xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_scan.c (revision 233f6c49954dadfb21fa0809febd15e2160e0ff5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
26  * Copyright 2019 Joyent, Inc.
27  * Copyright (c) 2017 Datto Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/ddt.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/range_tree.h>
55 #ifdef _KERNEL
56 #include <sys/zfs_vfsops.h>
57 #endif
58 
59 /*
60  * Grand theory statement on scan queue sorting
61  *
62  * Scanning is implemented by recursively traversing all indirection levels
63  * in an object and reading all blocks referenced from said objects. This
64  * results in us approximately traversing the object from lowest logical
65  * offset to the highest. For best performance, we would want the logical
66  * blocks to be physically contiguous. However, this is frequently not the
67  * case with pools given the allocation patterns of copy-on-write filesystems.
68  * So instead, we put the I/Os into a reordering queue and issue them in a
69  * way that will most benefit physical disks (LBA-order).
70  *
71  * Queue management:
72  *
73  * Ideally, we would want to scan all metadata and queue up all block I/O
74  * prior to starting to issue it, because that allows us to do an optimal
75  * sorting job. This can however consume large amounts of memory. Therefore
76  * we continuously monitor the size of the queues and constrain them to 5%
77  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78  * limit, we clear out a few of the largest extents at the head of the queues
79  * to make room for more scanning. Hopefully, these extents will be fairly
80  * large and contiguous, allowing us to approach sequential I/O throughput
81  * even without a fully sorted tree.
82  *
83  * Metadata scanning takes place in dsl_scan_visit(), which is called from
84  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85  * metadata on the pool, or we need to make room in memory because our
86  * queues are too large, dsl_scan_visit() is postponed and
87  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88  * that metadata scanning and queued I/O issuing are mutually exclusive. This
89  * allows us to provide maximum sequential I/O throughput for the majority of
90  * I/O's issued since sequential I/O performance is significantly negatively
91  * impacted if it is interleaved with random I/O.
92  *
93  * Implementation Notes
94  *
95  * One side effect of the queued scanning algorithm is that the scanning code
96  * needs to be notified whenever a block is freed. This is needed to allow
97  * the scanning code to remove these I/Os from the issuing queue. Additionally,
98  * we do not attempt to queue gang blocks to be issued sequentially since this
99  * is very hard to do and would have an extremely limited performance benefit.
100  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
101  * algorithm.
102  *
103  * Backwards compatibility
104  *
105  * This new algorithm is backwards compatible with the legacy on-disk data
106  * structures (and therefore does not require a new feature flag).
107  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108  * will stop scanning metadata (in logical order) and wait for all outstanding
109  * sorted I/O to complete. Once this is done, we write out a checkpoint
110  * bookmark, indicating that we have scanned everything logically before it.
111  * If the pool is imported on a machine without the new sorting algorithm,
112  * the scan simply resumes from the last checkpoint using the legacy algorithm.
113  */
114 
115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
116     const zbookmark_phys_t *);
117 
118 static scan_cb_t dsl_scan_scrub_cb;
119 
120 static int scan_ds_queue_compare(const void *a, const void *b);
121 static int scan_prefetch_queue_compare(const void *a, const void *b);
122 static void scan_ds_queue_clear(dsl_scan_t *scn);
123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
124     uint64_t *txg);
125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
128 
129 extern int zfs_vdev_async_write_active_min_dirty_percent;
130 
131 /*
132  * By default zfs will check to ensure it is not over the hard memory
133  * limit before each txg. If finer-grained control of this is needed
134  * this value can be set to 1 to enable checking before scanning each
135  * block.
136  */
137 int zfs_scan_strict_mem_lim = B_FALSE;
138 
139 /*
140  * Maximum number of parallelly executing I/Os per top-level vdev.
141  * Tune with care. Very high settings (hundreds) are known to trigger
142  * some firmware bugs and resets on certain SSDs.
143  */
144 int zfs_top_maxinflight = 32;		/* maximum I/Os per top-level */
145 unsigned int zfs_resilver_delay = 2;	/* number of ticks to delay resilver */
146 unsigned int zfs_scrub_delay = 4;	/* number of ticks to delay scrub */
147 unsigned int zfs_scan_idle = 50;	/* idle window in clock ticks */
148 
149 /*
150  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
151  * to strike a balance here between keeping the vdev queues full of I/Os
152  * at all times and not overflowing the queues to cause long latency,
153  * which would cause long txg sync times. No matter what, we will not
154  * overload the drives with I/O, since that is protected by
155  * zfs_vdev_scrub_max_active.
156  */
157 unsigned long zfs_scan_vdev_limit = 4 << 20;
158 
159 int zfs_scan_issue_strategy = 0;
160 int zfs_scan_legacy = B_FALSE;	/* don't queue & sort zios, go direct */
161 uint64_t zfs_scan_max_ext_gap = 2 << 20;	/* in bytes */
162 
163 unsigned int zfs_scan_checkpoint_intval = 7200;	/* seconds */
164 #define	ZFS_SCAN_CHECKPOINT_INTVAL	SEC_TO_TICK(zfs_scan_checkpoint_intval)
165 
166 /*
167  * fill_weight is non-tunable at runtime, so we copy it at module init from
168  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
169  * break queue sorting.
170  */
171 uint64_t zfs_scan_fill_weight = 3;
172 static uint64_t fill_weight;
173 
174 /* See dsl_scan_should_clear() for details on the memory limit tunables */
175 uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
177 int zfs_scan_mem_lim_fact = 20;		/* fraction of physmem */
178 int zfs_scan_mem_lim_soft_fact = 20;	/* fraction of mem lim above */
179 
180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
182 /* min millisecs to obsolete per txg */
183 unsigned int zfs_obsolete_min_time_ms = 500;
184 /* min millisecs to resilver per txg */
185 unsigned int zfs_resilver_min_time_ms = 3000;
186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
190 /* max number of blocks to free in a single TXG */
191 uint64_t zfs_async_block_max_blocks = UINT64_MAX;
192 
193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
194 
195 /*
196  * We wait a few txgs after importing a pool to begin scanning so that
197  * the import / mounting code isn't held up by scrub / resilver IO.
198  * Unfortunately, it is a bit difficult to determine exactly how long
199  * this will take since userspace will trigger fs mounts asynchronously
200  * and the kernel will create zvol minors asynchronously. As a result,
201  * the value provided here is a bit arbitrary, but represents a
202  * reasonable estimate of how many txgs it will take to finish fully
203  * importing a pool
204  */
205 #define	SCAN_IMPORT_WAIT_TXGS		5
206 
207 
208 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
209 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
210 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
211 
212 extern int zfs_txg_timeout;
213 
214 /*
215  * Enable/disable the processing of the free_bpobj object.
216  */
217 boolean_t zfs_free_bpobj_enabled = B_TRUE;
218 
219 /* the order has to match pool_scan_type */
220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
221 	NULL,
222 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
223 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
224 };
225 
226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
227 typedef struct {
228 	uint64_t	sds_dsobj;
229 	uint64_t	sds_txg;
230 	avl_node_t	sds_node;
231 } scan_ds_t;
232 
233 /*
234  * This controls what conditions are placed on dsl_scan_sync_state():
235  * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
236  * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
237  * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
238  *	write out the scn_phys_cached version.
239  * See dsl_scan_sync_state for details.
240  */
241 typedef enum {
242 	SYNC_OPTIONAL,
243 	SYNC_MANDATORY,
244 	SYNC_CACHED
245 } state_sync_type_t;
246 
247 /*
248  * This struct represents the minimum information needed to reconstruct a
249  * zio for sequential scanning. This is useful because many of these will
250  * accumulate in the sequential IO queues before being issued, so saving
251  * memory matters here.
252  */
253 typedef struct scan_io {
254 	/* fields from blkptr_t */
255 	uint64_t		sio_blk_prop;
256 	uint64_t		sio_phys_birth;
257 	uint64_t		sio_birth;
258 	zio_cksum_t		sio_cksum;
259 	uint32_t		sio_nr_dvas;
260 
261 	/* fields from zio_t */
262 	uint32_t		sio_flags;
263 	zbookmark_phys_t	sio_zb;
264 
265 	/* members for queue sorting */
266 	union {
267 		avl_node_t	sio_addr_node; /* link into issuing queue */
268 		list_node_t	sio_list_node; /* link for issuing to disk */
269 	} sio_nodes;
270 
271 	/*
272 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
273 	 * depending on how many were in the original bp. Only the
274 	 * first DVA is really used for sorting and issuing purposes.
275 	 * The other DVAs (if provided) simply exist so that the zio
276 	 * layer can find additional copies to repair from in the
277 	 * event of an error. This array must go at the end of the
278 	 * struct to allow this for the variable number of elements.
279 	 */
280 	dva_t			sio_dva[0];
281 } scan_io_t;
282 
283 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
284 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
285 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
286 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
287 #define	SIO_GET_END_OFFSET(sio)		\
288 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
289 #define	SIO_GET_MUSED(sio)		\
290 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
291 
292 struct dsl_scan_io_queue {
293 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
294 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
295 
296 	/* trees used for sorting I/Os and extents of I/Os */
297 	range_tree_t	*q_exts_by_addr;
298 	avl_tree_t	q_exts_by_size;
299 	avl_tree_t	q_sios_by_addr;
300 	uint64_t	q_sio_memused;
301 
302 	/* members for zio rate limiting */
303 	uint64_t	q_maxinflight_bytes;
304 	uint64_t	q_inflight_bytes;
305 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
306 
307 	/* per txg statistics */
308 	uint64_t	q_total_seg_size_this_txg;
309 	uint64_t	q_segs_this_txg;
310 	uint64_t	q_total_zio_size_this_txg;
311 	uint64_t	q_zios_this_txg;
312 };
313 
314 /* private data for dsl_scan_prefetch_cb() */
315 typedef struct scan_prefetch_ctx {
316 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
317 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
318 	boolean_t spc_root;		/* is this prefetch for an objset? */
319 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
320 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
321 } scan_prefetch_ctx_t;
322 
323 /* private data for dsl_scan_prefetch() */
324 typedef struct scan_prefetch_issue_ctx {
325 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
326 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
327 	blkptr_t spic_bp;		/* bp to prefetch */
328 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
329 } scan_prefetch_issue_ctx_t;
330 
331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
332     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
334     scan_io_t *sio);
335 
336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
337 static void scan_io_queues_destroy(dsl_scan_t *scn);
338 
339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
340 
341 /* sio->sio_nr_dvas must be set so we know which cache to free from */
342 static void
343 sio_free(scan_io_t *sio)
344 {
345 	ASSERT3U(sio->sio_nr_dvas, >, 0);
346 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
347 
348 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
349 }
350 
351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
352 static scan_io_t *
353 sio_alloc(unsigned short nr_dvas)
354 {
355 	ASSERT3U(nr_dvas, >, 0);
356 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
357 
358 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
359 }
360 
361 void
362 scan_init(void)
363 {
364 	/*
365 	 * This is used in ext_size_compare() to weight segments
366 	 * based on how sparse they are. This cannot be changed
367 	 * mid-scan and the tree comparison functions don't currently
368 	 * have a mechansim for passing additional context to the
369 	 * compare functions. Thus we store this value globally and
370 	 * we only allow it to be set at module intiailization time
371 	 */
372 	fill_weight = zfs_scan_fill_weight;
373 
374 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
375 		char name[36];
376 
377 		(void) sprintf(name, "sio_cache_%d", i);
378 		sio_cache[i] = kmem_cache_create(name,
379 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
380 		    0, NULL, NULL, NULL, NULL, NULL, 0);
381 	}
382 }
383 
384 void
385 scan_fini(void)
386 {
387 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
388 		kmem_cache_destroy(sio_cache[i]);
389 	}
390 }
391 
392 static inline boolean_t
393 dsl_scan_is_running(const dsl_scan_t *scn)
394 {
395 	return (scn->scn_phys.scn_state == DSS_SCANNING);
396 }
397 
398 boolean_t
399 dsl_scan_resilvering(dsl_pool_t *dp)
400 {
401 	return (dsl_scan_is_running(dp->dp_scan) &&
402 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
403 }
404 
405 static inline void
406 sio2bp(const scan_io_t *sio, blkptr_t *bp)
407 {
408 	bzero(bp, sizeof (*bp));
409 	bp->blk_prop = sio->sio_blk_prop;
410 	bp->blk_phys_birth = sio->sio_phys_birth;
411 	bp->blk_birth = sio->sio_birth;
412 	bp->blk_fill = 1;	/* we always only work with data pointers */
413 	bp->blk_cksum = sio->sio_cksum;
414 
415 	ASSERT3U(sio->sio_nr_dvas, >, 0);
416 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
417 
418 	bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
419 }
420 
421 static inline void
422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
423 {
424 	sio->sio_blk_prop = bp->blk_prop;
425 	sio->sio_phys_birth = bp->blk_phys_birth;
426 	sio->sio_birth = bp->blk_birth;
427 	sio->sio_cksum = bp->blk_cksum;
428 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
429 
430 	/*
431 	 * Copy the DVAs to the sio. We need all copies of the block so
432 	 * that the self healing code can use the alternate copies if the
433 	 * first is corrupted. We want the DVA at index dva_i to be first
434 	 * in the sio since this is the primary one that we want to issue.
435 	 */
436 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
437 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
438 	}
439 }
440 
441 int
442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
443 {
444 	int err;
445 	dsl_scan_t *scn;
446 	spa_t *spa = dp->dp_spa;
447 	uint64_t f;
448 
449 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
450 	scn->scn_dp = dp;
451 
452 	/*
453 	 * It's possible that we're resuming a scan after a reboot so
454 	 * make sure that the scan_async_destroying flag is initialized
455 	 * appropriately.
456 	 */
457 	ASSERT(!scn->scn_async_destroying);
458 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
459 	    SPA_FEATURE_ASYNC_DESTROY);
460 
461 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
462 	    offsetof(scan_ds_t, sds_node));
463 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
464 	    sizeof (scan_prefetch_issue_ctx_t),
465 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
466 
467 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
468 	    "scrub_func", sizeof (uint64_t), 1, &f);
469 	if (err == 0) {
470 		/*
471 		 * There was an old-style scrub in progress.  Restart a
472 		 * new-style scrub from the beginning.
473 		 */
474 		scn->scn_restart_txg = txg;
475 		zfs_dbgmsg("old-style scrub was in progress; "
476 		    "restarting new-style scrub in txg %llu",
477 		    (longlong_t)scn->scn_restart_txg);
478 
479 		/*
480 		 * Load the queue obj from the old location so that it
481 		 * can be freed by dsl_scan_done().
482 		 */
483 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
484 		    "scrub_queue", sizeof (uint64_t), 1,
485 		    &scn->scn_phys.scn_queue_obj);
486 	} else {
487 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
488 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
489 		    &scn->scn_phys);
490 
491 		/*
492 		 * Detect if the pool contains the signature of #2094.  If it
493 		 * does properly update the scn->scn_phys structure and notify
494 		 * the administrator by setting an errata for the pool.
495 		 */
496 		if (err == EOVERFLOW) {
497 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
498 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
499 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
500 			    (23 * sizeof (uint64_t)));
501 
502 			err = zap_lookup(dp->dp_meta_objset,
503 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
504 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
505 			if (err == 0) {
506 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
507 
508 				if (overflow & ~DSF_VISIT_DS_AGAIN ||
509 				    scn->scn_async_destroying) {
510 					spa->spa_errata =
511 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
512 					return (EOVERFLOW);
513 				}
514 
515 				bcopy(zaptmp, &scn->scn_phys,
516 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
517 				scn->scn_phys.scn_flags = overflow;
518 
519 				/* Required scrub already in progress. */
520 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
521 				    scn->scn_phys.scn_state == DSS_CANCELED)
522 					spa->spa_errata =
523 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
524 			}
525 		}
526 
527 		if (err == ENOENT)
528 			return (0);
529 		else if (err)
530 			return (err);
531 
532 		/*
533 		 * We might be restarting after a reboot, so jump the issued
534 		 * counter to how far we've scanned. We know we're consistent
535 		 * up to here.
536 		 */
537 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
538 
539 		if (dsl_scan_is_running(scn) &&
540 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
541 			/*
542 			 * A new-type scrub was in progress on an old
543 			 * pool, and the pool was accessed by old
544 			 * software.  Restart from the beginning, since
545 			 * the old software may have changed the pool in
546 			 * the meantime.
547 			 */
548 			scn->scn_restart_txg = txg;
549 			zfs_dbgmsg("new-style scrub was modified "
550 			    "by old software; restarting in txg %llu",
551 			    (longlong_t)scn->scn_restart_txg);
552 		}
553 	}
554 
555 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
556 
557 	/* reload the queue into the in-core state */
558 	if (scn->scn_phys.scn_queue_obj != 0) {
559 		zap_cursor_t zc;
560 		zap_attribute_t za;
561 
562 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
563 		    scn->scn_phys.scn_queue_obj);
564 		    zap_cursor_retrieve(&zc, &za) == 0;
565 		    (void) zap_cursor_advance(&zc)) {
566 			scan_ds_queue_insert(scn,
567 			    zfs_strtonum(za.za_name, NULL),
568 			    za.za_first_integer);
569 		}
570 		zap_cursor_fini(&zc);
571 	}
572 
573 	spa_scan_stat_init(spa);
574 	return (0);
575 }
576 
577 void
578 dsl_scan_fini(dsl_pool_t *dp)
579 {
580 	if (dp->dp_scan != NULL) {
581 		dsl_scan_t *scn = dp->dp_scan;
582 
583 		if (scn->scn_taskq != NULL)
584 			taskq_destroy(scn->scn_taskq);
585 		scan_ds_queue_clear(scn);
586 		avl_destroy(&scn->scn_queue);
587 		avl_destroy(&scn->scn_prefetch_queue);
588 
589 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
590 		dp->dp_scan = NULL;
591 	}
592 }
593 
594 static boolean_t
595 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
596 {
597 	return (scn->scn_restart_txg != 0 &&
598 	    scn->scn_restart_txg <= tx->tx_txg);
599 }
600 
601 boolean_t
602 dsl_scan_scrubbing(const dsl_pool_t *dp)
603 {
604 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
605 
606 	return (scn_phys->scn_state == DSS_SCANNING &&
607 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
608 }
609 
610 boolean_t
611 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
612 {
613 	return (dsl_scan_scrubbing(scn->scn_dp) &&
614 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
615 }
616 
617 /*
618  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
619  * Because we can be running in the block sorting algorithm, we do not always
620  * want to write out the record, only when it is "safe" to do so. This safety
621  * condition is achieved by making sure that the sorting queues are empty
622  * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
623  * is inconsistent with how much actual scanning progress has been made. The
624  * kind of sync to be performed is specified by the sync_type argument. If the
625  * sync is optional, we only sync if the queues are empty. If the sync is
626  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
627  * third possible state is a "cached" sync. This is done in response to:
628  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
629  *	destroyed, so we wouldn't be able to restart scanning from it.
630  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
631  *	superseded by a newer snapshot.
632  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
633  *	swapped with its clone.
634  * In all cases, a cached sync simply rewrites the last record we've written,
635  * just slightly modified. For the modifications that are performed to the
636  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
637  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
638  */
639 static void
640 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
641 {
642 	int i;
643 	spa_t *spa = scn->scn_dp->dp_spa;
644 
645 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
646 	if (scn->scn_bytes_pending == 0) {
647 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
648 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
649 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
650 
651 			if (q == NULL)
652 				continue;
653 
654 			mutex_enter(&vd->vdev_scan_io_queue_lock);
655 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
656 			ASSERT3P(avl_first(&q->q_exts_by_size), ==, NULL);
657 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
658 			mutex_exit(&vd->vdev_scan_io_queue_lock);
659 		}
660 
661 		if (scn->scn_phys.scn_queue_obj != 0)
662 			scan_ds_queue_sync(scn, tx);
663 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
664 		    DMU_POOL_DIRECTORY_OBJECT,
665 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
666 		    &scn->scn_phys, tx));
667 		bcopy(&scn->scn_phys, &scn->scn_phys_cached,
668 		    sizeof (scn->scn_phys));
669 
670 		if (scn->scn_checkpointing)
671 			zfs_dbgmsg("finish scan checkpoint");
672 
673 		scn->scn_checkpointing = B_FALSE;
674 		scn->scn_last_checkpoint = ddi_get_lbolt();
675 	} else if (sync_type == SYNC_CACHED) {
676 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
677 		    DMU_POOL_DIRECTORY_OBJECT,
678 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
679 		    &scn->scn_phys_cached, tx));
680 	}
681 }
682 
683 /* ARGSUSED */
684 static int
685 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
686 {
687 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
688 
689 	if (dsl_scan_is_running(scn))
690 		return (SET_ERROR(EBUSY));
691 
692 	return (0);
693 }
694 
695 static void
696 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
697 {
698 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
699 	pool_scan_func_t *funcp = arg;
700 	dmu_object_type_t ot = 0;
701 	dsl_pool_t *dp = scn->scn_dp;
702 	spa_t *spa = dp->dp_spa;
703 
704 	ASSERT(!dsl_scan_is_running(scn));
705 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
706 	bzero(&scn->scn_phys, sizeof (scn->scn_phys));
707 	scn->scn_phys.scn_func = *funcp;
708 	scn->scn_phys.scn_state = DSS_SCANNING;
709 	scn->scn_phys.scn_min_txg = 0;
710 	scn->scn_phys.scn_max_txg = tx->tx_txg;
711 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
712 	scn->scn_phys.scn_start_time = gethrestime_sec();
713 	scn->scn_phys.scn_errors = 0;
714 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
715 	scn->scn_issued_before_pass = 0;
716 	scn->scn_restart_txg = 0;
717 	scn->scn_done_txg = 0;
718 	scn->scn_last_checkpoint = 0;
719 	scn->scn_checkpointing = B_FALSE;
720 	spa_scan_stat_init(spa);
721 
722 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
723 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
724 
725 		/* rewrite all disk labels */
726 		vdev_config_dirty(spa->spa_root_vdev);
727 
728 		if (vdev_resilver_needed(spa->spa_root_vdev,
729 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
730 			spa_event_notify(spa, NULL, NULL,
731 			    ESC_ZFS_RESILVER_START);
732 		} else {
733 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
734 		}
735 
736 		spa->spa_scrub_started = B_TRUE;
737 		/*
738 		 * If this is an incremental scrub, limit the DDT scrub phase
739 		 * to just the auto-ditto class (for correctness); the rest
740 		 * of the scrub should go faster using top-down pruning.
741 		 */
742 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
743 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
744 
745 	}
746 
747 	/* back to the generic stuff */
748 
749 	if (dp->dp_blkstats == NULL) {
750 		dp->dp_blkstats =
751 		    kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
752 		mutex_init(&dp->dp_blkstats->zab_lock, NULL,
753 		    MUTEX_DEFAULT, NULL);
754 	}
755 	bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
756 
757 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
758 		ot = DMU_OT_ZAP_OTHER;
759 
760 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
761 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
762 
763 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
764 
765 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
766 
767 	spa_history_log_internal(spa, "scan setup", tx,
768 	    "func=%u mintxg=%llu maxtxg=%llu",
769 	    *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg);
770 }
771 
772 /*
773  * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
774  * Can also be called to resume a paused scrub.
775  */
776 int
777 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
778 {
779 	spa_t *spa = dp->dp_spa;
780 	dsl_scan_t *scn = dp->dp_scan;
781 
782 	/*
783 	 * Purge all vdev caches and probe all devices.  We do this here
784 	 * rather than in sync context because this requires a writer lock
785 	 * on the spa_config lock, which we can't do from sync context.  The
786 	 * spa_scrub_reopen flag indicates that vdev_open() should not
787 	 * attempt to start another scrub.
788 	 */
789 	spa_vdev_state_enter(spa, SCL_NONE);
790 	spa->spa_scrub_reopen = B_TRUE;
791 	vdev_reopen(spa->spa_root_vdev);
792 	spa->spa_scrub_reopen = B_FALSE;
793 	(void) spa_vdev_state_exit(spa, NULL, 0);
794 
795 	if (func == POOL_SCAN_RESILVER) {
796 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
797 		return (0);
798 	}
799 
800 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
801 		/* got scrub start cmd, resume paused scrub */
802 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
803 		    POOL_SCRUB_NORMAL);
804 		if (err == 0) {
805 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
806 			return (ECANCELED);
807 		}
808 		return (SET_ERROR(err));
809 	}
810 
811 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
812 	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
813 }
814 
815 /*
816  * Sets the resilver defer flag to B_FALSE on all leaf devs under vd. Returns
817  * B_TRUE if we have devices that need to be resilvered and are available to
818  * accept resilver I/Os.
819  */
820 static boolean_t
821 dsl_scan_clear_deferred(vdev_t *vd, dmu_tx_t *tx)
822 {
823 	boolean_t resilver_needed = B_FALSE;
824 	spa_t *spa = vd->vdev_spa;
825 
826 	for (int c = 0; c < vd->vdev_children; c++) {
827 		resilver_needed |=
828 		    dsl_scan_clear_deferred(vd->vdev_child[c], tx);
829 	}
830 
831 	if (vd == spa->spa_root_vdev &&
832 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
833 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
834 		vdev_config_dirty(vd);
835 		spa->spa_resilver_deferred = B_FALSE;
836 		return (resilver_needed);
837 	}
838 
839 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
840 	    !vd->vdev_ops->vdev_op_leaf)
841 		return (resilver_needed);
842 
843 	if (vd->vdev_resilver_deferred)
844 		vd->vdev_resilver_deferred = B_FALSE;
845 
846 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
847 	    vdev_resilver_needed(vd, NULL, NULL));
848 }
849 
850 /* ARGSUSED */
851 static void
852 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
853 {
854 	static const char *old_names[] = {
855 		"scrub_bookmark",
856 		"scrub_ddt_bookmark",
857 		"scrub_ddt_class_max",
858 		"scrub_queue",
859 		"scrub_min_txg",
860 		"scrub_max_txg",
861 		"scrub_func",
862 		"scrub_errors",
863 		NULL
864 	};
865 
866 	dsl_pool_t *dp = scn->scn_dp;
867 	spa_t *spa = dp->dp_spa;
868 	int i;
869 
870 	/* Remove any remnants of an old-style scrub. */
871 	for (i = 0; old_names[i]; i++) {
872 		(void) zap_remove(dp->dp_meta_objset,
873 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
874 	}
875 
876 	if (scn->scn_phys.scn_queue_obj != 0) {
877 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
878 		    scn->scn_phys.scn_queue_obj, tx));
879 		scn->scn_phys.scn_queue_obj = 0;
880 	}
881 	scan_ds_queue_clear(scn);
882 
883 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
884 
885 	/*
886 	 * If we were "restarted" from a stopped state, don't bother
887 	 * with anything else.
888 	 */
889 	if (!dsl_scan_is_running(scn)) {
890 		ASSERT(!scn->scn_is_sorted);
891 		return;
892 	}
893 
894 	if (scn->scn_is_sorted) {
895 		scan_io_queues_destroy(scn);
896 		scn->scn_is_sorted = B_FALSE;
897 
898 		if (scn->scn_taskq != NULL) {
899 			taskq_destroy(scn->scn_taskq);
900 			scn->scn_taskq = NULL;
901 		}
902 	}
903 
904 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
905 
906 	if (dsl_scan_restarting(scn, tx))
907 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
908 		    "errors=%llu", spa_get_errlog_size(spa));
909 	else if (!complete)
910 		spa_history_log_internal(spa, "scan cancelled", tx,
911 		    "errors=%llu", spa_get_errlog_size(spa));
912 	else
913 		spa_history_log_internal(spa, "scan done", tx,
914 		    "errors=%llu", spa_get_errlog_size(spa));
915 
916 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
917 		spa->spa_scrub_started = B_FALSE;
918 		spa->spa_scrub_active = B_FALSE;
919 
920 		/*
921 		 * If the scrub/resilver completed, update all DTLs to
922 		 * reflect this.  Whether it succeeded or not, vacate
923 		 * all temporary scrub DTLs.
924 		 *
925 		 * As the scrub does not currently support traversing
926 		 * data that have been freed but are part of a checkpoint,
927 		 * we don't mark the scrub as done in the DTLs as faults
928 		 * may still exist in those vdevs.
929 		 */
930 		if (complete &&
931 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
932 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
933 			    scn->scn_phys.scn_max_txg, B_TRUE);
934 
935 			spa_event_notify(spa, NULL, NULL,
936 			    scn->scn_phys.scn_min_txg ?
937 			    ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH);
938 		} else {
939 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
940 			    0, B_TRUE);
941 		}
942 		spa_errlog_rotate(spa);
943 
944 		/*
945 		 * We may have finished replacing a device.
946 		 * Let the async thread assess this and handle the detach.
947 		 */
948 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
949 
950 		/*
951 		 * Clear any deferred_resilver flags in the config.
952 		 * If there are drives that need resilvering, kick
953 		 * off an asynchronous request to start resilver.
954 		 * dsl_scan_clear_deferred() may update the config
955 		 * before the resilver can restart. In the event of
956 		 * a crash during this period, the spa loading code
957 		 * will find the drives that need to be resilvered
958 		 * when the machine reboots and start the resilver then.
959 		 */
960 		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
961 			boolean_t resilver_needed =
962 			    dsl_scan_clear_deferred(spa->spa_root_vdev, tx);
963 			if (resilver_needed) {
964 				spa_history_log_internal(spa,
965 				    "starting deferred resilver", tx,
966 				    "errors=%llu", spa_get_errlog_size(spa));
967 				spa_async_request(spa, SPA_ASYNC_RESILVER);
968 			}
969 		}
970 	}
971 
972 	scn->scn_phys.scn_end_time = gethrestime_sec();
973 
974 	ASSERT(!dsl_scan_is_running(scn));
975 }
976 
977 /* ARGSUSED */
978 static int
979 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
980 {
981 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
982 
983 	if (!dsl_scan_is_running(scn))
984 		return (SET_ERROR(ENOENT));
985 	return (0);
986 }
987 
988 /* ARGSUSED */
989 static void
990 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
991 {
992 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
993 
994 	dsl_scan_done(scn, B_FALSE, tx);
995 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
996 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
997 }
998 
999 int
1000 dsl_scan_cancel(dsl_pool_t *dp)
1001 {
1002 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1003 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1004 }
1005 
1006 static int
1007 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1008 {
1009 	pool_scrub_cmd_t *cmd = arg;
1010 	dsl_pool_t *dp = dmu_tx_pool(tx);
1011 	dsl_scan_t *scn = dp->dp_scan;
1012 
1013 	if (*cmd == POOL_SCRUB_PAUSE) {
1014 		/* can't pause a scrub when there is no in-progress scrub */
1015 		if (!dsl_scan_scrubbing(dp))
1016 			return (SET_ERROR(ENOENT));
1017 
1018 		/* can't pause a paused scrub */
1019 		if (dsl_scan_is_paused_scrub(scn))
1020 			return (SET_ERROR(EBUSY));
1021 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1022 		return (SET_ERROR(ENOTSUP));
1023 	}
1024 
1025 	return (0);
1026 }
1027 
1028 static void
1029 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1030 {
1031 	pool_scrub_cmd_t *cmd = arg;
1032 	dsl_pool_t *dp = dmu_tx_pool(tx);
1033 	spa_t *spa = dp->dp_spa;
1034 	dsl_scan_t *scn = dp->dp_scan;
1035 
1036 	if (*cmd == POOL_SCRUB_PAUSE) {
1037 		/* can't pause a scrub when there is no in-progress scrub */
1038 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1039 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1040 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1041 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1042 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1043 	} else {
1044 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1045 		if (dsl_scan_is_paused_scrub(scn)) {
1046 			/*
1047 			 * We need to keep track of how much time we spend
1048 			 * paused per pass so that we can adjust the scrub rate
1049 			 * shown in the output of 'zpool status'
1050 			 */
1051 			spa->spa_scan_pass_scrub_spent_paused +=
1052 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1053 			spa->spa_scan_pass_scrub_pause = 0;
1054 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1055 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1056 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1057 		}
1058 	}
1059 }
1060 
1061 /*
1062  * Set scrub pause/resume state if it makes sense to do so
1063  */
1064 int
1065 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1066 {
1067 	return (dsl_sync_task(spa_name(dp->dp_spa),
1068 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1069 	    ZFS_SPACE_CHECK_RESERVED));
1070 }
1071 
1072 
1073 /* start a new scan, or restart an existing one. */
1074 void
1075 dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg)
1076 {
1077 	if (txg == 0) {
1078 		dmu_tx_t *tx;
1079 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1080 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1081 
1082 		txg = dmu_tx_get_txg(tx);
1083 		dp->dp_scan->scn_restart_txg = txg;
1084 		dmu_tx_commit(tx);
1085 	} else {
1086 		dp->dp_scan->scn_restart_txg = txg;
1087 	}
1088 	zfs_dbgmsg("restarting resilver txg=%llu", txg);
1089 }
1090 
1091 void
1092 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1093 {
1094 	zio_free(dp->dp_spa, txg, bp);
1095 }
1096 
1097 void
1098 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1099 {
1100 	ASSERT(dsl_pool_sync_context(dp));
1101 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1102 }
1103 
1104 static int
1105 scan_ds_queue_compare(const void *a, const void *b)
1106 {
1107 	const scan_ds_t *sds_a = a, *sds_b = b;
1108 
1109 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1110 		return (-1);
1111 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1112 		return (0);
1113 	return (1);
1114 }
1115 
1116 static void
1117 scan_ds_queue_clear(dsl_scan_t *scn)
1118 {
1119 	void *cookie = NULL;
1120 	scan_ds_t *sds;
1121 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1122 		kmem_free(sds, sizeof (*sds));
1123 	}
1124 }
1125 
1126 static boolean_t
1127 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1128 {
1129 	scan_ds_t srch, *sds;
1130 
1131 	srch.sds_dsobj = dsobj;
1132 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1133 	if (sds != NULL && txg != NULL)
1134 		*txg = sds->sds_txg;
1135 	return (sds != NULL);
1136 }
1137 
1138 static void
1139 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1140 {
1141 	scan_ds_t *sds;
1142 	avl_index_t where;
1143 
1144 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1145 	sds->sds_dsobj = dsobj;
1146 	sds->sds_txg = txg;
1147 
1148 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1149 	avl_insert(&scn->scn_queue, sds, where);
1150 }
1151 
1152 static void
1153 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1154 {
1155 	scan_ds_t srch, *sds;
1156 
1157 	srch.sds_dsobj = dsobj;
1158 
1159 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1160 	VERIFY(sds != NULL);
1161 	avl_remove(&scn->scn_queue, sds);
1162 	kmem_free(sds, sizeof (*sds));
1163 }
1164 
1165 static void
1166 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1167 {
1168 	dsl_pool_t *dp = scn->scn_dp;
1169 	spa_t *spa = dp->dp_spa;
1170 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1171 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1172 
1173 	ASSERT0(scn->scn_bytes_pending);
1174 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1175 
1176 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1177 	    scn->scn_phys.scn_queue_obj, tx));
1178 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1179 	    DMU_OT_NONE, 0, tx);
1180 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1181 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1182 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1183 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1184 		    sds->sds_txg, tx));
1185 	}
1186 }
1187 
1188 /*
1189  * Computes the memory limit state that we're currently in. A sorted scan
1190  * needs quite a bit of memory to hold the sorting queue, so we need to
1191  * reasonably constrain the size so it doesn't impact overall system
1192  * performance. We compute two limits:
1193  * 1) Hard memory limit: if the amount of memory used by the sorting
1194  *	queues on a pool gets above this value, we stop the metadata
1195  *	scanning portion and start issuing the queued up and sorted
1196  *	I/Os to reduce memory usage.
1197  *	This limit is calculated as a fraction of physmem (by default 5%).
1198  *	We constrain the lower bound of the hard limit to an absolute
1199  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1200  *	the upper bound to 5% of the total pool size - no chance we'll
1201  *	ever need that much memory, but just to keep the value in check.
1202  * 2) Soft memory limit: once we hit the hard memory limit, we start
1203  *	issuing I/O to reduce queue memory usage, but we don't want to
1204  *	completely empty out the queues, since we might be able to find I/Os
1205  *	that will fill in the gaps of our non-sequential IOs at some point
1206  *	in the future. So we stop the issuing of I/Os once the amount of
1207  *	memory used drops below the soft limit (at which point we stop issuing
1208  *	I/O and start scanning metadata again).
1209  *
1210  *	This limit is calculated by subtracting a fraction of the hard
1211  *	limit from the hard limit. By default this fraction is 5%, so
1212  *	the soft limit is 95% of the hard limit. We cap the size of the
1213  *	difference between the hard and soft limits at an absolute
1214  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1215  *	sufficient to not cause too frequent switching between the
1216  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1217  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1218  *	that should take at least a decent fraction of a second).
1219  */
1220 static boolean_t
1221 dsl_scan_should_clear(dsl_scan_t *scn)
1222 {
1223 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1224 	uint64_t mlim_hard, mlim_soft, mused;
1225 	uint64_t alloc = metaslab_class_get_alloc(spa_normal_class(
1226 	    scn->scn_dp->dp_spa));
1227 
1228 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1229 	    zfs_scan_mem_lim_min);
1230 	mlim_hard = MIN(mlim_hard, alloc / 20);
1231 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1232 	    zfs_scan_mem_lim_soft_max);
1233 	mused = 0;
1234 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1235 		vdev_t *tvd = rvd->vdev_child[i];
1236 		dsl_scan_io_queue_t *queue;
1237 
1238 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1239 		queue = tvd->vdev_scan_io_queue;
1240 		if (queue != NULL) {
1241 			/* # extents in exts_by_size = # in exts_by_addr */
1242 			mused += avl_numnodes(&queue->q_exts_by_size) *
1243 			    sizeof (range_seg_t) + queue->q_sio_memused;
1244 		}
1245 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1246 	}
1247 
1248 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1249 
1250 	if (mused == 0)
1251 		ASSERT0(scn->scn_bytes_pending);
1252 
1253 	/*
1254 	 * If we are above our hard limit, we need to clear out memory.
1255 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1256 	 * Otherwise, we should keep doing whatever we are currently doing.
1257 	 */
1258 	if (mused >= mlim_hard)
1259 		return (B_TRUE);
1260 	else if (mused < mlim_soft)
1261 		return (B_FALSE);
1262 	else
1263 		return (scn->scn_clearing);
1264 }
1265 
1266 static boolean_t
1267 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1268 {
1269 	/* we never skip user/group accounting objects */
1270 	if (zb && (int64_t)zb->zb_object < 0)
1271 		return (B_FALSE);
1272 
1273 	if (scn->scn_suspending)
1274 		return (B_TRUE); /* we're already suspending */
1275 
1276 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1277 		return (B_FALSE); /* we're resuming */
1278 
1279 	/* We only know how to resume from level-0 blocks. */
1280 	if (zb && zb->zb_level != 0)
1281 		return (B_FALSE);
1282 
1283 	/*
1284 	 * We suspend if:
1285 	 *  - we have scanned for at least the minimum time (default 1 sec
1286 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1287 	 *    dirty data that we are starting to write more quickly
1288 	 *    (default 30%), or someone is explicitly waiting for this txg
1289 	 *    to complete.
1290 	 *  or
1291 	 *  - the spa is shutting down because this pool is being exported
1292 	 *    or the machine is rebooting.
1293 	 *  or
1294 	 *  - the scan queue has reached its memory use limit
1295 	 */
1296 	hrtime_t curr_time_ns = gethrtime();
1297 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1298 	uint64_t sync_time_ns = curr_time_ns -
1299 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1300 
1301 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1302 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1303 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1304 
1305 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1306 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1307 	    txg_sync_waiting(scn->scn_dp) ||
1308 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1309 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1310 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1311 		if (zb) {
1312 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1313 			    (longlong_t)zb->zb_objset,
1314 			    (longlong_t)zb->zb_object,
1315 			    (longlong_t)zb->zb_level,
1316 			    (longlong_t)zb->zb_blkid);
1317 			scn->scn_phys.scn_bookmark = *zb;
1318 		} else {
1319 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1320 
1321 			dprintf("suspending at DDT bookmark "
1322 			    "%llx/%llx/%llx/%llx\n",
1323 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1324 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1325 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1326 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1327 		}
1328 		scn->scn_suspending = B_TRUE;
1329 		return (B_TRUE);
1330 	}
1331 	return (B_FALSE);
1332 }
1333 
1334 typedef struct zil_scan_arg {
1335 	dsl_pool_t	*zsa_dp;
1336 	zil_header_t	*zsa_zh;
1337 } zil_scan_arg_t;
1338 
1339 /* ARGSUSED */
1340 static int
1341 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1342 {
1343 	zil_scan_arg_t *zsa = arg;
1344 	dsl_pool_t *dp = zsa->zsa_dp;
1345 	dsl_scan_t *scn = dp->dp_scan;
1346 	zil_header_t *zh = zsa->zsa_zh;
1347 	zbookmark_phys_t zb;
1348 
1349 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1350 		return (0);
1351 
1352 	/*
1353 	 * One block ("stubby") can be allocated a long time ago; we
1354 	 * want to visit that one because it has been allocated
1355 	 * (on-disk) even if it hasn't been claimed (even though for
1356 	 * scrub there's nothing to do to it).
1357 	 */
1358 	if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1359 		return (0);
1360 
1361 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1362 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1363 
1364 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1365 	return (0);
1366 }
1367 
1368 /* ARGSUSED */
1369 static int
1370 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
1371 {
1372 	if (lrc->lrc_txtype == TX_WRITE) {
1373 		zil_scan_arg_t *zsa = arg;
1374 		dsl_pool_t *dp = zsa->zsa_dp;
1375 		dsl_scan_t *scn = dp->dp_scan;
1376 		zil_header_t *zh = zsa->zsa_zh;
1377 		lr_write_t *lr = (lr_write_t *)lrc;
1378 		blkptr_t *bp = &lr->lr_blkptr;
1379 		zbookmark_phys_t zb;
1380 
1381 		if (BP_IS_HOLE(bp) ||
1382 		    bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1383 			return (0);
1384 
1385 		/*
1386 		 * birth can be < claim_txg if this record's txg is
1387 		 * already txg sync'ed (but this log block contains
1388 		 * other records that are not synced)
1389 		 */
1390 		if (claim_txg == 0 || bp->blk_birth < claim_txg)
1391 			return (0);
1392 
1393 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1394 		    lr->lr_foid, ZB_ZIL_LEVEL,
1395 		    lr->lr_offset / BP_GET_LSIZE(bp));
1396 
1397 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1398 	}
1399 	return (0);
1400 }
1401 
1402 static void
1403 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1404 {
1405 	uint64_t claim_txg = zh->zh_claim_txg;
1406 	zil_scan_arg_t zsa = { dp, zh };
1407 	zilog_t *zilog;
1408 
1409 	ASSERT(spa_writeable(dp->dp_spa));
1410 
1411 	/*
1412 	 * We only want to visit blocks that have been claimed
1413 	 * but not yet replayed.
1414 	 */
1415 	if (claim_txg == 0)
1416 		return;
1417 
1418 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1419 
1420 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1421 	    claim_txg, B_FALSE);
1422 
1423 	zil_free(zilog);
1424 }
1425 
1426 /*
1427  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1428  * here is to sort the AVL tree by the order each block will be needed.
1429  */
1430 static int
1431 scan_prefetch_queue_compare(const void *a, const void *b)
1432 {
1433 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1434 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1435 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1436 
1437 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1438 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1439 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1440 }
1441 
1442 static void
1443 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1444 {
1445 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1446 		zfs_refcount_destroy(&spc->spc_refcnt);
1447 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1448 	}
1449 }
1450 
1451 static scan_prefetch_ctx_t *
1452 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1453 {
1454 	scan_prefetch_ctx_t *spc;
1455 
1456 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1457 	zfs_refcount_create(&spc->spc_refcnt);
1458 	zfs_refcount_add(&spc->spc_refcnt, tag);
1459 	spc->spc_scn = scn;
1460 	if (dnp != NULL) {
1461 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1462 		spc->spc_indblkshift = dnp->dn_indblkshift;
1463 		spc->spc_root = B_FALSE;
1464 	} else {
1465 		spc->spc_datablkszsec = 0;
1466 		spc->spc_indblkshift = 0;
1467 		spc->spc_root = B_TRUE;
1468 	}
1469 
1470 	return (spc);
1471 }
1472 
1473 static void
1474 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1475 {
1476 	zfs_refcount_add(&spc->spc_refcnt, tag);
1477 }
1478 
1479 static boolean_t
1480 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1481     const zbookmark_phys_t *zb)
1482 {
1483 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1484 	dnode_phys_t tmp_dnp;
1485 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1486 
1487 	if (zb->zb_objset != last_zb->zb_objset)
1488 		return (B_TRUE);
1489 	if ((int64_t)zb->zb_object < 0)
1490 		return (B_FALSE);
1491 
1492 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1493 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1494 
1495 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1496 		return (B_TRUE);
1497 
1498 	return (B_FALSE);
1499 }
1500 
1501 static void
1502 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1503 {
1504 	avl_index_t idx;
1505 	dsl_scan_t *scn = spc->spc_scn;
1506 	spa_t *spa = scn->scn_dp->dp_spa;
1507 	scan_prefetch_issue_ctx_t *spic;
1508 
1509 	if (zfs_no_scrub_prefetch)
1510 		return;
1511 
1512 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1513 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1514 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1515 		return;
1516 
1517 	if (dsl_scan_check_prefetch_resume(spc, zb))
1518 		return;
1519 
1520 	scan_prefetch_ctx_add_ref(spc, scn);
1521 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1522 	spic->spic_spc = spc;
1523 	spic->spic_bp = *bp;
1524 	spic->spic_zb = *zb;
1525 
1526 	/*
1527 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1528 	 * prioritize blocks that we will need first for the main traversal
1529 	 * thread.
1530 	 */
1531 	mutex_enter(&spa->spa_scrub_lock);
1532 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1533 		/* this block is already queued for prefetch */
1534 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1535 		scan_prefetch_ctx_rele(spc, scn);
1536 		mutex_exit(&spa->spa_scrub_lock);
1537 		return;
1538 	}
1539 
1540 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1541 	cv_broadcast(&spa->spa_scrub_io_cv);
1542 	mutex_exit(&spa->spa_scrub_lock);
1543 }
1544 
1545 static void
1546 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1547     uint64_t objset, uint64_t object)
1548 {
1549 	int i;
1550 	zbookmark_phys_t zb;
1551 	scan_prefetch_ctx_t *spc;
1552 
1553 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1554 		return;
1555 
1556 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1557 
1558 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1559 
1560 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1561 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1562 		zb.zb_blkid = i;
1563 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1564 	}
1565 
1566 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1567 		zb.zb_level = 0;
1568 		zb.zb_blkid = DMU_SPILL_BLKID;
1569 		dsl_scan_prefetch(spc, &dnp->dn_spill, &zb);
1570 	}
1571 
1572 	scan_prefetch_ctx_rele(spc, FTAG);
1573 }
1574 
1575 void
1576 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1577     arc_buf_t *buf, void *private)
1578 {
1579 	scan_prefetch_ctx_t *spc = private;
1580 	dsl_scan_t *scn = spc->spc_scn;
1581 	spa_t *spa = scn->scn_dp->dp_spa;
1582 
1583 	/* broadcast that the IO has completed for rate limitting purposes */
1584 	mutex_enter(&spa->spa_scrub_lock);
1585 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1586 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1587 	cv_broadcast(&spa->spa_scrub_io_cv);
1588 	mutex_exit(&spa->spa_scrub_lock);
1589 
1590 	/* if there was an error or we are done prefetching, just cleanup */
1591 	if (buf == NULL || scn->scn_suspending)
1592 		goto out;
1593 
1594 	if (BP_GET_LEVEL(bp) > 0) {
1595 		int i;
1596 		blkptr_t *cbp;
1597 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1598 		zbookmark_phys_t czb;
1599 
1600 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1601 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1602 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
1603 			dsl_scan_prefetch(spc, cbp, &czb);
1604 		}
1605 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1606 		dnode_phys_t *cdnp = buf->b_data;
1607 		int i;
1608 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1609 
1610 		for (i = 0, cdnp = buf->b_data; i < epb;
1611 		    i += cdnp->dn_extra_slots + 1,
1612 		    cdnp += cdnp->dn_extra_slots + 1) {
1613 			dsl_scan_prefetch_dnode(scn, cdnp,
1614 			    zb->zb_objset, zb->zb_blkid * epb + i);
1615 		}
1616 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1617 		objset_phys_t *osp = buf->b_data;
1618 
1619 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1620 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
1621 
1622 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1623 			dsl_scan_prefetch_dnode(scn,
1624 			    &osp->os_groupused_dnode, zb->zb_objset,
1625 			    DMU_GROUPUSED_OBJECT);
1626 			dsl_scan_prefetch_dnode(scn,
1627 			    &osp->os_userused_dnode, zb->zb_objset,
1628 			    DMU_USERUSED_OBJECT);
1629 		}
1630 	}
1631 
1632 out:
1633 	if (buf != NULL)
1634 		arc_buf_destroy(buf, private);
1635 	scan_prefetch_ctx_rele(spc, scn);
1636 }
1637 
1638 /* ARGSUSED */
1639 static void
1640 dsl_scan_prefetch_thread(void *arg)
1641 {
1642 	dsl_scan_t *scn = arg;
1643 	spa_t *spa = scn->scn_dp->dp_spa;
1644 	vdev_t *rvd = spa->spa_root_vdev;
1645 	uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight;
1646 	scan_prefetch_issue_ctx_t *spic;
1647 
1648 	/* loop until we are told to stop */
1649 	while (!scn->scn_prefetch_stop) {
1650 		arc_flags_t flags = ARC_FLAG_NOWAIT |
1651 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1652 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1653 
1654 		mutex_enter(&spa->spa_scrub_lock);
1655 
1656 		/*
1657 		 * Wait until we have an IO to issue and are not above our
1658 		 * maximum in flight limit.
1659 		 */
1660 		while (!scn->scn_prefetch_stop &&
1661 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1662 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1663 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1664 		}
1665 
1666 		/* recheck if we should stop since we waited for the cv */
1667 		if (scn->scn_prefetch_stop) {
1668 			mutex_exit(&spa->spa_scrub_lock);
1669 			break;
1670 		}
1671 
1672 		/* remove the prefetch IO from the tree */
1673 		spic = avl_first(&scn->scn_prefetch_queue);
1674 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1675 		avl_remove(&scn->scn_prefetch_queue, spic);
1676 
1677 		mutex_exit(&spa->spa_scrub_lock);
1678 
1679 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
1680 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1681 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1682 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1683 			zio_flags |= ZIO_FLAG_RAW;
1684 		}
1685 
1686 		/* issue the prefetch asynchronously */
1687 		(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1688 		    &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1689 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1690 
1691 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1692 	}
1693 
1694 	ASSERT(scn->scn_prefetch_stop);
1695 
1696 	/* free any prefetches we didn't get to complete */
1697 	mutex_enter(&spa->spa_scrub_lock);
1698 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1699 		avl_remove(&scn->scn_prefetch_queue, spic);
1700 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1701 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1702 	}
1703 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1704 	mutex_exit(&spa->spa_scrub_lock);
1705 }
1706 
1707 static boolean_t
1708 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1709     const zbookmark_phys_t *zb)
1710 {
1711 	/*
1712 	 * We never skip over user/group accounting objects (obj<0)
1713 	 */
1714 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1715 	    (int64_t)zb->zb_object >= 0) {
1716 		/*
1717 		 * If we already visited this bp & everything below (in
1718 		 * a prior txg sync), don't bother doing it again.
1719 		 */
1720 		if (zbookmark_subtree_completed(dnp, zb,
1721 		    &scn->scn_phys.scn_bookmark))
1722 			return (B_TRUE);
1723 
1724 		/*
1725 		 * If we found the block we're trying to resume from, or
1726 		 * we went past it to a different object, zero it out to
1727 		 * indicate that it's OK to start checking for suspending
1728 		 * again.
1729 		 */
1730 		if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1731 		    zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1732 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
1733 			    (longlong_t)zb->zb_objset,
1734 			    (longlong_t)zb->zb_object,
1735 			    (longlong_t)zb->zb_level,
1736 			    (longlong_t)zb->zb_blkid);
1737 			bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1738 		}
1739 	}
1740 	return (B_FALSE);
1741 }
1742 
1743 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1744     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1745     dmu_objset_type_t ostype, dmu_tx_t *tx);
1746 static void dsl_scan_visitdnode(
1747     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1748     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1749 
1750 /*
1751  * Return nonzero on i/o error.
1752  * Return new buf to write out in *bufp.
1753  */
1754 static int
1755 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1756     dnode_phys_t *dnp, const blkptr_t *bp,
1757     const zbookmark_phys_t *zb, dmu_tx_t *tx)
1758 {
1759 	dsl_pool_t *dp = scn->scn_dp;
1760 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1761 	int err;
1762 
1763 	if (BP_GET_LEVEL(bp) > 0) {
1764 		arc_flags_t flags = ARC_FLAG_WAIT;
1765 		int i;
1766 		blkptr_t *cbp;
1767 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1768 		arc_buf_t *buf;
1769 
1770 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1771 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1772 		if (err) {
1773 			scn->scn_phys.scn_errors++;
1774 			return (err);
1775 		}
1776 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1777 			zbookmark_phys_t czb;
1778 
1779 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1780 			    zb->zb_level - 1,
1781 			    zb->zb_blkid * epb + i);
1782 			dsl_scan_visitbp(cbp, &czb, dnp,
1783 			    ds, scn, ostype, tx);
1784 		}
1785 		arc_buf_destroy(buf, &buf);
1786 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1787 		arc_flags_t flags = ARC_FLAG_WAIT;
1788 		dnode_phys_t *cdnp;
1789 		int i;
1790 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1791 		arc_buf_t *buf;
1792 
1793 		if (BP_IS_PROTECTED(bp)) {
1794 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1795 			zio_flags |= ZIO_FLAG_RAW;
1796 		}
1797 
1798 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1799 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1800 		if (err) {
1801 			scn->scn_phys.scn_errors++;
1802 			return (err);
1803 		}
1804 		for (i = 0, cdnp = buf->b_data; i < epb;
1805 		    i += cdnp->dn_extra_slots + 1,
1806 		    cdnp += cdnp->dn_extra_slots + 1) {
1807 			dsl_scan_visitdnode(scn, ds, ostype,
1808 			    cdnp, zb->zb_blkid * epb + i, tx);
1809 		}
1810 
1811 		arc_buf_destroy(buf, &buf);
1812 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1813 		arc_flags_t flags = ARC_FLAG_WAIT;
1814 		objset_phys_t *osp;
1815 		arc_buf_t *buf;
1816 
1817 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1818 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1819 		if (err) {
1820 			scn->scn_phys.scn_errors++;
1821 			return (err);
1822 		}
1823 
1824 		osp = buf->b_data;
1825 
1826 		dsl_scan_visitdnode(scn, ds, osp->os_type,
1827 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1828 
1829 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1830 			/*
1831 			 * We also always visit user/group/project accounting
1832 			 * objects, and never skip them, even if we are
1833 			 * suspending.  This is necessary so that the space
1834 			 * deltas from this txg get integrated.
1835 			 */
1836 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1837 				dsl_scan_visitdnode(scn, ds, osp->os_type,
1838 				    &osp->os_projectused_dnode,
1839 				    DMU_PROJECTUSED_OBJECT, tx);
1840 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1841 			    &osp->os_groupused_dnode,
1842 			    DMU_GROUPUSED_OBJECT, tx);
1843 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1844 			    &osp->os_userused_dnode,
1845 			    DMU_USERUSED_OBJECT, tx);
1846 		}
1847 		arc_buf_destroy(buf, &buf);
1848 	}
1849 
1850 	return (0);
1851 }
1852 
1853 static void
1854 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1855     dmu_objset_type_t ostype, dnode_phys_t *dnp,
1856     uint64_t object, dmu_tx_t *tx)
1857 {
1858 	int j;
1859 
1860 	for (j = 0; j < dnp->dn_nblkptr; j++) {
1861 		zbookmark_phys_t czb;
1862 
1863 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1864 		    dnp->dn_nlevels - 1, j);
1865 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
1866 		    &czb, dnp, ds, scn, ostype, tx);
1867 	}
1868 
1869 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1870 		zbookmark_phys_t czb;
1871 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1872 		    0, DMU_SPILL_BLKID);
1873 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1874 		    &czb, dnp, ds, scn, ostype, tx);
1875 	}
1876 }
1877 
1878 /*
1879  * The arguments are in this order because mdb can only print the
1880  * first 5; we want them to be useful.
1881  */
1882 static void
1883 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1884     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1885     dmu_objset_type_t ostype, dmu_tx_t *tx)
1886 {
1887 	dsl_pool_t *dp = scn->scn_dp;
1888 	blkptr_t *bp_toread = NULL;
1889 
1890 	if (dsl_scan_check_suspend(scn, zb))
1891 		return;
1892 
1893 	if (dsl_scan_check_resume(scn, dnp, zb))
1894 		return;
1895 
1896 	scn->scn_visited_this_txg++;
1897 
1898 	/*
1899 	 * This debugging is commented out to conserve stack space.  This
1900 	 * function is called recursively and the debugging addes several
1901 	 * bytes to the stack for each call.  It can be commented back in
1902 	 * if required to debug an issue in dsl_scan_visitbp().
1903 	 *
1904 	 * dprintf_bp(bp,
1905 	 *	"visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1906 	 *	ds, ds ? ds->ds_object : 0,
1907 	 *	zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1908 	 *	bp);
1909 	 */
1910 
1911 	if (BP_IS_HOLE(bp)) {
1912 		scn->scn_holes_this_txg++;
1913 		return;
1914 	}
1915 
1916 	if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1917 		scn->scn_lt_min_this_txg++;
1918 		return;
1919 	}
1920 
1921 	bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1922 	*bp_toread = *bp;
1923 
1924 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1925 		goto out;
1926 
1927 	/*
1928 	 * If dsl_scan_ddt() has already visited this block, it will have
1929 	 * already done any translations or scrubbing, so don't call the
1930 	 * callback again.
1931 	 */
1932 	if (ddt_class_contains(dp->dp_spa,
1933 	    scn->scn_phys.scn_ddt_class_max, bp)) {
1934 		scn->scn_ddt_contained_this_txg++;
1935 		goto out;
1936 	}
1937 
1938 	/*
1939 	 * If this block is from the future (after cur_max_txg), then we
1940 	 * are doing this on behalf of a deleted snapshot, and we will
1941 	 * revisit the future block on the next pass of this dataset.
1942 	 * Don't scan it now unless we need to because something
1943 	 * under it was modified.
1944 	 */
1945 	if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
1946 		scn->scn_gt_max_this_txg++;
1947 		goto out;
1948 	}
1949 
1950 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
1951 
1952 out:
1953 	kmem_free(bp_toread, sizeof (blkptr_t));
1954 }
1955 
1956 static void
1957 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
1958     dmu_tx_t *tx)
1959 {
1960 	zbookmark_phys_t zb;
1961 	scan_prefetch_ctx_t *spc;
1962 
1963 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1964 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1965 
1966 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
1967 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
1968 		    zb.zb_objset, 0, 0, 0);
1969 	} else {
1970 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
1971 	}
1972 
1973 	scn->scn_objsets_visited_this_txg++;
1974 
1975 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
1976 	dsl_scan_prefetch(spc, bp, &zb);
1977 	scan_prefetch_ctx_rele(spc, FTAG);
1978 
1979 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
1980 
1981 	dprintf_ds(ds, "finished scan%s", "");
1982 }
1983 
1984 static void
1985 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
1986 {
1987 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
1988 		if (ds->ds_is_snapshot) {
1989 			/*
1990 			 * Note:
1991 			 *  - scn_cur_{min,max}_txg stays the same.
1992 			 *  - Setting the flag is not really necessary if
1993 			 *    scn_cur_max_txg == scn_max_txg, because there
1994 			 *    is nothing after this snapshot that we care
1995 			 *    about.  However, we set it anyway and then
1996 			 *    ignore it when we retraverse it in
1997 			 *    dsl_scan_visitds().
1998 			 */
1999 			scn_phys->scn_bookmark.zb_objset =
2000 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
2001 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
2002 			    "reset zb_objset to %llu",
2003 			    (u_longlong_t)ds->ds_object,
2004 			    (u_longlong_t)dsl_dataset_phys(ds)->
2005 			    ds_next_snap_obj);
2006 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2007 		} else {
2008 			SET_BOOKMARK(&scn_phys->scn_bookmark,
2009 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2010 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
2011 			    "reset bookmark to -1,0,0,0",
2012 			    (u_longlong_t)ds->ds_object);
2013 		}
2014 	}
2015 }
2016 
2017 /*
2018  * Invoked when a dataset is destroyed. We need to make sure that:
2019  *
2020  * 1) If it is the dataset that was currently being scanned, we write
2021  *	a new dsl_scan_phys_t and marking the objset reference in it
2022  *	as destroyed.
2023  * 2) Remove it from the work queue, if it was present.
2024  *
2025  * If the dataset was actually a snapshot, instead of marking the dataset
2026  * as destroyed, we instead substitute the next snapshot in line.
2027  */
2028 void
2029 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2030 {
2031 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2032 	dsl_scan_t *scn = dp->dp_scan;
2033 	uint64_t mintxg;
2034 
2035 	if (!dsl_scan_is_running(scn))
2036 		return;
2037 
2038 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2039 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2040 
2041 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2042 		scan_ds_queue_remove(scn, ds->ds_object);
2043 		if (ds->ds_is_snapshot)
2044 			scan_ds_queue_insert(scn,
2045 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2046 	}
2047 
2048 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2049 	    ds->ds_object, &mintxg) == 0) {
2050 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2051 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2052 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2053 		if (ds->ds_is_snapshot) {
2054 			/*
2055 			 * We keep the same mintxg; it could be >
2056 			 * ds_creation_txg if the previous snapshot was
2057 			 * deleted too.
2058 			 */
2059 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2060 			    scn->scn_phys.scn_queue_obj,
2061 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2062 			    mintxg, tx) == 0);
2063 			zfs_dbgmsg("destroying ds %llu; in queue; "
2064 			    "replacing with %llu",
2065 			    (u_longlong_t)ds->ds_object,
2066 			    (u_longlong_t)dsl_dataset_phys(ds)->
2067 			    ds_next_snap_obj);
2068 		} else {
2069 			zfs_dbgmsg("destroying ds %llu; in queue; removing",
2070 			    (u_longlong_t)ds->ds_object);
2071 		}
2072 	}
2073 
2074 	/*
2075 	 * dsl_scan_sync() should be called after this, and should sync
2076 	 * out our changed state, but just to be safe, do it here.
2077 	 */
2078 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2079 }
2080 
2081 static void
2082 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2083 {
2084 	if (scn_bookmark->zb_objset == ds->ds_object) {
2085 		scn_bookmark->zb_objset =
2086 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2087 		zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
2088 		    "reset zb_objset to %llu",
2089 		    (u_longlong_t)ds->ds_object,
2090 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2091 	}
2092 }
2093 
2094 /*
2095  * Called when a dataset is snapshotted. If we were currently traversing
2096  * this snapshot, we reset our bookmark to point at the newly created
2097  * snapshot. We also modify our work queue to remove the old snapshot and
2098  * replace with the new one.
2099  */
2100 void
2101 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2102 {
2103 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2104 	dsl_scan_t *scn = dp->dp_scan;
2105 	uint64_t mintxg;
2106 
2107 	if (!dsl_scan_is_running(scn))
2108 		return;
2109 
2110 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2111 
2112 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2113 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2114 
2115 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2116 		scan_ds_queue_remove(scn, ds->ds_object);
2117 		scan_ds_queue_insert(scn,
2118 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2119 	}
2120 
2121 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2122 	    ds->ds_object, &mintxg) == 0) {
2123 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2124 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2125 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2126 		    scn->scn_phys.scn_queue_obj,
2127 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2128 		zfs_dbgmsg("snapshotting ds %llu; in queue; "
2129 		    "replacing with %llu",
2130 		    (u_longlong_t)ds->ds_object,
2131 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2132 	}
2133 
2134 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2135 }
2136 
2137 static void
2138 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2139     zbookmark_phys_t *scn_bookmark)
2140 {
2141 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2142 		scn_bookmark->zb_objset = ds2->ds_object;
2143 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2144 		    "reset zb_objset to %llu",
2145 		    (u_longlong_t)ds1->ds_object,
2146 		    (u_longlong_t)ds2->ds_object);
2147 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2148 		scn_bookmark->zb_objset = ds1->ds_object;
2149 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2150 		    "reset zb_objset to %llu",
2151 		    (u_longlong_t)ds2->ds_object,
2152 		    (u_longlong_t)ds1->ds_object);
2153 	}
2154 }
2155 
2156 /*
2157  * Called when a parent dataset and its clone are swapped. If we were
2158  * currently traversing the dataset, we need to switch to traversing the
2159  * newly promoted parent.
2160  */
2161 void
2162 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2163 {
2164 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2165 	dsl_scan_t *scn = dp->dp_scan;
2166 	uint64_t mintxg;
2167 
2168 	if (!dsl_scan_is_running(scn))
2169 		return;
2170 
2171 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2172 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2173 
2174 	if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) {
2175 		scan_ds_queue_remove(scn, ds1->ds_object);
2176 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg);
2177 	}
2178 	if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) {
2179 		scan_ds_queue_remove(scn, ds2->ds_object);
2180 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg);
2181 	}
2182 
2183 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2184 	    ds1->ds_object, &mintxg) == 0) {
2185 		int err;
2186 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2187 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2188 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2189 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2190 		err = zap_add_int_key(dp->dp_meta_objset,
2191 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
2192 		VERIFY(err == 0 || err == EEXIST);
2193 		if (err == EEXIST) {
2194 			/* Both were there to begin with */
2195 			VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2196 			    scn->scn_phys.scn_queue_obj,
2197 			    ds1->ds_object, mintxg, tx));
2198 		}
2199 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2200 		    "replacing with %llu",
2201 		    (u_longlong_t)ds1->ds_object,
2202 		    (u_longlong_t)ds2->ds_object);
2203 	}
2204 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2205 	    ds2->ds_object, &mintxg) == 0) {
2206 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2207 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2208 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2209 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2210 		VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2211 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
2212 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2213 		    "replacing with %llu",
2214 		    (u_longlong_t)ds2->ds_object,
2215 		    (u_longlong_t)ds1->ds_object);
2216 	}
2217 
2218 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2219 }
2220 
2221 /* ARGSUSED */
2222 static int
2223 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2224 {
2225 	uint64_t originobj = *(uint64_t *)arg;
2226 	dsl_dataset_t *ds;
2227 	int err;
2228 	dsl_scan_t *scn = dp->dp_scan;
2229 
2230 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2231 		return (0);
2232 
2233 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2234 	if (err)
2235 		return (err);
2236 
2237 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2238 		dsl_dataset_t *prev;
2239 		err = dsl_dataset_hold_obj(dp,
2240 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2241 
2242 		dsl_dataset_rele(ds, FTAG);
2243 		if (err)
2244 			return (err);
2245 		ds = prev;
2246 	}
2247 	scan_ds_queue_insert(scn, ds->ds_object,
2248 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2249 	dsl_dataset_rele(ds, FTAG);
2250 	return (0);
2251 }
2252 
2253 static void
2254 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2255 {
2256 	dsl_pool_t *dp = scn->scn_dp;
2257 	dsl_dataset_t *ds;
2258 
2259 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2260 
2261 	if (scn->scn_phys.scn_cur_min_txg >=
2262 	    scn->scn_phys.scn_max_txg) {
2263 		/*
2264 		 * This can happen if this snapshot was created after the
2265 		 * scan started, and we already completed a previous snapshot
2266 		 * that was created after the scan started.  This snapshot
2267 		 * only references blocks with:
2268 		 *
2269 		 *	birth < our ds_creation_txg
2270 		 *	cur_min_txg is no less than ds_creation_txg.
2271 		 *	We have already visited these blocks.
2272 		 * or
2273 		 *	birth > scn_max_txg
2274 		 *	The scan requested not to visit these blocks.
2275 		 *
2276 		 * Subsequent snapshots (and clones) can reference our
2277 		 * blocks, or blocks with even higher birth times.
2278 		 * Therefore we do not need to visit them either,
2279 		 * so we do not add them to the work queue.
2280 		 *
2281 		 * Note that checking for cur_min_txg >= cur_max_txg
2282 		 * is not sufficient, because in that case we may need to
2283 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2284 		 * which raises cur_min_txg.  In this case we will visit
2285 		 * this dataset but skip all of its blocks, because the
2286 		 * rootbp's birth time is < cur_min_txg.  Then we will
2287 		 * add the next snapshots/clones to the work queue.
2288 		 */
2289 		char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
2290 		dsl_dataset_name(ds, dsname);
2291 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2292 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2293 		    (longlong_t)dsobj, dsname,
2294 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2295 		    (longlong_t)scn->scn_phys.scn_max_txg);
2296 		kmem_free(dsname, MAXNAMELEN);
2297 
2298 		goto out;
2299 	}
2300 
2301 	/*
2302 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2303 	 * snapshots can have ZIL block pointers (which may be the same
2304 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2305 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2306 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2307 	 * rather than in scan_recurse(), because the regular snapshot
2308 	 * block-sharing rules don't apply to it.
2309 	 */
2310 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) &&
2311 	    (dp->dp_origin_snap == NULL ||
2312 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2313 		objset_t *os;
2314 		if (dmu_objset_from_ds(ds, &os) != 0) {
2315 			goto out;
2316 		}
2317 		dsl_scan_zil(dp, &os->os_zil_header);
2318 	}
2319 
2320 	/*
2321 	 * Iterate over the bps in this ds.
2322 	 */
2323 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2324 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2325 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2326 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2327 
2328 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2329 	dsl_dataset_name(ds, dsname);
2330 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2331 	    "suspending=%u",
2332 	    (longlong_t)dsobj, dsname,
2333 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2334 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2335 	    (int)scn->scn_suspending);
2336 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2337 
2338 	if (scn->scn_suspending)
2339 		goto out;
2340 
2341 	/*
2342 	 * We've finished this pass over this dataset.
2343 	 */
2344 
2345 	/*
2346 	 * If we did not completely visit this dataset, do another pass.
2347 	 */
2348 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2349 		zfs_dbgmsg("incomplete pass; visiting again");
2350 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2351 		scan_ds_queue_insert(scn, ds->ds_object,
2352 		    scn->scn_phys.scn_cur_max_txg);
2353 		goto out;
2354 	}
2355 
2356 	/*
2357 	 * Add descendent datasets to work queue.
2358 	 */
2359 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2360 		scan_ds_queue_insert(scn,
2361 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2362 		    dsl_dataset_phys(ds)->ds_creation_txg);
2363 	}
2364 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2365 		boolean_t usenext = B_FALSE;
2366 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2367 			uint64_t count;
2368 			/*
2369 			 * A bug in a previous version of the code could
2370 			 * cause upgrade_clones_cb() to not set
2371 			 * ds_next_snap_obj when it should, leading to a
2372 			 * missing entry.  Therefore we can only use the
2373 			 * next_clones_obj when its count is correct.
2374 			 */
2375 			int err = zap_count(dp->dp_meta_objset,
2376 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2377 			if (err == 0 &&
2378 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2379 				usenext = B_TRUE;
2380 		}
2381 
2382 		if (usenext) {
2383 			zap_cursor_t zc;
2384 			zap_attribute_t za;
2385 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2386 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2387 			    zap_cursor_retrieve(&zc, &za) == 0;
2388 			    (void) zap_cursor_advance(&zc)) {
2389 				scan_ds_queue_insert(scn,
2390 				    zfs_strtonum(za.za_name, NULL),
2391 				    dsl_dataset_phys(ds)->ds_creation_txg);
2392 			}
2393 			zap_cursor_fini(&zc);
2394 		} else {
2395 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2396 			    enqueue_clones_cb, &ds->ds_object,
2397 			    DS_FIND_CHILDREN));
2398 		}
2399 	}
2400 
2401 out:
2402 	dsl_dataset_rele(ds, FTAG);
2403 }
2404 
2405 /* ARGSUSED */
2406 static int
2407 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2408 {
2409 	dsl_dataset_t *ds;
2410 	int err;
2411 	dsl_scan_t *scn = dp->dp_scan;
2412 
2413 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2414 	if (err)
2415 		return (err);
2416 
2417 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2418 		dsl_dataset_t *prev;
2419 		err = dsl_dataset_hold_obj(dp,
2420 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2421 		if (err) {
2422 			dsl_dataset_rele(ds, FTAG);
2423 			return (err);
2424 		}
2425 
2426 		/*
2427 		 * If this is a clone, we don't need to worry about it for now.
2428 		 */
2429 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2430 			dsl_dataset_rele(ds, FTAG);
2431 			dsl_dataset_rele(prev, FTAG);
2432 			return (0);
2433 		}
2434 		dsl_dataset_rele(ds, FTAG);
2435 		ds = prev;
2436 	}
2437 
2438 	scan_ds_queue_insert(scn, ds->ds_object,
2439 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2440 	dsl_dataset_rele(ds, FTAG);
2441 	return (0);
2442 }
2443 
2444 /* ARGSUSED */
2445 void
2446 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2447     ddt_entry_t *dde, dmu_tx_t *tx)
2448 {
2449 	const ddt_key_t *ddk = &dde->dde_key;
2450 	ddt_phys_t *ddp = dde->dde_phys;
2451 	blkptr_t bp;
2452 	zbookmark_phys_t zb = { 0 };
2453 	int p;
2454 
2455 	if (scn->scn_phys.scn_state != DSS_SCANNING)
2456 		return;
2457 
2458 	/*
2459 	 * This function is special because it is the only thing
2460 	 * that can add scan_io_t's to the vdev scan queues from
2461 	 * outside dsl_scan_sync(). For the most part this is ok
2462 	 * as long as it is called from within syncing context.
2463 	 * However, dsl_scan_sync() expects that no new sio's will
2464 	 * be added between when all the work for a scan is done
2465 	 * and the next txg when the scan is actually marked as
2466 	 * completed. This check ensures we do not issue new sio's
2467 	 * during this period.
2468 	 */
2469 	if (scn->scn_done_txg != 0)
2470 		return;
2471 
2472 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2473 		if (ddp->ddp_phys_birth == 0 ||
2474 		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2475 			continue;
2476 		ddt_bp_create(checksum, ddk, ddp, &bp);
2477 
2478 		scn->scn_visited_this_txg++;
2479 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2480 	}
2481 }
2482 
2483 /*
2484  * Scrub/dedup interaction.
2485  *
2486  * If there are N references to a deduped block, we don't want to scrub it
2487  * N times -- ideally, we should scrub it exactly once.
2488  *
2489  * We leverage the fact that the dde's replication class (enum ddt_class)
2490  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2491  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2492  *
2493  * To prevent excess scrubbing, the scrub begins by walking the DDT
2494  * to find all blocks with refcnt > 1, and scrubs each of these once.
2495  * Since there are two replication classes which contain blocks with
2496  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2497  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2498  *
2499  * There would be nothing more to say if a block's refcnt couldn't change
2500  * during a scrub, but of course it can so we must account for changes
2501  * in a block's replication class.
2502  *
2503  * Here's an example of what can occur:
2504  *
2505  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2506  * when visited during the top-down scrub phase, it will be scrubbed twice.
2507  * This negates our scrub optimization, but is otherwise harmless.
2508  *
2509  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2510  * on each visit during the top-down scrub phase, it will never be scrubbed.
2511  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2512  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2513  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2514  * while a scrub is in progress, it scrubs the block right then.
2515  */
2516 static void
2517 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2518 {
2519 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2520 	ddt_entry_t dde = { 0 };
2521 	int error;
2522 	uint64_t n = 0;
2523 
2524 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2525 		ddt_t *ddt;
2526 
2527 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2528 			break;
2529 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2530 		    (longlong_t)ddb->ddb_class,
2531 		    (longlong_t)ddb->ddb_type,
2532 		    (longlong_t)ddb->ddb_checksum,
2533 		    (longlong_t)ddb->ddb_cursor);
2534 
2535 		/* There should be no pending changes to the dedup table */
2536 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2537 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2538 
2539 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2540 		n++;
2541 
2542 		if (dsl_scan_check_suspend(scn, NULL))
2543 			break;
2544 	}
2545 
2546 	zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2547 	    "suspending=%u", (longlong_t)n,
2548 	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2549 
2550 	ASSERT(error == 0 || error == ENOENT);
2551 	ASSERT(error != ENOENT ||
2552 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2553 }
2554 
2555 static uint64_t
2556 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2557 {
2558 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2559 	if (ds->ds_is_snapshot)
2560 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2561 	return (smt);
2562 }
2563 
2564 static void
2565 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2566 {
2567 	scan_ds_t *sds;
2568 	dsl_pool_t *dp = scn->scn_dp;
2569 
2570 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2571 	    scn->scn_phys.scn_ddt_class_max) {
2572 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2573 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2574 		dsl_scan_ddt(scn, tx);
2575 		if (scn->scn_suspending)
2576 			return;
2577 	}
2578 
2579 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2580 		/* First do the MOS & ORIGIN */
2581 
2582 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2583 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2584 		dsl_scan_visit_rootbp(scn, NULL,
2585 		    &dp->dp_meta_rootbp, tx);
2586 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2587 		if (scn->scn_suspending)
2588 			return;
2589 
2590 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2591 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2592 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
2593 		} else {
2594 			dsl_scan_visitds(scn,
2595 			    dp->dp_origin_snap->ds_object, tx);
2596 		}
2597 		ASSERT(!scn->scn_suspending);
2598 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
2599 	    ZB_DESTROYED_OBJSET) {
2600 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2601 		/*
2602 		 * If we were suspended, continue from here. Note if the
2603 		 * ds we were suspended on was deleted, the zb_objset may
2604 		 * be -1, so we will skip this and find a new objset
2605 		 * below.
2606 		 */
2607 		dsl_scan_visitds(scn, dsobj, tx);
2608 		if (scn->scn_suspending)
2609 			return;
2610 	}
2611 
2612 	/*
2613 	 * In case we suspended right at the end of the ds, zero the
2614 	 * bookmark so we don't think that we're still trying to resume.
2615 	 */
2616 	bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2617 
2618 	/*
2619 	 * Keep pulling things out of the dataset avl queue. Updates to the
2620 	 * persistent zap-object-as-queue happen only at checkpoints.
2621 	 */
2622 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2623 		dsl_dataset_t *ds;
2624 		uint64_t dsobj = sds->sds_dsobj;
2625 		uint64_t txg = sds->sds_txg;
2626 
2627 		/* dequeue and free the ds from the queue */
2628 		scan_ds_queue_remove(scn, dsobj);
2629 		sds = NULL;	/* must not be touched after removal */
2630 
2631 		/* Set up min / max txg */
2632 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2633 		if (txg != 0) {
2634 			scn->scn_phys.scn_cur_min_txg =
2635 			    MAX(scn->scn_phys.scn_min_txg, txg);
2636 		} else {
2637 			scn->scn_phys.scn_cur_min_txg =
2638 			    MAX(scn->scn_phys.scn_min_txg,
2639 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2640 		}
2641 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2642 		dsl_dataset_rele(ds, FTAG);
2643 
2644 		dsl_scan_visitds(scn, dsobj, tx);
2645 		if (scn->scn_suspending)
2646 			return;
2647 	}
2648 	/* No more objsets to fetch, we're done */
2649 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2650 	ASSERT0(scn->scn_suspending);
2651 }
2652 
2653 static uint64_t
2654 dsl_scan_count_leaves(vdev_t *vd)
2655 {
2656 	uint64_t i, leaves = 0;
2657 
2658 	/* we only count leaves that belong to the main pool and are readable */
2659 	if (vd->vdev_islog || vd->vdev_isspare ||
2660 	    vd->vdev_isl2cache || !vdev_readable(vd))
2661 		return (0);
2662 
2663 	if (vd->vdev_ops->vdev_op_leaf)
2664 		return (1);
2665 
2666 	for (i = 0; i < vd->vdev_children; i++) {
2667 		leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2668 	}
2669 
2670 	return (leaves);
2671 }
2672 
2673 
2674 static void
2675 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2676 {
2677 	int i;
2678 	uint64_t cur_size = 0;
2679 
2680 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2681 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2682 	}
2683 
2684 	q->q_total_zio_size_this_txg += cur_size;
2685 	q->q_zios_this_txg++;
2686 }
2687 
2688 static void
2689 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2690     uint64_t end)
2691 {
2692 	q->q_total_seg_size_this_txg += end - start;
2693 	q->q_segs_this_txg++;
2694 }
2695 
2696 static boolean_t
2697 scan_io_queue_check_suspend(dsl_scan_t *scn)
2698 {
2699 	/* See comment in dsl_scan_check_suspend() */
2700 	uint64_t curr_time_ns = gethrtime();
2701 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2702 	uint64_t sync_time_ns = curr_time_ns -
2703 	    scn->scn_dp->dp_spa->spa_sync_starttime;
2704 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2705 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2706 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2707 
2708 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
2709 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2710 	    txg_sync_waiting(scn->scn_dp) ||
2711 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2712 	    spa_shutting_down(scn->scn_dp->dp_spa));
2713 }
2714 
2715 /*
2716  * Given a list of scan_io_t's in io_list, this issues the io's out to
2717  * disk. This consumes the io_list and frees the scan_io_t's. This is
2718  * called when emptying queues, either when we're up against the memory
2719  * limit or when we have finished scanning. Returns B_TRUE if we stopped
2720  * processing the list before we finished. Any zios that were not issued
2721  * will remain in the io_list.
2722  */
2723 static boolean_t
2724 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2725 {
2726 	dsl_scan_t *scn = queue->q_scn;
2727 	scan_io_t *sio;
2728 	int64_t bytes_issued = 0;
2729 	boolean_t suspended = B_FALSE;
2730 
2731 	while ((sio = list_head(io_list)) != NULL) {
2732 		blkptr_t bp;
2733 
2734 		if (scan_io_queue_check_suspend(scn)) {
2735 			suspended = B_TRUE;
2736 			break;
2737 		}
2738 
2739 		sio2bp(sio, &bp);
2740 		bytes_issued += SIO_GET_ASIZE(sio);
2741 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2742 		    &sio->sio_zb, queue);
2743 		(void) list_remove_head(io_list);
2744 		scan_io_queues_update_zio_stats(queue, &bp);
2745 		sio_free(sio);
2746 	}
2747 
2748 	atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2749 
2750 	return (suspended);
2751 }
2752 
2753 /*
2754  * Given a range_seg_t (extent) and a list, this function passes over a
2755  * scan queue and gathers up the appropriate ios which fit into that
2756  * scan seg (starting from lowest LBA). At the end, we remove the segment
2757  * from the q_exts_by_addr range tree.
2758  */
2759 static boolean_t
2760 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2761 {
2762 	scan_io_t *srch_sio, *sio, *next_sio;
2763 	avl_index_t idx;
2764 	uint_t num_sios = 0;
2765 	int64_t bytes_issued = 0;
2766 
2767 	ASSERT(rs != NULL);
2768 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2769 
2770 	srch_sio = sio_alloc(1);
2771 	srch_sio->sio_nr_dvas = 1;
2772 	SIO_SET_OFFSET(srch_sio, rs->rs_start);
2773 
2774 	/*
2775 	 * The exact start of the extent might not contain any matching zios,
2776 	 * so if that's the case, examine the next one in the tree.
2777 	 */
2778 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2779 	sio_free(srch_sio);
2780 
2781 	if (sio == NULL)
2782 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2783 
2784 	while (sio != NULL &&
2785 	    SIO_GET_OFFSET(sio) < rs->rs_end && num_sios <= 32) {
2786 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs->rs_start);
2787 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs->rs_end);
2788 
2789 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2790 		avl_remove(&queue->q_sios_by_addr, sio);
2791 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
2792 
2793 		bytes_issued += SIO_GET_ASIZE(sio);
2794 		num_sios++;
2795 		list_insert_tail(list, sio);
2796 		sio = next_sio;
2797 	}
2798 
2799 	/*
2800 	 * We limit the number of sios we process at once to 32 to avoid
2801 	 * biting off more than we can chew. If we didn't take everything
2802 	 * in the segment we update it to reflect the work we were able to
2803 	 * complete. Otherwise, we remove it from the range tree entirely.
2804 	 */
2805 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs->rs_end) {
2806 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2807 		    -bytes_issued);
2808 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
2809 		    SIO_GET_OFFSET(sio), rs->rs_end - SIO_GET_OFFSET(sio));
2810 
2811 		return (B_TRUE);
2812 	} else {
2813 		range_tree_remove(queue->q_exts_by_addr, rs->rs_start,
2814 		    rs->rs_end - rs->rs_start);
2815 		return (B_FALSE);
2816 	}
2817 }
2818 
2819 
2820 /*
2821  * This is called from the queue emptying thread and selects the next
2822  * extent from which we are to issue io's. The behavior of this function
2823  * depends on the state of the scan, the current memory consumption and
2824  * whether or not we are performing a scan shutdown.
2825  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2826  *	needs to perform a checkpoint
2827  * 2) We select the largest available extent if we are up against the
2828  *	memory limit.
2829  * 3) Otherwise we don't select any extents.
2830  */
2831 static const range_seg_t *
2832 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2833 {
2834 	dsl_scan_t *scn = queue->q_scn;
2835 
2836 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2837 	ASSERT(scn->scn_is_sorted);
2838 
2839 	/* handle tunable overrides */
2840 	if (scn->scn_checkpointing || scn->scn_clearing) {
2841 		if (zfs_scan_issue_strategy == 1) {
2842 			return (range_tree_first(queue->q_exts_by_addr));
2843 		} else if (zfs_scan_issue_strategy == 2) {
2844 			return (avl_first(&queue->q_exts_by_size));
2845 		}
2846 	}
2847 
2848 	/*
2849 	 * During normal clearing, we want to issue our largest segments
2850 	 * first, keeping IO as sequential as possible, and leaving the
2851 	 * smaller extents for later with the hope that they might eventually
2852 	 * grow to larger sequential segments. However, when the scan is
2853 	 * checkpointing, no new extents will be added to the sorting queue,
2854 	 * so the way we are sorted now is as good as it will ever get.
2855 	 * In this case, we instead switch to issuing extents in LBA order.
2856 	 */
2857 	if (scn->scn_checkpointing) {
2858 		return (range_tree_first(queue->q_exts_by_addr));
2859 	} else if (scn->scn_clearing) {
2860 		return (avl_first(&queue->q_exts_by_size));
2861 	} else {
2862 		return (NULL);
2863 	}
2864 }
2865 
2866 static void
2867 scan_io_queues_run_one(void *arg)
2868 {
2869 	dsl_scan_io_queue_t *queue = arg;
2870 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
2871 	boolean_t suspended = B_FALSE;
2872 	range_seg_t *rs = NULL;
2873 	scan_io_t *sio = NULL;
2874 	list_t sio_list;
2875 	uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
2876 	uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
2877 
2878 	ASSERT(queue->q_scn->scn_is_sorted);
2879 
2880 	list_create(&sio_list, sizeof (scan_io_t),
2881 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
2882 	mutex_enter(q_lock);
2883 
2884 	/* calculate maximum in-flight bytes for this txg (min 1MB) */
2885 	queue->q_maxinflight_bytes =
2886 	    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
2887 
2888 	/* reset per-queue scan statistics for this txg */
2889 	queue->q_total_seg_size_this_txg = 0;
2890 	queue->q_segs_this_txg = 0;
2891 	queue->q_total_zio_size_this_txg = 0;
2892 	queue->q_zios_this_txg = 0;
2893 
2894 	/* loop until we have run out of time or sios */
2895 	while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) {
2896 		uint64_t seg_start = 0, seg_end = 0;
2897 		boolean_t more_left = B_TRUE;
2898 
2899 		ASSERT(list_is_empty(&sio_list));
2900 
2901 		/* loop while we still have sios left to process in this rs */
2902 		while (more_left) {
2903 			scan_io_t *first_sio, *last_sio;
2904 
2905 			/*
2906 			 * We have selected which extent needs to be
2907 			 * processed next. Gather up the corresponding sios.
2908 			 */
2909 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
2910 			ASSERT(!list_is_empty(&sio_list));
2911 			first_sio = list_head(&sio_list);
2912 			last_sio = list_tail(&sio_list);
2913 
2914 			seg_end = SIO_GET_END_OFFSET(last_sio);
2915 			if (seg_start == 0)
2916 				seg_start = SIO_GET_OFFSET(first_sio);
2917 
2918 			/*
2919 			 * Issuing sios can take a long time so drop the
2920 			 * queue lock. The sio queue won't be updated by
2921 			 * other threads since we're in syncing context so
2922 			 * we can be sure that our trees will remain exactly
2923 			 * as we left them.
2924 			 */
2925 			mutex_exit(q_lock);
2926 			suspended = scan_io_queue_issue(queue, &sio_list);
2927 			mutex_enter(q_lock);
2928 
2929 			if (suspended)
2930 				break;
2931 		}
2932 		/* update statistics for debugging purposes */
2933 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
2934 
2935 		if (suspended)
2936 			break;
2937 	}
2938 
2939 
2940 	/*
2941 	 * If we were suspended in the middle of processing,
2942 	 * requeue any unfinished sios and exit.
2943 	 */
2944 	while ((sio = list_head(&sio_list)) != NULL) {
2945 		list_remove(&sio_list, sio);
2946 		scan_io_queue_insert_impl(queue, sio);
2947 	}
2948 
2949 	mutex_exit(q_lock);
2950 	list_destroy(&sio_list);
2951 }
2952 
2953 /*
2954  * Performs an emptying run on all scan queues in the pool. This just
2955  * punches out one thread per top-level vdev, each of which processes
2956  * only that vdev's scan queue. We can parallelize the I/O here because
2957  * we know that each queue's io's only affect its own top-level vdev.
2958  *
2959  * This function waits for the queue runs to complete, and must be
2960  * called from dsl_scan_sync (or in general, syncing context).
2961  */
2962 static void
2963 scan_io_queues_run(dsl_scan_t *scn)
2964 {
2965 	spa_t *spa = scn->scn_dp->dp_spa;
2966 
2967 	ASSERT(scn->scn_is_sorted);
2968 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2969 
2970 	if (scn->scn_bytes_pending == 0)
2971 		return;
2972 
2973 	if (scn->scn_taskq == NULL) {
2974 		char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16,
2975 		    KM_SLEEP);
2976 		int nthreads = spa->spa_root_vdev->vdev_children;
2977 
2978 		/*
2979 		 * We need to make this taskq *always* execute as many
2980 		 * threads in parallel as we have top-level vdevs and no
2981 		 * less, otherwise strange serialization of the calls to
2982 		 * scan_io_queues_run_one can occur during spa_sync runs
2983 		 * and that significantly impacts performance.
2984 		 */
2985 		(void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16,
2986 		    "dsl_scan_tq_%s", spa->spa_name);
2987 		scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri,
2988 		    nthreads, nthreads, TASKQ_PREPOPULATE);
2989 		kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16);
2990 	}
2991 
2992 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
2993 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
2994 
2995 		mutex_enter(&vd->vdev_scan_io_queue_lock);
2996 		if (vd->vdev_scan_io_queue != NULL) {
2997 			VERIFY(taskq_dispatch(scn->scn_taskq,
2998 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
2999 			    TQ_SLEEP) != TASKQID_INVALID);
3000 		}
3001 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3002 	}
3003 
3004 	/*
3005 	 * Wait for the queues to finish issuing thir IOs for this run
3006 	 * before we return. There may still be IOs in flight at this
3007 	 * point.
3008 	 */
3009 	taskq_wait(scn->scn_taskq);
3010 }
3011 
3012 static boolean_t
3013 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3014 {
3015 	uint64_t elapsed_nanosecs;
3016 
3017 	if (zfs_recover)
3018 		return (B_FALSE);
3019 
3020 	if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks)
3021 		return (B_TRUE);
3022 
3023 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3024 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3025 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3026 	    txg_sync_waiting(scn->scn_dp)) ||
3027 	    spa_shutting_down(scn->scn_dp->dp_spa));
3028 }
3029 
3030 static int
3031 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3032 {
3033 	dsl_scan_t *scn = arg;
3034 
3035 	if (!scn->scn_is_bptree ||
3036 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3037 		if (dsl_scan_async_block_should_pause(scn))
3038 			return (SET_ERROR(ERESTART));
3039 	}
3040 
3041 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3042 	    dmu_tx_get_txg(tx), bp, 0));
3043 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3044 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3045 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3046 	scn->scn_visited_this_txg++;
3047 	return (0);
3048 }
3049 
3050 static void
3051 dsl_scan_update_stats(dsl_scan_t *scn)
3052 {
3053 	spa_t *spa = scn->scn_dp->dp_spa;
3054 	uint64_t i;
3055 	uint64_t seg_size_total = 0, zio_size_total = 0;
3056 	uint64_t seg_count_total = 0, zio_count_total = 0;
3057 
3058 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3059 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3060 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3061 
3062 		if (queue == NULL)
3063 			continue;
3064 
3065 		seg_size_total += queue->q_total_seg_size_this_txg;
3066 		zio_size_total += queue->q_total_zio_size_this_txg;
3067 		seg_count_total += queue->q_segs_this_txg;
3068 		zio_count_total += queue->q_zios_this_txg;
3069 	}
3070 
3071 	if (seg_count_total == 0 || zio_count_total == 0) {
3072 		scn->scn_avg_seg_size_this_txg = 0;
3073 		scn->scn_avg_zio_size_this_txg = 0;
3074 		scn->scn_segs_this_txg = 0;
3075 		scn->scn_zios_this_txg = 0;
3076 		return;
3077 	}
3078 
3079 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3080 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3081 	scn->scn_segs_this_txg = seg_count_total;
3082 	scn->scn_zios_this_txg = zio_count_total;
3083 }
3084 
3085 static int
3086 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3087 {
3088 	dsl_scan_t *scn = arg;
3089 	const dva_t *dva = &bp->blk_dva[0];
3090 
3091 	if (dsl_scan_async_block_should_pause(scn))
3092 		return (SET_ERROR(ERESTART));
3093 
3094 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3095 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3096 	    DVA_GET_ASIZE(dva), tx);
3097 	scn->scn_visited_this_txg++;
3098 	return (0);
3099 }
3100 
3101 boolean_t
3102 dsl_scan_active(dsl_scan_t *scn)
3103 {
3104 	spa_t *spa = scn->scn_dp->dp_spa;
3105 	uint64_t used = 0, comp, uncomp;
3106 
3107 	if (spa->spa_load_state != SPA_LOAD_NONE)
3108 		return (B_FALSE);
3109 	if (spa_shutting_down(spa))
3110 		return (B_FALSE);
3111 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3112 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3113 		return (B_TRUE);
3114 
3115 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3116 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3117 		    &used, &comp, &uncomp);
3118 	}
3119 	return (used != 0);
3120 }
3121 
3122 static boolean_t
3123 dsl_scan_check_deferred(vdev_t *vd)
3124 {
3125 	boolean_t need_resilver = B_FALSE;
3126 
3127 	for (int c = 0; c < vd->vdev_children; c++) {
3128 		need_resilver |=
3129 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3130 	}
3131 
3132 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3133 	    !vd->vdev_ops->vdev_op_leaf)
3134 		return (need_resilver);
3135 
3136 	if (!vd->vdev_resilver_deferred)
3137 		need_resilver = B_TRUE;
3138 
3139 	return (need_resilver);
3140 }
3141 
3142 static boolean_t
3143 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3144     uint64_t phys_birth)
3145 {
3146 	vdev_t *vd;
3147 
3148 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3149 
3150 	if (vd->vdev_ops == &vdev_indirect_ops) {
3151 		/*
3152 		 * The indirect vdev can point to multiple
3153 		 * vdevs.  For simplicity, always create
3154 		 * the resilver zio_t. zio_vdev_io_start()
3155 		 * will bypass the child resilver i/o's if
3156 		 * they are on vdevs that don't have DTL's.
3157 		 */
3158 		return (B_TRUE);
3159 	}
3160 
3161 	if (DVA_GET_GANG(dva)) {
3162 		/*
3163 		 * Gang members may be spread across multiple
3164 		 * vdevs, so the best estimate we have is the
3165 		 * scrub range, which has already been checked.
3166 		 * XXX -- it would be better to change our
3167 		 * allocation policy to ensure that all
3168 		 * gang members reside on the same vdev.
3169 		 */
3170 		return (B_TRUE);
3171 	}
3172 
3173 	/*
3174 	 * Check if the txg falls within the range which must be
3175 	 * resilvered.  DVAs outside this range can always be skipped.
3176 	 */
3177 	if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3178 		return (B_FALSE);
3179 
3180 	/*
3181 	 * Check if the top-level vdev must resilver this offset.
3182 	 * When the offset does not intersect with a dirty leaf DTL
3183 	 * then it may be possible to skip the resilver IO.  The psize
3184 	 * is provided instead of asize to simplify the check for RAIDZ.
3185 	 */
3186 	if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
3187 		return (B_FALSE);
3188 
3189 	/*
3190 	 * Check that this top-level vdev has a device under it which
3191 	 * is resilvering and is not deferred.
3192 	 */
3193 	if (!dsl_scan_check_deferred(vd))
3194 		return (B_FALSE);
3195 
3196 	return (B_TRUE);
3197 }
3198 
3199 static int
3200 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3201 {
3202 	int err = 0;
3203 	dsl_scan_t *scn = dp->dp_scan;
3204 	spa_t *spa = dp->dp_spa;
3205 
3206 	if (spa_suspend_async_destroy(spa))
3207 		return (0);
3208 
3209 	if (zfs_free_bpobj_enabled &&
3210 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3211 		scn->scn_is_bptree = B_FALSE;
3212 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3213 		scn->scn_zio_root = zio_root(spa, NULL,
3214 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3215 		err = bpobj_iterate(&dp->dp_free_bpobj,
3216 		    dsl_scan_free_block_cb, scn, tx);
3217 		VERIFY0(zio_wait(scn->scn_zio_root));
3218 		scn->scn_zio_root = NULL;
3219 
3220 		if (err != 0 && err != ERESTART)
3221 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3222 	}
3223 
3224 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3225 		ASSERT(scn->scn_async_destroying);
3226 		scn->scn_is_bptree = B_TRUE;
3227 		scn->scn_zio_root = zio_root(spa, NULL,
3228 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3229 		err = bptree_iterate(dp->dp_meta_objset,
3230 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3231 		VERIFY0(zio_wait(scn->scn_zio_root));
3232 		scn->scn_zio_root = NULL;
3233 
3234 		if (err == EIO || err == ECKSUM) {
3235 			err = 0;
3236 		} else if (err != 0 && err != ERESTART) {
3237 			zfs_panic_recover("error %u from "
3238 			    "traverse_dataset_destroyed()", err);
3239 		}
3240 
3241 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3242 			/* finished; deactivate async destroy feature */
3243 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3244 			ASSERT(!spa_feature_is_active(spa,
3245 			    SPA_FEATURE_ASYNC_DESTROY));
3246 			VERIFY0(zap_remove(dp->dp_meta_objset,
3247 			    DMU_POOL_DIRECTORY_OBJECT,
3248 			    DMU_POOL_BPTREE_OBJ, tx));
3249 			VERIFY0(bptree_free(dp->dp_meta_objset,
3250 			    dp->dp_bptree_obj, tx));
3251 			dp->dp_bptree_obj = 0;
3252 			scn->scn_async_destroying = B_FALSE;
3253 			scn->scn_async_stalled = B_FALSE;
3254 		} else {
3255 			/*
3256 			 * If we didn't make progress, mark the async
3257 			 * destroy as stalled, so that we will not initiate
3258 			 * a spa_sync() on its behalf.  Note that we only
3259 			 * check this if we are not finished, because if the
3260 			 * bptree had no blocks for us to visit, we can
3261 			 * finish without "making progress".
3262 			 */
3263 			scn->scn_async_stalled =
3264 			    (scn->scn_visited_this_txg == 0);
3265 		}
3266 	}
3267 	if (scn->scn_visited_this_txg) {
3268 		zfs_dbgmsg("freed %llu blocks in %llums from "
3269 		    "free_bpobj/bptree txg %llu; err=%d",
3270 		    (longlong_t)scn->scn_visited_this_txg,
3271 		    (longlong_t)
3272 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3273 		    (longlong_t)tx->tx_txg, err);
3274 		scn->scn_visited_this_txg = 0;
3275 
3276 		/*
3277 		 * Write out changes to the DDT that may be required as a
3278 		 * result of the blocks freed.  This ensures that the DDT
3279 		 * is clean when a scrub/resilver runs.
3280 		 */
3281 		ddt_sync(spa, tx->tx_txg);
3282 	}
3283 	if (err != 0)
3284 		return (err);
3285 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3286 	    zfs_free_leak_on_eio &&
3287 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3288 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3289 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3290 		/*
3291 		 * We have finished background destroying, but there is still
3292 		 * some space left in the dp_free_dir. Transfer this leaked
3293 		 * space to the dp_leak_dir.
3294 		 */
3295 		if (dp->dp_leak_dir == NULL) {
3296 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3297 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3298 			    LEAK_DIR_NAME, tx);
3299 			VERIFY0(dsl_pool_open_special_dir(dp,
3300 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3301 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3302 		}
3303 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3304 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3305 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3306 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3307 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3308 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3309 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3310 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3311 	}
3312 
3313 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) {
3314 		/* finished; verify that space accounting went to zero */
3315 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3316 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3317 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3318 	}
3319 
3320 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3321 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3322 	    DMU_POOL_OBSOLETE_BPOBJ));
3323 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3324 		ASSERT(spa_feature_is_active(dp->dp_spa,
3325 		    SPA_FEATURE_OBSOLETE_COUNTS));
3326 
3327 		scn->scn_is_bptree = B_FALSE;
3328 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3329 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3330 		    dsl_scan_obsolete_block_cb, scn, tx);
3331 		if (err != 0 && err != ERESTART)
3332 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3333 
3334 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3335 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3336 	}
3337 
3338 	return (0);
3339 }
3340 
3341 /*
3342  * This is the primary entry point for scans that is called from syncing
3343  * context. Scans must happen entirely during syncing context so that we
3344  * cna guarantee that blocks we are currently scanning will not change out
3345  * from under us. While a scan is active, this funciton controls how quickly
3346  * transaction groups proceed, instead of the normal handling provided by
3347  * txg_sync_thread().
3348  */
3349 void
3350 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3351 {
3352 	dsl_scan_t *scn = dp->dp_scan;
3353 	spa_t *spa = dp->dp_spa;
3354 	int err = 0;
3355 	state_sync_type_t sync_type = SYNC_OPTIONAL;
3356 
3357 	if (spa->spa_resilver_deferred &&
3358 	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3359 		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3360 
3361 	/*
3362 	 * Check for scn_restart_txg before checking spa_load_state, so
3363 	 * that we can restart an old-style scan while the pool is being
3364 	 * imported (see dsl_scan_init). We also restart scans if there
3365 	 * is a deferred resilver and the user has manually disabled
3366 	 * deferred resilvers via the tunable.
3367 	 */
3368 	if (dsl_scan_restarting(scn, tx) ||
3369 	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3370 		pool_scan_func_t func = POOL_SCAN_SCRUB;
3371 		dsl_scan_done(scn, B_FALSE, tx);
3372 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3373 			func = POOL_SCAN_RESILVER;
3374 		zfs_dbgmsg("restarting scan func=%u txg=%llu",
3375 		    func, (longlong_t)tx->tx_txg);
3376 		dsl_scan_setup_sync(&func, tx);
3377 	}
3378 
3379 	/*
3380 	 * Only process scans in sync pass 1.
3381 	 */
3382 	if (spa_sync_pass(dp->dp_spa) > 1)
3383 		return;
3384 
3385 	/*
3386 	 * If the spa is shutting down, then stop scanning. This will
3387 	 * ensure that the scan does not dirty any new data during the
3388 	 * shutdown phase.
3389 	 */
3390 	if (spa_shutting_down(spa))
3391 		return;
3392 
3393 	/*
3394 	 * If the scan is inactive due to a stalled async destroy, try again.
3395 	 */
3396 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3397 		return;
3398 
3399 	/* reset scan statistics */
3400 	scn->scn_visited_this_txg = 0;
3401 	scn->scn_holes_this_txg = 0;
3402 	scn->scn_lt_min_this_txg = 0;
3403 	scn->scn_gt_max_this_txg = 0;
3404 	scn->scn_ddt_contained_this_txg = 0;
3405 	scn->scn_objsets_visited_this_txg = 0;
3406 	scn->scn_avg_seg_size_this_txg = 0;
3407 	scn->scn_segs_this_txg = 0;
3408 	scn->scn_avg_zio_size_this_txg = 0;
3409 	scn->scn_zios_this_txg = 0;
3410 	scn->scn_suspending = B_FALSE;
3411 	scn->scn_sync_start_time = gethrtime();
3412 	spa->spa_scrub_active = B_TRUE;
3413 
3414 	/*
3415 	 * First process the async destroys.  If we pause, don't do
3416 	 * any scrubbing or resilvering.  This ensures that there are no
3417 	 * async destroys while we are scanning, so the scan code doesn't
3418 	 * have to worry about traversing it.  It is also faster to free the
3419 	 * blocks than to scrub them.
3420 	 */
3421 	err = dsl_process_async_destroys(dp, tx);
3422 	if (err != 0)
3423 		return;
3424 
3425 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3426 		return;
3427 
3428 	/*
3429 	 * Wait a few txgs after importing to begin scanning so that
3430 	 * we can get the pool imported quickly.
3431 	 */
3432 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3433 		return;
3434 
3435 	/*
3436 	 * zfs_scan_suspend_progress can be set to disable scan progress.
3437 	 * We don't want to spin the txg_sync thread, so we add a delay
3438 	 * here to simulate the time spent doing a scan. This is mostly
3439 	 * useful for testing and debugging.
3440 	 */
3441 	if (zfs_scan_suspend_progress) {
3442 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3443 		int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3444 		    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3445 
3446 		while (zfs_scan_suspend_progress &&
3447 		    !txg_sync_waiting(scn->scn_dp) &&
3448 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
3449 		    NSEC2MSEC(scan_time_ns) < mintime) {
3450 			delay(hz);
3451 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3452 		}
3453 		return;
3454 	}
3455 
3456 	/*
3457 	 * It is possible to switch from unsorted to sorted at any time,
3458 	 * but afterwards the scan will remain sorted unless reloaded from
3459 	 * a checkpoint after a reboot.
3460 	 */
3461 	if (!zfs_scan_legacy) {
3462 		scn->scn_is_sorted = B_TRUE;
3463 		if (scn->scn_last_checkpoint == 0)
3464 			scn->scn_last_checkpoint = ddi_get_lbolt();
3465 	}
3466 
3467 	/*
3468 	 * For sorted scans, determine what kind of work we will be doing
3469 	 * this txg based on our memory limitations and whether or not we
3470 	 * need to perform a checkpoint.
3471 	 */
3472 	if (scn->scn_is_sorted) {
3473 		/*
3474 		 * If we are over our checkpoint interval, set scn_clearing
3475 		 * so that we can begin checkpointing immediately. The
3476 		 * checkpoint allows us to save a consisent bookmark
3477 		 * representing how much data we have scrubbed so far.
3478 		 * Otherwise, use the memory limit to determine if we should
3479 		 * scan for metadata or start issue scrub IOs. We accumulate
3480 		 * metadata until we hit our hard memory limit at which point
3481 		 * we issue scrub IOs until we are at our soft memory limit.
3482 		 */
3483 		if (scn->scn_checkpointing ||
3484 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
3485 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3486 			if (!scn->scn_checkpointing)
3487 				zfs_dbgmsg("begin scan checkpoint");
3488 
3489 			scn->scn_checkpointing = B_TRUE;
3490 			scn->scn_clearing = B_TRUE;
3491 		} else {
3492 			boolean_t should_clear = dsl_scan_should_clear(scn);
3493 			if (should_clear && !scn->scn_clearing) {
3494 				zfs_dbgmsg("begin scan clearing");
3495 				scn->scn_clearing = B_TRUE;
3496 			} else if (!should_clear && scn->scn_clearing) {
3497 				zfs_dbgmsg("finish scan clearing");
3498 				scn->scn_clearing = B_FALSE;
3499 			}
3500 		}
3501 	} else {
3502 		ASSERT0(scn->scn_checkpointing);
3503 		ASSERT0(scn->scn_clearing);
3504 	}
3505 
3506 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3507 		/* Need to scan metadata for more blocks to scrub */
3508 		dsl_scan_phys_t *scnp = &scn->scn_phys;
3509 		taskqid_t prefetch_tqid;
3510 		uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3511 		uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3512 
3513 		/*
3514 		 * Calculate the max number of in-flight bytes for pool-wide
3515 		 * scanning operations (minimum 1MB). Limits for the issuing
3516 		 * phase are done per top-level vdev and are handled separately.
3517 		 */
3518 		scn->scn_maxinflight_bytes =
3519 		    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3520 
3521 		if (scnp->scn_ddt_bookmark.ddb_class <=
3522 		    scnp->scn_ddt_class_max) {
3523 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3524 			zfs_dbgmsg("doing scan sync txg %llu; "
3525 			    "ddt bm=%llu/%llu/%llu/%llx",
3526 			    (longlong_t)tx->tx_txg,
3527 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3528 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3529 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3530 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3531 		} else {
3532 			zfs_dbgmsg("doing scan sync txg %llu; "
3533 			    "bm=%llu/%llu/%llu/%llu",
3534 			    (longlong_t)tx->tx_txg,
3535 			    (longlong_t)scnp->scn_bookmark.zb_objset,
3536 			    (longlong_t)scnp->scn_bookmark.zb_object,
3537 			    (longlong_t)scnp->scn_bookmark.zb_level,
3538 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
3539 		}
3540 
3541 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3542 		    NULL, ZIO_FLAG_CANFAIL);
3543 
3544 		scn->scn_prefetch_stop = B_FALSE;
3545 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3546 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3547 		ASSERT(prefetch_tqid != TASKQID_INVALID);
3548 
3549 		dsl_pool_config_enter(dp, FTAG);
3550 		dsl_scan_visit(scn, tx);
3551 		dsl_pool_config_exit(dp, FTAG);
3552 
3553 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
3554 		scn->scn_prefetch_stop = B_TRUE;
3555 		cv_broadcast(&spa->spa_scrub_io_cv);
3556 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
3557 
3558 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3559 		(void) zio_wait(scn->scn_zio_root);
3560 		scn->scn_zio_root = NULL;
3561 
3562 		zfs_dbgmsg("scan visited %llu blocks in %llums "
3563 		    "(%llu os's, %llu holes, %llu < mintxg, "
3564 		    "%llu in ddt, %llu > maxtxg)",
3565 		    (longlong_t)scn->scn_visited_this_txg,
3566 		    (longlong_t)NSEC2MSEC(gethrtime() -
3567 		    scn->scn_sync_start_time),
3568 		    (longlong_t)scn->scn_objsets_visited_this_txg,
3569 		    (longlong_t)scn->scn_holes_this_txg,
3570 		    (longlong_t)scn->scn_lt_min_this_txg,
3571 		    (longlong_t)scn->scn_ddt_contained_this_txg,
3572 		    (longlong_t)scn->scn_gt_max_this_txg);
3573 
3574 		if (!scn->scn_suspending) {
3575 			ASSERT0(avl_numnodes(&scn->scn_queue));
3576 			scn->scn_done_txg = tx->tx_txg + 1;
3577 			if (scn->scn_is_sorted) {
3578 				scn->scn_checkpointing = B_TRUE;
3579 				scn->scn_clearing = B_TRUE;
3580 			}
3581 			zfs_dbgmsg("scan complete txg %llu",
3582 			    (longlong_t)tx->tx_txg);
3583 		}
3584 	} else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3585 		ASSERT(scn->scn_clearing);
3586 
3587 		/* need to issue scrubbing IOs from per-vdev queues */
3588 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3589 		    NULL, ZIO_FLAG_CANFAIL);
3590 		scan_io_queues_run(scn);
3591 		(void) zio_wait(scn->scn_zio_root);
3592 		scn->scn_zio_root = NULL;
3593 
3594 		/* calculate and dprintf the current memory usage */
3595 		(void) dsl_scan_should_clear(scn);
3596 		dsl_scan_update_stats(scn);
3597 
3598 		zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums "
3599 		    "(avg_block_size = %llu, avg_seg_size = %llu)",
3600 		    (longlong_t)scn->scn_zios_this_txg,
3601 		    (longlong_t)scn->scn_segs_this_txg,
3602 		    (longlong_t)NSEC2MSEC(gethrtime() -
3603 		    scn->scn_sync_start_time),
3604 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
3605 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
3606 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3607 		/* Finished with everything. Mark the scrub as complete */
3608 		zfs_dbgmsg("scan issuing complete txg %llu",
3609 		    (longlong_t)tx->tx_txg);
3610 		ASSERT3U(scn->scn_done_txg, !=, 0);
3611 		ASSERT0(spa->spa_scrub_inflight);
3612 		ASSERT0(scn->scn_bytes_pending);
3613 		dsl_scan_done(scn, B_TRUE, tx);
3614 		sync_type = SYNC_MANDATORY;
3615 	}
3616 
3617 	dsl_scan_sync_state(scn, tx, sync_type);
3618 }
3619 
3620 static void
3621 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3622 {
3623 	int i;
3624 
3625 	/*
3626 	 * Don't count embedded bp's, since we already did the work of
3627 	 * scanning these when we scanned the containing block.
3628 	 */
3629 	if (BP_IS_EMBEDDED(bp))
3630 		return;
3631 
3632 	/*
3633 	 * Update the spa's stats on how many bytes we have issued.
3634 	 * Sequential scrubs create a zio for each DVA of the bp. Each
3635 	 * of these will include all DVAs for repair purposes, but the
3636 	 * zio code will only try the first one unless there is an issue.
3637 	 * Therefore, we should only count the first DVA for these IOs.
3638 	 */
3639 	if (scn->scn_is_sorted) {
3640 		atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3641 		    DVA_GET_ASIZE(&bp->blk_dva[0]));
3642 	} else {
3643 		spa_t *spa = scn->scn_dp->dp_spa;
3644 
3645 		for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3646 			atomic_add_64(&spa->spa_scan_pass_issued,
3647 			    DVA_GET_ASIZE(&bp->blk_dva[i]));
3648 		}
3649 	}
3650 
3651 	/*
3652 	 * If we resume after a reboot, zab will be NULL; don't record
3653 	 * incomplete stats in that case.
3654 	 */
3655 	if (zab == NULL)
3656 		return;
3657 
3658 	mutex_enter(&zab->zab_lock);
3659 
3660 	for (i = 0; i < 4; i++) {
3661 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3662 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3663 		if (t & DMU_OT_NEWTYPE)
3664 			t = DMU_OT_OTHER;
3665 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
3666 		int equal;
3667 
3668 		zb->zb_count++;
3669 		zb->zb_asize += BP_GET_ASIZE(bp);
3670 		zb->zb_lsize += BP_GET_LSIZE(bp);
3671 		zb->zb_psize += BP_GET_PSIZE(bp);
3672 		zb->zb_gangs += BP_COUNT_GANG(bp);
3673 
3674 		switch (BP_GET_NDVAS(bp)) {
3675 		case 2:
3676 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3677 			    DVA_GET_VDEV(&bp->blk_dva[1]))
3678 				zb->zb_ditto_2_of_2_samevdev++;
3679 			break;
3680 		case 3:
3681 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3682 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
3683 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3684 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
3685 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3686 			    DVA_GET_VDEV(&bp->blk_dva[2]));
3687 			if (equal == 1)
3688 				zb->zb_ditto_2_of_3_samevdev++;
3689 			else if (equal == 3)
3690 				zb->zb_ditto_3_of_3_samevdev++;
3691 			break;
3692 		}
3693 	}
3694 
3695 	mutex_exit(&zab->zab_lock);
3696 }
3697 
3698 static void
3699 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3700 {
3701 	avl_index_t idx;
3702 	int64_t asize = SIO_GET_ASIZE(sio);
3703 	dsl_scan_t *scn = queue->q_scn;
3704 
3705 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3706 
3707 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3708 		/* block is already scheduled for reading */
3709 		atomic_add_64(&scn->scn_bytes_pending, -asize);
3710 		sio_free(sio);
3711 		return;
3712 	}
3713 	avl_insert(&queue->q_sios_by_addr, sio, idx);
3714 	queue->q_sio_memused += SIO_GET_MUSED(sio);
3715 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3716 }
3717 
3718 /*
3719  * Given all the info we got from our metadata scanning process, we
3720  * construct a scan_io_t and insert it into the scan sorting queue. The
3721  * I/O must already be suitable for us to process. This is controlled
3722  * by dsl_scan_enqueue().
3723  */
3724 static void
3725 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3726     int zio_flags, const zbookmark_phys_t *zb)
3727 {
3728 	dsl_scan_t *scn = queue->q_scn;
3729 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3730 
3731 	ASSERT0(BP_IS_GANG(bp));
3732 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3733 
3734 	bp2sio(bp, sio, dva_i);
3735 	sio->sio_flags = zio_flags;
3736 	sio->sio_zb = *zb;
3737 
3738 	/*
3739 	 * Increment the bytes pending counter now so that we can't
3740 	 * get an integer underflow in case the worker processes the
3741 	 * zio before we get to incrementing this counter.
3742 	 */
3743 	atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3744 
3745 	scan_io_queue_insert_impl(queue, sio);
3746 }
3747 
3748 /*
3749  * Given a set of I/O parameters as discovered by the metadata traversal
3750  * process, attempts to place the I/O into the sorted queues (if allowed),
3751  * or immediately executes the I/O.
3752  */
3753 static void
3754 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3755     const zbookmark_phys_t *zb)
3756 {
3757 	spa_t *spa = dp->dp_spa;
3758 
3759 	ASSERT(!BP_IS_EMBEDDED(bp));
3760 
3761 	/*
3762 	 * Gang blocks are hard to issue sequentially, so we just issue them
3763 	 * here immediately instead of queuing them.
3764 	 */
3765 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3766 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
3767 		return;
3768 	}
3769 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3770 		dva_t dva;
3771 		vdev_t *vdev;
3772 
3773 		dva = bp->blk_dva[i];
3774 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3775 		ASSERT(vdev != NULL);
3776 
3777 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
3778 		if (vdev->vdev_scan_io_queue == NULL)
3779 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3780 		ASSERT(dp->dp_scan != NULL);
3781 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3782 		    i, zio_flags, zb);
3783 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
3784 	}
3785 }
3786 
3787 static int
3788 dsl_scan_scrub_cb(dsl_pool_t *dp,
3789     const blkptr_t *bp, const zbookmark_phys_t *zb)
3790 {
3791 	dsl_scan_t *scn = dp->dp_scan;
3792 	spa_t *spa = dp->dp_spa;
3793 	uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3794 	size_t psize = BP_GET_PSIZE(bp);
3795 	boolean_t needs_io;
3796 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3797 	int d;
3798 
3799 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
3800 	    phys_birth >= scn->scn_phys.scn_max_txg) {
3801 		count_block(scn, dp->dp_blkstats, bp);
3802 		return (0);
3803 	}
3804 
3805 	/* Embedded BP's have phys_birth==0, so we reject them above. */
3806 	ASSERT(!BP_IS_EMBEDDED(bp));
3807 
3808 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3809 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3810 		zio_flags |= ZIO_FLAG_SCRUB;
3811 		needs_io = B_TRUE;
3812 	} else {
3813 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3814 		zio_flags |= ZIO_FLAG_RESILVER;
3815 		needs_io = B_FALSE;
3816 	}
3817 
3818 	/* If it's an intent log block, failure is expected. */
3819 	if (zb->zb_level == ZB_ZIL_LEVEL)
3820 		zio_flags |= ZIO_FLAG_SPECULATIVE;
3821 
3822 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
3823 		const dva_t *dva = &bp->blk_dva[d];
3824 
3825 		/*
3826 		 * Keep track of how much data we've examined so that
3827 		 * zpool(1M) status can make useful progress reports.
3828 		 */
3829 		scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3830 		spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3831 
3832 		/* if it's a resilver, this may not be in the target range */
3833 		if (!needs_io)
3834 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
3835 			    phys_birth);
3836 	}
3837 
3838 	if (needs_io && !zfs_no_scrub_io) {
3839 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
3840 	} else {
3841 		count_block(scn, dp->dp_blkstats, bp);
3842 	}
3843 
3844 	/* do not relocate this block */
3845 	return (0);
3846 }
3847 
3848 static void
3849 dsl_scan_scrub_done(zio_t *zio)
3850 {
3851 	spa_t *spa = zio->io_spa;
3852 	blkptr_t *bp = zio->io_bp;
3853 	dsl_scan_io_queue_t *queue = zio->io_private;
3854 
3855 	abd_free(zio->io_abd);
3856 
3857 	if (queue == NULL) {
3858 		mutex_enter(&spa->spa_scrub_lock);
3859 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
3860 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
3861 		cv_broadcast(&spa->spa_scrub_io_cv);
3862 		mutex_exit(&spa->spa_scrub_lock);
3863 	} else {
3864 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
3865 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
3866 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
3867 		cv_broadcast(&queue->q_zio_cv);
3868 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
3869 	}
3870 
3871 	if (zio->io_error && (zio->io_error != ECKSUM ||
3872 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
3873 		atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
3874 	}
3875 }
3876 
3877 /*
3878  * Given a scanning zio's information, executes the zio. The zio need
3879  * not necessarily be only sortable, this function simply executes the
3880  * zio, no matter what it is. The optional queue argument allows the
3881  * caller to specify that they want per top level vdev IO rate limiting
3882  * instead of the legacy global limiting.
3883  */
3884 static void
3885 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3886     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
3887 {
3888 	spa_t *spa = dp->dp_spa;
3889 	dsl_scan_t *scn = dp->dp_scan;
3890 	size_t size = BP_GET_PSIZE(bp);
3891 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
3892 
3893 	if (queue == NULL) {
3894 		mutex_enter(&spa->spa_scrub_lock);
3895 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
3896 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3897 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
3898 		mutex_exit(&spa->spa_scrub_lock);
3899 	} else {
3900 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3901 
3902 		mutex_enter(q_lock);
3903 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
3904 			cv_wait(&queue->q_zio_cv, q_lock);
3905 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
3906 		mutex_exit(q_lock);
3907 	}
3908 
3909 	count_block(dp->dp_scan, dp->dp_blkstats, bp);
3910 	zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size,
3911 	    dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
3912 }
3913 
3914 /*
3915  * This is the primary extent sorting algorithm. We balance two parameters:
3916  * 1) how many bytes of I/O are in an extent
3917  * 2) how well the extent is filled with I/O (as a fraction of its total size)
3918  * Since we allow extents to have gaps between their constituent I/Os, it's
3919  * possible to have a fairly large extent that contains the same amount of
3920  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
3921  * The algorithm sorts based on a score calculated from the extent's size,
3922  * the relative fill volume (in %) and a "fill weight" parameter that controls
3923  * the split between whether we prefer larger extents or more well populated
3924  * extents:
3925  *
3926  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
3927  *
3928  * Example:
3929  * 1) assume extsz = 64 MiB
3930  * 2) assume fill = 32 MiB (extent is half full)
3931  * 3) assume fill_weight = 3
3932  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
3933  *	SCORE = 32M + (50 * 3 * 32M) / 100
3934  *	SCORE = 32M + (4800M / 100)
3935  *	SCORE = 32M + 48M
3936  *		^	^
3937  *		|	+--- final total relative fill-based score
3938  *		+--------- final total fill-based score
3939  *	SCORE = 80M
3940  *
3941  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
3942  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
3943  * Note that as an optimization, we replace multiplication and division by
3944  * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128).
3945  */
3946 static int
3947 ext_size_compare(const void *x, const void *y)
3948 {
3949 	const range_seg_t *rsa = x, *rsb = y;
3950 	uint64_t sa = rsa->rs_end - rsa->rs_start,
3951 	    sb = rsb->rs_end - rsb->rs_start;
3952 	uint64_t score_a, score_b;
3953 
3954 	score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
3955 	    fill_weight * rsa->rs_fill) >> 7);
3956 	score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
3957 	    fill_weight * rsb->rs_fill) >> 7);
3958 
3959 	if (score_a > score_b)
3960 		return (-1);
3961 	if (score_a == score_b) {
3962 		if (rsa->rs_start < rsb->rs_start)
3963 			return (-1);
3964 		if (rsa->rs_start == rsb->rs_start)
3965 			return (0);
3966 		return (1);
3967 	}
3968 	return (1);
3969 }
3970 
3971 /*
3972  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
3973  * based on LBA-order (from lowest to highest).
3974  */
3975 static int
3976 sio_addr_compare(const void *x, const void *y)
3977 {
3978 	const scan_io_t *a = x, *b = y;
3979 
3980 	return (AVL_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
3981 }
3982 
3983 /* IO queues are created on demand when they are needed. */
3984 static dsl_scan_io_queue_t *
3985 scan_io_queue_create(vdev_t *vd)
3986 {
3987 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3988 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
3989 
3990 	q->q_scn = scn;
3991 	q->q_vd = vd;
3992 	q->q_sio_memused = 0;
3993 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
3994 	q->q_exts_by_addr = range_tree_create_impl(&rt_avl_ops,
3995 	    &q->q_exts_by_size, ext_size_compare, zfs_scan_max_ext_gap);
3996 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
3997 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
3998 
3999 	return (q);
4000 }
4001 
4002 /*
4003  * Destroys a scan queue and all segments and scan_io_t's contained in it.
4004  * No further execution of I/O occurs, anything pending in the queue is
4005  * simply freed without being executed.
4006  */
4007 void
4008 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4009 {
4010 	dsl_scan_t *scn = queue->q_scn;
4011 	scan_io_t *sio;
4012 	void *cookie = NULL;
4013 	int64_t bytes_dequeued = 0;
4014 
4015 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4016 
4017 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4018 	    NULL) {
4019 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
4020 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4021 		bytes_dequeued += SIO_GET_ASIZE(sio);
4022 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4023 		sio_free(sio);
4024 	}
4025 
4026 	ASSERT0(queue->q_sio_memused);
4027 	atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
4028 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4029 	range_tree_destroy(queue->q_exts_by_addr);
4030 	avl_destroy(&queue->q_sios_by_addr);
4031 	cv_destroy(&queue->q_zio_cv);
4032 
4033 	kmem_free(queue, sizeof (*queue));
4034 }
4035 
4036 /*
4037  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4038  * called on behalf of vdev_top_transfer when creating or destroying
4039  * a mirror vdev due to zpool attach/detach.
4040  */
4041 void
4042 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4043 {
4044 	mutex_enter(&svd->vdev_scan_io_queue_lock);
4045 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
4046 
4047 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4048 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4049 	svd->vdev_scan_io_queue = NULL;
4050 	if (tvd->vdev_scan_io_queue != NULL)
4051 		tvd->vdev_scan_io_queue->q_vd = tvd;
4052 
4053 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
4054 	mutex_exit(&svd->vdev_scan_io_queue_lock);
4055 }
4056 
4057 static void
4058 scan_io_queues_destroy(dsl_scan_t *scn)
4059 {
4060 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4061 
4062 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4063 		vdev_t *tvd = rvd->vdev_child[i];
4064 
4065 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
4066 		if (tvd->vdev_scan_io_queue != NULL)
4067 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4068 		tvd->vdev_scan_io_queue = NULL;
4069 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
4070 	}
4071 }
4072 
4073 static void
4074 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4075 {
4076 	dsl_pool_t *dp = spa->spa_dsl_pool;
4077 	dsl_scan_t *scn = dp->dp_scan;
4078 	vdev_t *vdev;
4079 	kmutex_t *q_lock;
4080 	dsl_scan_io_queue_t *queue;
4081 	scan_io_t *srch_sio, *sio;
4082 	avl_index_t idx;
4083 	uint64_t start, size;
4084 
4085 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4086 	ASSERT(vdev != NULL);
4087 	q_lock = &vdev->vdev_scan_io_queue_lock;
4088 	queue = vdev->vdev_scan_io_queue;
4089 
4090 	mutex_enter(q_lock);
4091 	if (queue == NULL) {
4092 		mutex_exit(q_lock);
4093 		return;
4094 	}
4095 
4096 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4097 	bp2sio(bp, srch_sio, dva_i);
4098 	start = SIO_GET_OFFSET(srch_sio);
4099 	size = SIO_GET_ASIZE(srch_sio);
4100 
4101 	/*
4102 	 * We can find the zio in two states:
4103 	 * 1) Cold, just sitting in the queue of zio's to be issued at
4104 	 *	some point in the future. In this case, all we do is
4105 	 *	remove the zio from the q_sios_by_addr tree, decrement
4106 	 *	its data volume from the containing range_seg_t and
4107 	 *	resort the q_exts_by_size tree to reflect that the
4108 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
4109 	 *	the range_seg_t - this is usually rare enough not to be
4110 	 *	worth the extra hassle of trying keep track of precise
4111 	 *	extent boundaries.
4112 	 * 2) Hot, where the zio is currently in-flight in
4113 	 *	dsl_scan_issue_ios. In this case, we can't simply
4114 	 *	reach in and stop the in-flight zio's, so we instead
4115 	 *	block the caller. Eventually, dsl_scan_issue_ios will
4116 	 *	be done with issuing the zio's it gathered and will
4117 	 *	signal us.
4118 	 */
4119 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4120 	sio_free(srch_sio);
4121 
4122 	if (sio != NULL) {
4123 		int64_t asize = SIO_GET_ASIZE(sio);
4124 		blkptr_t tmpbp;
4125 
4126 		/* Got it while it was cold in the queue */
4127 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4128 		ASSERT3U(size, ==, asize);
4129 		avl_remove(&queue->q_sios_by_addr, sio);
4130 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4131 
4132 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4133 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4134 
4135 		/*
4136 		 * We only update scn_bytes_pending in the cold path,
4137 		 * otherwise it will already have been accounted for as
4138 		 * part of the zio's execution.
4139 		 */
4140 		atomic_add_64(&scn->scn_bytes_pending, -asize);
4141 
4142 		/* count the block as though we issued it */
4143 		sio2bp(sio, &tmpbp);
4144 		count_block(scn, dp->dp_blkstats, &tmpbp);
4145 
4146 		sio_free(sio);
4147 	}
4148 	mutex_exit(q_lock);
4149 }
4150 
4151 /*
4152  * Callback invoked when a zio_free() zio is executing. This needs to be
4153  * intercepted to prevent the zio from deallocating a particular portion
4154  * of disk space and it then getting reallocated and written to, while we
4155  * still have it queued up for processing.
4156  */
4157 void
4158 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4159 {
4160 	dsl_pool_t *dp = spa->spa_dsl_pool;
4161 	dsl_scan_t *scn = dp->dp_scan;
4162 
4163 	ASSERT(!BP_IS_EMBEDDED(bp));
4164 	ASSERT(scn != NULL);
4165 	if (!dsl_scan_is_running(scn))
4166 		return;
4167 
4168 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4169 		dsl_scan_freed_dva(spa, bp, i);
4170 }
4171