1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 */ 28 29 #include <sys/dsl_pool.h> 30 #include <sys/dsl_dataset.h> 31 #include <sys/dsl_prop.h> 32 #include <sys/dsl_dir.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/dsl_scan.h> 35 #include <sys/dnode.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/arc.h> 39 #include <sys/zap.h> 40 #include <sys/zio.h> 41 #include <sys/zfs_context.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/zfs_znode.h> 44 #include <sys/spa_impl.h> 45 #include <sys/dsl_deadlist.h> 46 #include <sys/bptree.h> 47 #include <sys/zfeature.h> 48 #include <sys/zil_impl.h> 49 #include <sys/dsl_userhold.h> 50 51 /* 52 * ZFS Write Throttle 53 * ------------------ 54 * 55 * ZFS must limit the rate of incoming writes to the rate at which it is able 56 * to sync data modifications to the backend storage. Throttling by too much 57 * creates an artificial limit; throttling by too little can only be sustained 58 * for short periods and would lead to highly lumpy performance. On a per-pool 59 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 60 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 61 * of dirty data decreases. When the amount of dirty data exceeds a 62 * predetermined threshold further modifications are blocked until the amount 63 * of dirty data decreases (as data is synced out). 64 * 65 * The limit on dirty data is tunable, and should be adjusted according to 66 * both the IO capacity and available memory of the system. The larger the 67 * window, the more ZFS is able to aggregate and amortize metadata (and data) 68 * changes. However, memory is a limited resource, and allowing for more dirty 69 * data comes at the cost of keeping other useful data in memory (for example 70 * ZFS data cached by the ARC). 71 * 72 * Implementation 73 * 74 * As buffers are modified dsl_pool_willuse_space() increments both the per- 75 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 76 * dirty space used; dsl_pool_dirty_space() decrements those values as data 77 * is synced out from dsl_pool_sync(). While only the poolwide value is 78 * relevant, the per-txg value is useful for debugging. The tunable 79 * zfs_dirty_data_max determines the dirty space limit. Once that value is 80 * exceeded, new writes are halted until space frees up. 81 * 82 * The zfs_dirty_data_sync tunable dictates the threshold at which we 83 * ensure that there is a txg syncing (see the comment in txg.c for a full 84 * description of transaction group stages). 85 * 86 * The IO scheduler uses both the dirty space limit and current amount of 87 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 88 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 89 * 90 * The delay is also calculated based on the amount of dirty data. See the 91 * comment above dmu_tx_delay() for details. 92 */ 93 94 /* 95 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 96 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 97 */ 98 uint64_t zfs_dirty_data_max; 99 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 100 int zfs_dirty_data_max_percent = 10; 101 102 /* 103 * If there is at least this much dirty data, push out a txg. 104 */ 105 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 106 107 /* 108 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 109 * and delay each transaction. 110 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 111 */ 112 int zfs_delay_min_dirty_percent = 60; 113 114 /* 115 * This controls how quickly the delay approaches infinity. 116 * Larger values cause it to delay more for a given amount of dirty data. 117 * Therefore larger values will cause there to be less dirty data for a 118 * given throughput. 119 * 120 * For the smoothest delay, this value should be about 1 billion divided 121 * by the maximum number of operations per second. This will smoothly 122 * handle between 10x and 1/10th this number. 123 * 124 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 125 * multiply in dmu_tx_delay(). 126 */ 127 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 128 129 130 hrtime_t zfs_throttle_delay = MSEC2NSEC(10); 131 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); 132 133 int 134 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 135 { 136 uint64_t obj; 137 int err; 138 139 err = zap_lookup(dp->dp_meta_objset, 140 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 141 name, sizeof (obj), 1, &obj); 142 if (err) 143 return (err); 144 145 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 146 } 147 148 static dsl_pool_t * 149 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 150 { 151 dsl_pool_t *dp; 152 blkptr_t *bp = spa_get_rootblkptr(spa); 153 154 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 155 dp->dp_spa = spa; 156 dp->dp_meta_rootbp = *bp; 157 rrw_init(&dp->dp_config_rwlock, B_TRUE); 158 txg_init(dp, txg); 159 160 txg_list_create(&dp->dp_dirty_datasets, 161 offsetof(dsl_dataset_t, ds_dirty_link)); 162 txg_list_create(&dp->dp_dirty_zilogs, 163 offsetof(zilog_t, zl_dirty_link)); 164 txg_list_create(&dp->dp_dirty_dirs, 165 offsetof(dsl_dir_t, dd_dirty_link)); 166 txg_list_create(&dp->dp_sync_tasks, 167 offsetof(dsl_sync_task_t, dst_node)); 168 169 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 170 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 171 172 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 173 1, 4, 0); 174 175 return (dp); 176 } 177 178 int 179 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 180 { 181 int err; 182 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 183 184 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 185 &dp->dp_meta_objset); 186 if (err != 0) 187 dsl_pool_close(dp); 188 else 189 *dpp = dp; 190 191 return (err); 192 } 193 194 int 195 dsl_pool_open(dsl_pool_t *dp) 196 { 197 int err; 198 dsl_dir_t *dd; 199 dsl_dataset_t *ds; 200 uint64_t obj; 201 202 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 203 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 204 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 205 &dp->dp_root_dir_obj); 206 if (err) 207 goto out; 208 209 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 210 NULL, dp, &dp->dp_root_dir); 211 if (err) 212 goto out; 213 214 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 215 if (err) 216 goto out; 217 218 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 219 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 220 if (err) 221 goto out; 222 err = dsl_dataset_hold_obj(dp, 223 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 224 if (err == 0) { 225 err = dsl_dataset_hold_obj(dp, 226 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 227 &dp->dp_origin_snap); 228 dsl_dataset_rele(ds, FTAG); 229 } 230 dsl_dir_rele(dd, dp); 231 if (err) 232 goto out; 233 } 234 235 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 236 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 237 &dp->dp_free_dir); 238 if (err) 239 goto out; 240 241 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 242 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 243 if (err) 244 goto out; 245 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 246 dp->dp_meta_objset, obj)); 247 } 248 249 /* 250 * Note: errors ignored, because the leak dir will not exist if we 251 * have not encountered a leak yet. 252 */ 253 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 254 &dp->dp_leak_dir); 255 256 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 257 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 258 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 259 &dp->dp_bptree_obj); 260 if (err != 0) 261 goto out; 262 } 263 264 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 265 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 266 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 267 &dp->dp_empty_bpobj); 268 if (err != 0) 269 goto out; 270 } 271 272 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 273 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 274 &dp->dp_tmp_userrefs_obj); 275 if (err == ENOENT) 276 err = 0; 277 if (err) 278 goto out; 279 280 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 281 282 out: 283 rrw_exit(&dp->dp_config_rwlock, FTAG); 284 return (err); 285 } 286 287 void 288 dsl_pool_close(dsl_pool_t *dp) 289 { 290 /* 291 * Drop our references from dsl_pool_open(). 292 * 293 * Since we held the origin_snap from "syncing" context (which 294 * includes pool-opening context), it actually only got a "ref" 295 * and not a hold, so just drop that here. 296 */ 297 if (dp->dp_origin_snap) 298 dsl_dataset_rele(dp->dp_origin_snap, dp); 299 if (dp->dp_mos_dir) 300 dsl_dir_rele(dp->dp_mos_dir, dp); 301 if (dp->dp_free_dir) 302 dsl_dir_rele(dp->dp_free_dir, dp); 303 if (dp->dp_leak_dir) 304 dsl_dir_rele(dp->dp_leak_dir, dp); 305 if (dp->dp_root_dir) 306 dsl_dir_rele(dp->dp_root_dir, dp); 307 308 bpobj_close(&dp->dp_free_bpobj); 309 310 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 311 if (dp->dp_meta_objset) 312 dmu_objset_evict(dp->dp_meta_objset); 313 314 txg_list_destroy(&dp->dp_dirty_datasets); 315 txg_list_destroy(&dp->dp_dirty_zilogs); 316 txg_list_destroy(&dp->dp_sync_tasks); 317 txg_list_destroy(&dp->dp_dirty_dirs); 318 319 /* 320 * We can't set retry to TRUE since we're explicitly specifying 321 * a spa to flush. This is good enough; any missed buffers for 322 * this spa won't cause trouble, and they'll eventually fall 323 * out of the ARC just like any other unused buffer. 324 */ 325 arc_flush(dp->dp_spa, FALSE); 326 327 txg_fini(dp); 328 dsl_scan_fini(dp); 329 dmu_buf_user_evict_wait(); 330 331 rrw_destroy(&dp->dp_config_rwlock); 332 mutex_destroy(&dp->dp_lock); 333 taskq_destroy(dp->dp_vnrele_taskq); 334 if (dp->dp_blkstats) 335 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 336 kmem_free(dp, sizeof (dsl_pool_t)); 337 } 338 339 dsl_pool_t * 340 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 341 { 342 int err; 343 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 344 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 345 objset_t *os; 346 dsl_dataset_t *ds; 347 uint64_t obj; 348 349 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 350 351 /* create and open the MOS (meta-objset) */ 352 dp->dp_meta_objset = dmu_objset_create_impl(spa, 353 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 354 355 /* create the pool directory */ 356 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 357 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 358 ASSERT0(err); 359 360 /* Initialize scan structures */ 361 VERIFY0(dsl_scan_init(dp, txg)); 362 363 /* create and open the root dir */ 364 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 365 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 366 NULL, dp, &dp->dp_root_dir)); 367 368 /* create and open the meta-objset dir */ 369 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 370 VERIFY0(dsl_pool_open_special_dir(dp, 371 MOS_DIR_NAME, &dp->dp_mos_dir)); 372 373 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 374 /* create and open the free dir */ 375 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 376 FREE_DIR_NAME, tx); 377 VERIFY0(dsl_pool_open_special_dir(dp, 378 FREE_DIR_NAME, &dp->dp_free_dir)); 379 380 /* create and open the free_bplist */ 381 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 382 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 383 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 384 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 385 dp->dp_meta_objset, obj)); 386 } 387 388 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 389 dsl_pool_create_origin(dp, tx); 390 391 /* create the root dataset */ 392 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 393 394 /* create the root objset */ 395 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 396 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 397 os = dmu_objset_create_impl(dp->dp_spa, ds, 398 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 399 rrw_exit(&ds->ds_bp_rwlock, FTAG); 400 #ifdef _KERNEL 401 zfs_create_fs(os, kcred, zplprops, tx); 402 #endif 403 dsl_dataset_rele(ds, FTAG); 404 405 dmu_tx_commit(tx); 406 407 rrw_exit(&dp->dp_config_rwlock, FTAG); 408 409 return (dp); 410 } 411 412 /* 413 * Account for the meta-objset space in its placeholder dsl_dir. 414 */ 415 void 416 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 417 int64_t used, int64_t comp, int64_t uncomp) 418 { 419 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 420 mutex_enter(&dp->dp_lock); 421 dp->dp_mos_used_delta += used; 422 dp->dp_mos_compressed_delta += comp; 423 dp->dp_mos_uncompressed_delta += uncomp; 424 mutex_exit(&dp->dp_lock); 425 } 426 427 static void 428 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 429 { 430 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 431 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 432 VERIFY0(zio_wait(zio)); 433 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 434 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 435 } 436 437 static void 438 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 439 { 440 ASSERT(MUTEX_HELD(&dp->dp_lock)); 441 442 if (delta < 0) 443 ASSERT3U(-delta, <=, dp->dp_dirty_total); 444 445 dp->dp_dirty_total += delta; 446 447 /* 448 * Note: we signal even when increasing dp_dirty_total. 449 * This ensures forward progress -- each thread wakes the next waiter. 450 */ 451 if (dp->dp_dirty_total <= zfs_dirty_data_max) 452 cv_signal(&dp->dp_spaceavail_cv); 453 } 454 455 void 456 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 457 { 458 zio_t *zio; 459 dmu_tx_t *tx; 460 dsl_dir_t *dd; 461 dsl_dataset_t *ds; 462 objset_t *mos = dp->dp_meta_objset; 463 list_t synced_datasets; 464 465 list_create(&synced_datasets, sizeof (dsl_dataset_t), 466 offsetof(dsl_dataset_t, ds_synced_link)); 467 468 tx = dmu_tx_create_assigned(dp, txg); 469 470 /* 471 * Write out all dirty blocks of dirty datasets. 472 */ 473 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 474 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 475 /* 476 * We must not sync any non-MOS datasets twice, because 477 * we may have taken a snapshot of them. However, we 478 * may sync newly-created datasets on pass 2. 479 */ 480 ASSERT(!list_link_active(&ds->ds_synced_link)); 481 list_insert_tail(&synced_datasets, ds); 482 dsl_dataset_sync(ds, zio, tx); 483 } 484 VERIFY0(zio_wait(zio)); 485 486 /* 487 * We have written all of the accounted dirty data, so our 488 * dp_space_towrite should now be zero. However, some seldom-used 489 * code paths do not adhere to this (e.g. dbuf_undirty(), also 490 * rounding error in dbuf_write_physdone). 491 * Shore up the accounting of any dirtied space now. 492 */ 493 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 494 495 /* 496 * After the data blocks have been written (ensured by the zio_wait() 497 * above), update the user/group space accounting. 498 */ 499 for (ds = list_head(&synced_datasets); ds != NULL; 500 ds = list_next(&synced_datasets, ds)) { 501 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 502 } 503 504 /* 505 * Sync the datasets again to push out the changes due to 506 * userspace updates. This must be done before we process the 507 * sync tasks, so that any snapshots will have the correct 508 * user accounting information (and we won't get confused 509 * about which blocks are part of the snapshot). 510 */ 511 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 512 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 513 ASSERT(list_link_active(&ds->ds_synced_link)); 514 dmu_buf_rele(ds->ds_dbuf, ds); 515 dsl_dataset_sync(ds, zio, tx); 516 } 517 VERIFY0(zio_wait(zio)); 518 519 /* 520 * Now that the datasets have been completely synced, we can 521 * clean up our in-memory structures accumulated while syncing: 522 * 523 * - move dead blocks from the pending deadlist to the on-disk deadlist 524 * - release hold from dsl_dataset_dirty() 525 */ 526 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 527 dsl_dataset_sync_done(ds, tx); 528 } 529 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 530 dsl_dir_sync(dd, tx); 531 } 532 533 /* 534 * The MOS's space is accounted for in the pool/$MOS 535 * (dp_mos_dir). We can't modify the mos while we're syncing 536 * it, so we remember the deltas and apply them here. 537 */ 538 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 539 dp->dp_mos_uncompressed_delta != 0) { 540 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 541 dp->dp_mos_used_delta, 542 dp->dp_mos_compressed_delta, 543 dp->dp_mos_uncompressed_delta, tx); 544 dp->dp_mos_used_delta = 0; 545 dp->dp_mos_compressed_delta = 0; 546 dp->dp_mos_uncompressed_delta = 0; 547 } 548 549 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || 550 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { 551 dsl_pool_sync_mos(dp, tx); 552 } 553 554 /* 555 * If we modify a dataset in the same txg that we want to destroy it, 556 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 557 * dsl_dir_destroy_check() will fail if there are unexpected holds. 558 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 559 * and clearing the hold on it) before we process the sync_tasks. 560 * The MOS data dirtied by the sync_tasks will be synced on the next 561 * pass. 562 */ 563 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 564 dsl_sync_task_t *dst; 565 /* 566 * No more sync tasks should have been added while we 567 * were syncing. 568 */ 569 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 570 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 571 dsl_sync_task_sync(dst, tx); 572 } 573 574 dmu_tx_commit(tx); 575 576 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 577 } 578 579 void 580 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 581 { 582 zilog_t *zilog; 583 584 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) { 585 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 586 /* 587 * We don't remove the zilog from the dp_dirty_zilogs 588 * list until after we've cleaned it. This ensures that 589 * callers of zilog_is_dirty() receive an accurate 590 * answer when they are racing with the spa sync thread. 591 */ 592 zil_clean(zilog, txg); 593 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 594 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 595 dmu_buf_rele(ds->ds_dbuf, zilog); 596 } 597 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 598 } 599 600 /* 601 * TRUE if the current thread is the tx_sync_thread or if we 602 * are being called from SPA context during pool initialization. 603 */ 604 int 605 dsl_pool_sync_context(dsl_pool_t *dp) 606 { 607 return (curthread == dp->dp_tx.tx_sync_thread || 608 spa_is_initializing(dp->dp_spa)); 609 } 610 611 uint64_t 612 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 613 { 614 uint64_t space, resv; 615 616 /* 617 * If we're trying to assess whether it's OK to do a free, 618 * cut the reservation in half to allow forward progress 619 * (e.g. make it possible to rm(1) files from a full pool). 620 */ 621 space = spa_get_dspace(dp->dp_spa); 622 resv = spa_get_slop_space(dp->dp_spa); 623 if (netfree) 624 resv >>= 1; 625 626 return (space - resv); 627 } 628 629 boolean_t 630 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 631 { 632 uint64_t delay_min_bytes = 633 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 634 boolean_t rv; 635 636 mutex_enter(&dp->dp_lock); 637 if (dp->dp_dirty_total > zfs_dirty_data_sync) 638 txg_kick(dp); 639 rv = (dp->dp_dirty_total > delay_min_bytes); 640 mutex_exit(&dp->dp_lock); 641 return (rv); 642 } 643 644 void 645 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 646 { 647 if (space > 0) { 648 mutex_enter(&dp->dp_lock); 649 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 650 dsl_pool_dirty_delta(dp, space); 651 mutex_exit(&dp->dp_lock); 652 } 653 } 654 655 void 656 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 657 { 658 ASSERT3S(space, >=, 0); 659 if (space == 0) 660 return; 661 mutex_enter(&dp->dp_lock); 662 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 663 /* XXX writing something we didn't dirty? */ 664 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 665 } 666 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 667 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 668 ASSERT3U(dp->dp_dirty_total, >=, space); 669 dsl_pool_dirty_delta(dp, -space); 670 mutex_exit(&dp->dp_lock); 671 } 672 673 /* ARGSUSED */ 674 static int 675 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 676 { 677 dmu_tx_t *tx = arg; 678 dsl_dataset_t *ds, *prev = NULL; 679 int err; 680 681 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 682 if (err) 683 return (err); 684 685 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 686 err = dsl_dataset_hold_obj(dp, 687 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 688 if (err) { 689 dsl_dataset_rele(ds, FTAG); 690 return (err); 691 } 692 693 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 694 break; 695 dsl_dataset_rele(ds, FTAG); 696 ds = prev; 697 prev = NULL; 698 } 699 700 if (prev == NULL) { 701 prev = dp->dp_origin_snap; 702 703 /* 704 * The $ORIGIN can't have any data, or the accounting 705 * will be wrong. 706 */ 707 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 708 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 709 rrw_exit(&ds->ds_bp_rwlock, FTAG); 710 711 /* The origin doesn't get attached to itself */ 712 if (ds->ds_object == prev->ds_object) { 713 dsl_dataset_rele(ds, FTAG); 714 return (0); 715 } 716 717 dmu_buf_will_dirty(ds->ds_dbuf, tx); 718 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 719 dsl_dataset_phys(ds)->ds_prev_snap_txg = 720 dsl_dataset_phys(prev)->ds_creation_txg; 721 722 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 723 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 724 725 dmu_buf_will_dirty(prev->ds_dbuf, tx); 726 dsl_dataset_phys(prev)->ds_num_children++; 727 728 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 729 ASSERT(ds->ds_prev == NULL); 730 VERIFY0(dsl_dataset_hold_obj(dp, 731 dsl_dataset_phys(ds)->ds_prev_snap_obj, 732 ds, &ds->ds_prev)); 733 } 734 } 735 736 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 737 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 738 739 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 740 dmu_buf_will_dirty(prev->ds_dbuf, tx); 741 dsl_dataset_phys(prev)->ds_next_clones_obj = 742 zap_create(dp->dp_meta_objset, 743 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 744 } 745 VERIFY0(zap_add_int(dp->dp_meta_objset, 746 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 747 748 dsl_dataset_rele(ds, FTAG); 749 if (prev != dp->dp_origin_snap) 750 dsl_dataset_rele(prev, FTAG); 751 return (0); 752 } 753 754 void 755 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 756 { 757 ASSERT(dmu_tx_is_syncing(tx)); 758 ASSERT(dp->dp_origin_snap != NULL); 759 760 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 761 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 762 } 763 764 /* ARGSUSED */ 765 static int 766 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 767 { 768 dmu_tx_t *tx = arg; 769 objset_t *mos = dp->dp_meta_objset; 770 771 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 772 dsl_dataset_t *origin; 773 774 VERIFY0(dsl_dataset_hold_obj(dp, 775 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 776 777 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 778 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 779 dsl_dir_phys(origin->ds_dir)->dd_clones = 780 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 781 0, tx); 782 } 783 784 VERIFY0(zap_add_int(dp->dp_meta_objset, 785 dsl_dir_phys(origin->ds_dir)->dd_clones, 786 ds->ds_object, tx)); 787 788 dsl_dataset_rele(origin, FTAG); 789 } 790 return (0); 791 } 792 793 void 794 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 795 { 796 ASSERT(dmu_tx_is_syncing(tx)); 797 uint64_t obj; 798 799 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 800 VERIFY0(dsl_pool_open_special_dir(dp, 801 FREE_DIR_NAME, &dp->dp_free_dir)); 802 803 /* 804 * We can't use bpobj_alloc(), because spa_version() still 805 * returns the old version, and we need a new-version bpobj with 806 * subobj support. So call dmu_object_alloc() directly. 807 */ 808 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 809 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 810 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 811 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 812 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 813 814 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 815 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 816 } 817 818 void 819 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 820 { 821 uint64_t dsobj; 822 dsl_dataset_t *ds; 823 824 ASSERT(dmu_tx_is_syncing(tx)); 825 ASSERT(dp->dp_origin_snap == NULL); 826 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 827 828 /* create the origin dir, ds, & snap-ds */ 829 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 830 NULL, 0, kcred, tx); 831 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 832 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 833 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 834 dp, &dp->dp_origin_snap)); 835 dsl_dataset_rele(ds, FTAG); 836 } 837 838 taskq_t * 839 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 840 { 841 return (dp->dp_vnrele_taskq); 842 } 843 844 /* 845 * Walk through the pool-wide zap object of temporary snapshot user holds 846 * and release them. 847 */ 848 void 849 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 850 { 851 zap_attribute_t za; 852 zap_cursor_t zc; 853 objset_t *mos = dp->dp_meta_objset; 854 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 855 nvlist_t *holds; 856 857 if (zapobj == 0) 858 return; 859 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 860 861 holds = fnvlist_alloc(); 862 863 for (zap_cursor_init(&zc, mos, zapobj); 864 zap_cursor_retrieve(&zc, &za) == 0; 865 zap_cursor_advance(&zc)) { 866 char *htag; 867 nvlist_t *tags; 868 869 htag = strchr(za.za_name, '-'); 870 *htag = '\0'; 871 ++htag; 872 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 873 tags = fnvlist_alloc(); 874 fnvlist_add_boolean(tags, htag); 875 fnvlist_add_nvlist(holds, za.za_name, tags); 876 fnvlist_free(tags); 877 } else { 878 fnvlist_add_boolean(tags, htag); 879 } 880 } 881 dsl_dataset_user_release_tmp(dp, holds); 882 fnvlist_free(holds); 883 zap_cursor_fini(&zc); 884 } 885 886 /* 887 * Create the pool-wide zap object for storing temporary snapshot holds. 888 */ 889 void 890 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 891 { 892 objset_t *mos = dp->dp_meta_objset; 893 894 ASSERT(dp->dp_tmp_userrefs_obj == 0); 895 ASSERT(dmu_tx_is_syncing(tx)); 896 897 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 898 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 899 } 900 901 static int 902 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 903 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 904 { 905 objset_t *mos = dp->dp_meta_objset; 906 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 907 char *name; 908 int error; 909 910 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 911 ASSERT(dmu_tx_is_syncing(tx)); 912 913 /* 914 * If the pool was created prior to SPA_VERSION_USERREFS, the 915 * zap object for temporary holds might not exist yet. 916 */ 917 if (zapobj == 0) { 918 if (holding) { 919 dsl_pool_user_hold_create_obj(dp, tx); 920 zapobj = dp->dp_tmp_userrefs_obj; 921 } else { 922 return (SET_ERROR(ENOENT)); 923 } 924 } 925 926 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 927 if (holding) 928 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 929 else 930 error = zap_remove(mos, zapobj, name, tx); 931 strfree(name); 932 933 return (error); 934 } 935 936 /* 937 * Add a temporary hold for the given dataset object and tag. 938 */ 939 int 940 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 941 uint64_t now, dmu_tx_t *tx) 942 { 943 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 944 } 945 946 /* 947 * Release a temporary hold for the given dataset object and tag. 948 */ 949 int 950 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 951 dmu_tx_t *tx) 952 { 953 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 954 tx, B_FALSE)); 955 } 956 957 /* 958 * DSL Pool Configuration Lock 959 * 960 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 961 * creation / destruction / rename / property setting). It must be held for 962 * read to hold a dataset or dsl_dir. I.e. you must call 963 * dsl_pool_config_enter() or dsl_pool_hold() before calling 964 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 965 * must be held continuously until all datasets and dsl_dirs are released. 966 * 967 * The only exception to this rule is that if a "long hold" is placed on 968 * a dataset, then the dp_config_rwlock may be dropped while the dataset 969 * is still held. The long hold will prevent the dataset from being 970 * destroyed -- the destroy will fail with EBUSY. A long hold can be 971 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 972 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 973 * 974 * Legitimate long-holders (including owners) should be long-running, cancelable 975 * tasks that should cause "zfs destroy" to fail. This includes DMU 976 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 977 * "zfs send", and "zfs diff". There are several other long-holders whose 978 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 979 * 980 * The usual formula for long-holding would be: 981 * dsl_pool_hold() 982 * dsl_dataset_hold() 983 * ... perform checks ... 984 * dsl_dataset_long_hold() 985 * dsl_pool_rele() 986 * ... perform long-running task ... 987 * dsl_dataset_long_rele() 988 * dsl_dataset_rele() 989 * 990 * Note that when the long hold is released, the dataset is still held but 991 * the pool is not held. The dataset may change arbitrarily during this time 992 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 993 * dataset except release it. 994 * 995 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 996 * or modifying operations. 997 * 998 * Modifying operations should generally use dsl_sync_task(). The synctask 999 * infrastructure enforces proper locking strategy with respect to the 1000 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1001 * 1002 * Read-only operations will manually hold the pool, then the dataset, obtain 1003 * information from the dataset, then release the pool and dataset. 1004 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1005 * hold/rele. 1006 */ 1007 1008 int 1009 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1010 { 1011 spa_t *spa; 1012 int error; 1013 1014 error = spa_open(name, &spa, tag); 1015 if (error == 0) { 1016 *dp = spa_get_dsl(spa); 1017 dsl_pool_config_enter(*dp, tag); 1018 } 1019 return (error); 1020 } 1021 1022 void 1023 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1024 { 1025 dsl_pool_config_exit(dp, tag); 1026 spa_close(dp->dp_spa, tag); 1027 } 1028 1029 void 1030 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1031 { 1032 /* 1033 * We use a "reentrant" reader-writer lock, but not reentrantly. 1034 * 1035 * The rrwlock can (with the track_all flag) track all reading threads, 1036 * which is very useful for debugging which code path failed to release 1037 * the lock, and for verifying that the *current* thread does hold 1038 * the lock. 1039 * 1040 * (Unlike a rwlock, which knows that N threads hold it for 1041 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1042 * if any thread holds it for read, even if this thread doesn't). 1043 */ 1044 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1045 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1046 } 1047 1048 void 1049 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1050 { 1051 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1052 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1053 } 1054 1055 void 1056 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1057 { 1058 rrw_exit(&dp->dp_config_rwlock, tag); 1059 } 1060 1061 boolean_t 1062 dsl_pool_config_held(dsl_pool_t *dp) 1063 { 1064 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1065 } 1066 1067 boolean_t 1068 dsl_pool_config_held_writer(dsl_pool_t *dp) 1069 { 1070 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1071 } 1072