xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_scan.c (revision 0bc0887e1cf0f912077b83256f295ad0ed1c715c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
26  * Copyright 2017 Joyent, Inc.
27  * Copyright (c) 2017 Datto Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/ddt.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/range_tree.h>
55 #ifdef _KERNEL
56 #include <sys/zfs_vfsops.h>
57 #endif
58 
59 /*
60  * Grand theory statement on scan queue sorting
61  *
62  * Scanning is implemented by recursively traversing all indirection levels
63  * in an object and reading all blocks referenced from said objects. This
64  * results in us approximately traversing the object from lowest logical
65  * offset to the highest. For best performance, we would want the logical
66  * blocks to be physically contiguous. However, this is frequently not the
67  * case with pools given the allocation patterns of copy-on-write filesystems.
68  * So instead, we put the I/Os into a reordering queue and issue them in a
69  * way that will most benefit physical disks (LBA-order).
70  *
71  * Queue management:
72  *
73  * Ideally, we would want to scan all metadata and queue up all block I/O
74  * prior to starting to issue it, because that allows us to do an optimal
75  * sorting job. This can however consume large amounts of memory. Therefore
76  * we continuously monitor the size of the queues and constrain them to 5%
77  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78  * limit, we clear out a few of the largest extents at the head of the queues
79  * to make room for more scanning. Hopefully, these extents will be fairly
80  * large and contiguous, allowing us to approach sequential I/O throughput
81  * even without a fully sorted tree.
82  *
83  * Metadata scanning takes place in dsl_scan_visit(), which is called from
84  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85  * metadata on the pool, or we need to make room in memory because our
86  * queues are too large, dsl_scan_visit() is postponed and
87  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88  * that metadata scanning and queued I/O issuing are mutually exclusive. This
89  * allows us to provide maximum sequential I/O throughput for the majority of
90  * I/O's issued since sequential I/O performance is significantly negatively
91  * impacted if it is interleaved with random I/O.
92  *
93  * Implementation Notes
94  *
95  * One side effect of the queued scanning algorithm is that the scanning code
96  * needs to be notified whenever a block is freed. This is needed to allow
97  * the scanning code to remove these I/Os from the issuing queue. Additionally,
98  * we do not attempt to queue gang blocks to be issued sequentially since this
99  * is very hard to do and would have an extremely limited performance benefit.
100  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
101  * algorithm.
102  *
103  * Backwards compatibility
104  *
105  * This new algorithm is backwards compatible with the legacy on-disk data
106  * structures (and therefore does not require a new feature flag).
107  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108  * will stop scanning metadata (in logical order) and wait for all outstanding
109  * sorted I/O to complete. Once this is done, we write out a checkpoint
110  * bookmark, indicating that we have scanned everything logically before it.
111  * If the pool is imported on a machine without the new sorting algorithm,
112  * the scan simply resumes from the last checkpoint using the legacy algorithm.
113  */
114 
115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
116     const zbookmark_phys_t *);
117 
118 static scan_cb_t dsl_scan_scrub_cb;
119 
120 static int scan_ds_queue_compare(const void *a, const void *b);
121 static int scan_prefetch_queue_compare(const void *a, const void *b);
122 static void scan_ds_queue_clear(dsl_scan_t *scn);
123 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
124     uint64_t *txg);
125 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
126 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
127 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
128 
129 extern int zfs_vdev_async_write_active_min_dirty_percent;
130 
131 /*
132  * By default zfs will check to ensure it is not over the hard memory
133  * limit before each txg. If finer-grained control of this is needed
134  * this value can be set to 1 to enable checking before scanning each
135  * block.
136  */
137 int zfs_scan_strict_mem_lim = B_FALSE;
138 
139 /*
140  * Maximum number of parallelly executing I/Os per top-level vdev.
141  * Tune with care. Very high settings (hundreds) are known to trigger
142  * some firmware bugs and resets on certain SSDs.
143  */
144 int zfs_top_maxinflight = 32;		/* maximum I/Os per top-level */
145 unsigned int zfs_resilver_delay = 2;	/* number of ticks to delay resilver */
146 unsigned int zfs_scrub_delay = 4;	/* number of ticks to delay scrub */
147 unsigned int zfs_scan_idle = 50;	/* idle window in clock ticks */
148 
149 /*
150  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
151  * to strike a balance here between keeping the vdev queues full of I/Os
152  * at all times and not overflowing the queues to cause long latency,
153  * which would cause long txg sync times. No matter what, we will not
154  * overload the drives with I/O, since that is protected by
155  * zfs_vdev_scrub_max_active.
156  */
157 unsigned long zfs_scan_vdev_limit = 4 << 20;
158 
159 int zfs_scan_issue_strategy = 0;
160 int zfs_scan_legacy = B_FALSE;	/* don't queue & sort zios, go direct */
161 uint64_t zfs_scan_max_ext_gap = 2 << 20;	/* in bytes */
162 
163 unsigned int zfs_scan_checkpoint_intval = 7200;	/* seconds */
164 #define	ZFS_SCAN_CHECKPOINT_INTVAL	SEC_TO_TICK(zfs_scan_checkpoint_intval)
165 
166 /*
167  * fill_weight is non-tunable at runtime, so we copy it at module init from
168  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
169  * break queue sorting.
170  */
171 uint64_t zfs_scan_fill_weight = 3;
172 static uint64_t fill_weight;
173 
174 /* See dsl_scan_should_clear() for details on the memory limit tunables */
175 uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
176 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
177 int zfs_scan_mem_lim_fact = 20;		/* fraction of physmem */
178 int zfs_scan_mem_lim_soft_fact = 20;	/* fraction of mem lim above */
179 
180 unsigned int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
181 unsigned int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
182 /* min millisecs to obsolete per txg */
183 unsigned int zfs_obsolete_min_time_ms = 500;
184 /* min millisecs to resilver per txg */
185 unsigned int zfs_resilver_min_time_ms = 3000;
186 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
187 boolean_t zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
188 boolean_t zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
189 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
190 /* max number of blocks to free in a single TXG */
191 uint64_t zfs_async_block_max_blocks = UINT64_MAX;
192 
193 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
194 
195 /*
196  * We wait a few txgs after importing a pool to begin scanning so that
197  * the import / mounting code isn't held up by scrub / resilver IO.
198  * Unfortunately, it is a bit difficult to determine exactly how long
199  * this will take since userspace will trigger fs mounts asynchronously
200  * and the kernel will create zvol minors asynchronously. As a result,
201  * the value provided here is a bit arbitrary, but represents a
202  * reasonable estimate of how many txgs it will take to finish fully
203  * importing a pool
204  */
205 #define	SCAN_IMPORT_WAIT_TXGS		5
206 
207 
208 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
209 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
210 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
211 
212 extern int zfs_txg_timeout;
213 
214 /*
215  * Enable/disable the processing of the free_bpobj object.
216  */
217 boolean_t zfs_free_bpobj_enabled = B_TRUE;
218 
219 /* the order has to match pool_scan_type */
220 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
221 	NULL,
222 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
223 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
224 };
225 
226 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
227 typedef struct {
228 	uint64_t	sds_dsobj;
229 	uint64_t	sds_txg;
230 	avl_node_t	sds_node;
231 } scan_ds_t;
232 
233 /*
234  * This controls what conditions are placed on dsl_scan_sync_state():
235  * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
236  * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
237  * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
238  *	write out the scn_phys_cached version.
239  * See dsl_scan_sync_state for details.
240  */
241 typedef enum {
242 	SYNC_OPTIONAL,
243 	SYNC_MANDATORY,
244 	SYNC_CACHED
245 } state_sync_type_t;
246 
247 /*
248  * This struct represents the minimum information needed to reconstruct a
249  * zio for sequential scanning. This is useful because many of these will
250  * accumulate in the sequential IO queues before being issued, so saving
251  * memory matters here.
252  */
253 typedef struct scan_io {
254 	/* fields from blkptr_t */
255 	uint64_t		sio_blk_prop;
256 	uint64_t		sio_phys_birth;
257 	uint64_t		sio_birth;
258 	zio_cksum_t		sio_cksum;
259 	uint32_t		sio_nr_dvas;
260 
261 	/* fields from zio_t */
262 	uint32_t		sio_flags;
263 	zbookmark_phys_t	sio_zb;
264 
265 	/* members for queue sorting */
266 	union {
267 		avl_node_t	sio_addr_node; /* link into issuing queue */
268 		list_node_t	sio_list_node; /* link for issuing to disk */
269 	} sio_nodes;
270 
271 	/*
272 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
273 	 * depending on how many were in the original bp. Only the
274 	 * first DVA is really used for sorting and issuing purposes.
275 	 * The other DVAs (if provided) simply exist so that the zio
276 	 * layer can find additional copies to repair from in the
277 	 * event of an error. This array must go at the end of the
278 	 * struct to allow this for the variable number of elements.
279 	 */
280 	dva_t			sio_dva[0];
281 } scan_io_t;
282 
283 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
284 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
285 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
286 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
287 #define	SIO_GET_END_OFFSET(sio)		\
288 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
289 #define	SIO_GET_MUSED(sio)		\
290 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
291 
292 struct dsl_scan_io_queue {
293 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
294 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
295 
296 	/* trees used for sorting I/Os and extents of I/Os */
297 	range_tree_t	*q_exts_by_addr;
298 	avl_tree_t	q_exts_by_size;
299 	avl_tree_t	q_sios_by_addr;
300 	uint64_t	q_sio_memused;
301 
302 	/* members for zio rate limiting */
303 	uint64_t	q_maxinflight_bytes;
304 	uint64_t	q_inflight_bytes;
305 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
306 
307 	/* per txg statistics */
308 	uint64_t	q_total_seg_size_this_txg;
309 	uint64_t	q_segs_this_txg;
310 	uint64_t	q_total_zio_size_this_txg;
311 	uint64_t	q_zios_this_txg;
312 };
313 
314 /* private data for dsl_scan_prefetch_cb() */
315 typedef struct scan_prefetch_ctx {
316 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
317 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
318 	boolean_t spc_root;		/* is this prefetch for an objset? */
319 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
320 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
321 } scan_prefetch_ctx_t;
322 
323 /* private data for dsl_scan_prefetch() */
324 typedef struct scan_prefetch_issue_ctx {
325 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
326 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
327 	blkptr_t spic_bp;		/* bp to prefetch */
328 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
329 } scan_prefetch_issue_ctx_t;
330 
331 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
332     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
333 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
334     scan_io_t *sio);
335 
336 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
337 static void scan_io_queues_destroy(dsl_scan_t *scn);
338 
339 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
340 
341 /* sio->sio_nr_dvas must be set so we know which cache to free from */
342 static void
343 sio_free(scan_io_t *sio)
344 {
345 	ASSERT3U(sio->sio_nr_dvas, >, 0);
346 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
347 
348 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
349 }
350 
351 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
352 static scan_io_t *
353 sio_alloc(unsigned short nr_dvas)
354 {
355 	ASSERT3U(nr_dvas, >, 0);
356 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
357 
358 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
359 }
360 
361 void
362 scan_init(void)
363 {
364 	/*
365 	 * This is used in ext_size_compare() to weight segments
366 	 * based on how sparse they are. This cannot be changed
367 	 * mid-scan and the tree comparison functions don't currently
368 	 * have a mechansim for passing additional context to the
369 	 * compare functions. Thus we store this value globally and
370 	 * we only allow it to be set at module intiailization time
371 	 */
372 	fill_weight = zfs_scan_fill_weight;
373 
374 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
375 		char name[36];
376 
377 		(void) sprintf(name, "sio_cache_%d", i);
378 		sio_cache[i] = kmem_cache_create(name,
379 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
380 		    0, NULL, NULL, NULL, NULL, NULL, 0);
381 	}
382 }
383 
384 void
385 scan_fini(void)
386 {
387 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
388 		kmem_cache_destroy(sio_cache[i]);
389 	}
390 }
391 
392 static inline boolean_t
393 dsl_scan_is_running(const dsl_scan_t *scn)
394 {
395 	return (scn->scn_phys.scn_state == DSS_SCANNING);
396 }
397 
398 boolean_t
399 dsl_scan_resilvering(dsl_pool_t *dp)
400 {
401 	return (dsl_scan_is_running(dp->dp_scan) &&
402 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
403 }
404 
405 static inline void
406 sio2bp(const scan_io_t *sio, blkptr_t *bp)
407 {
408 	bzero(bp, sizeof (*bp));
409 	bp->blk_prop = sio->sio_blk_prop;
410 	bp->blk_phys_birth = sio->sio_phys_birth;
411 	bp->blk_birth = sio->sio_birth;
412 	bp->blk_fill = 1;	/* we always only work with data pointers */
413 	bp->blk_cksum = sio->sio_cksum;
414 
415 	ASSERT3U(sio->sio_nr_dvas, >, 0);
416 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
417 
418 	bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
419 }
420 
421 static inline void
422 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
423 {
424 	sio->sio_blk_prop = bp->blk_prop;
425 	sio->sio_phys_birth = bp->blk_phys_birth;
426 	sio->sio_birth = bp->blk_birth;
427 	sio->sio_cksum = bp->blk_cksum;
428 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
429 
430 	/*
431 	 * Copy the DVAs to the sio. We need all copies of the block so
432 	 * that the self healing code can use the alternate copies if the
433 	 * first is corrupted. We want the DVA at index dva_i to be first
434 	 * in the sio since this is the primary one that we want to issue.
435 	 */
436 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
437 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
438 	}
439 }
440 
441 int
442 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
443 {
444 	int err;
445 	dsl_scan_t *scn;
446 	spa_t *spa = dp->dp_spa;
447 	uint64_t f;
448 
449 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
450 	scn->scn_dp = dp;
451 
452 	/*
453 	 * It's possible that we're resuming a scan after a reboot so
454 	 * make sure that the scan_async_destroying flag is initialized
455 	 * appropriately.
456 	 */
457 	ASSERT(!scn->scn_async_destroying);
458 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
459 	    SPA_FEATURE_ASYNC_DESTROY);
460 
461 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
462 	    offsetof(scan_ds_t, sds_node));
463 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
464 	    sizeof (scan_prefetch_issue_ctx_t),
465 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
466 
467 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
468 	    "scrub_func", sizeof (uint64_t), 1, &f);
469 	if (err == 0) {
470 		/*
471 		 * There was an old-style scrub in progress.  Restart a
472 		 * new-style scrub from the beginning.
473 		 */
474 		scn->scn_restart_txg = txg;
475 		zfs_dbgmsg("old-style scrub was in progress; "
476 		    "restarting new-style scrub in txg %llu",
477 		    (longlong_t)scn->scn_restart_txg);
478 
479 		/*
480 		 * Load the queue obj from the old location so that it
481 		 * can be freed by dsl_scan_done().
482 		 */
483 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
484 		    "scrub_queue", sizeof (uint64_t), 1,
485 		    &scn->scn_phys.scn_queue_obj);
486 	} else {
487 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
488 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
489 		    &scn->scn_phys);
490 		if (err == ENOENT)
491 			return (0);
492 		else if (err)
493 			return (err);
494 
495 		/*
496 		 * We might be restarting after a reboot, so jump the issued
497 		 * counter to how far we've scanned. We know we're consistent
498 		 * up to here.
499 		 */
500 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
501 
502 		if (dsl_scan_is_running(scn) &&
503 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
504 			/*
505 			 * A new-type scrub was in progress on an old
506 			 * pool, and the pool was accessed by old
507 			 * software.  Restart from the beginning, since
508 			 * the old software may have changed the pool in
509 			 * the meantime.
510 			 */
511 			scn->scn_restart_txg = txg;
512 			zfs_dbgmsg("new-style scrub was modified "
513 			    "by old software; restarting in txg %llu",
514 			    (longlong_t)scn->scn_restart_txg);
515 		}
516 	}
517 
518 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
519 
520 	/* reload the queue into the in-core state */
521 	if (scn->scn_phys.scn_queue_obj != 0) {
522 		zap_cursor_t zc;
523 		zap_attribute_t za;
524 
525 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
526 		    scn->scn_phys.scn_queue_obj);
527 		    zap_cursor_retrieve(&zc, &za) == 0;
528 		    (void) zap_cursor_advance(&zc)) {
529 			scan_ds_queue_insert(scn,
530 			    zfs_strtonum(za.za_name, NULL),
531 			    za.za_first_integer);
532 		}
533 		zap_cursor_fini(&zc);
534 	}
535 
536 	spa_scan_stat_init(spa);
537 	return (0);
538 }
539 
540 void
541 dsl_scan_fini(dsl_pool_t *dp)
542 {
543 	if (dp->dp_scan != NULL) {
544 		dsl_scan_t *scn = dp->dp_scan;
545 
546 		if (scn->scn_taskq != NULL)
547 			taskq_destroy(scn->scn_taskq);
548 		scan_ds_queue_clear(scn);
549 		avl_destroy(&scn->scn_queue);
550 		avl_destroy(&scn->scn_prefetch_queue);
551 
552 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
553 		dp->dp_scan = NULL;
554 	}
555 }
556 
557 static boolean_t
558 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
559 {
560 	return (scn->scn_restart_txg != 0 &&
561 	    scn->scn_restart_txg <= tx->tx_txg);
562 }
563 
564 boolean_t
565 dsl_scan_scrubbing(const dsl_pool_t *dp)
566 {
567 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
568 
569 	return (scn_phys->scn_state == DSS_SCANNING &&
570 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
571 }
572 
573 boolean_t
574 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
575 {
576 	return (dsl_scan_scrubbing(scn->scn_dp) &&
577 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
578 }
579 
580 /*
581  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
582  * Because we can be running in the block sorting algorithm, we do not always
583  * want to write out the record, only when it is "safe" to do so. This safety
584  * condition is achieved by making sure that the sorting queues are empty
585  * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
586  * is inconsistent with how much actual scanning progress has been made. The
587  * kind of sync to be performed is specified by the sync_type argument. If the
588  * sync is optional, we only sync if the queues are empty. If the sync is
589  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
590  * third possible state is a "cached" sync. This is done in response to:
591  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
592  *	destroyed, so we wouldn't be able to restart scanning from it.
593  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
594  *	superseded by a newer snapshot.
595  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
596  *	swapped with its clone.
597  * In all cases, a cached sync simply rewrites the last record we've written,
598  * just slightly modified. For the modifications that are performed to the
599  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
600  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
601  */
602 static void
603 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
604 {
605 	int i;
606 	spa_t *spa = scn->scn_dp->dp_spa;
607 
608 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
609 	if (scn->scn_bytes_pending == 0) {
610 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
611 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
612 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
613 
614 			if (q == NULL)
615 				continue;
616 
617 			mutex_enter(&vd->vdev_scan_io_queue_lock);
618 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
619 			ASSERT3P(avl_first(&q->q_exts_by_size), ==, NULL);
620 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
621 			mutex_exit(&vd->vdev_scan_io_queue_lock);
622 		}
623 
624 		if (scn->scn_phys.scn_queue_obj != 0)
625 			scan_ds_queue_sync(scn, tx);
626 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
627 		    DMU_POOL_DIRECTORY_OBJECT,
628 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
629 		    &scn->scn_phys, tx));
630 		bcopy(&scn->scn_phys, &scn->scn_phys_cached,
631 		    sizeof (scn->scn_phys));
632 
633 		if (scn->scn_checkpointing)
634 			zfs_dbgmsg("finish scan checkpoint");
635 
636 		scn->scn_checkpointing = B_FALSE;
637 		scn->scn_last_checkpoint = ddi_get_lbolt();
638 	} else if (sync_type == SYNC_CACHED) {
639 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
640 		    DMU_POOL_DIRECTORY_OBJECT,
641 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
642 		    &scn->scn_phys_cached, tx));
643 	}
644 }
645 
646 /* ARGSUSED */
647 static int
648 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
649 {
650 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
651 
652 	if (dsl_scan_is_running(scn))
653 		return (SET_ERROR(EBUSY));
654 
655 	return (0);
656 }
657 
658 static void
659 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
660 {
661 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
662 	pool_scan_func_t *funcp = arg;
663 	dmu_object_type_t ot = 0;
664 	dsl_pool_t *dp = scn->scn_dp;
665 	spa_t *spa = dp->dp_spa;
666 
667 	ASSERT(!dsl_scan_is_running(scn));
668 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
669 	bzero(&scn->scn_phys, sizeof (scn->scn_phys));
670 	scn->scn_phys.scn_func = *funcp;
671 	scn->scn_phys.scn_state = DSS_SCANNING;
672 	scn->scn_phys.scn_min_txg = 0;
673 	scn->scn_phys.scn_max_txg = tx->tx_txg;
674 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
675 	scn->scn_phys.scn_start_time = gethrestime_sec();
676 	scn->scn_phys.scn_errors = 0;
677 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
678 	scn->scn_issued_before_pass = 0;
679 	scn->scn_restart_txg = 0;
680 	scn->scn_done_txg = 0;
681 	scn->scn_last_checkpoint = 0;
682 	scn->scn_checkpointing = B_FALSE;
683 	spa_scan_stat_init(spa);
684 
685 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
686 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
687 
688 		/* rewrite all disk labels */
689 		vdev_config_dirty(spa->spa_root_vdev);
690 
691 		if (vdev_resilver_needed(spa->spa_root_vdev,
692 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
693 			spa_event_notify(spa, NULL, NULL,
694 			    ESC_ZFS_RESILVER_START);
695 		} else {
696 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
697 		}
698 
699 		spa->spa_scrub_started = B_TRUE;
700 		/*
701 		 * If this is an incremental scrub, limit the DDT scrub phase
702 		 * to just the auto-ditto class (for correctness); the rest
703 		 * of the scrub should go faster using top-down pruning.
704 		 */
705 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
706 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
707 
708 	}
709 
710 	/* back to the generic stuff */
711 
712 	if (dp->dp_blkstats == NULL) {
713 		dp->dp_blkstats =
714 		    kmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
715 		mutex_init(&dp->dp_blkstats->zab_lock, NULL,
716 		    MUTEX_DEFAULT, NULL);
717 	}
718 	bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
719 
720 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
721 		ot = DMU_OT_ZAP_OTHER;
722 
723 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
724 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
725 
726 	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
727 
728 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
729 
730 	spa_history_log_internal(spa, "scan setup", tx,
731 	    "func=%u mintxg=%llu maxtxg=%llu",
732 	    *funcp, scn->scn_phys.scn_min_txg, scn->scn_phys.scn_max_txg);
733 }
734 
735 /*
736  * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
737  * Can also be called to resume a paused scrub.
738  */
739 int
740 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
741 {
742 	spa_t *spa = dp->dp_spa;
743 	dsl_scan_t *scn = dp->dp_scan;
744 
745 	/*
746 	 * Purge all vdev caches and probe all devices.  We do this here
747 	 * rather than in sync context because this requires a writer lock
748 	 * on the spa_config lock, which we can't do from sync context.  The
749 	 * spa_scrub_reopen flag indicates that vdev_open() should not
750 	 * attempt to start another scrub.
751 	 */
752 	spa_vdev_state_enter(spa, SCL_NONE);
753 	spa->spa_scrub_reopen = B_TRUE;
754 	vdev_reopen(spa->spa_root_vdev);
755 	spa->spa_scrub_reopen = B_FALSE;
756 	(void) spa_vdev_state_exit(spa, NULL, 0);
757 
758 	if (func == POOL_SCAN_RESILVER) {
759 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
760 		return (0);
761 	}
762 
763 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
764 		/* got scrub start cmd, resume paused scrub */
765 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
766 		    POOL_SCRUB_NORMAL);
767 		if (err == 0) {
768 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
769 			return (ECANCELED);
770 		}
771 		return (SET_ERROR(err));
772 	}
773 
774 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
775 	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
776 }
777 
778 /*
779  * Sets the resilver defer flag to B_FALSE on all leaf devs under vd. Returns
780  * B_TRUE if we have devices that need to be resilvered and are available to
781  * accept resilver I/Os.
782  */
783 static boolean_t
784 dsl_scan_clear_deferred(vdev_t *vd, dmu_tx_t *tx)
785 {
786 	boolean_t resilver_needed = B_FALSE;
787 	spa_t *spa = vd->vdev_spa;
788 
789 	for (int c = 0; c < vd->vdev_children; c++) {
790 		resilver_needed |=
791 		    dsl_scan_clear_deferred(vd->vdev_child[c], tx);
792 	}
793 
794 	if (vd == spa->spa_root_vdev &&
795 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
796 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
797 		vdev_config_dirty(vd);
798 		spa->spa_resilver_deferred = B_FALSE;
799 		return (resilver_needed);
800 	}
801 
802 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
803 	    !vd->vdev_ops->vdev_op_leaf)
804 		return (resilver_needed);
805 
806 	if (vd->vdev_resilver_deferred)
807 		vd->vdev_resilver_deferred = B_FALSE;
808 
809 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
810 	    vdev_resilver_needed(vd, NULL, NULL));
811 }
812 
813 /* ARGSUSED */
814 static void
815 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
816 {
817 	static const char *old_names[] = {
818 		"scrub_bookmark",
819 		"scrub_ddt_bookmark",
820 		"scrub_ddt_class_max",
821 		"scrub_queue",
822 		"scrub_min_txg",
823 		"scrub_max_txg",
824 		"scrub_func",
825 		"scrub_errors",
826 		NULL
827 	};
828 
829 	dsl_pool_t *dp = scn->scn_dp;
830 	spa_t *spa = dp->dp_spa;
831 	int i;
832 
833 	/* Remove any remnants of an old-style scrub. */
834 	for (i = 0; old_names[i]; i++) {
835 		(void) zap_remove(dp->dp_meta_objset,
836 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
837 	}
838 
839 	if (scn->scn_phys.scn_queue_obj != 0) {
840 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
841 		    scn->scn_phys.scn_queue_obj, tx));
842 		scn->scn_phys.scn_queue_obj = 0;
843 	}
844 	scan_ds_queue_clear(scn);
845 
846 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
847 
848 	/*
849 	 * If we were "restarted" from a stopped state, don't bother
850 	 * with anything else.
851 	 */
852 	if (!dsl_scan_is_running(scn)) {
853 		ASSERT(!scn->scn_is_sorted);
854 		return;
855 	}
856 
857 	if (scn->scn_is_sorted) {
858 		scan_io_queues_destroy(scn);
859 		scn->scn_is_sorted = B_FALSE;
860 
861 		if (scn->scn_taskq != NULL) {
862 			taskq_destroy(scn->scn_taskq);
863 			scn->scn_taskq = NULL;
864 		}
865 	}
866 
867 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
868 
869 	if (dsl_scan_restarting(scn, tx))
870 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
871 		    "errors=%llu", spa_get_errlog_size(spa));
872 	else if (!complete)
873 		spa_history_log_internal(spa, "scan cancelled", tx,
874 		    "errors=%llu", spa_get_errlog_size(spa));
875 	else
876 		spa_history_log_internal(spa, "scan done", tx,
877 		    "errors=%llu", spa_get_errlog_size(spa));
878 
879 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
880 		spa->spa_scrub_started = B_FALSE;
881 		spa->spa_scrub_active = B_FALSE;
882 
883 		/*
884 		 * If the scrub/resilver completed, update all DTLs to
885 		 * reflect this.  Whether it succeeded or not, vacate
886 		 * all temporary scrub DTLs.
887 		 *
888 		 * As the scrub does not currently support traversing
889 		 * data that have been freed but are part of a checkpoint,
890 		 * we don't mark the scrub as done in the DTLs as faults
891 		 * may still exist in those vdevs.
892 		 */
893 		if (complete &&
894 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
895 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
896 			    scn->scn_phys.scn_max_txg, B_TRUE);
897 
898 			spa_event_notify(spa, NULL, NULL,
899 			    scn->scn_phys.scn_min_txg ?
900 			    ESC_ZFS_RESILVER_FINISH : ESC_ZFS_SCRUB_FINISH);
901 		} else {
902 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
903 			    0, B_TRUE);
904 		}
905 		spa_errlog_rotate(spa);
906 
907 		/*
908 		 * We may have finished replacing a device.
909 		 * Let the async thread assess this and handle the detach.
910 		 */
911 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
912 
913 		/*
914 		 * Clear any deferred_resilver flags in the config.
915 		 * If there are drives that need resilvering, kick
916 		 * off an asynchronous request to start resilver.
917 		 * dsl_scan_clear_deferred() may update the config
918 		 * before the resilver can restart. In the event of
919 		 * a crash during this period, the spa loading code
920 		 * will find the drives that need to be resilvered
921 		 * when the machine reboots and start the resilver then.
922 		 */
923 		boolean_t resilver_needed =
924 		    dsl_scan_clear_deferred(spa->spa_root_vdev, tx);
925 		if (resilver_needed) {
926 			spa_history_log_internal(spa,
927 			    "starting deferred resilver", tx,
928 			    "errors=%llu", spa_get_errlog_size(spa));
929 			spa_async_request(spa, SPA_ASYNC_RESILVER);
930 		}
931 	}
932 
933 	scn->scn_phys.scn_end_time = gethrestime_sec();
934 
935 	ASSERT(!dsl_scan_is_running(scn));
936 }
937 
938 /* ARGSUSED */
939 static int
940 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
941 {
942 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
943 
944 	if (!dsl_scan_is_running(scn))
945 		return (SET_ERROR(ENOENT));
946 	return (0);
947 }
948 
949 /* ARGSUSED */
950 static void
951 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
952 {
953 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
954 
955 	dsl_scan_done(scn, B_FALSE, tx);
956 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
957 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
958 }
959 
960 int
961 dsl_scan_cancel(dsl_pool_t *dp)
962 {
963 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
964 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
965 }
966 
967 static int
968 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
969 {
970 	pool_scrub_cmd_t *cmd = arg;
971 	dsl_pool_t *dp = dmu_tx_pool(tx);
972 	dsl_scan_t *scn = dp->dp_scan;
973 
974 	if (*cmd == POOL_SCRUB_PAUSE) {
975 		/* can't pause a scrub when there is no in-progress scrub */
976 		if (!dsl_scan_scrubbing(dp))
977 			return (SET_ERROR(ENOENT));
978 
979 		/* can't pause a paused scrub */
980 		if (dsl_scan_is_paused_scrub(scn))
981 			return (SET_ERROR(EBUSY));
982 	} else if (*cmd != POOL_SCRUB_NORMAL) {
983 		return (SET_ERROR(ENOTSUP));
984 	}
985 
986 	return (0);
987 }
988 
989 static void
990 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
991 {
992 	pool_scrub_cmd_t *cmd = arg;
993 	dsl_pool_t *dp = dmu_tx_pool(tx);
994 	spa_t *spa = dp->dp_spa;
995 	dsl_scan_t *scn = dp->dp_scan;
996 
997 	if (*cmd == POOL_SCRUB_PAUSE) {
998 		/* can't pause a scrub when there is no in-progress scrub */
999 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1000 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1001 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1002 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1003 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1004 	} else {
1005 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1006 		if (dsl_scan_is_paused_scrub(scn)) {
1007 			/*
1008 			 * We need to keep track of how much time we spend
1009 			 * paused per pass so that we can adjust the scrub rate
1010 			 * shown in the output of 'zpool status'
1011 			 */
1012 			spa->spa_scan_pass_scrub_spent_paused +=
1013 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1014 			spa->spa_scan_pass_scrub_pause = 0;
1015 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1016 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1017 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1018 		}
1019 	}
1020 }
1021 
1022 /*
1023  * Set scrub pause/resume state if it makes sense to do so
1024  */
1025 int
1026 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1027 {
1028 	return (dsl_sync_task(spa_name(dp->dp_spa),
1029 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1030 	    ZFS_SPACE_CHECK_RESERVED));
1031 }
1032 
1033 
1034 /* start a new scan, or restart an existing one. */
1035 void
1036 dsl_resilver_restart(dsl_pool_t *dp, uint64_t txg)
1037 {
1038 	if (txg == 0) {
1039 		dmu_tx_t *tx;
1040 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1041 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1042 
1043 		txg = dmu_tx_get_txg(tx);
1044 		dp->dp_scan->scn_restart_txg = txg;
1045 		dmu_tx_commit(tx);
1046 	} else {
1047 		dp->dp_scan->scn_restart_txg = txg;
1048 	}
1049 	zfs_dbgmsg("restarting resilver txg=%llu", txg);
1050 }
1051 
1052 void
1053 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1054 {
1055 	zio_free(dp->dp_spa, txg, bp);
1056 }
1057 
1058 void
1059 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1060 {
1061 	ASSERT(dsl_pool_sync_context(dp));
1062 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1063 }
1064 
1065 static int
1066 scan_ds_queue_compare(const void *a, const void *b)
1067 {
1068 	const scan_ds_t *sds_a = a, *sds_b = b;
1069 
1070 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1071 		return (-1);
1072 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1073 		return (0);
1074 	return (1);
1075 }
1076 
1077 static void
1078 scan_ds_queue_clear(dsl_scan_t *scn)
1079 {
1080 	void *cookie = NULL;
1081 	scan_ds_t *sds;
1082 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1083 		kmem_free(sds, sizeof (*sds));
1084 	}
1085 }
1086 
1087 static boolean_t
1088 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1089 {
1090 	scan_ds_t srch, *sds;
1091 
1092 	srch.sds_dsobj = dsobj;
1093 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1094 	if (sds != NULL && txg != NULL)
1095 		*txg = sds->sds_txg;
1096 	return (sds != NULL);
1097 }
1098 
1099 static void
1100 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1101 {
1102 	scan_ds_t *sds;
1103 	avl_index_t where;
1104 
1105 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1106 	sds->sds_dsobj = dsobj;
1107 	sds->sds_txg = txg;
1108 
1109 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1110 	avl_insert(&scn->scn_queue, sds, where);
1111 }
1112 
1113 static void
1114 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1115 {
1116 	scan_ds_t srch, *sds;
1117 
1118 	srch.sds_dsobj = dsobj;
1119 
1120 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1121 	VERIFY(sds != NULL);
1122 	avl_remove(&scn->scn_queue, sds);
1123 	kmem_free(sds, sizeof (*sds));
1124 }
1125 
1126 static void
1127 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1128 {
1129 	dsl_pool_t *dp = scn->scn_dp;
1130 	spa_t *spa = dp->dp_spa;
1131 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1132 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1133 
1134 	ASSERT0(scn->scn_bytes_pending);
1135 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1136 
1137 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1138 	    scn->scn_phys.scn_queue_obj, tx));
1139 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1140 	    DMU_OT_NONE, 0, tx);
1141 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1142 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1143 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1144 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1145 		    sds->sds_txg, tx));
1146 	}
1147 }
1148 
1149 /*
1150  * Computes the memory limit state that we're currently in. A sorted scan
1151  * needs quite a bit of memory to hold the sorting queue, so we need to
1152  * reasonably constrain the size so it doesn't impact overall system
1153  * performance. We compute two limits:
1154  * 1) Hard memory limit: if the amount of memory used by the sorting
1155  *	queues on a pool gets above this value, we stop the metadata
1156  *	scanning portion and start issuing the queued up and sorted
1157  *	I/Os to reduce memory usage.
1158  *	This limit is calculated as a fraction of physmem (by default 5%).
1159  *	We constrain the lower bound of the hard limit to an absolute
1160  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1161  *	the upper bound to 5% of the total pool size - no chance we'll
1162  *	ever need that much memory, but just to keep the value in check.
1163  * 2) Soft memory limit: once we hit the hard memory limit, we start
1164  *	issuing I/O to reduce queue memory usage, but we don't want to
1165  *	completely empty out the queues, since we might be able to find I/Os
1166  *	that will fill in the gaps of our non-sequential IOs at some point
1167  *	in the future. So we stop the issuing of I/Os once the amount of
1168  *	memory used drops below the soft limit (at which point we stop issuing
1169  *	I/O and start scanning metadata again).
1170  *
1171  *	This limit is calculated by subtracting a fraction of the hard
1172  *	limit from the hard limit. By default this fraction is 5%, so
1173  *	the soft limit is 95% of the hard limit. We cap the size of the
1174  *	difference between the hard and soft limits at an absolute
1175  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1176  *	sufficient to not cause too frequent switching between the
1177  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1178  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1179  *	that should take at least a decent fraction of a second).
1180  */
1181 static boolean_t
1182 dsl_scan_should_clear(dsl_scan_t *scn)
1183 {
1184 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1185 	uint64_t mlim_hard, mlim_soft, mused;
1186 	uint64_t alloc = metaslab_class_get_alloc(spa_normal_class(
1187 	    scn->scn_dp->dp_spa));
1188 
1189 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1190 	    zfs_scan_mem_lim_min);
1191 	mlim_hard = MIN(mlim_hard, alloc / 20);
1192 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1193 	    zfs_scan_mem_lim_soft_max);
1194 	mused = 0;
1195 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1196 		vdev_t *tvd = rvd->vdev_child[i];
1197 		dsl_scan_io_queue_t *queue;
1198 
1199 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1200 		queue = tvd->vdev_scan_io_queue;
1201 		if (queue != NULL) {
1202 			/* # extents in exts_by_size = # in exts_by_addr */
1203 			mused += avl_numnodes(&queue->q_exts_by_size) *
1204 			    sizeof (range_seg_t) + queue->q_sio_memused;
1205 		}
1206 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1207 	}
1208 
1209 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1210 
1211 	if (mused == 0)
1212 		ASSERT0(scn->scn_bytes_pending);
1213 
1214 	/*
1215 	 * If we are above our hard limit, we need to clear out memory.
1216 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1217 	 * Otherwise, we should keep doing whatever we are currently doing.
1218 	 */
1219 	if (mused >= mlim_hard)
1220 		return (B_TRUE);
1221 	else if (mused < mlim_soft)
1222 		return (B_FALSE);
1223 	else
1224 		return (scn->scn_clearing);
1225 }
1226 
1227 static boolean_t
1228 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1229 {
1230 	/* we never skip user/group accounting objects */
1231 	if (zb && (int64_t)zb->zb_object < 0)
1232 		return (B_FALSE);
1233 
1234 	if (scn->scn_suspending)
1235 		return (B_TRUE); /* we're already suspending */
1236 
1237 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1238 		return (B_FALSE); /* we're resuming */
1239 
1240 	/* We only know how to resume from level-0 blocks. */
1241 	if (zb && zb->zb_level != 0)
1242 		return (B_FALSE);
1243 
1244 	/*
1245 	 * We suspend if:
1246 	 *  - we have scanned for at least the minimum time (default 1 sec
1247 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1248 	 *    dirty data that we are starting to write more quickly
1249 	 *    (default 30%), or someone is explicitly waiting for this txg
1250 	 *    to complete.
1251 	 *  or
1252 	 *  - the spa is shutting down because this pool is being exported
1253 	 *    or the machine is rebooting.
1254 	 *  or
1255 	 *  - the scan queue has reached its memory use limit
1256 	 */
1257 	hrtime_t curr_time_ns = gethrtime();
1258 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1259 	uint64_t sync_time_ns = curr_time_ns -
1260 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1261 
1262 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
1263 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1264 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1265 
1266 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1267 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
1268 	    txg_sync_waiting(scn->scn_dp) ||
1269 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1270 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1271 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1272 		if (zb) {
1273 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1274 			    (longlong_t)zb->zb_objset,
1275 			    (longlong_t)zb->zb_object,
1276 			    (longlong_t)zb->zb_level,
1277 			    (longlong_t)zb->zb_blkid);
1278 			scn->scn_phys.scn_bookmark = *zb;
1279 		} else {
1280 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1281 
1282 			dprintf("suspending at DDT bookmark "
1283 			    "%llx/%llx/%llx/%llx\n",
1284 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1285 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1286 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1287 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1288 		}
1289 		scn->scn_suspending = B_TRUE;
1290 		return (B_TRUE);
1291 	}
1292 	return (B_FALSE);
1293 }
1294 
1295 typedef struct zil_scan_arg {
1296 	dsl_pool_t	*zsa_dp;
1297 	zil_header_t	*zsa_zh;
1298 } zil_scan_arg_t;
1299 
1300 /* ARGSUSED */
1301 static int
1302 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1303 {
1304 	zil_scan_arg_t *zsa = arg;
1305 	dsl_pool_t *dp = zsa->zsa_dp;
1306 	dsl_scan_t *scn = dp->dp_scan;
1307 	zil_header_t *zh = zsa->zsa_zh;
1308 	zbookmark_phys_t zb;
1309 
1310 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1311 		return (0);
1312 
1313 	/*
1314 	 * One block ("stubby") can be allocated a long time ago; we
1315 	 * want to visit that one because it has been allocated
1316 	 * (on-disk) even if it hasn't been claimed (even though for
1317 	 * scrub there's nothing to do to it).
1318 	 */
1319 	if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1320 		return (0);
1321 
1322 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1323 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1324 
1325 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1326 	return (0);
1327 }
1328 
1329 /* ARGSUSED */
1330 static int
1331 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
1332 {
1333 	if (lrc->lrc_txtype == TX_WRITE) {
1334 		zil_scan_arg_t *zsa = arg;
1335 		dsl_pool_t *dp = zsa->zsa_dp;
1336 		dsl_scan_t *scn = dp->dp_scan;
1337 		zil_header_t *zh = zsa->zsa_zh;
1338 		lr_write_t *lr = (lr_write_t *)lrc;
1339 		blkptr_t *bp = &lr->lr_blkptr;
1340 		zbookmark_phys_t zb;
1341 
1342 		if (BP_IS_HOLE(bp) ||
1343 		    bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1344 			return (0);
1345 
1346 		/*
1347 		 * birth can be < claim_txg if this record's txg is
1348 		 * already txg sync'ed (but this log block contains
1349 		 * other records that are not synced)
1350 		 */
1351 		if (claim_txg == 0 || bp->blk_birth < claim_txg)
1352 			return (0);
1353 
1354 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1355 		    lr->lr_foid, ZB_ZIL_LEVEL,
1356 		    lr->lr_offset / BP_GET_LSIZE(bp));
1357 
1358 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1359 	}
1360 	return (0);
1361 }
1362 
1363 static void
1364 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1365 {
1366 	uint64_t claim_txg = zh->zh_claim_txg;
1367 	zil_scan_arg_t zsa = { dp, zh };
1368 	zilog_t *zilog;
1369 
1370 	ASSERT(spa_writeable(dp->dp_spa));
1371 
1372 	/*
1373 	 * We only want to visit blocks that have been claimed
1374 	 * but not yet replayed.
1375 	 */
1376 	if (claim_txg == 0)
1377 		return;
1378 
1379 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1380 
1381 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1382 	    claim_txg);
1383 
1384 	zil_free(zilog);
1385 }
1386 
1387 /*
1388  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1389  * here is to sort the AVL tree by the order each block will be needed.
1390  */
1391 static int
1392 scan_prefetch_queue_compare(const void *a, const void *b)
1393 {
1394 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1395 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1396 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1397 
1398 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1399 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1400 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1401 }
1402 
1403 static void
1404 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
1405 {
1406 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1407 		zfs_refcount_destroy(&spc->spc_refcnt);
1408 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1409 	}
1410 }
1411 
1412 static scan_prefetch_ctx_t *
1413 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
1414 {
1415 	scan_prefetch_ctx_t *spc;
1416 
1417 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1418 	zfs_refcount_create(&spc->spc_refcnt);
1419 	zfs_refcount_add(&spc->spc_refcnt, tag);
1420 	spc->spc_scn = scn;
1421 	if (dnp != NULL) {
1422 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1423 		spc->spc_indblkshift = dnp->dn_indblkshift;
1424 		spc->spc_root = B_FALSE;
1425 	} else {
1426 		spc->spc_datablkszsec = 0;
1427 		spc->spc_indblkshift = 0;
1428 		spc->spc_root = B_TRUE;
1429 	}
1430 
1431 	return (spc);
1432 }
1433 
1434 static void
1435 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
1436 {
1437 	zfs_refcount_add(&spc->spc_refcnt, tag);
1438 }
1439 
1440 static boolean_t
1441 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1442     const zbookmark_phys_t *zb)
1443 {
1444 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1445 	dnode_phys_t tmp_dnp;
1446 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1447 
1448 	if (zb->zb_objset != last_zb->zb_objset)
1449 		return (B_TRUE);
1450 	if ((int64_t)zb->zb_object < 0)
1451 		return (B_FALSE);
1452 
1453 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1454 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1455 
1456 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1457 		return (B_TRUE);
1458 
1459 	return (B_FALSE);
1460 }
1461 
1462 static void
1463 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1464 {
1465 	avl_index_t idx;
1466 	dsl_scan_t *scn = spc->spc_scn;
1467 	spa_t *spa = scn->scn_dp->dp_spa;
1468 	scan_prefetch_issue_ctx_t *spic;
1469 
1470 	if (zfs_no_scrub_prefetch)
1471 		return;
1472 
1473 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1474 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1475 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1476 		return;
1477 
1478 	if (dsl_scan_check_prefetch_resume(spc, zb))
1479 		return;
1480 
1481 	scan_prefetch_ctx_add_ref(spc, scn);
1482 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1483 	spic->spic_spc = spc;
1484 	spic->spic_bp = *bp;
1485 	spic->spic_zb = *zb;
1486 
1487 	/*
1488 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1489 	 * prioritize blocks that we will need first for the main traversal
1490 	 * thread.
1491 	 */
1492 	mutex_enter(&spa->spa_scrub_lock);
1493 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1494 		/* this block is already queued for prefetch */
1495 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1496 		scan_prefetch_ctx_rele(spc, scn);
1497 		mutex_exit(&spa->spa_scrub_lock);
1498 		return;
1499 	}
1500 
1501 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1502 	cv_broadcast(&spa->spa_scrub_io_cv);
1503 	mutex_exit(&spa->spa_scrub_lock);
1504 }
1505 
1506 static void
1507 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1508     uint64_t objset, uint64_t object)
1509 {
1510 	int i;
1511 	zbookmark_phys_t zb;
1512 	scan_prefetch_ctx_t *spc;
1513 
1514 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1515 		return;
1516 
1517 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1518 
1519 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1520 
1521 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1522 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1523 		zb.zb_blkid = i;
1524 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1525 	}
1526 
1527 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1528 		zb.zb_level = 0;
1529 		zb.zb_blkid = DMU_SPILL_BLKID;
1530 		dsl_scan_prefetch(spc, &dnp->dn_spill, &zb);
1531 	}
1532 
1533 	scan_prefetch_ctx_rele(spc, FTAG);
1534 }
1535 
1536 void
1537 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1538     arc_buf_t *buf, void *private)
1539 {
1540 	scan_prefetch_ctx_t *spc = private;
1541 	dsl_scan_t *scn = spc->spc_scn;
1542 	spa_t *spa = scn->scn_dp->dp_spa;
1543 
1544 	/* broadcast that the IO has completed for rate limitting purposes */
1545 	mutex_enter(&spa->spa_scrub_lock);
1546 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1547 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1548 	cv_broadcast(&spa->spa_scrub_io_cv);
1549 	mutex_exit(&spa->spa_scrub_lock);
1550 
1551 	/* if there was an error or we are done prefetching, just cleanup */
1552 	if (buf == NULL || scn->scn_suspending)
1553 		goto out;
1554 
1555 	if (BP_GET_LEVEL(bp) > 0) {
1556 		int i;
1557 		blkptr_t *cbp;
1558 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1559 		zbookmark_phys_t czb;
1560 
1561 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1562 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1563 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
1564 			dsl_scan_prefetch(spc, cbp, &czb);
1565 		}
1566 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1567 		dnode_phys_t *cdnp = buf->b_data;
1568 		int i;
1569 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1570 
1571 		for (i = 0, cdnp = buf->b_data; i < epb;
1572 		    i += cdnp->dn_extra_slots + 1,
1573 		    cdnp += cdnp->dn_extra_slots + 1) {
1574 			dsl_scan_prefetch_dnode(scn, cdnp,
1575 			    zb->zb_objset, zb->zb_blkid * epb + i);
1576 		}
1577 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1578 		objset_phys_t *osp = buf->b_data;
1579 
1580 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1581 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
1582 
1583 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1584 			dsl_scan_prefetch_dnode(scn,
1585 			    &osp->os_groupused_dnode, zb->zb_objset,
1586 			    DMU_GROUPUSED_OBJECT);
1587 			dsl_scan_prefetch_dnode(scn,
1588 			    &osp->os_userused_dnode, zb->zb_objset,
1589 			    DMU_USERUSED_OBJECT);
1590 		}
1591 	}
1592 
1593 out:
1594 	if (buf != NULL)
1595 		arc_buf_destroy(buf, private);
1596 	scan_prefetch_ctx_rele(spc, scn);
1597 }
1598 
1599 /* ARGSUSED */
1600 static void
1601 dsl_scan_prefetch_thread(void *arg)
1602 {
1603 	dsl_scan_t *scn = arg;
1604 	spa_t *spa = scn->scn_dp->dp_spa;
1605 	vdev_t *rvd = spa->spa_root_vdev;
1606 	uint64_t maxinflight = rvd->vdev_children * zfs_top_maxinflight;
1607 	scan_prefetch_issue_ctx_t *spic;
1608 
1609 	/* loop until we are told to stop */
1610 	while (!scn->scn_prefetch_stop) {
1611 		arc_flags_t flags = ARC_FLAG_NOWAIT |
1612 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1613 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1614 
1615 		mutex_enter(&spa->spa_scrub_lock);
1616 
1617 		/*
1618 		 * Wait until we have an IO to issue and are not above our
1619 		 * maximum in flight limit.
1620 		 */
1621 		while (!scn->scn_prefetch_stop &&
1622 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1623 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1624 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1625 		}
1626 
1627 		/* recheck if we should stop since we waited for the cv */
1628 		if (scn->scn_prefetch_stop) {
1629 			mutex_exit(&spa->spa_scrub_lock);
1630 			break;
1631 		}
1632 
1633 		/* remove the prefetch IO from the tree */
1634 		spic = avl_first(&scn->scn_prefetch_queue);
1635 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1636 		avl_remove(&scn->scn_prefetch_queue, spic);
1637 
1638 		mutex_exit(&spa->spa_scrub_lock);
1639 
1640 		/* issue the prefetch asynchronously */
1641 		(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1642 		    &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1643 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1644 
1645 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1646 	}
1647 
1648 	ASSERT(scn->scn_prefetch_stop);
1649 
1650 	/* free any prefetches we didn't get to complete */
1651 	mutex_enter(&spa->spa_scrub_lock);
1652 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1653 		avl_remove(&scn->scn_prefetch_queue, spic);
1654 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1655 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1656 	}
1657 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1658 	mutex_exit(&spa->spa_scrub_lock);
1659 }
1660 
1661 static boolean_t
1662 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1663     const zbookmark_phys_t *zb)
1664 {
1665 	/*
1666 	 * We never skip over user/group accounting objects (obj<0)
1667 	 */
1668 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1669 	    (int64_t)zb->zb_object >= 0) {
1670 		/*
1671 		 * If we already visited this bp & everything below (in
1672 		 * a prior txg sync), don't bother doing it again.
1673 		 */
1674 		if (zbookmark_subtree_completed(dnp, zb,
1675 		    &scn->scn_phys.scn_bookmark))
1676 			return (B_TRUE);
1677 
1678 		/*
1679 		 * If we found the block we're trying to resume from, or
1680 		 * we went past it to a different object, zero it out to
1681 		 * indicate that it's OK to start checking for suspending
1682 		 * again.
1683 		 */
1684 		if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
1685 		    zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
1686 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
1687 			    (longlong_t)zb->zb_objset,
1688 			    (longlong_t)zb->zb_object,
1689 			    (longlong_t)zb->zb_level,
1690 			    (longlong_t)zb->zb_blkid);
1691 			bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
1692 		}
1693 	}
1694 	return (B_FALSE);
1695 }
1696 
1697 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1698     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1699     dmu_objset_type_t ostype, dmu_tx_t *tx);
1700 static void dsl_scan_visitdnode(
1701     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1702     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1703 
1704 /*
1705  * Return nonzero on i/o error.
1706  * Return new buf to write out in *bufp.
1707  */
1708 static int
1709 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1710     dnode_phys_t *dnp, const blkptr_t *bp,
1711     const zbookmark_phys_t *zb, dmu_tx_t *tx)
1712 {
1713 	dsl_pool_t *dp = scn->scn_dp;
1714 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1715 	int err;
1716 
1717 	if (BP_GET_LEVEL(bp) > 0) {
1718 		arc_flags_t flags = ARC_FLAG_WAIT;
1719 		int i;
1720 		blkptr_t *cbp;
1721 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1722 		arc_buf_t *buf;
1723 
1724 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1725 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1726 		if (err) {
1727 			scn->scn_phys.scn_errors++;
1728 			return (err);
1729 		}
1730 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1731 			zbookmark_phys_t czb;
1732 
1733 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1734 			    zb->zb_level - 1,
1735 			    zb->zb_blkid * epb + i);
1736 			dsl_scan_visitbp(cbp, &czb, dnp,
1737 			    ds, scn, ostype, tx);
1738 		}
1739 		arc_buf_destroy(buf, &buf);
1740 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1741 		arc_flags_t flags = ARC_FLAG_WAIT;
1742 		dnode_phys_t *cdnp;
1743 		int i;
1744 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1745 		arc_buf_t *buf;
1746 
1747 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1748 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1749 		if (err) {
1750 			scn->scn_phys.scn_errors++;
1751 			return (err);
1752 		}
1753 		for (i = 0, cdnp = buf->b_data; i < epb;
1754 		    i += cdnp->dn_extra_slots + 1,
1755 		    cdnp += cdnp->dn_extra_slots + 1) {
1756 			dsl_scan_visitdnode(scn, ds, ostype,
1757 			    cdnp, zb->zb_blkid * epb + i, tx);
1758 		}
1759 
1760 		arc_buf_destroy(buf, &buf);
1761 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1762 		arc_flags_t flags = ARC_FLAG_WAIT;
1763 		objset_phys_t *osp;
1764 		arc_buf_t *buf;
1765 
1766 		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
1767 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1768 		if (err) {
1769 			scn->scn_phys.scn_errors++;
1770 			return (err);
1771 		}
1772 
1773 		osp = buf->b_data;
1774 
1775 		dsl_scan_visitdnode(scn, ds, osp->os_type,
1776 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1777 
1778 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1779 			/*
1780 			 * We also always visit user/group accounting
1781 			 * objects, and never skip them, even if we are
1782 			 * suspending.  This is necessary so that the space
1783 			 * deltas from this txg get integrated.
1784 			 */
1785 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1786 			    &osp->os_groupused_dnode,
1787 			    DMU_GROUPUSED_OBJECT, tx);
1788 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1789 			    &osp->os_userused_dnode,
1790 			    DMU_USERUSED_OBJECT, tx);
1791 		}
1792 		arc_buf_destroy(buf, &buf);
1793 	}
1794 
1795 	return (0);
1796 }
1797 
1798 static void
1799 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1800     dmu_objset_type_t ostype, dnode_phys_t *dnp,
1801     uint64_t object, dmu_tx_t *tx)
1802 {
1803 	int j;
1804 
1805 	for (j = 0; j < dnp->dn_nblkptr; j++) {
1806 		zbookmark_phys_t czb;
1807 
1808 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1809 		    dnp->dn_nlevels - 1, j);
1810 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
1811 		    &czb, dnp, ds, scn, ostype, tx);
1812 	}
1813 
1814 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1815 		zbookmark_phys_t czb;
1816 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1817 		    0, DMU_SPILL_BLKID);
1818 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1819 		    &czb, dnp, ds, scn, ostype, tx);
1820 	}
1821 }
1822 
1823 /*
1824  * The arguments are in this order because mdb can only print the
1825  * first 5; we want them to be useful.
1826  */
1827 static void
1828 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1829     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1830     dmu_objset_type_t ostype, dmu_tx_t *tx)
1831 {
1832 	dsl_pool_t *dp = scn->scn_dp;
1833 	blkptr_t *bp_toread = NULL;
1834 
1835 	if (dsl_scan_check_suspend(scn, zb))
1836 		return;
1837 
1838 	if (dsl_scan_check_resume(scn, dnp, zb))
1839 		return;
1840 
1841 	scn->scn_visited_this_txg++;
1842 
1843 	/*
1844 	 * This debugging is commented out to conserve stack space.  This
1845 	 * function is called recursively and the debugging addes several
1846 	 * bytes to the stack for each call.  It can be commented back in
1847 	 * if required to debug an issue in dsl_scan_visitbp().
1848 	 *
1849 	 * dprintf_bp(bp,
1850 	 *	"visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
1851 	 *	ds, ds ? ds->ds_object : 0,
1852 	 *	zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1853 	 *	bp);
1854 	 */
1855 
1856 	if (BP_IS_HOLE(bp)) {
1857 		scn->scn_holes_this_txg++;
1858 		return;
1859 	}
1860 
1861 	if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
1862 		scn->scn_lt_min_this_txg++;
1863 		return;
1864 	}
1865 
1866 	bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
1867 	*bp_toread = *bp;
1868 
1869 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
1870 		goto out;
1871 
1872 	/*
1873 	 * If dsl_scan_ddt() has already visited this block, it will have
1874 	 * already done any translations or scrubbing, so don't call the
1875 	 * callback again.
1876 	 */
1877 	if (ddt_class_contains(dp->dp_spa,
1878 	    scn->scn_phys.scn_ddt_class_max, bp)) {
1879 		scn->scn_ddt_contained_this_txg++;
1880 		goto out;
1881 	}
1882 
1883 	/*
1884 	 * If this block is from the future (after cur_max_txg), then we
1885 	 * are doing this on behalf of a deleted snapshot, and we will
1886 	 * revisit the future block on the next pass of this dataset.
1887 	 * Don't scan it now unless we need to because something
1888 	 * under it was modified.
1889 	 */
1890 	if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
1891 		scn->scn_gt_max_this_txg++;
1892 		goto out;
1893 	}
1894 
1895 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
1896 
1897 out:
1898 	kmem_free(bp_toread, sizeof (blkptr_t));
1899 }
1900 
1901 static void
1902 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
1903     dmu_tx_t *tx)
1904 {
1905 	zbookmark_phys_t zb;
1906 	scan_prefetch_ctx_t *spc;
1907 
1908 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
1909 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1910 
1911 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
1912 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
1913 		    zb.zb_objset, 0, 0, 0);
1914 	} else {
1915 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
1916 	}
1917 
1918 	scn->scn_objsets_visited_this_txg++;
1919 
1920 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
1921 	dsl_scan_prefetch(spc, bp, &zb);
1922 	scan_prefetch_ctx_rele(spc, FTAG);
1923 
1924 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
1925 
1926 	dprintf_ds(ds, "finished scan%s", "");
1927 }
1928 
1929 static void
1930 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
1931 {
1932 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
1933 		if (ds->ds_is_snapshot) {
1934 			/*
1935 			 * Note:
1936 			 *  - scn_cur_{min,max}_txg stays the same.
1937 			 *  - Setting the flag is not really necessary if
1938 			 *    scn_cur_max_txg == scn_max_txg, because there
1939 			 *    is nothing after this snapshot that we care
1940 			 *    about.  However, we set it anyway and then
1941 			 *    ignore it when we retraverse it in
1942 			 *    dsl_scan_visitds().
1943 			 */
1944 			scn_phys->scn_bookmark.zb_objset =
1945 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
1946 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
1947 			    "reset zb_objset to %llu",
1948 			    (u_longlong_t)ds->ds_object,
1949 			    (u_longlong_t)dsl_dataset_phys(ds)->
1950 			    ds_next_snap_obj);
1951 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
1952 		} else {
1953 			SET_BOOKMARK(&scn_phys->scn_bookmark,
1954 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
1955 			zfs_dbgmsg("destroying ds %llu; currently traversing; "
1956 			    "reset bookmark to -1,0,0,0",
1957 			    (u_longlong_t)ds->ds_object);
1958 		}
1959 	}
1960 }
1961 
1962 /*
1963  * Invoked when a dataset is destroyed. We need to make sure that:
1964  *
1965  * 1) If it is the dataset that was currently being scanned, we write
1966  *	a new dsl_scan_phys_t and marking the objset reference in it
1967  *	as destroyed.
1968  * 2) Remove it from the work queue, if it was present.
1969  *
1970  * If the dataset was actually a snapshot, instead of marking the dataset
1971  * as destroyed, we instead substitute the next snapshot in line.
1972  */
1973 void
1974 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
1975 {
1976 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1977 	dsl_scan_t *scn = dp->dp_scan;
1978 	uint64_t mintxg;
1979 
1980 	if (!dsl_scan_is_running(scn))
1981 		return;
1982 
1983 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
1984 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
1985 
1986 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
1987 		scan_ds_queue_remove(scn, ds->ds_object);
1988 		if (ds->ds_is_snapshot)
1989 			scan_ds_queue_insert(scn,
1990 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
1991 	}
1992 
1993 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
1994 	    ds->ds_object, &mintxg) == 0) {
1995 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
1996 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
1997 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
1998 		if (ds->ds_is_snapshot) {
1999 			/*
2000 			 * We keep the same mintxg; it could be >
2001 			 * ds_creation_txg if the previous snapshot was
2002 			 * deleted too.
2003 			 */
2004 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2005 			    scn->scn_phys.scn_queue_obj,
2006 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2007 			    mintxg, tx) == 0);
2008 			zfs_dbgmsg("destroying ds %llu; in queue; "
2009 			    "replacing with %llu",
2010 			    (u_longlong_t)ds->ds_object,
2011 			    (u_longlong_t)dsl_dataset_phys(ds)->
2012 			    ds_next_snap_obj);
2013 		} else {
2014 			zfs_dbgmsg("destroying ds %llu; in queue; removing",
2015 			    (u_longlong_t)ds->ds_object);
2016 		}
2017 	}
2018 
2019 	/*
2020 	 * dsl_scan_sync() should be called after this, and should sync
2021 	 * out our changed state, but just to be safe, do it here.
2022 	 */
2023 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2024 }
2025 
2026 static void
2027 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2028 {
2029 	if (scn_bookmark->zb_objset == ds->ds_object) {
2030 		scn_bookmark->zb_objset =
2031 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2032 		zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
2033 		    "reset zb_objset to %llu",
2034 		    (u_longlong_t)ds->ds_object,
2035 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2036 	}
2037 }
2038 
2039 /*
2040  * Called when a dataset is snapshotted. If we were currently traversing
2041  * this snapshot, we reset our bookmark to point at the newly created
2042  * snapshot. We also modify our work queue to remove the old snapshot and
2043  * replace with the new one.
2044  */
2045 void
2046 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2047 {
2048 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2049 	dsl_scan_t *scn = dp->dp_scan;
2050 	uint64_t mintxg;
2051 
2052 	if (!dsl_scan_is_running(scn))
2053 		return;
2054 
2055 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2056 
2057 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2058 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2059 
2060 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2061 		scan_ds_queue_remove(scn, ds->ds_object);
2062 		scan_ds_queue_insert(scn,
2063 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2064 	}
2065 
2066 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2067 	    ds->ds_object, &mintxg) == 0) {
2068 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2069 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2070 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2071 		    scn->scn_phys.scn_queue_obj,
2072 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2073 		zfs_dbgmsg("snapshotting ds %llu; in queue; "
2074 		    "replacing with %llu",
2075 		    (u_longlong_t)ds->ds_object,
2076 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2077 	}
2078 
2079 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2080 }
2081 
2082 static void
2083 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2084     zbookmark_phys_t *scn_bookmark)
2085 {
2086 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2087 		scn_bookmark->zb_objset = ds2->ds_object;
2088 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2089 		    "reset zb_objset to %llu",
2090 		    (u_longlong_t)ds1->ds_object,
2091 		    (u_longlong_t)ds2->ds_object);
2092 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2093 		scn_bookmark->zb_objset = ds1->ds_object;
2094 		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
2095 		    "reset zb_objset to %llu",
2096 		    (u_longlong_t)ds2->ds_object,
2097 		    (u_longlong_t)ds1->ds_object);
2098 	}
2099 }
2100 
2101 /*
2102  * Called when a parent dataset and its clone are swapped. If we were
2103  * currently traversing the dataset, we need to switch to traversing the
2104  * newly promoted parent.
2105  */
2106 void
2107 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2108 {
2109 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2110 	dsl_scan_t *scn = dp->dp_scan;
2111 	uint64_t mintxg;
2112 
2113 	if (!dsl_scan_is_running(scn))
2114 		return;
2115 
2116 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2117 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2118 
2119 	if (scan_ds_queue_contains(scn, ds1->ds_object, &mintxg)) {
2120 		scan_ds_queue_remove(scn, ds1->ds_object);
2121 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg);
2122 	}
2123 	if (scan_ds_queue_contains(scn, ds2->ds_object, &mintxg)) {
2124 		scan_ds_queue_remove(scn, ds2->ds_object);
2125 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg);
2126 	}
2127 
2128 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2129 	    ds1->ds_object, &mintxg) == 0) {
2130 		int err;
2131 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2132 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2133 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2134 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2135 		err = zap_add_int_key(dp->dp_meta_objset,
2136 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
2137 		VERIFY(err == 0 || err == EEXIST);
2138 		if (err == EEXIST) {
2139 			/* Both were there to begin with */
2140 			VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2141 			    scn->scn_phys.scn_queue_obj,
2142 			    ds1->ds_object, mintxg, tx));
2143 		}
2144 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2145 		    "replacing with %llu",
2146 		    (u_longlong_t)ds1->ds_object,
2147 		    (u_longlong_t)ds2->ds_object);
2148 	}
2149 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2150 	    ds2->ds_object, &mintxg) == 0) {
2151 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2152 		ASSERT3U(mintxg, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2153 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2154 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2155 		VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
2156 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
2157 		zfs_dbgmsg("clone_swap ds %llu; in queue; "
2158 		    "replacing with %llu",
2159 		    (u_longlong_t)ds2->ds_object,
2160 		    (u_longlong_t)ds1->ds_object);
2161 	}
2162 
2163 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2164 }
2165 
2166 /* ARGSUSED */
2167 static int
2168 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2169 {
2170 	uint64_t originobj = *(uint64_t *)arg;
2171 	dsl_dataset_t *ds;
2172 	int err;
2173 	dsl_scan_t *scn = dp->dp_scan;
2174 
2175 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2176 		return (0);
2177 
2178 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2179 	if (err)
2180 		return (err);
2181 
2182 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2183 		dsl_dataset_t *prev;
2184 		err = dsl_dataset_hold_obj(dp,
2185 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2186 
2187 		dsl_dataset_rele(ds, FTAG);
2188 		if (err)
2189 			return (err);
2190 		ds = prev;
2191 	}
2192 	scan_ds_queue_insert(scn, ds->ds_object,
2193 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2194 	dsl_dataset_rele(ds, FTAG);
2195 	return (0);
2196 }
2197 
2198 static void
2199 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2200 {
2201 	dsl_pool_t *dp = scn->scn_dp;
2202 	dsl_dataset_t *ds;
2203 
2204 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2205 
2206 	if (scn->scn_phys.scn_cur_min_txg >=
2207 	    scn->scn_phys.scn_max_txg) {
2208 		/*
2209 		 * This can happen if this snapshot was created after the
2210 		 * scan started, and we already completed a previous snapshot
2211 		 * that was created after the scan started.  This snapshot
2212 		 * only references blocks with:
2213 		 *
2214 		 *	birth < our ds_creation_txg
2215 		 *	cur_min_txg is no less than ds_creation_txg.
2216 		 *	We have already visited these blocks.
2217 		 * or
2218 		 *	birth > scn_max_txg
2219 		 *	The scan requested not to visit these blocks.
2220 		 *
2221 		 * Subsequent snapshots (and clones) can reference our
2222 		 * blocks, or blocks with even higher birth times.
2223 		 * Therefore we do not need to visit them either,
2224 		 * so we do not add them to the work queue.
2225 		 *
2226 		 * Note that checking for cur_min_txg >= cur_max_txg
2227 		 * is not sufficient, because in that case we may need to
2228 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2229 		 * which raises cur_min_txg.  In this case we will visit
2230 		 * this dataset but skip all of its blocks, because the
2231 		 * rootbp's birth time is < cur_min_txg.  Then we will
2232 		 * add the next snapshots/clones to the work queue.
2233 		 */
2234 		char *dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
2235 		dsl_dataset_name(ds, dsname);
2236 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2237 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2238 		    (longlong_t)dsobj, dsname,
2239 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2240 		    (longlong_t)scn->scn_phys.scn_max_txg);
2241 		kmem_free(dsname, MAXNAMELEN);
2242 
2243 		goto out;
2244 	}
2245 
2246 	/*
2247 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2248 	 * snapshots can have ZIL block pointers (which may be the same
2249 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2250 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2251 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2252 	 * rather than in scan_recurse(), because the regular snapshot
2253 	 * block-sharing rules don't apply to it.
2254 	 */
2255 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds) &&
2256 	    (dp->dp_origin_snap == NULL ||
2257 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2258 		objset_t *os;
2259 		if (dmu_objset_from_ds(ds, &os) != 0) {
2260 			goto out;
2261 		}
2262 		dsl_scan_zil(dp, &os->os_zil_header);
2263 	}
2264 
2265 	/*
2266 	 * Iterate over the bps in this ds.
2267 	 */
2268 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2269 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2270 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2271 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2272 
2273 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2274 	dsl_dataset_name(ds, dsname);
2275 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2276 	    "suspending=%u",
2277 	    (longlong_t)dsobj, dsname,
2278 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2279 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2280 	    (int)scn->scn_suspending);
2281 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2282 
2283 	if (scn->scn_suspending)
2284 		goto out;
2285 
2286 	/*
2287 	 * We've finished this pass over this dataset.
2288 	 */
2289 
2290 	/*
2291 	 * If we did not completely visit this dataset, do another pass.
2292 	 */
2293 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2294 		zfs_dbgmsg("incomplete pass; visiting again");
2295 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2296 		scan_ds_queue_insert(scn, ds->ds_object,
2297 		    scn->scn_phys.scn_cur_max_txg);
2298 		goto out;
2299 	}
2300 
2301 	/*
2302 	 * Add descendent datasets to work queue.
2303 	 */
2304 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2305 		scan_ds_queue_insert(scn,
2306 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2307 		    dsl_dataset_phys(ds)->ds_creation_txg);
2308 	}
2309 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2310 		boolean_t usenext = B_FALSE;
2311 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2312 			uint64_t count;
2313 			/*
2314 			 * A bug in a previous version of the code could
2315 			 * cause upgrade_clones_cb() to not set
2316 			 * ds_next_snap_obj when it should, leading to a
2317 			 * missing entry.  Therefore we can only use the
2318 			 * next_clones_obj when its count is correct.
2319 			 */
2320 			int err = zap_count(dp->dp_meta_objset,
2321 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2322 			if (err == 0 &&
2323 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2324 				usenext = B_TRUE;
2325 		}
2326 
2327 		if (usenext) {
2328 			zap_cursor_t zc;
2329 			zap_attribute_t za;
2330 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2331 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2332 			    zap_cursor_retrieve(&zc, &za) == 0;
2333 			    (void) zap_cursor_advance(&zc)) {
2334 				scan_ds_queue_insert(scn,
2335 				    zfs_strtonum(za.za_name, NULL),
2336 				    dsl_dataset_phys(ds)->ds_creation_txg);
2337 			}
2338 			zap_cursor_fini(&zc);
2339 		} else {
2340 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2341 			    enqueue_clones_cb, &ds->ds_object,
2342 			    DS_FIND_CHILDREN));
2343 		}
2344 	}
2345 
2346 out:
2347 	dsl_dataset_rele(ds, FTAG);
2348 }
2349 
2350 /* ARGSUSED */
2351 static int
2352 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2353 {
2354 	dsl_dataset_t *ds;
2355 	int err;
2356 	dsl_scan_t *scn = dp->dp_scan;
2357 
2358 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2359 	if (err)
2360 		return (err);
2361 
2362 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2363 		dsl_dataset_t *prev;
2364 		err = dsl_dataset_hold_obj(dp,
2365 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2366 		if (err) {
2367 			dsl_dataset_rele(ds, FTAG);
2368 			return (err);
2369 		}
2370 
2371 		/*
2372 		 * If this is a clone, we don't need to worry about it for now.
2373 		 */
2374 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2375 			dsl_dataset_rele(ds, FTAG);
2376 			dsl_dataset_rele(prev, FTAG);
2377 			return (0);
2378 		}
2379 		dsl_dataset_rele(ds, FTAG);
2380 		ds = prev;
2381 	}
2382 
2383 	scan_ds_queue_insert(scn, ds->ds_object,
2384 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2385 	dsl_dataset_rele(ds, FTAG);
2386 	return (0);
2387 }
2388 
2389 /* ARGSUSED */
2390 void
2391 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2392     ddt_entry_t *dde, dmu_tx_t *tx)
2393 {
2394 	const ddt_key_t *ddk = &dde->dde_key;
2395 	ddt_phys_t *ddp = dde->dde_phys;
2396 	blkptr_t bp;
2397 	zbookmark_phys_t zb = { 0 };
2398 	int p;
2399 
2400 	if (scn->scn_phys.scn_state != DSS_SCANNING)
2401 		return;
2402 
2403 	/*
2404 	 * This function is special because it is the only thing
2405 	 * that can add scan_io_t's to the vdev scan queues from
2406 	 * outside dsl_scan_sync(). For the most part this is ok
2407 	 * as long as it is called from within syncing context.
2408 	 * However, dsl_scan_sync() expects that no new sio's will
2409 	 * be added between when all the work for a scan is done
2410 	 * and the next txg when the scan is actually marked as
2411 	 * completed. This check ensures we do not issue new sio's
2412 	 * during this period.
2413 	 */
2414 	if (scn->scn_done_txg != 0)
2415 		return;
2416 
2417 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2418 		if (ddp->ddp_phys_birth == 0 ||
2419 		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2420 			continue;
2421 		ddt_bp_create(checksum, ddk, ddp, &bp);
2422 
2423 		scn->scn_visited_this_txg++;
2424 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2425 	}
2426 }
2427 
2428 /*
2429  * Scrub/dedup interaction.
2430  *
2431  * If there are N references to a deduped block, we don't want to scrub it
2432  * N times -- ideally, we should scrub it exactly once.
2433  *
2434  * We leverage the fact that the dde's replication class (enum ddt_class)
2435  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2436  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2437  *
2438  * To prevent excess scrubbing, the scrub begins by walking the DDT
2439  * to find all blocks with refcnt > 1, and scrubs each of these once.
2440  * Since there are two replication classes which contain blocks with
2441  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2442  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2443  *
2444  * There would be nothing more to say if a block's refcnt couldn't change
2445  * during a scrub, but of course it can so we must account for changes
2446  * in a block's replication class.
2447  *
2448  * Here's an example of what can occur:
2449  *
2450  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2451  * when visited during the top-down scrub phase, it will be scrubbed twice.
2452  * This negates our scrub optimization, but is otherwise harmless.
2453  *
2454  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2455  * on each visit during the top-down scrub phase, it will never be scrubbed.
2456  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2457  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2458  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2459  * while a scrub is in progress, it scrubs the block right then.
2460  */
2461 static void
2462 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2463 {
2464 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2465 	ddt_entry_t dde = { 0 };
2466 	int error;
2467 	uint64_t n = 0;
2468 
2469 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2470 		ddt_t *ddt;
2471 
2472 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2473 			break;
2474 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2475 		    (longlong_t)ddb->ddb_class,
2476 		    (longlong_t)ddb->ddb_type,
2477 		    (longlong_t)ddb->ddb_checksum,
2478 		    (longlong_t)ddb->ddb_cursor);
2479 
2480 		/* There should be no pending changes to the dedup table */
2481 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2482 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2483 
2484 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2485 		n++;
2486 
2487 		if (dsl_scan_check_suspend(scn, NULL))
2488 			break;
2489 	}
2490 
2491 	zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
2492 	    "suspending=%u", (longlong_t)n,
2493 	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2494 
2495 	ASSERT(error == 0 || error == ENOENT);
2496 	ASSERT(error != ENOENT ||
2497 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2498 }
2499 
2500 static uint64_t
2501 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2502 {
2503 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2504 	if (ds->ds_is_snapshot)
2505 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2506 	return (smt);
2507 }
2508 
2509 static void
2510 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2511 {
2512 	scan_ds_t *sds;
2513 	dsl_pool_t *dp = scn->scn_dp;
2514 
2515 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2516 	    scn->scn_phys.scn_ddt_class_max) {
2517 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2518 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2519 		dsl_scan_ddt(scn, tx);
2520 		if (scn->scn_suspending)
2521 			return;
2522 	}
2523 
2524 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2525 		/* First do the MOS & ORIGIN */
2526 
2527 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2528 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2529 		dsl_scan_visit_rootbp(scn, NULL,
2530 		    &dp->dp_meta_rootbp, tx);
2531 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2532 		if (scn->scn_suspending)
2533 			return;
2534 
2535 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2536 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2537 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
2538 		} else {
2539 			dsl_scan_visitds(scn,
2540 			    dp->dp_origin_snap->ds_object, tx);
2541 		}
2542 		ASSERT(!scn->scn_suspending);
2543 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
2544 	    ZB_DESTROYED_OBJSET) {
2545 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2546 		/*
2547 		 * If we were suspended, continue from here. Note if the
2548 		 * ds we were suspended on was deleted, the zb_objset may
2549 		 * be -1, so we will skip this and find a new objset
2550 		 * below.
2551 		 */
2552 		dsl_scan_visitds(scn, dsobj, tx);
2553 		if (scn->scn_suspending)
2554 			return;
2555 	}
2556 
2557 	/*
2558 	 * In case we suspended right at the end of the ds, zero the
2559 	 * bookmark so we don't think that we're still trying to resume.
2560 	 */
2561 	bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
2562 
2563 	/*
2564 	 * Keep pulling things out of the dataset avl queue. Updates to the
2565 	 * persistent zap-object-as-queue happen only at checkpoints.
2566 	 */
2567 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2568 		dsl_dataset_t *ds;
2569 		uint64_t dsobj = sds->sds_dsobj;
2570 		uint64_t txg = sds->sds_txg;
2571 
2572 		/* dequeue and free the ds from the queue */
2573 		scan_ds_queue_remove(scn, dsobj);
2574 		sds = NULL;	/* must not be touched after removal */
2575 
2576 		/* Set up min / max txg */
2577 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2578 		if (txg != 0) {
2579 			scn->scn_phys.scn_cur_min_txg =
2580 			    MAX(scn->scn_phys.scn_min_txg, txg);
2581 		} else {
2582 			scn->scn_phys.scn_cur_min_txg =
2583 			    MAX(scn->scn_phys.scn_min_txg,
2584 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2585 		}
2586 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2587 		dsl_dataset_rele(ds, FTAG);
2588 
2589 		dsl_scan_visitds(scn, dsobj, tx);
2590 		if (scn->scn_suspending)
2591 			return;
2592 	}
2593 	/* No more objsets to fetch, we're done */
2594 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2595 	ASSERT0(scn->scn_suspending);
2596 }
2597 
2598 static uint64_t
2599 dsl_scan_count_leaves(vdev_t *vd)
2600 {
2601 	uint64_t i, leaves = 0;
2602 
2603 	/* we only count leaves that belong to the main pool and are readable */
2604 	if (vd->vdev_islog || vd->vdev_isspare ||
2605 	    vd->vdev_isl2cache || !vdev_readable(vd))
2606 		return (0);
2607 
2608 	if (vd->vdev_ops->vdev_op_leaf)
2609 		return (1);
2610 
2611 	for (i = 0; i < vd->vdev_children; i++) {
2612 		leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
2613 	}
2614 
2615 	return (leaves);
2616 }
2617 
2618 
2619 static void
2620 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2621 {
2622 	int i;
2623 	uint64_t cur_size = 0;
2624 
2625 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2626 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2627 	}
2628 
2629 	q->q_total_zio_size_this_txg += cur_size;
2630 	q->q_zios_this_txg++;
2631 }
2632 
2633 static void
2634 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2635     uint64_t end)
2636 {
2637 	q->q_total_seg_size_this_txg += end - start;
2638 	q->q_segs_this_txg++;
2639 }
2640 
2641 static boolean_t
2642 scan_io_queue_check_suspend(dsl_scan_t *scn)
2643 {
2644 	/* See comment in dsl_scan_check_suspend() */
2645 	uint64_t curr_time_ns = gethrtime();
2646 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2647 	uint64_t sync_time_ns = curr_time_ns -
2648 	    scn->scn_dp->dp_spa->spa_sync_starttime;
2649 	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
2650 	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2651 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2652 
2653 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
2654 	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
2655 	    txg_sync_waiting(scn->scn_dp) ||
2656 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2657 	    spa_shutting_down(scn->scn_dp->dp_spa));
2658 }
2659 
2660 /*
2661  * Given a list of scan_io_t's in io_list, this issues the io's out to
2662  * disk. This consumes the io_list and frees the scan_io_t's. This is
2663  * called when emptying queues, either when we're up against the memory
2664  * limit or when we have finished scanning. Returns B_TRUE if we stopped
2665  * processing the list before we finished. Any zios that were not issued
2666  * will remain in the io_list.
2667  */
2668 static boolean_t
2669 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2670 {
2671 	dsl_scan_t *scn = queue->q_scn;
2672 	scan_io_t *sio;
2673 	int64_t bytes_issued = 0;
2674 	boolean_t suspended = B_FALSE;
2675 
2676 	while ((sio = list_head(io_list)) != NULL) {
2677 		blkptr_t bp;
2678 
2679 		if (scan_io_queue_check_suspend(scn)) {
2680 			suspended = B_TRUE;
2681 			break;
2682 		}
2683 
2684 		sio2bp(sio, &bp);
2685 		bytes_issued += SIO_GET_ASIZE(sio);
2686 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2687 		    &sio->sio_zb, queue);
2688 		(void) list_remove_head(io_list);
2689 		scan_io_queues_update_zio_stats(queue, &bp);
2690 		sio_free(sio);
2691 	}
2692 
2693 	atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
2694 
2695 	return (suspended);
2696 }
2697 
2698 /*
2699  * Given a range_seg_t (extent) and a list, this function passes over a
2700  * scan queue and gathers up the appropriate ios which fit into that
2701  * scan seg (starting from lowest LBA). At the end, we remove the segment
2702  * from the q_exts_by_addr range tree.
2703  */
2704 static boolean_t
2705 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2706 {
2707 	scan_io_t *srch_sio, *sio, *next_sio;
2708 	avl_index_t idx;
2709 	uint_t num_sios = 0;
2710 	int64_t bytes_issued = 0;
2711 
2712 	ASSERT(rs != NULL);
2713 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2714 
2715 	srch_sio = sio_alloc(1);
2716 	srch_sio->sio_nr_dvas = 1;
2717 	SIO_SET_OFFSET(srch_sio, rs->rs_start);
2718 
2719 	/*
2720 	 * The exact start of the extent might not contain any matching zios,
2721 	 * so if that's the case, examine the next one in the tree.
2722 	 */
2723 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2724 	sio_free(srch_sio);
2725 
2726 	if (sio == NULL)
2727 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2728 
2729 	while (sio != NULL &&
2730 	    SIO_GET_OFFSET(sio) < rs->rs_end && num_sios <= 32) {
2731 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs->rs_start);
2732 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs->rs_end);
2733 
2734 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2735 		avl_remove(&queue->q_sios_by_addr, sio);
2736 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
2737 
2738 		bytes_issued += SIO_GET_ASIZE(sio);
2739 		num_sios++;
2740 		list_insert_tail(list, sio);
2741 		sio = next_sio;
2742 	}
2743 
2744 	/*
2745 	 * We limit the number of sios we process at once to 32 to avoid
2746 	 * biting off more than we can chew. If we didn't take everything
2747 	 * in the segment we update it to reflect the work we were able to
2748 	 * complete. Otherwise, we remove it from the range tree entirely.
2749 	 */
2750 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs->rs_end) {
2751 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2752 		    -bytes_issued);
2753 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
2754 		    SIO_GET_OFFSET(sio), rs->rs_end - SIO_GET_OFFSET(sio));
2755 
2756 		return (B_TRUE);
2757 	} else {
2758 		range_tree_remove(queue->q_exts_by_addr, rs->rs_start,
2759 		    rs->rs_end - rs->rs_start);
2760 		return (B_FALSE);
2761 	}
2762 }
2763 
2764 
2765 /*
2766  * This is called from the queue emptying thread and selects the next
2767  * extent from which we are to issue io's. The behavior of this function
2768  * depends on the state of the scan, the current memory consumption and
2769  * whether or not we are performing a scan shutdown.
2770  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2771  *	needs to perform a checkpoint
2772  * 2) We select the largest available extent if we are up against the
2773  *	memory limit.
2774  * 3) Otherwise we don't select any extents.
2775  */
2776 static const range_seg_t *
2777 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2778 {
2779 	dsl_scan_t *scn = queue->q_scn;
2780 
2781 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2782 	ASSERT(scn->scn_is_sorted);
2783 
2784 	/* handle tunable overrides */
2785 	if (scn->scn_checkpointing || scn->scn_clearing) {
2786 		if (zfs_scan_issue_strategy == 1) {
2787 			return (range_tree_first(queue->q_exts_by_addr));
2788 		} else if (zfs_scan_issue_strategy == 2) {
2789 			return (avl_first(&queue->q_exts_by_size));
2790 		}
2791 	}
2792 
2793 	/*
2794 	 * During normal clearing, we want to issue our largest segments
2795 	 * first, keeping IO as sequential as possible, and leaving the
2796 	 * smaller extents for later with the hope that they might eventually
2797 	 * grow to larger sequential segments. However, when the scan is
2798 	 * checkpointing, no new extents will be added to the sorting queue,
2799 	 * so the way we are sorted now is as good as it will ever get.
2800 	 * In this case, we instead switch to issuing extents in LBA order.
2801 	 */
2802 	if (scn->scn_checkpointing) {
2803 		return (range_tree_first(queue->q_exts_by_addr));
2804 	} else if (scn->scn_clearing) {
2805 		return (avl_first(&queue->q_exts_by_size));
2806 	} else {
2807 		return (NULL);
2808 	}
2809 }
2810 
2811 static void
2812 scan_io_queues_run_one(void *arg)
2813 {
2814 	dsl_scan_io_queue_t *queue = arg;
2815 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
2816 	boolean_t suspended = B_FALSE;
2817 	range_seg_t *rs = NULL;
2818 	scan_io_t *sio = NULL;
2819 	list_t sio_list;
2820 	uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
2821 	uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
2822 
2823 	ASSERT(queue->q_scn->scn_is_sorted);
2824 
2825 	list_create(&sio_list, sizeof (scan_io_t),
2826 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
2827 	mutex_enter(q_lock);
2828 
2829 	/* calculate maximum in-flight bytes for this txg (min 1MB) */
2830 	queue->q_maxinflight_bytes =
2831 	    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
2832 
2833 	/* reset per-queue scan statistics for this txg */
2834 	queue->q_total_seg_size_this_txg = 0;
2835 	queue->q_segs_this_txg = 0;
2836 	queue->q_total_zio_size_this_txg = 0;
2837 	queue->q_zios_this_txg = 0;
2838 
2839 	/* loop until we have run out of time or sios */
2840 	while ((rs = (range_seg_t *)scan_io_queue_fetch_ext(queue)) != NULL) {
2841 		uint64_t seg_start = 0, seg_end = 0;
2842 		boolean_t more_left = B_TRUE;
2843 
2844 		ASSERT(list_is_empty(&sio_list));
2845 
2846 		/* loop while we still have sios left to process in this rs */
2847 		while (more_left) {
2848 			scan_io_t *first_sio, *last_sio;
2849 
2850 			/*
2851 			 * We have selected which extent needs to be
2852 			 * processed next. Gather up the corresponding sios.
2853 			 */
2854 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
2855 			ASSERT(!list_is_empty(&sio_list));
2856 			first_sio = list_head(&sio_list);
2857 			last_sio = list_tail(&sio_list);
2858 
2859 			seg_end = SIO_GET_END_OFFSET(last_sio);
2860 			if (seg_start == 0)
2861 				seg_start = SIO_GET_OFFSET(first_sio);
2862 
2863 			/*
2864 			 * Issuing sios can take a long time so drop the
2865 			 * queue lock. The sio queue won't be updated by
2866 			 * other threads since we're in syncing context so
2867 			 * we can be sure that our trees will remain exactly
2868 			 * as we left them.
2869 			 */
2870 			mutex_exit(q_lock);
2871 			suspended = scan_io_queue_issue(queue, &sio_list);
2872 			mutex_enter(q_lock);
2873 
2874 			if (suspended)
2875 				break;
2876 		}
2877 		/* update statistics for debugging purposes */
2878 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
2879 
2880 		if (suspended)
2881 			break;
2882 	}
2883 
2884 
2885 	/*
2886 	 * If we were suspended in the middle of processing,
2887 	 * requeue any unfinished sios and exit.
2888 	 */
2889 	while ((sio = list_head(&sio_list)) != NULL) {
2890 		list_remove(&sio_list, sio);
2891 		scan_io_queue_insert_impl(queue, sio);
2892 	}
2893 
2894 	mutex_exit(q_lock);
2895 	list_destroy(&sio_list);
2896 }
2897 
2898 /*
2899  * Performs an emptying run on all scan queues in the pool. This just
2900  * punches out one thread per top-level vdev, each of which processes
2901  * only that vdev's scan queue. We can parallelize the I/O here because
2902  * we know that each queue's io's only affect its own top-level vdev.
2903  *
2904  * This function waits for the queue runs to complete, and must be
2905  * called from dsl_scan_sync (or in general, syncing context).
2906  */
2907 static void
2908 scan_io_queues_run(dsl_scan_t *scn)
2909 {
2910 	spa_t *spa = scn->scn_dp->dp_spa;
2911 
2912 	ASSERT(scn->scn_is_sorted);
2913 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2914 
2915 	if (scn->scn_bytes_pending == 0)
2916 		return;
2917 
2918 	if (scn->scn_taskq == NULL) {
2919 		char *tq_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN + 16,
2920 		    KM_SLEEP);
2921 		int nthreads = spa->spa_root_vdev->vdev_children;
2922 
2923 		/*
2924 		 * We need to make this taskq *always* execute as many
2925 		 * threads in parallel as we have top-level vdevs and no
2926 		 * less, otherwise strange serialization of the calls to
2927 		 * scan_io_queues_run_one can occur during spa_sync runs
2928 		 * and that significantly impacts performance.
2929 		 */
2930 		(void) snprintf(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16,
2931 		    "dsl_scan_tq_%s", spa->spa_name);
2932 		scn->scn_taskq = taskq_create(tq_name, nthreads, minclsyspri,
2933 		    nthreads, nthreads, TASKQ_PREPOPULATE);
2934 		kmem_free(tq_name, ZFS_MAX_DATASET_NAME_LEN + 16);
2935 	}
2936 
2937 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
2938 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
2939 
2940 		mutex_enter(&vd->vdev_scan_io_queue_lock);
2941 		if (vd->vdev_scan_io_queue != NULL) {
2942 			VERIFY(taskq_dispatch(scn->scn_taskq,
2943 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
2944 			    TQ_SLEEP) != TASKQID_INVALID);
2945 		}
2946 		mutex_exit(&vd->vdev_scan_io_queue_lock);
2947 	}
2948 
2949 	/*
2950 	 * Wait for the queues to finish issuing thir IOs for this run
2951 	 * before we return. There may still be IOs in flight at this
2952 	 * point.
2953 	 */
2954 	taskq_wait(scn->scn_taskq);
2955 }
2956 
2957 static boolean_t
2958 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
2959 {
2960 	uint64_t elapsed_nanosecs;
2961 
2962 	if (zfs_recover)
2963 		return (B_FALSE);
2964 
2965 	if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks)
2966 		return (B_TRUE);
2967 
2968 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
2969 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
2970 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
2971 	    txg_sync_waiting(scn->scn_dp)) ||
2972 	    spa_shutting_down(scn->scn_dp->dp_spa));
2973 }
2974 
2975 static int
2976 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2977 {
2978 	dsl_scan_t *scn = arg;
2979 
2980 	if (!scn->scn_is_bptree ||
2981 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
2982 		if (dsl_scan_async_block_should_pause(scn))
2983 			return (SET_ERROR(ERESTART));
2984 	}
2985 
2986 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
2987 	    dmu_tx_get_txg(tx), bp, 0));
2988 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2989 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
2990 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2991 	scn->scn_visited_this_txg++;
2992 	return (0);
2993 }
2994 
2995 static void
2996 dsl_scan_update_stats(dsl_scan_t *scn)
2997 {
2998 	spa_t *spa = scn->scn_dp->dp_spa;
2999 	uint64_t i;
3000 	uint64_t seg_size_total = 0, zio_size_total = 0;
3001 	uint64_t seg_count_total = 0, zio_count_total = 0;
3002 
3003 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3004 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3005 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3006 
3007 		if (queue == NULL)
3008 			continue;
3009 
3010 		seg_size_total += queue->q_total_seg_size_this_txg;
3011 		zio_size_total += queue->q_total_zio_size_this_txg;
3012 		seg_count_total += queue->q_segs_this_txg;
3013 		zio_count_total += queue->q_zios_this_txg;
3014 	}
3015 
3016 	if (seg_count_total == 0 || zio_count_total == 0) {
3017 		scn->scn_avg_seg_size_this_txg = 0;
3018 		scn->scn_avg_zio_size_this_txg = 0;
3019 		scn->scn_segs_this_txg = 0;
3020 		scn->scn_zios_this_txg = 0;
3021 		return;
3022 	}
3023 
3024 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3025 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3026 	scn->scn_segs_this_txg = seg_count_total;
3027 	scn->scn_zios_this_txg = zio_count_total;
3028 }
3029 
3030 static int
3031 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3032 {
3033 	dsl_scan_t *scn = arg;
3034 	const dva_t *dva = &bp->blk_dva[0];
3035 
3036 	if (dsl_scan_async_block_should_pause(scn))
3037 		return (SET_ERROR(ERESTART));
3038 
3039 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3040 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3041 	    DVA_GET_ASIZE(dva), tx);
3042 	scn->scn_visited_this_txg++;
3043 	return (0);
3044 }
3045 
3046 boolean_t
3047 dsl_scan_active(dsl_scan_t *scn)
3048 {
3049 	spa_t *spa = scn->scn_dp->dp_spa;
3050 	uint64_t used = 0, comp, uncomp;
3051 
3052 	if (spa->spa_load_state != SPA_LOAD_NONE)
3053 		return (B_FALSE);
3054 	if (spa_shutting_down(spa))
3055 		return (B_FALSE);
3056 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3057 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3058 		return (B_TRUE);
3059 
3060 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3061 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3062 		    &used, &comp, &uncomp);
3063 	}
3064 	return (used != 0);
3065 }
3066 
3067 static boolean_t
3068 dsl_scan_check_deferred(vdev_t *vd)
3069 {
3070 	boolean_t need_resilver = B_FALSE;
3071 
3072 	for (int c = 0; c < vd->vdev_children; c++) {
3073 		need_resilver |=
3074 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3075 	}
3076 
3077 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3078 	    !vd->vdev_ops->vdev_op_leaf)
3079 		return (need_resilver);
3080 
3081 	if (!vd->vdev_resilver_deferred)
3082 		need_resilver = B_TRUE;
3083 
3084 	return (need_resilver);
3085 }
3086 
3087 static boolean_t
3088 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3089     uint64_t phys_birth)
3090 {
3091 	vdev_t *vd;
3092 
3093 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3094 
3095 	if (vd->vdev_ops == &vdev_indirect_ops) {
3096 		/*
3097 		 * The indirect vdev can point to multiple
3098 		 * vdevs.  For simplicity, always create
3099 		 * the resilver zio_t. zio_vdev_io_start()
3100 		 * will bypass the child resilver i/o's if
3101 		 * they are on vdevs that don't have DTL's.
3102 		 */
3103 		return (B_TRUE);
3104 	}
3105 
3106 	if (DVA_GET_GANG(dva)) {
3107 		/*
3108 		 * Gang members may be spread across multiple
3109 		 * vdevs, so the best estimate we have is the
3110 		 * scrub range, which has already been checked.
3111 		 * XXX -- it would be better to change our
3112 		 * allocation policy to ensure that all
3113 		 * gang members reside on the same vdev.
3114 		 */
3115 		return (B_TRUE);
3116 	}
3117 
3118 	/*
3119 	 * Check if the txg falls within the range which must be
3120 	 * resilvered.  DVAs outside this range can always be skipped.
3121 	 */
3122 	if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
3123 		return (B_FALSE);
3124 
3125 	/*
3126 	 * Check if the top-level vdev must resilver this offset.
3127 	 * When the offset does not intersect with a dirty leaf DTL
3128 	 * then it may be possible to skip the resilver IO.  The psize
3129 	 * is provided instead of asize to simplify the check for RAIDZ.
3130 	 */
3131 	if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
3132 		return (B_FALSE);
3133 
3134 	/*
3135 	 * Check that this top-level vdev has a device under it which
3136 	 * is resilvering and is not deferred.
3137 	 */
3138 	if (!dsl_scan_check_deferred(vd))
3139 		return (B_FALSE);
3140 
3141 	return (B_TRUE);
3142 }
3143 
3144 static int
3145 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3146 {
3147 	int err = 0;
3148 	dsl_scan_t *scn = dp->dp_scan;
3149 	spa_t *spa = dp->dp_spa;
3150 
3151 	if (spa_suspend_async_destroy(spa))
3152 		return (0);
3153 
3154 	if (zfs_free_bpobj_enabled &&
3155 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3156 		scn->scn_is_bptree = B_FALSE;
3157 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3158 		scn->scn_zio_root = zio_root(spa, NULL,
3159 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3160 		err = bpobj_iterate(&dp->dp_free_bpobj,
3161 		    dsl_scan_free_block_cb, scn, tx);
3162 		VERIFY0(zio_wait(scn->scn_zio_root));
3163 		scn->scn_zio_root = NULL;
3164 
3165 		if (err != 0 && err != ERESTART)
3166 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3167 	}
3168 
3169 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3170 		ASSERT(scn->scn_async_destroying);
3171 		scn->scn_is_bptree = B_TRUE;
3172 		scn->scn_zio_root = zio_root(spa, NULL,
3173 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3174 		err = bptree_iterate(dp->dp_meta_objset,
3175 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3176 		VERIFY0(zio_wait(scn->scn_zio_root));
3177 		scn->scn_zio_root = NULL;
3178 
3179 		if (err == EIO || err == ECKSUM) {
3180 			err = 0;
3181 		} else if (err != 0 && err != ERESTART) {
3182 			zfs_panic_recover("error %u from "
3183 			    "traverse_dataset_destroyed()", err);
3184 		}
3185 
3186 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3187 			/* finished; deactivate async destroy feature */
3188 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3189 			ASSERT(!spa_feature_is_active(spa,
3190 			    SPA_FEATURE_ASYNC_DESTROY));
3191 			VERIFY0(zap_remove(dp->dp_meta_objset,
3192 			    DMU_POOL_DIRECTORY_OBJECT,
3193 			    DMU_POOL_BPTREE_OBJ, tx));
3194 			VERIFY0(bptree_free(dp->dp_meta_objset,
3195 			    dp->dp_bptree_obj, tx));
3196 			dp->dp_bptree_obj = 0;
3197 			scn->scn_async_destroying = B_FALSE;
3198 			scn->scn_async_stalled = B_FALSE;
3199 		} else {
3200 			/*
3201 			 * If we didn't make progress, mark the async
3202 			 * destroy as stalled, so that we will not initiate
3203 			 * a spa_sync() on its behalf.  Note that we only
3204 			 * check this if we are not finished, because if the
3205 			 * bptree had no blocks for us to visit, we can
3206 			 * finish without "making progress".
3207 			 */
3208 			scn->scn_async_stalled =
3209 			    (scn->scn_visited_this_txg == 0);
3210 		}
3211 	}
3212 	if (scn->scn_visited_this_txg) {
3213 		zfs_dbgmsg("freed %llu blocks in %llums from "
3214 		    "free_bpobj/bptree txg %llu; err=%d",
3215 		    (longlong_t)scn->scn_visited_this_txg,
3216 		    (longlong_t)
3217 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3218 		    (longlong_t)tx->tx_txg, err);
3219 		scn->scn_visited_this_txg = 0;
3220 
3221 		/*
3222 		 * Write out changes to the DDT that may be required as a
3223 		 * result of the blocks freed.  This ensures that the DDT
3224 		 * is clean when a scrub/resilver runs.
3225 		 */
3226 		ddt_sync(spa, tx->tx_txg);
3227 	}
3228 	if (err != 0)
3229 		return (err);
3230 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3231 	    zfs_free_leak_on_eio &&
3232 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3233 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3234 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3235 		/*
3236 		 * We have finished background destroying, but there is still
3237 		 * some space left in the dp_free_dir. Transfer this leaked
3238 		 * space to the dp_leak_dir.
3239 		 */
3240 		if (dp->dp_leak_dir == NULL) {
3241 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3242 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3243 			    LEAK_DIR_NAME, tx);
3244 			VERIFY0(dsl_pool_open_special_dir(dp,
3245 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3246 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3247 		}
3248 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3249 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3250 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3251 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3252 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3253 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3254 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3255 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3256 	}
3257 
3258 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) {
3259 		/* finished; verify that space accounting went to zero */
3260 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3261 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3262 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3263 	}
3264 
3265 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3266 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3267 	    DMU_POOL_OBSOLETE_BPOBJ));
3268 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3269 		ASSERT(spa_feature_is_active(dp->dp_spa,
3270 		    SPA_FEATURE_OBSOLETE_COUNTS));
3271 
3272 		scn->scn_is_bptree = B_FALSE;
3273 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3274 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3275 		    dsl_scan_obsolete_block_cb, scn, tx);
3276 		if (err != 0 && err != ERESTART)
3277 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3278 
3279 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3280 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3281 	}
3282 
3283 	return (0);
3284 }
3285 
3286 /*
3287  * This is the primary entry point for scans that is called from syncing
3288  * context. Scans must happen entirely during syncing context so that we
3289  * cna guarantee that blocks we are currently scanning will not change out
3290  * from under us. While a scan is active, this funciton controls how quickly
3291  * transaction groups proceed, instead of the normal handling provided by
3292  * txg_sync_thread().
3293  */
3294 void
3295 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3296 {
3297 	dsl_scan_t *scn = dp->dp_scan;
3298 	spa_t *spa = dp->dp_spa;
3299 	int err = 0;
3300 	state_sync_type_t sync_type = SYNC_OPTIONAL;
3301 
3302 	if (spa->spa_resilver_deferred &&
3303 	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3304 		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3305 
3306 	/*
3307 	 * Check for scn_restart_txg before checking spa_load_state, so
3308 	 * that we can restart an old-style scan while the pool is being
3309 	 * imported (see dsl_scan_init). We also restart scans if there
3310 	 * is a deferred resilver and the user has manually disabled
3311 	 * deferred resilvers via the tunable.
3312 	 */
3313 	if (dsl_scan_restarting(scn, tx) ||
3314 	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3315 		pool_scan_func_t func = POOL_SCAN_SCRUB;
3316 		dsl_scan_done(scn, B_FALSE, tx);
3317 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3318 			func = POOL_SCAN_RESILVER;
3319 		zfs_dbgmsg("restarting scan func=%u txg=%llu",
3320 		    func, (longlong_t)tx->tx_txg);
3321 		dsl_scan_setup_sync(&func, tx);
3322 	}
3323 
3324 	/*
3325 	 * Only process scans in sync pass 1.
3326 	 */
3327 	if (spa_sync_pass(dp->dp_spa) > 1)
3328 		return;
3329 
3330 	/*
3331 	 * If the spa is shutting down, then stop scanning. This will
3332 	 * ensure that the scan does not dirty any new data during the
3333 	 * shutdown phase.
3334 	 */
3335 	if (spa_shutting_down(spa))
3336 		return;
3337 
3338 	/*
3339 	 * If the scan is inactive due to a stalled async destroy, try again.
3340 	 */
3341 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3342 		return;
3343 
3344 	/* reset scan statistics */
3345 	scn->scn_visited_this_txg = 0;
3346 	scn->scn_holes_this_txg = 0;
3347 	scn->scn_lt_min_this_txg = 0;
3348 	scn->scn_gt_max_this_txg = 0;
3349 	scn->scn_ddt_contained_this_txg = 0;
3350 	scn->scn_objsets_visited_this_txg = 0;
3351 	scn->scn_avg_seg_size_this_txg = 0;
3352 	scn->scn_segs_this_txg = 0;
3353 	scn->scn_avg_zio_size_this_txg = 0;
3354 	scn->scn_zios_this_txg = 0;
3355 	scn->scn_suspending = B_FALSE;
3356 	scn->scn_sync_start_time = gethrtime();
3357 	spa->spa_scrub_active = B_TRUE;
3358 
3359 	/*
3360 	 * First process the async destroys.  If we pause, don't do
3361 	 * any scrubbing or resilvering.  This ensures that there are no
3362 	 * async destroys while we are scanning, so the scan code doesn't
3363 	 * have to worry about traversing it.  It is also faster to free the
3364 	 * blocks than to scrub them.
3365 	 */
3366 	err = dsl_process_async_destroys(dp, tx);
3367 	if (err != 0)
3368 		return;
3369 
3370 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3371 		return;
3372 
3373 	/*
3374 	 * Wait a few txgs after importing to begin scanning so that
3375 	 * we can get the pool imported quickly.
3376 	 */
3377 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3378 		return;
3379 
3380 	/*
3381 	 * zfs_scan_suspend_progress can be set to disable scan progress.
3382 	 * We don't want to spin the txg_sync thread, so we add a delay
3383 	 * here to simulate the time spent doing a scan. This is mostly
3384 	 * useful for testing and debugging.
3385 	 */
3386 	if (zfs_scan_suspend_progress) {
3387 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3388 		int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3389 		    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3390 
3391 		while (zfs_scan_suspend_progress &&
3392 		    !txg_sync_waiting(scn->scn_dp) &&
3393 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
3394 		    NSEC2MSEC(scan_time_ns) < mintime) {
3395 			delay(hz);
3396 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3397 		}
3398 		return;
3399 	}
3400 
3401 	/*
3402 	 * It is possible to switch from unsorted to sorted at any time,
3403 	 * but afterwards the scan will remain sorted unless reloaded from
3404 	 * a checkpoint after a reboot.
3405 	 */
3406 	if (!zfs_scan_legacy) {
3407 		scn->scn_is_sorted = B_TRUE;
3408 		if (scn->scn_last_checkpoint == 0)
3409 			scn->scn_last_checkpoint = ddi_get_lbolt();
3410 	}
3411 
3412 	/*
3413 	 * For sorted scans, determine what kind of work we will be doing
3414 	 * this txg based on our memory limitations and whether or not we
3415 	 * need to perform a checkpoint.
3416 	 */
3417 	if (scn->scn_is_sorted) {
3418 		/*
3419 		 * If we are over our checkpoint interval, set scn_clearing
3420 		 * so that we can begin checkpointing immediately. The
3421 		 * checkpoint allows us to save a consisent bookmark
3422 		 * representing how much data we have scrubbed so far.
3423 		 * Otherwise, use the memory limit to determine if we should
3424 		 * scan for metadata or start issue scrub IOs. We accumulate
3425 		 * metadata until we hit our hard memory limit at which point
3426 		 * we issue scrub IOs until we are at our soft memory limit.
3427 		 */
3428 		if (scn->scn_checkpointing ||
3429 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
3430 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3431 			if (!scn->scn_checkpointing)
3432 				zfs_dbgmsg("begin scan checkpoint");
3433 
3434 			scn->scn_checkpointing = B_TRUE;
3435 			scn->scn_clearing = B_TRUE;
3436 		} else {
3437 			boolean_t should_clear = dsl_scan_should_clear(scn);
3438 			if (should_clear && !scn->scn_clearing) {
3439 				zfs_dbgmsg("begin scan clearing");
3440 				scn->scn_clearing = B_TRUE;
3441 			} else if (!should_clear && scn->scn_clearing) {
3442 				zfs_dbgmsg("finish scan clearing");
3443 				scn->scn_clearing = B_FALSE;
3444 			}
3445 		}
3446 	} else {
3447 		ASSERT0(scn->scn_checkpointing);
3448 		ASSERT0(scn->scn_clearing);
3449 	}
3450 
3451 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3452 		/* Need to scan metadata for more blocks to scrub */
3453 		dsl_scan_phys_t *scnp = &scn->scn_phys;
3454 		taskqid_t prefetch_tqid;
3455 		uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
3456 		uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
3457 
3458 		/*
3459 		 * Calculate the max number of in-flight bytes for pool-wide
3460 		 * scanning operations (minimum 1MB). Limits for the issuing
3461 		 * phase are done per top-level vdev and are handled separately.
3462 		 */
3463 		scn->scn_maxinflight_bytes =
3464 		    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
3465 
3466 		if (scnp->scn_ddt_bookmark.ddb_class <=
3467 		    scnp->scn_ddt_class_max) {
3468 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3469 			zfs_dbgmsg("doing scan sync txg %llu; "
3470 			    "ddt bm=%llu/%llu/%llu/%llx",
3471 			    (longlong_t)tx->tx_txg,
3472 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3473 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3474 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3475 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3476 		} else {
3477 			zfs_dbgmsg("doing scan sync txg %llu; "
3478 			    "bm=%llu/%llu/%llu/%llu",
3479 			    (longlong_t)tx->tx_txg,
3480 			    (longlong_t)scnp->scn_bookmark.zb_objset,
3481 			    (longlong_t)scnp->scn_bookmark.zb_object,
3482 			    (longlong_t)scnp->scn_bookmark.zb_level,
3483 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
3484 		}
3485 
3486 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3487 		    NULL, ZIO_FLAG_CANFAIL);
3488 
3489 		scn->scn_prefetch_stop = B_FALSE;
3490 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3491 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3492 		ASSERT(prefetch_tqid != TASKQID_INVALID);
3493 
3494 		dsl_pool_config_enter(dp, FTAG);
3495 		dsl_scan_visit(scn, tx);
3496 		dsl_pool_config_exit(dp, FTAG);
3497 
3498 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
3499 		scn->scn_prefetch_stop = B_TRUE;
3500 		cv_broadcast(&spa->spa_scrub_io_cv);
3501 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
3502 
3503 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3504 		(void) zio_wait(scn->scn_zio_root);
3505 		scn->scn_zio_root = NULL;
3506 
3507 		zfs_dbgmsg("scan visited %llu blocks in %llums "
3508 		    "(%llu os's, %llu holes, %llu < mintxg, "
3509 		    "%llu in ddt, %llu > maxtxg)",
3510 		    (longlong_t)scn->scn_visited_this_txg,
3511 		    (longlong_t)NSEC2MSEC(gethrtime() -
3512 		    scn->scn_sync_start_time),
3513 		    (longlong_t)scn->scn_objsets_visited_this_txg,
3514 		    (longlong_t)scn->scn_holes_this_txg,
3515 		    (longlong_t)scn->scn_lt_min_this_txg,
3516 		    (longlong_t)scn->scn_ddt_contained_this_txg,
3517 		    (longlong_t)scn->scn_gt_max_this_txg);
3518 
3519 		if (!scn->scn_suspending) {
3520 			ASSERT0(avl_numnodes(&scn->scn_queue));
3521 			scn->scn_done_txg = tx->tx_txg + 1;
3522 			if (scn->scn_is_sorted) {
3523 				scn->scn_checkpointing = B_TRUE;
3524 				scn->scn_clearing = B_TRUE;
3525 			}
3526 			zfs_dbgmsg("scan complete txg %llu",
3527 			    (longlong_t)tx->tx_txg);
3528 		}
3529 	} else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
3530 		ASSERT(scn->scn_clearing);
3531 
3532 		/* need to issue scrubbing IOs from per-vdev queues */
3533 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3534 		    NULL, ZIO_FLAG_CANFAIL);
3535 		scan_io_queues_run(scn);
3536 		(void) zio_wait(scn->scn_zio_root);
3537 		scn->scn_zio_root = NULL;
3538 
3539 		/* calculate and dprintf the current memory usage */
3540 		(void) dsl_scan_should_clear(scn);
3541 		dsl_scan_update_stats(scn);
3542 
3543 		zfs_dbgmsg("scrubbed %llu blocks (%llu segs) in %llums "
3544 		    "(avg_block_size = %llu, avg_seg_size = %llu)",
3545 		    (longlong_t)scn->scn_zios_this_txg,
3546 		    (longlong_t)scn->scn_segs_this_txg,
3547 		    (longlong_t)NSEC2MSEC(gethrtime() -
3548 		    scn->scn_sync_start_time),
3549 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
3550 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
3551 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3552 		/* Finished with everything. Mark the scrub as complete */
3553 		zfs_dbgmsg("scan issuing complete txg %llu",
3554 		    (longlong_t)tx->tx_txg);
3555 		ASSERT3U(scn->scn_done_txg, !=, 0);
3556 		ASSERT0(spa->spa_scrub_inflight);
3557 		ASSERT0(scn->scn_bytes_pending);
3558 		dsl_scan_done(scn, B_TRUE, tx);
3559 		sync_type = SYNC_MANDATORY;
3560 	}
3561 
3562 	dsl_scan_sync_state(scn, tx, sync_type);
3563 }
3564 
3565 static void
3566 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
3567 {
3568 	int i;
3569 
3570 	/*
3571 	 * Don't count embedded bp's, since we already did the work of
3572 	 * scanning these when we scanned the containing block.
3573 	 */
3574 	if (BP_IS_EMBEDDED(bp))
3575 		return;
3576 
3577 	/*
3578 	 * Update the spa's stats on how many bytes we have issued.
3579 	 * Sequential scrubs create a zio for each DVA of the bp. Each
3580 	 * of these will include all DVAs for repair purposes, but the
3581 	 * zio code will only try the first one unless there is an issue.
3582 	 * Therefore, we should only count the first DVA for these IOs.
3583 	 */
3584 	if (scn->scn_is_sorted) {
3585 		atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
3586 		    DVA_GET_ASIZE(&bp->blk_dva[0]));
3587 	} else {
3588 		spa_t *spa = scn->scn_dp->dp_spa;
3589 
3590 		for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3591 			atomic_add_64(&spa->spa_scan_pass_issued,
3592 			    DVA_GET_ASIZE(&bp->blk_dva[i]));
3593 		}
3594 	}
3595 
3596 	/*
3597 	 * If we resume after a reboot, zab will be NULL; don't record
3598 	 * incomplete stats in that case.
3599 	 */
3600 	if (zab == NULL)
3601 		return;
3602 
3603 	mutex_enter(&zab->zab_lock);
3604 
3605 	for (i = 0; i < 4; i++) {
3606 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3607 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3608 		if (t & DMU_OT_NEWTYPE)
3609 			t = DMU_OT_OTHER;
3610 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
3611 		int equal;
3612 
3613 		zb->zb_count++;
3614 		zb->zb_asize += BP_GET_ASIZE(bp);
3615 		zb->zb_lsize += BP_GET_LSIZE(bp);
3616 		zb->zb_psize += BP_GET_PSIZE(bp);
3617 		zb->zb_gangs += BP_COUNT_GANG(bp);
3618 
3619 		switch (BP_GET_NDVAS(bp)) {
3620 		case 2:
3621 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3622 			    DVA_GET_VDEV(&bp->blk_dva[1]))
3623 				zb->zb_ditto_2_of_2_samevdev++;
3624 			break;
3625 		case 3:
3626 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3627 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
3628 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3629 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
3630 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3631 			    DVA_GET_VDEV(&bp->blk_dva[2]));
3632 			if (equal == 1)
3633 				zb->zb_ditto_2_of_3_samevdev++;
3634 			else if (equal == 3)
3635 				zb->zb_ditto_3_of_3_samevdev++;
3636 			break;
3637 		}
3638 	}
3639 
3640 	mutex_exit(&zab->zab_lock);
3641 }
3642 
3643 static void
3644 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3645 {
3646 	avl_index_t idx;
3647 	int64_t asize = SIO_GET_ASIZE(sio);
3648 	dsl_scan_t *scn = queue->q_scn;
3649 
3650 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3651 
3652 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3653 		/* block is already scheduled for reading */
3654 		atomic_add_64(&scn->scn_bytes_pending, -asize);
3655 		sio_free(sio);
3656 		return;
3657 	}
3658 	avl_insert(&queue->q_sios_by_addr, sio, idx);
3659 	queue->q_sio_memused += SIO_GET_MUSED(sio);
3660 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
3661 }
3662 
3663 /*
3664  * Given all the info we got from our metadata scanning process, we
3665  * construct a scan_io_t and insert it into the scan sorting queue. The
3666  * I/O must already be suitable for us to process. This is controlled
3667  * by dsl_scan_enqueue().
3668  */
3669 static void
3670 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3671     int zio_flags, const zbookmark_phys_t *zb)
3672 {
3673 	dsl_scan_t *scn = queue->q_scn;
3674 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3675 
3676 	ASSERT0(BP_IS_GANG(bp));
3677 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3678 
3679 	bp2sio(bp, sio, dva_i);
3680 	sio->sio_flags = zio_flags;
3681 	sio->sio_zb = *zb;
3682 
3683 	/*
3684 	 * Increment the bytes pending counter now so that we can't
3685 	 * get an integer underflow in case the worker processes the
3686 	 * zio before we get to incrementing this counter.
3687 	 */
3688 	atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
3689 
3690 	scan_io_queue_insert_impl(queue, sio);
3691 }
3692 
3693 /*
3694  * Given a set of I/O parameters as discovered by the metadata traversal
3695  * process, attempts to place the I/O into the sorted queues (if allowed),
3696  * or immediately executes the I/O.
3697  */
3698 static void
3699 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3700     const zbookmark_phys_t *zb)
3701 {
3702 	spa_t *spa = dp->dp_spa;
3703 
3704 	ASSERT(!BP_IS_EMBEDDED(bp));
3705 
3706 	/*
3707 	 * Gang blocks are hard to issue sequentially, so we just issue them
3708 	 * here immediately instead of queuing them.
3709 	 */
3710 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3711 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
3712 		return;
3713 	}
3714 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3715 		dva_t dva;
3716 		vdev_t *vdev;
3717 
3718 		dva = bp->blk_dva[i];
3719 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3720 		ASSERT(vdev != NULL);
3721 
3722 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
3723 		if (vdev->vdev_scan_io_queue == NULL)
3724 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3725 		ASSERT(dp->dp_scan != NULL);
3726 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3727 		    i, zio_flags, zb);
3728 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
3729 	}
3730 }
3731 
3732 static int
3733 dsl_scan_scrub_cb(dsl_pool_t *dp,
3734     const blkptr_t *bp, const zbookmark_phys_t *zb)
3735 {
3736 	dsl_scan_t *scn = dp->dp_scan;
3737 	spa_t *spa = dp->dp_spa;
3738 	uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3739 	size_t psize = BP_GET_PSIZE(bp);
3740 	boolean_t needs_io;
3741 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3742 	int d;
3743 
3744 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
3745 	    phys_birth >= scn->scn_phys.scn_max_txg) {
3746 		count_block(scn, dp->dp_blkstats, bp);
3747 		return (0);
3748 	}
3749 
3750 	/* Embedded BP's have phys_birth==0, so we reject them above. */
3751 	ASSERT(!BP_IS_EMBEDDED(bp));
3752 
3753 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
3754 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
3755 		zio_flags |= ZIO_FLAG_SCRUB;
3756 		needs_io = B_TRUE;
3757 	} else {
3758 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
3759 		zio_flags |= ZIO_FLAG_RESILVER;
3760 		needs_io = B_FALSE;
3761 	}
3762 
3763 	/* If it's an intent log block, failure is expected. */
3764 	if (zb->zb_level == ZB_ZIL_LEVEL)
3765 		zio_flags |= ZIO_FLAG_SPECULATIVE;
3766 
3767 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
3768 		const dva_t *dva = &bp->blk_dva[d];
3769 
3770 		/*
3771 		 * Keep track of how much data we've examined so that
3772 		 * zpool(1M) status can make useful progress reports.
3773 		 */
3774 		scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
3775 		spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
3776 
3777 		/* if it's a resilver, this may not be in the target range */
3778 		if (!needs_io)
3779 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
3780 			    phys_birth);
3781 	}
3782 
3783 	if (needs_io && !zfs_no_scrub_io) {
3784 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
3785 	} else {
3786 		count_block(scn, dp->dp_blkstats, bp);
3787 	}
3788 
3789 	/* do not relocate this block */
3790 	return (0);
3791 }
3792 
3793 static void
3794 dsl_scan_scrub_done(zio_t *zio)
3795 {
3796 	spa_t *spa = zio->io_spa;
3797 	blkptr_t *bp = zio->io_bp;
3798 	dsl_scan_io_queue_t *queue = zio->io_private;
3799 
3800 	abd_free(zio->io_abd);
3801 
3802 	if (queue == NULL) {
3803 		mutex_enter(&spa->spa_scrub_lock);
3804 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
3805 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
3806 		cv_broadcast(&spa->spa_scrub_io_cv);
3807 		mutex_exit(&spa->spa_scrub_lock);
3808 	} else {
3809 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
3810 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
3811 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
3812 		cv_broadcast(&queue->q_zio_cv);
3813 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
3814 	}
3815 
3816 	if (zio->io_error && (zio->io_error != ECKSUM ||
3817 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
3818 		atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
3819 	}
3820 }
3821 
3822 /*
3823  * Given a scanning zio's information, executes the zio. The zio need
3824  * not necessarily be only sortable, this function simply executes the
3825  * zio, no matter what it is. The optional queue argument allows the
3826  * caller to specify that they want per top level vdev IO rate limiting
3827  * instead of the legacy global limiting.
3828  */
3829 static void
3830 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3831     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
3832 {
3833 	spa_t *spa = dp->dp_spa;
3834 	dsl_scan_t *scn = dp->dp_scan;
3835 	size_t size = BP_GET_PSIZE(bp);
3836 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
3837 
3838 	if (queue == NULL) {
3839 		mutex_enter(&spa->spa_scrub_lock);
3840 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
3841 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
3842 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
3843 		mutex_exit(&spa->spa_scrub_lock);
3844 	} else {
3845 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3846 
3847 		mutex_enter(q_lock);
3848 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
3849 			cv_wait(&queue->q_zio_cv, q_lock);
3850 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
3851 		mutex_exit(q_lock);
3852 	}
3853 
3854 	count_block(dp->dp_scan, dp->dp_blkstats, bp);
3855 	zio_nowait(zio_read(dp->dp_scan->scn_zio_root, spa, bp, data, size,
3856 	    dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
3857 }
3858 
3859 /*
3860  * This is the primary extent sorting algorithm. We balance two parameters:
3861  * 1) how many bytes of I/O are in an extent
3862  * 2) how well the extent is filled with I/O (as a fraction of its total size)
3863  * Since we allow extents to have gaps between their constituent I/Os, it's
3864  * possible to have a fairly large extent that contains the same amount of
3865  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
3866  * The algorithm sorts based on a score calculated from the extent's size,
3867  * the relative fill volume (in %) and a "fill weight" parameter that controls
3868  * the split between whether we prefer larger extents or more well populated
3869  * extents:
3870  *
3871  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
3872  *
3873  * Example:
3874  * 1) assume extsz = 64 MiB
3875  * 2) assume fill = 32 MiB (extent is half full)
3876  * 3) assume fill_weight = 3
3877  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
3878  *	SCORE = 32M + (50 * 3 * 32M) / 100
3879  *	SCORE = 32M + (4800M / 100)
3880  *	SCORE = 32M + 48M
3881  *		^	^
3882  *		|	+--- final total relative fill-based score
3883  *		+--------- final total fill-based score
3884  *	SCORE = 80M
3885  *
3886  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
3887  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
3888  * Note that as an optimization, we replace multiplication and division by
3889  * 100 with bitshifting by 7 (which effecitvely multiplies and divides by 128).
3890  */
3891 static int
3892 ext_size_compare(const void *x, const void *y)
3893 {
3894 	const range_seg_t *rsa = x, *rsb = y;
3895 	uint64_t sa = rsa->rs_end - rsa->rs_start,
3896 	    sb = rsb->rs_end - rsb->rs_start;
3897 	uint64_t score_a, score_b;
3898 
3899 	score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
3900 	    fill_weight * rsa->rs_fill) >> 7);
3901 	score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
3902 	    fill_weight * rsb->rs_fill) >> 7);
3903 
3904 	if (score_a > score_b)
3905 		return (-1);
3906 	if (score_a == score_b) {
3907 		if (rsa->rs_start < rsb->rs_start)
3908 			return (-1);
3909 		if (rsa->rs_start == rsb->rs_start)
3910 			return (0);
3911 		return (1);
3912 	}
3913 	return (1);
3914 }
3915 
3916 /*
3917  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
3918  * based on LBA-order (from lowest to highest).
3919  */
3920 static int
3921 sio_addr_compare(const void *x, const void *y)
3922 {
3923 	const scan_io_t *a = x, *b = y;
3924 
3925 	return (AVL_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
3926 }
3927 
3928 /* IO queues are created on demand when they are needed. */
3929 static dsl_scan_io_queue_t *
3930 scan_io_queue_create(vdev_t *vd)
3931 {
3932 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3933 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
3934 
3935 	q->q_scn = scn;
3936 	q->q_vd = vd;
3937 	q->q_sio_memused = 0;
3938 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
3939 	q->q_exts_by_addr = range_tree_create_impl(&rt_avl_ops,
3940 	    &q->q_exts_by_size, ext_size_compare, zfs_scan_max_ext_gap);
3941 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
3942 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
3943 
3944 	return (q);
3945 }
3946 
3947 /*
3948  * Destroys a scan queue and all segments and scan_io_t's contained in it.
3949  * No further execution of I/O occurs, anything pending in the queue is
3950  * simply freed without being executed.
3951  */
3952 void
3953 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
3954 {
3955 	dsl_scan_t *scn = queue->q_scn;
3956 	scan_io_t *sio;
3957 	void *cookie = NULL;
3958 	int64_t bytes_dequeued = 0;
3959 
3960 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3961 
3962 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
3963 	    NULL) {
3964 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
3965 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
3966 		bytes_dequeued += SIO_GET_ASIZE(sio);
3967 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
3968 		sio_free(sio);
3969 	}
3970 
3971 	ASSERT0(queue->q_sio_memused);
3972 	atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
3973 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
3974 	range_tree_destroy(queue->q_exts_by_addr);
3975 	avl_destroy(&queue->q_sios_by_addr);
3976 	cv_destroy(&queue->q_zio_cv);
3977 
3978 	kmem_free(queue, sizeof (*queue));
3979 }
3980 
3981 /*
3982  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
3983  * called on behalf of vdev_top_transfer when creating or destroying
3984  * a mirror vdev due to zpool attach/detach.
3985  */
3986 void
3987 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
3988 {
3989 	mutex_enter(&svd->vdev_scan_io_queue_lock);
3990 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
3991 
3992 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
3993 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
3994 	svd->vdev_scan_io_queue = NULL;
3995 	if (tvd->vdev_scan_io_queue != NULL)
3996 		tvd->vdev_scan_io_queue->q_vd = tvd;
3997 
3998 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
3999 	mutex_exit(&svd->vdev_scan_io_queue_lock);
4000 }
4001 
4002 static void
4003 scan_io_queues_destroy(dsl_scan_t *scn)
4004 {
4005 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4006 
4007 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4008 		vdev_t *tvd = rvd->vdev_child[i];
4009 
4010 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
4011 		if (tvd->vdev_scan_io_queue != NULL)
4012 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4013 		tvd->vdev_scan_io_queue = NULL;
4014 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
4015 	}
4016 }
4017 
4018 static void
4019 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4020 {
4021 	dsl_pool_t *dp = spa->spa_dsl_pool;
4022 	dsl_scan_t *scn = dp->dp_scan;
4023 	vdev_t *vdev;
4024 	kmutex_t *q_lock;
4025 	dsl_scan_io_queue_t *queue;
4026 	scan_io_t *srch_sio, *sio;
4027 	avl_index_t idx;
4028 	uint64_t start, size;
4029 
4030 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4031 	ASSERT(vdev != NULL);
4032 	q_lock = &vdev->vdev_scan_io_queue_lock;
4033 	queue = vdev->vdev_scan_io_queue;
4034 
4035 	mutex_enter(q_lock);
4036 	if (queue == NULL) {
4037 		mutex_exit(q_lock);
4038 		return;
4039 	}
4040 
4041 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4042 	bp2sio(bp, srch_sio, dva_i);
4043 	start = SIO_GET_OFFSET(srch_sio);
4044 	size = SIO_GET_ASIZE(srch_sio);
4045 
4046 	/*
4047 	 * We can find the zio in two states:
4048 	 * 1) Cold, just sitting in the queue of zio's to be issued at
4049 	 *	some point in the future. In this case, all we do is
4050 	 *	remove the zio from the q_sios_by_addr tree, decrement
4051 	 *	its data volume from the containing range_seg_t and
4052 	 *	resort the q_exts_by_size tree to reflect that the
4053 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
4054 	 *	the range_seg_t - this is usually rare enough not to be
4055 	 *	worth the extra hassle of trying keep track of precise
4056 	 *	extent boundaries.
4057 	 * 2) Hot, where the zio is currently in-flight in
4058 	 *	dsl_scan_issue_ios. In this case, we can't simply
4059 	 *	reach in and stop the in-flight zio's, so we instead
4060 	 *	block the caller. Eventually, dsl_scan_issue_ios will
4061 	 *	be done with issuing the zio's it gathered and will
4062 	 *	signal us.
4063 	 */
4064 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4065 	sio_free(srch_sio);
4066 
4067 	if (sio != NULL) {
4068 		int64_t asize = SIO_GET_ASIZE(sio);
4069 		blkptr_t tmpbp;
4070 
4071 		/* Got it while it was cold in the queue */
4072 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4073 		ASSERT3U(size, ==, asize);
4074 		avl_remove(&queue->q_sios_by_addr, sio);
4075 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4076 
4077 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4078 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4079 
4080 		/*
4081 		 * We only update scn_bytes_pending in the cold path,
4082 		 * otherwise it will already have been accounted for as
4083 		 * part of the zio's execution.
4084 		 */
4085 		atomic_add_64(&scn->scn_bytes_pending, -asize);
4086 
4087 		/* count the block as though we issued it */
4088 		sio2bp(sio, &tmpbp);
4089 		count_block(scn, dp->dp_blkstats, &tmpbp);
4090 
4091 		sio_free(sio);
4092 	}
4093 	mutex_exit(q_lock);
4094 }
4095 
4096 /*
4097  * Callback invoked when a zio_free() zio is executing. This needs to be
4098  * intercepted to prevent the zio from deallocating a particular portion
4099  * of disk space and it then getting reallocated and written to, while we
4100  * still have it queued up for processing.
4101  */
4102 void
4103 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4104 {
4105 	dsl_pool_t *dp = spa->spa_dsl_pool;
4106 	dsl_scan_t *scn = dp->dp_scan;
4107 
4108 	ASSERT(!BP_IS_EMBEDDED(bp));
4109 	ASSERT(scn != NULL);
4110 	if (!dsl_scan_is_running(scn))
4111 		return;
4112 
4113 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4114 		dsl_scan_freed_dva(spa, bp, i);
4115 }
4116