1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 26 * Copyright 2019 Joyent, Inc. 27 * Copyright (c) 2017 Datto Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 124 uint64_t *txg); 125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 128 129 extern int zfs_vdev_async_write_active_min_dirty_percent; 130 131 /* 132 * By default zfs will check to ensure it is not over the hard memory 133 * limit before each txg. If finer-grained control of this is needed 134 * this value can be set to 1 to enable checking before scanning each 135 * block. 136 */ 137 int zfs_scan_strict_mem_lim = B_FALSE; 138 139 /* 140 * Maximum number of parallelly executing I/Os per top-level vdev. 141 * Tune with care. Very high settings (hundreds) are known to trigger 142 * some firmware bugs and resets on certain SSDs. 143 */ 144 int zfs_top_maxinflight = 32; /* maximum I/Os per top-level */ 145 unsigned int zfs_resilver_delay = 2; /* number of ticks to delay resilver */ 146 unsigned int zfs_scrub_delay = 4; /* number of ticks to delay scrub */ 147 unsigned int zfs_scan_idle = 50; /* idle window in clock ticks */ 148 149 /* 150 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 151 * to strike a balance here between keeping the vdev queues full of I/Os 152 * at all times and not overflowing the queues to cause long latency, 153 * which would cause long txg sync times. No matter what, we will not 154 * overload the drives with I/O, since that is protected by 155 * zfs_vdev_scrub_max_active. 156 */ 157 unsigned long zfs_scan_vdev_limit = 4 << 20; 158 159 int zfs_scan_issue_strategy = 0; 160 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 161 uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 162 163 unsigned int zfs_scan_checkpoint_intval = 7200; /* seconds */ 164 #define ZFS_SCAN_CHECKPOINT_INTVAL SEC_TO_TICK(zfs_scan_checkpoint_intval) 165 166 /* 167 * fill_weight is non-tunable at runtime, so we copy it at module init from 168 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 169 * break queue sorting. 170 */ 171 uint64_t zfs_scan_fill_weight = 3; 172 static uint64_t fill_weight; 173 174 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 175 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 177 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 178 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 179 180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 182 /* min millisecs to obsolete per txg */ 183 unsigned int zfs_obsolete_min_time_ms = 500; 184 /* min millisecs to resilver per txg */ 185 unsigned int zfs_resilver_min_time_ms = 3000; 186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 190 /* max number of blocks to free in a single TXG */ 191 uint64_t zfs_async_block_max_blocks = UINT64_MAX; 192 193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 194 195 /* 196 * We wait a few txgs after importing a pool to begin scanning so that 197 * the import / mounting code isn't held up by scrub / resilver IO. 198 * Unfortunately, it is a bit difficult to determine exactly how long 199 * this will take since userspace will trigger fs mounts asynchronously 200 * and the kernel will create zvol minors asynchronously. As a result, 201 * the value provided here is a bit arbitrary, but represents a 202 * reasonable estimate of how many txgs it will take to finish fully 203 * importing a pool 204 */ 205 #define SCAN_IMPORT_WAIT_TXGS 5 206 207 208 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 209 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 210 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 211 212 extern int zfs_txg_timeout; 213 214 /* 215 * Enable/disable the processing of the free_bpobj object. 216 */ 217 boolean_t zfs_free_bpobj_enabled = B_TRUE; 218 219 /* the order has to match pool_scan_type */ 220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 221 NULL, 222 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 223 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 224 }; 225 226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 227 typedef struct { 228 uint64_t sds_dsobj; 229 uint64_t sds_txg; 230 avl_node_t sds_node; 231 } scan_ds_t; 232 233 /* 234 * This controls what conditions are placed on dsl_scan_sync_state(): 235 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 236 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 237 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 238 * write out the scn_phys_cached version. 239 * See dsl_scan_sync_state for details. 240 */ 241 typedef enum { 242 SYNC_OPTIONAL, 243 SYNC_MANDATORY, 244 SYNC_CACHED 245 } state_sync_type_t; 246 247 /* 248 * This struct represents the minimum information needed to reconstruct a 249 * zio for sequential scanning. This is useful because many of these will 250 * accumulate in the sequential IO queues before being issued, so saving 251 * memory matters here. 252 */ 253 typedef struct scan_io { 254 /* fields from blkptr_t */ 255 uint64_t sio_blk_prop; 256 uint64_t sio_phys_birth; 257 uint64_t sio_birth; 258 zio_cksum_t sio_cksum; 259 uint32_t sio_nr_dvas; 260 261 /* fields from zio_t */ 262 uint32_t sio_flags; 263 zbookmark_phys_t sio_zb; 264 265 /* members for queue sorting */ 266 union { 267 avl_node_t sio_addr_node; /* link into issuing queue */ 268 list_node_t sio_list_node; /* link for issuing to disk */ 269 } sio_nodes; 270 271 /* 272 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 273 * depending on how many were in the original bp. Only the 274 * first DVA is really used for sorting and issuing purposes. 275 * The other DVAs (if provided) simply exist so that the zio 276 * layer can find additional copies to repair from in the 277 * event of an error. This array must go at the end of the 278 * struct to allow this for the variable number of elements. 279 */ 280 dva_t sio_dva[0]; 281 } scan_io_t; 282 283 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 284 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 285 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 286 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 287 #define SIO_GET_END_OFFSET(sio) \ 288 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 289 #define SIO_GET_MUSED(sio) \ 290 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 291 292 struct dsl_scan_io_queue { 293 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 294 vdev_t *q_vd; /* top-level vdev that this queue represents */ 295 296 /* trees used for sorting I/Os and extents of I/Os */ 297 range_tree_t *q_exts_by_addr; 298 avl_tree_t q_exts_by_size; 299 avl_tree_t q_sios_by_addr; 300 uint64_t q_sio_memused; 301 302 /* members for zio rate limiting */ 303 uint64_t q_maxinflight_bytes; 304 uint64_t q_inflight_bytes; 305 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 306 307 /* per txg statistics */ 308 uint64_t q_total_seg_size_this_txg; 309 uint64_t q_segs_this_txg; 310 uint64_t q_total_zio_size_this_txg; 311 uint64_t q_zios_this_txg; 312 }; 313 314 /* private data for dsl_scan_prefetch_cb() */ 315 typedef struct scan_prefetch_ctx { 316 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 317 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 318 boolean_t spc_root; /* is this prefetch for an objset? */ 319 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 320 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 321 } scan_prefetch_ctx_t; 322 323 /* private data for dsl_scan_prefetch() */ 324 typedef struct scan_prefetch_issue_ctx { 325 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 326 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 327 blkptr_t spic_bp; /* bp to prefetch */ 328 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 329 } scan_prefetch_issue_ctx_t; 330 331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 332 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 334 scan_io_t *sio); 335 336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 337 static void scan_io_queues_destroy(dsl_scan_t *scn); 338 339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 340 341 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 342 static void 343 sio_free(scan_io_t *sio) 344 { 345 ASSERT3U(sio->sio_nr_dvas, >, 0); 346 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 347 348 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 349 } 350 351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 352 static scan_io_t * 353 sio_alloc(unsigned short nr_dvas) 354 { 355 ASSERT3U(nr_dvas, >, 0); 356 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 357 358 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 359 } 360 361 void 362 scan_init(void) 363 { 364 /* 365 * This is used in ext_size_compare() to weight segments 366 * based on how sparse they are. This cannot be changed 367 * mid-scan and the tree comparison functions don't currently 368 * have a mechansim for passing additional context to the 369 * compare functions. Thus we store this value globally and 370 * we only allow it to be set at module intiailization time 371 */ 372 fill_weight = zfs_scan_fill_weight; 373 374 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 375 char name[36]; 376 377 (void) sprintf(name, "sio_cache_%d", i); 378 sio_cache[i] = kmem_cache_create(name, 379 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 380 0, NULL, NULL, NULL, NULL, NULL, 0); 381 } 382 } 383 384 void 385 scan_fini(void) 386 { 387 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 388 kmem_cache_destroy(sio_cache[i]); 389 } 390 } 391 392 static inline boolean_t 393 dsl_scan_is_running(const dsl_scan_t *scn) 394 { 395 return (scn->scn_phys.scn_state == DSS_SCANNING); 396 } 397 398 boolean_t 399 dsl_scan_resilvering(dsl_pool_t *dp) 400 { 401 return (dsl_scan_is_running(dp->dp_scan) && 402 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 403 } 404 405 static inline void 406 sio2bp(const scan_io_t *sio, blkptr_t *bp) 407 { 408 bzero(bp, sizeof (*bp)); 409 bp->blk_prop = sio->sio_blk_prop; 410 bp->blk_phys_birth = sio->sio_phys_birth; 411 bp->blk_birth = sio->sio_birth; 412 bp->blk_fill = 1; /* we always only work with data pointers */ 413 bp->blk_cksum = sio->sio_cksum; 414 415 ASSERT3U(sio->sio_nr_dvas, >, 0); 416 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 417 418 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 419 } 420 421 static inline void 422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 423 { 424 sio->sio_blk_prop = bp->blk_prop; 425 sio->sio_phys_birth = bp->blk_phys_birth; 426 sio->sio_birth = bp->blk_birth; 427 sio->sio_cksum = bp->blk_cksum; 428 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 429 430 /* 431 * Copy the DVAs to the sio. We need all copies of the block so 432 * that the self healing code can use the alternate copies if the 433 * first is corrupted. We want the DVA at index dva_i to be first 434 * in the sio since this is the primary one that we want to issue. 435 */ 436 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 437 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 438 } 439 } 440 441 int 442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 443 { 444 int err; 445 dsl_scan_t *scn; 446 spa_t *spa = dp->dp_spa; 447 uint64_t f; 448 449 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 450 scn->scn_dp = dp; 451 452 /* 453 * It's possible that we're resuming a scan after a reboot so 454 * make sure that the scan_async_destroying flag is initialized 455 * appropriately. 456 */ 457 ASSERT(!scn->scn_async_destroying); 458 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 459 SPA_FEATURE_ASYNC_DESTROY); 460 461 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 462 offsetof(scan_ds_t, sds_node)); 463 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 464 sizeof (scan_prefetch_issue_ctx_t), 465 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 466 467 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 468 "scrub_func", sizeof (uint64_t), 1, &f); 469 if (err == 0) { 470 /* 471 * There was an old-style scrub in progress. Restart a 472 * new-style scrub from the beginning. 473 */ 474 scn->scn_restart_txg = txg; 475 zfs_dbgmsg("old-style scrub was in progress; " 476 "restarting new-style scrub in txg %llu", 477 (longlong_t)scn->scn_restart_txg); 478 479 /* 480 * Load the queue obj from the old location so that it 481 * can be freed by dsl_scan_done(). 482 */ 483 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 484 "scrub_queue", sizeof (uint64_t), 1, 485 &scn->scn_phys.scn_queue_obj); 486 } else { 487 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 488 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 489 &scn->scn_phys); 490 491 /* 492 * Detect if the pool contains the signature of #2094. If it 493 * does properly update the scn->scn_phys structure and notify 494 * the administrator by setting an errata for the pool. 495 */ 496 if (err == EOVERFLOW) { 497 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 498 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 499 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 500 (23 * sizeof (uint64_t))); 501 502 err = zap_lookup(dp->dp_meta_objset, 503 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 504 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 505 if (err == 0) { 506 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 507 508 if (overflow & ~DSF_VISIT_DS_AGAIN || 509 scn->scn_async_destroying) { 510 spa->spa_errata = 511 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 512 return (EOVERFLOW); 513 } 514 515 bcopy(zaptmp, &scn->scn_phys, 516 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 517 scn->scn_phys.scn_flags = overflow; 518 519 /* Required scrub already in progress. */ 520 if (scn->scn_phys.scn_state == DSS_FINISHED || 521 scn->scn_phys.scn_state == DSS_CANCELED) 522 spa->spa_errata = 523 ZPOOL_ERRATA_ZOL_2094_SCRUB; 524 } 525 } 526 527 if (err == ENOENT) 528 return (0); 529 else if (err) 530 return (err); 531 532 /* 533 * We might be restarting after a reboot, so jump the issued 534 * counter to how far we've scanned. We know we're consistent 535 * up to here. 536 */ 537 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 538 539 if (dsl_scan_is_running(scn) && 540 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 541 /* 542 * A new-type scrub was in progress on an old 543 * pool, and the pool was accessed by old 544 * software. Restart from the beginning, since 545 * the old software may have changed the pool in 546 * the meantime. 547 */ 548 scn->scn_restart_txg = txg; 549 zfs_dbgmsg("new-style scrub was modified " 550 "by old software; restarting in txg %llu", 551 (longlong_t)scn->scn_restart_txg); 552 } 553 } 554 555 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 556 557 /* reload the queue into the in-core state */ 558 if (scn->scn_phys.scn_queue_obj != 0) { 559 zap_cursor_t zc; 560 zap_attribute_t za; 561 562 for (zap_cursor_init(&zc, dp->dp_meta_objset, 563 scn->scn_phys.scn_queue_obj); 564 zap_cursor_retrieve(&zc, &za) == 0; 565 (void) zap_cursor_advance(&zc)) { 566 scan_ds_queue_insert(scn, 567 zfs_strtonum(za.za_name, NULL), 568 za.za_first_integer); 569 } 570 zap_cursor_fini(&zc); 571 } 572 573 spa_scan_stat_init(spa); 574 return (0); 575 } 576 577 void 578 dsl_scan_fini(dsl_pool_t *dp) 579 { 580 if (dp->dp_scan != NULL) { 581 dsl_scan_t *scn = dp->dp_scan; 582 583 if (scn->scn_taskq != NULL) 584 taskq_destroy(scn->scn_taskq); 585 scan_ds_queue_clear(scn); 586 avl_destroy(&scn->scn_queue); 587 avl_destroy(&scn->scn_prefetch_queue); 588 589 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 590 dp->dp_scan = NULL; 591 } 592 } 593 594 static boolean_t 595 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 596 { 597 return (scn->scn_restart_txg != 0 && 598 scn->scn_restart_txg <= tx->tx_txg); 599 } 600 601 boolean_t 602 dsl_scan_scrubbing(const dsl_pool_t *dp) 603 { 604 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 605 606 return (scn_phys->scn_state == DSS_SCANNING && 607 scn_phys->scn_func == POOL_SCAN_SCRUB); 608 } 609 610 boolean_t 611 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 612 { 613 return (dsl_scan_scrubbing(scn->scn_dp) && 614 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 615 } 616 617 /* 618 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 619 * Because we can be running in the block sorting algorithm, we do not always 620 * want to write out the record, only when it is "safe" to do so. This safety 621 * condition is achieved by making sure that the sorting queues are empty 622 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 623 * is inconsistent with how much actual scanning progress has been made. The 624 * kind of sync to be performed is specified by the sync_type argument. If the 625 * sync is optional, we only sync if the queues are empty. If the sync is 626 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 627 * third possible state is a "cached" sync. This is done in response to: 628 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 629 * destroyed, so we wouldn't be able to restart scanning from it. 630 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 631 * superseded by a newer snapshot. 632 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 633 * swapped with its clone. 634 * In all cases, a cached sync simply rewrites the last record we've written, 635 * just slightly modified. For the modifications that are performed to the 636 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 637 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 638 */ 639 static void 640 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 641 { 642 int i; 643 spa_t *spa = scn->scn_dp->dp_spa; 644 645 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 646 if (scn->scn_bytes_pending == 0) { 647 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 648 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 649 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 650 651 if (q == NULL) 652 continue; 653 654 mutex_enter(&vd->vdev_scan_io_queue_lock); 655 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 656 ASSERT3P(avl_first(&q->q_exts_by_size), ==, NULL); 657 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 658 mutex_exit(&vd->vdev_scan_io_queue_lock); 659 } 660 661 if (scn->scn_phys.scn_queue_obj != 0) 662 scan_ds_queue_sync(scn, tx); 663 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 664 DMU_POOL_DIRECTORY_OBJECT, 665 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 666 &scn->scn_phys, tx)); 667 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 668 sizeof (scn->scn_phys)); 669 670 if (scn->scn_checkpointing) 671 zfs_dbgmsg("finish scan checkpoint"); 672 673 scn->scn_checkpointing = B_FALSE; 674 scn->scn_last_checkpoint = ddi_get_lbolt(); 675 } else if (sync_type == SYNC_CACHED) { 676 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 677 DMU_POOL_DIRECTORY_OBJECT, 678 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 679 &scn->scn_phys_cached, tx)); 680 } 681 } 682 683 /* ARGSUSED */ 684 static int 685 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 686 { 687 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 688 689 if (dsl_scan_is_running(scn)) 690 return (SET_ERROR(EBUSY)); 691 692 return (0); 693 } 694 695 static void 696 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 697 { 698 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 699 pool_scan_func_t *funcp = arg; 700 dmu_object_type_t ot = 0; 701 dsl_pool_t *dp = scn->scn_dp; 702 spa_t *spa = dp->dp_spa; 703 704 ASSERT(!dsl_scan_is_running(scn)); 705 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 706 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 707 scn->scn_phys.scn_func = *funcp; 708 scn->scn_phys.scn_state = DSS_SCANNING; 709 scn->scn_phys.scn_min_txg = 0; 710 scn->scn_phys.scn_max_txg = tx->tx_txg; 711 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 712 scn->scn_phys.scn_start_time = gethrestime_sec(); 713 scn->scn_phys.scn_errors = 0; 714 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 715 scn->scn_issued_before_pass = 0; 716 scn->scn_restart_txg = 0; 717 scn->scn_done_txg = 0; 718 scn->scn_last_checkpoint = 0; 719 scn->scn_checkpointing = B_FALSE; 720 spa_scan_stat_init(spa); 721 722 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 723 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 724 725 /* rewrite all disk labels */ 726 vdev_config_dirty(spa->spa_root_vdev); 727 728 if (vdev_resilver_needed(spa->spa_root_vdev, 729 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 730 spa_event_notify(spa, NULL, NULL, 731 ESC_ZFS_RESILVER_START); 732 } else { 733 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 734 } 735 736 spa->spa_scrub_started = B_TRUE; 737 /* 738 * If this is an incremental scrub, limit the DDT scrub phase 739 * to just the auto-ditto class (for correctness); the rest 740 * of the scrub should go faster using top-down pruning. 741 */ 742 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 743 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 744 745 } 746 747 /* back to the generic stuff */ 748 749 if (dp->dp_blkstats == NULL) { 750 dp->dp_blkstats = 751 kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 752 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 753 MUTEX_DEFAULT, NULL); 754 } 755 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 756 757 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 758 ot = DMU_OT_ZAP_OTHER; 759 760 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 761 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 762 763 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 764 765 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 766 767 spa_history_log_internal(spa, "scan setup", tx, 768 "func=%u mintxg=%llu maxtxg=%llu", 769 *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg); 770 } 771 772 /* 773 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 774 * Can also be called to resume a paused scrub. 775 */ 776 int 777 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 778 { 779 spa_t *spa = dp->dp_spa; 780 dsl_scan_t *scn = dp->dp_scan; 781 782 /* 783 * Purge all vdev caches and probe all devices. We do this here 784 * rather than in sync context because this requires a writer lock 785 * on the spa_config lock, which we can't do from sync context. The 786 * spa_scrub_reopen flag indicates that vdev_open() should not 787 * attempt to start another scrub. 788 */ 789 spa_vdev_state_enter(spa, SCL_NONE); 790 spa->spa_scrub_reopen = B_TRUE; 791 vdev_reopen(spa->spa_root_vdev); 792 spa->spa_scrub_reopen = B_FALSE; 793 (void) spa_vdev_state_exit(spa, NULL, 0); 794 795 if (func == POOL_SCAN_RESILVER) { 796 dsl_resilver_restart(spa->spa_dsl_pool, 0); 797 return (0); 798 } 799 800 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 801 /* got scrub start cmd, resume paused scrub */ 802 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 803 POOL_SCRUB_NORMAL); 804 if (err == 0) { 805 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 806 return (ECANCELED); 807 } 808 return (SET_ERROR(err)); 809 } 810 811 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 812 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 813 } 814 815 /* 816 * Sets the resilver defer flag to B_FALSE on all leaf devs under vd. Returns 817 * B_TRUE if we have devices that need to be resilvered and are available to 818 * accept resilver I/Os. 819 */ 820 static boolean_t 821 dsl_scan_clear_deferred(vdev_t *vd, dmu_tx_t *tx) 822 { 823 boolean_t resilver_needed = B_FALSE; 824 spa_t *spa = vd->vdev_spa; 825 826 for (int c = 0; c < vd->vdev_children; c++) { 827 resilver_needed |= 828 dsl_scan_clear_deferred(vd->vdev_child[c], tx); 829 } 830 831 if (vd == spa->spa_root_vdev && 832 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 833 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 834 vdev_config_dirty(vd); 835 spa->spa_resilver_deferred = B_FALSE; 836 return (resilver_needed); 837 } 838 839 if (!vdev_is_concrete(vd) || vd->vdev_aux || 840 !vd->vdev_ops->vdev_op_leaf) 841 return (resilver_needed); 842 843 if (vd->vdev_resilver_deferred) 844 vd->vdev_resilver_deferred = B_FALSE; 845 846 return (!vdev_is_dead(vd) && !vd->vdev_offline && 847 vdev_resilver_needed(vd, NULL, NULL)); 848 } 849 850 /* ARGSUSED */ 851 static void 852 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 853 { 854 static const char *old_names[] = { 855 "scrub_bookmark", 856 "scrub_ddt_bookmark", 857 "scrub_ddt_class_max", 858 "scrub_queue", 859 "scrub_min_txg", 860 "scrub_max_txg", 861 "scrub_func", 862 "scrub_errors", 863 NULL 864 }; 865 866 dsl_pool_t *dp = scn->scn_dp; 867 spa_t *spa = dp->dp_spa; 868 int i; 869 870 /* Remove any remnants of an old-style scrub. */ 871 for (i = 0; old_names[i]; i++) { 872 (void) zap_remove(dp->dp_meta_objset, 873 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 874 } 875 876 if (scn->scn_phys.scn_queue_obj != 0) { 877 VERIFY0(dmu_object_free(dp->dp_meta_objset, 878 scn->scn_phys.scn_queue_obj, tx)); 879 scn->scn_phys.scn_queue_obj = 0; 880 } 881 scan_ds_queue_clear(scn); 882 883 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 884 885 /* 886 * If we were "restarted" from a stopped state, don't bother 887 * with anything else. 888 */ 889 if (!dsl_scan_is_running(scn)) { 890 ASSERT(!scn->scn_is_sorted); 891 return; 892 } 893 894 if (scn->scn_is_sorted) { 895 scan_io_queues_destroy(scn); 896 scn->scn_is_sorted = B_FALSE; 897 898 if (scn->scn_taskq != NULL) { 899 taskq_destroy(scn->scn_taskq); 900 scn->scn_taskq = NULL; 901 } 902 } 903 904 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 905 906 if (dsl_scan_restarting(scn, tx)) 907 spa_history_log_internal(spa, "scan aborted, restarting", tx, 908 "errors=%llu", spa_get_errlog_size(spa)); 909 else if (!complete) 910 spa_history_log_internal(spa, "scan cancelled", tx, 911 "errors=%llu", spa_get_errlog_size(spa)); 912 else 913 spa_history_log_internal(spa, "scan done", tx, 914 "errors=%llu", spa_get_errlog_size(spa)); 915 916 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 917 spa->spa_scrub_started = B_FALSE; 918 spa->spa_scrub_active = B_FALSE; 919 920 /* 921 * If the scrub/resilver completed, update all DTLs to 922 * reflect this. Whether it succeeded or not, vacate 923 * all temporary scrub DTLs. 924 * 925 * As the scrub does not currently support traversing 926 * data that have been freed but are part of a checkpoint, 927 * we don't mark the scrub as done in the DTLs as faults 928 * may still exist in those vdevs. 929 */ 930 if (complete && 931 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 932 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 933 scn->scn_phys.scn_max_txg, B_TRUE); 934 935 spa_event_notify(spa, NULL, NULL, 936 scn->scn_phys.scn_min_txg ? 937 ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH); 938 } else { 939 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 940 0, B_TRUE); 941 } 942 spa_errlog_rotate(spa); 943 944 /* 945 * We may have finished replacing a device. 946 * Let the async thread assess this and handle the detach. 947 */ 948 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 949 950 /* 951 * Clear any deferred_resilver flags in the config. 952 * If there are drives that need resilvering, kick 953 * off an asynchronous request to start resilver. 954 * dsl_scan_clear_deferred() may update the config 955 * before the resilver can restart. In the event of 956 * a crash during this period, the spa loading code 957 * will find the drives that need to be resilvered 958 * when the machine reboots and start the resilver then. 959 */ 960 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { 961 boolean_t resilver_needed = 962 dsl_scan_clear_deferred(spa->spa_root_vdev, tx); 963 if (resilver_needed) { 964 spa_history_log_internal(spa, 965 "starting deferred resilver", tx, 966 "errors=%llu", spa_get_errlog_size(spa)); 967 spa_async_request(spa, SPA_ASYNC_RESILVER); 968 } 969 } 970 } 971 972 scn->scn_phys.scn_end_time = gethrestime_sec(); 973 974 ASSERT(!dsl_scan_is_running(scn)); 975 } 976 977 /* ARGSUSED */ 978 static int 979 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 980 { 981 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 982 983 if (!dsl_scan_is_running(scn)) 984 return (SET_ERROR(ENOENT)); 985 return (0); 986 } 987 988 /* ARGSUSED */ 989 static void 990 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 991 { 992 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 993 994 dsl_scan_done(scn, B_FALSE, tx); 995 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 996 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 997 } 998 999 int 1000 dsl_scan_cancel(dsl_pool_t *dp) 1001 { 1002 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1003 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1004 } 1005 1006 static int 1007 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1008 { 1009 pool_scrub_cmd_t *cmd = arg; 1010 dsl_pool_t *dp = dmu_tx_pool(tx); 1011 dsl_scan_t *scn = dp->dp_scan; 1012 1013 if (*cmd == POOL_SCRUB_PAUSE) { 1014 /* can't pause a scrub when there is no in-progress scrub */ 1015 if (!dsl_scan_scrubbing(dp)) 1016 return (SET_ERROR(ENOENT)); 1017 1018 /* can't pause a paused scrub */ 1019 if (dsl_scan_is_paused_scrub(scn)) 1020 return (SET_ERROR(EBUSY)); 1021 } else if (*cmd != POOL_SCRUB_NORMAL) { 1022 return (SET_ERROR(ENOTSUP)); 1023 } 1024 1025 return (0); 1026 } 1027 1028 static void 1029 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1030 { 1031 pool_scrub_cmd_t *cmd = arg; 1032 dsl_pool_t *dp = dmu_tx_pool(tx); 1033 spa_t *spa = dp->dp_spa; 1034 dsl_scan_t *scn = dp->dp_scan; 1035 1036 if (*cmd == POOL_SCRUB_PAUSE) { 1037 /* can't pause a scrub when there is no in-progress scrub */ 1038 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1039 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1040 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1041 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1042 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1043 } else { 1044 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1045 if (dsl_scan_is_paused_scrub(scn)) { 1046 /* 1047 * We need to keep track of how much time we spend 1048 * paused per pass so that we can adjust the scrub rate 1049 * shown in the output of 'zpool status' 1050 */ 1051 spa->spa_scan_pass_scrub_spent_paused += 1052 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1053 spa->spa_scan_pass_scrub_pause = 0; 1054 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1055 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1056 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1057 } 1058 } 1059 } 1060 1061 /* 1062 * Set scrub pause/resume state if it makes sense to do so 1063 */ 1064 int 1065 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1066 { 1067 return (dsl_sync_task(spa_name(dp->dp_spa), 1068 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1069 ZFS_SPACE_CHECK_RESERVED)); 1070 } 1071 1072 1073 /* start a new scan, or restart an existing one. */ 1074 void 1075 dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg) 1076 { 1077 if (txg == 0) { 1078 dmu_tx_t *tx; 1079 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1080 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1081 1082 txg = dmu_tx_get_txg(tx); 1083 dp->dp_scan->scn_restart_txg = txg; 1084 dmu_tx_commit(tx); 1085 } else { 1086 dp->dp_scan->scn_restart_txg = txg; 1087 } 1088 zfs_dbgmsg("restarting resilver txg=%llu", txg); 1089 } 1090 1091 void 1092 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1093 { 1094 zio_free(dp->dp_spa, txg, bp); 1095 } 1096 1097 void 1098 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1099 { 1100 ASSERT(dsl_pool_sync_context(dp)); 1101 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1102 } 1103 1104 static int 1105 scan_ds_queue_compare(const void *a, const void *b) 1106 { 1107 const scan_ds_t *sds_a = a, *sds_b = b; 1108 1109 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1110 return (-1); 1111 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1112 return (0); 1113 return (1); 1114 } 1115 1116 static void 1117 scan_ds_queue_clear(dsl_scan_t *scn) 1118 { 1119 void *cookie = NULL; 1120 scan_ds_t *sds; 1121 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1122 kmem_free(sds, sizeof (*sds)); 1123 } 1124 } 1125 1126 static boolean_t 1127 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1128 { 1129 scan_ds_t srch, *sds; 1130 1131 srch.sds_dsobj = dsobj; 1132 sds = avl_find(&scn->scn_queue, &srch, NULL); 1133 if (sds != NULL && txg != NULL) 1134 *txg = sds->sds_txg; 1135 return (sds != NULL); 1136 } 1137 1138 static void 1139 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1140 { 1141 scan_ds_t *sds; 1142 avl_index_t where; 1143 1144 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1145 sds->sds_dsobj = dsobj; 1146 sds->sds_txg = txg; 1147 1148 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1149 avl_insert(&scn->scn_queue, sds, where); 1150 } 1151 1152 static void 1153 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1154 { 1155 scan_ds_t srch, *sds; 1156 1157 srch.sds_dsobj = dsobj; 1158 1159 sds = avl_find(&scn->scn_queue, &srch, NULL); 1160 VERIFY(sds != NULL); 1161 avl_remove(&scn->scn_queue, sds); 1162 kmem_free(sds, sizeof (*sds)); 1163 } 1164 1165 static void 1166 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1167 { 1168 dsl_pool_t *dp = scn->scn_dp; 1169 spa_t *spa = dp->dp_spa; 1170 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1171 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1172 1173 ASSERT0(scn->scn_bytes_pending); 1174 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1175 1176 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1177 scn->scn_phys.scn_queue_obj, tx)); 1178 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1179 DMU_OT_NONE, 0, tx); 1180 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1181 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1182 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1183 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1184 sds->sds_txg, tx)); 1185 } 1186 } 1187 1188 /* 1189 * Computes the memory limit state that we're currently in. A sorted scan 1190 * needs quite a bit of memory to hold the sorting queue, so we need to 1191 * reasonably constrain the size so it doesn't impact overall system 1192 * performance. We compute two limits: 1193 * 1) Hard memory limit: if the amount of memory used by the sorting 1194 * queues on a pool gets above this value, we stop the metadata 1195 * scanning portion and start issuing the queued up and sorted 1196 * I/Os to reduce memory usage. 1197 * This limit is calculated as a fraction of physmem (by default 5%). 1198 * We constrain the lower bound of the hard limit to an absolute 1199 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1200 * the upper bound to 5% of the total pool size - no chance we'll 1201 * ever need that much memory, but just to keep the value in check. 1202 * 2) Soft memory limit: once we hit the hard memory limit, we start 1203 * issuing I/O to reduce queue memory usage, but we don't want to 1204 * completely empty out the queues, since we might be able to find I/Os 1205 * that will fill in the gaps of our non-sequential IOs at some point 1206 * in the future. So we stop the issuing of I/Os once the amount of 1207 * memory used drops below the soft limit (at which point we stop issuing 1208 * I/O and start scanning metadata again). 1209 * 1210 * This limit is calculated by subtracting a fraction of the hard 1211 * limit from the hard limit. By default this fraction is 5%, so 1212 * the soft limit is 95% of the hard limit. We cap the size of the 1213 * difference between the hard and soft limits at an absolute 1214 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1215 * sufficient to not cause too frequent switching between the 1216 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1217 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1218 * that should take at least a decent fraction of a second). 1219 */ 1220 static boolean_t 1221 dsl_scan_should_clear(dsl_scan_t *scn) 1222 { 1223 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1224 uint64_t mlim_hard, mlim_soft, mused; 1225 uint64_t alloc = metaslab_class_get_alloc(spa_normal_class( 1226 scn->scn_dp->dp_spa)); 1227 1228 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1229 zfs_scan_mem_lim_min); 1230 mlim_hard = MIN(mlim_hard, alloc / 20); 1231 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1232 zfs_scan_mem_lim_soft_max); 1233 mused = 0; 1234 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1235 vdev_t *tvd = rvd->vdev_child[i]; 1236 dsl_scan_io_queue_t *queue; 1237 1238 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1239 queue = tvd->vdev_scan_io_queue; 1240 if (queue != NULL) { 1241 /* # extents in exts_by_size = # in exts_by_addr */ 1242 mused += avl_numnodes(&queue->q_exts_by_size) * 1243 sizeof (range_seg_t) + queue->q_sio_memused; 1244 } 1245 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1246 } 1247 1248 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1249 1250 if (mused == 0) 1251 ASSERT0(scn->scn_bytes_pending); 1252 1253 /* 1254 * If we are above our hard limit, we need to clear out memory. 1255 * If we are below our soft limit, we need to accumulate sequential IOs. 1256 * Otherwise, we should keep doing whatever we are currently doing. 1257 */ 1258 if (mused >= mlim_hard) 1259 return (B_TRUE); 1260 else if (mused < mlim_soft) 1261 return (B_FALSE); 1262 else 1263 return (scn->scn_clearing); 1264 } 1265 1266 static boolean_t 1267 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1268 { 1269 /* we never skip user/group accounting objects */ 1270 if (zb && (int64_t)zb->zb_object < 0) 1271 return (B_FALSE); 1272 1273 if (scn->scn_suspending) 1274 return (B_TRUE); /* we're already suspending */ 1275 1276 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1277 return (B_FALSE); /* we're resuming */ 1278 1279 /* We only know how to resume from level-0 blocks. */ 1280 if (zb && zb->zb_level != 0) 1281 return (B_FALSE); 1282 1283 /* 1284 * We suspend if: 1285 * - we have scanned for at least the minimum time (default 1 sec 1286 * for scrub, 3 sec for resilver), and either we have sufficient 1287 * dirty data that we are starting to write more quickly 1288 * (default 30%), or someone is explicitly waiting for this txg 1289 * to complete. 1290 * or 1291 * - the spa is shutting down because this pool is being exported 1292 * or the machine is rebooting. 1293 * or 1294 * - the scan queue has reached its memory use limit 1295 */ 1296 hrtime_t curr_time_ns = gethrtime(); 1297 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1298 uint64_t sync_time_ns = curr_time_ns - 1299 scn->scn_dp->dp_spa->spa_sync_starttime; 1300 1301 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1302 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1303 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1304 1305 if ((NSEC2MSEC(scan_time_ns) > mintime && 1306 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1307 txg_sync_waiting(scn->scn_dp) || 1308 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1309 spa_shutting_down(scn->scn_dp->dp_spa) || 1310 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1311 if (zb) { 1312 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1313 (longlong_t)zb->zb_objset, 1314 (longlong_t)zb->zb_object, 1315 (longlong_t)zb->zb_level, 1316 (longlong_t)zb->zb_blkid); 1317 scn->scn_phys.scn_bookmark = *zb; 1318 } else { 1319 dsl_scan_phys_t *scnp = &scn->scn_phys; 1320 1321 dprintf("suspending at DDT bookmark " 1322 "%llx/%llx/%llx/%llx\n", 1323 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1324 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1325 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1326 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1327 } 1328 scn->scn_suspending = B_TRUE; 1329 return (B_TRUE); 1330 } 1331 return (B_FALSE); 1332 } 1333 1334 typedef struct zil_scan_arg { 1335 dsl_pool_t *zsa_dp; 1336 zil_header_t *zsa_zh; 1337 } zil_scan_arg_t; 1338 1339 /* ARGSUSED */ 1340 static int 1341 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1342 { 1343 zil_scan_arg_t *zsa = arg; 1344 dsl_pool_t *dp = zsa->zsa_dp; 1345 dsl_scan_t *scn = dp->dp_scan; 1346 zil_header_t *zh = zsa->zsa_zh; 1347 zbookmark_phys_t zb; 1348 1349 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1350 return (0); 1351 1352 /* 1353 * One block ("stubby") can be allocated a long time ago; we 1354 * want to visit that one because it has been allocated 1355 * (on-disk) even if it hasn't been claimed (even though for 1356 * scrub there's nothing to do to it). 1357 */ 1358 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1359 return (0); 1360 1361 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1362 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1363 1364 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1365 return (0); 1366 } 1367 1368 /* ARGSUSED */ 1369 static int 1370 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1371 { 1372 if (lrc->lrc_txtype == TX_WRITE) { 1373 zil_scan_arg_t *zsa = arg; 1374 dsl_pool_t *dp = zsa->zsa_dp; 1375 dsl_scan_t *scn = dp->dp_scan; 1376 zil_header_t *zh = zsa->zsa_zh; 1377 lr_write_t *lr = (lr_write_t *)lrc; 1378 blkptr_t *bp = &lr->lr_blkptr; 1379 zbookmark_phys_t zb; 1380 1381 if (BP_IS_HOLE(bp) || 1382 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1383 return (0); 1384 1385 /* 1386 * birth can be < claim_txg if this record's txg is 1387 * already txg sync'ed (but this log block contains 1388 * other records that are not synced) 1389 */ 1390 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1391 return (0); 1392 1393 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1394 lr->lr_foid, ZB_ZIL_LEVEL, 1395 lr->lr_offset / BP_GET_LSIZE(bp)); 1396 1397 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1398 } 1399 return (0); 1400 } 1401 1402 static void 1403 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1404 { 1405 uint64_t claim_txg = zh->zh_claim_txg; 1406 zil_scan_arg_t zsa = { dp, zh }; 1407 zilog_t *zilog; 1408 1409 ASSERT(spa_writeable(dp->dp_spa)); 1410 1411 /* 1412 * We only want to visit blocks that have been claimed 1413 * but not yet replayed. 1414 */ 1415 if (claim_txg == 0) 1416 return; 1417 1418 zilog = zil_alloc(dp->dp_meta_objset, zh); 1419 1420 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1421 claim_txg, B_FALSE); 1422 1423 zil_free(zilog); 1424 } 1425 1426 /* 1427 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1428 * here is to sort the AVL tree by the order each block will be needed. 1429 */ 1430 static int 1431 scan_prefetch_queue_compare(const void *a, const void *b) 1432 { 1433 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1434 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1435 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1436 1437 return (zbookmark_compare(spc_a->spc_datablkszsec, 1438 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1439 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1440 } 1441 1442 static void 1443 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1444 { 1445 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1446 zfs_refcount_destroy(&spc->spc_refcnt); 1447 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1448 } 1449 } 1450 1451 static scan_prefetch_ctx_t * 1452 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1453 { 1454 scan_prefetch_ctx_t *spc; 1455 1456 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1457 zfs_refcount_create(&spc->spc_refcnt); 1458 zfs_refcount_add(&spc->spc_refcnt, tag); 1459 spc->spc_scn = scn; 1460 if (dnp != NULL) { 1461 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1462 spc->spc_indblkshift = dnp->dn_indblkshift; 1463 spc->spc_root = B_FALSE; 1464 } else { 1465 spc->spc_datablkszsec = 0; 1466 spc->spc_indblkshift = 0; 1467 spc->spc_root = B_TRUE; 1468 } 1469 1470 return (spc); 1471 } 1472 1473 static void 1474 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1475 { 1476 zfs_refcount_add(&spc->spc_refcnt, tag); 1477 } 1478 1479 static boolean_t 1480 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1481 const zbookmark_phys_t *zb) 1482 { 1483 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1484 dnode_phys_t tmp_dnp; 1485 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1486 1487 if (zb->zb_objset != last_zb->zb_objset) 1488 return (B_TRUE); 1489 if ((int64_t)zb->zb_object < 0) 1490 return (B_FALSE); 1491 1492 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1493 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1494 1495 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1496 return (B_TRUE); 1497 1498 return (B_FALSE); 1499 } 1500 1501 static void 1502 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1503 { 1504 avl_index_t idx; 1505 dsl_scan_t *scn = spc->spc_scn; 1506 spa_t *spa = scn->scn_dp->dp_spa; 1507 scan_prefetch_issue_ctx_t *spic; 1508 1509 if (zfs_no_scrub_prefetch) 1510 return; 1511 1512 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1513 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1514 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1515 return; 1516 1517 if (dsl_scan_check_prefetch_resume(spc, zb)) 1518 return; 1519 1520 scan_prefetch_ctx_add_ref(spc, scn); 1521 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1522 spic->spic_spc = spc; 1523 spic->spic_bp = *bp; 1524 spic->spic_zb = *zb; 1525 1526 /* 1527 * Add the IO to the queue of blocks to prefetch. This allows us to 1528 * prioritize blocks that we will need first for the main traversal 1529 * thread. 1530 */ 1531 mutex_enter(&spa->spa_scrub_lock); 1532 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1533 /* this block is already queued for prefetch */ 1534 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1535 scan_prefetch_ctx_rele(spc, scn); 1536 mutex_exit(&spa->spa_scrub_lock); 1537 return; 1538 } 1539 1540 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1541 cv_broadcast(&spa->spa_scrub_io_cv); 1542 mutex_exit(&spa->spa_scrub_lock); 1543 } 1544 1545 static void 1546 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1547 uint64_t objset, uint64_t object) 1548 { 1549 int i; 1550 zbookmark_phys_t zb; 1551 scan_prefetch_ctx_t *spc; 1552 1553 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1554 return; 1555 1556 SET_BOOKMARK(&zb, objset, object, 0, 0); 1557 1558 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1559 1560 for (i = 0; i < dnp->dn_nblkptr; i++) { 1561 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1562 zb.zb_blkid = i; 1563 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1564 } 1565 1566 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1567 zb.zb_level = 0; 1568 zb.zb_blkid = DMU_SPILL_BLKID; 1569 dsl_scan_prefetch(spc, &dnp->dn_spill, &zb); 1570 } 1571 1572 scan_prefetch_ctx_rele(spc, FTAG); 1573 } 1574 1575 void 1576 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1577 arc_buf_t *buf, void *private) 1578 { 1579 scan_prefetch_ctx_t *spc = private; 1580 dsl_scan_t *scn = spc->spc_scn; 1581 spa_t *spa = scn->scn_dp->dp_spa; 1582 1583 /* broadcast that the IO has completed for rate limitting purposes */ 1584 mutex_enter(&spa->spa_scrub_lock); 1585 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1586 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1587 cv_broadcast(&spa->spa_scrub_io_cv); 1588 mutex_exit(&spa->spa_scrub_lock); 1589 1590 /* if there was an error or we are done prefetching, just cleanup */ 1591 if (buf == NULL || scn->scn_suspending) 1592 goto out; 1593 1594 if (BP_GET_LEVEL(bp) > 0) { 1595 int i; 1596 blkptr_t *cbp; 1597 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1598 zbookmark_phys_t czb; 1599 1600 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1601 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1602 zb->zb_level - 1, zb->zb_blkid * epb + i); 1603 dsl_scan_prefetch(spc, cbp, &czb); 1604 } 1605 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1606 dnode_phys_t *cdnp = buf->b_data; 1607 int i; 1608 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1609 1610 for (i = 0, cdnp = buf->b_data; i < epb; 1611 i += cdnp->dn_extra_slots + 1, 1612 cdnp += cdnp->dn_extra_slots + 1) { 1613 dsl_scan_prefetch_dnode(scn, cdnp, 1614 zb->zb_objset, zb->zb_blkid * epb + i); 1615 } 1616 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1617 objset_phys_t *osp = buf->b_data; 1618 1619 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1620 zb->zb_objset, DMU_META_DNODE_OBJECT); 1621 1622 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1623 dsl_scan_prefetch_dnode(scn, 1624 &osp->os_groupused_dnode, zb->zb_objset, 1625 DMU_GROUPUSED_OBJECT); 1626 dsl_scan_prefetch_dnode(scn, 1627 &osp->os_userused_dnode, zb->zb_objset, 1628 DMU_USERUSED_OBJECT); 1629 } 1630 } 1631 1632 out: 1633 if (buf != NULL) 1634 arc_buf_destroy(buf, private); 1635 scan_prefetch_ctx_rele(spc, scn); 1636 } 1637 1638 /* ARGSUSED */ 1639 static void 1640 dsl_scan_prefetch_thread(void *arg) 1641 { 1642 dsl_scan_t *scn = arg; 1643 spa_t *spa = scn->scn_dp->dp_spa; 1644 vdev_t *rvd = spa->spa_root_vdev; 1645 uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight; 1646 scan_prefetch_issue_ctx_t *spic; 1647 1648 /* loop until we are told to stop */ 1649 while (!scn->scn_prefetch_stop) { 1650 arc_flags_t flags = ARC_FLAG_NOWAIT | 1651 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1652 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1653 1654 mutex_enter(&spa->spa_scrub_lock); 1655 1656 /* 1657 * Wait until we have an IO to issue and are not above our 1658 * maximum in flight limit. 1659 */ 1660 while (!scn->scn_prefetch_stop && 1661 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1662 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1663 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1664 } 1665 1666 /* recheck if we should stop since we waited for the cv */ 1667 if (scn->scn_prefetch_stop) { 1668 mutex_exit(&spa->spa_scrub_lock); 1669 break; 1670 } 1671 1672 /* remove the prefetch IO from the tree */ 1673 spic = avl_first(&scn->scn_prefetch_queue); 1674 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1675 avl_remove(&scn->scn_prefetch_queue, spic); 1676 1677 mutex_exit(&spa->spa_scrub_lock); 1678 1679 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1680 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1681 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1682 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1683 zio_flags |= ZIO_FLAG_RAW; 1684 } 1685 1686 /* issue the prefetch asynchronously */ 1687 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1688 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1689 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1690 1691 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1692 } 1693 1694 ASSERT(scn->scn_prefetch_stop); 1695 1696 /* free any prefetches we didn't get to complete */ 1697 mutex_enter(&spa->spa_scrub_lock); 1698 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1699 avl_remove(&scn->scn_prefetch_queue, spic); 1700 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1701 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1702 } 1703 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1704 mutex_exit(&spa->spa_scrub_lock); 1705 } 1706 1707 static boolean_t 1708 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1709 const zbookmark_phys_t *zb) 1710 { 1711 /* 1712 * We never skip over user/group accounting objects (obj<0) 1713 */ 1714 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1715 (int64_t)zb->zb_object >= 0) { 1716 /* 1717 * If we already visited this bp & everything below (in 1718 * a prior txg sync), don't bother doing it again. 1719 */ 1720 if (zbookmark_subtree_completed(dnp, zb, 1721 &scn->scn_phys.scn_bookmark)) 1722 return (B_TRUE); 1723 1724 /* 1725 * If we found the block we're trying to resume from, or 1726 * we went past it to a different object, zero it out to 1727 * indicate that it's OK to start checking for suspending 1728 * again. 1729 */ 1730 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1731 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1732 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1733 (longlong_t)zb->zb_objset, 1734 (longlong_t)zb->zb_object, 1735 (longlong_t)zb->zb_level, 1736 (longlong_t)zb->zb_blkid); 1737 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1738 } 1739 } 1740 return (B_FALSE); 1741 } 1742 1743 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1744 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1745 dmu_objset_type_t ostype, dmu_tx_t *tx); 1746 static void dsl_scan_visitdnode( 1747 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1748 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1749 1750 /* 1751 * Return nonzero on i/o error. 1752 * Return new buf to write out in *bufp. 1753 */ 1754 static int 1755 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1756 dnode_phys_t *dnp, const blkptr_t *bp, 1757 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1758 { 1759 dsl_pool_t *dp = scn->scn_dp; 1760 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1761 int err; 1762 1763 if (BP_GET_LEVEL(bp) > 0) { 1764 arc_flags_t flags = ARC_FLAG_WAIT; 1765 int i; 1766 blkptr_t *cbp; 1767 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1768 arc_buf_t *buf; 1769 1770 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1771 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1772 if (err) { 1773 scn->scn_phys.scn_errors++; 1774 return (err); 1775 } 1776 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1777 zbookmark_phys_t czb; 1778 1779 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1780 zb->zb_level - 1, 1781 zb->zb_blkid * epb + i); 1782 dsl_scan_visitbp(cbp, &czb, dnp, 1783 ds, scn, ostype, tx); 1784 } 1785 arc_buf_destroy(buf, &buf); 1786 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1787 arc_flags_t flags = ARC_FLAG_WAIT; 1788 dnode_phys_t *cdnp; 1789 int i; 1790 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1791 arc_buf_t *buf; 1792 1793 if (BP_IS_PROTECTED(bp)) { 1794 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1795 zio_flags |= ZIO_FLAG_RAW; 1796 } 1797 1798 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1799 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1800 if (err) { 1801 scn->scn_phys.scn_errors++; 1802 return (err); 1803 } 1804 for (i = 0, cdnp = buf->b_data; i < epb; 1805 i += cdnp->dn_extra_slots + 1, 1806 cdnp += cdnp->dn_extra_slots + 1) { 1807 dsl_scan_visitdnode(scn, ds, ostype, 1808 cdnp, zb->zb_blkid * epb + i, tx); 1809 } 1810 1811 arc_buf_destroy(buf, &buf); 1812 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1813 arc_flags_t flags = ARC_FLAG_WAIT; 1814 objset_phys_t *osp; 1815 arc_buf_t *buf; 1816 1817 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1818 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1819 if (err) { 1820 scn->scn_phys.scn_errors++; 1821 return (err); 1822 } 1823 1824 osp = buf->b_data; 1825 1826 dsl_scan_visitdnode(scn, ds, osp->os_type, 1827 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1828 1829 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1830 /* 1831 * We also always visit user/group/project accounting 1832 * objects, and never skip them, even if we are 1833 * suspending. This is necessary so that the space 1834 * deltas from this txg get integrated. 1835 */ 1836 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1837 dsl_scan_visitdnode(scn, ds, osp->os_type, 1838 &osp->os_projectused_dnode, 1839 DMU_PROJECTUSED_OBJECT, tx); 1840 dsl_scan_visitdnode(scn, ds, osp->os_type, 1841 &osp->os_groupused_dnode, 1842 DMU_GROUPUSED_OBJECT, tx); 1843 dsl_scan_visitdnode(scn, ds, osp->os_type, 1844 &osp->os_userused_dnode, 1845 DMU_USERUSED_OBJECT, tx); 1846 } 1847 arc_buf_destroy(buf, &buf); 1848 } 1849 1850 return (0); 1851 } 1852 1853 static void 1854 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1855 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1856 uint64_t object, dmu_tx_t *tx) 1857 { 1858 int j; 1859 1860 for (j = 0; j < dnp->dn_nblkptr; j++) { 1861 zbookmark_phys_t czb; 1862 1863 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1864 dnp->dn_nlevels - 1, j); 1865 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1866 &czb, dnp, ds, scn, ostype, tx); 1867 } 1868 1869 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1870 zbookmark_phys_t czb; 1871 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1872 0, DMU_SPILL_BLKID); 1873 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1874 &czb, dnp, ds, scn, ostype, tx); 1875 } 1876 } 1877 1878 /* 1879 * The arguments are in this order because mdb can only print the 1880 * first 5; we want them to be useful. 1881 */ 1882 static void 1883 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1884 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1885 dmu_objset_type_t ostype, dmu_tx_t *tx) 1886 { 1887 dsl_pool_t *dp = scn->scn_dp; 1888 blkptr_t *bp_toread = NULL; 1889 1890 if (dsl_scan_check_suspend(scn, zb)) 1891 return; 1892 1893 if (dsl_scan_check_resume(scn, dnp, zb)) 1894 return; 1895 1896 scn->scn_visited_this_txg++; 1897 1898 /* 1899 * This debugging is commented out to conserve stack space. This 1900 * function is called recursively and the debugging addes several 1901 * bytes to the stack for each call. It can be commented back in 1902 * if required to debug an issue in dsl_scan_visitbp(). 1903 * 1904 * dprintf_bp(bp, 1905 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1906 * ds, ds ? ds->ds_object : 0, 1907 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1908 * bp); 1909 */ 1910 1911 if (BP_IS_HOLE(bp)) { 1912 scn->scn_holes_this_txg++; 1913 return; 1914 } 1915 1916 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1917 scn->scn_lt_min_this_txg++; 1918 return; 1919 } 1920 1921 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1922 *bp_toread = *bp; 1923 1924 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1925 goto out; 1926 1927 /* 1928 * If dsl_scan_ddt() has already visited this block, it will have 1929 * already done any translations or scrubbing, so don't call the 1930 * callback again. 1931 */ 1932 if (ddt_class_contains(dp->dp_spa, 1933 scn->scn_phys.scn_ddt_class_max, bp)) { 1934 scn->scn_ddt_contained_this_txg++; 1935 goto out; 1936 } 1937 1938 /* 1939 * If this block is from the future (after cur_max_txg), then we 1940 * are doing this on behalf of a deleted snapshot, and we will 1941 * revisit the future block on the next pass of this dataset. 1942 * Don't scan it now unless we need to because something 1943 * under it was modified. 1944 */ 1945 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 1946 scn->scn_gt_max_this_txg++; 1947 goto out; 1948 } 1949 1950 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 1951 1952 out: 1953 kmem_free(bp_toread, sizeof (blkptr_t)); 1954 } 1955 1956 static void 1957 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 1958 dmu_tx_t *tx) 1959 { 1960 zbookmark_phys_t zb; 1961 scan_prefetch_ctx_t *spc; 1962 1963 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 1964 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 1965 1966 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 1967 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 1968 zb.zb_objset, 0, 0, 0); 1969 } else { 1970 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 1971 } 1972 1973 scn->scn_objsets_visited_this_txg++; 1974 1975 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 1976 dsl_scan_prefetch(spc, bp, &zb); 1977 scan_prefetch_ctx_rele(spc, FTAG); 1978 1979 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 1980 1981 dprintf_ds(ds, "finished scan%s", ""); 1982 } 1983 1984 static void 1985 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 1986 { 1987 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 1988 if (ds->ds_is_snapshot) { 1989 /* 1990 * Note: 1991 * - scn_cur_{min,max}_txg stays the same. 1992 * - Setting the flag is not really necessary if 1993 * scn_cur_max_txg == scn_max_txg, because there 1994 * is nothing after this snapshot that we care 1995 * about. However, we set it anyway and then 1996 * ignore it when we retraverse it in 1997 * dsl_scan_visitds(). 1998 */ 1999 scn_phys->scn_bookmark.zb_objset = 2000 dsl_dataset_phys(ds)->ds_next_snap_obj; 2001 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2002 "reset zb_objset to %llu", 2003 (u_longlong_t)ds->ds_object, 2004 (u_longlong_t)dsl_dataset_phys(ds)-> 2005 ds_next_snap_obj); 2006 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2007 } else { 2008 SET_BOOKMARK(&scn_phys->scn_bookmark, 2009 ZB_DESTROYED_OBJSET, 0, 0, 0); 2010 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2011 "reset bookmark to -1,0,0,0", 2012 (u_longlong_t)ds->ds_object); 2013 } 2014 } 2015 } 2016 2017 /* 2018 * Invoked when a dataset is destroyed. We need to make sure that: 2019 * 2020 * 1) If it is the dataset that was currently being scanned, we write 2021 * a new dsl_scan_phys_t and marking the objset reference in it 2022 * as destroyed. 2023 * 2) Remove it from the work queue, if it was present. 2024 * 2025 * If the dataset was actually a snapshot, instead of marking the dataset 2026 * as destroyed, we instead substitute the next snapshot in line. 2027 */ 2028 void 2029 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2030 { 2031 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2032 dsl_scan_t *scn = dp->dp_scan; 2033 uint64_t mintxg; 2034 2035 if (!dsl_scan_is_running(scn)) 2036 return; 2037 2038 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2039 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2040 2041 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2042 scan_ds_queue_remove(scn, ds->ds_object); 2043 if (ds->ds_is_snapshot) 2044 scan_ds_queue_insert(scn, 2045 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2046 } 2047 2048 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2049 ds->ds_object, &mintxg) == 0) { 2050 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2051 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2052 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2053 if (ds->ds_is_snapshot) { 2054 /* 2055 * We keep the same mintxg; it could be > 2056 * ds_creation_txg if the previous snapshot was 2057 * deleted too. 2058 */ 2059 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2060 scn->scn_phys.scn_queue_obj, 2061 dsl_dataset_phys(ds)->ds_next_snap_obj, 2062 mintxg, tx) == 0); 2063 zfs_dbgmsg("destroying ds %llu; in queue; " 2064 "replacing with %llu", 2065 (u_longlong_t)ds->ds_object, 2066 (u_longlong_t)dsl_dataset_phys(ds)-> 2067 ds_next_snap_obj); 2068 } else { 2069 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2070 (u_longlong_t)ds->ds_object); 2071 } 2072 } 2073 2074 /* 2075 * dsl_scan_sync() should be called after this, and should sync 2076 * out our changed state, but just to be safe, do it here. 2077 */ 2078 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2079 } 2080 2081 static void 2082 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2083 { 2084 if (scn_bookmark->zb_objset == ds->ds_object) { 2085 scn_bookmark->zb_objset = 2086 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2087 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2088 "reset zb_objset to %llu", 2089 (u_longlong_t)ds->ds_object, 2090 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2091 } 2092 } 2093 2094 /* 2095 * Called when a dataset is snapshotted. If we were currently traversing 2096 * this snapshot, we reset our bookmark to point at the newly created 2097 * snapshot. We also modify our work queue to remove the old snapshot and 2098 * replace with the new one. 2099 */ 2100 void 2101 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2102 { 2103 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2104 dsl_scan_t *scn = dp->dp_scan; 2105 uint64_t mintxg; 2106 2107 if (!dsl_scan_is_running(scn)) 2108 return; 2109 2110 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2111 2112 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2113 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2114 2115 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2116 scan_ds_queue_remove(scn, ds->ds_object); 2117 scan_ds_queue_insert(scn, 2118 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2119 } 2120 2121 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2122 ds->ds_object, &mintxg) == 0) { 2123 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2124 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2125 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2126 scn->scn_phys.scn_queue_obj, 2127 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2128 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2129 "replacing with %llu", 2130 (u_longlong_t)ds->ds_object, 2131 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2132 } 2133 2134 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2135 } 2136 2137 static void 2138 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2139 zbookmark_phys_t *scn_bookmark) 2140 { 2141 if (scn_bookmark->zb_objset == ds1->ds_object) { 2142 scn_bookmark->zb_objset = ds2->ds_object; 2143 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2144 "reset zb_objset to %llu", 2145 (u_longlong_t)ds1->ds_object, 2146 (u_longlong_t)ds2->ds_object); 2147 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2148 scn_bookmark->zb_objset = ds1->ds_object; 2149 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2150 "reset zb_objset to %llu", 2151 (u_longlong_t)ds2->ds_object, 2152 (u_longlong_t)ds1->ds_object); 2153 } 2154 } 2155 2156 /* 2157 * Called when a parent dataset and its clone are swapped. If we were 2158 * currently traversing the dataset, we need to switch to traversing the 2159 * newly promoted parent. 2160 */ 2161 void 2162 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2163 { 2164 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2165 dsl_scan_t *scn = dp->dp_scan; 2166 uint64_t mintxg; 2167 2168 if (!dsl_scan_is_running(scn)) 2169 return; 2170 2171 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2172 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2173 2174 if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) { 2175 scan_ds_queue_remove(scn, ds1->ds_object); 2176 scan_ds_queue_insert(scn, ds2->ds_object, mintxg); 2177 } 2178 if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) { 2179 scan_ds_queue_remove(scn, ds2->ds_object); 2180 scan_ds_queue_insert(scn, ds1->ds_object, mintxg); 2181 } 2182 2183 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2184 ds1->ds_object, &mintxg) == 0) { 2185 int err; 2186 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2187 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2188 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2189 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2190 err = zap_add_int_key(dp->dp_meta_objset, 2191 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx); 2192 VERIFY(err == 0 || err == EEXIST); 2193 if (err == EEXIST) { 2194 /* Both were there to begin with */ 2195 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2196 scn->scn_phys.scn_queue_obj, 2197 ds1->ds_object, mintxg, tx)); 2198 } 2199 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2200 "replacing with %llu", 2201 (u_longlong_t)ds1->ds_object, 2202 (u_longlong_t)ds2->ds_object); 2203 } 2204 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2205 ds2->ds_object, &mintxg) == 0) { 2206 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2207 ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2208 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2209 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2210 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset, 2211 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx)); 2212 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2213 "replacing with %llu", 2214 (u_longlong_t)ds2->ds_object, 2215 (u_longlong_t)ds1->ds_object); 2216 } 2217 2218 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2219 } 2220 2221 /* ARGSUSED */ 2222 static int 2223 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2224 { 2225 uint64_t originobj = *(uint64_t *)arg; 2226 dsl_dataset_t *ds; 2227 int err; 2228 dsl_scan_t *scn = dp->dp_scan; 2229 2230 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2231 return (0); 2232 2233 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2234 if (err) 2235 return (err); 2236 2237 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2238 dsl_dataset_t *prev; 2239 err = dsl_dataset_hold_obj(dp, 2240 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2241 2242 dsl_dataset_rele(ds, FTAG); 2243 if (err) 2244 return (err); 2245 ds = prev; 2246 } 2247 scan_ds_queue_insert(scn, ds->ds_object, 2248 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2249 dsl_dataset_rele(ds, FTAG); 2250 return (0); 2251 } 2252 2253 static void 2254 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2255 { 2256 dsl_pool_t *dp = scn->scn_dp; 2257 dsl_dataset_t *ds; 2258 2259 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2260 2261 if (scn->scn_phys.scn_cur_min_txg >= 2262 scn->scn_phys.scn_max_txg) { 2263 /* 2264 * This can happen if this snapshot was created after the 2265 * scan started, and we already completed a previous snapshot 2266 * that was created after the scan started. This snapshot 2267 * only references blocks with: 2268 * 2269 * birth < our ds_creation_txg 2270 * cur_min_txg is no less than ds_creation_txg. 2271 * We have already visited these blocks. 2272 * or 2273 * birth > scn_max_txg 2274 * The scan requested not to visit these blocks. 2275 * 2276 * Subsequent snapshots (and clones) can reference our 2277 * blocks, or blocks with even higher birth times. 2278 * Therefore we do not need to visit them either, 2279 * so we do not add them to the work queue. 2280 * 2281 * Note that checking for cur_min_txg >= cur_max_txg 2282 * is not sufficient, because in that case we may need to 2283 * visit subsequent snapshots. This happens when min_txg > 0, 2284 * which raises cur_min_txg. In this case we will visit 2285 * this dataset but skip all of its blocks, because the 2286 * rootbp's birth time is < cur_min_txg. Then we will 2287 * add the next snapshots/clones to the work queue. 2288 */ 2289 char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP); 2290 dsl_dataset_name(ds, dsname); 2291 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2292 "cur_min_txg (%llu) >= max_txg (%llu)", 2293 (longlong_t)dsobj, dsname, 2294 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2295 (longlong_t)scn->scn_phys.scn_max_txg); 2296 kmem_free(dsname, MAXNAMELEN); 2297 2298 goto out; 2299 } 2300 2301 /* 2302 * Only the ZIL in the head (non-snapshot) is valid. Even though 2303 * snapshots can have ZIL block pointers (which may be the same 2304 * BP as in the head), they must be ignored. In addition, $ORIGIN 2305 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2306 * need to look for a ZIL in it either. So we traverse the ZIL here, 2307 * rather than in scan_recurse(), because the regular snapshot 2308 * block-sharing rules don't apply to it. 2309 */ 2310 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) && 2311 (dp->dp_origin_snap == NULL || 2312 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2313 objset_t *os; 2314 if (dmu_objset_from_ds(ds, &os) != 0) { 2315 goto out; 2316 } 2317 dsl_scan_zil(dp, &os->os_zil_header); 2318 } 2319 2320 /* 2321 * Iterate over the bps in this ds. 2322 */ 2323 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2324 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2325 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2326 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2327 2328 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2329 dsl_dataset_name(ds, dsname); 2330 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2331 "suspending=%u", 2332 (longlong_t)dsobj, dsname, 2333 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2334 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2335 (int)scn->scn_suspending); 2336 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2337 2338 if (scn->scn_suspending) 2339 goto out; 2340 2341 /* 2342 * We've finished this pass over this dataset. 2343 */ 2344 2345 /* 2346 * If we did not completely visit this dataset, do another pass. 2347 */ 2348 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2349 zfs_dbgmsg("incomplete pass; visiting again"); 2350 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2351 scan_ds_queue_insert(scn, ds->ds_object, 2352 scn->scn_phys.scn_cur_max_txg); 2353 goto out; 2354 } 2355 2356 /* 2357 * Add descendent datasets to work queue. 2358 */ 2359 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2360 scan_ds_queue_insert(scn, 2361 dsl_dataset_phys(ds)->ds_next_snap_obj, 2362 dsl_dataset_phys(ds)->ds_creation_txg); 2363 } 2364 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2365 boolean_t usenext = B_FALSE; 2366 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2367 uint64_t count; 2368 /* 2369 * A bug in a previous version of the code could 2370 * cause upgrade_clones_cb() to not set 2371 * ds_next_snap_obj when it should, leading to a 2372 * missing entry. Therefore we can only use the 2373 * next_clones_obj when its count is correct. 2374 */ 2375 int err = zap_count(dp->dp_meta_objset, 2376 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2377 if (err == 0 && 2378 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2379 usenext = B_TRUE; 2380 } 2381 2382 if (usenext) { 2383 zap_cursor_t zc; 2384 zap_attribute_t za; 2385 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2386 dsl_dataset_phys(ds)->ds_next_clones_obj); 2387 zap_cursor_retrieve(&zc, &za) == 0; 2388 (void) zap_cursor_advance(&zc)) { 2389 scan_ds_queue_insert(scn, 2390 zfs_strtonum(za.za_name, NULL), 2391 dsl_dataset_phys(ds)->ds_creation_txg); 2392 } 2393 zap_cursor_fini(&zc); 2394 } else { 2395 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2396 enqueue_clones_cb, &ds->ds_object, 2397 DS_FIND_CHILDREN)); 2398 } 2399 } 2400 2401 out: 2402 dsl_dataset_rele(ds, FTAG); 2403 } 2404 2405 /* ARGSUSED */ 2406 static int 2407 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2408 { 2409 dsl_dataset_t *ds; 2410 int err; 2411 dsl_scan_t *scn = dp->dp_scan; 2412 2413 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2414 if (err) 2415 return (err); 2416 2417 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2418 dsl_dataset_t *prev; 2419 err = dsl_dataset_hold_obj(dp, 2420 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2421 if (err) { 2422 dsl_dataset_rele(ds, FTAG); 2423 return (err); 2424 } 2425 2426 /* 2427 * If this is a clone, we don't need to worry about it for now. 2428 */ 2429 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2430 dsl_dataset_rele(ds, FTAG); 2431 dsl_dataset_rele(prev, FTAG); 2432 return (0); 2433 } 2434 dsl_dataset_rele(ds, FTAG); 2435 ds = prev; 2436 } 2437 2438 scan_ds_queue_insert(scn, ds->ds_object, 2439 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2440 dsl_dataset_rele(ds, FTAG); 2441 return (0); 2442 } 2443 2444 /* ARGSUSED */ 2445 void 2446 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2447 ddt_entry_t *dde, dmu_tx_t *tx) 2448 { 2449 const ddt_key_t *ddk = &dde->dde_key; 2450 ddt_phys_t *ddp = dde->dde_phys; 2451 blkptr_t bp; 2452 zbookmark_phys_t zb = { 0 }; 2453 int p; 2454 2455 if (scn->scn_phys.scn_state != DSS_SCANNING) 2456 return; 2457 2458 /* 2459 * This function is special because it is the only thing 2460 * that can add scan_io_t's to the vdev scan queues from 2461 * outside dsl_scan_sync(). For the most part this is ok 2462 * as long as it is called from within syncing context. 2463 * However, dsl_scan_sync() expects that no new sio's will 2464 * be added between when all the work for a scan is done 2465 * and the next txg when the scan is actually marked as 2466 * completed. This check ensures we do not issue new sio's 2467 * during this period. 2468 */ 2469 if (scn->scn_done_txg != 0) 2470 return; 2471 2472 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2473 if (ddp->ddp_phys_birth == 0 || 2474 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2475 continue; 2476 ddt_bp_create(checksum, ddk, ddp, &bp); 2477 2478 scn->scn_visited_this_txg++; 2479 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2480 } 2481 } 2482 2483 /* 2484 * Scrub/dedup interaction. 2485 * 2486 * If there are N references to a deduped block, we don't want to scrub it 2487 * N times -- ideally, we should scrub it exactly once. 2488 * 2489 * We leverage the fact that the dde's replication class (enum ddt_class) 2490 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2491 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2492 * 2493 * To prevent excess scrubbing, the scrub begins by walking the DDT 2494 * to find all blocks with refcnt > 1, and scrubs each of these once. 2495 * Since there are two replication classes which contain blocks with 2496 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2497 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2498 * 2499 * There would be nothing more to say if a block's refcnt couldn't change 2500 * during a scrub, but of course it can so we must account for changes 2501 * in a block's replication class. 2502 * 2503 * Here's an example of what can occur: 2504 * 2505 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2506 * when visited during the top-down scrub phase, it will be scrubbed twice. 2507 * This negates our scrub optimization, but is otherwise harmless. 2508 * 2509 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2510 * on each visit during the top-down scrub phase, it will never be scrubbed. 2511 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2512 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2513 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2514 * while a scrub is in progress, it scrubs the block right then. 2515 */ 2516 static void 2517 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2518 { 2519 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2520 ddt_entry_t dde = { 0 }; 2521 int error; 2522 uint64_t n = 0; 2523 2524 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2525 ddt_t *ddt; 2526 2527 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2528 break; 2529 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2530 (longlong_t)ddb->ddb_class, 2531 (longlong_t)ddb->ddb_type, 2532 (longlong_t)ddb->ddb_checksum, 2533 (longlong_t)ddb->ddb_cursor); 2534 2535 /* There should be no pending changes to the dedup table */ 2536 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2537 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2538 2539 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2540 n++; 2541 2542 if (dsl_scan_check_suspend(scn, NULL)) 2543 break; 2544 } 2545 2546 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2547 "suspending=%u", (longlong_t)n, 2548 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2549 2550 ASSERT(error == 0 || error == ENOENT); 2551 ASSERT(error != ENOENT || 2552 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2553 } 2554 2555 static uint64_t 2556 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2557 { 2558 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2559 if (ds->ds_is_snapshot) 2560 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2561 return (smt); 2562 } 2563 2564 static void 2565 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2566 { 2567 scan_ds_t *sds; 2568 dsl_pool_t *dp = scn->scn_dp; 2569 2570 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2571 scn->scn_phys.scn_ddt_class_max) { 2572 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2573 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2574 dsl_scan_ddt(scn, tx); 2575 if (scn->scn_suspending) 2576 return; 2577 } 2578 2579 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2580 /* First do the MOS & ORIGIN */ 2581 2582 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2583 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2584 dsl_scan_visit_rootbp(scn, NULL, 2585 &dp->dp_meta_rootbp, tx); 2586 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2587 if (scn->scn_suspending) 2588 return; 2589 2590 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2591 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2592 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2593 } else { 2594 dsl_scan_visitds(scn, 2595 dp->dp_origin_snap->ds_object, tx); 2596 } 2597 ASSERT(!scn->scn_suspending); 2598 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2599 ZB_DESTROYED_OBJSET) { 2600 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2601 /* 2602 * If we were suspended, continue from here. Note if the 2603 * ds we were suspended on was deleted, the zb_objset may 2604 * be -1, so we will skip this and find a new objset 2605 * below. 2606 */ 2607 dsl_scan_visitds(scn, dsobj, tx); 2608 if (scn->scn_suspending) 2609 return; 2610 } 2611 2612 /* 2613 * In case we suspended right at the end of the ds, zero the 2614 * bookmark so we don't think that we're still trying to resume. 2615 */ 2616 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2617 2618 /* 2619 * Keep pulling things out of the dataset avl queue. Updates to the 2620 * persistent zap-object-as-queue happen only at checkpoints. 2621 */ 2622 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2623 dsl_dataset_t *ds; 2624 uint64_t dsobj = sds->sds_dsobj; 2625 uint64_t txg = sds->sds_txg; 2626 2627 /* dequeue and free the ds from the queue */ 2628 scan_ds_queue_remove(scn, dsobj); 2629 sds = NULL; /* must not be touched after removal */ 2630 2631 /* Set up min / max txg */ 2632 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2633 if (txg != 0) { 2634 scn->scn_phys.scn_cur_min_txg = 2635 MAX(scn->scn_phys.scn_min_txg, txg); 2636 } else { 2637 scn->scn_phys.scn_cur_min_txg = 2638 MAX(scn->scn_phys.scn_min_txg, 2639 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2640 } 2641 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2642 dsl_dataset_rele(ds, FTAG); 2643 2644 dsl_scan_visitds(scn, dsobj, tx); 2645 if (scn->scn_suspending) 2646 return; 2647 } 2648 /* No more objsets to fetch, we're done */ 2649 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2650 ASSERT0(scn->scn_suspending); 2651 } 2652 2653 static uint64_t 2654 dsl_scan_count_leaves(vdev_t *vd) 2655 { 2656 uint64_t i, leaves = 0; 2657 2658 /* we only count leaves that belong to the main pool and are readable */ 2659 if (vd->vdev_islog || vd->vdev_isspare || 2660 vd->vdev_isl2cache || !vdev_readable(vd)) 2661 return (0); 2662 2663 if (vd->vdev_ops->vdev_op_leaf) 2664 return (1); 2665 2666 for (i = 0; i < vd->vdev_children; i++) { 2667 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2668 } 2669 2670 return (leaves); 2671 } 2672 2673 2674 static void 2675 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2676 { 2677 int i; 2678 uint64_t cur_size = 0; 2679 2680 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2681 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2682 } 2683 2684 q->q_total_zio_size_this_txg += cur_size; 2685 q->q_zios_this_txg++; 2686 } 2687 2688 static void 2689 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2690 uint64_t end) 2691 { 2692 q->q_total_seg_size_this_txg += end - start; 2693 q->q_segs_this_txg++; 2694 } 2695 2696 static boolean_t 2697 scan_io_queue_check_suspend(dsl_scan_t *scn) 2698 { 2699 /* See comment in dsl_scan_check_suspend() */ 2700 uint64_t curr_time_ns = gethrtime(); 2701 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2702 uint64_t sync_time_ns = curr_time_ns - 2703 scn->scn_dp->dp_spa->spa_sync_starttime; 2704 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2705 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2706 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2707 2708 return ((NSEC2MSEC(scan_time_ns) > mintime && 2709 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2710 txg_sync_waiting(scn->scn_dp) || 2711 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2712 spa_shutting_down(scn->scn_dp->dp_spa)); 2713 } 2714 2715 /* 2716 * Given a list of scan_io_t's in io_list, this issues the io's out to 2717 * disk. This consumes the io_list and frees the scan_io_t's. This is 2718 * called when emptying queues, either when we're up against the memory 2719 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2720 * processing the list before we finished. Any zios that were not issued 2721 * will remain in the io_list. 2722 */ 2723 static boolean_t 2724 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2725 { 2726 dsl_scan_t *scn = queue->q_scn; 2727 scan_io_t *sio; 2728 int64_t bytes_issued = 0; 2729 boolean_t suspended = B_FALSE; 2730 2731 while ((sio = list_head(io_list)) != NULL) { 2732 blkptr_t bp; 2733 2734 if (scan_io_queue_check_suspend(scn)) { 2735 suspended = B_TRUE; 2736 break; 2737 } 2738 2739 sio2bp(sio, &bp); 2740 bytes_issued += SIO_GET_ASIZE(sio); 2741 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2742 &sio->sio_zb, queue); 2743 (void) list_remove_head(io_list); 2744 scan_io_queues_update_zio_stats(queue, &bp); 2745 sio_free(sio); 2746 } 2747 2748 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2749 2750 return (suspended); 2751 } 2752 2753 /* 2754 * Given a range_seg_t (extent) and a list, this function passes over a 2755 * scan queue and gathers up the appropriate ios which fit into that 2756 * scan seg (starting from lowest LBA). At the end, we remove the segment 2757 * from the q_exts_by_addr range tree. 2758 */ 2759 static boolean_t 2760 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2761 { 2762 scan_io_t *srch_sio, *sio, *next_sio; 2763 avl_index_t idx; 2764 uint_t num_sios = 0; 2765 int64_t bytes_issued = 0; 2766 2767 ASSERT(rs != NULL); 2768 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2769 2770 srch_sio = sio_alloc(1); 2771 srch_sio->sio_nr_dvas = 1; 2772 SIO_SET_OFFSET(srch_sio, rs->rs_start); 2773 2774 /* 2775 * The exact start of the extent might not contain any matching zios, 2776 * so if that's the case, examine the next one in the tree. 2777 */ 2778 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2779 sio_free(srch_sio); 2780 2781 if (sio == NULL) 2782 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2783 2784 while (sio != NULL && 2785 SIO_GET_OFFSET(sio) < rs->rs_end && num_sios <= 32) { 2786 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs->rs_start); 2787 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs->rs_end); 2788 2789 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2790 avl_remove(&queue->q_sios_by_addr, sio); 2791 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2792 2793 bytes_issued += SIO_GET_ASIZE(sio); 2794 num_sios++; 2795 list_insert_tail(list, sio); 2796 sio = next_sio; 2797 } 2798 2799 /* 2800 * We limit the number of sios we process at once to 32 to avoid 2801 * biting off more than we can chew. If we didn't take everything 2802 * in the segment we update it to reflect the work we were able to 2803 * complete. Otherwise, we remove it from the range tree entirely. 2804 */ 2805 if (sio != NULL && SIO_GET_OFFSET(sio) < rs->rs_end) { 2806 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2807 -bytes_issued); 2808 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2809 SIO_GET_OFFSET(sio), rs->rs_end - SIO_GET_OFFSET(sio)); 2810 2811 return (B_TRUE); 2812 } else { 2813 range_tree_remove(queue->q_exts_by_addr, rs->rs_start, 2814 rs->rs_end - rs->rs_start); 2815 return (B_FALSE); 2816 } 2817 } 2818 2819 2820 /* 2821 * This is called from the queue emptying thread and selects the next 2822 * extent from which we are to issue io's. The behavior of this function 2823 * depends on the state of the scan, the current memory consumption and 2824 * whether or not we are performing a scan shutdown. 2825 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2826 * needs to perform a checkpoint 2827 * 2) We select the largest available extent if we are up against the 2828 * memory limit. 2829 * 3) Otherwise we don't select any extents. 2830 */ 2831 static const range_seg_t * 2832 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2833 { 2834 dsl_scan_t *scn = queue->q_scn; 2835 2836 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2837 ASSERT(scn->scn_is_sorted); 2838 2839 /* handle tunable overrides */ 2840 if (scn->scn_checkpointing || scn->scn_clearing) { 2841 if (zfs_scan_issue_strategy == 1) { 2842 return (range_tree_first(queue->q_exts_by_addr)); 2843 } else if (zfs_scan_issue_strategy == 2) { 2844 return (avl_first(&queue->q_exts_by_size)); 2845 } 2846 } 2847 2848 /* 2849 * During normal clearing, we want to issue our largest segments 2850 * first, keeping IO as sequential as possible, and leaving the 2851 * smaller extents for later with the hope that they might eventually 2852 * grow to larger sequential segments. However, when the scan is 2853 * checkpointing, no new extents will be added to the sorting queue, 2854 * so the way we are sorted now is as good as it will ever get. 2855 * In this case, we instead switch to issuing extents in LBA order. 2856 */ 2857 if (scn->scn_checkpointing) { 2858 return (range_tree_first(queue->q_exts_by_addr)); 2859 } else if (scn->scn_clearing) { 2860 return (avl_first(&queue->q_exts_by_size)); 2861 } else { 2862 return (NULL); 2863 } 2864 } 2865 2866 static void 2867 scan_io_queues_run_one(void *arg) 2868 { 2869 dsl_scan_io_queue_t *queue = arg; 2870 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 2871 boolean_t suspended = B_FALSE; 2872 range_seg_t *rs = NULL; 2873 scan_io_t *sio = NULL; 2874 list_t sio_list; 2875 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 2876 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 2877 2878 ASSERT(queue->q_scn->scn_is_sorted); 2879 2880 list_create(&sio_list, sizeof (scan_io_t), 2881 offsetof(scan_io_t, sio_nodes.sio_list_node)); 2882 mutex_enter(q_lock); 2883 2884 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 2885 queue->q_maxinflight_bytes = 2886 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 2887 2888 /* reset per-queue scan statistics for this txg */ 2889 queue->q_total_seg_size_this_txg = 0; 2890 queue->q_segs_this_txg = 0; 2891 queue->q_total_zio_size_this_txg = 0; 2892 queue->q_zios_this_txg = 0; 2893 2894 /* loop until we have run out of time or sios */ 2895 while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) { 2896 uint64_t seg_start = 0, seg_end = 0; 2897 boolean_t more_left = B_TRUE; 2898 2899 ASSERT(list_is_empty(&sio_list)); 2900 2901 /* loop while we still have sios left to process in this rs */ 2902 while (more_left) { 2903 scan_io_t *first_sio, *last_sio; 2904 2905 /* 2906 * We have selected which extent needs to be 2907 * processed next. Gather up the corresponding sios. 2908 */ 2909 more_left = scan_io_queue_gather(queue, rs, &sio_list); 2910 ASSERT(!list_is_empty(&sio_list)); 2911 first_sio = list_head(&sio_list); 2912 last_sio = list_tail(&sio_list); 2913 2914 seg_end = SIO_GET_END_OFFSET(last_sio); 2915 if (seg_start == 0) 2916 seg_start = SIO_GET_OFFSET(first_sio); 2917 2918 /* 2919 * Issuing sios can take a long time so drop the 2920 * queue lock. The sio queue won't be updated by 2921 * other threads since we're in syncing context so 2922 * we can be sure that our trees will remain exactly 2923 * as we left them. 2924 */ 2925 mutex_exit(q_lock); 2926 suspended = scan_io_queue_issue(queue, &sio_list); 2927 mutex_enter(q_lock); 2928 2929 if (suspended) 2930 break; 2931 } 2932 /* update statistics for debugging purposes */ 2933 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 2934 2935 if (suspended) 2936 break; 2937 } 2938 2939 2940 /* 2941 * If we were suspended in the middle of processing, 2942 * requeue any unfinished sios and exit. 2943 */ 2944 while ((sio = list_head(&sio_list)) != NULL) { 2945 list_remove(&sio_list, sio); 2946 scan_io_queue_insert_impl(queue, sio); 2947 } 2948 2949 mutex_exit(q_lock); 2950 list_destroy(&sio_list); 2951 } 2952 2953 /* 2954 * Performs an emptying run on all scan queues in the pool. This just 2955 * punches out one thread per top-level vdev, each of which processes 2956 * only that vdev's scan queue. We can parallelize the I/O here because 2957 * we know that each queue's io's only affect its own top-level vdev. 2958 * 2959 * This function waits for the queue runs to complete, and must be 2960 * called from dsl_scan_sync (or in general, syncing context). 2961 */ 2962 static void 2963 scan_io_queues_run(dsl_scan_t *scn) 2964 { 2965 spa_t *spa = scn->scn_dp->dp_spa; 2966 2967 ASSERT(scn->scn_is_sorted); 2968 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2969 2970 if (scn->scn_bytes_pending == 0) 2971 return; 2972 2973 if (scn->scn_taskq == NULL) { 2974 char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16, 2975 KM_SLEEP); 2976 int nthreads = spa->spa_root_vdev->vdev_children; 2977 2978 /* 2979 * We need to make this taskq *always* execute as many 2980 * threads in parallel as we have top-level vdevs and no 2981 * less, otherwise strange serialization of the calls to 2982 * scan_io_queues_run_one can occur during spa_sync runs 2983 * and that significantly impacts performance. 2984 */ 2985 (void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16, 2986 "dsl_scan_tq_%s", spa->spa_name); 2987 scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri, 2988 nthreads, nthreads, TASKQ_PREPOPULATE); 2989 kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16); 2990 } 2991 2992 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 2993 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 2994 2995 mutex_enter(&vd->vdev_scan_io_queue_lock); 2996 if (vd->vdev_scan_io_queue != NULL) { 2997 VERIFY(taskq_dispatch(scn->scn_taskq, 2998 scan_io_queues_run_one, vd->vdev_scan_io_queue, 2999 TQ_SLEEP) != TASKQID_INVALID); 3000 } 3001 mutex_exit(&vd->vdev_scan_io_queue_lock); 3002 } 3003 3004 /* 3005 * Wait for the queues to finish issuing thir IOs for this run 3006 * before we return. There may still be IOs in flight at this 3007 * point. 3008 */ 3009 taskq_wait(scn->scn_taskq); 3010 } 3011 3012 static boolean_t 3013 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3014 { 3015 uint64_t elapsed_nanosecs; 3016 3017 if (zfs_recover) 3018 return (B_FALSE); 3019 3020 if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks) 3021 return (B_TRUE); 3022 3023 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3024 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3025 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3026 txg_sync_waiting(scn->scn_dp)) || 3027 spa_shutting_down(scn->scn_dp->dp_spa)); 3028 } 3029 3030 static int 3031 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3032 { 3033 dsl_scan_t *scn = arg; 3034 3035 if (!scn->scn_is_bptree || 3036 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3037 if (dsl_scan_async_block_should_pause(scn)) 3038 return (SET_ERROR(ERESTART)); 3039 } 3040 3041 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3042 dmu_tx_get_txg(tx), bp, 0)); 3043 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3044 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3045 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3046 scn->scn_visited_this_txg++; 3047 return (0); 3048 } 3049 3050 static void 3051 dsl_scan_update_stats(dsl_scan_t *scn) 3052 { 3053 spa_t *spa = scn->scn_dp->dp_spa; 3054 uint64_t i; 3055 uint64_t seg_size_total = 0, zio_size_total = 0; 3056 uint64_t seg_count_total = 0, zio_count_total = 0; 3057 3058 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3059 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3060 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3061 3062 if (queue == NULL) 3063 continue; 3064 3065 seg_size_total += queue->q_total_seg_size_this_txg; 3066 zio_size_total += queue->q_total_zio_size_this_txg; 3067 seg_count_total += queue->q_segs_this_txg; 3068 zio_count_total += queue->q_zios_this_txg; 3069 } 3070 3071 if (seg_count_total == 0 || zio_count_total == 0) { 3072 scn->scn_avg_seg_size_this_txg = 0; 3073 scn->scn_avg_zio_size_this_txg = 0; 3074 scn->scn_segs_this_txg = 0; 3075 scn->scn_zios_this_txg = 0; 3076 return; 3077 } 3078 3079 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3080 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3081 scn->scn_segs_this_txg = seg_count_total; 3082 scn->scn_zios_this_txg = zio_count_total; 3083 } 3084 3085 static int 3086 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3087 { 3088 dsl_scan_t *scn = arg; 3089 const dva_t *dva = &bp->blk_dva[0]; 3090 3091 if (dsl_scan_async_block_should_pause(scn)) 3092 return (SET_ERROR(ERESTART)); 3093 3094 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3095 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3096 DVA_GET_ASIZE(dva), tx); 3097 scn->scn_visited_this_txg++; 3098 return (0); 3099 } 3100 3101 boolean_t 3102 dsl_scan_active(dsl_scan_t *scn) 3103 { 3104 spa_t *spa = scn->scn_dp->dp_spa; 3105 uint64_t used = 0, comp, uncomp; 3106 3107 if (spa->spa_load_state != SPA_LOAD_NONE) 3108 return (B_FALSE); 3109 if (spa_shutting_down(spa)) 3110 return (B_FALSE); 3111 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3112 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3113 return (B_TRUE); 3114 3115 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3116 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3117 &used, &comp, &uncomp); 3118 } 3119 return (used != 0); 3120 } 3121 3122 static boolean_t 3123 dsl_scan_check_deferred(vdev_t *vd) 3124 { 3125 boolean_t need_resilver = B_FALSE; 3126 3127 for (int c = 0; c < vd->vdev_children; c++) { 3128 need_resilver |= 3129 dsl_scan_check_deferred(vd->vdev_child[c]); 3130 } 3131 3132 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3133 !vd->vdev_ops->vdev_op_leaf) 3134 return (need_resilver); 3135 3136 if (!vd->vdev_resilver_deferred) 3137 need_resilver = B_TRUE; 3138 3139 return (need_resilver); 3140 } 3141 3142 static boolean_t 3143 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3144 uint64_t phys_birth) 3145 { 3146 vdev_t *vd; 3147 3148 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3149 3150 if (vd->vdev_ops == &vdev_indirect_ops) { 3151 /* 3152 * The indirect vdev can point to multiple 3153 * vdevs. For simplicity, always create 3154 * the resilver zio_t. zio_vdev_io_start() 3155 * will bypass the child resilver i/o's if 3156 * they are on vdevs that don't have DTL's. 3157 */ 3158 return (B_TRUE); 3159 } 3160 3161 if (DVA_GET_GANG(dva)) { 3162 /* 3163 * Gang members may be spread across multiple 3164 * vdevs, so the best estimate we have is the 3165 * scrub range, which has already been checked. 3166 * XXX -- it would be better to change our 3167 * allocation policy to ensure that all 3168 * gang members reside on the same vdev. 3169 */ 3170 return (B_TRUE); 3171 } 3172 3173 /* 3174 * Check if the txg falls within the range which must be 3175 * resilvered. DVAs outside this range can always be skipped. 3176 */ 3177 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3178 return (B_FALSE); 3179 3180 /* 3181 * Check if the top-level vdev must resilver this offset. 3182 * When the offset does not intersect with a dirty leaf DTL 3183 * then it may be possible to skip the resilver IO. The psize 3184 * is provided instead of asize to simplify the check for RAIDZ. 3185 */ 3186 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3187 return (B_FALSE); 3188 3189 /* 3190 * Check that this top-level vdev has a device under it which 3191 * is resilvering and is not deferred. 3192 */ 3193 if (!dsl_scan_check_deferred(vd)) 3194 return (B_FALSE); 3195 3196 return (B_TRUE); 3197 } 3198 3199 static int 3200 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3201 { 3202 int err = 0; 3203 dsl_scan_t *scn = dp->dp_scan; 3204 spa_t *spa = dp->dp_spa; 3205 3206 if (spa_suspend_async_destroy(spa)) 3207 return (0); 3208 3209 if (zfs_free_bpobj_enabled && 3210 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3211 scn->scn_is_bptree = B_FALSE; 3212 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3213 scn->scn_zio_root = zio_root(spa, NULL, 3214 NULL, ZIO_FLAG_MUSTSUCCEED); 3215 err = bpobj_iterate(&dp->dp_free_bpobj, 3216 dsl_scan_free_block_cb, scn, tx); 3217 VERIFY0(zio_wait(scn->scn_zio_root)); 3218 scn->scn_zio_root = NULL; 3219 3220 if (err != 0 && err != ERESTART) 3221 zfs_panic_recover("error %u from bpobj_iterate()", err); 3222 } 3223 3224 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3225 ASSERT(scn->scn_async_destroying); 3226 scn->scn_is_bptree = B_TRUE; 3227 scn->scn_zio_root = zio_root(spa, NULL, 3228 NULL, ZIO_FLAG_MUSTSUCCEED); 3229 err = bptree_iterate(dp->dp_meta_objset, 3230 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3231 VERIFY0(zio_wait(scn->scn_zio_root)); 3232 scn->scn_zio_root = NULL; 3233 3234 if (err == EIO || err == ECKSUM) { 3235 err = 0; 3236 } else if (err != 0 && err != ERESTART) { 3237 zfs_panic_recover("error %u from " 3238 "traverse_dataset_destroyed()", err); 3239 } 3240 3241 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3242 /* finished; deactivate async destroy feature */ 3243 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3244 ASSERT(!spa_feature_is_active(spa, 3245 SPA_FEATURE_ASYNC_DESTROY)); 3246 VERIFY0(zap_remove(dp->dp_meta_objset, 3247 DMU_POOL_DIRECTORY_OBJECT, 3248 DMU_POOL_BPTREE_OBJ, tx)); 3249 VERIFY0(bptree_free(dp->dp_meta_objset, 3250 dp->dp_bptree_obj, tx)); 3251 dp->dp_bptree_obj = 0; 3252 scn->scn_async_destroying = B_FALSE; 3253 scn->scn_async_stalled = B_FALSE; 3254 } else { 3255 /* 3256 * If we didn't make progress, mark the async 3257 * destroy as stalled, so that we will not initiate 3258 * a spa_sync() on its behalf. Note that we only 3259 * check this if we are not finished, because if the 3260 * bptree had no blocks for us to visit, we can 3261 * finish without "making progress". 3262 */ 3263 scn->scn_async_stalled = 3264 (scn->scn_visited_this_txg == 0); 3265 } 3266 } 3267 if (scn->scn_visited_this_txg) { 3268 zfs_dbgmsg("freed %llu blocks in %llums from " 3269 "free_bpobj/bptree txg %llu; err=%d", 3270 (longlong_t)scn->scn_visited_this_txg, 3271 (longlong_t) 3272 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3273 (longlong_t)tx->tx_txg, err); 3274 scn->scn_visited_this_txg = 0; 3275 3276 /* 3277 * Write out changes to the DDT that may be required as a 3278 * result of the blocks freed. This ensures that the DDT 3279 * is clean when a scrub/resilver runs. 3280 */ 3281 ddt_sync(spa, tx->tx_txg); 3282 } 3283 if (err != 0) 3284 return (err); 3285 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3286 zfs_free_leak_on_eio && 3287 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3288 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3289 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3290 /* 3291 * We have finished background destroying, but there is still 3292 * some space left in the dp_free_dir. Transfer this leaked 3293 * space to the dp_leak_dir. 3294 */ 3295 if (dp->dp_leak_dir == NULL) { 3296 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3297 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3298 LEAK_DIR_NAME, tx); 3299 VERIFY0(dsl_pool_open_special_dir(dp, 3300 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3301 rrw_exit(&dp->dp_config_rwlock, FTAG); 3302 } 3303 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3304 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3305 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3306 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3307 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3308 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3309 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3310 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3311 } 3312 3313 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) { 3314 /* finished; verify that space accounting went to zero */ 3315 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3316 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3317 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3318 } 3319 3320 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3321 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3322 DMU_POOL_OBSOLETE_BPOBJ)); 3323 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3324 ASSERT(spa_feature_is_active(dp->dp_spa, 3325 SPA_FEATURE_OBSOLETE_COUNTS)); 3326 3327 scn->scn_is_bptree = B_FALSE; 3328 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3329 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3330 dsl_scan_obsolete_block_cb, scn, tx); 3331 if (err != 0 && err != ERESTART) 3332 zfs_panic_recover("error %u from bpobj_iterate()", err); 3333 3334 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3335 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3336 } 3337 3338 return (0); 3339 } 3340 3341 /* 3342 * This is the primary entry point for scans that is called from syncing 3343 * context. Scans must happen entirely during syncing context so that we 3344 * cna guarantee that blocks we are currently scanning will not change out 3345 * from under us. While a scan is active, this funciton controls how quickly 3346 * transaction groups proceed, instead of the normal handling provided by 3347 * txg_sync_thread(). 3348 */ 3349 void 3350 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3351 { 3352 dsl_scan_t *scn = dp->dp_scan; 3353 spa_t *spa = dp->dp_spa; 3354 int err = 0; 3355 state_sync_type_t sync_type = SYNC_OPTIONAL; 3356 3357 if (spa->spa_resilver_deferred && 3358 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3359 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3360 3361 /* 3362 * Check for scn_restart_txg before checking spa_load_state, so 3363 * that we can restart an old-style scan while the pool is being 3364 * imported (see dsl_scan_init). We also restart scans if there 3365 * is a deferred resilver and the user has manually disabled 3366 * deferred resilvers via the tunable. 3367 */ 3368 if (dsl_scan_restarting(scn, tx) || 3369 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3370 pool_scan_func_t func = POOL_SCAN_SCRUB; 3371 dsl_scan_done(scn, B_FALSE, tx); 3372 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3373 func = POOL_SCAN_RESILVER; 3374 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3375 func, (longlong_t)tx->tx_txg); 3376 dsl_scan_setup_sync(&func, tx); 3377 } 3378 3379 /* 3380 * Only process scans in sync pass 1. 3381 */ 3382 if (spa_sync_pass(dp->dp_spa) > 1) 3383 return; 3384 3385 /* 3386 * If the spa is shutting down, then stop scanning. This will 3387 * ensure that the scan does not dirty any new data during the 3388 * shutdown phase. 3389 */ 3390 if (spa_shutting_down(spa)) 3391 return; 3392 3393 /* 3394 * If the scan is inactive due to a stalled async destroy, try again. 3395 */ 3396 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3397 return; 3398 3399 /* reset scan statistics */ 3400 scn->scn_visited_this_txg = 0; 3401 scn->scn_holes_this_txg = 0; 3402 scn->scn_lt_min_this_txg = 0; 3403 scn->scn_gt_max_this_txg = 0; 3404 scn->scn_ddt_contained_this_txg = 0; 3405 scn->scn_objsets_visited_this_txg = 0; 3406 scn->scn_avg_seg_size_this_txg = 0; 3407 scn->scn_segs_this_txg = 0; 3408 scn->scn_avg_zio_size_this_txg = 0; 3409 scn->scn_zios_this_txg = 0; 3410 scn->scn_suspending = B_FALSE; 3411 scn->scn_sync_start_time = gethrtime(); 3412 spa->spa_scrub_active = B_TRUE; 3413 3414 /* 3415 * First process the async destroys. If we pause, don't do 3416 * any scrubbing or resilvering. This ensures that there are no 3417 * async destroys while we are scanning, so the scan code doesn't 3418 * have to worry about traversing it. It is also faster to free the 3419 * blocks than to scrub them. 3420 */ 3421 err = dsl_process_async_destroys(dp, tx); 3422 if (err != 0) 3423 return; 3424 3425 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3426 return; 3427 3428 /* 3429 * Wait a few txgs after importing to begin scanning so that 3430 * we can get the pool imported quickly. 3431 */ 3432 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3433 return; 3434 3435 /* 3436 * zfs_scan_suspend_progress can be set to disable scan progress. 3437 * We don't want to spin the txg_sync thread, so we add a delay 3438 * here to simulate the time spent doing a scan. This is mostly 3439 * useful for testing and debugging. 3440 */ 3441 if (zfs_scan_suspend_progress) { 3442 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3443 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3444 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3445 3446 while (zfs_scan_suspend_progress && 3447 !txg_sync_waiting(scn->scn_dp) && 3448 !spa_shutting_down(scn->scn_dp->dp_spa) && 3449 NSEC2MSEC(scan_time_ns) < mintime) { 3450 delay(hz); 3451 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3452 } 3453 return; 3454 } 3455 3456 /* 3457 * It is possible to switch from unsorted to sorted at any time, 3458 * but afterwards the scan will remain sorted unless reloaded from 3459 * a checkpoint after a reboot. 3460 */ 3461 if (!zfs_scan_legacy) { 3462 scn->scn_is_sorted = B_TRUE; 3463 if (scn->scn_last_checkpoint == 0) 3464 scn->scn_last_checkpoint = ddi_get_lbolt(); 3465 } 3466 3467 /* 3468 * For sorted scans, determine what kind of work we will be doing 3469 * this txg based on our memory limitations and whether or not we 3470 * need to perform a checkpoint. 3471 */ 3472 if (scn->scn_is_sorted) { 3473 /* 3474 * If we are over our checkpoint interval, set scn_clearing 3475 * so that we can begin checkpointing immediately. The 3476 * checkpoint allows us to save a consisent bookmark 3477 * representing how much data we have scrubbed so far. 3478 * Otherwise, use the memory limit to determine if we should 3479 * scan for metadata or start issue scrub IOs. We accumulate 3480 * metadata until we hit our hard memory limit at which point 3481 * we issue scrub IOs until we are at our soft memory limit. 3482 */ 3483 if (scn->scn_checkpointing || 3484 ddi_get_lbolt() - scn->scn_last_checkpoint > 3485 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3486 if (!scn->scn_checkpointing) 3487 zfs_dbgmsg("begin scan checkpoint"); 3488 3489 scn->scn_checkpointing = B_TRUE; 3490 scn->scn_clearing = B_TRUE; 3491 } else { 3492 boolean_t should_clear = dsl_scan_should_clear(scn); 3493 if (should_clear && !scn->scn_clearing) { 3494 zfs_dbgmsg("begin scan clearing"); 3495 scn->scn_clearing = B_TRUE; 3496 } else if (!should_clear && scn->scn_clearing) { 3497 zfs_dbgmsg("finish scan clearing"); 3498 scn->scn_clearing = B_FALSE; 3499 } 3500 } 3501 } else { 3502 ASSERT0(scn->scn_checkpointing); 3503 ASSERT0(scn->scn_clearing); 3504 } 3505 3506 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3507 /* Need to scan metadata for more blocks to scrub */ 3508 dsl_scan_phys_t *scnp = &scn->scn_phys; 3509 taskqid_t prefetch_tqid; 3510 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3511 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3512 3513 /* 3514 * Calculate the max number of in-flight bytes for pool-wide 3515 * scanning operations (minimum 1MB). Limits for the issuing 3516 * phase are done per top-level vdev and are handled separately. 3517 */ 3518 scn->scn_maxinflight_bytes = 3519 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3520 3521 if (scnp->scn_ddt_bookmark.ddb_class <= 3522 scnp->scn_ddt_class_max) { 3523 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3524 zfs_dbgmsg("doing scan sync txg %llu; " 3525 "ddt bm=%llu/%llu/%llu/%llx", 3526 (longlong_t)tx->tx_txg, 3527 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3528 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3529 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3530 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3531 } else { 3532 zfs_dbgmsg("doing scan sync txg %llu; " 3533 "bm=%llu/%llu/%llu/%llu", 3534 (longlong_t)tx->tx_txg, 3535 (longlong_t)scnp->scn_bookmark.zb_objset, 3536 (longlong_t)scnp->scn_bookmark.zb_object, 3537 (longlong_t)scnp->scn_bookmark.zb_level, 3538 (longlong_t)scnp->scn_bookmark.zb_blkid); 3539 } 3540 3541 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3542 NULL, ZIO_FLAG_CANFAIL); 3543 3544 scn->scn_prefetch_stop = B_FALSE; 3545 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3546 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3547 ASSERT(prefetch_tqid != TASKQID_INVALID); 3548 3549 dsl_pool_config_enter(dp, FTAG); 3550 dsl_scan_visit(scn, tx); 3551 dsl_pool_config_exit(dp, FTAG); 3552 3553 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3554 scn->scn_prefetch_stop = B_TRUE; 3555 cv_broadcast(&spa->spa_scrub_io_cv); 3556 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3557 3558 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3559 (void) zio_wait(scn->scn_zio_root); 3560 scn->scn_zio_root = NULL; 3561 3562 zfs_dbgmsg("scan visited %llu blocks in %llums " 3563 "(%llu os's, %llu holes, %llu < mintxg, " 3564 "%llu in ddt, %llu > maxtxg)", 3565 (longlong_t)scn->scn_visited_this_txg, 3566 (longlong_t)NSEC2MSEC(gethrtime() - 3567 scn->scn_sync_start_time), 3568 (longlong_t)scn->scn_objsets_visited_this_txg, 3569 (longlong_t)scn->scn_holes_this_txg, 3570 (longlong_t)scn->scn_lt_min_this_txg, 3571 (longlong_t)scn->scn_ddt_contained_this_txg, 3572 (longlong_t)scn->scn_gt_max_this_txg); 3573 3574 if (!scn->scn_suspending) { 3575 ASSERT0(avl_numnodes(&scn->scn_queue)); 3576 scn->scn_done_txg = tx->tx_txg + 1; 3577 if (scn->scn_is_sorted) { 3578 scn->scn_checkpointing = B_TRUE; 3579 scn->scn_clearing = B_TRUE; 3580 } 3581 zfs_dbgmsg("scan complete txg %llu", 3582 (longlong_t)tx->tx_txg); 3583 } 3584 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3585 ASSERT(scn->scn_clearing); 3586 3587 /* need to issue scrubbing IOs from per-vdev queues */ 3588 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3589 NULL, ZIO_FLAG_CANFAIL); 3590 scan_io_queues_run(scn); 3591 (void) zio_wait(scn->scn_zio_root); 3592 scn->scn_zio_root = NULL; 3593 3594 /* calculate and dprintf the current memory usage */ 3595 (void) dsl_scan_should_clear(scn); 3596 dsl_scan_update_stats(scn); 3597 3598 zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums " 3599 "(avg_block_size = %llu, avg_seg_size = %llu)", 3600 (longlong_t)scn->scn_zios_this_txg, 3601 (longlong_t)scn->scn_segs_this_txg, 3602 (longlong_t)NSEC2MSEC(gethrtime() - 3603 scn->scn_sync_start_time), 3604 (longlong_t)scn->scn_avg_zio_size_this_txg, 3605 (longlong_t)scn->scn_avg_seg_size_this_txg); 3606 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3607 /* Finished with everything. Mark the scrub as complete */ 3608 zfs_dbgmsg("scan issuing complete txg %llu", 3609 (longlong_t)tx->tx_txg); 3610 ASSERT3U(scn->scn_done_txg, !=, 0); 3611 ASSERT0(spa->spa_scrub_inflight); 3612 ASSERT0(scn->scn_bytes_pending); 3613 dsl_scan_done(scn, B_TRUE, tx); 3614 sync_type = SYNC_MANDATORY; 3615 } 3616 3617 dsl_scan_sync_state(scn, tx, sync_type); 3618 } 3619 3620 static void 3621 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3622 { 3623 int i; 3624 3625 /* 3626 * Don't count embedded bp's, since we already did the work of 3627 * scanning these when we scanned the containing block. 3628 */ 3629 if (BP_IS_EMBEDDED(bp)) 3630 return; 3631 3632 /* 3633 * Update the spa's stats on how many bytes we have issued. 3634 * Sequential scrubs create a zio for each DVA of the bp. Each 3635 * of these will include all DVAs for repair purposes, but the 3636 * zio code will only try the first one unless there is an issue. 3637 * Therefore, we should only count the first DVA for these IOs. 3638 */ 3639 if (scn->scn_is_sorted) { 3640 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3641 DVA_GET_ASIZE(&bp->blk_dva[0])); 3642 } else { 3643 spa_t *spa = scn->scn_dp->dp_spa; 3644 3645 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3646 atomic_add_64(&spa->spa_scan_pass_issued, 3647 DVA_GET_ASIZE(&bp->blk_dva[i])); 3648 } 3649 } 3650 3651 /* 3652 * If we resume after a reboot, zab will be NULL; don't record 3653 * incomplete stats in that case. 3654 */ 3655 if (zab == NULL) 3656 return; 3657 3658 mutex_enter(&zab->zab_lock); 3659 3660 for (i = 0; i < 4; i++) { 3661 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3662 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3663 if (t & DMU_OT_NEWTYPE) 3664 t = DMU_OT_OTHER; 3665 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3666 int equal; 3667 3668 zb->zb_count++; 3669 zb->zb_asize += BP_GET_ASIZE(bp); 3670 zb->zb_lsize += BP_GET_LSIZE(bp); 3671 zb->zb_psize += BP_GET_PSIZE(bp); 3672 zb->zb_gangs += BP_COUNT_GANG(bp); 3673 3674 switch (BP_GET_NDVAS(bp)) { 3675 case 2: 3676 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3677 DVA_GET_VDEV(&bp->blk_dva[1])) 3678 zb->zb_ditto_2_of_2_samevdev++; 3679 break; 3680 case 3: 3681 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3682 DVA_GET_VDEV(&bp->blk_dva[1])) + 3683 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3684 DVA_GET_VDEV(&bp->blk_dva[2])) + 3685 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3686 DVA_GET_VDEV(&bp->blk_dva[2])); 3687 if (equal == 1) 3688 zb->zb_ditto_2_of_3_samevdev++; 3689 else if (equal == 3) 3690 zb->zb_ditto_3_of_3_samevdev++; 3691 break; 3692 } 3693 } 3694 3695 mutex_exit(&zab->zab_lock); 3696 } 3697 3698 static void 3699 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3700 { 3701 avl_index_t idx; 3702 int64_t asize = SIO_GET_ASIZE(sio); 3703 dsl_scan_t *scn = queue->q_scn; 3704 3705 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3706 3707 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3708 /* block is already scheduled for reading */ 3709 atomic_add_64(&scn->scn_bytes_pending, -asize); 3710 sio_free(sio); 3711 return; 3712 } 3713 avl_insert(&queue->q_sios_by_addr, sio, idx); 3714 queue->q_sio_memused += SIO_GET_MUSED(sio); 3715 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3716 } 3717 3718 /* 3719 * Given all the info we got from our metadata scanning process, we 3720 * construct a scan_io_t and insert it into the scan sorting queue. The 3721 * I/O must already be suitable for us to process. This is controlled 3722 * by dsl_scan_enqueue(). 3723 */ 3724 static void 3725 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3726 int zio_flags, const zbookmark_phys_t *zb) 3727 { 3728 dsl_scan_t *scn = queue->q_scn; 3729 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3730 3731 ASSERT0(BP_IS_GANG(bp)); 3732 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3733 3734 bp2sio(bp, sio, dva_i); 3735 sio->sio_flags = zio_flags; 3736 sio->sio_zb = *zb; 3737 3738 /* 3739 * Increment the bytes pending counter now so that we can't 3740 * get an integer underflow in case the worker processes the 3741 * zio before we get to incrementing this counter. 3742 */ 3743 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3744 3745 scan_io_queue_insert_impl(queue, sio); 3746 } 3747 3748 /* 3749 * Given a set of I/O parameters as discovered by the metadata traversal 3750 * process, attempts to place the I/O into the sorted queues (if allowed), 3751 * or immediately executes the I/O. 3752 */ 3753 static void 3754 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3755 const zbookmark_phys_t *zb) 3756 { 3757 spa_t *spa = dp->dp_spa; 3758 3759 ASSERT(!BP_IS_EMBEDDED(bp)); 3760 3761 /* 3762 * Gang blocks are hard to issue sequentially, so we just issue them 3763 * here immediately instead of queuing them. 3764 */ 3765 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3766 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3767 return; 3768 } 3769 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3770 dva_t dva; 3771 vdev_t *vdev; 3772 3773 dva = bp->blk_dva[i]; 3774 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3775 ASSERT(vdev != NULL); 3776 3777 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3778 if (vdev->vdev_scan_io_queue == NULL) 3779 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3780 ASSERT(dp->dp_scan != NULL); 3781 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3782 i, zio_flags, zb); 3783 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3784 } 3785 } 3786 3787 static int 3788 dsl_scan_scrub_cb(dsl_pool_t *dp, 3789 const blkptr_t *bp, const zbookmark_phys_t *zb) 3790 { 3791 dsl_scan_t *scn = dp->dp_scan; 3792 spa_t *spa = dp->dp_spa; 3793 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3794 size_t psize = BP_GET_PSIZE(bp); 3795 boolean_t needs_io; 3796 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3797 int d; 3798 3799 if (phys_birth <= scn->scn_phys.scn_min_txg || 3800 phys_birth >= scn->scn_phys.scn_max_txg) { 3801 count_block(scn, dp->dp_blkstats, bp); 3802 return (0); 3803 } 3804 3805 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3806 ASSERT(!BP_IS_EMBEDDED(bp)); 3807 3808 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3809 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3810 zio_flags |= ZIO_FLAG_SCRUB; 3811 needs_io = B_TRUE; 3812 } else { 3813 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3814 zio_flags |= ZIO_FLAG_RESILVER; 3815 needs_io = B_FALSE; 3816 } 3817 3818 /* If it's an intent log block, failure is expected. */ 3819 if (zb->zb_level == ZB_ZIL_LEVEL) 3820 zio_flags |= ZIO_FLAG_SPECULATIVE; 3821 3822 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 3823 const dva_t *dva = &bp->blk_dva[d]; 3824 3825 /* 3826 * Keep track of how much data we've examined so that 3827 * zpool(1M) status can make useful progress reports. 3828 */ 3829 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3830 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3831 3832 /* if it's a resilver, this may not be in the target range */ 3833 if (!needs_io) 3834 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3835 phys_birth); 3836 } 3837 3838 if (needs_io && !zfs_no_scrub_io) { 3839 dsl_scan_enqueue(dp, bp, zio_flags, zb); 3840 } else { 3841 count_block(scn, dp->dp_blkstats, bp); 3842 } 3843 3844 /* do not relocate this block */ 3845 return (0); 3846 } 3847 3848 static void 3849 dsl_scan_scrub_done(zio_t *zio) 3850 { 3851 spa_t *spa = zio->io_spa; 3852 blkptr_t *bp = zio->io_bp; 3853 dsl_scan_io_queue_t *queue = zio->io_private; 3854 3855 abd_free(zio->io_abd); 3856 3857 if (queue == NULL) { 3858 mutex_enter(&spa->spa_scrub_lock); 3859 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 3860 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 3861 cv_broadcast(&spa->spa_scrub_io_cv); 3862 mutex_exit(&spa->spa_scrub_lock); 3863 } else { 3864 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 3865 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 3866 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 3867 cv_broadcast(&queue->q_zio_cv); 3868 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 3869 } 3870 3871 if (zio->io_error && (zio->io_error != ECKSUM || 3872 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 3873 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 3874 } 3875 } 3876 3877 /* 3878 * Given a scanning zio's information, executes the zio. The zio need 3879 * not necessarily be only sortable, this function simply executes the 3880 * zio, no matter what it is. The optional queue argument allows the 3881 * caller to specify that they want per top level vdev IO rate limiting 3882 * instead of the legacy global limiting. 3883 */ 3884 static void 3885 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3886 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 3887 { 3888 spa_t *spa = dp->dp_spa; 3889 dsl_scan_t *scn = dp->dp_scan; 3890 size_t size = BP_GET_PSIZE(bp); 3891 abd_t *data = abd_alloc_for_io(size, B_FALSE); 3892 3893 if (queue == NULL) { 3894 mutex_enter(&spa->spa_scrub_lock); 3895 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 3896 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 3897 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 3898 mutex_exit(&spa->spa_scrub_lock); 3899 } else { 3900 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3901 3902 mutex_enter(q_lock); 3903 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 3904 cv_wait(&queue->q_zio_cv, q_lock); 3905 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 3906 mutex_exit(q_lock); 3907 } 3908 3909 count_block(dp->dp_scan, dp->dp_blkstats, bp); 3910 zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size, 3911 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 3912 } 3913 3914 /* 3915 * This is the primary extent sorting algorithm. We balance two parameters: 3916 * 1) how many bytes of I/O are in an extent 3917 * 2) how well the extent is filled with I/O (as a fraction of its total size) 3918 * Since we allow extents to have gaps between their constituent I/Os, it's 3919 * possible to have a fairly large extent that contains the same amount of 3920 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 3921 * The algorithm sorts based on a score calculated from the extent's size, 3922 * the relative fill volume (in %) and a "fill weight" parameter that controls 3923 * the split between whether we prefer larger extents or more well populated 3924 * extents: 3925 * 3926 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 3927 * 3928 * Example: 3929 * 1) assume extsz = 64 MiB 3930 * 2) assume fill = 32 MiB (extent is half full) 3931 * 3) assume fill_weight = 3 3932 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 3933 * SCORE = 32M + (50 * 3 * 32M) / 100 3934 * SCORE = 32M + (4800M / 100) 3935 * SCORE = 32M + 48M 3936 * ^ ^ 3937 * | +--- final total relative fill-based score 3938 * +--------- final total fill-based score 3939 * SCORE = 80M 3940 * 3941 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 3942 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 3943 * Note that as an optimization, we replace multiplication and division by 3944 * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128). 3945 */ 3946 static int 3947 ext_size_compare(const void *x, const void *y) 3948 { 3949 const range_seg_t *rsa = x, *rsb = y; 3950 uint64_t sa = rsa->rs_end - rsa->rs_start, 3951 sb = rsb->rs_end - rsb->rs_start; 3952 uint64_t score_a, score_b; 3953 3954 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 3955 fill_weight * rsa->rs_fill) >> 7); 3956 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 3957 fill_weight * rsb->rs_fill) >> 7); 3958 3959 if (score_a > score_b) 3960 return (-1); 3961 if (score_a == score_b) { 3962 if (rsa->rs_start < rsb->rs_start) 3963 return (-1); 3964 if (rsa->rs_start == rsb->rs_start) 3965 return (0); 3966 return (1); 3967 } 3968 return (1); 3969 } 3970 3971 /* 3972 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 3973 * based on LBA-order (from lowest to highest). 3974 */ 3975 static int 3976 sio_addr_compare(const void *x, const void *y) 3977 { 3978 const scan_io_t *a = x, *b = y; 3979 3980 return (AVL_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 3981 } 3982 3983 /* IO queues are created on demand when they are needed. */ 3984 static dsl_scan_io_queue_t * 3985 scan_io_queue_create(vdev_t *vd) 3986 { 3987 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3988 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 3989 3990 q->q_scn = scn; 3991 q->q_vd = vd; 3992 q->q_sio_memused = 0; 3993 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 3994 q->q_exts_by_addr = range_tree_create_impl(&rt_avl_ops, 3995 &q->q_exts_by_size, ext_size_compare, zfs_scan_max_ext_gap); 3996 avl_create(&q->q_sios_by_addr, sio_addr_compare, 3997 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 3998 3999 return (q); 4000 } 4001 4002 /* 4003 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4004 * No further execution of I/O occurs, anything pending in the queue is 4005 * simply freed without being executed. 4006 */ 4007 void 4008 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4009 { 4010 dsl_scan_t *scn = queue->q_scn; 4011 scan_io_t *sio; 4012 void *cookie = NULL; 4013 int64_t bytes_dequeued = 0; 4014 4015 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4016 4017 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4018 NULL) { 4019 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4020 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4021 bytes_dequeued += SIO_GET_ASIZE(sio); 4022 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4023 sio_free(sio); 4024 } 4025 4026 ASSERT0(queue->q_sio_memused); 4027 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4028 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4029 range_tree_destroy(queue->q_exts_by_addr); 4030 avl_destroy(&queue->q_sios_by_addr); 4031 cv_destroy(&queue->q_zio_cv); 4032 4033 kmem_free(queue, sizeof (*queue)); 4034 } 4035 4036 /* 4037 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4038 * called on behalf of vdev_top_transfer when creating or destroying 4039 * a mirror vdev due to zpool attach/detach. 4040 */ 4041 void 4042 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4043 { 4044 mutex_enter(&svd->vdev_scan_io_queue_lock); 4045 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4046 4047 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4048 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4049 svd->vdev_scan_io_queue = NULL; 4050 if (tvd->vdev_scan_io_queue != NULL) 4051 tvd->vdev_scan_io_queue->q_vd = tvd; 4052 4053 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4054 mutex_exit(&svd->vdev_scan_io_queue_lock); 4055 } 4056 4057 static void 4058 scan_io_queues_destroy(dsl_scan_t *scn) 4059 { 4060 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4061 4062 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4063 vdev_t *tvd = rvd->vdev_child[i]; 4064 4065 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4066 if (tvd->vdev_scan_io_queue != NULL) 4067 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4068 tvd->vdev_scan_io_queue = NULL; 4069 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4070 } 4071 } 4072 4073 static void 4074 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4075 { 4076 dsl_pool_t *dp = spa->spa_dsl_pool; 4077 dsl_scan_t *scn = dp->dp_scan; 4078 vdev_t *vdev; 4079 kmutex_t *q_lock; 4080 dsl_scan_io_queue_t *queue; 4081 scan_io_t *srch_sio, *sio; 4082 avl_index_t idx; 4083 uint64_t start, size; 4084 4085 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4086 ASSERT(vdev != NULL); 4087 q_lock = &vdev->vdev_scan_io_queue_lock; 4088 queue = vdev->vdev_scan_io_queue; 4089 4090 mutex_enter(q_lock); 4091 if (queue == NULL) { 4092 mutex_exit(q_lock); 4093 return; 4094 } 4095 4096 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4097 bp2sio(bp, srch_sio, dva_i); 4098 start = SIO_GET_OFFSET(srch_sio); 4099 size = SIO_GET_ASIZE(srch_sio); 4100 4101 /* 4102 * We can find the zio in two states: 4103 * 1) Cold, just sitting in the queue of zio's to be issued at 4104 * some point in the future. In this case, all we do is 4105 * remove the zio from the q_sios_by_addr tree, decrement 4106 * its data volume from the containing range_seg_t and 4107 * resort the q_exts_by_size tree to reflect that the 4108 * range_seg_t has lost some of its 'fill'. We don't shorten 4109 * the range_seg_t - this is usually rare enough not to be 4110 * worth the extra hassle of trying keep track of precise 4111 * extent boundaries. 4112 * 2) Hot, where the zio is currently in-flight in 4113 * dsl_scan_issue_ios. In this case, we can't simply 4114 * reach in and stop the in-flight zio's, so we instead 4115 * block the caller. Eventually, dsl_scan_issue_ios will 4116 * be done with issuing the zio's it gathered and will 4117 * signal us. 4118 */ 4119 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4120 sio_free(srch_sio); 4121 4122 if (sio != NULL) { 4123 int64_t asize = SIO_GET_ASIZE(sio); 4124 blkptr_t tmpbp; 4125 4126 /* Got it while it was cold in the queue */ 4127 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4128 ASSERT3U(size, ==, asize); 4129 avl_remove(&queue->q_sios_by_addr, sio); 4130 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4131 4132 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4133 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4134 4135 /* 4136 * We only update scn_bytes_pending in the cold path, 4137 * otherwise it will already have been accounted for as 4138 * part of the zio's execution. 4139 */ 4140 atomic_add_64(&scn->scn_bytes_pending, -asize); 4141 4142 /* count the block as though we issued it */ 4143 sio2bp(sio, &tmpbp); 4144 count_block(scn, dp->dp_blkstats, &tmpbp); 4145 4146 sio_free(sio); 4147 } 4148 mutex_exit(q_lock); 4149 } 4150 4151 /* 4152 * Callback invoked when a zio_free() zio is executing. This needs to be 4153 * intercepted to prevent the zio from deallocating a particular portion 4154 * of disk space and it then getting reallocated and written to, while we 4155 * still have it queued up for processing. 4156 */ 4157 void 4158 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4159 { 4160 dsl_pool_t *dp = spa->spa_dsl_pool; 4161 dsl_scan_t *scn = dp->dp_scan; 4162 4163 ASSERT(!BP_IS_EMBEDDED(bp)); 4164 ASSERT(scn != NULL); 4165 if (!dsl_scan_is_running(scn)) 4166 return; 4167 4168 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4169 dsl_scan_freed_dva(spa, bp, i); 4170 } 4171