q->q_total_seg_size_this_txg += end - start; 2694 q->q_segs_this_txg++; 2695 } 2696 2697 static boolean_t 2698 scan_io_queue_check_suspend(dsl_scan_t *scn) 2699 { 2700 /* See comment in dsl_scan_check_suspend() */ 2701 uint64_t curr_time_ns = gethrtime(); 2702 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2703 uint64_t sync_time_ns = curr_time_ns - 2704 scn->scn_dp->dp_spa->spa_sync_starttime; 2705 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2706 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2707 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2708 2709 return ((NSEC2MSEC(scan_time_ns) > mintime && 2710 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2711 txg_sync_waiting(scn->scn_dp) || 2712 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2713 spa_shutting_down(scn->scn_dp->dp_spa)); 2714 } 2715 2716 /* 2717 * Given a list of scan_io_t's in io_list, this issues the io's out to 2718 * disk. This consumes the io_list and frees the scan_io_t's. This is 2719 * called when emptying queues, either when we're up against the memory 2720 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2721 * processing the list before we finished. Any zios that were not issued 2722 * will remain in the io_list. 2723 */ 2724 static boolean_t 2725 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2726 { 2727 dsl_scan_t *scn = queue->q_scn; 2728 scan_io_t *sio; 2729 int64_t bytes_issued = 0; 2730 boolean_t suspended = B_FALSE; 2731 2732 while ((sio = list_head(io_list)) != NULL) { 2733 blkptr_t bp; 2734 2735 if (scan_io_queue_check_suspend(scn)) { 2736 suspended = B_TRUE; 2737 break; 2738 } 2739 2740 sio2bp(sio, &bp); 2741 bytes_issued += SIO_GET_ASIZE(sio); 2742 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2743 &sio->sio_zb, queue); 2744 (void) list_remove_head(io_list); 2745 scan_io_queues_update_zio_stats(queue, &bp); 2746 sio_free(sio); 2747 } 2748 2749 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2750 2751 return (suspended); 2752 } 2753 2754 /* 2755 * Given a range_seg_t (extent) and a list, this function passes over a 2756 * scan queue and gathers up the appropriate ios which fit into that 2757 * scan seg (starting from lowest LBA). At the end, we remove the segment 2758 * from the q_exts_by_addr range tree. 2759 */ 2760 static boolean_t 2761 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2762 { 2763 scan_io_t *srch_sio, *sio, *next_sio; 2764 avl_index_t idx; 2765 uint_t num_sios = 0; 2766 int64_t bytes_issued = 0; 2767 2768 ASSERT(rs != NULL); 2769 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2770 2771 srch_sio = sio_alloc(1); 2772 srch_sio->sio_nr_dvas = 1; 2773 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2774 2775 /* 2776 * The exact start of the extent might not contain any matching zios, 2777 * so if that's the case, examine the next one in the tree. 2778 */ 2779 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2780 sio_free(srch_sio); 2781 2782 if (sio == NULL) 2783 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2784 2785 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2786 queue->q_exts_by_addr) && num_sios <= 32) { 2787 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2788 queue->q_exts_by_addr)); 2789 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2790 queue->q_exts_by_addr)); 2791 2792 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2793 avl_remove(&queue->q_sios_by_addr, sio); 2794 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2795 2796 bytes_issued += SIO_GET_ASIZE(sio); 2797 num_sios++; 2798 list_insert_tail(list, sio); 2799 sio = next_sio; 2800 } 2801 2802 /* 2803 * We limit the number of sios we process at once to 32 to avoid 2804 * biting off more than we can chew. If we didn't take everything 2805 * in the segment we update it to reflect the work we were able to 2806 * complete. Otherwise, we remove it from the range tree entirely. 2807 */ 2808 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2809 queue->q_exts_by_addr)) { 2810 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2811 -bytes_issued); 2812 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2813 SIO_GET_OFFSET(sio), rs_get_end(rs, 2814 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2815 2816 return (B_TRUE); 2817 } else { 2818 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2819 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2820 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2821 return (B_FALSE); 2822 } 2823 } 2824 2825 2826 /* 2827 * This is called from the queue emptying thread and selects the next 2828 * extent from which we are to issue io's. The behavior of this function 2829 * depends on the state of the scan, the current memory consumption and 2830 * whether or not we are performing a scan shutdown. 2831 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2832 * needs to perform a checkpoint 2833 * 2) We select the largest available extent if we are up against the 2834 * memory limit. 2835 * 3) Otherwise we don't select any extents. 2836 */ 2837 static const range_seg_t * 2838 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2839 { 2840 dsl_scan_t *scn = queue->q_scn; 2841 range_tree_t *rt = queue->q_exts_by_addr; 2842 2843 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2844 ASSERT(scn->scn_is_sorted); 2845 2846 /* handle tunable overrides */ 2847 if (scn->scn_checkpointing || scn->scn_clearing) { 2848 if (zfs_scan_issue_strategy == 1) { 2849 return (range_tree_first(rt)); 2850 } else if (zfs_scan_issue_strategy == 2) { 2851 range_seg_t *size_rs = 2852 zfs_btree_first(&queue->q_exts_by_size, NULL); 2853 uint64_t start = rs_get_start(size_rs, rt); 2854 uint64_t size = rs_get_end(size_rs, rt) - start; 2855 range_seg_t *addr_rs = range_tree_find(rt, start, 2856 size); 2857 ASSERT3P(addr_rs, !=, NULL); 2858 return (addr_rs); 2859 } 2860 } 2861 2862 /* 2863 * During normal clearing, we want to issue our largest segments 2864 * first, keeping IO as sequential as possible, and leaving the 2865 * smaller extents for later with the hope that they might eventually 2866 * grow to larger sequential segments. However, when the scan is 2867 * checkpointing, no new extents will be added to the sorting queue, 2868 * so the way we are sorted now is as good as it will ever get. 2869 * In this case, we instead switch to issuing extents in LBA order. 2870 */ 2871 if (scn->scn_checkpointing) { 2872 return (range_tree_first(rt)); 2873 } else if (scn->scn_clearing) { 2874 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2875 NULL); 2876 uint64_t start = rs_get_start(size_rs, rt); 2877 uint64_t size = rs_get_end(size_rs, rt) - start; 2878 range_seg_t *addr_rs = range_tree_find(rt, start, size); 2879 ASSERT3P(addr_rs, !=, NULL); 2880 return (addr_rs); 2881 } else { 2882 return (NULL); 2883 } 2884 } 2885 2886 static void 2887 scan_io_queues_run_one(void *arg) 2888 { 2889 dsl_scan_io_queue_t *queue = arg; 2890 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 2891 boolean_t suspended = B_FALSE; 2892 range_seg_t *rs = NULL; 2893 scan_io_t *sio = NULL; 2894 list_t sio_list; 2895 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 2896 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 2897 2898 ASSERT(queue->q_scn->scn_is_sorted); 2899 2900 list_create(&sio_list, sizeof (scan_io_t), 2901 offsetof(scan_io_t, sio_nodes.sio_list_node)); 2902 mutex_enter(q_lock); 2903 2904 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 2905 queue->q_maxinflight_bytes = 2906 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 2907 2908 /* reset per-queue scan statistics for this txg */ 2909 queue->q_total_seg_size_this_txg = 0; 2910 queue->q_segs_this_txg = 0; 2911 queue->q_total_zio_size_this_txg = 0; 2912 queue->q_zios_this_txg = 0; 2913 2914 /* loop until we have run out of time or sios */ 2915 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) { 2916 uint64_t seg_start = 0, seg_end = 0; 2917 boolean_t more_left = B_TRUE; 2918 2919 ASSERT(list_is_empty(&sio_list)); 2920 2921 /* loop while we still have sios left to process in this rs */ 2922 while (more_left) { 2923 scan_io_t *first_sio, *last_sio; 2924 2925 /* 2926 * We have selected which extent needs to be 2927 * processed next. Gather up the corresponding sios. 2928 */ 2929 more_left = scan_io_queue_gather(queue, rs, &sio_list); 2930 ASSERT(!list_is_empty(&sio_list)); 2931 first_sio = list_head(&sio_list); 2932 last_sio = list_tail(&sio_list); 2933 2934 seg_end = SIO_GET_END_OFFSET(last_sio); 2935 if (seg_start == 0) 2936 seg_start = SIO_GET_OFFSET(first_sio); 2937 2938 /* 2939 * Issuing sios can take a long time so drop the 2940 * queue lock. The sio queue won't be updated by 2941 * other threads since we're in syncing context so 2942 * we can be sure that our trees will remain exactly 2943 * as we left them. 2944 */ 2945 mutex_exit(q_lock); 2946 suspended = scan_io_queue_issue(queue, &sio_list); 2947 mutex_enter(q_lock); 2948 2949 if (suspended) 2950 break; 2951 } 2952 /* update statistics for debugging purposes */ 2953 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 2954 2955 if (suspended) 2956 break; 2957 } 2958 2959 2960 /* 2961 * If we were suspended in the middle of processing, 2962 * requeue any unfinished sios and exit. 2963 */ 2964 while ((sio = list_head(&sio_list)) != NULL) { 2965 list_remove(&sio_list, sio); 2966 scan_io_queue_insert_impl(queue, sio); 2967 } 2968 2969 mutex_exit(q_lock); 2970 list_destroy(&sio_list); 2971 } 2972 2973 /* 2974 * Performs an emptying run on all scan queues in the pool. This just 2975 * punches out one thread per top-level vdev, each of which processes 2976 * only that vdev's scan queue. We can parallelize the I/O here because 2977 * we know that each queue's io's only affect its own top-level vdev. 2978 * 2979 * This function waits for the queue runs to complete, and must be 2980 * called from dsl_scan_sync (or in general, syncing context). 2981 */ 2982 static void 2983 scan_io_queues_run(dsl_scan_t *scn) 2984 { 2985 spa_t *spa = scn->scn_dp->dp_spa; 2986 2987 ASSERT(scn->scn_is_sorted); 2988 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2989 2990 if (scn->scn_bytes_pending == 0) 2991 return; 2992 2993 if (scn->scn_taskq == NULL) { 2994 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, 2995 KM_SLEEP); 2996 int nthreads = spa->spa_root_vdev->vdev_children; 2997 2998 /* 2999 * We need to make this taskq *always* execute as many 3000 * threads in parallel as we have top-level vdevs and no 3001 * less, otherwise strange serialization of the calls to 3002 * scan_io_queues_run_one can occur during spa_sync runs 3003 * and that significantly impacts performance. 3004 */ 3005 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, 3006 "dsl_scan_tq_%s", spa->spa_name); 3007 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, 3008 nthreads, nthreads, TASKQ_PREPOPULATE); 3009 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); 3010 } 3011 3012 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3013 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3014 3015 mutex_enter(&vd->vdev_scan_io_queue_lock); 3016 if (vd->vdev_scan_io_queue != NULL) { 3017 VERIFY(taskq_dispatch(scn->scn_taskq, 3018 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3019 TQ_SLEEP) != TASKQID_INVALID); 3020 } 3021 mutex_exit(&vd->vdev_scan_io_queue_lock); 3022 } 3023 3024 /* 3025 * Wait for the queues to finish issuing thir IOs for this run 3026 * before we return. There may still be IOs in flight at this 3027 * point. 3028 */ 3029 taskq_wait(scn->scn_taskq); 3030 } 3031 3032 static boolean_t 3033 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3034 { 3035 uint64_t elapsed_nanosecs; 3036 3037 if (zfs_recover) 3038 return (B_FALSE); 3039 3040 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) 3041 return (B_TRUE); 3042 3043 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3044 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3045 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3046 txg_sync_waiting(scn->scn_dp)) || 3047 spa_shutting_down(scn->scn_dp->dp_spa)); 3048 } 3049 3050 static int 3051 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3052 { 3053 dsl_scan_t *scn = arg; 3054 3055 if (!scn->scn_is_bptree || 3056 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3057 if (dsl_scan_async_block_should_pause(scn)) 3058 return (SET_ERROR(ERESTART)); 3059 } 3060 3061 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3062 dmu_tx_get_txg(tx), bp, 0)); 3063 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3064 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3065 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3066 scn->scn_visited_this_txg++; 3067 return (0); 3068 } 3069 3070 static void 3071 dsl_scan_update_stats(dsl_scan_t *scn) 3072 { 3073 spa_t *spa = scn->scn_dp->dp_spa; 3074 uint64_t i; 3075 uint64_t seg_size_total = 0, zio_size_total = 0; 3076 uint64_t seg_count_total = 0, zio_count_total = 0; 3077 3078 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3079 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3080 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3081 3082 if (queue == NULL) 3083 continue; 3084 3085 seg_size_total += queue->q_total_seg_size_this_txg; 3086 zio_size_total += queue->q_total_zio_size_this_txg; 3087 seg_count_total += queue->q_segs_this_txg; 3088 zio_count_total += queue->q_zios_this_txg; 3089 } 3090 3091 if (seg_count_total == 0 || zio_count_total == 0) { 3092 scn->scn_avg_seg_size_this_txg = 0; 3093 scn->scn_avg_zio_size_this_txg = 0; 3094 scn->scn_segs_this_txg = 0; 3095 scn->scn_zios_this_txg = 0; 3096 return; 3097 } 3098 3099 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3100 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3101 scn->scn_segs_this_txg = seg_count_total; 3102 scn->scn_zios_this_txg = zio_count_total; 3103 } 3104 3105 static int 3106 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3107 { 3108 dsl_scan_t *scn = arg; 3109 const dva_t *dva = &bp->blk_dva[0]; 3110 3111 if (dsl_scan_async_block_should_pause(scn)) 3112 return (SET_ERROR(ERESTART)); 3113 3114 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3115 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3116 DVA_GET_ASIZE(dva), tx); 3117 scn->scn_visited_this_txg++; 3118 return (0); 3119 } 3120 3121 boolean_t 3122 dsl_scan_active(dsl_scan_t *scn) 3123 { 3124 spa_t *spa = scn->scn_dp->dp_spa; 3125 uint64_t used = 0, comp, uncomp; 3126 3127 if (spa->spa_load_state != SPA_LOAD_NONE) 3128 return (B_FALSE); 3129 if (spa_shutting_down(spa)) 3130 return (B_FALSE); 3131 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3132 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3133 return (B_TRUE); 3134 3135 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3136 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3137 &used, &comp, &uncomp); 3138 } 3139 return (used != 0); 3140 } 3141 3142 static boolean_t 3143 dsl_scan_check_deferred(vdev_t *vd) 3144 { 3145 boolean_t need_resilver = B_FALSE; 3146 3147 for (int c = 0; c < vd->vdev_children; c++) { 3148 need_resilver |= 3149 dsl_scan_check_deferred(vd->vdev_child[c]); 3150 } 3151 3152 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3153 !vd->vdev_ops->vdev_op_leaf) 3154 return (need_resilver); 3155 3156 if (!vd->vdev_resilver_deferred) 3157 need_resilver = B_TRUE; 3158 3159 return (need_resilver); 3160 } 3161 3162 static boolean_t 3163 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3164 uint64_t phys_birth) 3165 { 3166 vdev_t *vd; 3167 3168 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3169 3170 if (vd->vdev_ops == &vdev_indirect_ops) { 3171 /* 3172 * The indirect vdev can point to multiple 3173 * vdevs. For simplicity, always create 3174 * the resilver zio_t. zio_vdev_io_start() 3175 * will bypass the child resilver i/o's if 3176 * they are on vdevs that don't have DTL's. 3177 */ 3178 return (B_TRUE); 3179 } 3180 3181 if (DVA_GET_GANG(dva)) { 3182 /* 3183 * Gang members may be spread across multiple 3184 * vdevs, so the best estimate we have is the 3185 * scrub range, which has already been checked. 3186 * XXX -- it would be better to change our 3187 * allocation policy to ensure that all 3188 * gang members reside on the same vdev. 3189 */ 3190 return (B_TRUE); 3191 } 3192 3193 /* 3194 * Check if the txg falls within the range which must be 3195 * resilvered. DVAs outside this range can always be skipped. 3196 */ 3197 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3198 return (B_FALSE); 3199 3200 /* 3201 * Check if the top-level vdev must resilver this offset. 3202 * When the offset does not intersect with a dirty leaf DTL 3203 * then it may be possible to skip the resilver IO. The psize 3204 * is provided instead of asize to simplify the check for RAIDZ. 3205 */ 3206 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3207 return (B_FALSE); 3208 3209 /* 3210 * Check that this top-level vdev has a device under it which 3211 * is resilvering and is not deferred. 3212 */ 3213 if (!dsl_scan_check_deferred(vd)) 3214 return (B_FALSE); 3215 3216 return (B_TRUE); 3217 } 3218 3219 static int 3220 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3221 { 3222 int err = 0; 3223 dsl_scan_t *scn = dp->dp_scan; 3224 spa_t *spa = dp->dp_spa; 3225 3226 if (spa_suspend_async_destroy(spa)) 3227 return (0); 3228 3229 if (zfs_free_bpobj_enabled && 3230 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3231 scn->scn_is_bptree = B_FALSE; 3232 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3233 scn->scn_zio_root = zio_root(spa, NULL, 3234 NULL, ZIO_FLAG_MUSTSUCCEED); 3235 err = bpobj_iterate(&dp->dp_free_bpobj, 3236 dsl_scan_free_block_cb, scn, tx); 3237 VERIFY0(zio_wait(scn->scn_zio_root)); 3238 scn->scn_zio_root = NULL; 3239 3240 if (err != 0 && err != ERESTART) 3241 zfs_panic_recover("error %u from bpobj_iterate()", err); 3242 } 3243 3244 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3245 ASSERT(scn->scn_async_destroying); 3246 scn->scn_is_bptree = B_TRUE; 3247 scn->scn_zio_root = zio_root(spa, NULL, 3248 NULL, ZIO_FLAG_MUSTSUCCEED); 3249 err = bptree_iterate(dp->dp_meta_objset, 3250 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3251 VERIFY0(zio_wait(scn->scn_zio_root)); 3252 scn->scn_zio_root = NULL; 3253 3254 if (err == EIO || err == ECKSUM) { 3255 err = 0; 3256 } else if (err != 0 && err != ERESTART) { 3257 zfs_panic_recover("error %u from " 3258 "traverse_dataset_destroyed()", err); 3259 } 3260 3261 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3262 /* finished; deactivate async destroy feature */ 3263 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3264 ASSERT(!spa_feature_is_active(spa, 3265 SPA_FEATURE_ASYNC_DESTROY)); 3266 VERIFY0(zap_remove(dp->dp_meta_objset, 3267 DMU_POOL_DIRECTORY_OBJECT, 3268 DMU_POOL_BPTREE_OBJ, tx)); 3269 VERIFY0(bptree_free(dp->dp_meta_objset, 3270 dp->dp_bptree_obj, tx)); 3271 dp->dp_bptree_obj = 0; 3272 scn->scn_async_destroying = B_FALSE; 3273 scn->scn_async_stalled = B_FALSE; 3274 } else { 3275 /* 3276 * If we didn't make progress, mark the async 3277 * destroy as stalled, so that we will not initiate 3278 * a spa_sync() on its behalf. Note that we only 3279 * check this if we are not finished, because if the 3280 * bptree had no blocks for us to visit, we can 3281 * finish without "making progress". 3282 */ 3283 scn->scn_async_stalled = 3284 (scn->scn_visited_this_txg == 0); 3285 } 3286 } 3287 if (scn->scn_visited_this_txg) { 3288 zfs_dbgmsg("freed %llu blocks in %llums from " 3289 "free_bpobj/bptree txg %llu; err=%d", 3290 (longlong_t)scn->scn_visited_this_txg, 3291 (longlong_t) 3292 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3293 (longlong_t)tx->tx_txg, err); 3294 scn->scn_visited_this_txg = 0; 3295 3296 /* 3297 * Write out changes to the DDT that may be required as a 3298 * result of the blocks freed. This ensures that the DDT 3299 * is clean when a scrub/resilver runs. 3300 */ 3301 ddt_sync(spa, tx->tx_txg); 3302 } 3303 if (err != 0) 3304 return (err); 3305 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3306 zfs_free_leak_on_eio && 3307 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3308 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3309 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3310 /* 3311 * We have finished background destroying, but there is still 3312 * some space left in the dp_free_dir. Transfer this leaked 3313 * space to the dp_leak_dir. 3314 */ 3315 if (dp->dp_leak_dir == NULL) { 3316 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3317 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3318 LEAK_DIR_NAME, tx); 3319 VERIFY0(dsl_pool_open_special_dir(dp, 3320 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3321 rrw_exit(&dp->dp_config_rwlock, FTAG); 3322 } 3323 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3324 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3325 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3326 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3327 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3328 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3329 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3330 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3331 } 3332 3333 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { 3334 /* finished; verify that space accounting went to zero */ 3335 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3336 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3337 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3338 } 3339 3340 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3341 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3342 DMU_POOL_OBSOLETE_BPOBJ)); 3343 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3344 ASSERT(spa_feature_is_active(dp->dp_spa, 3345 SPA_FEATURE_OBSOLETE_COUNTS)); 3346 3347 scn->scn_is_bptree = B_FALSE; 3348 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3349 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3350 dsl_scan_obsolete_block_cb, scn, tx); 3351 if (err != 0 && err != ERESTART) 3352 zfs_panic_recover("error %u from bpobj_iterate()", err); 3353 3354 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3355 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3356 } 3357 3358 return (0); 3359 } 3360 3361 /* 3362 * This is the primary entry point for scans that is called from syncing 3363 * context. Scans must happen entirely during syncing context so that we 3364 * cna guarantee that blocks we are currently scanning will not change out 3365 * from under us. While a scan is active, this funciton controls how quickly 3366 * transaction groups proceed, instead of the normal handling provided by 3367 * txg_sync_thread(). 3368 */ 3369 void 3370 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3371 { 3372 dsl_scan_t *scn = dp->dp_scan; 3373 spa_t *spa = dp->dp_spa; 3374 int err = 0; 3375 state_sync_type_t sync_type = SYNC_OPTIONAL; 3376 3377 if (spa->spa_resilver_deferred && 3378 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3379 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3380 3381 /* 3382 * Check for scn_restart_txg before checking spa_load_state, so 3383 * that we can restart an old-style scan while the pool is being 3384 * imported (see dsl_scan_init). We also restart scans if there 3385 * is a deferred resilver and the user has manually disabled 3386 * deferred resilvers via the tunable. 3387 */ 3388 if (dsl_scan_restarting(scn, tx) || 3389 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3390 pool_scan_func_t func = POOL_SCAN_SCRUB; 3391 dsl_scan_done(scn, B_FALSE, tx); 3392 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3393 func = POOL_SCAN_RESILVER; 3394 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3395 func, (longlong_t)tx->tx_txg); 3396 dsl_scan_setup_sync(&func, tx); 3397 } 3398 3399 /* 3400 * Only process scans in sync pass 1. 3401 */ 3402 if (spa_sync_pass(dp->dp_spa) > 1) 3403 return; 3404 3405 /* 3406 * If the spa is shutting down, then stop scanning. This will 3407 * ensure that the scan does not dirty any new data during the 3408 * shutdown phase. 3409 */ 3410 if (spa_shutting_down(spa)) 3411 return; 3412 3413 /* 3414 * If the scan is inactive due to a stalled async destroy, try again. 3415 */ 3416 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3417 return; 3418 3419 /* reset scan statistics */ 3420 scn->scn_visited_this_txg = 0; 3421 scn->scn_holes_this_txg = 0; 3422 scn->scn_lt_min_this_txg = 0; 3423 scn->scn_gt_max_this_txg = 0; 3424 scn->scn_ddt_contained_this_txg = 0; 3425 scn->scn_objsets_visited_this_txg = 0; 3426 scn->scn_avg_seg_size_this_txg = 0; 3427 scn->scn_segs_this_txg = 0; 3428 scn->scn_avg_zio_size_this_txg = 0; 3429 scn->scn_zios_this_txg = 0; 3430 scn->scn_suspending = B_FALSE; 3431 scn->scn_sync_start_time = gethrtime(); 3432 spa->spa_scrub_active = B_TRUE; 3433 3434 /* 3435 * First process the async destroys. If we pause, don't do 3436 * any scrubbing or resilvering. This ensures that there are no 3437 * async destroys while we are scanning, so the scan code doesn't 3438 * have to worry about traversing it. It is also faster to free the 3439 * blocks than to scrub them. 3440 */ 3441 err = dsl_process_async_destroys(dp, tx); 3442 if (err != 0) 3443 return; 3444 3445 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3446 return; 3447 3448 /* 3449 * Wait a few txgs after importing to begin scanning so that 3450 * we can get the pool imported quickly. 3451 */ 3452 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3453 return; 3454 3455 /* 3456 * zfs_scan_suspend_progress can be set to disable scan progress. 3457 * We don't want to spin the txg_sync thread, so we add a delay 3458 * here to simulate the time spent doing a scan. This is mostly 3459 * useful for testing and debugging. 3460 */ 3461 if (zfs_scan_suspend_progress) { 3462 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3463 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3464 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3465 3466 while (zfs_scan_suspend_progress && 3467 !txg_sync_waiting(scn->scn_dp) && 3468 !spa_shutting_down(scn->scn_dp->dp_spa) && 3469 NSEC2MSEC(scan_time_ns) < mintime) { 3470 delay(hz); 3471 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3472 } 3473 return; 3474 } 3475 3476 /* 3477 * It is possible to switch from unsorted to sorted at any time, 3478 * but afterwards the scan will remain sorted unless reloaded from 3479 * a checkpoint after a reboot. 3480 */ 3481 if (!zfs_scan_legacy) { 3482 scn->scn_is_sorted = B_TRUE; 3483 if (scn->scn_last_checkpoint == 0) 3484 scn->scn_last_checkpoint = ddi_get_lbolt(); 3485 } 3486 3487 /* 3488 * For sorted scans, determine what kind of work we will be doing 3489 * this txg based on our memory limitations and whether or not we 3490 * need to perform a checkpoint. 3491 */ 3492 if (scn->scn_is_sorted) { 3493 /* 3494 * If we are over our checkpoint interval, set scn_clearing 3495 * so that we can begin checkpointing immediately. The 3496 * checkpoint allows us to save a consisent bookmark 3497 * representing how much data we have scrubbed so far. 3498 * Otherwise, use the memory limit to determine if we should 3499 * scan for metadata or start issue scrub IOs. We accumulate 3500 * metadata until we hit our hard memory limit at which point 3501 * we issue scrub IOs until we are at our soft memory limit. 3502 */ 3503 if (scn->scn_checkpointing || 3504 ddi_get_lbolt() - scn->scn_last_checkpoint > 3505 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3506 if (!scn->scn_checkpointing) 3507 zfs_dbgmsg("begin scan checkpoint"); 3508 3509 scn->scn_checkpointing = B_TRUE; 3510 scn->scn_clearing = B_TRUE; 3511 } else { 3512 boolean_t should_clear = dsl_scan_should_clear(scn); 3513 if (should_clear && !scn->scn_clearing) { 3514 zfs_dbgmsg("begin scan clearing"); 3515 scn->scn_clearing = B_TRUE; 3516 } else if (!should_clear && scn->scn_clearing) { 3517 zfs_dbgmsg("finish scan clearing"); 3518 scn->scn_clearing = B_FALSE; 3519 } 3520 } 3521 } else { 3522 ASSERT0(scn->scn_checkpointing); 3523 ASSERT0(scn->scn_clearing); 3524 } 3525 3526 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3527 /* Need to scan metadata for more blocks to scrub */ 3528 dsl_scan_phys_t *scnp = &scn->scn_phys; 3529 taskqid_t prefetch_tqid; 3530 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3531 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3532 3533 /* 3534 * Calculate the max number of in-flight bytes for pool-wide 3535 * scanning operations (minimum 1MB). Limits for the issuing 3536 * phase are done per top-level vdev and are handled separately. 3537 */ 3538 scn->scn_maxinflight_bytes = 3539 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3540 3541 if (scnp->scn_ddt_bookmark.ddb_class <= 3542 scnp->scn_ddt_class_max) { 3543 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3544 zfs_dbgmsg("doing scan sync txg %llu; " 3545 "ddt bm=%llu/%llu/%llu/%llx", 3546 (longlong_t)tx->tx_txg, 3547 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3548 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3549 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3550 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3551 } else { 3552 zfs_dbgmsg("doing scan sync txg %llu; " 3553 "bm=%llu/%llu/%llu/%llu", 3554 (longlong_t)tx->tx_txg, 3555 (longlong_t)scnp->scn_bookmark.zb_objset, 3556 (longlong_t)scnp->scn_bookmark.zb_object, 3557 (longlong_t)scnp->scn_bookmark.zb_level, 3558 (longlong_t)scnp->scn_bookmark.zb_blkid); 3559 } 3560 3561 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3562 NULL, ZIO_FLAG_CANFAIL); 3563 3564 scn->scn_prefetch_stop = B_FALSE; 3565 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3566 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3567 ASSERT(prefetch_tqid != TASKQID_INVALID); 3568 3569 dsl_pool_config_enter(dp, FTAG); 3570 dsl_scan_visit(scn, tx); 3571 dsl_pool_config_exit(dp, FTAG); 3572 3573 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3574 scn->scn_prefetch_stop = B_TRUE; 3575 cv_broadcast(&spa->spa_scrub_io_cv); 3576 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3577 3578 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3579 (void) zio_wait(scn->scn_zio_root); 3580 scn->scn_zio_root = NULL; 3581 3582 zfs_dbgmsg("scan visited %llu blocks in %llums " 3583 "(%llu os's, %llu holes, %llu < mintxg, " 3584 "%llu in ddt, %llu > maxtxg)", 3585 (longlong_t)scn->scn_visited_this_txg, 3586 (longlong_t)NSEC2MSEC(gethrtime() - 3587 scn->scn_sync_start_time), 3588 (longlong_t)scn->scn_objsets_visited_this_txg, 3589 (longlong_t)scn->scn_holes_this_txg, 3590 (longlong_t)scn->scn_lt_min_this_txg, 3591 (longlong_t)scn->scn_ddt_contained_this_txg, 3592 (longlong_t)scn->scn_gt_max_this_txg); 3593 3594 if (!scn->scn_suspending) { 3595 ASSERT0(avl_numnodes(&scn->scn_queue)); 3596 scn->scn_done_txg = tx->tx_txg + 1; 3597 if (scn->scn_is_sorted) { 3598 scn->scn_checkpointing = B_TRUE; 3599 scn->scn_clearing = B_TRUE; 3600 } 3601 zfs_dbgmsg("scan complete txg %llu", 3602 (longlong_t)tx->tx_txg); 3603 } 3604 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3605 ASSERT(scn->scn_clearing); 3606 3607 /* need to issue scrubbing IOs from per-vdev queues */ 3608 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3609 NULL, ZIO_FLAG_CANFAIL); 3610 scan_io_queues_run(scn); 3611 (void) zio_wait(scn->scn_zio_root); 3612 scn->scn_zio_root = NULL; 3613 3614 /* calculate and dprintf the current memory usage */ 3615 (void) dsl_scan_should_clear(scn); 3616 dsl_scan_update_stats(scn); 3617 3618 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " 3619 "(avg_block_size = %llu, avg_seg_size = %llu)", 3620 (longlong_t)scn->scn_zios_this_txg, 3621 (longlong_t)scn->scn_segs_this_txg, 3622 (longlong_t)NSEC2MSEC(gethrtime() - 3623 scn->scn_sync_start_time), 3624 (longlong_t)scn->scn_avg_zio_size_this_txg, 3625 (longlong_t)scn->scn_avg_seg_size_this_txg); 3626 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3627 /* Finished with everything. Mark the scrub as complete */ 3628 zfs_dbgmsg("scan issuing complete txg %llu", 3629 (longlong_t)tx->tx_txg); 3630 ASSERT3U(scn->scn_done_txg, !=, 0); 3631 ASSERT0(spa->spa_scrub_inflight); 3632 ASSERT0(scn->scn_bytes_pending); 3633 dsl_scan_done(scn, B_TRUE, tx); 3634 sync_type = SYNC_MANDATORY; 3635 } 3636 3637 dsl_scan_sync_state(scn, tx, sync_type); 3638 } 3639 3640 static void 3641 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3642 { 3643 int i; 3644 3645 /* 3646 * Don't count embedded bp's, since we already did the work of 3647 * scanning these when we scanned the containing block. 3648 */ 3649 if (BP_IS_EMBEDDED(bp)) 3650 return; 3651 3652 /* 3653 * Update the spa's stats on how many bytes we have issued. 3654 * Sequential scrubs create a zio for each DVA of the bp. Each 3655 * of these will include all DVAs for repair purposes, but the 3656 * zio code will only try the first one unless there is an issue. 3657 * Therefore, we should only count the first DVA for these IOs. 3658 */ 3659 if (scn->scn_is_sorted) { 3660 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3661 DVA_GET_ASIZE(&bp->blk_dva[0])); 3662 } else { 3663 spa_t *spa = scn->scn_dp->dp_spa; 3664 3665 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3666 atomic_add_64(&spa->spa_scan_pass_issued, 3667 DVA_GET_ASIZE(&bp->blk_dva[i])); 3668 } 3669 } 3670 3671 /* 3672 * If we resume after a reboot, zab will be NULL; don't record 3673 * incomplete stats in that case. 3674 */ 3675 if (zab == NULL) 3676 return; 3677 3678 mutex_enter(&zab->zab_lock); 3679 3680 for (i = 0; i < 4; i++) { 3681 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3682 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3683 if (t & DMU_OT_NEWTYPE) 3684 t = DMU_OT_OTHER; 3685 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3686 int equal; 3687 3688 zb->zb_count++; 3689 zb->zb_asize += BP_GET_ASIZE(bp); 3690 zb->zb_lsize += BP_GET_LSIZE(bp); 3691 zb->zb_psize += BP_GET_PSIZE(bp); 3692 zb->zb_gangs += BP_COUNT_GANG(bp); 3693 3694 switch (BP_GET_NDVAS(bp)) { 3695 case 2: 3696 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3697 DVA_GET_VDEV(&bp->blk_dva[1])) 3698 zb->zb_ditto_2_of_2_samevdev++; 3699 break; 3700 case 3: 3701 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3702 DVA_GET_VDEV(&bp->blk_dva[1])) + 3703 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3704 DVA_GET_VDEV(&bp->blk_dva[2])) + 3705 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3706 DVA_GET_VDEV(&bp->blk_dva[2])); 3707 if (equal == 1) 3708 zb->zb_ditto_2_of_3_samevdev++; 3709 else if (equal == 3) 3710 zb->zb_ditto_3_of_3_samevdev++; 3711 break; 3712 } 3713 } 3714 3715 mutex_exit(&zab->zab_lock); 3716 } 3717 3718 static void 3719 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3720 { 3721 avl_index_t idx; 3722 int64_t asize = SIO_GET_ASIZE(sio); 3723 dsl_scan_t *scn = queue->q_scn; 3724 3725 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3726 3727 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3728 /* block is already scheduled for reading */ 3729 atomic_add_64(&scn->scn_bytes_pending, -asize); 3730 sio_free(sio); 3731 return; 3732 } 3733 avl_insert(&queue->q_sios_by_addr, sio, idx); 3734 queue->q_sio_memused += SIO_GET_MUSED(sio); 3735 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3736 } 3737 3738 /* 3739 * Given all the info we got from our metadata scanning process, we 3740 * construct a scan_io_t and insert it into the scan sorting queue. The 3741 * I/O must already be suitable for us to process. This is controlled 3742 * by dsl_scan_enqueue(). 3743 */ 3744 static void 3745 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3746 int zio_flags, const zbookmark_phys_t *zb) 3747 { 3748 dsl_scan_t *scn = queue->q_scn; 3749 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3750 3751 ASSERT0(BP_IS_GANG(bp)); 3752 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3753 3754 bp2sio(bp, sio, dva_i); 3755 sio->sio_flags = zio_flags; 3756 sio->sio_zb = *zb; 3757 3758 /* 3759 * Increment the bytes pending counter now so that we can't 3760 * get an integer underflow in case the worker processes the 3761 * zio before we get to incrementing this counter. 3762 */ 3763 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3764 3765 scan_io_queue_insert_impl(queue, sio); 3766 } 3767 3768 /* 3769 * Given a set of I/O parameters as discovered by the metadata traversal 3770 * process, attempts to place the I/O into the sorted queues (if allowed), 3771 * or immediately executes the I/O. 3772 */ 3773 static void 3774 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3775 const zbookmark_phys_t *zb) 3776 { 3777 spa_t *spa = dp->dp_spa; 3778 3779 ASSERT(!BP_IS_EMBEDDED(bp)); 3780 3781 /* 3782 * Gang blocks are hard to issue sequentially, so we just issue them 3783 * here immediately instead of queuing them. 3784 */ 3785 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3786 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3787 return; 3788 } 3789 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3790 dva_t dva; 3791 vdev_t *vdev; 3792 3793 dva = bp->blk_dva[i]; 3794 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3795 ASSERT(vdev != NULL); 3796 3797 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3798 if (vdev->vdev_scan_io_queue == NULL) 3799 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3800 ASSERT(dp->dp_scan != NULL); 3801 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3802 i, zio_flags, zb); 3803 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3804 } 3805 } 3806 3807 static int 3808 dsl_scan_scrub_cb(dsl_pool_t *dp, 3809 const blkptr_t *bp, const zbookmark_phys_t *zb) 3810 { 3811 dsl_scan_t *scn = dp->dp_scan; 3812 spa_t *spa = dp->dp_spa; 3813 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3814 size_t psize = BP_GET_PSIZE(bp); 3815 boolean_t needs_io; 3816 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3817 int d; 3818 3819 if (phys_birth <= scn->scn_phys.scn_min_txg || 3820 phys_birth >= scn->scn_phys.scn_max_txg) { 3821 count_block(scn, dp->dp_blkstats, bp); 3822 return (0); 3823 } 3824 3825 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3826 ASSERT(!BP_IS_EMBEDDED(bp)); 3827 3828 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3829 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3830 zio_flags |= ZIO_FLAG_SCRUB; 3831 needs_io = B_TRUE; 3832 } else { 3833 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3834 zio_flags |= ZIO_FLAG_RESILVER; 3835 needs_io = B_FALSE; 3836 } 3837 3838 /* If it's an intent log block, failure is expected. */ 3839 if (zb->zb_level == ZB_ZIL_LEVEL) 3840 zio_flags |= ZIO_FLAG_SPECULATIVE; 3841 3842 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3843 const dva_t *dva = &bp->blk_dva[d]; 3844 3845 /* 3846 * Keep track of how much data we've examined so that 3847 * zpool(1M) status can make useful progress reports. 3848 */ 3849 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3850 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3851 3852 /* if it's a resilver, this may not be in the target range */ 3853 if (!needs_io) 3854 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3855 phys_birth); 3856 } 3857 3858 if (needs_io && !zfs_no_scrub_io) { 3859 dsl_scan_enqueue(dp, bp, zio_flags, zb); 3860 } else { 3861 count_block(scn, dp->dp_blkstats, bp); 3862 } 3863 3864 /* do not relocate this block */ 3865 return (0); 3866 } 3867 3868 static void 3869 dsl_scan_scrub_done(zio_t *zio) 3870 { 3871 spa_t *spa = zio->io_spa; 3872 blkptr_t *bp = zio->io_bp; 3873 dsl_scan_io_queue_t *queue = zio->io_private; 3874 3875 abd_free(zio->io_abd); 3876 3877 if (queue == NULL) { 3878 mutex_enter(&spa->spa_scrub_lock); 3879 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 3880 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 3881 cv_broadcast(&spa->spa_scrub_io_cv); 3882 mutex_exit(&spa->spa_scrub_lock); 3883 } else { 3884 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 3885 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 3886 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 3887 cv_broadcast(&queue->q_zio_cv); 3888 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 3889 } 3890 3891 if (zio->io_error && (zio->io_error != ECKSUM || 3892 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 3893 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 3894 } 3895 } 3896 3897 /* 3898 * Given a scanning zio's information, executes the zio. The zio need 3899 * not necessarily be only sortable, this function simply executes the 3900 * zio, no matter what it is. The optional queue argument allows the 3901 * caller to specify that they want per top level vdev IO rate limiting 3902 * instead of the legacy global limiting. 3903 */ 3904 static void 3905 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3906 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 3907 { 3908 spa_t *spa = dp->dp_spa; 3909 dsl_scan_t *scn = dp->dp_scan; 3910 size_t size = BP_GET_PSIZE(bp); 3911 abd_t *data = abd_alloc_for_io(size, B_FALSE); 3912 3913 if (queue == NULL) { 3914 mutex_enter(&spa->spa_scrub_lock); 3915 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 3916 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3917 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 3918 mutex_exit(&spa->spa_scrub_lock); 3919 } else { 3920 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3921 3922 mutex_enter(q_lock); 3923 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 3924 cv_wait(&queue->q_zio_cv, q_lock); 3925 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 3926 mutex_exit(q_lock); 3927 } 3928 3929 count_block(dp->dp_scan, dp->dp_blkstats, bp); 3930 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, 3931 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 3932 } 3933 3934 /* 3935 * This is the primary extent sorting algorithm. We balance two parameters: 3936 * 1) how many bytes of I/O are in an extent 3937 * 2) how well the extent is filled with I/O (as a fraction of its total size) 3938 * Since we allow extents to have gaps between their constituent I/Os, it's 3939 * possible to have a fairly large extent that contains the same amount of 3940 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 3941 * The algorithm sorts based on a score calculated from the extent's size, 3942 * the relative fill volume (in %) and a "fill weight" parameter that controls 3943 * the split between whether we prefer larger extents or more well populated 3944 * extents: 3945 * 3946 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 3947 * 3948 * Example: 3949 * 1) assume extsz = 64 MiB 3950 * 2) assume fill = 32 MiB (extent is half full) 3951 * 3) assume fill_weight = 3 3952 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 3953 * SCORE = 32M + (50 * 3 * 32M) / 100 3954 * SCORE = 32M + (4800M / 100) 3955 * SCORE = 32M + 48M 3956 * ^ ^ 3957 * | +--- final total relative fill-based score 3958 * +--------- final total fill-based score 3959 * SCORE = 80M 3960 * 3961 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 3962 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 3963 * Note that as an optimization, we replace multiplication and division by 3964 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). 3965 */ 3966 static int 3967 ext_size_compare(const void *x, const void *y) 3968 { 3969 const range_seg_gap_t *rsa = x, *rsb = y; 3970 3971 uint64_t sa = rsa->rs_end - rsa->rs_start; 3972 uint64_t sb = rsb->rs_end - rsb->rs_start; 3973 uint64_t score_a, score_b; 3974 3975 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 3976 fill_weight * rsa->rs_fill) >> 7); 3977 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 3978 fill_weight * rsb->rs_fill) >> 7); 3979 3980 if (score_a > score_b) 3981 return (-1); 3982 if (score_a == score_b) { 3983 if (rsa->rs_start < rsb->rs_start) 3984 return (-1); 3985 if (rsa->rs_start == rsb->rs_start) 3986 return (0); 3987 return (1); 3988 } 3989 return (1); 3990 } 3991 3992 /* 3993 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 3994 * based on LBA-order (from lowest to highest). 3995 */ 3996 static int 3997 sio_addr_compare(const void *x, const void *y) 3998 { 3999 const scan_io_t *a = x, *b = y; 4000 4001 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4002 } 4003 4004 /* IO queues are created on demand when they are needed. */ 4005 static dsl_scan_io_queue_t * 4006 scan_io_queue_create(vdev_t *vd) 4007 { 4008 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4009 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4010 4011 q->q_scn = scn; 4012 q->q_vd = vd; 4013 q->q_sio_memused = 0; 4014 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4015 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4016 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4017 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4018 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4019 4020 return (q); 4021 } 4022 4023 /* 4024 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4025 * No further execution of I/O occurs, anything pending in the queue is 4026 * simply freed without being executed. 4027 */ 4028 void 4029 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4030 { 4031 dsl_scan_t *scn = queue->q_scn; 4032 scan_io_t *sio; 4033 void *cookie = NULL; 4034 int64_t bytes_dequeued = 0; 4035 4036 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4037 4038 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4039 NULL) { 4040 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4041 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4042 bytes_dequeued += SIO_GET_ASIZE(sio); 4043 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4044 sio_free(sio); 4045 } 4046 4047 ASSERT0(queue->q_sio_memused); 4048 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4049 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4050 range_tree_destroy(queue->q_exts_by_addr); 4051 avl_destroy(&queue->q_sios_by_addr); 4052 cv_destroy(&queue->q_zio_cv); 4053 4054 kmem_free(queue, sizeof (*queue)); 4055 } 4056 4057 /* 4058 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4059 * called on behalf of vdev_top_transfer when creating or destroying 4060 * a mirror vdev due to zpool attach/detach. 4061 */ 4062 void 4063 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4064 { 4065 mutex_enter(&svd->vdev_scan_io_queue_lock); 4066 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4067 4068 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4069 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4070 svd->vdev_scan_io_queue = NULL; 4071 if (tvd->vdev_scan_io_queue != NULL) 4072 tvd->vdev_scan_io_queue->q_vd = tvd; 4073 4074 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4075 mutex_exit(&svd->vdev_scan_io_queue_lock); 4076 } 4077 4078 static void 4079 scan_io_queues_destroy(dsl_scan_t *scn) 4080 { 4081 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4082 4083 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4084 vdev_t *tvd = rvd->vdev_child[i]; 4085 4086 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4087 if (tvd->vdev_scan_io_queue != NULL) 4088 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4089 tvd->vdev_scan_io_queue = NULL; 4090 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4091 } 4092 } 4093 4094 static void 4095 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4096 { 4097 dsl_pool_t *dp = spa->spa_dsl_pool; 4098 dsl_scan_t *scn = dp->dp_scan; 4099 vdev_t *vdev; 4100 kmutex_t *q_lock; 4101 dsl_scan_io_queue_t *queue; 4102 scan_io_t *srch_sio, *sio; 4103 avl_index_t idx; 4104 uint64_t start, size; 4105 4106 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4107 ASSERT(vdev != NULL); 4108 q_lock = &vdev->vdev_scan_io_queue_lock; 4109 queue = vdev->vdev_scan_io_queue; 4110 4111 mutex_enter(q_lock); 4112 if (queue == NULL) { 4113 mutex_exit(q_lock); 4114 return; 4115 } 4116 4117 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4118 bp2sio(bp, srch_sio, dva_i); 4119 start = SIO_GET_OFFSET(srch_sio); 4120 size = SIO_GET_ASIZE(srch_sio); 4121 4122 /* 4123 * We can find the zio in two states: 4124 * 1) Cold, just sitting in the queue of zio's to be issued at 4125 * some point in the future. In this case, all we do is 4126 * remove the zio from the q_sios_by_addr tree, decrement 4127 * its data volume from the containing range_seg_t and 4128 * resort the q_exts_by_size tree to reflect that the 4129 * range_seg_t has lost some of its 'fill'. We don't shorten 4130 * the range_seg_t - this is usually rare enough not to be 4131 * worth the extra hassle of trying keep track of precise 4132 * extent boundaries. 4133 * 2) Hot, where the zio is currently in-flight in 4134 * dsl_scan_issue_ios. In this case, we can't simply 4135 * reach in and stop the in-flight zio's, so we instead 4136 * block the caller. Eventually, dsl_scan_issue_ios will 4137 * be done with issuing the zio's it gathered and will 4138 * signal us. 4139 */ 4140 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4141 sio_free(srch_sio); 4142 4143 if (sio != NULL) { 4144 int64_t asize = SIO_GET_ASIZE(sio); 4145 blkptr_t tmpbp; 4146 4147 /* Got it while it was cold in the queue */ 4148 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4149 ASSERT3U(size, ==, asize); 4150 avl_remove(&queue->q_sios_by_addr, sio); 4151 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4152 4153 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4154 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4155 4156 /* 4157 * We only update scn_bytes_pending in the cold path, 4158 * otherwise it will already have been accounted for as 4159 * part of the zio's execution. 4160 */ 4161 atomic_add_64(&scn->scn_bytes_pending, -asize); 4162 4163 /* count the block as though we issued it */ 4164 sio2bp(sio, &tmpbp); 4165 count_block(scn, dp->dp_blkstats, &tmpbp); 4166 4167 sio_free(sio); 4168 } 4169 mutex_exit(q_lock); 4170 } 4171 4172 /* 4173 * Callback invoked when a zio_free() zio is executing. This needs to be 4174 * intercepted to prevent the zio from deallocating a particular portion 4175 * of disk space and it then getting reallocated and written to, while we 4176 * still have it queued up for processing. 4177 */ 4178 void 4179 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4180 { 4181 dsl_pool_t *dp = spa->spa_dsl_pool; 4182 dsl_scan_t *scn = dp->dp_scan; 4183 4184 ASSERT(!BP_IS_EMBEDDED(bp)); 4185 ASSERT(scn != NULL); 4186 if (!dsl_scan_is_running(scn)) 4187 return; 4188 4189 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4190 dsl_scan_freed_dva(spa, bp, i); 4191 } 4192