1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 28 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org> 29 */ 30 31 #include <sys/dsl_scan.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_prop.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dnode.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/arc.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/zfs_context.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/spa_impl.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/zil_impl.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/ddt.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/zfeature.h> 54 #include <sys/abd.h> 55 #include <sys/range_tree.h> 56 #ifdef _KERNEL 57 #include <sys/zfs_vfsops.h> 58 #endif 59 60 /* 61 * Grand theory statement on scan queue sorting 62 * 63 * Scanning is implemented by recursively traversing all indirection levels 64 * in an object and reading all blocks referenced from said objects. This 65 * results in us approximately traversing the object from lowest logical 66 * offset to the highest. For best performance, we would want the logical 67 * blocks to be physically contiguous. However, this is frequently not the 68 * case with pools given the allocation patterns of copy-on-write filesystems. 69 * So instead, we put the I/Os into a reordering queue and issue them in a 70 * way that will most benefit physical disks (LBA-order). 71 * 72 * Queue management: 73 * 74 * Ideally, we would want to scan all metadata and queue up all block I/O 75 * prior to starting to issue it, because that allows us to do an optimal 76 * sorting job. This can however consume large amounts of memory. Therefore 77 * we continuously monitor the size of the queues and constrain them to 5% 78 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 79 * limit, we clear out a few of the largest extents at the head of the queues 80 * to make room for more scanning. Hopefully, these extents will be fairly 81 * large and contiguous, allowing us to approach sequential I/O throughput 82 * even without a fully sorted tree. 83 * 84 * Metadata scanning takes place in dsl_scan_visit(), which is called from 85 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 86 * metadata on the pool, or we need to make room in memory because our 87 * queues are too large, dsl_scan_visit() is postponed and 88 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 89 * that metadata scanning and queued I/O issuing are mutually exclusive. This 90 * allows us to provide maximum sequential I/O throughput for the majority of 91 * I/O's issued since sequential I/O performance is significantly negatively 92 * impacted if it is interleaved with random I/O. 93 * 94 * Implementation Notes 95 * 96 * One side effect of the queued scanning algorithm is that the scanning code 97 * needs to be notified whenever a block is freed. This is needed to allow 98 * the scanning code to remove these I/Os from the issuing queue. Additionally, 99 * we do not attempt to queue gang blocks to be issued sequentially since this 100 * is very hard to do and would have an extremely limited performance benefit. 101 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 102 * algorithm. 103 * 104 * Backwards compatibility 105 * 106 * This new algorithm is backwards compatible with the legacy on-disk data 107 * structures (and therefore does not require a new feature flag). 108 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 109 * will stop scanning metadata (in logical order) and wait for all outstanding 110 * sorted I/O to complete. Once this is done, we write out a checkpoint 111 * bookmark, indicating that we have scanned everything logically before it. 112 * If the pool is imported on a machine without the new sorting algorithm, 113 * the scan simply resumes from the last checkpoint using the legacy algorithm. 114 */ 115 116 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 117 const zbookmark_phys_t *); 118 119 static scan_cb_t dsl_scan_scrub_cb; 120 121 static int scan_ds_queue_compare(const void *a, const void *b); 122 static int scan_prefetch_queue_compare(const void *a, const void *b); 123 static void scan_ds_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 130 extern int zfs_vdev_async_write_active_min_dirty_percent; 131 132 /* 133 * By default zfs will check to ensure it is not over the hard memory 134 * limit before each txg. If finer-grained control of this is needed 135 * this value can be set to 1 to enable checking before scanning each 136 * block. 137 */ 138 int zfs_scan_strict_mem_lim = B_FALSE; 139 140 /* 141 * Maximum number of parallelly executing I/Os per top-level vdev. 142 * Tune with care. Very high settings (hundreds) are known to trigger 143 * some firmware bugs and resets on certain SSDs. 144 */ 145 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ 146 147 /* 148 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 149 * to strike a balance here between keeping the vdev queues full of I/Os 150 * at all times and not overflowing the queues to cause long latency, 151 * which would cause long txg sync times. No matter what, we will not 152 * overload the drives with I/O, since that is protected by 153 * zfs_vdev_scrub_max_active. 154 */ 155 unsigned long zfs_scan_vdev_limit = 4 << 20; 156 157 int zfs_scan_issue_strategy = 0; 158 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 159 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 160 161 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ 162 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) 163 164 /* 165 * fill_weight is non-tunable at runtime, so we copy it at module init from 166 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 167 * break queue sorting. 168 */ 169 uint64_t zfs_scan_fill_weight = 3; 170 static uint64_t fill_weight; 171 172 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 173 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 174 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 175 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 176 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 177 178 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 179 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 180 /* min millisecs to obsolete per txg */ 181 unsigned int zfs_obsolete_min_time_ms = 500; 182 /* min millisecs to resilver per txg */ 183 unsigned int zfs_resilver_min_time_ms = 3000; 184 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 185 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 186 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 187 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 188 /* max number of blocks to free in a single TXG */ 189 uint64_t zfs_async_block_max_blocks = UINT64_MAX; 190 191 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 192 193 /* 194 * We wait a few txgs after importing a pool to begin scanning so that 195 * the import / mounting code isn't held up by scrub / resilver IO. 196 * Unfortunately, it is a bit difficult to determine exactly how long 197 * this will take since userspace will trigger fs mounts asynchronously 198 * and the kernel will create zvol minors asynchronously. As a result, 199 * the value provided here is a bit arbitrary, but represents a 200 * reasonable estimate of how many txgs it will take to finish fully 201 * importing a pool 202 */ 203 #define SCAN_IMPORT_WAIT_TXGS 5 204 205 206 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 207 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 208 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 209 210 extern int zfs_txg_timeout; 211 212 /* 213 * Enable/disable the processing of the free_bpobj object. 214 */ 215 boolean_t zfs_free_bpobj_enabled = B_TRUE; 216 217 /* the order has to match pool_scan_type */ 218 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 219 NULL, 220 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 221 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 222 }; 223 224 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 225 typedef struct { 226 uint64_t sds_dsobj; 227 uint64_t sds_txg; 228 avl_node_t sds_node; 229 } scan_ds_t; 230 231 /* 232 * This controls what conditions are placed on dsl_scan_sync_state(): 233 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 234 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 235 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 236 * write out the scn_phys_cached version. 237 * See dsl_scan_sync_state for details. 238 */ 239 typedef enum { 240 SYNC_OPTIONAL, 241 SYNC_MANDATORY, 242 SYNC_CACHED 243 } state_sync_type_t; 244 245 /* 246 * This struct represents the minimum information needed to reconstruct a 247 * zio for sequential scanning. This is useful because many of these will 248 * accumulate in the sequential IO queues before being issued, so saving 249 * memory matters here. 250 */ 251 typedef struct scan_io { 252 /* fields from blkptr_t */ 253 uint64_t sio_blk_prop; 254 uint64_t sio_phys_birth; 255 uint64_t sio_birth; 256 zio_cksum_t sio_cksum; 257 uint32_t sio_nr_dvas; 258 259 /* fields from zio_t */ 260 uint32_t sio_flags; 261 zbookmark_phys_t sio_zb; 262 263 /* members for queue sorting */ 264 union { 265 avl_node_t sio_addr_node; /* link into issuing queue */ 266 list_node_t sio_list_node; /* link for issuing to disk */ 267 } sio_nodes; 268 269 /* 270 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 271 * depending on how many were in the original bp. Only the 272 * first DVA is really used for sorting and issuing purposes. 273 * The other DVAs (if provided) simply exist so that the zio 274 * layer can find additional copies to repair from in the 275 * event of an error. This array must go at the end of the 276 * struct to allow this for the variable number of elements. 277 */ 278 dva_t sio_dva[0]; 279 } scan_io_t; 280 281 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 282 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 283 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 284 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 285 #define SIO_GET_END_OFFSET(sio) \ 286 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 287 #define SIO_GET_MUSED(sio) \ 288 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 289 290 struct dsl_scan_io_queue { 291 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 292 vdev_t *q_vd; /* top-level vdev that this queue represents */ 293 294 /* trees used for sorting I/Os and extents of I/Os */ 295 range_tree_t *q_exts_by_addr; 296 zfs_btree_t q_exts_by_size; 297 avl_tree_t q_sios_by_addr; 298 uint64_t q_sio_memused; 299 300 /* members for zio rate limiting */ 301 uint64_t q_maxinflight_bytes; 302 uint64_t q_inflight_bytes; 303 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 304 305 /* per txg statistics */ 306 uint64_t q_total_seg_size_this_txg; 307 uint64_t q_segs_this_txg; 308 uint64_t q_total_zio_size_this_txg; 309 uint64_t q_zios_this_txg; 310 }; 311 312 /* private data for dsl_scan_prefetch_cb() */ 313 typedef struct scan_prefetch_ctx { 314 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 315 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 316 boolean_t spc_root; /* is this prefetch for an objset? */ 317 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 318 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 319 } scan_prefetch_ctx_t; 320 321 /* private data for dsl_scan_prefetch() */ 322 typedef struct scan_prefetch_issue_ctx { 323 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 324 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 325 blkptr_t spic_bp; /* bp to prefetch */ 326 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 327 } scan_prefetch_issue_ctx_t; 328 329 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 330 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 331 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 332 scan_io_t *sio); 333 334 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 335 static void scan_io_queues_destroy(dsl_scan_t *scn); 336 337 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 338 339 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 340 static void 341 sio_free(scan_io_t *sio) 342 { 343 ASSERT3U(sio->sio_nr_dvas, >, 0); 344 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 345 346 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 347 } 348 349 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 350 static scan_io_t * 351 sio_alloc(unsigned short nr_dvas) 352 { 353 ASSERT3U(nr_dvas, >, 0); 354 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 355 356 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 357 } 358 359 void 360 scan_init(void) 361 { 362 /* 363 * This is used in ext_size_compare() to weight segments 364 * based on how sparse they are. This cannot be changed 365 * mid-scan and the tree comparison functions don't currently 366 * have a mechansim for passing additional context to the 367 * compare functions. Thus we store this value globally and 368 * we only allow it to be set at module intiailization time 369 */ 370 fill_weight = zfs_scan_fill_weight; 371 372 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 373 char name[36]; 374 375 (void) sprintf(name, "sio_cache_%d", i); 376 sio_cache[i] = kmem_cache_create(name, 377 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 378 0, NULL, NULL, NULL, NULL, NULL, 0); 379 } 380 } 381 382 void 383 scan_fini(void) 384 { 385 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 386 kmem_cache_destroy(sio_cache[i]); 387 } 388 } 389 390 static inline boolean_t 391 dsl_scan_is_running(const dsl_scan_t *scn) 392 { 393 return (scn->scn_phys.scn_state == DSS_SCANNING); 394 } 395 396 boolean_t 397 dsl_scan_resilvering(dsl_pool_t *dp) 398 { 399 return (dsl_scan_is_running(dp->dp_scan) && 400 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 401 } 402 403 static inline void 404 sio2bp(const scan_io_t *sio, blkptr_t *bp) 405 { 406 bzero(bp, sizeof (*bp)); 407 bp->blk_prop = sio->sio_blk_prop; 408 bp->blk_phys_birth = sio->sio_phys_birth; 409 bp->blk_birth = sio->sio_birth; 410 bp->blk_fill = 1; /* we always only work with data pointers */ 411 bp->blk_cksum = sio->sio_cksum; 412 413 ASSERT3U(sio->sio_nr_dvas, >, 0); 414 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 415 416 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 417 } 418 419 static inline void 420 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 421 { 422 sio->sio_blk_prop = bp->blk_prop; 423 sio->sio_phys_birth = bp->blk_phys_birth; 424 sio->sio_birth = bp->blk_birth; 425 sio->sio_cksum = bp->blk_cksum; 426 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 427 428 /* 429 * Copy the DVAs to the sio. We need all copies of the block so 430 * that the self healing code can use the alternate copies if the 431 * first is corrupted. We want the DVA at index dva_i to be first 432 * in the sio since this is the primary one that we want to issue. 433 */ 434 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 435 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 436 } 437 } 438 439 int 440 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 441 { 442 int err; 443 dsl_scan_t *scn; 444 spa_t *spa = dp->dp_spa; 445 uint64_t f; 446 447 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 448 scn->scn_dp = dp; 449 450 /* 451 * It's possible that we're resuming a scan after a reboot so 452 * make sure that the scan_async_destroying flag is initialized 453 * appropriately. 454 */ 455 ASSERT(!scn->scn_async_destroying); 456 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 457 SPA_FEATURE_ASYNC_DESTROY); 458 459 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 460 offsetof(scan_ds_t, sds_node)); 461 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 462 sizeof (scan_prefetch_issue_ctx_t), 463 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 464 465 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 466 "scrub_func", sizeof (uint64_t), 1, &f); 467 if (err == 0) { 468 /* 469 * There was an old-style scrub in progress. Restart a 470 * new-style scrub from the beginning. 471 */ 472 scn->scn_restart_txg = txg; 473 zfs_dbgmsg("old-style scrub was in progress; " 474 "restarting new-style scrub in txg %llu", 475 (longlong_t)scn->scn_restart_txg); 476 477 /* 478 * Load the queue obj from the old location so that it 479 * can be freed by dsl_scan_done(). 480 */ 481 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 482 "scrub_queue", sizeof (uint64_t), 1, 483 &scn->scn_phys.scn_queue_obj); 484 } else { 485 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 486 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 487 &scn->scn_phys); 488 489 /* 490 * Detect if the pool contains the signature of #2094. If it 491 * does properly update the scn->scn_phys structure and notify 492 * the administrator by setting an errata for the pool. 493 */ 494 if (err == EOVERFLOW) { 495 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 496 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 497 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 498 (23 * sizeof (uint64_t))); 499 500 err = zap_lookup(dp->dp_meta_objset, 501 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 502 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 503 if (err == 0) { 504 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 505 506 if (overflow & ~DSF_VISIT_DS_AGAIN || 507 scn->scn_async_destroying) { 508 spa->spa_errata = 509 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 510 return (EOVERFLOW); 511 } 512 513 bcopy(zaptmp, &scn->scn_phys, 514 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 515 scn->scn_phys.scn_flags = overflow; 516 517 /* Required scrub already in progress. */ 518 if (scn->scn_phys.scn_state == DSS_FINISHED || 519 scn->scn_phys.scn_state == DSS_CANCELED) 520 spa->spa_errata = 521 ZPOOL_ERRATA_ZOL_2094_SCRUB; 522 } 523 } 524 525 if (err == ENOENT) 526 return (0); 527 else if (err) 528 return (err); 529 530 /* 531 * We might be restarting after a reboot, so jump the issued 532 * counter to how far we've scanned. We know we're consistent 533 * up to here. 534 */ 535 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 536 537 if (dsl_scan_is_running(scn) && 538 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 539 /* 540 * A new-type scrub was in progress on an old 541 * pool, and the pool was accessed by old 542 * software. Restart from the beginning, since 543 * the old software may have changed the pool in 544 * the meantime. 545 */ 546 scn->scn_restart_txg = txg; 547 zfs_dbgmsg("new-style scrub was modified " 548 "by old software; restarting in txg %llu", 549 (longlong_t)scn->scn_restart_txg); 550 } else if (dsl_scan_resilvering(dp)) { 551 /* 552 * If a resilver is in progress and there are already 553 * errors, restart it instead of finishing this scan and 554 * then restarting it. If there haven't been any errors 555 * then remember that the incore DTL is valid. 556 */ 557 if (scn->scn_phys.scn_errors > 0) { 558 scn->scn_restart_txg = txg; 559 zfs_dbgmsg("resilver can't excise DTL_MISSING " 560 "when finished; restarting in txg %llu", 561 (u_longlong_t)scn->scn_restart_txg); 562 } else { 563 /* it's safe to excise DTL when finished */ 564 spa->spa_scrub_started = B_TRUE; 565 } 566 } 567 } 568 569 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 570 571 /* reload the queue into the in-core state */ 572 if (scn->scn_phys.scn_queue_obj != 0) { 573 zap_cursor_t zc; 574 zap_attribute_t za; 575 576 for (zap_cursor_init(&zc, dp->dp_meta_objset, 577 scn->scn_phys.scn_queue_obj); 578 zap_cursor_retrieve(&zc, &za) == 0; 579 (void) zap_cursor_advance(&zc)) { 580 scan_ds_queue_insert(scn, 581 zfs_strtonum(za.za_name, NULL), 582 za.za_first_integer); 583 } 584 zap_cursor_fini(&zc); 585 } 586 587 spa_scan_stat_init(spa); 588 return (0); 589 } 590 591 void 592 dsl_scan_fini(dsl_pool_t *dp) 593 { 594 if (dp->dp_scan != NULL) { 595 dsl_scan_t *scn = dp->dp_scan; 596 597 if (scn->scn_taskq != NULL) 598 taskq_destroy(scn->scn_taskq); 599 scan_ds_queue_clear(scn); 600 avl_destroy(&scn->scn_queue); 601 avl_destroy(&scn->scn_prefetch_queue); 602 603 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 604 dp->dp_scan = NULL; 605 } 606 } 607 608 static boolean_t 609 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 610 { 611 return (scn->scn_restart_txg != 0 && 612 scn->scn_restart_txg <= tx->tx_txg); 613 } 614 615 boolean_t 616 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 617 { 618 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 619 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 620 } 621 622 boolean_t 623 dsl_scan_scrubbing(const dsl_pool_t *dp) 624 { 625 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 626 627 return (scn_phys->scn_state == DSS_SCANNING && 628 scn_phys->scn_func == POOL_SCAN_SCRUB); 629 } 630 631 boolean_t 632 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 633 { 634 return (dsl_scan_scrubbing(scn->scn_dp) && 635 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 636 } 637 638 /* 639 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 640 * Because we can be running in the block sorting algorithm, we do not always 641 * want to write out the record, only when it is "safe" to do so. This safety 642 * condition is achieved by making sure that the sorting queues are empty 643 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 644 * is inconsistent with how much actual scanning progress has been made. The 645 * kind of sync to be performed is specified by the sync_type argument. If the 646 * sync is optional, we only sync if the queues are empty. If the sync is 647 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 648 * third possible state is a "cached" sync. This is done in response to: 649 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 650 * destroyed, so we wouldn't be able to restart scanning from it. 651 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 652 * superseded by a newer snapshot. 653 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 654 * swapped with its clone. 655 * In all cases, a cached sync simply rewrites the last record we've written, 656 * just slightly modified. For the modifications that are performed to the 657 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 658 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 659 */ 660 static void 661 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 662 { 663 int i; 664 spa_t *spa = scn->scn_dp->dp_spa; 665 666 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 667 if (scn->scn_bytes_pending == 0) { 668 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 669 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 670 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 671 672 if (q == NULL) 673 continue; 674 675 mutex_enter(&vd->vdev_scan_io_queue_lock); 676 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 677 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 678 NULL); 679 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 680 mutex_exit(&vd->vdev_scan_io_queue_lock); 681 } 682 683 if (scn->scn_phys.scn_queue_obj != 0) 684 scan_ds_queue_sync(scn, tx); 685 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 686 DMU_POOL_DIRECTORY_OBJECT, 687 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 688 &scn->scn_phys, tx)); 689 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 690 sizeof (scn->scn_phys)); 691 692 if (scn->scn_checkpointing) 693 zfs_dbgmsg("finish scan checkpoint"); 694 695 scn->scn_checkpointing = B_FALSE; 696 scn->scn_last_checkpoint = ddi_get_lbolt(); 697 } else if (sync_type == SYNC_CACHED) { 698 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 699 DMU_POOL_DIRECTORY_OBJECT, 700 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 701 &scn->scn_phys_cached, tx)); 702 } 703 } 704 705 /* ARGSUSED */ 706 static int 707 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 708 { 709 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 710 711 if (dsl_scan_is_running(scn)) 712 return (SET_ERROR(EBUSY)); 713 714 return (0); 715 } 716 717 static void 718 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 719 { 720 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 721 pool_scan_func_t *funcp = arg; 722 dmu_object_type_t ot = 0; 723 dsl_pool_t *dp = scn->scn_dp; 724 spa_t *spa = dp->dp_spa; 725 726 ASSERT(!dsl_scan_is_running(scn)); 727 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 728 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 729 scn->scn_phys.scn_func = *funcp; 730 scn->scn_phys.scn_state = DSS_SCANNING; 731 scn->scn_phys.scn_min_txg = 0; 732 scn->scn_phys.scn_max_txg = tx->tx_txg; 733 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 734 scn->scn_phys.scn_start_time = gethrestime_sec(); 735 scn->scn_phys.scn_errors = 0; 736 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 737 scn->scn_issued_before_pass = 0; 738 scn->scn_restart_txg = 0; 739 scn->scn_done_txg = 0; 740 scn->scn_last_checkpoint = 0; 741 scn->scn_checkpointing = B_FALSE; 742 spa_scan_stat_init(spa); 743 744 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 745 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 746 747 /* rewrite all disk labels */ 748 vdev_config_dirty(spa->spa_root_vdev); 749 750 if (vdev_resilver_needed(spa->spa_root_vdev, 751 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 752 spa_event_notify(spa, NULL, NULL, 753 ESC_ZFS_RESILVER_START); 754 } else { 755 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 756 } 757 758 spa->spa_scrub_started = B_TRUE; 759 /* 760 * If this is an incremental scrub, limit the DDT scrub phase 761 * to just the auto-ditto class (for correctness); the rest 762 * of the scrub should go faster using top-down pruning. 763 */ 764 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 765 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 766 767 } 768 769 /* back to the generic stuff */ 770 771 if (dp->dp_blkstats == NULL) { 772 dp->dp_blkstats = 773 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 774 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 775 MUTEX_DEFAULT, NULL); 776 } 777 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 778 779 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 780 ot = DMU_OT_ZAP_OTHER; 781 782 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 783 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 784 785 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 786 787 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 788 789 spa_history_log_internal(spa, "scan setup", tx, 790 "func=%u mintxg=%llu maxtxg=%llu", 791 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); 792 } 793 794 /* 795 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 796 * Can also be called to resume a paused scrub. 797 */ 798 int 799 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 800 { 801 spa_t *spa = dp->dp_spa; 802 dsl_scan_t *scn = dp->dp_scan; 803 804 /* 805 * Purge all vdev caches and probe all devices. We do this here 806 * rather than in sync context because this requires a writer lock 807 * on the spa_config lock, which we can't do from sync context. The 808 * spa_scrub_reopen flag indicates that vdev_open() should not 809 * attempt to start another scrub. 810 */ 811 spa_vdev_state_enter(spa, SCL_NONE); 812 spa->spa_scrub_reopen = B_TRUE; 813 vdev_reopen(spa->spa_root_vdev); 814 spa->spa_scrub_reopen = B_FALSE; 815 (void) spa_vdev_state_exit(spa, NULL, 0); 816 817 if (func == POOL_SCAN_RESILVER) { 818 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 819 return (0); 820 } 821 822 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 823 /* got scrub start cmd, resume paused scrub */ 824 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 825 POOL_SCRUB_NORMAL); 826 if (err == 0) { 827 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 828 return (ECANCELED); 829 } 830 return (SET_ERROR(err)); 831 } 832 833 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 834 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 835 } 836 837 /* ARGSUSED */ 838 static void 839 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 840 { 841 static const char *old_names[] = { 842 "scrub_bookmark", 843 "scrub_ddt_bookmark", 844 "scrub_ddt_class_max", 845 "scrub_queue", 846 "scrub_min_txg", 847 "scrub_max_txg", 848 "scrub_func", 849 "scrub_errors", 850 NULL 851 }; 852 853 dsl_pool_t *dp = scn->scn_dp; 854 spa_t *spa = dp->dp_spa; 855 int i; 856 857 /* Remove any remnants of an old-style scrub. */ 858 for (i = 0; old_names[i]; i++) { 859 (void) zap_remove(dp->dp_meta_objset, 860 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 861 } 862 863 if (scn->scn_phys.scn_queue_obj != 0) { 864 VERIFY0(dmu_object_free(dp->dp_meta_objset, 865 scn->scn_phys.scn_queue_obj, tx)); 866 scn->scn_phys.scn_queue_obj = 0; 867 } 868 scan_ds_queue_clear(scn); 869 870 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 871 872 /* 873 * If we were "restarted" from a stopped state, don't bother 874 * with anything else. 875 */ 876 if (!dsl_scan_is_running(scn)) { 877 ASSERT(!scn->scn_is_sorted); 878 return; 879 } 880 881 if (scn->scn_is_sorted) { 882 scan_io_queues_destroy(scn); 883 scn->scn_is_sorted = B_FALSE; 884 885 if (scn->scn_taskq != NULL) { 886 taskq_destroy(scn->scn_taskq); 887 scn->scn_taskq = NULL; 888 } 889 } 890 891 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 892 893 if (dsl_scan_restarting(scn, tx)) 894 spa_history_log_internal(spa, "scan aborted, restarting", tx, 895 "errors=%llu", spa_get_errlog_size(spa)); 896 else if (!complete) 897 spa_history_log_internal(spa, "scan cancelled", tx, 898 "errors=%llu", spa_get_errlog_size(spa)); 899 else 900 spa_history_log_internal(spa, "scan done", tx, 901 "errors=%llu", spa_get_errlog_size(spa)); 902 903 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 904 spa->spa_scrub_active = B_FALSE; 905 906 /* 907 * If the scrub/resilver completed, update all DTLs to 908 * reflect this. Whether it succeeded or not, vacate 909 * all temporary scrub DTLs. 910 * 911 * As the scrub does not currently support traversing 912 * data that have been freed but are part of a checkpoint, 913 * we don't mark the scrub as done in the DTLs as faults 914 * may still exist in those vdevs. 915 */ 916 if (complete && 917 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 918 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 919 scn->scn_phys.scn_max_txg, B_TRUE); 920 921 spa_event_notify(spa, NULL, NULL, 922 scn->scn_phys.scn_min_txg ? 923 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); 924 } else { 925 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 926 0, B_TRUE); 927 } 928 spa_errlog_rotate(spa); 929 930 /* 931 * Don't clear flag until after vdev_dtl_reassess to ensure that 932 * DTL_MISSING will get updated when possible. 933 */ 934 spa->spa_scrub_started = B_FALSE; 935 936 /* 937 * We may have finished replacing a device. 938 * Let the async thread assess this and handle the detach. 939 */ 940 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 941 942 /* 943 * Clear any resilver_deferred flags in the config. 944 * If there are drives that need resilvering, kick 945 * off an asynchronous request to start resilver. 946 * vdev_clear_resilver_deferred() may update the config 947 * before the resilver can restart. In the event of 948 * a crash during this period, the spa loading code 949 * will find the drives that need to be resilvered 950 * and start the resilver then. 951 */ 952 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 953 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 954 spa_history_log_internal(spa, 955 "starting deferred resilver", tx, "errors=%llu", 956 (u_longlong_t)spa_get_errlog_size(spa)); 957 spa_async_request(spa, SPA_ASYNC_RESILVER); 958 } 959 } 960 961 scn->scn_phys.scn_end_time = gethrestime_sec(); 962 963 ASSERT(!dsl_scan_is_running(scn)); 964 } 965 966 /* ARGSUSED */ 967 static int 968 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 969 { 970 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 971 972 if (!dsl_scan_is_running(scn)) 973 return (SET_ERROR(ENOENT)); 974 return (0); 975 } 976 977 /* ARGSUSED */ 978 static void 979 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 980 { 981 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 982 983 dsl_scan_done(scn, B_FALSE, tx); 984 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 985 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 986 } 987 988 int 989 dsl_scan_cancel(dsl_pool_t *dp) 990 { 991 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 992 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 993 } 994 995 static int 996 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 997 { 998 pool_scrub_cmd_t *cmd = arg; 999 dsl_pool_t *dp = dmu_tx_pool(tx); 1000 dsl_scan_t *scn = dp->dp_scan; 1001 1002 if (*cmd == POOL_SCRUB_PAUSE) { 1003 /* can't pause a scrub when there is no in-progress scrub */ 1004 if (!dsl_scan_scrubbing(dp)) 1005 return (SET_ERROR(ENOENT)); 1006 1007 /* can't pause a paused scrub */ 1008 if (dsl_scan_is_paused_scrub(scn)) 1009 return (SET_ERROR(EBUSY)); 1010 } else if (*cmd != POOL_SCRUB_NORMAL) { 1011 return (SET_ERROR(ENOTSUP)); 1012 } 1013 1014 return (0); 1015 } 1016 1017 static void 1018 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1019 { 1020 pool_scrub_cmd_t *cmd = arg; 1021 dsl_pool_t *dp = dmu_tx_pool(tx); 1022 spa_t *spa = dp->dp_spa; 1023 dsl_scan_t *scn = dp->dp_scan; 1024 1025 if (*cmd == POOL_SCRUB_PAUSE) { 1026 /* can't pause a scrub when there is no in-progress scrub */ 1027 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1028 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1029 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1030 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1031 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1032 } else { 1033 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1034 if (dsl_scan_is_paused_scrub(scn)) { 1035 /* 1036 * We need to keep track of how much time we spend 1037 * paused per pass so that we can adjust the scrub rate 1038 * shown in the output of 'zpool status' 1039 */ 1040 spa->spa_scan_pass_scrub_spent_paused += 1041 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1042 spa->spa_scan_pass_scrub_pause = 0; 1043 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1044 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1045 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1046 } 1047 } 1048 } 1049 1050 /* 1051 * Set scrub pause/resume state if it makes sense to do so 1052 */ 1053 int 1054 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1055 { 1056 return (dsl_sync_task(spa_name(dp->dp_spa), 1057 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1058 ZFS_SPACE_CHECK_RESERVED)); 1059 } 1060 1061 1062 /* start a new scan, or restart an existing one. */ 1063 void 1064 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1065 { 1066 if (txg == 0) { 1067 dmu_tx_t *tx; 1068 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1069 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1070 1071 txg = dmu_tx_get_txg(tx); 1072 dp->dp_scan->scn_restart_txg = txg; 1073 dmu_tx_commit(tx); 1074 } else { 1075 dp->dp_scan->scn_restart_txg = txg; 1076 } 1077 zfs_dbgmsg("restarting resilver txg=%llu", txg); 1078 } 1079 1080 void 1081 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1082 { 1083 zio_free(dp->dp_spa, txg, bp); 1084 } 1085 1086 void 1087 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1088 { 1089 ASSERT(dsl_pool_sync_context(dp)); 1090 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1091 } 1092 1093 static int 1094 scan_ds_queue_compare(const void *a, const void *b) 1095 { 1096 const scan_ds_t *sds_a = a, *sds_b = b; 1097 1098 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1099 return (-1); 1100 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1101 return (0); 1102 return (1); 1103 } 1104 1105 static void 1106 scan_ds_queue_clear(dsl_scan_t *scn) 1107 { 1108 void *cookie = NULL; 1109 scan_ds_t *sds; 1110 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1111 kmem_free(sds, sizeof (*sds)); 1112 } 1113 } 1114 1115 static boolean_t 1116 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1117 { 1118 scan_ds_t srch, *sds; 1119 1120 srch.sds_dsobj = dsobj; 1121 sds = avl_find(&scn->scn_queue, &srch, NULL); 1122 if (sds != NULL && txg != NULL) 1123 *txg = sds->sds_txg; 1124 return (sds != NULL); 1125 } 1126 1127 static void 1128 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1129 { 1130 scan_ds_t *sds; 1131 avl_index_t where; 1132 1133 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1134 sds->sds_dsobj = dsobj; 1135 sds->sds_txg = txg; 1136 1137 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1138 avl_insert(&scn->scn_queue, sds, where); 1139 } 1140 1141 static void 1142 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1143 { 1144 scan_ds_t srch, *sds; 1145 1146 srch.sds_dsobj = dsobj; 1147 1148 sds = avl_find(&scn->scn_queue, &srch, NULL); 1149 VERIFY(sds != NULL); 1150 avl_remove(&scn->scn_queue, sds); 1151 kmem_free(sds, sizeof (*sds)); 1152 } 1153 1154 static void 1155 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1156 { 1157 dsl_pool_t *dp = scn->scn_dp; 1158 spa_t *spa = dp->dp_spa; 1159 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1160 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1161 1162 ASSERT0(scn->scn_bytes_pending); 1163 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1164 1165 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1166 scn->scn_phys.scn_queue_obj, tx)); 1167 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1168 DMU_OT_NONE, 0, tx); 1169 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1170 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1171 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1172 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1173 sds->sds_txg, tx)); 1174 } 1175 } 1176 1177 /* 1178 * Computes the memory limit state that we're currently in. A sorted scan 1179 * needs quite a bit of memory to hold the sorting queue, so we need to 1180 * reasonably constrain the size so it doesn't impact overall system 1181 * performance. We compute two limits: 1182 * 1) Hard memory limit: if the amount of memory used by the sorting 1183 * queues on a pool gets above this value, we stop the metadata 1184 * scanning portion and start issuing the queued up and sorted 1185 * I/Os to reduce memory usage. 1186 * This limit is calculated as a fraction of physmem (by default 5%). 1187 * We constrain the lower bound of the hard limit to an absolute 1188 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1189 * the upper bound to 5% of the total pool size - no chance we'll 1190 * ever need that much memory, but just to keep the value in check. 1191 * 2) Soft memory limit: once we hit the hard memory limit, we start 1192 * issuing I/O to reduce queue memory usage, but we don't want to 1193 * completely empty out the queues, since we might be able to find I/Os 1194 * that will fill in the gaps of our non-sequential IOs at some point 1195 * in the future. So we stop the issuing of I/Os once the amount of 1196 * memory used drops below the soft limit (at which point we stop issuing 1197 * I/O and start scanning metadata again). 1198 * 1199 * This limit is calculated by subtracting a fraction of the hard 1200 * limit from the hard limit. By default this fraction is 5%, so 1201 * the soft limit is 95% of the hard limit. We cap the size of the 1202 * difference between the hard and soft limits at an absolute 1203 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1204 * sufficient to not cause too frequent switching between the 1205 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1206 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1207 * that should take at least a decent fraction of a second). 1208 */ 1209 static boolean_t 1210 dsl_scan_should_clear(dsl_scan_t *scn) 1211 { 1212 spa_t *spa = scn->scn_dp->dp_spa; 1213 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1214 uint64_t alloc, mlim_hard, mlim_soft, mused; 1215 1216 if (arc_memory_is_low()) { 1217 /* 1218 * System memory is tight, and scanning requires allocation. 1219 * Throttle the scan until we have more headroom. 1220 */ 1221 return (B_TRUE); 1222 } 1223 1224 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1225 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1226 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1227 1228 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1229 zfs_scan_mem_lim_min); 1230 mlim_hard = MIN(mlim_hard, alloc / 20); 1231 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1232 zfs_scan_mem_lim_soft_max); 1233 mused = 0; 1234 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1235 vdev_t *tvd = rvd->vdev_child[i]; 1236 dsl_scan_io_queue_t *queue; 1237 1238 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1239 queue = tvd->vdev_scan_io_queue; 1240 if (queue != NULL) { 1241 /* 1242 * # of extents in exts_by_size = # in exts_by_addr. 1243 * B-tree efficiency is ~75%, but can be as low as 50%. 1244 */ 1245 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1246 3 * sizeof (range_seg_gap_t) + queue->q_sio_memused; 1247 } 1248 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1249 } 1250 1251 dprintf_zfs("current scan memory usage: %llu bytes\n", 1252 (longlong_t)mused); 1253 1254 if (mused == 0) 1255 ASSERT0(scn->scn_bytes_pending); 1256 1257 /* 1258 * If we are above our hard limit, we need to clear out memory. 1259 * If we are below our soft limit, we need to accumulate sequential IOs. 1260 * Otherwise, we should keep doing whatever we are currently doing. 1261 */ 1262 if (mused >= mlim_hard) 1263 return (B_TRUE); 1264 else if (mused < mlim_soft) 1265 return (B_FALSE); 1266 else 1267 return (scn->scn_clearing); 1268 } 1269 1270 static boolean_t 1271 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1272 { 1273 /* we never skip user/group accounting objects */ 1274 if (zb && (int64_t)zb->zb_object < 0) 1275 return (B_FALSE); 1276 1277 if (scn->scn_suspending) 1278 return (B_TRUE); /* we're already suspending */ 1279 1280 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1281 return (B_FALSE); /* we're resuming */ 1282 1283 /* We only know how to resume from level-0 blocks. */ 1284 if (zb && zb->zb_level != 0) 1285 return (B_FALSE); 1286 1287 /* 1288 * We suspend if: 1289 * - we have scanned for at least the minimum time (default 1 sec 1290 * for scrub, 3 sec for resilver), and either we have sufficient 1291 * dirty data that we are starting to write more quickly 1292 * (default 30%), or someone is explicitly waiting for this txg 1293 * to complete. 1294 * or 1295 * - the spa is shutting down because this pool is being exported 1296 * or the machine is rebooting. 1297 * or 1298 * - the scan queue has reached its memory use limit 1299 */ 1300 hrtime_t curr_time_ns = gethrtime(); 1301 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1302 uint64_t sync_time_ns = curr_time_ns - 1303 scn->scn_dp->dp_spa->spa_sync_starttime; 1304 1305 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1306 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1307 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1308 1309 if ((NSEC2MSEC(scan_time_ns) > mintime && 1310 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1311 txg_sync_waiting(scn->scn_dp) || 1312 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1313 spa_shutting_down(scn->scn_dp->dp_spa) || 1314 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1315 if (zb) { 1316 dprintf_zfs("suspending at bookmark " 1317 "%llx/%llx/%llx/%llx\n", 1318 (longlong_t)zb->zb_objset, 1319 (longlong_t)zb->zb_object, 1320 (longlong_t)zb->zb_level, 1321 (longlong_t)zb->zb_blkid); 1322 scn->scn_phys.scn_bookmark = *zb; 1323 } else { 1324 dsl_scan_phys_t *scnp = &scn->scn_phys; 1325 1326 dprintf_zfs("suspending at DDT bookmark " 1327 "%llx/%llx/%llx/%llx\n", 1328 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1329 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1330 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1331 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1332 } 1333 scn->scn_suspending = B_TRUE; 1334 return (B_TRUE); 1335 } 1336 return (B_FALSE); 1337 } 1338 1339 typedef struct zil_scan_arg { 1340 dsl_pool_t *zsa_dp; 1341 zil_header_t *zsa_zh; 1342 } zil_scan_arg_t; 1343 1344 /* ARGSUSED */ 1345 static int 1346 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1347 { 1348 zil_scan_arg_t *zsa = arg; 1349 dsl_pool_t *dp = zsa->zsa_dp; 1350 dsl_scan_t *scn = dp->dp_scan; 1351 zil_header_t *zh = zsa->zsa_zh; 1352 zbookmark_phys_t zb; 1353 1354 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1355 return (0); 1356 1357 /* 1358 * One block ("stubby") can be allocated a long time ago; we 1359 * want to visit that one because it has been allocated 1360 * (on-disk) even if it hasn't been claimed (even though for 1361 * scrub there's nothing to do to it). 1362 */ 1363 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1364 return (0); 1365 1366 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1367 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1368 1369 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1370 return (0); 1371 } 1372 1373 /* ARGSUSED */ 1374 static int 1375 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1376 { 1377 if (lrc->lrc_txtype == TX_WRITE) { 1378 zil_scan_arg_t *zsa = arg; 1379 dsl_pool_t *dp = zsa->zsa_dp; 1380 dsl_scan_t *scn = dp->dp_scan; 1381 zil_header_t *zh = zsa->zsa_zh; 1382 lr_write_t *lr = (lr_write_t *)lrc; 1383 blkptr_t *bp = &lr->lr_blkptr; 1384 zbookmark_phys_t zb; 1385 1386 if (BP_IS_HOLE(bp) || 1387 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1388 return (0); 1389 1390 /* 1391 * birth can be < claim_txg if this record's txg is 1392 * already txg sync'ed (but this log block contains 1393 * other records that are not synced) 1394 */ 1395 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1396 return (0); 1397 1398 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1399 lr->lr_foid, ZB_ZIL_LEVEL, 1400 lr->lr_offset / BP_GET_LSIZE(bp)); 1401 1402 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1403 } 1404 return (0); 1405 } 1406 1407 static void 1408 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1409 { 1410 uint64_t claim_txg = zh->zh_claim_txg; 1411 zil_scan_arg_t zsa = { dp, zh }; 1412 zilog_t *zilog; 1413 1414 ASSERT(spa_writeable(dp->dp_spa)); 1415 1416 /* 1417 * We only want to visit blocks that have been claimed 1418 * but not yet replayed. 1419 */ 1420 if (claim_txg == 0) 1421 return; 1422 1423 zilog = zil_alloc(dp->dp_meta_objset, zh); 1424 1425 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1426 claim_txg, B_FALSE); 1427 1428 zil_free(zilog); 1429 } 1430 1431 /* 1432 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1433 * here is to sort the AVL tree by the order each block will be needed. 1434 */ 1435 static int 1436 scan_prefetch_queue_compare(const void *a, const void *b) 1437 { 1438 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1439 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1440 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1441 1442 return (zbookmark_compare(spc_a->spc_datablkszsec, 1443 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1444 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1445 } 1446 1447 static void 1448 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1449 { 1450 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1451 zfs_refcount_destroy(&spc->spc_refcnt); 1452 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1453 } 1454 } 1455 1456 static scan_prefetch_ctx_t * 1457 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1458 { 1459 scan_prefetch_ctx_t *spc; 1460 1461 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1462 zfs_refcount_create(&spc->spc_refcnt); 1463 zfs_refcount_add(&spc->spc_refcnt, tag); 1464 spc->spc_scn = scn; 1465 if (dnp != NULL) { 1466 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1467 spc->spc_indblkshift = dnp->dn_indblkshift; 1468 spc->spc_root = B_FALSE; 1469 } else { 1470 spc->spc_datablkszsec = 0; 1471 spc->spc_indblkshift = 0; 1472 spc->spc_root = B_TRUE; 1473 } 1474 1475 return (spc); 1476 } 1477 1478 static void 1479 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1480 { 1481 zfs_refcount_add(&spc->spc_refcnt, tag); 1482 } 1483 1484 static boolean_t 1485 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1486 const zbookmark_phys_t *zb) 1487 { 1488 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1489 dnode_phys_t tmp_dnp; 1490 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1491 1492 if (zb->zb_objset != last_zb->zb_objset) 1493 return (B_TRUE); 1494 if ((int64_t)zb->zb_object < 0) 1495 return (B_FALSE); 1496 1497 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1498 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1499 1500 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1501 return (B_TRUE); 1502 1503 return (B_FALSE); 1504 } 1505 1506 static void 1507 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1508 { 1509 avl_index_t idx; 1510 dsl_scan_t *scn = spc->spc_scn; 1511 spa_t *spa = scn->scn_dp->dp_spa; 1512 scan_prefetch_issue_ctx_t *spic; 1513 1514 if (zfs_no_scrub_prefetch) 1515 return; 1516 1517 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1518 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1519 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1520 return; 1521 1522 if (dsl_scan_check_prefetch_resume(spc, zb)) 1523 return; 1524 1525 scan_prefetch_ctx_add_ref(spc, scn); 1526 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1527 spic->spic_spc = spc; 1528 spic->spic_bp = *bp; 1529 spic->spic_zb = *zb; 1530 1531 /* 1532 * Add the IO to the queue of blocks to prefetch. This allows us to 1533 * prioritize blocks that we will need first for the main traversal 1534 * thread. 1535 */ 1536 mutex_enter(&spa->spa_scrub_lock); 1537 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1538 /* this block is already queued for prefetch */ 1539 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1540 scan_prefetch_ctx_rele(spc, scn); 1541 mutex_exit(&spa->spa_scrub_lock); 1542 return; 1543 } 1544 1545 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1546 cv_broadcast(&spa->spa_scrub_io_cv); 1547 mutex_exit(&spa->spa_scrub_lock); 1548 } 1549 1550 static void 1551 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1552 uint64_t objset, uint64_t object) 1553 { 1554 int i; 1555 zbookmark_phys_t zb; 1556 scan_prefetch_ctx_t *spc; 1557 1558 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1559 return; 1560 1561 SET_BOOKMARK(&zb, objset, object, 0, 0); 1562 1563 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1564 1565 for (i = 0; i < dnp->dn_nblkptr; i++) { 1566 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1567 zb.zb_blkid = i; 1568 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1569 } 1570 1571 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1572 zb.zb_level = 0; 1573 zb.zb_blkid = DMU_SPILL_BLKID; 1574 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); 1575 } 1576 1577 scan_prefetch_ctx_rele(spc, FTAG); 1578 } 1579 1580 void 1581 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1582 arc_buf_t *buf, void *private) 1583 { 1584 scan_prefetch_ctx_t *spc = private; 1585 dsl_scan_t *scn = spc->spc_scn; 1586 spa_t *spa = scn->scn_dp->dp_spa; 1587 1588 /* broadcast that the IO has completed for rate limitting purposes */ 1589 mutex_enter(&spa->spa_scrub_lock); 1590 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1591 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1592 cv_broadcast(&spa->spa_scrub_io_cv); 1593 mutex_exit(&spa->spa_scrub_lock); 1594 1595 /* if there was an error or we are done prefetching, just cleanup */ 1596 if (buf == NULL || scn->scn_suspending) 1597 goto out; 1598 1599 if (BP_GET_LEVEL(bp) > 0) { 1600 int i; 1601 blkptr_t *cbp; 1602 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1603 zbookmark_phys_t czb; 1604 1605 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1606 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1607 zb->zb_level - 1, zb->zb_blkid * epb + i); 1608 dsl_scan_prefetch(spc, cbp, &czb); 1609 } 1610 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1611 dnode_phys_t *cdnp = buf->b_data; 1612 int i; 1613 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1614 1615 for (i = 0, cdnp = buf->b_data; i < epb; 1616 i += cdnp->dn_extra_slots + 1, 1617 cdnp += cdnp->dn_extra_slots + 1) { 1618 dsl_scan_prefetch_dnode(scn, cdnp, 1619 zb->zb_objset, zb->zb_blkid * epb + i); 1620 } 1621 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1622 objset_phys_t *osp = buf->b_data; 1623 1624 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1625 zb->zb_objset, DMU_META_DNODE_OBJECT); 1626 1627 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1628 dsl_scan_prefetch_dnode(scn, 1629 &osp->os_groupused_dnode, zb->zb_objset, 1630 DMU_GROUPUSED_OBJECT); 1631 dsl_scan_prefetch_dnode(scn, 1632 &osp->os_userused_dnode, zb->zb_objset, 1633 DMU_USERUSED_OBJECT); 1634 } 1635 } 1636 1637 out: 1638 if (buf != NULL) 1639 arc_buf_destroy(buf, private); 1640 scan_prefetch_ctx_rele(spc, scn); 1641 } 1642 1643 /* ARGSUSED */ 1644 static void 1645 dsl_scan_prefetch_thread(void *arg) 1646 { 1647 dsl_scan_t *scn = arg; 1648 spa_t *spa = scn->scn_dp->dp_spa; 1649 vdev_t *rvd = spa->spa_root_vdev; 1650 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; 1651 scan_prefetch_issue_ctx_t *spic; 1652 1653 /* loop until we are told to stop */ 1654 while (!scn->scn_prefetch_stop) { 1655 arc_flags_t flags = ARC_FLAG_NOWAIT | 1656 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1657 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1658 1659 mutex_enter(&spa->spa_scrub_lock); 1660 1661 /* 1662 * Wait until we have an IO to issue and are not above our 1663 * maximum in flight limit. 1664 */ 1665 while (!scn->scn_prefetch_stop && 1666 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1667 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1668 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1669 } 1670 1671 /* recheck if we should stop since we waited for the cv */ 1672 if (scn->scn_prefetch_stop) { 1673 mutex_exit(&spa->spa_scrub_lock); 1674 break; 1675 } 1676 1677 /* remove the prefetch IO from the tree */ 1678 spic = avl_first(&scn->scn_prefetch_queue); 1679 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1680 avl_remove(&scn->scn_prefetch_queue, spic); 1681 1682 mutex_exit(&spa->spa_scrub_lock); 1683 1684 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1685 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1686 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1687 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1688 zio_flags |= ZIO_FLAG_RAW; 1689 } 1690 1691 /* issue the prefetch asynchronously */ 1692 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1693 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1694 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1695 1696 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1697 } 1698 1699 ASSERT(scn->scn_prefetch_stop); 1700 1701 /* free any prefetches we didn't get to complete */ 1702 mutex_enter(&spa->spa_scrub_lock); 1703 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1704 avl_remove(&scn->scn_prefetch_queue, spic); 1705 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1706 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1707 } 1708 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1709 mutex_exit(&spa->spa_scrub_lock); 1710 } 1711 1712 static boolean_t 1713 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1714 const zbookmark_phys_t *zb) 1715 { 1716 /* 1717 * We never skip over user/group accounting objects (obj<0) 1718 */ 1719 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1720 (int64_t)zb->zb_object >= 0) { 1721 /* 1722 * If we already visited this bp & everything below (in 1723 * a prior txg sync), don't bother doing it again. 1724 */ 1725 if (zbookmark_subtree_completed(dnp, zb, 1726 &scn->scn_phys.scn_bookmark)) 1727 return (B_TRUE); 1728 1729 /* 1730 * If we found the block we're trying to resume from, or 1731 * we went past it to a different object, zero it out to 1732 * indicate that it's OK to start checking for suspending 1733 * again. 1734 */ 1735 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1736 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1737 dprintf_zfs("resuming at %llx/%llx/%llx/%llx\n", 1738 (longlong_t)zb->zb_objset, 1739 (longlong_t)zb->zb_object, 1740 (longlong_t)zb->zb_level, 1741 (longlong_t)zb->zb_blkid); 1742 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1743 } 1744 } 1745 return (B_FALSE); 1746 } 1747 1748 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1749 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1750 dmu_objset_type_t ostype, dmu_tx_t *tx); 1751 static void dsl_scan_visitdnode( 1752 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1753 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1754 1755 /* 1756 * Return nonzero on i/o error. 1757 * Return new buf to write out in *bufp. 1758 */ 1759 static int 1760 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1761 dnode_phys_t *dnp, const blkptr_t *bp, 1762 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1763 { 1764 dsl_pool_t *dp = scn->scn_dp; 1765 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1766 int err; 1767 1768 if (BP_GET_LEVEL(bp) > 0) { 1769 arc_flags_t flags = ARC_FLAG_WAIT; 1770 int i; 1771 blkptr_t *cbp; 1772 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1773 arc_buf_t *buf; 1774 1775 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1776 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1777 if (err) { 1778 scn->scn_phys.scn_errors++; 1779 return (err); 1780 } 1781 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1782 zbookmark_phys_t czb; 1783 1784 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1785 zb->zb_level - 1, 1786 zb->zb_blkid * epb + i); 1787 dsl_scan_visitbp(cbp, &czb, dnp, 1788 ds, scn, ostype, tx); 1789 } 1790 arc_buf_destroy(buf, &buf); 1791 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1792 arc_flags_t flags = ARC_FLAG_WAIT; 1793 dnode_phys_t *cdnp; 1794 int i; 1795 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1796 arc_buf_t *buf; 1797 1798 if (BP_IS_PROTECTED(bp)) { 1799 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1800 zio_flags |= ZIO_FLAG_RAW; 1801 } 1802 1803 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1804 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1805 if (err) { 1806 scn->scn_phys.scn_errors++; 1807 return (err); 1808 } 1809 for (i = 0, cdnp = buf->b_data; i < epb; 1810 i += cdnp->dn_extra_slots + 1, 1811 cdnp += cdnp->dn_extra_slots + 1) { 1812 dsl_scan_visitdnode(scn, ds, ostype, 1813 cdnp, zb->zb_blkid * epb + i, tx); 1814 } 1815 1816 arc_buf_destroy(buf, &buf); 1817 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1818 arc_flags_t flags = ARC_FLAG_WAIT; 1819 objset_phys_t *osp; 1820 arc_buf_t *buf; 1821 1822 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1823 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1824 if (err) { 1825 scn->scn_phys.scn_errors++; 1826 return (err); 1827 } 1828 1829 osp = buf->b_data; 1830 1831 dsl_scan_visitdnode(scn, ds, osp->os_type, 1832 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1833 1834 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1835 /* 1836 * We also always visit user/group/project accounting 1837 * objects, and never skip them, even if we are 1838 * suspending. This is necessary so that the space 1839 * deltas from this txg get integrated. 1840 */ 1841 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1842 dsl_scan_visitdnode(scn, ds, osp->os_type, 1843 &osp->os_projectused_dnode, 1844 DMU_PROJECTUSED_OBJECT, tx); 1845 dsl_scan_visitdnode(scn, ds, osp->os_type, 1846 &osp->os_groupused_dnode, 1847 DMU_GROUPUSED_OBJECT, tx); 1848 dsl_scan_visitdnode(scn, ds, osp->os_type, 1849 &osp->os_userused_dnode, 1850 DMU_USERUSED_OBJECT, tx); 1851 } 1852 arc_buf_destroy(buf, &buf); 1853 } 1854 1855 return (0); 1856 } 1857 1858 static void 1859 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1860 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1861 uint64_t object, dmu_tx_t *tx) 1862 { 1863 int j; 1864 1865 for (j = 0; j < dnp->dn_nblkptr; j++) { 1866 zbookmark_phys_t czb; 1867 1868 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1869 dnp->dn_nlevels - 1, j); 1870 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1871 &czb, dnp, ds, scn, ostype, tx); 1872 } 1873 1874 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1875 zbookmark_phys_t czb; 1876 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1877 0, DMU_SPILL_BLKID); 1878 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1879 &czb, dnp, ds, scn, ostype, tx); 1880 } 1881 } 1882 1883 /* 1884 * The arguments are in this order because mdb can only print the 1885 * first 5; we want them to be useful. 1886 */ 1887 static void 1888 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1889 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1890 dmu_objset_type_t ostype, dmu_tx_t *tx) 1891 { 1892 dsl_pool_t *dp = scn->scn_dp; 1893 blkptr_t *bp_toread = NULL; 1894 1895 if (dsl_scan_check_suspend(scn, zb)) 1896 return; 1897 1898 if (dsl_scan_check_resume(scn, dnp, zb)) 1899 return; 1900 1901 scn->scn_visited_this_txg++; 1902 1903 /* 1904 * This debugging is commented out to conserve stack space. This 1905 * function is called recursively and the debugging addes several 1906 * bytes to the stack for each call. It can be commented back in 1907 * if required to debug an issue in dsl_scan_visitbp(). 1908 * 1909 * dprintf_bp(bp, 1910 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1911 * ds, ds ? ds->ds_object : 0, 1912 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1913 * bp); 1914 */ 1915 1916 if (BP_IS_HOLE(bp)) { 1917 scn->scn_holes_this_txg++; 1918 return; 1919 } 1920 1921 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1922 scn->scn_lt_min_this_txg++; 1923 return; 1924 } 1925 1926 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1927 *bp_toread = *bp; 1928 1929 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1930 goto out; 1931 1932 /* 1933 * If dsl_scan_ddt() has already visited this block, it will have 1934 * already done any translations or scrubbing, so don't call the 1935 * callback again. 1936 */ 1937 if (ddt_class_contains(dp->dp_spa, 1938 scn->scn_phys.scn_ddt_class_max, bp)) { 1939 scn->scn_ddt_contained_this_txg++; 1940 goto out; 1941 } 1942 1943 /* 1944 * If this block is from the future (after cur_max_txg), then we 1945 * are doing this on behalf of a deleted snapshot, and we will 1946 * revisit the future block on the next pass of this dataset. 1947 * Don't scan it now unless we need to because something 1948 * under it was modified. 1949 */ 1950 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 1951 scn->scn_gt_max_this_txg++; 1952 goto out; 1953 } 1954 1955 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 1956 1957 out: 1958 kmem_free(bp_toread, sizeof (blkptr_t)); 1959 } 1960 1961 static void 1962 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 1963 dmu_tx_t *tx) 1964 { 1965 zbookmark_phys_t zb; 1966 scan_prefetch_ctx_t *spc; 1967 1968 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1969 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 1970 1971 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 1972 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 1973 zb.zb_objset, 0, 0, 0); 1974 } else { 1975 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 1976 } 1977 1978 scn->scn_objsets_visited_this_txg++; 1979 1980 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 1981 dsl_scan_prefetch(spc, bp, &zb); 1982 scan_prefetch_ctx_rele(spc, FTAG); 1983 1984 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 1985 1986 dprintf_ds(ds, "finished scan%s", ""); 1987 } 1988 1989 static void 1990 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 1991 { 1992 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 1993 if (ds->ds_is_snapshot) { 1994 /* 1995 * Note: 1996 * - scn_cur_{min,max}_txg stays the same. 1997 * - Setting the flag is not really necessary if 1998 * scn_cur_max_txg == scn_max_txg, because there 1999 * is nothing after this snapshot that we care 2000 * about. However, we set it anyway and then 2001 * ignore it when we retraverse it in 2002 * dsl_scan_visitds(). 2003 */ 2004 scn_phys->scn_bookmark.zb_objset = 2005 dsl_dataset_phys(ds)->ds_next_snap_obj; 2006 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2007 "reset zb_objset to %llu", 2008 (u_longlong_t)ds->ds_object, 2009 (u_longlong_t)dsl_dataset_phys(ds)-> 2010 ds_next_snap_obj); 2011 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2012 } else { 2013 SET_BOOKMARK(&scn_phys->scn_bookmark, 2014 ZB_DESTROYED_OBJSET, 0, 0, 0); 2015 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2016 "reset bookmark to -1,0,0,0", 2017 (u_longlong_t)ds->ds_object); 2018 } 2019 } 2020 } 2021 2022 /* 2023 * Invoked when a dataset is destroyed. We need to make sure that: 2024 * 2025 * 1) If it is the dataset that was currently being scanned, we write 2026 * a new dsl_scan_phys_t and marking the objset reference in it 2027 * as destroyed. 2028 * 2) Remove it from the work queue, if it was present. 2029 * 2030 * If the dataset was actually a snapshot, instead of marking the dataset 2031 * as destroyed, we instead substitute the next snapshot in line. 2032 */ 2033 void 2034 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2035 { 2036 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2037 dsl_scan_t *scn = dp->dp_scan; 2038 uint64_t mintxg; 2039 2040 if (!dsl_scan_is_running(scn)) 2041 return; 2042 2043 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2044 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2045 2046 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2047 scan_ds_queue_remove(scn, ds->ds_object); 2048 if (ds->ds_is_snapshot) 2049 scan_ds_queue_insert(scn, 2050 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2051 } 2052 2053 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2054 ds->ds_object, &mintxg) == 0) { 2055 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2056 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2057 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2058 if (ds->ds_is_snapshot) { 2059 /* 2060 * We keep the same mintxg; it could be > 2061 * ds_creation_txg if the previous snapshot was 2062 * deleted too. 2063 */ 2064 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2065 scn->scn_phys.scn_queue_obj, 2066 dsl_dataset_phys(ds)->ds_next_snap_obj, 2067 mintxg, tx) == 0); 2068 zfs_dbgmsg("destroying ds %llu; in queue; " 2069 "replacing with %llu", 2070 (u_longlong_t)ds->ds_object, 2071 (u_longlong_t)dsl_dataset_phys(ds)-> 2072 ds_next_snap_obj); 2073 } else { 2074 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2075 (u_longlong_t)ds->ds_object); 2076 } 2077 } 2078 2079 /* 2080 * dsl_scan_sync() should be called after this, and should sync 2081 * out our changed state, but just to be safe, do it here. 2082 */ 2083 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2084 } 2085 2086 static void 2087 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2088 { 2089 if (scn_bookmark->zb_objset == ds->ds_object) { 2090 scn_bookmark->zb_objset = 2091 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2092 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2093 "reset zb_objset to %llu", 2094 (u_longlong_t)ds->ds_object, 2095 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2096 } 2097 } 2098 2099 /* 2100 * Called when a dataset is snapshotted. If we were currently traversing 2101 * this snapshot, we reset our bookmark to point at the newly created 2102 * snapshot. We also modify our work queue to remove the old snapshot and 2103 * replace with the new one. 2104 */ 2105 void 2106 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2107 { 2108 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2109 dsl_scan_t *scn = dp->dp_scan; 2110 uint64_t mintxg; 2111 2112 if (!dsl_scan_is_running(scn)) 2113 return; 2114 2115 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2116 2117 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2118 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2119 2120 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2121 scan_ds_queue_remove(scn, ds->ds_object); 2122 scan_ds_queue_insert(scn, 2123 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2124 } 2125 2126 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2127 ds->ds_object, &mintxg) == 0) { 2128 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2129 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2130 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2131 scn->scn_phys.scn_queue_obj, 2132 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2133 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2134 "replacing with %llu", 2135 (u_longlong_t)ds->ds_object, 2136 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2137 } 2138 2139 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2140 } 2141 2142 static void 2143 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2144 zbookmark_phys_t *scn_bookmark) 2145 { 2146 if (scn_bookmark->zb_objset == ds1->ds_object) { 2147 scn_bookmark->zb_objset = ds2->ds_object; 2148 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2149 "reset zb_objset to %llu", 2150 (u_longlong_t)ds1->ds_object, 2151 (u_longlong_t)ds2->ds_object); 2152 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2153 scn_bookmark->zb_objset = ds1->ds_object; 2154 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2155 "reset zb_objset to %llu", 2156 (u_longlong_t)ds2->ds_object, 2157 (u_longlong_t)ds1->ds_object); 2158 } 2159 } 2160 2161 /* 2162 * Called when a parent dataset and its clone are swapped. If we were 2163 * currently traversing the dataset, we need to switch to traversing the 2164 * newly promoted parent. 2165 */ 2166 void 2167 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2168 { 2169 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2170 dsl_scan_t *scn = dp->dp_scan; 2171 uint64_t mintxg; 2172 2173 if (!dsl_scan_is_running(scn)) 2174 return; 2175 2176 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2177 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2178 2179 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) { 2180 scan_ds_queue_remove(scn, ds1->ds_object); 2181 scan_ds_queue_insert(scn, ds2->ds_object, mintxg); 2182 } 2183 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) { 2184 scan_ds_queue_remove(scn, ds2->ds_object); 2185 scan_ds_queue_insert(scn, ds1->ds_object, mintxg); 2186 } 2187 2188 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2189 ds1->ds_object, &mintxg) == 0) { 2190 int err; 2191 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2192 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2193 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2194 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2195 err = zap_add_int_key(dp->dp_meta_objset, 2196 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); 2197 VERIFY(err == 0 || err == EEXIST); 2198 if (err == EEXIST) { 2199 /* Both were there to begin with */ 2200 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2201 scn->scn_phys.scn_queue_obj, 2202 ds1->ds_object, mintxg, tx)); 2203 } 2204 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2205 "replacing with %llu", 2206 (u_longlong_t)ds1->ds_object, 2207 (u_longlong_t)ds2->ds_object); 2208 } 2209 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2210 ds2->ds_object, &mintxg) == 0) { 2211 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2212 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2213 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2214 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2215 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2216 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); 2217 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2218 "replacing with %llu", 2219 (u_longlong_t)ds2->ds_object, 2220 (u_longlong_t)ds1->ds_object); 2221 } 2222 2223 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2224 } 2225 2226 /* ARGSUSED */ 2227 static int 2228 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2229 { 2230 uint64_t originobj = *(uint64_t *)arg; 2231 dsl_dataset_t *ds; 2232 int err; 2233 dsl_scan_t *scn = dp->dp_scan; 2234 2235 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2236 return (0); 2237 2238 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2239 if (err) 2240 return (err); 2241 2242 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2243 dsl_dataset_t *prev; 2244 err = dsl_dataset_hold_obj(dp, 2245 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2246 2247 dsl_dataset_rele(ds, FTAG); 2248 if (err) 2249 return (err); 2250 ds = prev; 2251 } 2252 scan_ds_queue_insert(scn, ds->ds_object, 2253 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2254 dsl_dataset_rele(ds, FTAG); 2255 return (0); 2256 } 2257 2258 static void 2259 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2260 { 2261 dsl_pool_t *dp = scn->scn_dp; 2262 dsl_dataset_t *ds; 2263 2264 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2265 2266 if (scn->scn_phys.scn_cur_min_txg >= 2267 scn->scn_phys.scn_max_txg) { 2268 /* 2269 * This can happen if this snapshot was created after the 2270 * scan started, and we already completed a previous snapshot 2271 * that was created after the scan started. This snapshot 2272 * only references blocks with: 2273 * 2274 * birth < our ds_creation_txg 2275 * cur_min_txg is no less than ds_creation_txg. 2276 * We have already visited these blocks. 2277 * or 2278 * birth > scn_max_txg 2279 * The scan requested not to visit these blocks. 2280 * 2281 * Subsequent snapshots (and clones) can reference our 2282 * blocks, or blocks with even higher birth times. 2283 * Therefore we do not need to visit them either, 2284 * so we do not add them to the work queue. 2285 * 2286 * Note that checking for cur_min_txg >= cur_max_txg 2287 * is not sufficient, because in that case we may need to 2288 * visit subsequent snapshots. This happens when min_txg > 0, 2289 * which raises cur_min_txg. In this case we will visit 2290 * this dataset but skip all of its blocks, because the 2291 * rootbp's birth time is < cur_min_txg. Then we will 2292 * add the next snapshots/clones to the work queue. 2293 */ 2294 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); 2295 dsl_dataset_name(ds, dsname); 2296 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2297 "cur_min_txg (%llu) >= max_txg (%llu)", 2298 (longlong_t)dsobj, dsname, 2299 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2300 (longlong_t)scn->scn_phys.scn_max_txg); 2301 kmem_free(dsname, MAXNAMELEN); 2302 2303 goto out; 2304 } 2305 2306 /* 2307 * Only the ZIL in the head (non-snapshot) is valid. Even though 2308 * snapshots can have ZIL block pointers (which may be the same 2309 * BP as in the head), they must be ignored. In addition, $ORIGIN 2310 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2311 * need to look for a ZIL in it either. So we traverse the ZIL here, 2312 * rather than in scan_recurse(), because the regular snapshot 2313 * block-sharing rules don't apply to it. 2314 */ 2315 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && 2316 (dp->dp_origin_snap == NULL || 2317 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2318 objset_t *os; 2319 if (dmu_objset_from_ds(ds, &os) != 0) { 2320 goto out; 2321 } 2322 dsl_scan_zil(dp, &os->os_zil_header); 2323 } 2324 2325 /* 2326 * Iterate over the bps in this ds. 2327 */ 2328 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2329 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2330 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2331 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2332 2333 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2334 dsl_dataset_name(ds, dsname); 2335 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2336 "suspending=%u", 2337 (longlong_t)dsobj, dsname, 2338 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2339 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2340 (int)scn->scn_suspending); 2341 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2342 2343 if (scn->scn_suspending) 2344 goto out; 2345 2346 /* 2347 * We've finished this pass over this dataset. 2348 */ 2349 2350 /* 2351 * If we did not completely visit this dataset, do another pass. 2352 */ 2353 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2354 zfs_dbgmsg("incomplete pass; visiting again"); 2355 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2356 scan_ds_queue_insert(scn, ds->ds_object, 2357 scn->scn_phys.scn_cur_max_txg); 2358 goto out; 2359 } 2360 2361 /* 2362 * Add descendent datasets to work queue. 2363 */ 2364 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2365 scan_ds_queue_insert(scn, 2366 dsl_dataset_phys(ds)->ds_next_snap_obj, 2367 dsl_dataset_phys(ds)->ds_creation_txg); 2368 } 2369 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2370 boolean_t usenext = B_FALSE; 2371 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2372 uint64_t count; 2373 /* 2374 * A bug in a previous version of the code could 2375 * cause upgrade_clones_cb() to not set 2376 * ds_next_snap_obj when it should, leading to a 2377 * missing entry. Therefore we can only use the 2378 * next_clones_obj when its count is correct. 2379 */ 2380 int err = zap_count(dp->dp_meta_objset, 2381 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2382 if (err == 0 && 2383 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2384 usenext = B_TRUE; 2385 } 2386 2387 if (usenext) { 2388 zap_cursor_t zc; 2389 zap_attribute_t za; 2390 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2391 dsl_dataset_phys(ds)->ds_next_clones_obj); 2392 zap_cursor_retrieve(&zc, &za) == 0; 2393 (void) zap_cursor_advance(&zc)) { 2394 scan_ds_queue_insert(scn, 2395 zfs_strtonum(za.za_name, NULL), 2396 dsl_dataset_phys(ds)->ds_creation_txg); 2397 } 2398 zap_cursor_fini(&zc); 2399 } else { 2400 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2401 enqueue_clones_cb, &ds->ds_object, 2402 DS_FIND_CHILDREN)); 2403 } 2404 } 2405 2406 out: 2407 dsl_dataset_rele(ds, FTAG); 2408 } 2409 2410 /* ARGSUSED */ 2411 static int 2412 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2413 { 2414 dsl_dataset_t *ds; 2415 int err; 2416 dsl_scan_t *scn = dp->dp_scan; 2417 2418 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2419 if (err) 2420 return (err); 2421 2422 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2423 dsl_dataset_t *prev; 2424 err = dsl_dataset_hold_obj(dp, 2425 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2426 if (err) { 2427 dsl_dataset_rele(ds, FTAG); 2428 return (err); 2429 } 2430 2431 /* 2432 * If this is a clone, we don't need to worry about it for now. 2433 */ 2434 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2435 dsl_dataset_rele(ds, FTAG); 2436 dsl_dataset_rele(prev, FTAG); 2437 return (0); 2438 } 2439 dsl_dataset_rele(ds, FTAG); 2440 ds = prev; 2441 } 2442 2443 scan_ds_queue_insert(scn, ds->ds_object, 2444 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2445 dsl_dataset_rele(ds, FTAG); 2446 return (0); 2447 } 2448 2449 /* ARGSUSED */ 2450 void 2451 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2452 ddt_entry_t *dde, dmu_tx_t *tx) 2453 { 2454 const ddt_key_t *ddk = &dde->dde_key; 2455 ddt_phys_t *ddp = dde->dde_phys; 2456 blkptr_t bp; 2457 zbookmark_phys_t zb = { 0 }; 2458 int p; 2459 2460 if (scn->scn_phys.scn_state != DSS_SCANNING) 2461 return; 2462 2463 /* 2464 * This function is special because it is the only thing 2465 * that can add scan_io_t's to the vdev scan queues from 2466 * outside dsl_scan_sync(). For the most part this is ok 2467 * as long as it is called from within syncing context. 2468 * However, dsl_scan_sync() expects that no new sio's will 2469 * be added between when all the work for a scan is done 2470 * and the next txg when the scan is actually marked as 2471 * completed. This check ensures we do not issue new sio's 2472 * during this period. 2473 */ 2474 if (scn->scn_done_txg != 0) 2475 return; 2476 2477 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2478 if (ddp->ddp_phys_birth == 0 || 2479 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2480 continue; 2481 ddt_bp_create(checksum, ddk, ddp, &bp); 2482 2483 scn->scn_visited_this_txg++; 2484 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2485 } 2486 } 2487 2488 /* 2489 * Scrub/dedup interaction. 2490 * 2491 * If there are N references to a deduped block, we don't want to scrub it 2492 * N times -- ideally, we should scrub it exactly once. 2493 * 2494 * We leverage the fact that the dde's replication class (enum ddt_class) 2495 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2496 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2497 * 2498 * To prevent excess scrubbing, the scrub begins by walking the DDT 2499 * to find all blocks with refcnt > 1, and scrubs each of these once. 2500 * Since there are two replication classes which contain blocks with 2501 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2502 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2503 * 2504 * There would be nothing more to say if a block's refcnt couldn't change 2505 * during a scrub, but of course it can so we must account for changes 2506 * in a block's replication class. 2507 * 2508 * Here's an example of what can occur: 2509 * 2510 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2511 * when visited during the top-down scrub phase, it will be scrubbed twice. 2512 * This negates our scrub optimization, but is otherwise harmless. 2513 * 2514 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2515 * on each visit during the top-down scrub phase, it will never be scrubbed. 2516 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2517 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2518 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2519 * while a scrub is in progress, it scrubs the block right then. 2520 */ 2521 static void 2522 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2523 { 2524 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2525 ddt_entry_t dde = { 0 }; 2526 int error; 2527 uint64_t n = 0; 2528 2529 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2530 ddt_t *ddt; 2531 2532 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2533 break; 2534 dprintf_zfs("visiting ddb=%llu/%llu/%llu/%llx\n", 2535 (longlong_t)ddb->ddb_class, 2536 (longlong_t)ddb->ddb_type, 2537 (longlong_t)ddb->ddb_checksum, 2538 (longlong_t)ddb->ddb_cursor); 2539 2540 /* There should be no pending changes to the dedup table */ 2541 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2542 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2543 2544 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2545 n++; 2546 2547 if (dsl_scan_check_suspend(scn, NULL)) 2548 break; 2549 } 2550 2551 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2552 "suspending=%u", (longlong_t)n, 2553 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2554 2555 ASSERT(error == 0 || error == ENOENT); 2556 ASSERT(error != ENOENT || 2557 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2558 } 2559 2560 static uint64_t 2561 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2562 { 2563 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2564 if (ds->ds_is_snapshot) 2565 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2566 return (smt); 2567 } 2568 2569 static void 2570 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2571 { 2572 scan_ds_t *sds; 2573 dsl_pool_t *dp = scn->scn_dp; 2574 2575 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2576 scn->scn_phys.scn_ddt_class_max) { 2577 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2578 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2579 dsl_scan_ddt(scn, tx); 2580 if (scn->scn_suspending) 2581 return; 2582 } 2583 2584 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2585 /* First do the MOS & ORIGIN */ 2586 2587 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2588 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2589 dsl_scan_visit_rootbp(scn, NULL, 2590 &dp->dp_meta_rootbp, tx); 2591 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2592 if (scn->scn_suspending) 2593 return; 2594 2595 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2596 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2597 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2598 } else { 2599 dsl_scan_visitds(scn, 2600 dp->dp_origin_snap->ds_object, tx); 2601 } 2602 ASSERT(!scn->scn_suspending); 2603 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2604 ZB_DESTROYED_OBJSET) { 2605 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2606 /* 2607 * If we were suspended, continue from here. Note if the 2608 * ds we were suspended on was deleted, the zb_objset may 2609 * be -1, so we will skip this and find a new objset 2610 * below. 2611 */ 2612 dsl_scan_visitds(scn, dsobj, tx); 2613 if (scn->scn_suspending) 2614 return; 2615 } 2616 2617 /* 2618 * In case we suspended right at the end of the ds, zero the 2619 * bookmark so we don't think that we're still trying to resume. 2620 */ 2621 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2622 2623 /* 2624 * Keep pulling things out of the dataset avl queue. Updates to the 2625 * persistent zap-object-as-queue happen only at checkpoints. 2626 */ 2627 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2628 dsl_dataset_t *ds; 2629 uint64_t dsobj = sds->sds_dsobj; 2630 uint64_t txg = sds->sds_txg; 2631 2632 /* dequeue and free the ds from the queue */ 2633 scan_ds_queue_remove(scn, dsobj); 2634 sds = NULL; /* must not be touched after removal */ 2635 2636 /* Set up min / max txg */ 2637 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2638 if (txg != 0) { 2639 scn->scn_phys.scn_cur_min_txg = 2640 MAX(scn->scn_phys.scn_min_txg, txg); 2641 } else { 2642 scn->scn_phys.scn_cur_min_txg = 2643 MAX(scn->scn_phys.scn_min_txg, 2644 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2645 } 2646 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2647 dsl_dataset_rele(ds, FTAG); 2648 2649 dsl_scan_visitds(scn, dsobj, tx); 2650 if (scn->scn_suspending) 2651 return; 2652 } 2653 /* No more objsets to fetch, we're done */ 2654 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2655 ASSERT0(scn->scn_suspending); 2656 } 2657 2658 static uint64_t 2659 dsl_scan_count_leaves(vdev_t *vd) 2660 { 2661 uint64_t i, leaves = 0; 2662 2663 /* we only count leaves that belong to the main pool and are readable */ 2664 if (vd->vdev_islog || vd->vdev_isspare || 2665 vd->vdev_isl2cache || !vdev_readable(vd)) 2666 return (0); 2667 2668 if (vd->vdev_ops->vdev_op_leaf) 2669 return (1); 2670 2671 for (i = 0; i < vd->vdev_children; i++) { 2672 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2673 } 2674 2675 return (leaves); 2676 } 2677 2678 2679 static void 2680 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2681 { 2682 int i; 2683 uint64_t cur_size = 0; 2684 2685 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2686 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2687 } 2688 2689 q->q_total_zio_size_this_txg += cur_size; 2690 q->q_zios_this_txg++; 2691 } 2692 2693 static void 2694 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2695 uint64_t end) 2696 { 2697 q->q_total_seg_size_this_txg += end - start; 2698 q->q_segs_this_txg++; 2699 } 2700 2701 static boolean_t 2702 scan_io_queue_check_suspend(dsl_scan_t *scn) 2703 { 2704 /* See comment in dsl_scan_check_suspend() */ 2705 uint64_t curr_time_ns = gethrtime(); 2706 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2707 uint64_t sync_time_ns = curr_time_ns - 2708 scn->scn_dp->dp_spa->spa_sync_starttime; 2709 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2710 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2711 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2712 2713 return ((NSEC2MSEC(scan_time_ns) > mintime && 2714 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2715 txg_sync_waiting(scn->scn_dp) || 2716 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2717 spa_shutting_down(scn->scn_dp->dp_spa)); 2718 } 2719 2720 /* 2721 * Given a list of scan_io_t's in io_list, this issues the io's out to 2722 * disk. This consumes the io_list and frees the scan_io_t's. This is 2723 * called when emptying queues, either when we're up against the memory 2724 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2725 * processing the list before we finished. Any zios that were not issued 2726 * will remain in the io_list. 2727 */ 2728 static boolean_t 2729 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2730 { 2731 dsl_scan_t *scn = queue->q_scn; 2732 scan_io_t *sio; 2733 int64_t bytes_issued = 0; 2734 boolean_t suspended = B_FALSE; 2735 2736 while ((sio = list_head(io_list)) != NULL) { 2737 blkptr_t bp; 2738 2739 if (scan_io_queue_check_suspend(scn)) { 2740 suspended = B_TRUE; 2741 break; 2742 } 2743 2744 sio2bp(sio, &bp); 2745 bytes_issued += SIO_GET_ASIZE(sio); 2746 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2747 &sio->sio_zb, queue); 2748 (void) list_remove_head(io_list); 2749 scan_io_queues_update_zio_stats(queue, &bp); 2750 sio_free(sio); 2751 } 2752 2753 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2754 2755 return (suspended); 2756 } 2757 2758 /* 2759 * Given a range_seg_t (extent) and a list, this function passes over a 2760 * scan queue and gathers up the appropriate ios which fit into that 2761 * scan seg (starting from lowest LBA). At the end, we remove the segment 2762 * from the q_exts_by_addr range tree. 2763 */ 2764 static boolean_t 2765 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2766 { 2767 scan_io_t *srch_sio, *sio, *next_sio; 2768 avl_index_t idx; 2769 uint_t num_sios = 0; 2770 int64_t bytes_issued = 0; 2771 2772 ASSERT(rs != NULL); 2773 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2774 2775 srch_sio = sio_alloc(1); 2776 srch_sio->sio_nr_dvas = 1; 2777 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2778 2779 /* 2780 * The exact start of the extent might not contain any matching zios, 2781 * so if that's the case, examine the next one in the tree. 2782 */ 2783 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2784 sio_free(srch_sio); 2785 2786 if (sio == NULL) 2787 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2788 2789 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2790 queue->q_exts_by_addr) && num_sios <= 32) { 2791 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2792 queue->q_exts_by_addr)); 2793 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2794 queue->q_exts_by_addr)); 2795 2796 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2797 avl_remove(&queue->q_sios_by_addr, sio); 2798 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2799 2800 bytes_issued += SIO_GET_ASIZE(sio); 2801 num_sios++; 2802 list_insert_tail(list, sio); 2803 sio = next_sio; 2804 } 2805 2806 /* 2807 * We limit the number of sios we process at once to 32 to avoid 2808 * biting off more than we can chew. If we didn't take everything 2809 * in the segment we update it to reflect the work we were able to 2810 * complete. Otherwise, we remove it from the range tree entirely. 2811 */ 2812 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2813 queue->q_exts_by_addr)) { 2814 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2815 -bytes_issued); 2816 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2817 SIO_GET_OFFSET(sio), rs_get_end(rs, 2818 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2819 2820 return (B_TRUE); 2821 } else { 2822 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2823 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2824 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2825 return (B_FALSE); 2826 } 2827 } 2828 2829 2830 /* 2831 * This is called from the queue emptying thread and selects the next 2832 * extent from which we are to issue io's. The behavior of this function 2833 * depends on the state of the scan, the current memory consumption and 2834 * whether or not we are performing a scan shutdown. 2835 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2836 * needs to perform a checkpoint 2837 * 2) We select the largest available extent if we are up against the 2838 * memory limit. 2839 * 3) Otherwise we don't select any extents. 2840 */ 2841 static const range_seg_t * 2842 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2843 { 2844 dsl_scan_t *scn = queue->q_scn; 2845 range_tree_t *rt = queue->q_exts_by_addr; 2846 2847 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2848 ASSERT(scn->scn_is_sorted); 2849 2850 /* handle tunable overrides */ 2851 if (scn->scn_checkpointing || scn->scn_clearing) { 2852 if (zfs_scan_issue_strategy == 1) { 2853 return (range_tree_first(rt)); 2854 } else if (zfs_scan_issue_strategy == 2) { 2855 /* 2856 * We need to get the original entry in the by_addr 2857 * tree so we can modify it. 2858 */ 2859 range_seg_t *size_rs = 2860 zfs_btree_first(&queue->q_exts_by_size, NULL); 2861 if (size_rs == NULL) 2862 return (NULL); 2863 uint64_t start = rs_get_start(size_rs, rt); 2864 uint64_t size = rs_get_end(size_rs, rt) - start; 2865 range_seg_t *addr_rs = range_tree_find(rt, start, 2866 size); 2867 ASSERT3P(addr_rs, !=, NULL); 2868 ASSERT3U(rs_get_start(size_rs, rt), ==, 2869 rs_get_start(addr_rs, rt)); 2870 ASSERT3U(rs_get_end(size_rs, rt), ==, 2871 rs_get_end(addr_rs, rt)); 2872 return (addr_rs); 2873 } 2874 } 2875 2876 /* 2877 * During normal clearing, we want to issue our largest segments 2878 * first, keeping IO as sequential as possible, and leaving the 2879 * smaller extents for later with the hope that they might eventually 2880 * grow to larger sequential segments. However, when the scan is 2881 * checkpointing, no new extents will be added to the sorting queue, 2882 * so the way we are sorted now is as good as it will ever get. 2883 * In this case, we instead switch to issuing extents in LBA order. 2884 */ 2885 if (scn->scn_checkpointing) { 2886 return (range_tree_first(rt)); 2887 } else if (scn->scn_clearing) { 2888 /* 2889 * We need to get the original entry in the by_addr 2890 * tree so we can modify it. 2891 */ 2892 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2893 NULL); 2894 if (size_rs == NULL) 2895 return (NULL); 2896 uint64_t start = rs_get_start(size_rs, rt); 2897 uint64_t size = rs_get_end(size_rs, rt) - start; 2898 range_seg_t *addr_rs = range_tree_find(rt, start, size); 2899 ASSERT3P(addr_rs, !=, NULL); 2900 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 2901 rt)); 2902 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 2903 return (addr_rs); 2904 } else { 2905 return (NULL); 2906 } 2907 } 2908 2909 static void 2910 scan_io_queues_run_one(void *arg) 2911 { 2912 dsl_scan_io_queue_t *queue = arg; 2913 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 2914 boolean_t suspended = B_FALSE; 2915 range_seg_t *rs = NULL; 2916 scan_io_t *sio = NULL; 2917 list_t sio_list; 2918 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 2919 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 2920 2921 ASSERT(queue->q_scn->scn_is_sorted); 2922 2923 list_create(&sio_list, sizeof (scan_io_t), 2924 offsetof(scan_io_t, sio_nodes.sio_list_node)); 2925 mutex_enter(q_lock); 2926 2927 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 2928 queue->q_maxinflight_bytes = 2929 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 2930 2931 /* reset per-queue scan statistics for this txg */ 2932 queue->q_total_seg_size_this_txg = 0; 2933 queue->q_segs_this_txg = 0; 2934 queue->q_total_zio_size_this_txg = 0; 2935 queue->q_zios_this_txg = 0; 2936 2937 /* loop until we have run out of time or sios */ 2938 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) { 2939 uint64_t seg_start = 0, seg_end = 0; 2940 boolean_t more_left = B_TRUE; 2941 2942 ASSERT(list_is_empty(&sio_list)); 2943 2944 /* loop while we still have sios left to process in this rs */ 2945 while (more_left) { 2946 scan_io_t *first_sio, *last_sio; 2947 2948 /* 2949 * We have selected which extent needs to be 2950 * processed next. Gather up the corresponding sios. 2951 */ 2952 more_left = scan_io_queue_gather(queue, rs, &sio_list); 2953 ASSERT(!list_is_empty(&sio_list)); 2954 first_sio = list_head(&sio_list); 2955 last_sio = list_tail(&sio_list); 2956 2957 seg_end = SIO_GET_END_OFFSET(last_sio); 2958 if (seg_start == 0) 2959 seg_start = SIO_GET_OFFSET(first_sio); 2960 2961 /* 2962 * Issuing sios can take a long time so drop the 2963 * queue lock. The sio queue won't be updated by 2964 * other threads since we're in syncing context so 2965 * we can be sure that our trees will remain exactly 2966 * as we left them. 2967 */ 2968 mutex_exit(q_lock); 2969 suspended = scan_io_queue_issue(queue, &sio_list); 2970 mutex_enter(q_lock); 2971 2972 if (suspended) 2973 break; 2974 } 2975 /* update statistics for debugging purposes */ 2976 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 2977 2978 if (suspended) 2979 break; 2980 } 2981 2982 2983 /* 2984 * If we were suspended in the middle of processing, 2985 * requeue any unfinished sios and exit. 2986 */ 2987 while ((sio = list_head(&sio_list)) != NULL) { 2988 list_remove(&sio_list, sio); 2989 scan_io_queue_insert_impl(queue, sio); 2990 } 2991 2992 mutex_exit(q_lock); 2993 list_destroy(&sio_list); 2994 } 2995 2996 /* 2997 * Performs an emptying run on all scan queues in the pool. This just 2998 * punches out one thread per top-level vdev, each of which processes 2999 * only that vdev's scan queue. We can parallelize the I/O here because 3000 * we know that each queue's io's only affect its own top-level vdev. 3001 * 3002 * This function waits for the queue runs to complete, and must be 3003 * called from dsl_scan_sync (or in general, syncing context). 3004 */ 3005 static void 3006 scan_io_queues_run(dsl_scan_t *scn) 3007 { 3008 spa_t *spa = scn->scn_dp->dp_spa; 3009 3010 ASSERT(scn->scn_is_sorted); 3011 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3012 3013 if (scn->scn_bytes_pending == 0) 3014 return; 3015 3016 if (scn->scn_taskq == NULL) { 3017 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, 3018 KM_SLEEP); 3019 int nthreads = spa->spa_root_vdev->vdev_children; 3020 3021 /* 3022 * We need to make this taskq *always* execute as many 3023 * threads in parallel as we have top-level vdevs and no 3024 * less, otherwise strange serialization of the calls to 3025 * scan_io_queues_run_one can occur during spa_sync runs 3026 * and that significantly impacts performance. 3027 */ 3028 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, 3029 "dsl_scan_tq_%s", spa->spa_name); 3030 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, 3031 nthreads, nthreads, TASKQ_PREPOPULATE); 3032 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); 3033 } 3034 3035 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3036 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3037 3038 mutex_enter(&vd->vdev_scan_io_queue_lock); 3039 if (vd->vdev_scan_io_queue != NULL) { 3040 VERIFY(taskq_dispatch(scn->scn_taskq, 3041 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3042 TQ_SLEEP) != TASKQID_INVALID); 3043 } 3044 mutex_exit(&vd->vdev_scan_io_queue_lock); 3045 } 3046 3047 /* 3048 * Wait for the queues to finish issuing thir IOs for this run 3049 * before we return. There may still be IOs in flight at this 3050 * point. 3051 */ 3052 taskq_wait(scn->scn_taskq); 3053 } 3054 3055 static boolean_t 3056 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3057 { 3058 uint64_t elapsed_nanosecs; 3059 3060 if (zfs_recover) 3061 return (B_FALSE); 3062 3063 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) 3064 return (B_TRUE); 3065 3066 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3067 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3068 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3069 txg_sync_waiting(scn->scn_dp)) || 3070 spa_shutting_down(scn->scn_dp->dp_spa)); 3071 } 3072 3073 static int 3074 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3075 { 3076 dsl_scan_t *scn = arg; 3077 3078 if (!scn->scn_is_bptree || 3079 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3080 if (dsl_scan_async_block_should_pause(scn)) 3081 return (SET_ERROR(ERESTART)); 3082 } 3083 3084 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3085 dmu_tx_get_txg(tx), bp, 0)); 3086 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3087 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3088 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3089 scn->scn_visited_this_txg++; 3090 return (0); 3091 } 3092 3093 static void 3094 dsl_scan_update_stats(dsl_scan_t *scn) 3095 { 3096 spa_t *spa = scn->scn_dp->dp_spa; 3097 uint64_t i; 3098 uint64_t seg_size_total = 0, zio_size_total = 0; 3099 uint64_t seg_count_total = 0, zio_count_total = 0; 3100 3101 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3102 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3103 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3104 3105 if (queue == NULL) 3106 continue; 3107 3108 seg_size_total += queue->q_total_seg_size_this_txg; 3109 zio_size_total += queue->q_total_zio_size_this_txg; 3110 seg_count_total += queue->q_segs_this_txg; 3111 zio_count_total += queue->q_zios_this_txg; 3112 } 3113 3114 if (seg_count_total == 0 || zio_count_total == 0) { 3115 scn->scn_avg_seg_size_this_txg = 0; 3116 scn->scn_avg_zio_size_this_txg = 0; 3117 scn->scn_segs_this_txg = 0; 3118 scn->scn_zios_this_txg = 0; 3119 return; 3120 } 3121 3122 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3123 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3124 scn->scn_segs_this_txg = seg_count_total; 3125 scn->scn_zios_this_txg = zio_count_total; 3126 } 3127 3128 static int 3129 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3130 { 3131 dsl_scan_t *scn = arg; 3132 const dva_t *dva = &bp->blk_dva[0]; 3133 3134 if (dsl_scan_async_block_should_pause(scn)) 3135 return (SET_ERROR(ERESTART)); 3136 3137 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3138 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3139 DVA_GET_ASIZE(dva), tx); 3140 scn->scn_visited_this_txg++; 3141 return (0); 3142 } 3143 3144 boolean_t 3145 dsl_scan_active(dsl_scan_t *scn) 3146 { 3147 spa_t *spa = scn->scn_dp->dp_spa; 3148 uint64_t used = 0, comp, uncomp; 3149 3150 if (spa->spa_load_state != SPA_LOAD_NONE) 3151 return (B_FALSE); 3152 if (spa_shutting_down(spa)) 3153 return (B_FALSE); 3154 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3155 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3156 return (B_TRUE); 3157 3158 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3159 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3160 &used, &comp, &uncomp); 3161 } 3162 return (used != 0); 3163 } 3164 3165 static boolean_t 3166 dsl_scan_check_deferred(vdev_t *vd) 3167 { 3168 boolean_t need_resilver = B_FALSE; 3169 3170 for (int c = 0; c < vd->vdev_children; c++) { 3171 need_resilver |= 3172 dsl_scan_check_deferred(vd->vdev_child[c]); 3173 } 3174 3175 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3176 !vd->vdev_ops->vdev_op_leaf) 3177 return (need_resilver); 3178 3179 if (!vd->vdev_resilver_deferred) 3180 need_resilver = B_TRUE; 3181 3182 return (need_resilver); 3183 } 3184 3185 static boolean_t 3186 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3187 uint64_t phys_birth) 3188 { 3189 vdev_t *vd; 3190 3191 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3192 3193 if (vd->vdev_ops == &vdev_indirect_ops) { 3194 /* 3195 * The indirect vdev can point to multiple 3196 * vdevs. For simplicity, always create 3197 * the resilver zio_t. zio_vdev_io_start() 3198 * will bypass the child resilver i/o's if 3199 * they are on vdevs that don't have DTL's. 3200 */ 3201 return (B_TRUE); 3202 } 3203 3204 if (DVA_GET_GANG(dva)) { 3205 /* 3206 * Gang members may be spread across multiple 3207 * vdevs, so the best estimate we have is the 3208 * scrub range, which has already been checked. 3209 * XXX -- it would be better to change our 3210 * allocation policy to ensure that all 3211 * gang members reside on the same vdev. 3212 */ 3213 return (B_TRUE); 3214 } 3215 3216 /* 3217 * Check if the txg falls within the range which must be 3218 * resilvered. DVAs outside this range can always be skipped. 3219 */ 3220 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3221 return (B_FALSE); 3222 3223 /* 3224 * Check if the top-level vdev must resilver this offset. 3225 * When the offset does not intersect with a dirty leaf DTL 3226 * then it may be possible to skip the resilver IO. The psize 3227 * is provided instead of asize to simplify the check for RAIDZ. 3228 */ 3229 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3230 return (B_FALSE); 3231 3232 /* 3233 * Check that this top-level vdev has a device under it which 3234 * is resilvering and is not deferred. 3235 */ 3236 if (!dsl_scan_check_deferred(vd)) 3237 return (B_FALSE); 3238 3239 return (B_TRUE); 3240 } 3241 3242 static int 3243 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3244 { 3245 int err = 0; 3246 dsl_scan_t *scn = dp->dp_scan; 3247 spa_t *spa = dp->dp_spa; 3248 3249 if (spa_suspend_async_destroy(spa)) 3250 return (0); 3251 3252 if (zfs_free_bpobj_enabled && 3253 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3254 scn->scn_is_bptree = B_FALSE; 3255 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3256 scn->scn_zio_root = zio_root(spa, NULL, 3257 NULL, ZIO_FLAG_MUSTSUCCEED); 3258 err = bpobj_iterate(&dp->dp_free_bpobj, 3259 dsl_scan_free_block_cb, scn, tx); 3260 VERIFY0(zio_wait(scn->scn_zio_root)); 3261 scn->scn_zio_root = NULL; 3262 3263 if (err != 0 && err != ERESTART) 3264 zfs_panic_recover("error %u from bpobj_iterate()", err); 3265 } 3266 3267 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3268 ASSERT(scn->scn_async_destroying); 3269 scn->scn_is_bptree = B_TRUE; 3270 scn->scn_zio_root = zio_root(spa, NULL, 3271 NULL, ZIO_FLAG_MUSTSUCCEED); 3272 err = bptree_iterate(dp->dp_meta_objset, 3273 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3274 VERIFY0(zio_wait(scn->scn_zio_root)); 3275 scn->scn_zio_root = NULL; 3276 3277 if (err == EIO || err == ECKSUM) { 3278 err = 0; 3279 } else if (err != 0 && err != ERESTART) { 3280 zfs_panic_recover("error %u from " 3281 "traverse_dataset_destroyed()", err); 3282 } 3283 3284 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3285 /* finished; deactivate async destroy feature */ 3286 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3287 ASSERT(!spa_feature_is_active(spa, 3288 SPA_FEATURE_ASYNC_DESTROY)); 3289 VERIFY0(zap_remove(dp->dp_meta_objset, 3290 DMU_POOL_DIRECTORY_OBJECT, 3291 DMU_POOL_BPTREE_OBJ, tx)); 3292 VERIFY0(bptree_free(dp->dp_meta_objset, 3293 dp->dp_bptree_obj, tx)); 3294 dp->dp_bptree_obj = 0; 3295 scn->scn_async_destroying = B_FALSE; 3296 scn->scn_async_stalled = B_FALSE; 3297 } else { 3298 /* 3299 * If we didn't make progress, mark the async 3300 * destroy as stalled, so that we will not initiate 3301 * a spa_sync() on its behalf. Note that we only 3302 * check this if we are not finished, because if the 3303 * bptree had no blocks for us to visit, we can 3304 * finish without "making progress". 3305 */ 3306 scn->scn_async_stalled = 3307 (scn->scn_visited_this_txg == 0); 3308 } 3309 } 3310 if (scn->scn_visited_this_txg) { 3311 zfs_dbgmsg("freed %llu blocks in %llums from " 3312 "free_bpobj/bptree txg %llu; err=%d", 3313 (longlong_t)scn->scn_visited_this_txg, 3314 (longlong_t) 3315 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3316 (longlong_t)tx->tx_txg, err); 3317 scn->scn_visited_this_txg = 0; 3318 3319 /* 3320 * Write out changes to the DDT that may be required as a 3321 * result of the blocks freed. This ensures that the DDT 3322 * is clean when a scrub/resilver runs. 3323 */ 3324 ddt_sync(spa, tx->tx_txg); 3325 } 3326 if (err != 0) 3327 return (err); 3328 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3329 zfs_free_leak_on_eio && 3330 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3331 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3332 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3333 /* 3334 * We have finished background destroying, but there is still 3335 * some space left in the dp_free_dir. Transfer this leaked 3336 * space to the dp_leak_dir. 3337 */ 3338 if (dp->dp_leak_dir == NULL) { 3339 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3340 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3341 LEAK_DIR_NAME, tx); 3342 VERIFY0(dsl_pool_open_special_dir(dp, 3343 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3344 rrw_exit(&dp->dp_config_rwlock, FTAG); 3345 } 3346 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3347 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3348 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3349 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3350 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3351 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3352 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3353 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3354 } 3355 3356 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { 3357 /* finished; verify that space accounting went to zero */ 3358 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3359 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3360 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3361 } 3362 3363 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3364 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3365 DMU_POOL_OBSOLETE_BPOBJ)); 3366 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3367 ASSERT(spa_feature_is_active(dp->dp_spa, 3368 SPA_FEATURE_OBSOLETE_COUNTS)); 3369 3370 scn->scn_is_bptree = B_FALSE; 3371 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3372 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3373 dsl_scan_obsolete_block_cb, scn, tx); 3374 if (err != 0 && err != ERESTART) 3375 zfs_panic_recover("error %u from bpobj_iterate()", err); 3376 3377 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3378 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3379 } 3380 3381 return (0); 3382 } 3383 3384 /* 3385 * This is the primary entry point for scans that is called from syncing 3386 * context. Scans must happen entirely during syncing context so that we 3387 * cna guarantee that blocks we are currently scanning will not change out 3388 * from under us. While a scan is active, this funciton controls how quickly 3389 * transaction groups proceed, instead of the normal handling provided by 3390 * txg_sync_thread(). 3391 */ 3392 void 3393 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3394 { 3395 dsl_scan_t *scn = dp->dp_scan; 3396 spa_t *spa = dp->dp_spa; 3397 int err = 0; 3398 state_sync_type_t sync_type = SYNC_OPTIONAL; 3399 3400 if (spa->spa_resilver_deferred && 3401 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3402 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3403 3404 /* 3405 * Check for scn_restart_txg before checking spa_load_state, so 3406 * that we can restart an old-style scan while the pool is being 3407 * imported (see dsl_scan_init). We also restart scans if there 3408 * is a deferred resilver and the user has manually disabled 3409 * deferred resilvers via the tunable. 3410 */ 3411 if (dsl_scan_restarting(scn, tx) || 3412 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3413 pool_scan_func_t func = POOL_SCAN_SCRUB; 3414 dsl_scan_done(scn, B_FALSE, tx); 3415 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3416 func = POOL_SCAN_RESILVER; 3417 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3418 func, (longlong_t)tx->tx_txg); 3419 dsl_scan_setup_sync(&func, tx); 3420 } 3421 3422 /* 3423 * Only process scans in sync pass 1. 3424 */ 3425 if (spa_sync_pass(dp->dp_spa) > 1) 3426 return; 3427 3428 /* 3429 * If the spa is shutting down, then stop scanning. This will 3430 * ensure that the scan does not dirty any new data during the 3431 * shutdown phase. 3432 */ 3433 if (spa_shutting_down(spa)) 3434 return; 3435 3436 /* 3437 * If the scan is inactive due to a stalled async destroy, try again. 3438 */ 3439 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3440 return; 3441 3442 /* reset scan statistics */ 3443 scn->scn_visited_this_txg = 0; 3444 scn->scn_holes_this_txg = 0; 3445 scn->scn_lt_min_this_txg = 0; 3446 scn->scn_gt_max_this_txg = 0; 3447 scn->scn_ddt_contained_this_txg = 0; 3448 scn->scn_objsets_visited_this_txg = 0; 3449 scn->scn_avg_seg_size_this_txg = 0; 3450 scn->scn_segs_this_txg = 0; 3451 scn->scn_avg_zio_size_this_txg = 0; 3452 scn->scn_zios_this_txg = 0; 3453 scn->scn_suspending = B_FALSE; 3454 scn->scn_sync_start_time = gethrtime(); 3455 spa->spa_scrub_active = B_TRUE; 3456 3457 /* 3458 * First process the async destroys. If we pause, don't do 3459 * any scrubbing or resilvering. This ensures that there are no 3460 * async destroys while we are scanning, so the scan code doesn't 3461 * have to worry about traversing it. It is also faster to free the 3462 * blocks than to scrub them. 3463 */ 3464 err = dsl_process_async_destroys(dp, tx); 3465 if (err != 0) 3466 return; 3467 3468 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3469 return; 3470 3471 /* 3472 * Wait a few txgs after importing to begin scanning so that 3473 * we can get the pool imported quickly. 3474 */ 3475 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3476 return; 3477 3478 /* 3479 * zfs_scan_suspend_progress can be set to disable scan progress. 3480 * We don't want to spin the txg_sync thread, so we add a delay 3481 * here to simulate the time spent doing a scan. This is mostly 3482 * useful for testing and debugging. 3483 */ 3484 if (zfs_scan_suspend_progress) { 3485 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3486 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3487 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3488 3489 while (zfs_scan_suspend_progress && 3490 !txg_sync_waiting(scn->scn_dp) && 3491 !spa_shutting_down(scn->scn_dp->dp_spa) && 3492 NSEC2MSEC(scan_time_ns) < mintime) { 3493 delay(hz); 3494 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3495 } 3496 return; 3497 } 3498 3499 /* 3500 * It is possible to switch from unsorted to sorted at any time, 3501 * but afterwards the scan will remain sorted unless reloaded from 3502 * a checkpoint after a reboot. 3503 */ 3504 if (!zfs_scan_legacy) { 3505 scn->scn_is_sorted = B_TRUE; 3506 if (scn->scn_last_checkpoint == 0) 3507 scn->scn_last_checkpoint = ddi_get_lbolt(); 3508 } 3509 3510 /* 3511 * For sorted scans, determine what kind of work we will be doing 3512 * this txg based on our memory limitations and whether or not we 3513 * need to perform a checkpoint. 3514 */ 3515 if (scn->scn_is_sorted) { 3516 /* 3517 * If we are over our checkpoint interval, set scn_clearing 3518 * so that we can begin checkpointing immediately. The 3519 * checkpoint allows us to save a consisent bookmark 3520 * representing how much data we have scrubbed so far. 3521 * Otherwise, use the memory limit to determine if we should 3522 * scan for metadata or start issue scrub IOs. We accumulate 3523 * metadata until we hit our hard memory limit at which point 3524 * we issue scrub IOs until we are at our soft memory limit. 3525 */ 3526 if (scn->scn_checkpointing || 3527 ddi_get_lbolt() - scn->scn_last_checkpoint > 3528 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3529 if (!scn->scn_checkpointing) 3530 zfs_dbgmsg("begin scan checkpoint"); 3531 3532 scn->scn_checkpointing = B_TRUE; 3533 scn->scn_clearing = B_TRUE; 3534 } else { 3535 boolean_t should_clear = dsl_scan_should_clear(scn); 3536 if (should_clear && !scn->scn_clearing) { 3537 zfs_dbgmsg("begin scan clearing"); 3538 scn->scn_clearing = B_TRUE; 3539 } else if (!should_clear && scn->scn_clearing) { 3540 zfs_dbgmsg("finish scan clearing"); 3541 scn->scn_clearing = B_FALSE; 3542 } 3543 } 3544 } else { 3545 ASSERT0(scn->scn_checkpointing); 3546 ASSERT0(scn->scn_clearing); 3547 } 3548 3549 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3550 /* Need to scan metadata for more blocks to scrub */ 3551 dsl_scan_phys_t *scnp = &scn->scn_phys; 3552 taskqid_t prefetch_tqid; 3553 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3554 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3555 3556 /* 3557 * Calculate the max number of in-flight bytes for pool-wide 3558 * scanning operations (minimum 1MB). Limits for the issuing 3559 * phase are done per top-level vdev and are handled separately. 3560 */ 3561 scn->scn_maxinflight_bytes = 3562 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3563 3564 if (scnp->scn_ddt_bookmark.ddb_class <= 3565 scnp->scn_ddt_class_max) { 3566 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3567 zfs_dbgmsg("doing scan sync txg %llu; " 3568 "ddt bm=%llu/%llu/%llu/%llx", 3569 (longlong_t)tx->tx_txg, 3570 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3571 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3572 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3573 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3574 } else { 3575 zfs_dbgmsg("doing scan sync txg %llu; " 3576 "bm=%llu/%llu/%llu/%llu", 3577 (longlong_t)tx->tx_txg, 3578 (longlong_t)scnp->scn_bookmark.zb_objset, 3579 (longlong_t)scnp->scn_bookmark.zb_object, 3580 (longlong_t)scnp->scn_bookmark.zb_level, 3581 (longlong_t)scnp->scn_bookmark.zb_blkid); 3582 } 3583 3584 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3585 NULL, ZIO_FLAG_CANFAIL); 3586 3587 scn->scn_prefetch_stop = B_FALSE; 3588 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3589 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3590 ASSERT(prefetch_tqid != TASKQID_INVALID); 3591 3592 dsl_pool_config_enter(dp, FTAG); 3593 dsl_scan_visit(scn, tx); 3594 dsl_pool_config_exit(dp, FTAG); 3595 3596 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3597 scn->scn_prefetch_stop = B_TRUE; 3598 cv_broadcast(&spa->spa_scrub_io_cv); 3599 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3600 3601 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3602 (void) zio_wait(scn->scn_zio_root); 3603 scn->scn_zio_root = NULL; 3604 3605 zfs_dbgmsg("scan visited %llu blocks in %llums " 3606 "(%llu os's, %llu holes, %llu < mintxg, " 3607 "%llu in ddt, %llu > maxtxg)", 3608 (longlong_t)scn->scn_visited_this_txg, 3609 (longlong_t)NSEC2MSEC(gethrtime() - 3610 scn->scn_sync_start_time), 3611 (longlong_t)scn->scn_objsets_visited_this_txg, 3612 (longlong_t)scn->scn_holes_this_txg, 3613 (longlong_t)scn->scn_lt_min_this_txg, 3614 (longlong_t)scn->scn_ddt_contained_this_txg, 3615 (longlong_t)scn->scn_gt_max_this_txg); 3616 3617 if (!scn->scn_suspending) { 3618 ASSERT0(avl_numnodes(&scn->scn_queue)); 3619 scn->scn_done_txg = tx->tx_txg + 1; 3620 if (scn->scn_is_sorted) { 3621 scn->scn_checkpointing = B_TRUE; 3622 scn->scn_clearing = B_TRUE; 3623 } 3624 zfs_dbgmsg("scan complete txg %llu", 3625 (longlong_t)tx->tx_txg); 3626 } 3627 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3628 ASSERT(scn->scn_clearing); 3629 3630 /* need to issue scrubbing IOs from per-vdev queues */ 3631 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3632 NULL, ZIO_FLAG_CANFAIL); 3633 scan_io_queues_run(scn); 3634 (void) zio_wait(scn->scn_zio_root); 3635 scn->scn_zio_root = NULL; 3636 3637 /* calculate and dprintf the current memory usage */ 3638 (void) dsl_scan_should_clear(scn); 3639 dsl_scan_update_stats(scn); 3640 3641 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " 3642 "(avg_block_size = %llu, avg_seg_size = %llu)", 3643 (longlong_t)scn->scn_zios_this_txg, 3644 (longlong_t)scn->scn_segs_this_txg, 3645 (longlong_t)NSEC2MSEC(gethrtime() - 3646 scn->scn_sync_start_time), 3647 (longlong_t)scn->scn_avg_zio_size_this_txg, 3648 (longlong_t)scn->scn_avg_seg_size_this_txg); 3649 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3650 /* Finished with everything. Mark the scrub as complete */ 3651 zfs_dbgmsg("scan issuing complete txg %llu", 3652 (longlong_t)tx->tx_txg); 3653 ASSERT3U(scn->scn_done_txg, !=, 0); 3654 ASSERT0(spa->spa_scrub_inflight); 3655 ASSERT0(scn->scn_bytes_pending); 3656 dsl_scan_done(scn, B_TRUE, tx); 3657 sync_type = SYNC_MANDATORY; 3658 } 3659 3660 dsl_scan_sync_state(scn, tx, sync_type); 3661 } 3662 3663 static void 3664 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3665 { 3666 int i; 3667 3668 /* 3669 * Don't count embedded bp's, since we already did the work of 3670 * scanning these when we scanned the containing block. 3671 */ 3672 if (BP_IS_EMBEDDED(bp)) 3673 return; 3674 3675 /* 3676 * Update the spa's stats on how many bytes we have issued. 3677 * Sequential scrubs create a zio for each DVA of the bp. Each 3678 * of these will include all DVAs for repair purposes, but the 3679 * zio code will only try the first one unless there is an issue. 3680 * Therefore, we should only count the first DVA for these IOs. 3681 */ 3682 if (scn->scn_is_sorted) { 3683 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3684 DVA_GET_ASIZE(&bp->blk_dva[0])); 3685 } else { 3686 spa_t *spa = scn->scn_dp->dp_spa; 3687 3688 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3689 atomic_add_64(&spa->spa_scan_pass_issued, 3690 DVA_GET_ASIZE(&bp->blk_dva[i])); 3691 } 3692 } 3693 3694 /* 3695 * If we resume after a reboot, zab will be NULL; don't record 3696 * incomplete stats in that case. 3697 */ 3698 if (zab == NULL) 3699 return; 3700 3701 mutex_enter(&zab->zab_lock); 3702 3703 for (i = 0; i < 4; i++) { 3704 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3705 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3706 if (t & DMU_OT_NEWTYPE) 3707 t = DMU_OT_OTHER; 3708 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3709 int equal; 3710 3711 zb->zb_count++; 3712 zb->zb_asize += BP_GET_ASIZE(bp); 3713 zb->zb_lsize += BP_GET_LSIZE(bp); 3714 zb->zb_psize += BP_GET_PSIZE(bp); 3715 zb->zb_gangs += BP_COUNT_GANG(bp); 3716 3717 switch (BP_GET_NDVAS(bp)) { 3718 case 2: 3719 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3720 DVA_GET_VDEV(&bp->blk_dva[1])) 3721 zb->zb_ditto_2_of_2_samevdev++; 3722 break; 3723 case 3: 3724 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3725 DVA_GET_VDEV(&bp->blk_dva[1])) + 3726 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3727 DVA_GET_VDEV(&bp->blk_dva[2])) + 3728 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3729 DVA_GET_VDEV(&bp->blk_dva[2])); 3730 if (equal == 1) 3731 zb->zb_ditto_2_of_3_samevdev++; 3732 else if (equal == 3) 3733 zb->zb_ditto_3_of_3_samevdev++; 3734 break; 3735 } 3736 } 3737 3738 mutex_exit(&zab->zab_lock); 3739 } 3740 3741 static void 3742 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3743 { 3744 avl_index_t idx; 3745 int64_t asize = SIO_GET_ASIZE(sio); 3746 dsl_scan_t *scn = queue->q_scn; 3747 3748 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3749 3750 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3751 /* block is already scheduled for reading */ 3752 atomic_add_64(&scn->scn_bytes_pending, -asize); 3753 sio_free(sio); 3754 return; 3755 } 3756 avl_insert(&queue->q_sios_by_addr, sio, idx); 3757 queue->q_sio_memused += SIO_GET_MUSED(sio); 3758 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3759 } 3760 3761 /* 3762 * Given all the info we got from our metadata scanning process, we 3763 * construct a scan_io_t and insert it into the scan sorting queue. The 3764 * I/O must already be suitable for us to process. This is controlled 3765 * by dsl_scan_enqueue(). 3766 */ 3767 static void 3768 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3769 int zio_flags, const zbookmark_phys_t *zb) 3770 { 3771 dsl_scan_t *scn = queue->q_scn; 3772 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3773 3774 ASSERT0(BP_IS_GANG(bp)); 3775 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3776 3777 bp2sio(bp, sio, dva_i); 3778 sio->sio_flags = zio_flags; 3779 sio->sio_zb = *zb; 3780 3781 /* 3782 * Increment the bytes pending counter now so that we can't 3783 * get an integer underflow in case the worker processes the 3784 * zio before we get to incrementing this counter. 3785 */ 3786 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3787 3788 scan_io_queue_insert_impl(queue, sio); 3789 } 3790 3791 /* 3792 * Given a set of I/O parameters as discovered by the metadata traversal 3793 * process, attempts to place the I/O into the sorted queues (if allowed), 3794 * or immediately executes the I/O. 3795 */ 3796 static void 3797 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3798 const zbookmark_phys_t *zb) 3799 { 3800 spa_t *spa = dp->dp_spa; 3801 3802 ASSERT(!BP_IS_EMBEDDED(bp)); 3803 3804 /* 3805 * Gang blocks are hard to issue sequentially, so we just issue them 3806 * here immediately instead of queuing them. 3807 */ 3808 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3809 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3810 return; 3811 } 3812 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3813 dva_t dva; 3814 vdev_t *vdev; 3815 3816 dva = bp->blk_dva[i]; 3817 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3818 ASSERT(vdev != NULL); 3819 3820 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3821 if (vdev->vdev_scan_io_queue == NULL) 3822 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3823 ASSERT(dp->dp_scan != NULL); 3824 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3825 i, zio_flags, zb); 3826 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3827 } 3828 } 3829 3830 static int 3831 dsl_scan_scrub_cb(dsl_pool_t *dp, 3832 const blkptr_t *bp, const zbookmark_phys_t *zb) 3833 { 3834 dsl_scan_t *scn = dp->dp_scan; 3835 spa_t *spa = dp->dp_spa; 3836 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3837 size_t psize = BP_GET_PSIZE(bp); 3838 boolean_t needs_io; 3839 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3840 int d; 3841 3842 if (phys_birth <= scn->scn_phys.scn_min_txg || 3843 phys_birth >= scn->scn_phys.scn_max_txg) { 3844 count_block(scn, dp->dp_blkstats, bp); 3845 return (0); 3846 } 3847 3848 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3849 ASSERT(!BP_IS_EMBEDDED(bp)); 3850 3851 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3852 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3853 zio_flags |= ZIO_FLAG_SCRUB; 3854 needs_io = B_TRUE; 3855 } else { 3856 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3857 zio_flags |= ZIO_FLAG_RESILVER; 3858 needs_io = B_FALSE; 3859 } 3860 3861 /* If it's an intent log block, failure is expected. */ 3862 if (zb->zb_level == ZB_ZIL_LEVEL) 3863 zio_flags |= ZIO_FLAG_SPECULATIVE; 3864 3865 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3866 const dva_t *dva = &bp->blk_dva[d]; 3867 3868 /* 3869 * Keep track of how much data we've examined so that 3870 * zpool(8) status can make useful progress reports. 3871 */ 3872 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3873 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3874 3875 /* if it's a resilver, this may not be in the target range */ 3876 if (!needs_io) 3877 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3878 phys_birth); 3879 } 3880 3881 if (needs_io && !zfs_no_scrub_io) { 3882 dsl_scan_enqueue(dp, bp, zio_flags, zb); 3883 } else { 3884 count_block(scn, dp->dp_blkstats, bp); 3885 } 3886 3887 /* do not relocate this block */ 3888 return (0); 3889 } 3890 3891 static void 3892 dsl_scan_scrub_done(zio_t *zio) 3893 { 3894 spa_t *spa = zio->io_spa; 3895 blkptr_t *bp = zio->io_bp; 3896 dsl_scan_io_queue_t *queue = zio->io_private; 3897 3898 abd_free(zio->io_abd); 3899 3900 if (queue == NULL) { 3901 mutex_enter(&spa->spa_scrub_lock); 3902 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 3903 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 3904 cv_broadcast(&spa->spa_scrub_io_cv); 3905 mutex_exit(&spa->spa_scrub_lock); 3906 } else { 3907 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 3908 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 3909 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 3910 cv_broadcast(&queue->q_zio_cv); 3911 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 3912 } 3913 3914 if (zio->io_error && (zio->io_error != ECKSUM || 3915 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 3916 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 3917 } 3918 } 3919 3920 /* 3921 * Given a scanning zio's information, executes the zio. The zio need 3922 * not necessarily be only sortable, this function simply executes the 3923 * zio, no matter what it is. The optional queue argument allows the 3924 * caller to specify that they want per top level vdev IO rate limiting 3925 * instead of the legacy global limiting. 3926 */ 3927 static void 3928 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3929 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 3930 { 3931 spa_t *spa = dp->dp_spa; 3932 dsl_scan_t *scn = dp->dp_scan; 3933 size_t size = BP_GET_PSIZE(bp); 3934 abd_t *data = abd_alloc_for_io(size, B_FALSE); 3935 3936 if (queue == NULL) { 3937 mutex_enter(&spa->spa_scrub_lock); 3938 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 3939 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3940 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 3941 mutex_exit(&spa->spa_scrub_lock); 3942 } else { 3943 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3944 3945 mutex_enter(q_lock); 3946 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 3947 cv_wait(&queue->q_zio_cv, q_lock); 3948 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 3949 mutex_exit(q_lock); 3950 } 3951 3952 count_block(dp->dp_scan, dp->dp_blkstats, bp); 3953 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, 3954 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 3955 } 3956 3957 /* 3958 * This is the primary extent sorting algorithm. We balance two parameters: 3959 * 1) how many bytes of I/O are in an extent 3960 * 2) how well the extent is filled with I/O (as a fraction of its total size) 3961 * Since we allow extents to have gaps between their constituent I/Os, it's 3962 * possible to have a fairly large extent that contains the same amount of 3963 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 3964 * The algorithm sorts based on a score calculated from the extent's size, 3965 * the relative fill volume (in %) and a "fill weight" parameter that controls 3966 * the split between whether we prefer larger extents or more well populated 3967 * extents: 3968 * 3969 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 3970 * 3971 * Example: 3972 * 1) assume extsz = 64 MiB 3973 * 2) assume fill = 32 MiB (extent is half full) 3974 * 3) assume fill_weight = 3 3975 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 3976 * SCORE = 32M + (50 * 3 * 32M) / 100 3977 * SCORE = 32M + (4800M / 100) 3978 * SCORE = 32M + 48M 3979 * ^ ^ 3980 * | +--- final total relative fill-based score 3981 * +--------- final total fill-based score 3982 * SCORE = 80M 3983 * 3984 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 3985 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 3986 * Note that as an optimization, we replace multiplication and division by 3987 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). 3988 */ 3989 static int 3990 ext_size_compare(const void *x, const void *y) 3991 { 3992 const range_seg_gap_t *rsa = x, *rsb = y; 3993 3994 uint64_t sa = rsa->rs_end - rsa->rs_start; 3995 uint64_t sb = rsb->rs_end - rsb->rs_start; 3996 uint64_t score_a, score_b; 3997 3998 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 3999 fill_weight * rsa->rs_fill) >> 7); 4000 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 4001 fill_weight * rsb->rs_fill) >> 7); 4002 4003 if (score_a > score_b) 4004 return (-1); 4005 if (score_a == score_b) { 4006 if (rsa->rs_start < rsb->rs_start) 4007 return (-1); 4008 if (rsa->rs_start == rsb->rs_start) 4009 return (0); 4010 return (1); 4011 } 4012 return (1); 4013 } 4014 4015 /* 4016 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4017 * based on LBA-order (from lowest to highest). 4018 */ 4019 static int 4020 sio_addr_compare(const void *x, const void *y) 4021 { 4022 const scan_io_t *a = x, *b = y; 4023 4024 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4025 } 4026 4027 /* IO queues are created on demand when they are needed. */ 4028 static dsl_scan_io_queue_t * 4029 scan_io_queue_create(vdev_t *vd) 4030 { 4031 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4032 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4033 4034 q->q_scn = scn; 4035 q->q_vd = vd; 4036 q->q_sio_memused = 0; 4037 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4038 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4039 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4040 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4041 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4042 4043 return (q); 4044 } 4045 4046 /* 4047 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4048 * No further execution of I/O occurs, anything pending in the queue is 4049 * simply freed without being executed. 4050 */ 4051 void 4052 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4053 { 4054 dsl_scan_t *scn = queue->q_scn; 4055 scan_io_t *sio; 4056 void *cookie = NULL; 4057 int64_t bytes_dequeued = 0; 4058 4059 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4060 4061 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4062 NULL) { 4063 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4064 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4065 bytes_dequeued += SIO_GET_ASIZE(sio); 4066 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4067 sio_free(sio); 4068 } 4069 4070 ASSERT0(queue->q_sio_memused); 4071 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4072 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4073 range_tree_destroy(queue->q_exts_by_addr); 4074 avl_destroy(&queue->q_sios_by_addr); 4075 cv_destroy(&queue->q_zio_cv); 4076 4077 kmem_free(queue, sizeof (*queue)); 4078 } 4079 4080 /* 4081 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4082 * called on behalf of vdev_top_transfer when creating or destroying 4083 * a mirror vdev due to zpool attach/detach. 4084 */ 4085 void 4086 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4087 { 4088 mutex_enter(&svd->vdev_scan_io_queue_lock); 4089 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4090 4091 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4092 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4093 svd->vdev_scan_io_queue = NULL; 4094 if (tvd->vdev_scan_io_queue != NULL) 4095 tvd->vdev_scan_io_queue->q_vd = tvd; 4096 4097 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4098 mutex_exit(&svd->vdev_scan_io_queue_lock); 4099 } 4100 4101 static void 4102 scan_io_queues_destroy(dsl_scan_t *scn) 4103 { 4104 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4105 4106 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4107 vdev_t *tvd = rvd->vdev_child[i]; 4108 4109 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4110 if (tvd->vdev_scan_io_queue != NULL) 4111 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4112 tvd->vdev_scan_io_queue = NULL; 4113 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4114 } 4115 } 4116 4117 static void 4118 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4119 { 4120 dsl_pool_t *dp = spa->spa_dsl_pool; 4121 dsl_scan_t *scn = dp->dp_scan; 4122 vdev_t *vdev; 4123 kmutex_t *q_lock; 4124 dsl_scan_io_queue_t *queue; 4125 scan_io_t *srch_sio, *sio; 4126 avl_index_t idx; 4127 uint64_t start, size; 4128 4129 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4130 ASSERT(vdev != NULL); 4131 q_lock = &vdev->vdev_scan_io_queue_lock; 4132 queue = vdev->vdev_scan_io_queue; 4133 4134 mutex_enter(q_lock); 4135 if (queue == NULL) { 4136 mutex_exit(q_lock); 4137 return; 4138 } 4139 4140 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4141 bp2sio(bp, srch_sio, dva_i); 4142 start = SIO_GET_OFFSET(srch_sio); 4143 size = SIO_GET_ASIZE(srch_sio); 4144 4145 /* 4146 * We can find the zio in two states: 4147 * 1) Cold, just sitting in the queue of zio's to be issued at 4148 * some point in the future. In this case, all we do is 4149 * remove the zio from the q_sios_by_addr tree, decrement 4150 * its data volume from the containing range_seg_t and 4151 * resort the q_exts_by_size tree to reflect that the 4152 * range_seg_t has lost some of its 'fill'. We don't shorten 4153 * the range_seg_t - this is usually rare enough not to be 4154 * worth the extra hassle of trying keep track of precise 4155 * extent boundaries. 4156 * 2) Hot, where the zio is currently in-flight in 4157 * dsl_scan_issue_ios. In this case, we can't simply 4158 * reach in and stop the in-flight zio's, so we instead 4159 * block the caller. Eventually, dsl_scan_issue_ios will 4160 * be done with issuing the zio's it gathered and will 4161 * signal us. 4162 */ 4163 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4164 sio_free(srch_sio); 4165 4166 if (sio != NULL) { 4167 int64_t asize = SIO_GET_ASIZE(sio); 4168 blkptr_t tmpbp; 4169 4170 /* Got it while it was cold in the queue */ 4171 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4172 ASSERT3U(size, ==, asize); 4173 avl_remove(&queue->q_sios_by_addr, sio); 4174 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4175 4176 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4177 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4178 4179 /* 4180 * We only update scn_bytes_pending in the cold path, 4181 * otherwise it will already have been accounted for as 4182 * part of the zio's execution. 4183 */ 4184 atomic_add_64(&scn->scn_bytes_pending, -asize); 4185 4186 /* count the block as though we issued it */ 4187 sio2bp(sio, &tmpbp); 4188 count_block(scn, dp->dp_blkstats, &tmpbp); 4189 4190 sio_free(sio); 4191 } 4192 mutex_exit(q_lock); 4193 } 4194 4195 /* 4196 * Callback invoked when a zio_free() zio is executing. This needs to be 4197 * intercepted to prevent the zio from deallocating a particular portion 4198 * of disk space and it then getting reallocated and written to, while we 4199 * still have it queued up for processing. 4200 */ 4201 void 4202 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4203 { 4204 dsl_pool_t *dp = spa->spa_dsl_pool; 4205 dsl_scan_t *scn = dp->dp_scan; 4206 4207 ASSERT(!BP_IS_EMBEDDED(bp)); 4208 ASSERT(scn != NULL); 4209 if (!dsl_scan_is_running(scn)) 4210 return; 4211 4212 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4213 dsl_scan_freed_dva(spa, bp, i); 4214 } 4215 4216 /* 4217 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4218 * not started, start it. Otherwise, only restart if max txg in DTL range is 4219 * greater than the max txg in the current scan. If the DTL max is less than 4220 * the scan max, then the vdev has not missed any new data since the resilver 4221 * started, so a restart is not needed. 4222 */ 4223 void 4224 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4225 { 4226 uint64_t min, max; 4227 4228 if (!vdev_resilver_needed(vd, &min, &max)) 4229 return; 4230 4231 if (!dsl_scan_resilvering(dp)) { 4232 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4233 return; 4234 } 4235 4236 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4237 return; 4238 4239 /* restart is needed, check if it can be deferred */ 4240 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4241 vdev_defer_resilver(vd); 4242 else 4243 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4244 } 4245