xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_pool.c (revision c057d312c6f715bb3aeadb653466e7046f26c4af)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
28  */
29 
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dsl_deadlist.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/bptree.h>
50 #include <sys/zfeature.h>
51 #include <sys/zil_impl.h>
52 #include <sys/dsl_userhold.h>
53 
54 /*
55  * ZFS Write Throttle
56  * ------------------
57  *
58  * ZFS must limit the rate of incoming writes to the rate at which it is able
59  * to sync data modifications to the backend storage. Throttling by too much
60  * creates an artificial limit; throttling by too little can only be sustained
61  * for short periods and would lead to highly lumpy performance. On a per-pool
62  * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63  * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64  * of dirty data decreases. When the amount of dirty data exceeds a
65  * predetermined threshold further modifications are blocked until the amount
66  * of dirty data decreases (as data is synced out).
67  *
68  * The limit on dirty data is tunable, and should be adjusted according to
69  * both the IO capacity and available memory of the system. The larger the
70  * window, the more ZFS is able to aggregate and amortize metadata (and data)
71  * changes. However, memory is a limited resource, and allowing for more dirty
72  * data comes at the cost of keeping other useful data in memory (for example
73  * ZFS data cached by the ARC).
74  *
75  * Implementation
76  *
77  * As buffers are modified dsl_pool_willuse_space() increments both the per-
78  * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79  * dirty space used; dsl_pool_dirty_space() decrements those values as data
80  * is synced out from dsl_pool_sync(). While only the poolwide value is
81  * relevant, the per-txg value is useful for debugging. The tunable
82  * zfs_dirty_data_max determines the dirty space limit. Once that value is
83  * exceeded, new writes are halted until space frees up.
84  *
85  * The zfs_dirty_data_sync tunable dictates the threshold at which we
86  * ensure that there is a txg syncing (see the comment in txg.c for a full
87  * description of transaction group stages).
88  *
89  * The IO scheduler uses both the dirty space limit and current amount of
90  * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91  * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92  *
93  * The delay is also calculated based on the amount of dirty data.  See the
94  * comment above dmu_tx_delay() for details.
95  */
96 
97 /*
98  * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99  * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
100  */
101 uint64_t zfs_dirty_data_max;
102 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
103 int zfs_dirty_data_max_percent = 10;
104 
105 /*
106  * If there's at least this much dirty data (as a percentage of
107  * zfs_dirty_data_max), push out a txg.  This should be less than
108  * zfs_vdev_async_write_active_min_dirty_percent.
109  */
110 uint64_t zfs_dirty_data_sync_pct = 20;
111 
112 /*
113  * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
114  * and delay each transaction.
115  * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
116  */
117 int zfs_delay_min_dirty_percent = 60;
118 
119 /*
120  * This controls how quickly the delay approaches infinity.
121  * Larger values cause it to delay more for a given amount of dirty data.
122  * Therefore larger values will cause there to be less dirty data for a
123  * given throughput.
124  *
125  * For the smoothest delay, this value should be about 1 billion divided
126  * by the maximum number of operations per second.  This will smoothly
127  * handle between 10x and 1/10th this number.
128  *
129  * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
130  * multiply in dmu_tx_delay().
131  */
132 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
133 
134 /*
135  * This determines the number of threads used by the dp_sync_taskq.
136  */
137 int zfs_sync_taskq_batch_pct = 75;
138 
139 /*
140  * These tunables determine the behavior of how zil_itxg_clean() is
141  * called via zil_clean() in the context of spa_sync(). When an itxg
142  * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
143  * If the dispatch fails, the call to zil_itxg_clean() will occur
144  * synchronously in the context of spa_sync(), which can negatively
145  * impact the performance of spa_sync() (e.g. in the case of the itxg
146  * list having a large number of itxs that needs to be cleaned).
147  *
148  * Thus, these tunables can be used to manipulate the behavior of the
149  * taskq used by zil_clean(); they determine the number of taskq entries
150  * that are pre-populated when the taskq is first created (via the
151  * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
152  * taskq entries that are cached after an on-demand allocation (via the
153  * "zfs_zil_clean_taskq_maxalloc").
154  *
155  * The idea being, we want to try reasonably hard to ensure there will
156  * already be a taskq entry pre-allocated by the time that it is needed
157  * by zil_clean(). This way, we can avoid the possibility of an
158  * on-demand allocation of a new taskq entry from failing, which would
159  * result in zil_itxg_clean() being called synchronously from zil_clean()
160  * (which can adversely affect performance of spa_sync()).
161  *
162  * Additionally, the number of threads used by the taskq can be
163  * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
164  */
165 int zfs_zil_clean_taskq_nthr_pct = 100;
166 int zfs_zil_clean_taskq_minalloc = 1024;
167 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
168 
169 int
170 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
171 {
172 	uint64_t obj;
173 	int err;
174 
175 	err = zap_lookup(dp->dp_meta_objset,
176 	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
177 	    name, sizeof (obj), 1, &obj);
178 	if (err)
179 		return (err);
180 
181 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
182 }
183 
184 static dsl_pool_t *
185 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
186 {
187 	dsl_pool_t *dp;
188 	blkptr_t *bp = spa_get_rootblkptr(spa);
189 
190 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
191 	dp->dp_spa = spa;
192 	dp->dp_meta_rootbp = *bp;
193 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
194 	txg_init(dp, txg);
195 
196 	txg_list_create(&dp->dp_dirty_datasets, spa,
197 	    offsetof(dsl_dataset_t, ds_dirty_link));
198 	txg_list_create(&dp->dp_dirty_zilogs, spa,
199 	    offsetof(zilog_t, zl_dirty_link));
200 	txg_list_create(&dp->dp_dirty_dirs, spa,
201 	    offsetof(dsl_dir_t, dd_dirty_link));
202 	txg_list_create(&dp->dp_sync_tasks, spa,
203 	    offsetof(dsl_sync_task_t, dst_node));
204 	txg_list_create(&dp->dp_early_sync_tasks, spa,
205 	    offsetof(dsl_sync_task_t, dst_node));
206 
207 	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
208 	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
209 	    TASKQ_THREADS_CPU_PCT);
210 
211 	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
212 	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
213 	    zfs_zil_clean_taskq_minalloc,
214 	    zfs_zil_clean_taskq_maxalloc,
215 	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
216 
217 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
218 	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
219 
220 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
221 	    1, 4, 0);
222 
223 	return (dp);
224 }
225 
226 int
227 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
228 {
229 	int err;
230 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
231 
232 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
233 	    &dp->dp_meta_objset);
234 	if (err != 0)
235 		dsl_pool_close(dp);
236 	else
237 		*dpp = dp;
238 
239 	return (err);
240 }
241 
242 int
243 dsl_pool_open(dsl_pool_t *dp)
244 {
245 	int err;
246 	dsl_dir_t *dd;
247 	dsl_dataset_t *ds;
248 	uint64_t obj;
249 
250 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
251 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
252 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
253 	    &dp->dp_root_dir_obj);
254 	if (err)
255 		goto out;
256 
257 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
258 	    NULL, dp, &dp->dp_root_dir);
259 	if (err)
260 		goto out;
261 
262 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
263 	if (err)
264 		goto out;
265 
266 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
267 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
268 		if (err)
269 			goto out;
270 		err = dsl_dataset_hold_obj(dp,
271 		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
272 		if (err == 0) {
273 			err = dsl_dataset_hold_obj(dp,
274 			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
275 			    &dp->dp_origin_snap);
276 			dsl_dataset_rele(ds, FTAG);
277 		}
278 		dsl_dir_rele(dd, dp);
279 		if (err)
280 			goto out;
281 	}
282 
283 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
284 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
285 		    &dp->dp_free_dir);
286 		if (err)
287 			goto out;
288 
289 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
290 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
291 		if (err)
292 			goto out;
293 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
294 		    dp->dp_meta_objset, obj));
295 	}
296 
297 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
298 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
299 		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
300 		if (err == 0) {
301 			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
302 			    dp->dp_meta_objset, obj));
303 		} else if (err == ENOENT) {
304 			/*
305 			 * We might not have created the remap bpobj yet.
306 			 */
307 			err = 0;
308 		} else {
309 			goto out;
310 		}
311 	}
312 
313 	/*
314 	 * Note: errors ignored, because the these special dirs, used for
315 	 * space accounting, are only created on demand.
316 	 */
317 	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
318 	    &dp->dp_leak_dir);
319 
320 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
321 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
322 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
323 		    &dp->dp_bptree_obj);
324 		if (err != 0)
325 			goto out;
326 	}
327 
328 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
329 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
330 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
331 		    &dp->dp_empty_bpobj);
332 		if (err != 0)
333 			goto out;
334 	}
335 
336 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
337 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
338 	    &dp->dp_tmp_userrefs_obj);
339 	if (err == ENOENT)
340 		err = 0;
341 	if (err)
342 		goto out;
343 
344 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
345 
346 out:
347 	rrw_exit(&dp->dp_config_rwlock, FTAG);
348 	return (err);
349 }
350 
351 void
352 dsl_pool_close(dsl_pool_t *dp)
353 {
354 	/*
355 	 * Drop our references from dsl_pool_open().
356 	 *
357 	 * Since we held the origin_snap from "syncing" context (which
358 	 * includes pool-opening context), it actually only got a "ref"
359 	 * and not a hold, so just drop that here.
360 	 */
361 	if (dp->dp_origin_snap != NULL)
362 		dsl_dataset_rele(dp->dp_origin_snap, dp);
363 	if (dp->dp_mos_dir != NULL)
364 		dsl_dir_rele(dp->dp_mos_dir, dp);
365 	if (dp->dp_free_dir != NULL)
366 		dsl_dir_rele(dp->dp_free_dir, dp);
367 	if (dp->dp_leak_dir != NULL)
368 		dsl_dir_rele(dp->dp_leak_dir, dp);
369 	if (dp->dp_root_dir != NULL)
370 		dsl_dir_rele(dp->dp_root_dir, dp);
371 
372 	bpobj_close(&dp->dp_free_bpobj);
373 	bpobj_close(&dp->dp_obsolete_bpobj);
374 
375 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
376 	if (dp->dp_meta_objset != NULL)
377 		dmu_objset_evict(dp->dp_meta_objset);
378 
379 	txg_list_destroy(&dp->dp_dirty_datasets);
380 	txg_list_destroy(&dp->dp_dirty_zilogs);
381 	txg_list_destroy(&dp->dp_sync_tasks);
382 	txg_list_destroy(&dp->dp_early_sync_tasks);
383 	txg_list_destroy(&dp->dp_dirty_dirs);
384 
385 	taskq_destroy(dp->dp_zil_clean_taskq);
386 	taskq_destroy(dp->dp_sync_taskq);
387 
388 	/*
389 	 * We can't set retry to TRUE since we're explicitly specifying
390 	 * a spa to flush. This is good enough; any missed buffers for
391 	 * this spa won't cause trouble, and they'll eventually fall
392 	 * out of the ARC just like any other unused buffer.
393 	 */
394 	arc_flush(dp->dp_spa, FALSE);
395 
396 	txg_fini(dp);
397 	dsl_scan_fini(dp);
398 	dmu_buf_user_evict_wait();
399 
400 	rrw_destroy(&dp->dp_config_rwlock);
401 	mutex_destroy(&dp->dp_lock);
402 	taskq_destroy(dp->dp_vnrele_taskq);
403 	if (dp->dp_blkstats != NULL)
404 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
405 	kmem_free(dp, sizeof (dsl_pool_t));
406 }
407 
408 void
409 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
410 {
411 	uint64_t obj;
412 	/*
413 	 * Currently, we only create the obsolete_bpobj where there are
414 	 * indirect vdevs with referenced mappings.
415 	 */
416 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
417 	/* create and open the obsolete_bpobj */
418 	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
419 	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
420 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
421 	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
422 	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
423 }
424 
425 void
426 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
427 {
428 	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
429 	VERIFY0(zap_remove(dp->dp_meta_objset,
430 	    DMU_POOL_DIRECTORY_OBJECT,
431 	    DMU_POOL_OBSOLETE_BPOBJ, tx));
432 	bpobj_free(dp->dp_meta_objset,
433 	    dp->dp_obsolete_bpobj.bpo_object, tx);
434 	bpobj_close(&dp->dp_obsolete_bpobj);
435 }
436 
437 dsl_pool_t *
438 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
439 {
440 	int err;
441 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
442 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
443 	dsl_dataset_t *ds;
444 	uint64_t obj;
445 
446 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
447 
448 	/* create and open the MOS (meta-objset) */
449 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
450 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
451 
452 	/* create the pool directory */
453 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
454 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
455 	ASSERT0(err);
456 
457 	/* Initialize scan structures */
458 	VERIFY0(dsl_scan_init(dp, txg));
459 
460 	/* create and open the root dir */
461 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
462 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
463 	    NULL, dp, &dp->dp_root_dir));
464 
465 	/* create and open the meta-objset dir */
466 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
467 	VERIFY0(dsl_pool_open_special_dir(dp,
468 	    MOS_DIR_NAME, &dp->dp_mos_dir));
469 
470 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
471 		/* create and open the free dir */
472 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
473 		    FREE_DIR_NAME, tx);
474 		VERIFY0(dsl_pool_open_special_dir(dp,
475 		    FREE_DIR_NAME, &dp->dp_free_dir));
476 
477 		/* create and open the free_bplist */
478 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
479 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
480 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
481 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
482 		    dp->dp_meta_objset, obj));
483 	}
484 
485 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
486 		dsl_pool_create_origin(dp, tx);
487 
488 	/* create the root dataset */
489 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
490 
491 	/* create the root objset */
492 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
493 #ifdef _KERNEL
494 	{
495 		objset_t *os;
496 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
497 		os = dmu_objset_create_impl(dp->dp_spa, ds,
498 		    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
499 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
500 		zfs_create_fs(os, kcred, zplprops, tx);
501 	}
502 #endif
503 	dsl_dataset_rele(ds, FTAG);
504 
505 	dmu_tx_commit(tx);
506 
507 	rrw_exit(&dp->dp_config_rwlock, FTAG);
508 
509 	return (dp);
510 }
511 
512 /*
513  * Account for the meta-objset space in its placeholder dsl_dir.
514  */
515 void
516 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
517     int64_t used, int64_t comp, int64_t uncomp)
518 {
519 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
520 	mutex_enter(&dp->dp_lock);
521 	dp->dp_mos_used_delta += used;
522 	dp->dp_mos_compressed_delta += comp;
523 	dp->dp_mos_uncompressed_delta += uncomp;
524 	mutex_exit(&dp->dp_lock);
525 }
526 
527 static void
528 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
529 {
530 	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
531 	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
532 	VERIFY0(zio_wait(zio));
533 	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
534 	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
535 }
536 
537 static void
538 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
539 {
540 	ASSERT(MUTEX_HELD(&dp->dp_lock));
541 
542 	if (delta < 0)
543 		ASSERT3U(-delta, <=, dp->dp_dirty_total);
544 
545 	dp->dp_dirty_total += delta;
546 
547 	/*
548 	 * Note: we signal even when increasing dp_dirty_total.
549 	 * This ensures forward progress -- each thread wakes the next waiter.
550 	 */
551 	if (dp->dp_dirty_total < zfs_dirty_data_max)
552 		cv_signal(&dp->dp_spaceavail_cv);
553 }
554 
555 static boolean_t
556 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
557 {
558 	spa_t *spa = dp->dp_spa;
559 	vdev_t *rvd = spa->spa_root_vdev;
560 
561 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
562 		vdev_t *vd = rvd->vdev_child[c];
563 		txg_list_t *tl = &vd->vdev_ms_list;
564 		metaslab_t *ms;
565 
566 		for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
567 		    ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
568 			VERIFY(range_tree_is_empty(ms->ms_freeing));
569 			VERIFY(range_tree_is_empty(ms->ms_checkpointing));
570 		}
571 	}
572 
573 	return (B_TRUE);
574 }
575 
576 void
577 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
578 {
579 	zio_t *zio;
580 	dmu_tx_t *tx;
581 	dsl_dir_t *dd;
582 	dsl_dataset_t *ds;
583 	objset_t *mos = dp->dp_meta_objset;
584 	list_t synced_datasets;
585 
586 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
587 	    offsetof(dsl_dataset_t, ds_synced_link));
588 
589 	tx = dmu_tx_create_assigned(dp, txg);
590 
591 	/*
592 	 * Run all early sync tasks before writing out any dirty blocks.
593 	 * For more info on early sync tasks see block comment in
594 	 * dsl_early_sync_task().
595 	 */
596 	if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
597 		dsl_sync_task_t *dst;
598 
599 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
600 		while ((dst =
601 		    txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
602 			ASSERT(dsl_early_sync_task_verify(dp, txg));
603 			dsl_sync_task_sync(dst, tx);
604 		}
605 		ASSERT(dsl_early_sync_task_verify(dp, txg));
606 	}
607 
608 	/*
609 	 * Write out all dirty blocks of dirty datasets.
610 	 */
611 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
612 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
613 		/*
614 		 * We must not sync any non-MOS datasets twice, because
615 		 * we may have taken a snapshot of them.  However, we
616 		 * may sync newly-created datasets on pass 2.
617 		 */
618 		ASSERT(!list_link_active(&ds->ds_synced_link));
619 		list_insert_tail(&synced_datasets, ds);
620 		dsl_dataset_sync(ds, zio, tx);
621 	}
622 	VERIFY0(zio_wait(zio));
623 
624 	/*
625 	 * We have written all of the accounted dirty data, so our
626 	 * dp_space_towrite should now be zero.  However, some seldom-used
627 	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
628 	 * rounding error in dbuf_write_physdone).
629 	 * Shore up the accounting of any dirtied space now.
630 	 */
631 	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
632 
633 	/*
634 	 * Update the long range free counter after
635 	 * we're done syncing user data
636 	 */
637 	mutex_enter(&dp->dp_lock);
638 	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
639 	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
640 	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
641 	mutex_exit(&dp->dp_lock);
642 
643 	/*
644 	 * After the data blocks have been written (ensured by the zio_wait()
645 	 * above), update the user/group space accounting.  This happens
646 	 * in tasks dispatched to dp_sync_taskq, so wait for them before
647 	 * continuing.
648 	 */
649 	for (ds = list_head(&synced_datasets); ds != NULL;
650 	    ds = list_next(&synced_datasets, ds)) {
651 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
652 	}
653 	taskq_wait(dp->dp_sync_taskq);
654 
655 	/*
656 	 * Sync the datasets again to push out the changes due to
657 	 * userspace updates.  This must be done before we process the
658 	 * sync tasks, so that any snapshots will have the correct
659 	 * user accounting information (and we won't get confused
660 	 * about which blocks are part of the snapshot).
661 	 */
662 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
663 	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
664 		ASSERT(list_link_active(&ds->ds_synced_link));
665 		dmu_buf_rele(ds->ds_dbuf, ds);
666 		dsl_dataset_sync(ds, zio, tx);
667 	}
668 	VERIFY0(zio_wait(zio));
669 
670 	/*
671 	 * Now that the datasets have been completely synced, we can
672 	 * clean up our in-memory structures accumulated while syncing:
673 	 *
674 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
675 	 *  - release hold from dsl_dataset_dirty()
676 	 */
677 	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
678 		dsl_dataset_sync_done(ds, tx);
679 	}
680 	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
681 		dsl_dir_sync(dd, tx);
682 	}
683 
684 	/*
685 	 * The MOS's space is accounted for in the pool/$MOS
686 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
687 	 * it, so we remember the deltas and apply them here.
688 	 */
689 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
690 	    dp->dp_mos_uncompressed_delta != 0) {
691 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
692 		    dp->dp_mos_used_delta,
693 		    dp->dp_mos_compressed_delta,
694 		    dp->dp_mos_uncompressed_delta, tx);
695 		dp->dp_mos_used_delta = 0;
696 		dp->dp_mos_compressed_delta = 0;
697 		dp->dp_mos_uncompressed_delta = 0;
698 	}
699 
700 	if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
701 		dsl_pool_sync_mos(dp, tx);
702 	}
703 
704 	/*
705 	 * If we modify a dataset in the same txg that we want to destroy it,
706 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
707 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
708 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
709 	 * and clearing the hold on it) before we process the sync_tasks.
710 	 * The MOS data dirtied by the sync_tasks will be synced on the next
711 	 * pass.
712 	 */
713 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
714 		dsl_sync_task_t *dst;
715 		/*
716 		 * No more sync tasks should have been added while we
717 		 * were syncing.
718 		 */
719 		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
720 		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
721 			dsl_sync_task_sync(dst, tx);
722 	}
723 
724 	dmu_tx_commit(tx);
725 
726 	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
727 }
728 
729 void
730 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
731 {
732 	zilog_t *zilog;
733 
734 	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
735 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
736 		/*
737 		 * We don't remove the zilog from the dp_dirty_zilogs
738 		 * list until after we've cleaned it. This ensures that
739 		 * callers of zilog_is_dirty() receive an accurate
740 		 * answer when they are racing with the spa sync thread.
741 		 */
742 		zil_clean(zilog, txg);
743 		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
744 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
745 		dmu_buf_rele(ds->ds_dbuf, zilog);
746 	}
747 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
748 }
749 
750 /*
751  * TRUE if the current thread is the tx_sync_thread or if we
752  * are being called from SPA context during pool initialization.
753  */
754 int
755 dsl_pool_sync_context(dsl_pool_t *dp)
756 {
757 	return (curthread == dp->dp_tx.tx_sync_thread ||
758 	    spa_is_initializing(dp->dp_spa) ||
759 	    taskq_member(dp->dp_sync_taskq, curthread));
760 }
761 
762 /*
763  * This function returns the amount of allocatable space in the pool
764  * minus whatever space is currently reserved by ZFS for specific
765  * purposes. Specifically:
766  *
767  * 1] Any reserved SLOP space
768  * 2] Any space used by the checkpoint
769  * 3] Any space used for deferred frees
770  *
771  * The latter 2 are especially important because they are needed to
772  * rectify the SPA's and DMU's different understanding of how much space
773  * is used. Now the DMU is aware of that extra space tracked by the SPA
774  * without having to maintain a separate special dir (e.g similar to
775  * $MOS, $FREEING, and $LEAKED).
776  *
777  * Note: By deferred frees here, we mean the frees that were deferred
778  * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
779  * segments placed in ms_defer trees during metaslab_sync_done().
780  */
781 uint64_t
782 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
783 {
784 	spa_t *spa = dp->dp_spa;
785 	uint64_t space, resv, adjustedsize;
786 	uint64_t spa_deferred_frees =
787 	    spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
788 
789 	space = spa_get_dspace(spa)
790 	    - spa_get_checkpoint_space(spa) - spa_deferred_frees;
791 	resv = spa_get_slop_space(spa);
792 
793 	switch (slop_policy) {
794 	case ZFS_SPACE_CHECK_NORMAL:
795 		break;
796 	case ZFS_SPACE_CHECK_RESERVED:
797 		resv >>= 1;
798 		break;
799 	case ZFS_SPACE_CHECK_EXTRA_RESERVED:
800 		resv >>= 2;
801 		break;
802 	case ZFS_SPACE_CHECK_NONE:
803 		resv = 0;
804 		break;
805 	default:
806 		panic("invalid slop policy value: %d", slop_policy);
807 		break;
808 	}
809 	adjustedsize = (space >= resv) ? (space - resv) : 0;
810 
811 	return (adjustedsize);
812 }
813 
814 uint64_t
815 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
816 {
817 	uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
818 	uint64_t deferred =
819 	    metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
820 	uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
821 	return (quota);
822 }
823 
824 boolean_t
825 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
826 {
827 	uint64_t delay_min_bytes =
828 	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
829 	uint64_t dirty_min_bytes =
830 	    zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100;
831 	boolean_t rv;
832 
833 	mutex_enter(&dp->dp_lock);
834 	if (dp->dp_dirty_total > dirty_min_bytes)
835 		txg_kick(dp);
836 	rv = (dp->dp_dirty_total > delay_min_bytes);
837 	mutex_exit(&dp->dp_lock);
838 	return (rv);
839 }
840 
841 void
842 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
843 {
844 	if (space > 0) {
845 		mutex_enter(&dp->dp_lock);
846 		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
847 		dsl_pool_dirty_delta(dp, space);
848 		mutex_exit(&dp->dp_lock);
849 	}
850 }
851 
852 void
853 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
854 {
855 	ASSERT3S(space, >=, 0);
856 	if (space == 0)
857 		return;
858 	mutex_enter(&dp->dp_lock);
859 	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
860 		/* XXX writing something we didn't dirty? */
861 		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
862 	}
863 	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
864 	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
865 	ASSERT3U(dp->dp_dirty_total, >=, space);
866 	dsl_pool_dirty_delta(dp, -space);
867 	mutex_exit(&dp->dp_lock);
868 }
869 
870 /* ARGSUSED */
871 static int
872 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
873 {
874 	dmu_tx_t *tx = arg;
875 	dsl_dataset_t *ds, *prev = NULL;
876 	int err;
877 
878 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
879 	if (err)
880 		return (err);
881 
882 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
883 		err = dsl_dataset_hold_obj(dp,
884 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
885 		if (err) {
886 			dsl_dataset_rele(ds, FTAG);
887 			return (err);
888 		}
889 
890 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
891 			break;
892 		dsl_dataset_rele(ds, FTAG);
893 		ds = prev;
894 		prev = NULL;
895 	}
896 
897 	if (prev == NULL) {
898 		prev = dp->dp_origin_snap;
899 
900 		/*
901 		 * The $ORIGIN can't have any data, or the accounting
902 		 * will be wrong.
903 		 */
904 		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
905 		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
906 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
907 
908 		/* The origin doesn't get attached to itself */
909 		if (ds->ds_object == prev->ds_object) {
910 			dsl_dataset_rele(ds, FTAG);
911 			return (0);
912 		}
913 
914 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
915 		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
916 		dsl_dataset_phys(ds)->ds_prev_snap_txg =
917 		    dsl_dataset_phys(prev)->ds_creation_txg;
918 
919 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
920 		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
921 
922 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
923 		dsl_dataset_phys(prev)->ds_num_children++;
924 
925 		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
926 			ASSERT(ds->ds_prev == NULL);
927 			VERIFY0(dsl_dataset_hold_obj(dp,
928 			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
929 			    ds, &ds->ds_prev));
930 		}
931 	}
932 
933 	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
934 	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
935 
936 	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
937 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
938 		dsl_dataset_phys(prev)->ds_next_clones_obj =
939 		    zap_create(dp->dp_meta_objset,
940 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
941 	}
942 	VERIFY0(zap_add_int(dp->dp_meta_objset,
943 	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
944 
945 	dsl_dataset_rele(ds, FTAG);
946 	if (prev != dp->dp_origin_snap)
947 		dsl_dataset_rele(prev, FTAG);
948 	return (0);
949 }
950 
951 void
952 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
953 {
954 	ASSERT(dmu_tx_is_syncing(tx));
955 	ASSERT(dp->dp_origin_snap != NULL);
956 
957 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
958 	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
959 }
960 
961 /* ARGSUSED */
962 static int
963 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
964 {
965 	dmu_tx_t *tx = arg;
966 	objset_t *mos = dp->dp_meta_objset;
967 
968 	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
969 		dsl_dataset_t *origin;
970 
971 		VERIFY0(dsl_dataset_hold_obj(dp,
972 		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
973 
974 		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
975 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
976 			dsl_dir_phys(origin->ds_dir)->dd_clones =
977 			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
978 			    0, tx);
979 		}
980 
981 		VERIFY0(zap_add_int(dp->dp_meta_objset,
982 		    dsl_dir_phys(origin->ds_dir)->dd_clones,
983 		    ds->ds_object, tx));
984 
985 		dsl_dataset_rele(origin, FTAG);
986 	}
987 	return (0);
988 }
989 
990 void
991 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
992 {
993 	ASSERT(dmu_tx_is_syncing(tx));
994 	uint64_t obj;
995 
996 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
997 	VERIFY0(dsl_pool_open_special_dir(dp,
998 	    FREE_DIR_NAME, &dp->dp_free_dir));
999 
1000 	/*
1001 	 * We can't use bpobj_alloc(), because spa_version() still
1002 	 * returns the old version, and we need a new-version bpobj with
1003 	 * subobj support.  So call dmu_object_alloc() directly.
1004 	 */
1005 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1006 	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1007 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1008 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1009 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1010 
1011 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1012 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1013 }
1014 
1015 void
1016 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1017 {
1018 	uint64_t dsobj;
1019 	dsl_dataset_t *ds;
1020 
1021 	ASSERT(dmu_tx_is_syncing(tx));
1022 	ASSERT(dp->dp_origin_snap == NULL);
1023 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1024 
1025 	/* create the origin dir, ds, & snap-ds */
1026 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1027 	    NULL, 0, kcred, tx);
1028 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1029 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1030 	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1031 	    dp, &dp->dp_origin_snap));
1032 	dsl_dataset_rele(ds, FTAG);
1033 }
1034 
1035 taskq_t *
1036 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
1037 {
1038 	return (dp->dp_vnrele_taskq);
1039 }
1040 
1041 /*
1042  * Walk through the pool-wide zap object of temporary snapshot user holds
1043  * and release them.
1044  */
1045 void
1046 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1047 {
1048 	zap_attribute_t za;
1049 	zap_cursor_t zc;
1050 	objset_t *mos = dp->dp_meta_objset;
1051 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1052 	nvlist_t *holds;
1053 
1054 	if (zapobj == 0)
1055 		return;
1056 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1057 
1058 	holds = fnvlist_alloc();
1059 
1060 	for (zap_cursor_init(&zc, mos, zapobj);
1061 	    zap_cursor_retrieve(&zc, &za) == 0;
1062 	    zap_cursor_advance(&zc)) {
1063 		char *htag;
1064 		nvlist_t *tags;
1065 
1066 		htag = strchr(za.za_name, '-');
1067 		*htag = '\0';
1068 		++htag;
1069 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1070 			tags = fnvlist_alloc();
1071 			fnvlist_add_boolean(tags, htag);
1072 			fnvlist_add_nvlist(holds, za.za_name, tags);
1073 			fnvlist_free(tags);
1074 		} else {
1075 			fnvlist_add_boolean(tags, htag);
1076 		}
1077 	}
1078 	dsl_dataset_user_release_tmp(dp, holds);
1079 	fnvlist_free(holds);
1080 	zap_cursor_fini(&zc);
1081 }
1082 
1083 /*
1084  * Create the pool-wide zap object for storing temporary snapshot holds.
1085  */
1086 void
1087 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1088 {
1089 	objset_t *mos = dp->dp_meta_objset;
1090 
1091 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1092 	ASSERT(dmu_tx_is_syncing(tx));
1093 
1094 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1095 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1096 }
1097 
1098 static int
1099 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1100     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1101 {
1102 	objset_t *mos = dp->dp_meta_objset;
1103 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1104 	char *name;
1105 	int error;
1106 
1107 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1108 	ASSERT(dmu_tx_is_syncing(tx));
1109 
1110 	/*
1111 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1112 	 * zap object for temporary holds might not exist yet.
1113 	 */
1114 	if (zapobj == 0) {
1115 		if (holding) {
1116 			dsl_pool_user_hold_create_obj(dp, tx);
1117 			zapobj = dp->dp_tmp_userrefs_obj;
1118 		} else {
1119 			return (SET_ERROR(ENOENT));
1120 		}
1121 	}
1122 
1123 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1124 	if (holding)
1125 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1126 	else
1127 		error = zap_remove(mos, zapobj, name, tx);
1128 	strfree(name);
1129 
1130 	return (error);
1131 }
1132 
1133 /*
1134  * Add a temporary hold for the given dataset object and tag.
1135  */
1136 int
1137 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1138     uint64_t now, dmu_tx_t *tx)
1139 {
1140 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1141 }
1142 
1143 /*
1144  * Release a temporary hold for the given dataset object and tag.
1145  */
1146 int
1147 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1148     dmu_tx_t *tx)
1149 {
1150 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
1151 	    tx, B_FALSE));
1152 }
1153 
1154 /*
1155  * DSL Pool Configuration Lock
1156  *
1157  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1158  * creation / destruction / rename / property setting).  It must be held for
1159  * read to hold a dataset or dsl_dir.  I.e. you must call
1160  * dsl_pool_config_enter() or dsl_pool_hold() before calling
1161  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1162  * must be held continuously until all datasets and dsl_dirs are released.
1163  *
1164  * The only exception to this rule is that if a "long hold" is placed on
1165  * a dataset, then the dp_config_rwlock may be dropped while the dataset
1166  * is still held.  The long hold will prevent the dataset from being
1167  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1168  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1169  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1170  *
1171  * Legitimate long-holders (including owners) should be long-running, cancelable
1172  * tasks that should cause "zfs destroy" to fail.  This includes DMU
1173  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1174  * "zfs send", and "zfs diff".  There are several other long-holders whose
1175  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1176  *
1177  * The usual formula for long-holding would be:
1178  * dsl_pool_hold()
1179  * dsl_dataset_hold()
1180  * ... perform checks ...
1181  * dsl_dataset_long_hold()
1182  * dsl_pool_rele()
1183  * ... perform long-running task ...
1184  * dsl_dataset_long_rele()
1185  * dsl_dataset_rele()
1186  *
1187  * Note that when the long hold is released, the dataset is still held but
1188  * the pool is not held.  The dataset may change arbitrarily during this time
1189  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1190  * dataset except release it.
1191  *
1192  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1193  * or modifying operations.
1194  *
1195  * Modifying operations should generally use dsl_sync_task().  The synctask
1196  * infrastructure enforces proper locking strategy with respect to the
1197  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1198  *
1199  * Read-only operations will manually hold the pool, then the dataset, obtain
1200  * information from the dataset, then release the pool and dataset.
1201  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1202  * hold/rele.
1203  */
1204 
1205 int
1206 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1207 {
1208 	spa_t *spa;
1209 	int error;
1210 
1211 	error = spa_open(name, &spa, tag);
1212 	if (error == 0) {
1213 		*dp = spa_get_dsl(spa);
1214 		dsl_pool_config_enter(*dp, tag);
1215 	}
1216 	return (error);
1217 }
1218 
1219 void
1220 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1221 {
1222 	dsl_pool_config_exit(dp, tag);
1223 	spa_close(dp->dp_spa, tag);
1224 }
1225 
1226 void
1227 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1228 {
1229 	/*
1230 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1231 	 *
1232 	 * The rrwlock can (with the track_all flag) track all reading threads,
1233 	 * which is very useful for debugging which code path failed to release
1234 	 * the lock, and for verifying that the *current* thread does hold
1235 	 * the lock.
1236 	 *
1237 	 * (Unlike a rwlock, which knows that N threads hold it for
1238 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1239 	 * if any thread holds it for read, even if this thread doesn't).
1240 	 */
1241 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1242 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1243 }
1244 
1245 void
1246 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1247 {
1248 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1249 	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1250 }
1251 
1252 void
1253 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1254 {
1255 	rrw_exit(&dp->dp_config_rwlock, tag);
1256 }
1257 
1258 boolean_t
1259 dsl_pool_config_held(dsl_pool_t *dp)
1260 {
1261 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1262 }
1263 
1264 boolean_t
1265 dsl_pool_config_held_writer(dsl_pool_t *dp)
1266 {
1267 	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1268 }
1269