1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dsl_pool.h> 31 #include <sys/dsl_dataset.h> 32 #include <sys/dsl_prop.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_synctask.h> 35 #include <sys/dsl_scan.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/dsl_deadlist.h> 47 #include <sys/bptree.h> 48 #include <sys/zfeature.h> 49 #include <sys/zil_impl.h> 50 #include <sys/dsl_userhold.h> 51 52 /* 53 * ZFS Write Throttle 54 * ------------------ 55 * 56 * ZFS must limit the rate of incoming writes to the rate at which it is able 57 * to sync data modifications to the backend storage. Throttling by too much 58 * creates an artificial limit; throttling by too little can only be sustained 59 * for short periods and would lead to highly lumpy performance. On a per-pool 60 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 61 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 62 * of dirty data decreases. When the amount of dirty data exceeds a 63 * predetermined threshold further modifications are blocked until the amount 64 * of dirty data decreases (as data is synced out). 65 * 66 * The limit on dirty data is tunable, and should be adjusted according to 67 * both the IO capacity and available memory of the system. The larger the 68 * window, the more ZFS is able to aggregate and amortize metadata (and data) 69 * changes. However, memory is a limited resource, and allowing for more dirty 70 * data comes at the cost of keeping other useful data in memory (for example 71 * ZFS data cached by the ARC). 72 * 73 * Implementation 74 * 75 * As buffers are modified dsl_pool_willuse_space() increments both the per- 76 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 77 * dirty space used; dsl_pool_dirty_space() decrements those values as data 78 * is synced out from dsl_pool_sync(). While only the poolwide value is 79 * relevant, the per-txg value is useful for debugging. The tunable 80 * zfs_dirty_data_max determines the dirty space limit. Once that value is 81 * exceeded, new writes are halted until space frees up. 82 * 83 * The zfs_dirty_data_sync tunable dictates the threshold at which we 84 * ensure that there is a txg syncing (see the comment in txg.c for a full 85 * description of transaction group stages). 86 * 87 * The IO scheduler uses both the dirty space limit and current amount of 88 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 89 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 90 * 91 * The delay is also calculated based on the amount of dirty data. See the 92 * comment above dmu_tx_delay() for details. 93 */ 94 95 /* 96 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 97 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 98 */ 99 uint64_t zfs_dirty_data_max; 100 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 101 int zfs_dirty_data_max_percent = 10; 102 103 /* 104 * If there is at least this much dirty data, push out a txg. 105 */ 106 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 107 108 /* 109 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 110 * and delay each transaction. 111 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 112 */ 113 int zfs_delay_min_dirty_percent = 60; 114 115 /* 116 * This controls how quickly the delay approaches infinity. 117 * Larger values cause it to delay more for a given amount of dirty data. 118 * Therefore larger values will cause there to be less dirty data for a 119 * given throughput. 120 * 121 * For the smoothest delay, this value should be about 1 billion divided 122 * by the maximum number of operations per second. This will smoothly 123 * handle between 10x and 1/10th this number. 124 * 125 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 126 * multiply in dmu_tx_delay(). 127 */ 128 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 129 130 /* 131 * This determines the number of threads used by the dp_sync_taskq. 132 */ 133 int zfs_sync_taskq_batch_pct = 75; 134 135 hrtime_t zfs_throttle_delay = MSEC2NSEC(10); 136 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); 137 138 int 139 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 140 { 141 uint64_t obj; 142 int err; 143 144 err = zap_lookup(dp->dp_meta_objset, 145 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 146 name, sizeof (obj), 1, &obj); 147 if (err) 148 return (err); 149 150 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 151 } 152 153 static dsl_pool_t * 154 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 155 { 156 dsl_pool_t *dp; 157 blkptr_t *bp = spa_get_rootblkptr(spa); 158 159 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 160 dp->dp_spa = spa; 161 dp->dp_meta_rootbp = *bp; 162 rrw_init(&dp->dp_config_rwlock, B_TRUE); 163 txg_init(dp, txg); 164 165 txg_list_create(&dp->dp_dirty_datasets, 166 offsetof(dsl_dataset_t, ds_dirty_link)); 167 txg_list_create(&dp->dp_dirty_zilogs, 168 offsetof(zilog_t, zl_dirty_link)); 169 txg_list_create(&dp->dp_dirty_dirs, 170 offsetof(dsl_dir_t, dd_dirty_link)); 171 txg_list_create(&dp->dp_sync_tasks, 172 offsetof(dsl_sync_task_t, dst_node)); 173 174 dp->dp_sync_taskq = taskq_create("dp_sync_taskq", 175 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX, 176 TASKQ_THREADS_CPU_PCT); 177 178 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 179 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 180 181 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 182 1, 4, 0); 183 184 return (dp); 185 } 186 187 int 188 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 189 { 190 int err; 191 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 192 193 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 194 &dp->dp_meta_objset); 195 if (err != 0) 196 dsl_pool_close(dp); 197 else 198 *dpp = dp; 199 200 return (err); 201 } 202 203 int 204 dsl_pool_open(dsl_pool_t *dp) 205 { 206 int err; 207 dsl_dir_t *dd; 208 dsl_dataset_t *ds; 209 uint64_t obj; 210 211 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 212 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 213 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 214 &dp->dp_root_dir_obj); 215 if (err) 216 goto out; 217 218 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 219 NULL, dp, &dp->dp_root_dir); 220 if (err) 221 goto out; 222 223 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 224 if (err) 225 goto out; 226 227 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 228 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 229 if (err) 230 goto out; 231 err = dsl_dataset_hold_obj(dp, 232 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 233 if (err == 0) { 234 err = dsl_dataset_hold_obj(dp, 235 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 236 &dp->dp_origin_snap); 237 dsl_dataset_rele(ds, FTAG); 238 } 239 dsl_dir_rele(dd, dp); 240 if (err) 241 goto out; 242 } 243 244 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 245 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 246 &dp->dp_free_dir); 247 if (err) 248 goto out; 249 250 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 251 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 252 if (err) 253 goto out; 254 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 255 dp->dp_meta_objset, obj)); 256 } 257 258 /* 259 * Note: errors ignored, because the leak dir will not exist if we 260 * have not encountered a leak yet. 261 */ 262 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 263 &dp->dp_leak_dir); 264 265 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 266 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 267 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 268 &dp->dp_bptree_obj); 269 if (err != 0) 270 goto out; 271 } 272 273 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 274 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 275 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 276 &dp->dp_empty_bpobj); 277 if (err != 0) 278 goto out; 279 } 280 281 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 282 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 283 &dp->dp_tmp_userrefs_obj); 284 if (err == ENOENT) 285 err = 0; 286 if (err) 287 goto out; 288 289 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 290 291 out: 292 rrw_exit(&dp->dp_config_rwlock, FTAG); 293 return (err); 294 } 295 296 void 297 dsl_pool_close(dsl_pool_t *dp) 298 { 299 /* 300 * Drop our references from dsl_pool_open(). 301 * 302 * Since we held the origin_snap from "syncing" context (which 303 * includes pool-opening context), it actually only got a "ref" 304 * and not a hold, so just drop that here. 305 */ 306 if (dp->dp_origin_snap) 307 dsl_dataset_rele(dp->dp_origin_snap, dp); 308 if (dp->dp_mos_dir) 309 dsl_dir_rele(dp->dp_mos_dir, dp); 310 if (dp->dp_free_dir) 311 dsl_dir_rele(dp->dp_free_dir, dp); 312 if (dp->dp_leak_dir) 313 dsl_dir_rele(dp->dp_leak_dir, dp); 314 if (dp->dp_root_dir) 315 dsl_dir_rele(dp->dp_root_dir, dp); 316 317 bpobj_close(&dp->dp_free_bpobj); 318 319 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 320 if (dp->dp_meta_objset) 321 dmu_objset_evict(dp->dp_meta_objset); 322 323 txg_list_destroy(&dp->dp_dirty_datasets); 324 txg_list_destroy(&dp->dp_dirty_zilogs); 325 txg_list_destroy(&dp->dp_sync_tasks); 326 txg_list_destroy(&dp->dp_dirty_dirs); 327 328 taskq_destroy(dp->dp_sync_taskq); 329 330 /* 331 * We can't set retry to TRUE since we're explicitly specifying 332 * a spa to flush. This is good enough; any missed buffers for 333 * this spa won't cause trouble, and they'll eventually fall 334 * out of the ARC just like any other unused buffer. 335 */ 336 arc_flush(dp->dp_spa, FALSE); 337 338 txg_fini(dp); 339 dsl_scan_fini(dp); 340 dmu_buf_user_evict_wait(); 341 342 rrw_destroy(&dp->dp_config_rwlock); 343 mutex_destroy(&dp->dp_lock); 344 taskq_destroy(dp->dp_vnrele_taskq); 345 if (dp->dp_blkstats) 346 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 347 kmem_free(dp, sizeof (dsl_pool_t)); 348 } 349 350 dsl_pool_t * 351 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 352 { 353 int err; 354 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 355 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 356 objset_t *os; 357 dsl_dataset_t *ds; 358 uint64_t obj; 359 360 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 361 362 /* create and open the MOS (meta-objset) */ 363 dp->dp_meta_objset = dmu_objset_create_impl(spa, 364 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 365 366 /* create the pool directory */ 367 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 368 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 369 ASSERT0(err); 370 371 /* Initialize scan structures */ 372 VERIFY0(dsl_scan_init(dp, txg)); 373 374 /* create and open the root dir */ 375 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 376 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 377 NULL, dp, &dp->dp_root_dir)); 378 379 /* create and open the meta-objset dir */ 380 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 381 VERIFY0(dsl_pool_open_special_dir(dp, 382 MOS_DIR_NAME, &dp->dp_mos_dir)); 383 384 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 385 /* create and open the free dir */ 386 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 387 FREE_DIR_NAME, tx); 388 VERIFY0(dsl_pool_open_special_dir(dp, 389 FREE_DIR_NAME, &dp->dp_free_dir)); 390 391 /* create and open the free_bplist */ 392 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 393 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 394 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 395 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 396 dp->dp_meta_objset, obj)); 397 } 398 399 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 400 dsl_pool_create_origin(dp, tx); 401 402 /* create the root dataset */ 403 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 404 405 /* create the root objset */ 406 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 407 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 408 os = dmu_objset_create_impl(dp->dp_spa, ds, 409 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 410 rrw_exit(&ds->ds_bp_rwlock, FTAG); 411 #ifdef _KERNEL 412 zfs_create_fs(os, kcred, zplprops, tx); 413 #endif 414 dsl_dataset_rele(ds, FTAG); 415 416 dmu_tx_commit(tx); 417 418 rrw_exit(&dp->dp_config_rwlock, FTAG); 419 420 return (dp); 421 } 422 423 /* 424 * Account for the meta-objset space in its placeholder dsl_dir. 425 */ 426 void 427 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 428 int64_t used, int64_t comp, int64_t uncomp) 429 { 430 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 431 mutex_enter(&dp->dp_lock); 432 dp->dp_mos_used_delta += used; 433 dp->dp_mos_compressed_delta += comp; 434 dp->dp_mos_uncompressed_delta += uncomp; 435 mutex_exit(&dp->dp_lock); 436 } 437 438 static void 439 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 440 { 441 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 442 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 443 VERIFY0(zio_wait(zio)); 444 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 445 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 446 } 447 448 static void 449 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 450 { 451 ASSERT(MUTEX_HELD(&dp->dp_lock)); 452 453 if (delta < 0) 454 ASSERT3U(-delta, <=, dp->dp_dirty_total); 455 456 dp->dp_dirty_total += delta; 457 458 /* 459 * Note: we signal even when increasing dp_dirty_total. 460 * This ensures forward progress -- each thread wakes the next waiter. 461 */ 462 if (dp->dp_dirty_total <= zfs_dirty_data_max) 463 cv_signal(&dp->dp_spaceavail_cv); 464 } 465 466 void 467 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 468 { 469 zio_t *zio; 470 dmu_tx_t *tx; 471 dsl_dir_t *dd; 472 dsl_dataset_t *ds; 473 objset_t *mos = dp->dp_meta_objset; 474 list_t synced_datasets; 475 476 list_create(&synced_datasets, sizeof (dsl_dataset_t), 477 offsetof(dsl_dataset_t, ds_synced_link)); 478 479 tx = dmu_tx_create_assigned(dp, txg); 480 481 /* 482 * Write out all dirty blocks of dirty datasets. 483 */ 484 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 485 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 486 /* 487 * We must not sync any non-MOS datasets twice, because 488 * we may have taken a snapshot of them. However, we 489 * may sync newly-created datasets on pass 2. 490 */ 491 ASSERT(!list_link_active(&ds->ds_synced_link)); 492 list_insert_tail(&synced_datasets, ds); 493 dsl_dataset_sync(ds, zio, tx); 494 } 495 VERIFY0(zio_wait(zio)); 496 497 /* 498 * We have written all of the accounted dirty data, so our 499 * dp_space_towrite should now be zero. However, some seldom-used 500 * code paths do not adhere to this (e.g. dbuf_undirty(), also 501 * rounding error in dbuf_write_physdone). 502 * Shore up the accounting of any dirtied space now. 503 */ 504 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 505 506 /* 507 * Update the long range free counter after 508 * we're done syncing user data 509 */ 510 mutex_enter(&dp->dp_lock); 511 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 512 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 513 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 514 mutex_exit(&dp->dp_lock); 515 516 /* 517 * After the data blocks have been written (ensured by the zio_wait() 518 * above), update the user/group space accounting. This happens 519 * in tasks dispatched to dp_sync_taskq, so wait for them before 520 * continuing. 521 */ 522 for (ds = list_head(&synced_datasets); ds != NULL; 523 ds = list_next(&synced_datasets, ds)) { 524 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 525 } 526 taskq_wait(dp->dp_sync_taskq); 527 528 /* 529 * Sync the datasets again to push out the changes due to 530 * userspace updates. This must be done before we process the 531 * sync tasks, so that any snapshots will have the correct 532 * user accounting information (and we won't get confused 533 * about which blocks are part of the snapshot). 534 */ 535 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 536 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 537 ASSERT(list_link_active(&ds->ds_synced_link)); 538 dmu_buf_rele(ds->ds_dbuf, ds); 539 dsl_dataset_sync(ds, zio, tx); 540 } 541 VERIFY0(zio_wait(zio)); 542 543 /* 544 * Now that the datasets have been completely synced, we can 545 * clean up our in-memory structures accumulated while syncing: 546 * 547 * - move dead blocks from the pending deadlist to the on-disk deadlist 548 * - release hold from dsl_dataset_dirty() 549 */ 550 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 551 dsl_dataset_sync_done(ds, tx); 552 } 553 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 554 dsl_dir_sync(dd, tx); 555 } 556 557 /* 558 * The MOS's space is accounted for in the pool/$MOS 559 * (dp_mos_dir). We can't modify the mos while we're syncing 560 * it, so we remember the deltas and apply them here. 561 */ 562 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 563 dp->dp_mos_uncompressed_delta != 0) { 564 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 565 dp->dp_mos_used_delta, 566 dp->dp_mos_compressed_delta, 567 dp->dp_mos_uncompressed_delta, tx); 568 dp->dp_mos_used_delta = 0; 569 dp->dp_mos_compressed_delta = 0; 570 dp->dp_mos_uncompressed_delta = 0; 571 } 572 573 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) { 574 dsl_pool_sync_mos(dp, tx); 575 } 576 577 /* 578 * If we modify a dataset in the same txg that we want to destroy it, 579 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 580 * dsl_dir_destroy_check() will fail if there are unexpected holds. 581 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 582 * and clearing the hold on it) before we process the sync_tasks. 583 * The MOS data dirtied by the sync_tasks will be synced on the next 584 * pass. 585 */ 586 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 587 dsl_sync_task_t *dst; 588 /* 589 * No more sync tasks should have been added while we 590 * were syncing. 591 */ 592 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 593 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 594 dsl_sync_task_sync(dst, tx); 595 } 596 597 dmu_tx_commit(tx); 598 599 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 600 } 601 602 void 603 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 604 { 605 zilog_t *zilog; 606 607 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) { 608 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 609 /* 610 * We don't remove the zilog from the dp_dirty_zilogs 611 * list until after we've cleaned it. This ensures that 612 * callers of zilog_is_dirty() receive an accurate 613 * answer when they are racing with the spa sync thread. 614 */ 615 zil_clean(zilog, txg); 616 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 617 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 618 dmu_buf_rele(ds->ds_dbuf, zilog); 619 } 620 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 621 } 622 623 /* 624 * TRUE if the current thread is the tx_sync_thread or if we 625 * are being called from SPA context during pool initialization. 626 */ 627 int 628 dsl_pool_sync_context(dsl_pool_t *dp) 629 { 630 return (curthread == dp->dp_tx.tx_sync_thread || 631 spa_is_initializing(dp->dp_spa) || 632 taskq_member(dp->dp_sync_taskq, curthread)); 633 } 634 635 uint64_t 636 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 637 { 638 uint64_t space, resv; 639 640 /* 641 * If we're trying to assess whether it's OK to do a free, 642 * cut the reservation in half to allow forward progress 643 * (e.g. make it possible to rm(1) files from a full pool). 644 */ 645 space = spa_get_dspace(dp->dp_spa); 646 resv = spa_get_slop_space(dp->dp_spa); 647 if (netfree) 648 resv >>= 1; 649 650 return (space - resv); 651 } 652 653 boolean_t 654 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 655 { 656 uint64_t delay_min_bytes = 657 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 658 boolean_t rv; 659 660 mutex_enter(&dp->dp_lock); 661 if (dp->dp_dirty_total > zfs_dirty_data_sync) 662 txg_kick(dp); 663 rv = (dp->dp_dirty_total > delay_min_bytes); 664 mutex_exit(&dp->dp_lock); 665 return (rv); 666 } 667 668 void 669 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 670 { 671 if (space > 0) { 672 mutex_enter(&dp->dp_lock); 673 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 674 dsl_pool_dirty_delta(dp, space); 675 mutex_exit(&dp->dp_lock); 676 } 677 } 678 679 void 680 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 681 { 682 ASSERT3S(space, >=, 0); 683 if (space == 0) 684 return; 685 mutex_enter(&dp->dp_lock); 686 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 687 /* XXX writing something we didn't dirty? */ 688 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 689 } 690 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 691 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 692 ASSERT3U(dp->dp_dirty_total, >=, space); 693 dsl_pool_dirty_delta(dp, -space); 694 mutex_exit(&dp->dp_lock); 695 } 696 697 /* ARGSUSED */ 698 static int 699 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 700 { 701 dmu_tx_t *tx = arg; 702 dsl_dataset_t *ds, *prev = NULL; 703 int err; 704 705 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 706 if (err) 707 return (err); 708 709 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 710 err = dsl_dataset_hold_obj(dp, 711 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 712 if (err) { 713 dsl_dataset_rele(ds, FTAG); 714 return (err); 715 } 716 717 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 718 break; 719 dsl_dataset_rele(ds, FTAG); 720 ds = prev; 721 prev = NULL; 722 } 723 724 if (prev == NULL) { 725 prev = dp->dp_origin_snap; 726 727 /* 728 * The $ORIGIN can't have any data, or the accounting 729 * will be wrong. 730 */ 731 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 732 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 733 rrw_exit(&ds->ds_bp_rwlock, FTAG); 734 735 /* The origin doesn't get attached to itself */ 736 if (ds->ds_object == prev->ds_object) { 737 dsl_dataset_rele(ds, FTAG); 738 return (0); 739 } 740 741 dmu_buf_will_dirty(ds->ds_dbuf, tx); 742 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 743 dsl_dataset_phys(ds)->ds_prev_snap_txg = 744 dsl_dataset_phys(prev)->ds_creation_txg; 745 746 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 747 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 748 749 dmu_buf_will_dirty(prev->ds_dbuf, tx); 750 dsl_dataset_phys(prev)->ds_num_children++; 751 752 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 753 ASSERT(ds->ds_prev == NULL); 754 VERIFY0(dsl_dataset_hold_obj(dp, 755 dsl_dataset_phys(ds)->ds_prev_snap_obj, 756 ds, &ds->ds_prev)); 757 } 758 } 759 760 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 761 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 762 763 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 764 dmu_buf_will_dirty(prev->ds_dbuf, tx); 765 dsl_dataset_phys(prev)->ds_next_clones_obj = 766 zap_create(dp->dp_meta_objset, 767 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 768 } 769 VERIFY0(zap_add_int(dp->dp_meta_objset, 770 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 771 772 dsl_dataset_rele(ds, FTAG); 773 if (prev != dp->dp_origin_snap) 774 dsl_dataset_rele(prev, FTAG); 775 return (0); 776 } 777 778 void 779 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 780 { 781 ASSERT(dmu_tx_is_syncing(tx)); 782 ASSERT(dp->dp_origin_snap != NULL); 783 784 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 785 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 786 } 787 788 /* ARGSUSED */ 789 static int 790 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 791 { 792 dmu_tx_t *tx = arg; 793 objset_t *mos = dp->dp_meta_objset; 794 795 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 796 dsl_dataset_t *origin; 797 798 VERIFY0(dsl_dataset_hold_obj(dp, 799 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 800 801 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 802 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 803 dsl_dir_phys(origin->ds_dir)->dd_clones = 804 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 805 0, tx); 806 } 807 808 VERIFY0(zap_add_int(dp->dp_meta_objset, 809 dsl_dir_phys(origin->ds_dir)->dd_clones, 810 ds->ds_object, tx)); 811 812 dsl_dataset_rele(origin, FTAG); 813 } 814 return (0); 815 } 816 817 void 818 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 819 { 820 ASSERT(dmu_tx_is_syncing(tx)); 821 uint64_t obj; 822 823 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 824 VERIFY0(dsl_pool_open_special_dir(dp, 825 FREE_DIR_NAME, &dp->dp_free_dir)); 826 827 /* 828 * We can't use bpobj_alloc(), because spa_version() still 829 * returns the old version, and we need a new-version bpobj with 830 * subobj support. So call dmu_object_alloc() directly. 831 */ 832 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 833 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 834 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 835 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 836 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 837 838 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 839 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 840 } 841 842 void 843 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 844 { 845 uint64_t dsobj; 846 dsl_dataset_t *ds; 847 848 ASSERT(dmu_tx_is_syncing(tx)); 849 ASSERT(dp->dp_origin_snap == NULL); 850 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 851 852 /* create the origin dir, ds, & snap-ds */ 853 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 854 NULL, 0, kcred, tx); 855 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 856 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 857 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 858 dp, &dp->dp_origin_snap)); 859 dsl_dataset_rele(ds, FTAG); 860 } 861 862 taskq_t * 863 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 864 { 865 return (dp->dp_vnrele_taskq); 866 } 867 868 /* 869 * Walk through the pool-wide zap object of temporary snapshot user holds 870 * and release them. 871 */ 872 void 873 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 874 { 875 zap_attribute_t za; 876 zap_cursor_t zc; 877 objset_t *mos = dp->dp_meta_objset; 878 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 879 nvlist_t *holds; 880 881 if (zapobj == 0) 882 return; 883 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 884 885 holds = fnvlist_alloc(); 886 887 for (zap_cursor_init(&zc, mos, zapobj); 888 zap_cursor_retrieve(&zc, &za) == 0; 889 zap_cursor_advance(&zc)) { 890 char *htag; 891 nvlist_t *tags; 892 893 htag = strchr(za.za_name, '-'); 894 *htag = '\0'; 895 ++htag; 896 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 897 tags = fnvlist_alloc(); 898 fnvlist_add_boolean(tags, htag); 899 fnvlist_add_nvlist(holds, za.za_name, tags); 900 fnvlist_free(tags); 901 } else { 902 fnvlist_add_boolean(tags, htag); 903 } 904 } 905 dsl_dataset_user_release_tmp(dp, holds); 906 fnvlist_free(holds); 907 zap_cursor_fini(&zc); 908 } 909 910 /* 911 * Create the pool-wide zap object for storing temporary snapshot holds. 912 */ 913 void 914 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 915 { 916 objset_t *mos = dp->dp_meta_objset; 917 918 ASSERT(dp->dp_tmp_userrefs_obj == 0); 919 ASSERT(dmu_tx_is_syncing(tx)); 920 921 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 922 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 923 } 924 925 static int 926 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 927 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 928 { 929 objset_t *mos = dp->dp_meta_objset; 930 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 931 char *name; 932 int error; 933 934 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 935 ASSERT(dmu_tx_is_syncing(tx)); 936 937 /* 938 * If the pool was created prior to SPA_VERSION_USERREFS, the 939 * zap object for temporary holds might not exist yet. 940 */ 941 if (zapobj == 0) { 942 if (holding) { 943 dsl_pool_user_hold_create_obj(dp, tx); 944 zapobj = dp->dp_tmp_userrefs_obj; 945 } else { 946 return (SET_ERROR(ENOENT)); 947 } 948 } 949 950 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 951 if (holding) 952 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 953 else 954 error = zap_remove(mos, zapobj, name, tx); 955 strfree(name); 956 957 return (error); 958 } 959 960 /* 961 * Add a temporary hold for the given dataset object and tag. 962 */ 963 int 964 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 965 uint64_t now, dmu_tx_t *tx) 966 { 967 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 968 } 969 970 /* 971 * Release a temporary hold for the given dataset object and tag. 972 */ 973 int 974 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 975 dmu_tx_t *tx) 976 { 977 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 978 tx, B_FALSE)); 979 } 980 981 /* 982 * DSL Pool Configuration Lock 983 * 984 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 985 * creation / destruction / rename / property setting). It must be held for 986 * read to hold a dataset or dsl_dir. I.e. you must call 987 * dsl_pool_config_enter() or dsl_pool_hold() before calling 988 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 989 * must be held continuously until all datasets and dsl_dirs are released. 990 * 991 * The only exception to this rule is that if a "long hold" is placed on 992 * a dataset, then the dp_config_rwlock may be dropped while the dataset 993 * is still held. The long hold will prevent the dataset from being 994 * destroyed -- the destroy will fail with EBUSY. A long hold can be 995 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 996 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 997 * 998 * Legitimate long-holders (including owners) should be long-running, cancelable 999 * tasks that should cause "zfs destroy" to fail. This includes DMU 1000 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1001 * "zfs send", and "zfs diff". There are several other long-holders whose 1002 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1003 * 1004 * The usual formula for long-holding would be: 1005 * dsl_pool_hold() 1006 * dsl_dataset_hold() 1007 * ... perform checks ... 1008 * dsl_dataset_long_hold() 1009 * dsl_pool_rele() 1010 * ... perform long-running task ... 1011 * dsl_dataset_long_rele() 1012 * dsl_dataset_rele() 1013 * 1014 * Note that when the long hold is released, the dataset is still held but 1015 * the pool is not held. The dataset may change arbitrarily during this time 1016 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1017 * dataset except release it. 1018 * 1019 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 1020 * or modifying operations. 1021 * 1022 * Modifying operations should generally use dsl_sync_task(). The synctask 1023 * infrastructure enforces proper locking strategy with respect to the 1024 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1025 * 1026 * Read-only operations will manually hold the pool, then the dataset, obtain 1027 * information from the dataset, then release the pool and dataset. 1028 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1029 * hold/rele. 1030 */ 1031 1032 int 1033 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1034 { 1035 spa_t *spa; 1036 int error; 1037 1038 error = spa_open(name, &spa, tag); 1039 if (error == 0) { 1040 *dp = spa_get_dsl(spa); 1041 dsl_pool_config_enter(*dp, tag); 1042 } 1043 return (error); 1044 } 1045 1046 void 1047 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1048 { 1049 dsl_pool_config_exit(dp, tag); 1050 spa_close(dp->dp_spa, tag); 1051 } 1052 1053 void 1054 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1055 { 1056 /* 1057 * We use a "reentrant" reader-writer lock, but not reentrantly. 1058 * 1059 * The rrwlock can (with the track_all flag) track all reading threads, 1060 * which is very useful for debugging which code path failed to release 1061 * the lock, and for verifying that the *current* thread does hold 1062 * the lock. 1063 * 1064 * (Unlike a rwlock, which knows that N threads hold it for 1065 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1066 * if any thread holds it for read, even if this thread doesn't). 1067 */ 1068 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1069 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1070 } 1071 1072 void 1073 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1074 { 1075 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1076 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1077 } 1078 1079 void 1080 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1081 { 1082 rrw_exit(&dp->dp_config_rwlock, tag); 1083 } 1084 1085 boolean_t 1086 dsl_pool_config_held(dsl_pool_t *dp) 1087 { 1088 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1089 } 1090 1091 boolean_t 1092 dsl_pool_config_held_writer(dsl_pool_t *dp) 1093 { 1094 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1095 } 1096