xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_scan.c (revision 51c48e9829e8ff3cb6bfb9b8ad96b995abedf063)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
26  * Copyright 2017 Joyent, Inc.
27  * Copyright (c) 2017 Datto Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/ddt.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/range_tree.h>
55 #ifdef _KERNEL
56 #include <sys/zfs_vfsops.h>
57 #endif
58 
59 /*
60  * Grand theory statement on scan queue sorting
61  *
62  * Scanning is implemented by recursively traversing all indirection levels
63  * in an object and reading all blocks referenced from said objects. This
64  * results in us approximately traversing the object from lowest logical
65  * offset to the highest. For best performance, we would want the logical
66  * blocks to be physically contiguous. However, this is frequently not the
67  * case with pools given the allocation patterns of copy-on-write filesystems.
68  * So instead, we put the I/Os into a reordering queue and issue them in a
69  * way that will most benefit physical disks (LBA-order).
70  *
71  * Queue management:
72  *
73  * Ideally, we would want to scan all metadata and queue up all block I/O
74  * prior to starting to issue it, because that allows us to do an optimal
75  * sorting job. This can however consume large amounts of memory. Therefore
76  * we continuously monitor the size of the queues and constrain them to 5%
77  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78  * limit, we clear out a few of the largest extents at the head of the queues
79  * to make room for more scanning. Hopefully, these extents will be fairly
80  * large and contiguous, allowing us to approach sequential I/O throughput
81  * even without a fully sorted tree.
82  *
83  * Metadata scanning takes place in dsl_scan_visit(), which is called from
84  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85  * metadata on the pool, or we need to make room in memory because our
86  * queues are too large, dsl_scan_visit() is postponed and
87  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88  * that metadata scanning and queued I/O issuing are mutually exclusive. This
89  * allows us to provide maximum sequential I/O throughput for the majority of
90  * I/O's issued since sequential I/O performance is significantly negatively
91  * impacted if it is interleaved with random I/O.
92  *
93  * Implementation Notes
94  *
95  * One side effect of the queued scanning algorithm is that the scanning code
96  * needs to be notified whenever a block is freed. This is needed to allow
97  * the scanning code to remove these I/Os from the issuing queue. Additionally,
98  * we do not attempt to queue gang blocks to be issued sequentially since this
99  * is very hard to do and would have an extremely limited performance benefit.
100  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
101  * algorithm.
102  *
103  * Backwards compatibility
104  *
105  * This new algorithm is backwards compatible with the legacy on-disk data
106  * structures (and therefore does not require a new feature flag).
107  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108  * will stop scanning metadata (in logical order) and wait for all outstanding
109  * sorted I/O to complete. Once this is done, we write out a checkpoint
110  * bookmark, indicating that we have scanned everything logically before it.
111  * If the pool is imported on a machine without the new sorting algorithm,
112  * the scan simply resumes from the last checkpoint using the legacy algorithm.
113  */
114 
115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
116     const zbookmark_phys_t *);
117 
118 static scan_cb_t dsl_scan_scrub_cb;
119 
120 static int scan_ds_queue_compare(const void *a, const void *b);
121 static int scan_prefetch_queue_compare(const void *a, const void *b);
122 static void scan_ds_queue_clear(dsl_scan_t *scn);
123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
124     uint64_t *txg);
125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
128 
129 extern int zfs_vdev_async_write_active_min_dirty_percent;
130 
131 /*
132  * By default zfs will check to ensure it is not over the hard memory
133  * limit before each txg. If finer-grained control of this is needed
134  * this value can be set to 1 to enable checking before scanning each
135  * block.
136  */
137 int zfs_scan_strict_mem_lim = B_FALSE;
138 
139 /*
140  * Maximum number of parallelly executing I/Os per top-level vdev.
141  * Tune with care. Very high settings (hundreds) are known to trigger
142  * some firmware bugs and resets on certain SSDs.
143  */
144 int zfs_top_maxinflight = 32;		/* maximum I/Os per top-level */
145 unsigned int zfs_resilver_delay = 2;	/* number of ticks to delay resilver */
146 unsigned int zfs_scrub_delay = 4;	/* number of ticks to delay scrub */
147 unsigned int zfs_scan_idle = 50;	/* idle window in clock ticks */
148 
149 /*
150  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
151  * to strike a balance here between keeping the vdev queues full of I/Os
152  * at all times and not overflowing the queues to cause long latency,
153  * which would cause long txg sync times. No matter what, we will not
154  * overload the drives with I/O, since that is protected by
155  * zfs_vdev_scrub_max_active.
156  */
157 unsigned long zfs_scan_vdev_limit = 4 << 20;
158 
159 int zfs_scan_issue_strategy = 0;
160 int zfs_scan_legacy = B_FALSE;	/* don't queue & sort zios, go direct */
161 uint64_t zfs_scan_max_ext_gap = 2 << 20;	/* in bytes */
162 
163 unsigned int zfs_scan_checkpoint_intval = 7200;	/* seconds */
164 #define	ZFS_SCAN_CHECKPOINT_INTVAL	SEC_TO_TICK(zfs_scan_checkpoint_intval)
165 
166 /*
167  * fill_weight is non-tunable at runtime, so we copy it at module init from
168  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
169  * break queue sorting.
170  */
171 uint64_t zfs_scan_fill_weight = 3;
172 static uint64_t fill_weight;
173 
174 /* See dsl_scan_should_clear() for details on the memory limit tunables */
175 uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
177 int zfs_scan_mem_lim_fact = 20;		/* fraction of physmem */
178 int zfs_scan_mem_lim_soft_fact = 20;	/* fraction of mem lim above */
179 
180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
182 /* min millisecs to obsolete per txg */
183 unsigned int zfs_obsolete_min_time_ms = 500;
184 /* min millisecs to resilver per txg */
185 unsigned int zfs_resilver_min_time_ms = 3000;
186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
190 /* max number of blocks to free in a single TXG */
191 uint64_t zfs_async_block_max_blocks = UINT64_MAX;
192 
193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
194 
195 /*
196  * We wait a few txgs after importing a pool to begin scanning so that
197  * the import / mounting code isn't held up by scrub / resilver IO.
198  * Unfortunately, it is a bit difficult to determine exactly how long
199  * this will take since userspace will trigger fs mounts asynchronously
200  * and the kernel will create zvol minors asynchronously. As a result,
201  * the value provided here is a bit arbitrary, but represents a
202  * reasonable estimate of how many txgs it will take to finish fully
203  * importing a pool
204  */
205 #define	SCAN_IMPORT_WAIT_TXGS		5
206 
207 
208 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
209 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
210 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
211 
212 extern int zfs_txg_timeout;
213 
214 /*
215  * Enable/disable the processing of the free_bpobj object.
216  */
217 boolean_t zfs_free_bpobj_enabled = B_TRUE;
218 
219 /* the order has to match pool_scan_type */
220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
221 	NULL,
222 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
223 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
224 };
225 
226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
227 typedef struct {
228 	uint64_t	sds_dsobj;
229 	uint64_t	sds_txg;
230 	avl_node_t	sds_node;
231 } scan_ds_t;
232 
233 /*
234  * This controls what conditions are placed on dsl_scan_sync_state():
235  * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
236  * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
237  * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
238  *	write out the scn_phys_cached version.
239  * See dsl_scan_sync_state for details.
240  */
241 typedef enum {
242 	SYNC_OPTIONAL,
243 	SYNC_MANDATORY,
244 	SYNC_CACHED
245 } state_sync_type_t;
246 
247 /*
248  * This struct represents the minimum information needed to reconstruct a
249  * zio for sequential scanning. This is useful because many of these will
250  * accumulate in the sequential IO queues before being issued, so saving
251  * memory matters here.
252  */
253 typedef struct scan_io {
254 	/* fields from blkptr_t */
255 	uint64_t		sio_blk_prop;
256 	uint64_t		sio_phys_birth;
257 	uint64_t		sio_birth;
258 	zio_cksum_t		sio_cksum;
259 	uint32_t		sio_nr_dvas;
260 
261 	/* fields from zio_t */
262 	uint32_t		sio_flags;
263 	zbookmark_phys_t	sio_zb;
264 
265 	/* members for queue sorting */
266 	union {
267 		avl_node_t	sio_addr_node; /* link into issuing queue */
268 		list_node_t	sio_list_node; /* link for issuing to disk */
269 	} sio_nodes;
270 
271 	/*
272 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
273 	 * depending on how many were in the original bp. Only the
274 	 * first DVA is really used for sorting and issuing purposes.
275 	 * The other DVAs (if provided) simply exist so that the zio
276 	 * layer can find additional copies to repair from in the
277 	 * event of an error. This array must go at the end of the
278 	 * struct to allow this for the variable number of elements.
279 	 */
280 	dva_t			sio_dva[0];
281 } scan_io_t;
282 
283 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
284 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
285 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
286 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
287 #define	SIO_GET_END_OFFSET(sio)		\
288 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
289 #define	SIO_GET_MUSED(sio)		\
290 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
291 
292 struct dsl_scan_io_queue {
293 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
294 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
295 
296 	/* trees used for sorting I/Os and extents of I/Os */
297 	range_tree_t	*q_exts_by_addr;
298 	avl_tree_t	q_exts_by_size;
299 	avl_tree_t	q_sios_by_addr;
300 	uint64_t	q_sio_memused;
301 
302 	/* members for zio rate limiting */
303 	uint64_t	q_maxinflight_bytes;
304 	uint64_t	q_inflight_bytes;
305 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
306 
307 	/* per txg statistics */
308 	uint64_t	q_total_seg_size_this_txg;
309 	uint64_t	q_segs_this_txg;
310 	uint64_t	q_total_zio_size_this_txg;
311 	uint64_t	q_zios_this_txg;
312 };
313 
314 /* private data for dsl_scan_prefetch_cb() */
315 typedef struct scan_prefetch_ctx {
316 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
317 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
318 	boolean_t spc_root;		/* is this prefetch for an objset? */
319 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
320 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
321 } scan_prefetch_ctx_t;
322 
323 /* private data for dsl_scan_prefetch() */
324 typedef struct scan_prefetch_issue_ctx {
325 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
326 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
327 	blkptr_t spic_bp;		/* bp to prefetch */
328 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
329 } scan_prefetch_issue_ctx_t;
330 
331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
332     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
334     scan_io_t *sio);
335 
336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
337 static void scan_io_queues_destroy(dsl_scan_t *scn);
338 
339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
340 
341 /* sio->sio_nr_dvas must be set so we know which cache to free from */
342 static void
343 sio_free(scan_io_t *sio)
344 {
345 	ASSERT3U(sio->sio_nr_dvas, >, 0);
346 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
347 
348 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
349 }
350 
351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
352 static scan_io_t *
353 sio_alloc(unsigned short nr_dvas)
354 {
355 	ASSERT3U(nr_dvas, >, 0);
356 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
357 
358 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
359 }
360 
361 void
362 scan_init(void)
363 {
364 	/*
365 	 * This is used in ext_size_compare() to weight segments
366 	 * based on how sparse they are. This cannot be changed
367 	 * mid-scan and the tree comparison functions don't currently
368 	 * have a mechansim for passing additional context to the
369 	 * compare functions. Thus we store this value globally and
370 	 * we only allow it to be set at module intiailization time
371 	 */
372 	fill_weight = zfs_scan_fill_weight;
373 
374 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
375 		char name[36];
376 
377 		(void) sprintf(name, "sio_cache_%d", i);
378 		sio_cache[i] = kmem_cache_create(name,
379 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
380 		    0, NULL, NULL, NULL, NULL, NULL, 0);
381 	}
382 }
383 
384 void
385 scan_fini(void)
386 {
387 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
388 		kmem_cache_destroy(sio_cache[i]);
389 	}
390 }
391 
392 static inline boolean_t
393 dsl_scan_is_running(const dsl_scan_t *scn)
394 {
395 	return (scn->scn_phys.scn_state == DSS_SCANNING);
396 }
397 
398 boolean_t
399 dsl_scan_resilvering(dsl_pool_t *dp)
400 {
401 	return (dsl_scan_is_running(dp->dp_scan) &&
402 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
403 }
404 
405 static inline void
406 sio2bp(const scan_io_t *sio, blkptr_t *bp)
407 {
408 	bzero(bp, sizeof (*bp));
409 	bp->blk_prop = sio->sio_blk_prop;
410 	bp->blk_phys_birth = sio->sio_phys_birth;
411 	bp->blk_birth = sio->sio_birth;
412 	bp->blk_fill = 1;	/* we always only work with data pointers */
413 	bp->blk_cksum = sio->sio_cksum;
414 
415 	ASSERT3U(sio->sio_nr_dvas, >, 0);
416 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
417 
418 	bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
419 }
420 
421 static inline void
422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
423 {
424 	sio->sio_blk_prop = bp->blk_prop;
425 	sio->sio_phys_birth = bp->blk_phys_birth;
426 	sio->sio_birth = bp->blk_birth;
427 	sio->sio_cksum = bp->blk_cksum;
428 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
429 
430 	/*
431 	 * Copy the DVAs to the sio. We need all copies of the block so
432 	 * that the self healing code can use the alternate copies if the
433 	 * first is corrupted. We want the DVA at index dva_i to be first
434 	 * in the sio since this is the primary one that we want to issue.
435 	 */
436 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
437 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
438 	}
439 }
440 
441 int
442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
443 {
444 	int err;
445 	dsl_scan_t *scn;
446 	spa_t *spa = dp->dp_spa;
447 	uint64_t f;
448 
449 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
450 	scn->scn_dp = dp;
451 
452 	/*
453 	 * It's possible that we're resuming a scan after a reboot so
454 	 * make sure that the scan_async_destroying flag is initialized
455 	 * appropriately.
456 	 */
457 	ASSERT(!scn->scn_async_destroying);
458 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
459 	    SPA_FEATURE_ASYNC_DESTROY);
460 
461 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
462 	    offsetof(scan_ds_t, sds_node));
463 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
464 	    sizeof (scan_prefetch_issue_ctx_t),
465 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
466 
467 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
468 	    "scrub_func", sizeof (uint64_t), 1, &f);
469 	if (err == 0) {
470 		/*
471 		 * There was an old-style scrub in progress.  Restart a
472 		 * new-style scrub from the beginning.
473 		 */
474 		scn->scn_restart_txg = txg;
475 		zfs_dbgmsg("old-style scrub was in progress; "
476 		    "restarting new-style scrub in txg %llu",
477 		    (longlong_t)scn->scn_restart_txg);
478 
479 		/*
480 		 * Load the queue obj from the old location so that it
481 		 * can be freed by dsl_scan_done().
482 		 */
483 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
484 		    "scrub_queue", sizeof (uint64_t), 1,
485 		    &scn->scn_phys.scn_queue_obj);
486 	} else {
487 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
488 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
489 		    &scn->scn_phys);
490 
491 		/*
492 		 * Detect if the pool contains the signature of #2094.  If it
493 		 * does properly update the scn->scn_phys structure and notify
494 		 * the administrator by setting an errata for the pool.
495 		 */
496 		if (err == EOVERFLOW) {
497 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
498 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
499 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
500 			    (23 * sizeof (uint64_t)));
501 
502 			err = zap_lookup(dp->dp_meta_objset,
503 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
504 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
505 			if (err == 0) {
506 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
507 
508 				if (overflow & ~DSF_VISIT_DS_AGAIN ||
509 				    scn->scn_async_destroying) {
510 					spa->spa_errata =
511 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
512 					return (EOVERFLOW);
513 				}
514 
515 				bcopy(zaptmp, &scn->scn_phys,
516 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
517 				scn->scn_phys.scn_flags = overflow;
518 
519 				/* Required scrub already in progress. */
520 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
521 				    scn->scn_phys.scn_state == DSS_CANCELED)
522 					spa->spa_errata =
523 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
524 			}
525 		}
526 
527 		if (err == ENOENT)
528 			return (0);
529 		else if (err)
530 			return (err);
531 
532 		/*
533 		 * We might be restarting after a reboot, so jump the issued
534 		 * counter to how far we've scanned. We know we're consistent
535 		 * up to here.
536 		 */
537 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
538 
539 		if (dsl_scan_is_running(scn) &&
540 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
541 			/*
542 			 * A new-type scrub was in progress on an old
543 			 * pool, and the pool was accessed by old
544 			 * software.  Restart from the beginning, since
545 			 * the old software may have changed the pool in
546 			 * the meantime.
547 			 */
548 			scn->scn_restart_txg = txg;
549 			zfs_dbgmsg("new-style scrub was modified "
550 			    "by old software; restarting in txg %llu",
551 			    (longlong_t)scn->scn_restart_txg);
552 		}
553 	}
554 
555 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
556 
557 	/* reload the queue into the in-core state */
558 	if (scn->scn_phys.scn_queue_obj != 0) {
559 		zap_cursor_t zc;
560 		zap_attribute_t za;
561 
562 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
563 		    scn->scn_phys.scn_queue_obj);
564 		    zap_cursor_retrieve(&zc, &za) == 0;
565 		    (void) zap_cursor_advance(&zc)) {
566 			scan_ds_queue_insert(scn,
567 			    zfs_strtonum(za.za_name, NULL),
568 			    za.za_first_integer);
569 		}
570 		zap_cursor_fini(&zc);
571 	}
572 
573 	spa_scan_stat_init(spa);
574 	return (0);
575 }
576 
577 void
578 dsl_scan_fini(dsl_pool_t *dp)
579 {
580 	if (dp->dp_scan != NULL) {
581 		dsl_scan_t *scn = dp->dp_scan;
582 
583 		if (scn->scn_taskq != NULL)
584 			taskq_destroy(scn->scn_taskq);
585 		scan_ds_queue_clear(scn);
586 		avl_destroy(&scn->scn_queue);
587 		avl_destroy(&scn->scn_prefetch_queue);
588 
589 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
590 		dp->dp_scan = NULL;
591 	}
592 }
593 
594 static boolean_t
595 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
596 {
597 	return (scn->scn_restart_txg != 0 &&
598 	    scn->scn_restart_txg <= tx->tx_txg);
599 }
600 
601 boolean_t
602 dsl_scan_scrubbing(const dsl_pool_t *dp)
603 {
604 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
605 
606 	return (scn_phys->scn_state == DSS_SCANNING &&
607 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
608 }
609 
610 boolean_t
611 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
612 {
613 	return (dsl_scan_scrubbing(scn->scn_dp) &&
614 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
615 }
616 
617 /*
618  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
619  * Because we can be running in the block sorting algorithm, we do not always
620  * want to write out the record, only when it is "safe" to do so. This safety
621  * condition is achieved by making sure that the sorting queues are empty
622  * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
623  * is inconsistent with how much actual scanning progress has been made. The
624  * kind of sync to be performed is specified by the sync_type argument. If the
625  * sync is optional, we only sync if the queues are empty. If the sync is
626  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
627  * third possible state is a "cached" sync. This is done in response to:
628  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
629  *	destroyed, so we wouldn't be able to restart scanning from it.
630  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
631  *	superseded by a newer snapshot.
632  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
633  *	swapped with its clone.
634  * In all cases, a cached sync simply rewrites the last record we've written,
635  * just slightly modified. For the modifications that are performed to the
636  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
637  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
638  */
639 static void
640 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
641 {
642 	int i;
643 	spa_t *spa = scn->scn_dp->dp_spa;
644 
645 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
646 	if (scn->scn_bytes_pending == 0) {
647 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
648 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
649 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
650 
651 			if (q == NULL)
652 				continue;
653 
654 			mutex_enter(&vd->vdev_scan_io_queue_lock);
655 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
656 			ASSERT3P(avl_first(&q->q_exts_by_size), ==, NULL);
657 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
658 			mutex_exit(&vd->vdev_scan_io_queue_lock);
659 		}
660 
661 		if (scn->scn_phys.scn_queue_obj != 0)
662 			scan_ds_queue_sync(scn, tx);
663 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
664 		    DMU_POOL_DIRECTORY_OBJECT,
665 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
666 		    &scn->scn_phys, tx));
667 		bcopy(&scn->scn_phys, &scn->scn_phys_cached,
668 		    sizeof (scn->scn_phys));
669 
670 		if (scn->scn_checkpointing)
671 			zfs_dbgmsg("finish scan checkpoint");
672 
673 		scn->scn_checkpointing = B_FALSE;
674 		scn->scn_last_checkpoint = ddi_get_lbolt();
675 	} else if (sync_type == SYNC_CACHED) {
676 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
677 		    DMU_POOL_DIRECTORY_OBJECT,
678 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
679 		    &scn->scn_phys_cached, tx));
680 	}
681 }
682 
683 /* ARGSUSED */
684 static int
685 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
686 {
687 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
688 
689 	if (dsl_scan_is_running(scn))
690 		return (SET_ERROR(EBUSY));
691 
692 	return (0);
693 }
694 
695 static void
696 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
697 {
698 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
699 	pool_scan_func_t *funcp = arg;
700 	dmu_object_type_t ot = 0;
701 	dsl_pool_t *dp = scn->scn_dp;
702 	spa_t *spa = dp->dp_spa;
703 
704 	ASSERT(!dsl_scan_is_running(scn));
705 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
706 	bzero(&scn->scn_phys, sizeof (scn->scn_phys));
707 	scn->scn_phys.scn_func = *funcp;
708 	scn->scn_phys.scn_state = DSS_SCANNING;
709 	scn->scn_phys.scn_min_txg = 0;
710 	scn->scn_phys.scn_max_txg = tx->tx_txg;
711 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
712 	scn->scn_phys.scn_start_time = gethrestime_sec();
713 	scn->scn_phys.scn_errors = 0;
714 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
715 	scn->scn_issued_before_pass = 0;
716 	scn->scn_restart_txg = 0;
717 	scn->scn_done_txg = 0;
718 	scn->scn_last_checkpoint = 0;
719 	scn->scn_checkpointing = B_FALSE;
720 	spa_scan_stat_init(spa);
721 
722 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
723 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
724 
725 		/* rewrite all disk labels */
726 		vdev_config_dirty(spa->spa_root_vdev);
727 
728 		if (vdev_resilver_needed(spa->spa_root_vdev,
729 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
730 			spa_event_notify(spa, NULL, NULL,
731 			    ESC_ZFS_RESILVER_START);
732 		} else {
733 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
734 		}
735 
736 		spa->spa_scrub_started = B_TRUE;
737 		/*
738 		 * If this is an incremental scrub, limit the DDT scrub phase
739 		 * to just the auto-ditto class (for correctness); the rest
740 		 * of the scrub should go faster using top-down pruning.
741 		 */
742 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
743 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
744 
745 	}
746 
747 	/* back to the generic stuff */
748 
749 	if (dp->dp_blkstats == NULL) {
750 		dp->dp_blkstats =
751 		    kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
752 		mutex_init(&dp->dp_blkstats->zab_lock, NULL,
753 		    MUTEX_DEFAULT, NULL);
754 	}
755 	bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
756 
757 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
758 		ot = DMU_OT_ZAP_OTHER;
759 
760 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
761 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
762 
763 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
764 
765 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
766 
767 	spa_history_log_internal(spa, "scan setup", tx,
768 	    "func=%u mintxg=%llu maxtxg=%llu",
769 	    *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg);
770 }
771 
772 /*
773  * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
774  * Can also be called to resume a paused scrub.
775  */
776 int
777 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
778 {
779 	spa_t *spa = dp->dp_spa;
780 	dsl_scan_t *scn = dp->dp_scan;
781 
782 	/*
783 	 * Purge all vdev caches and probe all devices.  We do this here
784 	 * rather than in sync context because this requires a writer lock
785 	 * on the spa_config lock, which we can't do from sync context.  The
786 	 * spa_scrub_reopen flag indicates that vdev_open() should not
787 	 * attempt to start another scrub.
788 	 */
789 	spa_vdev_state_enter(spa, SCL_NONE);
790 	spa->spa_scrub_reopen = B_TRUE;
791 	vdev_reopen(spa->spa_root_vdev);
792 	spa->spa_scrub_reopen = B_FALSE;
793 	(void) spa_vdev_state_exit(spa, NULL, 0);
794 
795 	if (func == POOL_SCAN_RESILVER) {
796 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
797 		return (0);
798 	}
799 
800 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
801 		/* got scrub start cmd, resume paused scrub */
802 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
803 		    POOL_SCRUB_NORMAL);
804 		if (err == 0) {
805 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
806 			return (ECANCELED);
807 		}
808 		return (SET_ERROR(err));
809 	}
810 
811 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
812 	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
813 }
814 
815 /*
816  * Sets the resilver defer flag to B_FALSE on all leaf devs under vd. Returns
817  * B_TRUE if we have devices that need to be resilvered and are available to
818  * accept resilver I/Os.
819  */
820 static boolean_t
821 dsl_scan_clear_deferred(vdev_t *vd, dmu_tx_t *tx)
822 {
823 	boolean_t resilver_needed = B_FALSE;
824 	spa_t *spa = vd->vdev_spa;
825 
826 	for (int c = 0; c < vd->vdev_children; c++) {
827 		resilver_needed |=
828 		    dsl_scan_clear_deferred(vd->vdev_child[c], tx);
829 	}
830 
831 	if (vd == spa->spa_root_vdev &&
832 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
833 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
834 		vdev_config_dirty(vd);
835 		spa->spa_resilver_deferred = B_FALSE;
836 		return (resilver_needed);
837 	}
838 
839 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
840 	    !vd->vdev_ops->vdev_op_leaf)
841 		return (resilver_needed);
842 
843 	if (vd->vdev_resilver_deferred)
844 		vd->vdev_resilver_deferred = B_FALSE;
845 
846 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
847 	    vdev_resilver_needed(vd, NULL, NULL));
848 }
849 
850 /* ARGSUSED */
851 static void
852 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
853 {
854 	static const char *old_names[] = {
855 		"scrub_bookmark",
856 		"scrub_ddt_bookmark",
857 		"scrub_ddt_class_max",
858 		"scrub_queue",
859 		"scrub_min_txg",
860 		"scrub_max_txg",
861 		"scrub_func",
862 		"scrub_errors",
863 		NULL
864 	};
865 
866 	dsl_pool_t *dp = scn->scn_dp;
867 	spa_t *spa = dp->dp_spa;
868 	int i;
869 
870 	/* Remove any remnants of an old-style scrub. */
871 	for (i = 0; old_names[i]; i++) {
872 		(void) zap_remove(dp->dp_meta_objset,
873 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
874 	}
875 
876 	if (scn->scn_phys.scn_queue_obj != 0) {
877 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
878 		    scn->scn_phys.scn_queue_obj, tx));
879 		scn->scn_phys.scn_queue_obj = 0;
880 	}
881 	scan_ds_queue_clear(scn);
882 
883 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
884 
885 	/*
886 	 * If we were "restarted" from a stopped state, don't bother
887 	 * with anything else.
888 	 */
889 	if (!dsl_scan_is_running(scn)) {
890 		ASSERT(!scn->scn_is_sorted);
891 		return;
892 	}
893 
894 	if (scn->scn_is_sorted) {
895 		scan_io_queues_destroy(scn);
896 		scn->scn_is_sorted = B_FALSE;
897 
898 		if (scn->scn_taskq != NULL) {
899 			taskq_destroy(scn->scn_taskq);
900 			scn->scn_taskq = NULL;
901 		}
902 	}
903 
904 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
905 
906 	if (dsl_scan_restarting(scn, tx))
907 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
908 		    "errors=%llu", spa_get_errlog_size(spa));
909 	else if (!complete)
910 		spa_history_log_internal(spa, "scan cancelled", tx,
911 		    "errors=%llu", spa_get_errlog_size(spa));
912 	else
913 		spa_history_log_internal(spa, "scan done", tx,
914 		    "errors=%llu", spa_get_errlog_size(spa));
915 
916 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
917 		spa->spa_scrub_started = B_FALSE;
918 		spa->spa_scrub_active = B_FALSE;
919 
920 		/*
921 		 * If the scrub/resilver completed, update all DTLs to
922 		 * reflect this.  Whether it succeeded or not, vacate
923 		 * all temporary scrub DTLs.
924 		 *
925 		 * As the scrub does not currently support traversing
926 		 * data that have been freed but are part of a checkpoint,
927 		 * we don't mark the scrub as done in the DTLs as faults
928 		 * may still exist in those vdevs.
929 		 */
930 		if (complete &&
931 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
932 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
933 			    scn->scn_phys.scn_max_txg, B_TRUE);
934 
935 			spa_event_notify(spa, NULL, NULL,
936 			    scn->scn_phys.scn_min_txg ?
937 			    ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH);
938 		} else {
939 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
940 			    0, B_TRUE);
941 		}
942 		spa_errlog_rotate(spa);
943 
944 		/*
945 		 * We may have finished replacing a device.
946 		 * Let the async thread assess this and handle the detach.
947 		 */
948 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
949 
950 		/*
951 		 * Clear any deferred_resilver flags in the config.
952 		 * If there are drives that need resilvering, kick
953 		 * off an asynchronous request to start resilver.
954 		 * dsl_scan_clear_deferred() may update the config
955 		 * before the resilver can restart. In the event of
956 		 * a crash during this period, the spa loading code
957 		 * will find the drives that need to be resilvered
958 		 * when the machine reboots and start the resilver then.
959 		 */
960 		boolean_t resilver_needed =
961 		    dsl_scan_clear_deferred(spa->spa_root_vdev, tx);
962 		if (resilver_needed) {
963 			spa_history_log_internal(spa,
964 			    "starting deferred resilver", tx,
965 			    "errors=%llu", spa_get_errlog_size(spa));
966 			spa_async_request(spa, SPA_ASYNC_RESILVER);
967 		}
968 	}
969 
970 	scn->scn_phys.scn_end_time = gethrestime_sec();
971 
972 	ASSERT(!dsl_scan_is_running(scn));
973 }
974 
975 /* ARGSUSED */
976 static int
977 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
978 {
979 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
980 
981 	if (!dsl_scan_is_running(scn))
982 		return (SET_ERROR(ENOENT));
983 	return (0);
984 }
985 
986 /* ARGSUSED */
987 static void
988 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
989 {
990 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
991 
992 	dsl_scan_done(scn, B_FALSE, tx);
993 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
994 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
995 }
996 
997 int
998 dsl_scan_cancel(dsl_pool_t *dp)
999 {
1000 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1001 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1002 }
1003 
1004 static int
1005 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1006 {
1007 	pool_scrub_cmd_t *cmd = arg;
1008 	dsl_pool_t *dp = dmu_tx_pool(tx);
1009 	dsl_scan_t *scn = dp->dp_scan;
1010 
1011 	if (*cmd == POOL_SCRUB_PAUSE) {
1012 		/* can't pause a scrub when there is no in-progress scrub */
1013 		if (!dsl_scan_scrubbing(dp))
1014 			return (SET_ERROR(ENOENT));
1015 
1016 		/* can't pause a paused scrub */
1017 		if (dsl_scan_is_paused_scrub(scn))
1018 			return (SET_ERROR(EBUSY));
1019 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1020 		return (SET_ERROR(ENOTSUP));
1021 	}
1022 
1023 	return (0);
1024 }
1025 
1026 static void
1027 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1028 {
1029 	pool_scrub_cmd_t *cmd = arg;
1030 	dsl_pool_t *dp = dmu_tx_pool(tx);
1031 	spa_t *spa = dp->dp_spa;
1032 	dsl_scan_t *scn = dp->dp_scan;
1033 
1034 	if (*cmd == POOL_SCRUB_PAUSE) {
1035 		/* can't pause a scrub when there is no in-progress scrub */
1036 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1037 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1038 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1039 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1040 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1041 	} else {
1042 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1043 		if (dsl_scan_is_paused_scrub(scn)) {
1044 			/*
1045 			 * We need to keep track of how much time we spend
1046 			 * paused per pass so that we can adjust the scrub rate
1047 			 * shown in the output of 'zpool status'
1048 			 */
1049 			spa->spa_scan_pass_scrub_spent_paused +=
1050 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1051 			spa->spa_scan_pass_scrub_pause = 0;
1052 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1053 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1054 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1055 		}
1056 	}
1057 }
1058 
1059 /*
1060  * Set scrub pause/resume state if it makes sense to do so
1061  */
1062 int
1063 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1064 {
1065 	return (dsl_sync_task(spa_name(dp->dp_spa),
1066 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1067 	    ZFS_SPACE_CHECK_RESERVED));
1068 }
1069 
1070 
1071 /* start a new scan, or restart an existing one. */
1072 void
1073 dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg)
1074 {
1075 	if (txg == 0) {
1076 		dmu_tx_t *tx;
1077 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1078 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1079 
1080 		txg = dmu_tx_get_txg(tx);
1081 		dp->dp_scan->scn_restart_txg = txg;
1082 		dmu_tx_commit(tx);
1083 	} else {
1084 		dp->dp_scan->scn_restart_txg = txg;
1085 	}
1086 	zfs_dbgmsg("restarting resilver txg=%llu", txg);
1087 }
1088 
1089 void
1090 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1091 {
1092 	zio_free(dp->dp_spa, txg, bp);
1093 }
1094 
1095 void
1096 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1097 {
1098 	ASSERT(dsl_pool_sync_context(dp));
1099 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1100 }
1101 
1102 static int
1103 scan_ds_queue_compare(const void *a, const void *b)
1104 {
1105 	const scan_ds_t *sds_a = a, *sds_b = b;
1106 
1107 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1108 		return (-1);
1109 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1110 		return (0);
1111 	return (1);
1112 }
1113 
1114 static void
1115 scan_ds_queue_clear(dsl_scan_t *scn)
1116 {
1117 	void *cookie = NULL;
1118 	scan_ds_t *sds;
1119 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1120 		kmem_free(sds, sizeof (*sds));
1121 	}
1122 }
1123 
1124 static boolean_t
1125 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1126 {
1127 	scan_ds_t srch, *sds;
1128 
1129 	srch.sds_dsobj = dsobj;
1130 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1131 	if (sds != NULL && txg != NULL)
1132 		*txg = sds->sds_txg;
1133 	return (sds != NULL);
1134 }
1135 
1136 static void
1137 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1138 {
1139 	scan_ds_t *sds;
1140 	avl_index_t where;
1141 
1142 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1143 	sds->sds_dsobj = dsobj;
1144 	sds->sds_txg = txg;
1145 
1146 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1147 	avl_insert(&scn->scn_queue, sds, where);
1148 }
1149 
1150 static void
1151 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1152 {
1153 	scan_ds_t srch, *sds;
1154 
1155 	srch.sds_dsobj = dsobj;
1156 
1157 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1158 	VERIFY(sds != NULL);
1159 	avl_remove(&scn->scn_queue, sds);
1160 	kmem_free(sds, sizeof (*sds));
1161 }
1162 
1163 static void
1164 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1165 {
1166 	dsl_pool_t *dp = scn->scn_dp;
1167 	spa_t *spa = dp->dp_spa;
1168 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1169 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1170 
1171 	ASSERT0(scn->scn_bytes_pending);
1172 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1173 
1174 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1175 	    scn->scn_phys.scn_queue_obj, tx));
1176 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1177 	    DMU_OT_NONE, 0, tx);
1178 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1179 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1180 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1181 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1182 		    sds->sds_txg, tx));
1183 	}
1184 }
1185 
1186 /*
1187  * Computes the memory limit state that we're currently in. A sorted scan
1188  * needs quite a bit of memory to hold the sorting queue, so we need to
1189  * reasonably constrain the size so it doesn't impact overall system
1190  * performance. We compute two limits:
1191  * 1) Hard memory limit: if the amount of memory used by the sorting
1192  *	queues on a pool gets above this value, we stop the metadata
1193  *	scanning portion and start issuing the queued up and sorted
1194  *	I/Os to reduce memory usage.
1195  *	This limit is calculated as a fraction of physmem (by default 5%).
1196  *	We constrain the lower bound of the hard limit to an absolute
1197  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1198  *	the upper bound to 5% of the total pool size - no chance we'll
1199  *	ever need that much memory, but just to keep the value in check.
1200  * 2) Soft memory limit: once we hit the hard memory limit, we start
1201  *	issuing I/O to reduce queue memory usage, but we don't want to
1202  *	completely empty out the queues, since we might be able to find I/Os
1203  *	that will fill in the gaps of our non-sequential IOs at some point
1204  *	in the future. So we stop the issuing of I/Os once the amount of
1205  *	memory used drops below the soft limit (at which point we stop issuing
1206  *	I/O and start scanning metadata again).
1207  *
1208  *	This limit is calculated by subtracting a fraction of the hard
1209  *	limit from the hard limit. By default this fraction is 5%, so
1210  *	the soft limit is 95% of the hard limit. We cap the size of the
1211  *	difference between the hard and soft limits at an absolute
1212  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1213  *	sufficient to not cause too frequent switching between the
1214  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1215  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1216  *	that should take at least a decent fraction of a second).
1217  */
1218 static boolean_t
1219 dsl_scan_should_clear(dsl_scan_t *scn)
1220 {
1221 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1222 	uint64_t mlim_hard, mlim_soft, mused;
1223 	uint64_t alloc = metaslab_class_get_alloc(spa_normal_class(
1224 	    scn->scn_dp->dp_spa));
1225 
1226 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1227 	    zfs_scan_mem_lim_min);
1228 	mlim_hard = MIN(mlim_hard, alloc / 20);
1229 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1230 	    zfs_scan_mem_lim_soft_max);
1231 	mused = 0;
1232 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1233 		vdev_t *tvd = rvd->vdev_child[i];
1234 		dsl_scan_io_queue_t *queue;
1235 
1236 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1237 		queue = tvd->vdev_scan_io_queue;
1238 		if (queue != NULL) {
1239 			/* # extents in exts_by_size = # in exts_by_addr */
1240 			mused += avl_numnodes(&queue->q_exts_by_size) *
1241 			    sizeof (range_seg_t) + queue->q_sio_memused;
1242 		}
1243 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1244 	}
1245 
1246 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1247 
1248 	if (mused == 0)
1249 		ASSERT0(scn->scn_bytes_pending);
1250 
1251 	/*
1252 	 * If we are above our hard limit, we need to clear out memory.
1253 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1254 	 * Otherwise, we should keep doing whatever we are currently doing.
1255 	 */
1256 	if (mused >= mlim_hard)
1257 		return (B_TRUE);
1258 	else if (mused < mlim_soft)
1259 		return (B_FALSE);
1260 	else
1261 		return (scn->scn_clearing);
1262 }
1263 
1264 static boolean_t
1265 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1266 {
1267 	/* we never skip user/group accounting objects */
1268 	if (zb && (int64_t)zb->zb_object < 0)
1269 		return (B_FALSE);
1270 
1271 	if (scn->scn_suspending)
1272 		return (B_TRUE); /* we're already suspending */
1273 
1274 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1275 		return (B_FALSE); /* we're resuming */
1276 
1277 	/* We only know how to resume from level-0 blocks. */
1278 	if (zb && zb->zb_level != 0)
1279 		return (B_FALSE);
1280 
1281 	/*
1282 	 * We suspend if:
1283 	 *  - we have scanned for at least the minimum time (default 1 sec
1284 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1285 	 *    dirty data that we are starting to write more quickly
1286 	 *    (default 30%), or someone is explicitly waiting for this txg
1287 	 *    to complete.
1288 	 *  or
1289 	 *  - the spa is shutting down because this pool is being exported
1290 	 *    or the machine is rebooting.
1291 	 *  or
1292 	 *  - the scan queue has reached its memory use limit
1293 	 */
1294 	hrtime_t curr_time_ns = gethrtime();
1295 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1296 	uint64_t sync_time_ns = curr_time_ns -
1297 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1298 
1299 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1300 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1301 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1302 
1303 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1304 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1305 	    txg_sync_waiting(scn->scn_dp) ||
1306 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1307 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1308 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1309 		if (zb) {
1310 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1311 			    (longlong_t)zb->zb_objset,
1312 			    (longlong_t)zb->zb_object,
1313 			    (longlong_t)zb->zb_level,
1314 			    (longlong_t)zb->zb_blkid);
1315 			scn->scn_phys.scn_bookmark = *zb;
1316 		} else {
1317 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1318 
1319 			dprintf("suspending at DDT bookmark "
1320 			    "%llx/%llx/%llx/%llx\n",
1321 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1322 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1323 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1324 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1325 		}
1326 		scn->scn_suspending = B_TRUE;
1327 		return (B_TRUE);
1328 	}
1329 	return (B_FALSE);
1330 }
1331 
1332 typedef struct zil_scan_arg {
1333 	dsl_pool_t	*zsa_dp;
1334 	zil_header_t	*zsa_zh;
1335 } zil_scan_arg_t;
1336 
1337 /* ARGSUSED */
1338 static int
1339 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1340 {
1341 	zil_scan_arg_t *zsa = arg;
1342 	dsl_pool_t *dp = zsa->zsa_dp;
1343 	dsl_scan_t *scn = dp->dp_scan;
1344 	zil_header_t *zh = zsa->zsa_zh;
1345 	zbookmark_phys_t zb;
1346 
1347 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1348 		return (0);
1349 
1350 	/*
1351 	 * One block ("stubby") can be allocated a long time ago; we
1352 	 * want to visit that one because it has been allocated
1353 	 * (on-disk) even if it hasn't been claimed (even though for
1354 	 * scrub there's nothing to do to it).
1355 	 */
1356 	if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1357 		return (0);
1358 
1359 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1360 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1361 
1362 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1363 	return (0);
1364 }
1365 
1366 /* ARGSUSED */
1367 static int
1368 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
1369 {
1370 	if (lrc->lrc_txtype == TX_WRITE) {
1371 		zil_scan_arg_t *zsa = arg;
1372 		dsl_pool_t *dp = zsa->zsa_dp;
1373 		dsl_scan_t *scn = dp->dp_scan;
1374 		zil_header_t *zh = zsa->zsa_zh;
1375 		lr_write_t *lr = (lr_write_t *)lrc;
1376 		blkptr_t *bp = &lr->lr_blkptr;
1377 		zbookmark_phys_t zb;
1378 
1379 		if (BP_IS_HOLE(bp) ||
1380 		    bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1381 			return (0);
1382 
1383 		/*
1384 		 * birth can be < claim_txg if this record's txg is
1385 		 * already txg sync'ed (but this log block contains
1386 		 * other records that are not synced)
1387 		 */
1388 		if (claim_txg == 0 || bp->blk_birth < claim_txg)
1389 			return (0);
1390 
1391 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1392 		    lr->lr_foid, ZB_ZIL_LEVEL,
1393 		    lr->lr_offset / BP_GET_LSIZE(bp));
1394 
1395 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1396 	}
1397 	return (0);
1398 }
1399 
1400 static void
1401 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1402 {
1403 	uint64_t claim_txg = zh->zh_claim_txg;
1404 	zil_scan_arg_t zsa = { dp, zh };
1405 	zilog_t *zilog;
1406 
1407 	ASSERT(spa_writeable(dp->dp_spa));
1408 
1409 	/*
1410 	 * We only want to visit blocks that have been claimed
1411 	 * but not yet replayed.
1412 	 */
1413 	if (claim_txg == 0)
1414 		return;
1415 
1416 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1417 
1418 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1419 	    claim_txg, B_FALSE);
1420 
1421 	zil_free(zilog);
1422 }
1423 
1424 /*
1425  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1426  * here is to sort the AVL tree by the order each block will be needed.
1427  */
1428 static int
1429 scan_prefetch_queue_compare(const void *a, const void *b)
1430 {
1431 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1432 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1433 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1434 
1435 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1436 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1437 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1438 }
1439 
1440 static void
1441 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1442 {
1443 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1444 		zfs_refcount_destroy(&spc->spc_refcnt);
1445 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1446 	}
1447 }
1448 
1449 static scan_prefetch_ctx_t *
1450 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1451 {
1452 	scan_prefetch_ctx_t *spc;
1453 
1454 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1455 	zfs_refcount_create(&spc->spc_refcnt);
1456 	zfs_refcount_add(&spc->spc_refcnt, tag);
1457 	spc->spc_scn = scn;
1458 	if (dnp != NULL) {
1459 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1460 		spc->spc_indblkshift = dnp->dn_indblkshift;
1461 		spc->spc_root = B_FALSE;
1462 	} else {
1463 		spc->spc_datablkszsec = 0;
1464 		spc->spc_indblkshift = 0;
1465 		spc->spc_root = B_TRUE;
1466 	}
1467 
1468 	return (spc);
1469 }
1470 
1471 static void
1472 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1473 {
1474 	zfs_refcount_add(&spc->spc_refcnt, tag);
1475 }
1476 
1477 static boolean_t
1478 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1479     const zbookmark_phys_t *zb)
1480 {
1481 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1482 	dnode_phys_t tmp_dnp;
1483 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1484 
1485 	if (zb->zb_objset != last_zb->zb_objset)
1486 		return (B_TRUE);
1487 	if ((int64_t)zb->zb_object < 0)
1488 		return (B_FALSE);
1489 
1490 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1491 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1492 
1493 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1494 		return (B_TRUE);
1495 
1496 	return (B_FALSE);
1497 }
1498 
1499 static void
1500 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1501 {
1502 	avl_index_t idx;
1503 	dsl_scan_t *scn = spc->spc_scn;
1504 	spa_t *spa = scn->scn_dp->dp_spa;
1505 	scan_prefetch_issue_ctx_t *spic;
1506 
1507 	if (zfs_no_scrub_prefetch)
1508 		return;
1509 
1510 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1511 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1512 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1513 		return;
1514 
1515 	if (dsl_scan_check_prefetch_resume(spc, zb))
1516 		return;
1517 
1518 	scan_prefetch_ctx_add_ref(spc, scn);
1519 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1520 	spic->spic_spc = spc;
1521 	spic->spic_bp = *bp;
1522 	spic->spic_zb = *zb;
1523 
1524 	/*
1525 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1526 	 * prioritize blocks that we will need first for the main traversal
1527 	 * thread.
1528 	 */
1529 	mutex_enter(&spa->spa_scrub_lock);
1530 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1531 		/* this block is already queued for prefetch */
1532 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1533 		scan_prefetch_ctx_rele(spc, scn);
1534 		mutex_exit(&spa->spa_scrub_lock);
1535 		return;
1536 	}
1537 
1538 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1539 	cv_broadcast(&spa->spa_scrub_io_cv);
1540 	mutex_exit(&spa->spa_scrub_lock);
1541 }
1542 
1543 static void
1544 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1545     uint64_t objset, uint64_t object)
1546 {
1547 	int i;
1548 	zbookmark_phys_t zb;
1549 	scan_prefetch_ctx_t *spc;
1550 
1551 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1552 		return;
1553 
1554 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1555 
1556 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1557 
1558 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1559 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1560 		zb.zb_blkid = i;
1561 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1562 	}
1563 
1564 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1565 		zb.zb_level = 0;
1566 		zb.zb_blkid = DMU_SPILL_BLKID;
1567 		dsl_scan_prefetch(spc, &dnp->dn_spill, &zb);
1568 	}
1569 
1570 	scan_prefetch_ctx_rele(spc, FTAG);
1571 }
1572 
1573 void
1574 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1575     arc_buf_t *buf, void *private)
1576 {
1577 	scan_prefetch_ctx_t *spc = private;
1578 	dsl_scan_t *scn = spc->spc_scn;
1579 	spa_t *spa = scn->scn_dp->dp_spa;
1580 
1581 	/* broadcast that the IO has completed for rate limitting purposes */
1582 	mutex_enter(&spa->spa_scrub_lock);
1583 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1584 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1585 	cv_broadcast(&spa->spa_scrub_io_cv);
1586 	mutex_exit(&spa->spa_scrub_lock);
1587 
1588 	/* if there was an error or we are done prefetching, just cleanup */
1589 	if (buf == NULL || scn->scn_suspending)
1590 		goto out;
1591 
1592 	if (BP_GET_LEVEL(bp) > 0) {
1593 		int i;
1594 		blkptr_t *cbp;
1595 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1596 		zbookmark_phys_t czb;
1597 
1598 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1599 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1600 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
1601 			dsl_scan_prefetch(spc, cbp, &czb);
1602 		}
1603 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1604 		dnode_phys_t *cdnp = buf->b_data;
1605 		int i;
1606 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1607 
1608 		for (i = 0, cdnp = buf->b_data; i < epb;
1609 		    i += cdnp->dn_extra_slots + 1,
1610 		    cdnp += cdnp->dn_extra_slots + 1) {
1611 			dsl_scan_prefetch_dnode(scn, cdnp,
1612 			    zb->zb_objset, zb->zb_blkid * epb + i);
1613 		}
1614 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1615 		objset_phys_t *osp = buf->b_data;
1616 
1617 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1618 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
1619 
1620 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1621 			dsl_scan_prefetch_dnode(scn,
1622 			    &osp->os_groupused_dnode, zb->zb_objset,
1623 			    DMU_GROUPUSED_OBJECT);
1624 			dsl_scan_prefetch_dnode(scn,
1625 			    &osp->os_userused_dnode, zb->zb_objset,
1626 			    DMU_USERUSED_OBJECT);
1627 		}
1628 	}
1629 
1630 out:
1631 	if (buf != NULL)
1632 		arc_buf_destroy(buf, private);
1633 	scan_prefetch_ctx_rele(spc, scn);
1634 }
1635 
1636 /* ARGSUSED */
1637 static void
1638 dsl_scan_prefetch_thread(void *arg)
1639 {
1640 	dsl_scan_t *scn = arg;
1641 	spa_t *spa = scn->scn_dp->dp_spa;
1642 	vdev_t *rvd = spa->spa_root_vdev;
1643 	uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight;
1644 	scan_prefetch_issue_ctx_t *spic;
1645 
1646 	/* loop until we are told to stop */
1647 	while (!scn->scn_prefetch_stop) {
1648 		arc_flags_t flags = ARC_FLAG_NOWAIT |
1649 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1650 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1651 
1652 		mutex_enter(&spa->spa_scrub_lock);
1653 
1654 		/*
1655 		 * Wait until we have an IO to issue and are not above our
1656 		 * maximum in flight limit.
1657 		 */
1658 		while (!scn->scn_prefetch_stop &&
1659 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1660 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1661 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1662 		}
1663 
1664 		/* recheck if we should stop since we waited for the cv */
1665 		if (scn->scn_prefetch_stop) {
1666 			mutex_exit(&spa->spa_scrub_lock);
1667 			break;
1668 		}
1669 
1670 		/* remove the prefetch IO from the tree */
1671 		spic = avl_first(&scn->scn_prefetch_queue);
1672 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1673 		avl_remove(&scn->scn_prefetch_queue, spic);
1674 
1675 		mutex_exit(&spa->spa_scrub_lock);
1676 
1677 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
1678 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1679 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1680 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1681 			zio_flags |= ZIO_FLAG_RAW;
1682 		}
1683 
1684 		/* issue the prefetch asynchronously */
1685 		(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1686 		    &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1687 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1688 
1689 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1690 	}
1691 
1692 	ASSERT(scn->scn_prefetch_stop);
1693 
1694 	/* free any prefetches we didn't get to complete */
1695 	mutex_enter(&spa->spa_scrub_lock);
1696 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1697 		avl_remove(&scn->scn_prefetch_queue, spic);
1698 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1699 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1700 	}
1701 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1702 	mutex_exit(&spa->spa_scrub_lock);
1703 }
1704 
1705 static boolean_t
1706 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1707     const zbookmark_phys_t *zb)
1708 {
1709 	/*
1710 	 * We never skip over user/group accounting objects (obj<0)
1711 	 */
1712 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1713 	    (int64_t)zb->zb_object >= 0) {
1714 		/*
1715 		 * If we already visited this bp & everything below (in
1716 		 * a prior txg sync), don't bother doing it again.
1717 		 */
1718 		if (zbookmark_subtree_completed(dnp, zb,
1719 		    &scn->scn_phys.scn_bookmark))
1720 			return (B_TRUE);
1721 
1722 		/*
1723 		 * If we found the block we're trying to resume from, or
1724 		 * we went past it to a different object, zero it out to
1725 		 * indicate that it's OK to start checking for suspending
1726 		 * again.
1727 		 */
1728 		if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1729 		    zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1730 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
1731 			    (longlong_t)zb->zb_objset,
1732 			    (longlong_t)zb->zb_object,
1733 			    (longlong_t)zb->zb_level,
1734 			    (longlong_t)zb->zb_blkid);
1735 			bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1736 		}
1737 	}
1738 	return (B_FALSE);
1739 }
1740 
1741 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1742     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1743     dmu_objset_type_t ostype, dmu_tx_t *tx);
1744 static void dsl_scan_visitdnode(
1745     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1746     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1747 
1748 /*
1749  * Return nonzero on i/o error.
1750  * Return new buf to write out in *bufp.
1751  */
1752 static int
1753 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1754     dnode_phys_t *dnp, const blkptr_t *bp,
1755     const zbookmark_phys_t *zb, dmu_tx_t *tx)
1756 {
1757 	dsl_pool_t *dp = scn->scn_dp;
1758 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1759 	int err;
1760 
1761 	if (BP_GET_LEVEL(bp) > 0) {
1762 		arc_flags_t flags = ARC_FLAG_WAIT;
1763 		int i;
1764 		blkptr_t *cbp;
1765 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1766 		arc_buf_t *buf;
1767 
1768 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1769 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1770 		if (err) {
1771 			scn->scn_phys.scn_errors++;
1772 			return (err);
1773 		}
1774 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1775 			zbookmark_phys_t czb;
1776 
1777 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1778 			    zb->zb_level - 1,
1779 			    zb->zb_blkid * epb + i);
1780 			dsl_scan_visitbp(cbp, &czb, dnp,
1781 			    ds, scn, ostype, tx);
1782 		}
1783 		arc_buf_destroy(buf, &buf);
1784 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1785 		arc_flags_t flags = ARC_FLAG_WAIT;
1786 		dnode_phys_t *cdnp;
1787 		int i;
1788 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1789 		arc_buf_t *buf;
1790 
1791 		if (BP_IS_PROTECTED(bp)) {
1792 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1793 			zio_flags |= ZIO_FLAG_RAW;
1794 		}
1795 
1796 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1797 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1798 		if (err) {
1799 			scn->scn_phys.scn_errors++;
1800 			return (err);
1801 		}
1802 		for (i = 0, cdnp = buf->b_data; i < epb;
1803 		    i += cdnp->dn_extra_slots + 1,
1804 		    cdnp += cdnp->dn_extra_slots + 1) {
1805 			dsl_scan_visitdnode(scn, ds, ostype,
1806 			    cdnp, zb->zb_blkid * epb + i, tx);
1807 		}
1808 
1809 		arc_buf_destroy(buf, &buf);
1810 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1811 		arc_flags_t flags = ARC_FLAG_WAIT;
1812 		objset_phys_t *osp;
1813 		arc_buf_t *buf;
1814 
1815 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1816 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1817 		if (err) {
1818 			scn->scn_phys.scn_errors++;
1819 			return (err);
1820 		}
1821 
1822 		osp = buf->b_data;
1823 
1824 		dsl_scan_visitdnode(scn, ds, osp->os_type,
1825 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1826 
1827 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1828 			/*
1829 			 * We also always visit user/group/project accounting
1830 			 * objects, and never skip them, even if we are
1831 			 * suspending.  This is necessary so that the space
1832 			 * deltas from this txg get integrated.
1833 			 */
1834 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1835 				dsl_scan_visitdnode(scn, ds, osp->os_type,
1836 				    &osp->os_projectused_dnode,
1837 				    DMU_PROJECTUSED_OBJECT, tx);
1838 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1839 			    &osp->os_groupused_dnode,
1840 			    DMU_GROUPUSED_OBJECT, tx);
1841 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1842 			    &osp->os_userused_dnode,
1843 			    DMU_USERUSED_OBJECT, tx);
1844 		}
1845 		arc_buf_destroy(buf, &buf);
1846 	}
1847 
1848 	return (0);
1849 }
1850 
1851 static void
1852 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1853     dmu_objset_type_t ostype, dnode_phys_t *dnp,
1854     uint64_t object, dmu_tx_t *tx)
1855 {
1856 	int j;
1857 
1858 	for (j = 0; j < dnp->dn_nblkptr; j++) {
1859 		zbookmark_phys_t czb;
1860 
1861 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1862 		    dnp->dn_nlevels - 1, j);
1863 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
1864 		    &czb, dnp, ds, scn, ostype, tx);
1865 	}
1866 
1867 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1868 		zbookmark_phys_t czb;
1869 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1870 		    0, DMU_SPILL_BLKID);
1871 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1872 		    &czb, dnp, ds, scn, ostype, tx);
1873 	}
1874 }
1875 
1876 /*
1877  * The arguments are in this order because mdb can only print the
1878  * first 5; we want them to be useful.
1879  */
1880 static void
1881 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1882     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1883     dmu_objset_type_t ostype, dmu_tx_t *tx)
1884 {
1885 	dsl_pool_t *dp = scn->scn_dp;
1886 	blkptr_t *bp_toread = NULL;
1887 
1888 	if (dsl_scan_check_suspend(scn, zb))
1889 		return;
1890 
1891 	if (dsl_scan_check_resume(scn, dnp, zb))
1892 		return;
1893 
1894 	scn->scn_visited_this_txg++;
1895 
1896 	/*
1897 	 * This debugging is commented out to conserve stack space.  This
1898 	 * function is called recursively and the debugging addes several
1899 	 * bytes to the stack for each call.  It can be commented back in
1900 	 * if required to debug an issue in dsl_scan_visitbp().
1901 	 *
1902 	 * dprintf_bp(bp,
1903 	 *	"visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1904 	 *	ds, ds ? ds->ds_object : 0,
1905 	 *	zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1906 	 *	bp);
1907 	 */
1908 
1909 	if (BP_IS_HOLE(bp)) {
1910 		scn->scn_holes_this_txg++;
1911 		return;
1912 	}
1913 
1914 	if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1915 		scn->scn_lt_min_this_txg++;
1916 		return;
1917 	}
1918 
1919 	bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1920 	*bp_toread = *bp;
1921 
1922 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1923 		goto out;
1924 
1925 	/*
1926 	 * If dsl_scan_ddt() has already visited this block, it will have
1927 	 * already done any translations or scrubbing, so don't call the
1928 	 * callback again.
1929 	 */
1930 	if (ddt_class_contains(dp->dp_spa,
1931 	    scn->scn_phys.scn_ddt_class_max, bp)) {
1932 		scn->scn_ddt_contained_this_txg++;
1933 		goto out;
1934 	}
1935 
1936 	/*
1937 	 * If this block is from the future (after cur_max_txg), then we
1938 	 * are doing this on behalf of a deleted snapshot, and we will
1939 	 * revisit the future block on the next pass of this dataset.
1940 	 * Don't scan it now unless we need to because something
1941 	 * under it was modified.
1942 	 */
1943 	if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
1944 		scn->scn_gt_max_this_txg++;
1945 		goto out;
1946 	}
1947 
1948 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
1949 
1950 out:
1951 	kmem_free(bp_toread, sizeof (blkptr_t));
1952 }
1953 
1954 static void
1955 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
1956     dmu_tx_t *tx)
1957 {
1958 	zbookmark_phys_t zb;
1959 	scan_prefetch_ctx_t *spc;
1960 
1961 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1962 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1963 
1964 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
1965 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
1966 		    zb.zb_objset, 0, 0, 0);
1967 	} else {
1968 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
1969 	}
1970 
1971 	scn->scn_objsets_visited_this_txg++;
1972 
1973 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
1974 	dsl_scan_prefetch(spc, bp, &zb);
1975 	scan_prefetch_ctx_rele(spc, FTAG);
1976 
1977 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
1978 
1979 	dprintf_ds(ds, "finished scan%s", "");
1980 }
1981 
1982 static void
1983 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
1984 {
1985 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
1986 		if (ds->ds_is_snapshot) {
1987 			/*
1988 			 * Note:
1989 			 *  - scn_cur_{min,max}_txg stays the same.
1990 			 *  - Setting the flag is not really necessary if
1991 			 *    scn_cur_max_txg == scn_max_txg, because there
1992 			 *    is nothing after this snapshot that we care
1993 			 *    about.  However, we set it anyway and then
1994 			 *    ignore it when we retraverse it in
1995 			 *    dsl_scan_visitds().
1996 			 */
1997 			scn_phys->scn_bookmark.zb_objset =
1998 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
1999 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
2000 			    "reset zb_objset to %llu",
2001 			    (u_longlong_t)ds->ds_object,
2002 			    (u_longlong_t)dsl_dataset_phys(ds)->
2003 			    ds_next_snap_obj);
2004 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2005 		} else {
2006 			SET_BOOKMARK(&scn_phys->scn_bookmark,
2007 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2008 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
2009 			    "reset bookmark to -1,0,0,0",
2010 			    (u_longlong_t)ds->ds_object);
2011 		}
2012 	}
2013 }
2014 
2015 /*
2016  * Invoked when a dataset is destroyed. We need to make sure that:
2017  *
2018  * 1) If it is the dataset that was currently being scanned, we write
2019  *	a new dsl_scan_phys_t and marking the objset reference in it
2020  *	as destroyed.
2021  * 2) Remove it from the work queue, if it was present.
2022  *
2023  * If the dataset was actually a snapshot, instead of marking the dataset
2024  * as destroyed, we instead substitute the next snapshot in line.
2025  */
2026 void
2027 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2028 {
2029 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2030 	dsl_scan_t *scn = dp->dp_scan;
2031 	uint64_t mintxg;
2032 
2033 	if (!dsl_scan_is_running(scn))
2034 		return;
2035 
2036 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2037 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2038 
2039 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2040 		scan_ds_queue_remove(scn, ds->ds_object);
2041 		if (ds->ds_is_snapshot)
2042 			scan_ds_queue_insert(scn,
2043 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2044 	}
2045 
2046 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2047 	    ds->ds_object, &mintxg) == 0) {
2048 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2049 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2050 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2051 		if (ds->ds_is_snapshot) {
2052 			/*
2053 			 * We keep the same mintxg; it could be >
2054 			 * ds_creation_txg if the previous snapshot was
2055 			 * deleted too.
2056 			 */
2057 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2058 			    scn->scn_phys.scn_queue_obj,
2059 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2060 			    mintxg, tx) == 0);
2061 			zfs_dbgmsg("destroying ds %llu; in queue; "
2062 			    "replacing with %llu",
2063 			    (u_longlong_t)ds->ds_object,
2064 			    (u_longlong_t)dsl_dataset_phys(ds)->
2065 			    ds_next_snap_obj);
2066 		} else {
2067 			zfs_dbgmsg("destroying ds %llu; in queue; removing",
2068 			    (u_longlong_t)ds->ds_object);
2069 		}
2070 	}
2071 
2072 	/*
2073 	 * dsl_scan_sync() should be called after this, and should sync
2074 	 * out our changed state, but just to be safe, do it here.
2075 	 */
2076 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2077 }
2078 
2079 static void
2080 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2081 {
2082 	if (scn_bookmark->zb_objset == ds->ds_object) {
2083 		scn_bookmark->zb_objset =
2084 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2085 		zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
2086 		    "reset zb_objset to %llu",
2087 		    (u_longlong_t)ds->ds_object,
2088 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2089 	}
2090 }
2091 
2092 /*
2093  * Called when a dataset is snapshotted. If we were currently traversing
2094  * this snapshot, we reset our bookmark to point at the newly created
2095  * snapshot. We also modify our work queue to remove the old snapshot and
2096  * replace with the new one.
2097  */
2098 void
2099 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2100 {
2101 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2102 	dsl_scan_t *scn = dp->dp_scan;
2103 	uint64_t mintxg;
2104 
2105 	if (!dsl_scan_is_running(scn))
2106 		return;
2107 
2108 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2109 
2110 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2111 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2112 
2113 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2114 		scan_ds_queue_remove(scn, ds->ds_object);
2115 		scan_ds_queue_insert(scn,
2116 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2117 	}
2118 
2119 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2120 	    ds->ds_object, &mintxg) == 0) {
2121 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2122 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2123 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2124 		    scn->scn_phys.scn_queue_obj,
2125 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2126 		zfs_dbgmsg("snapshotting ds %llu; in queue; "
2127 		    "replacing with %llu",
2128 		    (u_longlong_t)ds->ds_object,
2129 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2130 	}
2131 
2132 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2133 }
2134 
2135 static void
2136 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2137     zbookmark_phys_t *scn_bookmark)
2138 {
2139 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2140 		scn_bookmark->zb_objset = ds2->ds_object;
2141 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2142 		    "reset zb_objset to %llu",
2143 		    (u_longlong_t)ds1->ds_object,
2144 		    (u_longlong_t)ds2->ds_object);
2145 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2146 		scn_bookmark->zb_objset = ds1->ds_object;
2147 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2148 		    "reset zb_objset to %llu",
2149 		    (u_longlong_t)ds2->ds_object,
2150 		    (u_longlong_t)ds1->ds_object);
2151 	}
2152 }
2153 
2154 /*
2155  * Called when a parent dataset and its clone are swapped. If we were
2156  * currently traversing the dataset, we need to switch to traversing the
2157  * newly promoted parent.
2158  */
2159 void
2160 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2161 {
2162 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2163 	dsl_scan_t *scn = dp->dp_scan;
2164 	uint64_t mintxg;
2165 
2166 	if (!dsl_scan_is_running(scn))
2167 		return;
2168 
2169 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2170 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2171 
2172 	if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) {
2173 		scan_ds_queue_remove(scn, ds1->ds_object);
2174 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg);
2175 	}
2176 	if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) {
2177 		scan_ds_queue_remove(scn, ds2->ds_object);
2178 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg);
2179 	}
2180 
2181 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2182 	    ds1->ds_object, &mintxg) == 0) {
2183 		int err;
2184 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2185 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2186 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2187 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2188 		err = zap_add_int_key(dp->dp_meta_objset,
2189 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
2190 		VERIFY(err == 0 || err == EEXIST);
2191 		if (err == EEXIST) {
2192 			/* Both were there to begin with */
2193 			VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2194 			    scn->scn_phys.scn_queue_obj,
2195 			    ds1->ds_object, mintxg, tx));
2196 		}
2197 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2198 		    "replacing with %llu",
2199 		    (u_longlong_t)ds1->ds_object,
2200 		    (u_longlong_t)ds2->ds_object);
2201 	}
2202 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2203 	    ds2->ds_object, &mintxg) == 0) {
2204 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2205 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2206 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2207 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2208 		VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2209 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
2210 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2211 		    "replacing with %llu",
2212 		    (u_longlong_t)ds2->ds_object,
2213 		    (u_longlong_t)ds1->ds_object);
2214 	}
2215 
2216 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2217 }
2218 
2219 /* ARGSUSED */
2220 static int
2221 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2222 {
2223 	uint64_t originobj = *(uint64_t *)arg;
2224 	dsl_dataset_t *ds;
2225 	int err;
2226 	dsl_scan_t *scn = dp->dp_scan;
2227 
2228 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2229 		return (0);
2230 
2231 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2232 	if (err)
2233 		return (err);
2234 
2235 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2236 		dsl_dataset_t *prev;
2237 		err = dsl_dataset_hold_obj(dp,
2238 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2239 
2240 		dsl_dataset_rele(ds, FTAG);
2241 		if (err)
2242 			return (err);
2243 		ds = prev;
2244 	}
2245 	scan_ds_queue_insert(scn, ds->ds_object,
2246 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2247 	dsl_dataset_rele(ds, FTAG);
2248 	return (0);
2249 }
2250 
2251 static void
2252 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2253 {
2254 	dsl_pool_t *dp = scn->scn_dp;
2255 	dsl_dataset_t *ds;
2256 
2257 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2258 
2259 	if (scn->scn_phys.scn_cur_min_txg >=
2260 	    scn->scn_phys.scn_max_txg) {
2261 		/*
2262 		 * This can happen if this snapshot was created after the
2263 		 * scan started, and we already completed a previous snapshot
2264 		 * that was created after the scan started.  This snapshot
2265 		 * only references blocks with:
2266 		 *
2267 		 *	birth < our ds_creation_txg
2268 		 *	cur_min_txg is no less than ds_creation_txg.
2269 		 *	We have already visited these blocks.
2270 		 * or
2271 		 *	birth > scn_max_txg
2272 		 *	The scan requested not to visit these blocks.
2273 		 *
2274 		 * Subsequent snapshots (and clones) can reference our
2275 		 * blocks, or blocks with even higher birth times.
2276 		 * Therefore we do not need to visit them either,
2277 		 * so we do not add them to the work queue.
2278 		 *
2279 		 * Note that checking for cur_min_txg >= cur_max_txg
2280 		 * is not sufficient, because in that case we may need to
2281 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2282 		 * which raises cur_min_txg.  In this case we will visit
2283 		 * this dataset but skip all of its blocks, because the
2284 		 * rootbp's birth time is < cur_min_txg.  Then we will
2285 		 * add the next snapshots/clones to the work queue.
2286 		 */
2287 		char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
2288 		dsl_dataset_name(ds, dsname);
2289 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2290 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2291 		    (longlong_t)dsobj, dsname,
2292 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2293 		    (longlong_t)scn->scn_phys.scn_max_txg);
2294 		kmem_free(dsname, MAXNAMELEN);
2295 
2296 		goto out;
2297 	}
2298 
2299 	/*
2300 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2301 	 * snapshots can have ZIL block pointers (which may be the same
2302 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2303 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2304 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2305 	 * rather than in scan_recurse(), because the regular snapshot
2306 	 * block-sharing rules don't apply to it.
2307 	 */
2308 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) &&
2309 	    (dp->dp_origin_snap == NULL ||
2310 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2311 		objset_t *os;
2312 		if (dmu_objset_from_ds(ds, &os) != 0) {
2313 			goto out;
2314 		}
2315 		dsl_scan_zil(dp, &os->os_zil_header);
2316 	}
2317 
2318 	/*
2319 	 * Iterate over the bps in this ds.
2320 	 */
2321 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2322 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2323 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2324 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2325 
2326 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2327 	dsl_dataset_name(ds, dsname);
2328 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2329 	    "suspending=%u",
2330 	    (longlong_t)dsobj, dsname,
2331 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2332 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2333 	    (int)scn->scn_suspending);
2334 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2335 
2336 	if (scn->scn_suspending)
2337 		goto out;
2338 
2339 	/*
2340 	 * We've finished this pass over this dataset.
2341 	 */
2342 
2343 	/*
2344 	 * If we did not completely visit this dataset, do another pass.
2345 	 */
2346 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2347 		zfs_dbgmsg("incomplete pass; visiting again");
2348 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2349 		scan_ds_queue_insert(scn, ds->ds_object,
2350 		    scn->scn_phys.scn_cur_max_txg);
2351 		goto out;
2352 	}
2353 
2354 	/*
2355 	 * Add descendent datasets to work queue.
2356 	 */
2357 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2358 		scan_ds_queue_insert(scn,
2359 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2360 		    dsl_dataset_phys(ds)->ds_creation_txg);
2361 	}
2362 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2363 		boolean_t usenext = B_FALSE;
2364 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2365 			uint64_t count;
2366 			/*
2367 			 * A bug in a previous version of the code could
2368 			 * cause upgrade_clones_cb() to not set
2369 			 * ds_next_snap_obj when it should, leading to a
2370 			 * missing entry.  Therefore we can only use the
2371 			 * next_clones_obj when its count is correct.
2372 			 */
2373 			int err = zap_count(dp->dp_meta_objset,
2374 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2375 			if (err == 0 &&
2376 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2377 				usenext = B_TRUE;
2378 		}
2379 
2380 		if (usenext) {
2381 			zap_cursor_t zc;
2382 			zap_attribute_t za;
2383 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2384 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2385 			    zap_cursor_retrieve(&zc, &za) == 0;
2386 			    (void) zap_cursor_advance(&zc)) {
2387 				scan_ds_queue_insert(scn,
2388 				    zfs_strtonum(za.za_name, NULL),
2389 				    dsl_dataset_phys(ds)->ds_creation_txg);
2390 			}
2391 			zap_cursor_fini(&zc);
2392 		} else {
2393 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2394 			    enqueue_clones_cb, &ds->ds_object,
2395 			    DS_FIND_CHILDREN));
2396 		}
2397 	}
2398 
2399 out:
2400 	dsl_dataset_rele(ds, FTAG);
2401 }
2402 
2403 /* ARGSUSED */
2404 static int
2405 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2406 {
2407 	dsl_dataset_t *ds;
2408 	int err;
2409 	dsl_scan_t *scn = dp->dp_scan;
2410 
2411 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2412 	if (err)
2413 		return (err);
2414 
2415 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2416 		dsl_dataset_t *prev;
2417 		err = dsl_dataset_hold_obj(dp,
2418 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2419 		if (err) {
2420 			dsl_dataset_rele(ds, FTAG);
2421 			return (err);
2422 		}
2423 
2424 		/*
2425 		 * If this is a clone, we don't need to worry about it for now.
2426 		 */
2427 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2428 			dsl_dataset_rele(ds, FTAG);
2429 			dsl_dataset_rele(prev, FTAG);
2430 			return (0);
2431 		}
2432 		dsl_dataset_rele(ds, FTAG);
2433 		ds = prev;
2434 	}
2435 
2436 	scan_ds_queue_insert(scn, ds->ds_object,
2437 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2438 	dsl_dataset_rele(ds, FTAG);
2439 	return (0);
2440 }
2441 
2442 /* ARGSUSED */
2443 void
2444 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2445     ddt_entry_t *dde, dmu_tx_t *tx)
2446 {
2447 	const ddt_key_t *ddk = &dde->dde_key;
2448 	ddt_phys_t *ddp = dde->dde_phys;
2449 	blkptr_t bp;
2450 	zbookmark_phys_t zb = { 0 };
2451 	int p;
2452 
2453 	if (scn->scn_phys.scn_state != DSS_SCANNING)
2454 		return;
2455 
2456 	/*
2457 	 * This function is special because it is the only thing
2458 	 * that can add scan_io_t's to the vdev scan queues from
2459 	 * outside dsl_scan_sync(). For the most part this is ok
2460 	 * as long as it is called from within syncing context.
2461 	 * However, dsl_scan_sync() expects that no new sio's will
2462 	 * be added between when all the work for a scan is done
2463 	 * and the next txg when the scan is actually marked as
2464 	 * completed. This check ensures we do not issue new sio's
2465 	 * during this period.
2466 	 */
2467 	if (scn->scn_done_txg != 0)
2468 		return;
2469 
2470 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2471 		if (ddp->ddp_phys_birth == 0 ||
2472 		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2473 			continue;
2474 		ddt_bp_create(checksum, ddk, ddp, &bp);
2475 
2476 		scn->scn_visited_this_txg++;
2477 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2478 	}
2479 }
2480 
2481 /*
2482  * Scrub/dedup interaction.
2483  *
2484  * If there are N references to a deduped block, we don't want to scrub it
2485  * N times -- ideally, we should scrub it exactly once.
2486  *
2487  * We leverage the fact that the dde's replication class (enum ddt_class)
2488  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2489  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2490  *
2491  * To prevent excess scrubbing, the scrub begins by walking the DDT
2492  * to find all blocks with refcnt > 1, and scrubs each of these once.
2493  * Since there are two replication classes which contain blocks with
2494  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2495  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2496  *
2497  * There would be nothing more to say if a block's refcnt couldn't change
2498  * during a scrub, but of course it can so we must account for changes
2499  * in a block's replication class.
2500  *
2501  * Here's an example of what can occur:
2502  *
2503  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2504  * when visited during the top-down scrub phase, it will be scrubbed twice.
2505  * This negates our scrub optimization, but is otherwise harmless.
2506  *
2507  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2508  * on each visit during the top-down scrub phase, it will never be scrubbed.
2509  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2510  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2511  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2512  * while a scrub is in progress, it scrubs the block right then.
2513  */
2514 static void
2515 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2516 {
2517 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2518 	ddt_entry_t dde = { 0 };
2519 	int error;
2520 	uint64_t n = 0;
2521 
2522 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2523 		ddt_t *ddt;
2524 
2525 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2526 			break;
2527 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2528 		    (longlong_t)ddb->ddb_class,
2529 		    (longlong_t)ddb->ddb_type,
2530 		    (longlong_t)ddb->ddb_checksum,
2531 		    (longlong_t)ddb->ddb_cursor);
2532 
2533 		/* There should be no pending changes to the dedup table */
2534 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2535 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2536 
2537 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2538 		n++;
2539 
2540 		if (dsl_scan_check_suspend(scn, NULL))
2541 			break;
2542 	}
2543 
2544 	zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2545 	    "suspending=%u", (longlong_t)n,
2546 	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2547 
2548 	ASSERT(error == 0 || error == ENOENT);
2549 	ASSERT(error != ENOENT ||
2550 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2551 }
2552 
2553 static uint64_t
2554 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2555 {
2556 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2557 	if (ds->ds_is_snapshot)
2558 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2559 	return (smt);
2560 }
2561 
2562 static void
2563 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2564 {
2565 	scan_ds_t *sds;
2566 	dsl_pool_t *dp = scn->scn_dp;
2567 
2568 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2569 	    scn->scn_phys.scn_ddt_class_max) {
2570 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2571 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2572 		dsl_scan_ddt(scn, tx);
2573 		if (scn->scn_suspending)
2574 			return;
2575 	}
2576 
2577 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2578 		/* First do the MOS & ORIGIN */
2579 
2580 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2581 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2582 		dsl_scan_visit_rootbp(scn, NULL,
2583 		    &dp->dp_meta_rootbp, tx);
2584 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2585 		if (scn->scn_suspending)
2586 			return;
2587 
2588 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2589 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2590 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
2591 		} else {
2592 			dsl_scan_visitds(scn,
2593 			    dp->dp_origin_snap->ds_object, tx);
2594 		}
2595 		ASSERT(!scn->scn_suspending);
2596 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
2597 	    ZB_DESTROYED_OBJSET) {
2598 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2599 		/*
2600 		 * If we were suspended, continue from here. Note if the
2601 		 * ds we were suspended on was deleted, the zb_objset may
2602 		 * be -1, so we will skip this and find a new objset
2603 		 * below.
2604 		 */
2605 		dsl_scan_visitds(scn, dsobj, tx);
2606 		if (scn->scn_suspending)
2607 			return;
2608 	}
2609 
2610 	/*
2611 	 * In case we suspended right at the end of the ds, zero the
2612 	 * bookmark so we don't think that we're still trying to resume.
2613 	 */
2614 	bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2615 
2616 	/*
2617 	 * Keep pulling things out of the dataset avl queue. Updates to the
2618 	 * persistent zap-object-as-queue happen only at checkpoints.
2619 	 */
2620 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2621 		dsl_dataset_t *ds;
2622 		uint64_t dsobj = sds->sds_dsobj;
2623 		uint64_t txg = sds->sds_txg;
2624 
2625 		/* dequeue and free the ds from the queue */
2626 		scan_ds_queue_remove(scn, dsobj);
2627 		sds = NULL;	/* must not be touched after removal */
2628 
2629 		/* Set up min / max txg */
2630 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2631 		if (txg != 0) {
2632 			scn->scn_phys.scn_cur_min_txg =
2633 			    MAX(scn->scn_phys.scn_min_txg, txg);
2634 		} else {
2635 			scn->scn_phys.scn_cur_min_txg =
2636 			    MAX(scn->scn_phys.scn_min_txg,
2637 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2638 		}
2639 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2640 		dsl_dataset_rele(ds, FTAG);
2641 
2642 		dsl_scan_visitds(scn, dsobj, tx);
2643 		if (scn->scn_suspending)
2644 			return;
2645 	}
2646 	/* No more objsets to fetch, we're done */
2647 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2648 	ASSERT0(scn->scn_suspending);
2649 }
2650 
2651 static uint64_t
2652 dsl_scan_count_leaves(vdev_t *vd)
2653 {
2654 	uint64_t i, leaves = 0;
2655 
2656 	/* we only count leaves that belong to the main pool and are readable */
2657 	if (vd->vdev_islog || vd->vdev_isspare ||
2658 	    vd->vdev_isl2cache || !vdev_readable(vd))
2659 		return (0);
2660 
2661 	if (vd->vdev_ops->vdev_op_leaf)
2662 		return (1);
2663 
2664 	for (i = 0; i < vd->vdev_children; i++) {
2665 		leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2666 	}
2667 
2668 	return (leaves);
2669 }
2670 
2671 
2672 static void
2673 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2674 {
2675 	int i;
2676 	uint64_t cur_size = 0;
2677 
2678 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2679 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2680 	}
2681 
2682 	q->q_total_zio_size_this_txg += cur_size;
2683 	q->q_zios_this_txg++;
2684 }
2685 
2686 static void
2687 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2688     uint64_t end)
2689 {
2690 	q->q_total_seg_size_this_txg += end - start;
2691 	q->q_segs_this_txg++;
2692 }
2693 
2694 static boolean_t
2695 scan_io_queue_check_suspend(dsl_scan_t *scn)
2696 {
2697 	/* See comment in dsl_scan_check_suspend() */
2698 	uint64_t curr_time_ns = gethrtime();
2699 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2700 	uint64_t sync_time_ns = curr_time_ns -
2701 	    scn->scn_dp->dp_spa->spa_sync_starttime;
2702 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2703 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2704 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2705 
2706 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
2707 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2708 	    txg_sync_waiting(scn->scn_dp) ||
2709 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2710 	    spa_shutting_down(scn->scn_dp->dp_spa));
2711 }
2712 
2713 /*
2714  * Given a list of scan_io_t's in io_list, this issues the io's out to
2715  * disk. This consumes the io_list and frees the scan_io_t's. This is
2716  * called when emptying queues, either when we're up against the memory
2717  * limit or when we have finished scanning. Returns B_TRUE if we stopped
2718  * processing the list before we finished. Any zios that were not issued
2719  * will remain in the io_list.
2720  */
2721 static boolean_t
2722 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2723 {
2724 	dsl_scan_t *scn = queue->q_scn;
2725 	scan_io_t *sio;
2726 	int64_t bytes_issued = 0;
2727 	boolean_t suspended = B_FALSE;
2728 
2729 	while ((sio = list_head(io_list)) != NULL) {
2730 		blkptr_t bp;
2731 
2732 		if (scan_io_queue_check_suspend(scn)) {
2733 			suspended = B_TRUE;
2734 			break;
2735 		}
2736 
2737 		sio2bp(sio, &bp);
2738 		bytes_issued += SIO_GET_ASIZE(sio);
2739 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2740 		    &sio->sio_zb, queue);
2741 		(void) list_remove_head(io_list);
2742 		scan_io_queues_update_zio_stats(queue, &bp);
2743 		sio_free(sio);
2744 	}
2745 
2746 	atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2747 
2748 	return (suspended);
2749 }
2750 
2751 /*
2752  * Given a range_seg_t (extent) and a list, this function passes over a
2753  * scan queue and gathers up the appropriate ios which fit into that
2754  * scan seg (starting from lowest LBA). At the end, we remove the segment
2755  * from the q_exts_by_addr range tree.
2756  */
2757 static boolean_t
2758 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2759 {
2760 	scan_io_t *srch_sio, *sio, *next_sio;
2761 	avl_index_t idx;
2762 	uint_t num_sios = 0;
2763 	int64_t bytes_issued = 0;
2764 
2765 	ASSERT(rs != NULL);
2766 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2767 
2768 	srch_sio = sio_alloc(1);
2769 	srch_sio->sio_nr_dvas = 1;
2770 	SIO_SET_OFFSET(srch_sio, rs->rs_start);
2771 
2772 	/*
2773 	 * The exact start of the extent might not contain any matching zios,
2774 	 * so if that's the case, examine the next one in the tree.
2775 	 */
2776 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2777 	sio_free(srch_sio);
2778 
2779 	if (sio == NULL)
2780 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2781 
2782 	while (sio != NULL &&
2783 	    SIO_GET_OFFSET(sio) < rs->rs_end && num_sios <= 32) {
2784 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs->rs_start);
2785 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs->rs_end);
2786 
2787 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2788 		avl_remove(&queue->q_sios_by_addr, sio);
2789 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
2790 
2791 		bytes_issued += SIO_GET_ASIZE(sio);
2792 		num_sios++;
2793 		list_insert_tail(list, sio);
2794 		sio = next_sio;
2795 	}
2796 
2797 	/*
2798 	 * We limit the number of sios we process at once to 32 to avoid
2799 	 * biting off more than we can chew. If we didn't take everything
2800 	 * in the segment we update it to reflect the work we were able to
2801 	 * complete. Otherwise, we remove it from the range tree entirely.
2802 	 */
2803 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs->rs_end) {
2804 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2805 		    -bytes_issued);
2806 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
2807 		    SIO_GET_OFFSET(sio), rs->rs_end - SIO_GET_OFFSET(sio));
2808 
2809 		return (B_TRUE);
2810 	} else {
2811 		range_tree_remove(queue->q_exts_by_addr, rs->rs_start,
2812 		    rs->rs_end - rs->rs_start);
2813 		return (B_FALSE);
2814 	}
2815 }
2816 
2817 
2818 /*
2819  * This is called from the queue emptying thread and selects the next
2820  * extent from which we are to issue io's. The behavior of this function
2821  * depends on the state of the scan, the current memory consumption and
2822  * whether or not we are performing a scan shutdown.
2823  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2824  *	needs to perform a checkpoint
2825  * 2) We select the largest available extent if we are up against the
2826  *	memory limit.
2827  * 3) Otherwise we don't select any extents.
2828  */
2829 static const range_seg_t *
2830 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2831 {
2832 	dsl_scan_t *scn = queue->q_scn;
2833 
2834 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2835 	ASSERT(scn->scn_is_sorted);
2836 
2837 	/* handle tunable overrides */
2838 	if (scn->scn_checkpointing || scn->scn_clearing) {
2839 		if (zfs_scan_issue_strategy == 1) {
2840 			return (range_tree_first(queue->q_exts_by_addr));
2841 		} else if (zfs_scan_issue_strategy == 2) {
2842 			return (avl_first(&queue->q_exts_by_size));
2843 		}
2844 	}
2845 
2846 	/*
2847 	 * During normal clearing, we want to issue our largest segments
2848 	 * first, keeping IO as sequential as possible, and leaving the
2849 	 * smaller extents for later with the hope that they might eventually
2850 	 * grow to larger sequential segments. However, when the scan is
2851 	 * checkpointing, no new extents will be added to the sorting queue,
2852 	 * so the way we are sorted now is as good as it will ever get.
2853 	 * In this case, we instead switch to issuing extents in LBA order.
2854 	 */
2855 	if (scn->scn_checkpointing) {
2856 		return (range_tree_first(queue->q_exts_by_addr));
2857 	} else if (scn->scn_clearing) {
2858 		return (avl_first(&queue->q_exts_by_size));
2859 	} else {
2860 		return (NULL);
2861 	}
2862 }
2863 
2864 static void
2865 scan_io_queues_run_one(void *arg)
2866 {
2867 	dsl_scan_io_queue_t *queue = arg;
2868 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
2869 	boolean_t suspended = B_FALSE;
2870 	range_seg_t *rs = NULL;
2871 	scan_io_t *sio = NULL;
2872 	list_t sio_list;
2873 	uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
2874 	uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
2875 
2876 	ASSERT(queue->q_scn->scn_is_sorted);
2877 
2878 	list_create(&sio_list, sizeof (scan_io_t),
2879 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
2880 	mutex_enter(q_lock);
2881 
2882 	/* calculate maximum in-flight bytes for this txg (min 1MB) */
2883 	queue->q_maxinflight_bytes =
2884 	    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
2885 
2886 	/* reset per-queue scan statistics for this txg */
2887 	queue->q_total_seg_size_this_txg = 0;
2888 	queue->q_segs_this_txg = 0;
2889 	queue->q_total_zio_size_this_txg = 0;
2890 	queue->q_zios_this_txg = 0;
2891 
2892 	/* loop until we have run out of time or sios */
2893 	while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) {
2894 		uint64_t seg_start = 0, seg_end = 0;
2895 		boolean_t more_left = B_TRUE;
2896 
2897 		ASSERT(list_is_empty(&sio_list));
2898 
2899 		/* loop while we still have sios left to process in this rs */
2900 		while (more_left) {
2901 			scan_io_t *first_sio, *last_sio;
2902 
2903 			/*
2904 			 * We have selected which extent needs to be
2905 			 * processed next. Gather up the corresponding sios.
2906 			 */
2907 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
2908 			ASSERT(!list_is_empty(&sio_list));
2909 			first_sio = list_head(&sio_list);
2910 			last_sio = list_tail(&sio_list);
2911 
2912 			seg_end = SIO_GET_END_OFFSET(last_sio);
2913 			if (seg_start == 0)
2914 				seg_start = SIO_GET_OFFSET(first_sio);
2915 
2916 			/*
2917 			 * Issuing sios can take a long time so drop the
2918 			 * queue lock. The sio queue won't be updated by
2919 			 * other threads since we're in syncing context so
2920 			 * we can be sure that our trees will remain exactly
2921 			 * as we left them.
2922 			 */
2923 			mutex_exit(q_lock);
2924 			suspended = scan_io_queue_issue(queue, &sio_list);
2925 			mutex_enter(q_lock);
2926 
2927 			if (suspended)
2928 				break;
2929 		}
2930 		/* update statistics for debugging purposes */
2931 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
2932 
2933 		if (suspended)
2934 			break;
2935 	}
2936 
2937 
2938 	/*
2939 	 * If we were suspended in the middle of processing,
2940 	 * requeue any unfinished sios and exit.
2941 	 */
2942 	while ((sio = list_head(&sio_list)) != NULL) {
2943 		list_remove(&sio_list, sio);
2944 		scan_io_queue_insert_impl(queue, sio);
2945 	}
2946 
2947 	mutex_exit(q_lock);
2948 	list_destroy(&sio_list);
2949 }
2950 
2951 /*
2952  * Performs an emptying run on all scan queues in the pool. This just
2953  * punches out one thread per top-level vdev, each of which processes
2954  * only that vdev's scan queue. We can parallelize the I/O here because
2955  * we know that each queue's io's only affect its own top-level vdev.
2956  *
2957  * This function waits for the queue runs to complete, and must be
2958  * called from dsl_scan_sync (or in general, syncing context).
2959  */
2960 static void
2961 scan_io_queues_run(dsl_scan_t *scn)
2962 {
2963 	spa_t *spa = scn->scn_dp->dp_spa;
2964 
2965 	ASSERT(scn->scn_is_sorted);
2966 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2967 
2968 	if (scn->scn_bytes_pending == 0)
2969 		return;
2970 
2971 	if (scn->scn_taskq == NULL) {
2972 		char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16,
2973 		    KM_SLEEP);
2974 		int nthreads = spa->spa_root_vdev->vdev_children;
2975 
2976 		/*
2977 		 * We need to make this taskq *always* execute as many
2978 		 * threads in parallel as we have top-level vdevs and no
2979 		 * less, otherwise strange serialization of the calls to
2980 		 * scan_io_queues_run_one can occur during spa_sync runs
2981 		 * and that significantly impacts performance.
2982 		 */
2983 		(void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16,
2984 		    "dsl_scan_tq_%s", spa->spa_name);
2985 		scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri,
2986 		    nthreads, nthreads, TASKQ_PREPOPULATE);
2987 		kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16);
2988 	}
2989 
2990 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
2991 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
2992 
2993 		mutex_enter(&vd->vdev_scan_io_queue_lock);
2994 		if (vd->vdev_scan_io_queue != NULL) {
2995 			VERIFY(taskq_dispatch(scn->scn_taskq,
2996 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
2997 			    TQ_SLEEP) != TASKQID_INVALID);
2998 		}
2999 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3000 	}
3001 
3002 	/*
3003 	 * Wait for the queues to finish issuing thir IOs for this run
3004 	 * before we return. There may still be IOs in flight at this
3005 	 * point.
3006 	 */
3007 	taskq_wait(scn->scn_taskq);
3008 }
3009 
3010 static boolean_t
3011 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3012 {
3013 	uint64_t elapsed_nanosecs;
3014 
3015 	if (zfs_recover)
3016 		return (B_FALSE);
3017 
3018 	if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks)
3019 		return (B_TRUE);
3020 
3021 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3022 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3023 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3024 	    txg_sync_waiting(scn->scn_dp)) ||
3025 	    spa_shutting_down(scn->scn_dp->dp_spa));
3026 }
3027 
3028 static int
3029 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3030 {
3031 	dsl_scan_t *scn = arg;
3032 
3033 	if (!scn->scn_is_bptree ||
3034 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3035 		if (dsl_scan_async_block_should_pause(scn))
3036 			return (SET_ERROR(ERESTART));
3037 	}
3038 
3039 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3040 	    dmu_tx_get_txg(tx), bp, 0));
3041 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3042 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3043 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3044 	scn->scn_visited_this_txg++;
3045 	return (0);
3046 }
3047 
3048 static void
3049 dsl_scan_update_stats(dsl_scan_t *scn)
3050 {
3051 	spa_t *spa = scn->scn_dp->dp_spa;
3052 	uint64_t i;
3053 	uint64_t seg_size_total = 0, zio_size_total = 0;
3054 	uint64_t seg_count_total = 0, zio_count_total = 0;
3055 
3056 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3057 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3058 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3059 
3060 		if (queue == NULL)
3061 			continue;
3062 
3063 		seg_size_total += queue->q_total_seg_size_this_txg;
3064 		zio_size_total += queue->q_total_zio_size_this_txg;
3065 		seg_count_total += queue->q_segs_this_txg;
3066 		zio_count_total += queue->q_zios_this_txg;
3067 	}
3068 
3069 	if (seg_count_total == 0 || zio_count_total == 0) {
3070 		scn->scn_avg_seg_size_this_txg = 0;
3071 		scn->scn_avg_zio_size_this_txg = 0;
3072 		scn->scn_segs_this_txg = 0;
3073 		scn->scn_zios_this_txg = 0;
3074 		return;
3075 	}
3076 
3077 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3078 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3079 	scn->scn_segs_this_txg = seg_count_total;
3080 	scn->scn_zios_this_txg = zio_count_total;
3081 }
3082 
3083 static int
3084 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3085 {
3086 	dsl_scan_t *scn = arg;
3087 	const dva_t *dva = &bp->blk_dva[0];
3088 
3089 	if (dsl_scan_async_block_should_pause(scn))
3090 		return (SET_ERROR(ERESTART));
3091 
3092 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3093 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3094 	    DVA_GET_ASIZE(dva), tx);
3095 	scn->scn_visited_this_txg++;
3096 	return (0);
3097 }
3098 
3099 boolean_t
3100 dsl_scan_active(dsl_scan_t *scn)
3101 {
3102 	spa_t *spa = scn->scn_dp->dp_spa;
3103 	uint64_t used = 0, comp, uncomp;
3104 
3105 	if (spa->spa_load_state != SPA_LOAD_NONE)
3106 		return (B_FALSE);
3107 	if (spa_shutting_down(spa))
3108 		return (B_FALSE);
3109 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3110 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3111 		return (B_TRUE);
3112 
3113 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3114 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3115 		    &used, &comp, &uncomp);
3116 	}
3117 	return (used != 0);
3118 }
3119 
3120 static boolean_t
3121 dsl_scan_check_deferred(vdev_t *vd)
3122 {
3123 	boolean_t need_resilver = B_FALSE;
3124 
3125 	for (int c = 0; c < vd->vdev_children; c++) {
3126 		need_resilver |=
3127 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3128 	}
3129 
3130 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3131 	    !vd->vdev_ops->vdev_op_leaf)
3132 		return (need_resilver);
3133 
3134 	if (!vd->vdev_resilver_deferred)
3135 		need_resilver = B_TRUE;
3136 
3137 	return (need_resilver);
3138 }
3139 
3140 static boolean_t
3141 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3142     uint64_t phys_birth)
3143 {
3144 	vdev_t *vd;
3145 
3146 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3147 
3148 	if (vd->vdev_ops == &vdev_indirect_ops) {
3149 		/*
3150 		 * The indirect vdev can point to multiple
3151 		 * vdevs.  For simplicity, always create
3152 		 * the resilver zio_t. zio_vdev_io_start()
3153 		 * will bypass the child resilver i/o's if
3154 		 * they are on vdevs that don't have DTL's.
3155 		 */
3156 		return (B_TRUE);
3157 	}
3158 
3159 	if (DVA_GET_GANG(dva)) {
3160 		/*
3161 		 * Gang members may be spread across multiple
3162 		 * vdevs, so the best estimate we have is the
3163 		 * scrub range, which has already been checked.
3164 		 * XXX -- it would be better to change our
3165 		 * allocation policy to ensure that all
3166 		 * gang members reside on the same vdev.
3167 		 */
3168 		return (B_TRUE);
3169 	}
3170 
3171 	/*
3172 	 * Check if the txg falls within the range which must be
3173 	 * resilvered.  DVAs outside this range can always be skipped.
3174 	 */
3175 	if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3176 		return (B_FALSE);
3177 
3178 	/*
3179 	 * Check if the top-level vdev must resilver this offset.
3180 	 * When the offset does not intersect with a dirty leaf DTL
3181 	 * then it may be possible to skip the resilver IO.  The psize
3182 	 * is provided instead of asize to simplify the check for RAIDZ.
3183 	 */
3184 	if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
3185 		return (B_FALSE);
3186 
3187 	/*
3188 	 * Check that this top-level vdev has a device under it which
3189 	 * is resilvering and is not deferred.
3190 	 */
3191 	if (!dsl_scan_check_deferred(vd))
3192 		return (B_FALSE);
3193 
3194 	return (B_TRUE);
3195 }
3196 
3197 static int
3198 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3199 {
3200 	int err = 0;
3201 	dsl_scan_t *scn = dp->dp_scan;
3202 	spa_t *spa = dp->dp_spa;
3203 
3204 	if (spa_suspend_async_destroy(spa))
3205 		return (0);
3206 
3207 	if (zfs_free_bpobj_enabled &&
3208 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3209 		scn->scn_is_bptree = B_FALSE;
3210 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3211 		scn->scn_zio_root = zio_root(spa, NULL,
3212 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3213 		err = bpobj_iterate(&dp->dp_free_bpobj,
3214 		    dsl_scan_free_block_cb, scn, tx);
3215 		VERIFY0(zio_wait(scn->scn_zio_root));
3216 		scn->scn_zio_root = NULL;
3217 
3218 		if (err != 0 && err != ERESTART)
3219 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3220 	}
3221 
3222 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3223 		ASSERT(scn->scn_async_destroying);
3224 		scn->scn_is_bptree = B_TRUE;
3225 		scn->scn_zio_root = zio_root(spa, NULL,
3226 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3227 		err = bptree_iterate(dp->dp_meta_objset,
3228 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3229 		VERIFY0(zio_wait(scn->scn_zio_root));
3230 		scn->scn_zio_root = NULL;
3231 
3232 		if (err == EIO || err == ECKSUM) {
3233 			err = 0;
3234 		} else if (err != 0 && err != ERESTART) {
3235 			zfs_panic_recover("error %u from "
3236 			    "traverse_dataset_destroyed()", err);
3237 		}
3238 
3239 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3240 			/* finished; deactivate async destroy feature */
3241 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3242 			ASSERT(!spa_feature_is_active(spa,
3243 			    SPA_FEATURE_ASYNC_DESTROY));
3244 			VERIFY0(zap_remove(dp->dp_meta_objset,
3245 			    DMU_POOL_DIRECTORY_OBJECT,
3246 			    DMU_POOL_BPTREE_OBJ, tx));
3247 			VERIFY0(bptree_free(dp->dp_meta_objset,
3248 			    dp->dp_bptree_obj, tx));
3249 			dp->dp_bptree_obj = 0;
3250 			scn->scn_async_destroying = B_FALSE;
3251 			scn->scn_async_stalled = B_FALSE;
3252 		} else {
3253 			/*
3254 			 * If we didn't make progress, mark the async
3255 			 * destroy as stalled, so that we will not initiate
3256 			 * a spa_sync() on its behalf.  Note that we only
3257 			 * check this if we are not finished, because if the
3258 			 * bptree had no blocks for us to visit, we can
3259 			 * finish without "making progress".
3260 			 */
3261 			scn->scn_async_stalled =
3262 			    (scn->scn_visited_this_txg == 0);
3263 		}
3264 	}
3265 	if (scn->scn_visited_this_txg) {
3266 		zfs_dbgmsg("freed %llu blocks in %llums from "
3267 		    "free_bpobj/bptree txg %llu; err=%d",
3268 		    (longlong_t)scn->scn_visited_this_txg,
3269 		    (longlong_t)
3270 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3271 		    (longlong_t)tx->tx_txg, err);
3272 		scn->scn_visited_this_txg = 0;
3273 
3274 		/*
3275 		 * Write out changes to the DDT that may be required as a
3276 		 * result of the blocks freed.  This ensures that the DDT
3277 		 * is clean when a scrub/resilver runs.
3278 		 */
3279 		ddt_sync(spa, tx->tx_txg);
3280 	}
3281 	if (err != 0)
3282 		return (err);
3283 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3284 	    zfs_free_leak_on_eio &&
3285 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3286 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3287 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3288 		/*
3289 		 * We have finished background destroying, but there is still
3290 		 * some space left in the dp_free_dir. Transfer this leaked
3291 		 * space to the dp_leak_dir.
3292 		 */
3293 		if (dp->dp_leak_dir == NULL) {
3294 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3295 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3296 			    LEAK_DIR_NAME, tx);
3297 			VERIFY0(dsl_pool_open_special_dir(dp,
3298 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3299 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3300 		}
3301 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3302 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3303 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3304 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3305 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3306 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3307 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3308 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3309 	}
3310 
3311 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) {
3312 		/* finished; verify that space accounting went to zero */
3313 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3314 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3315 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3316 	}
3317 
3318 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3319 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3320 	    DMU_POOL_OBSOLETE_BPOBJ));
3321 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3322 		ASSERT(spa_feature_is_active(dp->dp_spa,
3323 		    SPA_FEATURE_OBSOLETE_COUNTS));
3324 
3325 		scn->scn_is_bptree = B_FALSE;
3326 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3327 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3328 		    dsl_scan_obsolete_block_cb, scn, tx);
3329 		if (err != 0 && err != ERESTART)
3330 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3331 
3332 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3333 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3334 	}
3335 
3336 	return (0);
3337 }
3338 
3339 /*
3340  * This is the primary entry point for scans that is called from syncing
3341  * context. Scans must happen entirely during syncing context so that we
3342  * cna guarantee that blocks we are currently scanning will not change out
3343  * from under us. While a scan is active, this funciton controls how quickly
3344  * transaction groups proceed, instead of the normal handling provided by
3345  * txg_sync_thread().
3346  */
3347 void
3348 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3349 {
3350 	dsl_scan_t *scn = dp->dp_scan;
3351 	spa_t *spa = dp->dp_spa;
3352 	int err = 0;
3353 	state_sync_type_t sync_type = SYNC_OPTIONAL;
3354 
3355 	if (spa->spa_resilver_deferred &&
3356 	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3357 		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3358 
3359 	/*
3360 	 * Check for scn_restart_txg before checking spa_load_state, so
3361 	 * that we can restart an old-style scan while the pool is being
3362 	 * imported (see dsl_scan_init). We also restart scans if there
3363 	 * is a deferred resilver and the user has manually disabled
3364 	 * deferred resilvers via the tunable.
3365 	 */
3366 	if (dsl_scan_restarting(scn, tx) ||
3367 	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3368 		pool_scan_func_t func = POOL_SCAN_SCRUB;
3369 		dsl_scan_done(scn, B_FALSE, tx);
3370 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3371 			func = POOL_SCAN_RESILVER;
3372 		zfs_dbgmsg("restarting scan func=%u txg=%llu",
3373 		    func, (longlong_t)tx->tx_txg);
3374 		dsl_scan_setup_sync(&func, tx);
3375 	}
3376 
3377 	/*
3378 	 * Only process scans in sync pass 1.
3379 	 */
3380 	if (spa_sync_pass(dp->dp_spa) > 1)
3381 		return;
3382 
3383 	/*
3384 	 * If the spa is shutting down, then stop scanning. This will
3385 	 * ensure that the scan does not dirty any new data during the
3386 	 * shutdown phase.
3387 	 */
3388 	if (spa_shutting_down(spa))
3389 		return;
3390 
3391 	/*
3392 	 * If the scan is inactive due to a stalled async destroy, try again.
3393 	 */
3394 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3395 		return;
3396 
3397 	/* reset scan statistics */
3398 	scn->scn_visited_this_txg = 0;
3399 	scn->scn_holes_this_txg = 0;
3400 	scn->scn_lt_min_this_txg = 0;
3401 	scn->scn_gt_max_this_txg = 0;
3402 	scn->scn_ddt_contained_this_txg = 0;
3403 	scn->scn_objsets_visited_this_txg = 0;
3404 	scn->scn_avg_seg_size_this_txg = 0;
3405 	scn->scn_segs_this_txg = 0;
3406 	scn->scn_avg_zio_size_this_txg = 0;
3407 	scn->scn_zios_this_txg = 0;
3408 	scn->scn_suspending = B_FALSE;
3409 	scn->scn_sync_start_time = gethrtime();
3410 	spa->spa_scrub_active = B_TRUE;
3411 
3412 	/*
3413 	 * First process the async destroys.  If we pause, don't do
3414 	 * any scrubbing or resilvering.  This ensures that there are no
3415 	 * async destroys while we are scanning, so the scan code doesn't
3416 	 * have to worry about traversing it.  It is also faster to free the
3417 	 * blocks than to scrub them.
3418 	 */
3419 	err = dsl_process_async_destroys(dp, tx);
3420 	if (err != 0)
3421 		return;
3422 
3423 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3424 		return;
3425 
3426 	/*
3427 	 * Wait a few txgs after importing to begin scanning so that
3428 	 * we can get the pool imported quickly.
3429 	 */
3430 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3431 		return;
3432 
3433 	/*
3434 	 * zfs_scan_suspend_progress can be set to disable scan progress.
3435 	 * We don't want to spin the txg_sync thread, so we add a delay
3436 	 * here to simulate the time spent doing a scan. This is mostly
3437 	 * useful for testing and debugging.
3438 	 */
3439 	if (zfs_scan_suspend_progress) {
3440 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3441 		int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3442 		    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3443 
3444 		while (zfs_scan_suspend_progress &&
3445 		    !txg_sync_waiting(scn->scn_dp) &&
3446 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
3447 		    NSEC2MSEC(scan_time_ns) < mintime) {
3448 			delay(hz);
3449 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3450 		}
3451 		return;
3452 	}
3453 
3454 	/*
3455 	 * It is possible to switch from unsorted to sorted at any time,
3456 	 * but afterwards the scan will remain sorted unless reloaded from
3457 	 * a checkpoint after a reboot.
3458 	 */
3459 	if (!zfs_scan_legacy) {
3460 		scn->scn_is_sorted = B_TRUE;
3461 		if (scn->scn_last_checkpoint == 0)
3462 			scn->scn_last_checkpoint = ddi_get_lbolt();
3463 	}
3464 
3465 	/*
3466 	 * For sorted scans, determine what kind of work we will be doing
3467 	 * this txg based on our memory limitations and whether or not we
3468 	 * need to perform a checkpoint.
3469 	 */
3470 	if (scn->scn_is_sorted) {
3471 		/*
3472 		 * If we are over our checkpoint interval, set scn_clearing
3473 		 * so that we can begin checkpointing immediately. The
3474 		 * checkpoint allows us to save a consisent bookmark
3475 		 * representing how much data we have scrubbed so far.
3476 		 * Otherwise, use the memory limit to determine if we should
3477 		 * scan for metadata or start issue scrub IOs. We accumulate
3478 		 * metadata until we hit our hard memory limit at which point
3479 		 * we issue scrub IOs until we are at our soft memory limit.
3480 		 */
3481 		if (scn->scn_checkpointing ||
3482 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
3483 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3484 			if (!scn->scn_checkpointing)
3485 				zfs_dbgmsg("begin scan checkpoint");
3486 
3487 			scn->scn_checkpointing = B_TRUE;
3488 			scn->scn_clearing = B_TRUE;
3489 		} else {
3490 			boolean_t should_clear = dsl_scan_should_clear(scn);
3491 			if (should_clear && !scn->scn_clearing) {
3492 				zfs_dbgmsg("begin scan clearing");
3493 				scn->scn_clearing = B_TRUE;
3494 			} else if (!should_clear && scn->scn_clearing) {
3495 				zfs_dbgmsg("finish scan clearing");
3496 				scn->scn_clearing = B_FALSE;
3497 			}
3498 		}
3499 	} else {
3500 		ASSERT0(scn->scn_checkpointing);
3501 		ASSERT0(scn->scn_clearing);
3502 	}
3503 
3504 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3505 		/* Need to scan metadata for more blocks to scrub */
3506 		dsl_scan_phys_t *scnp = &scn->scn_phys;
3507 		taskqid_t prefetch_tqid;
3508 		uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3509 		uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3510 
3511 		/*
3512 		 * Calculate the max number of in-flight bytes for pool-wide
3513 		 * scanning operations (minimum 1MB). Limits for the issuing
3514 		 * phase are done per top-level vdev and are handled separately.
3515 		 */
3516 		scn->scn_maxinflight_bytes =
3517 		    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3518 
3519 		if (scnp->scn_ddt_bookmark.ddb_class <=
3520 		    scnp->scn_ddt_class_max) {
3521 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3522 			zfs_dbgmsg("doing scan sync txg %llu; "
3523 			    "ddt bm=%llu/%llu/%llu/%llx",
3524 			    (longlong_t)tx->tx_txg,
3525 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3526 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3527 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3528 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3529 		} else {
3530 			zfs_dbgmsg("doing scan sync txg %llu; "
3531 			    "bm=%llu/%llu/%llu/%llu",
3532 			    (longlong_t)tx->tx_txg,
3533 			    (longlong_t)scnp->scn_bookmark.zb_objset,
3534 			    (longlong_t)scnp->scn_bookmark.zb_object,
3535 			    (longlong_t)scnp->scn_bookmark.zb_level,
3536 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
3537 		}
3538 
3539 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3540 		    NULL, ZIO_FLAG_CANFAIL);
3541 
3542 		scn->scn_prefetch_stop = B_FALSE;
3543 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3544 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3545 		ASSERT(prefetch_tqid != TASKQID_INVALID);
3546 
3547 		dsl_pool_config_enter(dp, FTAG);
3548 		dsl_scan_visit(scn, tx);
3549 		dsl_pool_config_exit(dp, FTAG);
3550 
3551 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
3552 		scn->scn_prefetch_stop = B_TRUE;
3553 		cv_broadcast(&spa->spa_scrub_io_cv);
3554 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
3555 
3556 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3557 		(void) zio_wait(scn->scn_zio_root);
3558 		scn->scn_zio_root = NULL;
3559 
3560 		zfs_dbgmsg("scan visited %llu blocks in %llums "
3561 		    "(%llu os's, %llu holes, %llu < mintxg, "
3562 		    "%llu in ddt, %llu > maxtxg)",
3563 		    (longlong_t)scn->scn_visited_this_txg,
3564 		    (longlong_t)NSEC2MSEC(gethrtime() -
3565 		    scn->scn_sync_start_time),
3566 		    (longlong_t)scn->scn_objsets_visited_this_txg,
3567 		    (longlong_t)scn->scn_holes_this_txg,
3568 		    (longlong_t)scn->scn_lt_min_this_txg,
3569 		    (longlong_t)scn->scn_ddt_contained_this_txg,
3570 		    (longlong_t)scn->scn_gt_max_this_txg);
3571 
3572 		if (!scn->scn_suspending) {
3573 			ASSERT0(avl_numnodes(&scn->scn_queue));
3574 			scn->scn_done_txg = tx->tx_txg + 1;
3575 			if (scn->scn_is_sorted) {
3576 				scn->scn_checkpointing = B_TRUE;
3577 				scn->scn_clearing = B_TRUE;
3578 			}
3579 			zfs_dbgmsg("scan complete txg %llu",
3580 			    (longlong_t)tx->tx_txg);
3581 		}
3582 	} else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3583 		ASSERT(scn->scn_clearing);
3584 
3585 		/* need to issue scrubbing IOs from per-vdev queues */
3586 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3587 		    NULL, ZIO_FLAG_CANFAIL);
3588 		scan_io_queues_run(scn);
3589 		(void) zio_wait(scn->scn_zio_root);
3590 		scn->scn_zio_root = NULL;
3591 
3592 		/* calculate and dprintf the current memory usage */
3593 		(void) dsl_scan_should_clear(scn);
3594 		dsl_scan_update_stats(scn);
3595 
3596 		zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums "
3597 		    "(avg_block_size = %llu, avg_seg_size = %llu)",
3598 		    (longlong_t)scn->scn_zios_this_txg,
3599 		    (longlong_t)scn->scn_segs_this_txg,
3600 		    (longlong_t)NSEC2MSEC(gethrtime() -
3601 		    scn->scn_sync_start_time),
3602 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
3603 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
3604 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3605 		/* Finished with everything. Mark the scrub as complete */
3606 		zfs_dbgmsg("scan issuing complete txg %llu",
3607 		    (longlong_t)tx->tx_txg);
3608 		ASSERT3U(scn->scn_done_txg, !=, 0);
3609 		ASSERT0(spa->spa_scrub_inflight);
3610 		ASSERT0(scn->scn_bytes_pending);
3611 		dsl_scan_done(scn, B_TRUE, tx);
3612 		sync_type = SYNC_MANDATORY;
3613 	}
3614 
3615 	dsl_scan_sync_state(scn, tx, sync_type);
3616 }
3617 
3618 static void
3619 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3620 {
3621 	int i;
3622 
3623 	/*
3624 	 * Don't count embedded bp's, since we already did the work of
3625 	 * scanning these when we scanned the containing block.
3626 	 */
3627 	if (BP_IS_EMBEDDED(bp))
3628 		return;
3629 
3630 	/*
3631 	 * Update the spa's stats on how many bytes we have issued.
3632 	 * Sequential scrubs create a zio for each DVA of the bp. Each
3633 	 * of these will include all DVAs for repair purposes, but the
3634 	 * zio code will only try the first one unless there is an issue.
3635 	 * Therefore, we should only count the first DVA for these IOs.
3636 	 */
3637 	if (scn->scn_is_sorted) {
3638 		atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3639 		    DVA_GET_ASIZE(&bp->blk_dva[0]));
3640 	} else {
3641 		spa_t *spa = scn->scn_dp->dp_spa;
3642 
3643 		for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3644 			atomic_add_64(&spa->spa_scan_pass_issued,
3645 			    DVA_GET_ASIZE(&bp->blk_dva[i]));
3646 		}
3647 	}
3648 
3649 	/*
3650 	 * If we resume after a reboot, zab will be NULL; don't record
3651 	 * incomplete stats in that case.
3652 	 */
3653 	if (zab == NULL)
3654 		return;
3655 
3656 	mutex_enter(&zab->zab_lock);
3657 
3658 	for (i = 0; i < 4; i++) {
3659 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3660 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3661 		if (t & DMU_OT_NEWTYPE)
3662 			t = DMU_OT_OTHER;
3663 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
3664 		int equal;
3665 
3666 		zb->zb_count++;
3667 		zb->zb_asize += BP_GET_ASIZE(bp);
3668 		zb->zb_lsize += BP_GET_LSIZE(bp);
3669 		zb->zb_psize += BP_GET_PSIZE(bp);
3670 		zb->zb_gangs += BP_COUNT_GANG(bp);
3671 
3672 		switch (BP_GET_NDVAS(bp)) {
3673 		case 2:
3674 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3675 			    DVA_GET_VDEV(&bp->blk_dva[1]))
3676 				zb->zb_ditto_2_of_2_samevdev++;
3677 			break;
3678 		case 3:
3679 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3680 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
3681 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3682 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
3683 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3684 			    DVA_GET_VDEV(&bp->blk_dva[2]));
3685 			if (equal == 1)
3686 				zb->zb_ditto_2_of_3_samevdev++;
3687 			else if (equal == 3)
3688 				zb->zb_ditto_3_of_3_samevdev++;
3689 			break;
3690 		}
3691 	}
3692 
3693 	mutex_exit(&zab->zab_lock);
3694 }
3695 
3696 static void
3697 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3698 {
3699 	avl_index_t idx;
3700 	int64_t asize = SIO_GET_ASIZE(sio);
3701 	dsl_scan_t *scn = queue->q_scn;
3702 
3703 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3704 
3705 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3706 		/* block is already scheduled for reading */
3707 		atomic_add_64(&scn->scn_bytes_pending, -asize);
3708 		sio_free(sio);
3709 		return;
3710 	}
3711 	avl_insert(&queue->q_sios_by_addr, sio, idx);
3712 	queue->q_sio_memused += SIO_GET_MUSED(sio);
3713 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3714 }
3715 
3716 /*
3717  * Given all the info we got from our metadata scanning process, we
3718  * construct a scan_io_t and insert it into the scan sorting queue. The
3719  * I/O must already be suitable for us to process. This is controlled
3720  * by dsl_scan_enqueue().
3721  */
3722 static void
3723 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3724     int zio_flags, const zbookmark_phys_t *zb)
3725 {
3726 	dsl_scan_t *scn = queue->q_scn;
3727 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3728 
3729 	ASSERT0(BP_IS_GANG(bp));
3730 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3731 
3732 	bp2sio(bp, sio, dva_i);
3733 	sio->sio_flags = zio_flags;
3734 	sio->sio_zb = *zb;
3735 
3736 	/*
3737 	 * Increment the bytes pending counter now so that we can't
3738 	 * get an integer underflow in case the worker processes the
3739 	 * zio before we get to incrementing this counter.
3740 	 */
3741 	atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3742 
3743 	scan_io_queue_insert_impl(queue, sio);
3744 }
3745 
3746 /*
3747  * Given a set of I/O parameters as discovered by the metadata traversal
3748  * process, attempts to place the I/O into the sorted queues (if allowed),
3749  * or immediately executes the I/O.
3750  */
3751 static void
3752 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3753     const zbookmark_phys_t *zb)
3754 {
3755 	spa_t *spa = dp->dp_spa;
3756 
3757 	ASSERT(!BP_IS_EMBEDDED(bp));
3758 
3759 	/*
3760 	 * Gang blocks are hard to issue sequentially, so we just issue them
3761 	 * here immediately instead of queuing them.
3762 	 */
3763 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3764 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
3765 		return;
3766 	}
3767 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3768 		dva_t dva;
3769 		vdev_t *vdev;
3770 
3771 		dva = bp->blk_dva[i];
3772 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3773 		ASSERT(vdev != NULL);
3774 
3775 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
3776 		if (vdev->vdev_scan_io_queue == NULL)
3777 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3778 		ASSERT(dp->dp_scan != NULL);
3779 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3780 		    i, zio_flags, zb);
3781 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
3782 	}
3783 }
3784 
3785 static int
3786 dsl_scan_scrub_cb(dsl_pool_t *dp,
3787     const blkptr_t *bp, const zbookmark_phys_t *zb)
3788 {
3789 	dsl_scan_t *scn = dp->dp_scan;
3790 	spa_t *spa = dp->dp_spa;
3791 	uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3792 	size_t psize = BP_GET_PSIZE(bp);
3793 	boolean_t needs_io;
3794 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3795 	int d;
3796 
3797 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
3798 	    phys_birth >= scn->scn_phys.scn_max_txg) {
3799 		count_block(scn, dp->dp_blkstats, bp);
3800 		return (0);
3801 	}
3802 
3803 	/* Embedded BP's have phys_birth==0, so we reject them above. */
3804 	ASSERT(!BP_IS_EMBEDDED(bp));
3805 
3806 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3807 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3808 		zio_flags |= ZIO_FLAG_SCRUB;
3809 		needs_io = B_TRUE;
3810 	} else {
3811 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3812 		zio_flags |= ZIO_FLAG_RESILVER;
3813 		needs_io = B_FALSE;
3814 	}
3815 
3816 	/* If it's an intent log block, failure is expected. */
3817 	if (zb->zb_level == ZB_ZIL_LEVEL)
3818 		zio_flags |= ZIO_FLAG_SPECULATIVE;
3819 
3820 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
3821 		const dva_t *dva = &bp->blk_dva[d];
3822 
3823 		/*
3824 		 * Keep track of how much data we've examined so that
3825 		 * zpool(1M) status can make useful progress reports.
3826 		 */
3827 		scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3828 		spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3829 
3830 		/* if it's a resilver, this may not be in the target range */
3831 		if (!needs_io)
3832 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
3833 			    phys_birth);
3834 	}
3835 
3836 	if (needs_io && !zfs_no_scrub_io) {
3837 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
3838 	} else {
3839 		count_block(scn, dp->dp_blkstats, bp);
3840 	}
3841 
3842 	/* do not relocate this block */
3843 	return (0);
3844 }
3845 
3846 static void
3847 dsl_scan_scrub_done(zio_t *zio)
3848 {
3849 	spa_t *spa = zio->io_spa;
3850 	blkptr_t *bp = zio->io_bp;
3851 	dsl_scan_io_queue_t *queue = zio->io_private;
3852 
3853 	abd_free(zio->io_abd);
3854 
3855 	if (queue == NULL) {
3856 		mutex_enter(&spa->spa_scrub_lock);
3857 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
3858 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
3859 		cv_broadcast(&spa->spa_scrub_io_cv);
3860 		mutex_exit(&spa->spa_scrub_lock);
3861 	} else {
3862 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
3863 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
3864 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
3865 		cv_broadcast(&queue->q_zio_cv);
3866 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
3867 	}
3868 
3869 	if (zio->io_error && (zio->io_error != ECKSUM ||
3870 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
3871 		atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
3872 	}
3873 }
3874 
3875 /*
3876  * Given a scanning zio's information, executes the zio. The zio need
3877  * not necessarily be only sortable, this function simply executes the
3878  * zio, no matter what it is. The optional queue argument allows the
3879  * caller to specify that they want per top level vdev IO rate limiting
3880  * instead of the legacy global limiting.
3881  */
3882 static void
3883 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3884     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
3885 {
3886 	spa_t *spa = dp->dp_spa;
3887 	dsl_scan_t *scn = dp->dp_scan;
3888 	size_t size = BP_GET_PSIZE(bp);
3889 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
3890 
3891 	if (queue == NULL) {
3892 		mutex_enter(&spa->spa_scrub_lock);
3893 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
3894 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3895 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
3896 		mutex_exit(&spa->spa_scrub_lock);
3897 	} else {
3898 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3899 
3900 		mutex_enter(q_lock);
3901 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
3902 			cv_wait(&queue->q_zio_cv, q_lock);
3903 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
3904 		mutex_exit(q_lock);
3905 	}
3906 
3907 	count_block(dp->dp_scan, dp->dp_blkstats, bp);
3908 	zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size,
3909 	    dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
3910 }
3911 
3912 /*
3913  * This is the primary extent sorting algorithm. We balance two parameters:
3914  * 1) how many bytes of I/O are in an extent
3915  * 2) how well the extent is filled with I/O (as a fraction of its total size)
3916  * Since we allow extents to have gaps between their constituent I/Os, it's
3917  * possible to have a fairly large extent that contains the same amount of
3918  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
3919  * The algorithm sorts based on a score calculated from the extent's size,
3920  * the relative fill volume (in %) and a "fill weight" parameter that controls
3921  * the split between whether we prefer larger extents or more well populated
3922  * extents:
3923  *
3924  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
3925  *
3926  * Example:
3927  * 1) assume extsz = 64 MiB
3928  * 2) assume fill = 32 MiB (extent is half full)
3929  * 3) assume fill_weight = 3
3930  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
3931  *	SCORE = 32M + (50 * 3 * 32M) / 100
3932  *	SCORE = 32M + (4800M / 100)
3933  *	SCORE = 32M + 48M
3934  *		^	^
3935  *		|	+--- final total relative fill-based score
3936  *		+--------- final total fill-based score
3937  *	SCORE = 80M
3938  *
3939  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
3940  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
3941  * Note that as an optimization, we replace multiplication and division by
3942  * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128).
3943  */
3944 static int
3945 ext_size_compare(const void *x, const void *y)
3946 {
3947 	const range_seg_t *rsa = x, *rsb = y;
3948 	uint64_t sa = rsa->rs_end - rsa->rs_start,
3949 	    sb = rsb->rs_end - rsb->rs_start;
3950 	uint64_t score_a, score_b;
3951 
3952 	score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
3953 	    fill_weight * rsa->rs_fill) >> 7);
3954 	score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
3955 	    fill_weight * rsb->rs_fill) >> 7);
3956 
3957 	if (score_a > score_b)
3958 		return (-1);
3959 	if (score_a == score_b) {
3960 		if (rsa->rs_start < rsb->rs_start)
3961 			return (-1);
3962 		if (rsa->rs_start == rsb->rs_start)
3963 			return (0);
3964 		return (1);
3965 	}
3966 	return (1);
3967 }
3968 
3969 /*
3970  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
3971  * based on LBA-order (from lowest to highest).
3972  */
3973 static int
3974 sio_addr_compare(const void *x, const void *y)
3975 {
3976 	const scan_io_t *a = x, *b = y;
3977 
3978 	return (AVL_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
3979 }
3980 
3981 /* IO queues are created on demand when they are needed. */
3982 static dsl_scan_io_queue_t *
3983 scan_io_queue_create(vdev_t *vd)
3984 {
3985 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3986 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
3987 
3988 	q->q_scn = scn;
3989 	q->q_vd = vd;
3990 	q->q_sio_memused = 0;
3991 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
3992 	q->q_exts_by_addr = range_tree_create_impl(&rt_avl_ops,
3993 	    &q->q_exts_by_size, ext_size_compare, zfs_scan_max_ext_gap);
3994 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
3995 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
3996 
3997 	return (q);
3998 }
3999 
4000 /*
4001  * Destroys a scan queue and all segments and scan_io_t's contained in it.
4002  * No further execution of I/O occurs, anything pending in the queue is
4003  * simply freed without being executed.
4004  */
4005 void
4006 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4007 {
4008 	dsl_scan_t *scn = queue->q_scn;
4009 	scan_io_t *sio;
4010 	void *cookie = NULL;
4011 	int64_t bytes_dequeued = 0;
4012 
4013 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4014 
4015 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4016 	    NULL) {
4017 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
4018 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4019 		bytes_dequeued += SIO_GET_ASIZE(sio);
4020 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4021 		sio_free(sio);
4022 	}
4023 
4024 	ASSERT0(queue->q_sio_memused);
4025 	atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4026 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4027 	range_tree_destroy(queue->q_exts_by_addr);
4028 	avl_destroy(&queue->q_sios_by_addr);
4029 	cv_destroy(&queue->q_zio_cv);
4030 
4031 	kmem_free(queue, sizeof (*queue));
4032 }
4033 
4034 /*
4035  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4036  * called on behalf of vdev_top_transfer when creating or destroying
4037  * a mirror vdev due to zpool attach/detach.
4038  */
4039 void
4040 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4041 {
4042 	mutex_enter(&svd->vdev_scan_io_queue_lock);
4043 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
4044 
4045 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4046 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4047 	svd->vdev_scan_io_queue = NULL;
4048 	if (tvd->vdev_scan_io_queue != NULL)
4049 		tvd->vdev_scan_io_queue->q_vd = tvd;
4050 
4051 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
4052 	mutex_exit(&svd->vdev_scan_io_queue_lock);
4053 }
4054 
4055 static void
4056 scan_io_queues_destroy(dsl_scan_t *scn)
4057 {
4058 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4059 
4060 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4061 		vdev_t *tvd = rvd->vdev_child[i];
4062 
4063 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
4064 		if (tvd->vdev_scan_io_queue != NULL)
4065 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4066 		tvd->vdev_scan_io_queue = NULL;
4067 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
4068 	}
4069 }
4070 
4071 static void
4072 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4073 {
4074 	dsl_pool_t *dp = spa->spa_dsl_pool;
4075 	dsl_scan_t *scn = dp->dp_scan;
4076 	vdev_t *vdev;
4077 	kmutex_t *q_lock;
4078 	dsl_scan_io_queue_t *queue;
4079 	scan_io_t *srch_sio, *sio;
4080 	avl_index_t idx;
4081 	uint64_t start, size;
4082 
4083 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4084 	ASSERT(vdev != NULL);
4085 	q_lock = &vdev->vdev_scan_io_queue_lock;
4086 	queue = vdev->vdev_scan_io_queue;
4087 
4088 	mutex_enter(q_lock);
4089 	if (queue == NULL) {
4090 		mutex_exit(q_lock);
4091 		return;
4092 	}
4093 
4094 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4095 	bp2sio(bp, srch_sio, dva_i);
4096 	start = SIO_GET_OFFSET(srch_sio);
4097 	size = SIO_GET_ASIZE(srch_sio);
4098 
4099 	/*
4100 	 * We can find the zio in two states:
4101 	 * 1) Cold, just sitting in the queue of zio's to be issued at
4102 	 *	some point in the future. In this case, all we do is
4103 	 *	remove the zio from the q_sios_by_addr tree, decrement
4104 	 *	its data volume from the containing range_seg_t and
4105 	 *	resort the q_exts_by_size tree to reflect that the
4106 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
4107 	 *	the range_seg_t - this is usually rare enough not to be
4108 	 *	worth the extra hassle of trying keep track of precise
4109 	 *	extent boundaries.
4110 	 * 2) Hot, where the zio is currently in-flight in
4111 	 *	dsl_scan_issue_ios. In this case, we can't simply
4112 	 *	reach in and stop the in-flight zio's, so we instead
4113 	 *	block the caller. Eventually, dsl_scan_issue_ios will
4114 	 *	be done with issuing the zio's it gathered and will
4115 	 *	signal us.
4116 	 */
4117 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4118 	sio_free(srch_sio);
4119 
4120 	if (sio != NULL) {
4121 		int64_t asize = SIO_GET_ASIZE(sio);
4122 		blkptr_t tmpbp;
4123 
4124 		/* Got it while it was cold in the queue */
4125 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4126 		ASSERT3U(size, ==, asize);
4127 		avl_remove(&queue->q_sios_by_addr, sio);
4128 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4129 
4130 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4131 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4132 
4133 		/*
4134 		 * We only update scn_bytes_pending in the cold path,
4135 		 * otherwise it will already have been accounted for as
4136 		 * part of the zio's execution.
4137 		 */
4138 		atomic_add_64(&scn->scn_bytes_pending, -asize);
4139 
4140 		/* count the block as though we issued it */
4141 		sio2bp(sio, &tmpbp);
4142 		count_block(scn, dp->dp_blkstats, &tmpbp);
4143 
4144 		sio_free(sio);
4145 	}
4146 	mutex_exit(q_lock);
4147 }
4148 
4149 /*
4150  * Callback invoked when a zio_free() zio is executing. This needs to be
4151  * intercepted to prevent the zio from deallocating a particular portion
4152  * of disk space and it then getting reallocated and written to, while we
4153  * still have it queued up for processing.
4154  */
4155 void
4156 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4157 {
4158 	dsl_pool_t *dp = spa->spa_dsl_pool;
4159 	dsl_scan_t *scn = dp->dp_scan;
4160 
4161 	ASSERT(!BP_IS_EMBEDDED(bp));
4162 	ASSERT(scn != NULL);
4163 	if (!dsl_scan_is_running(scn))
4164 		return;
4165 
4166 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4167 		dsl_scan_freed_dva(spa, bp, i);
4168 }
4169