1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dsl_pool.h> 31 #include <sys/dsl_dataset.h> 32 #include <sys/dsl_prop.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_synctask.h> 35 #include <sys/dsl_scan.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/dsl_deadlist.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/bptree.h> 50 #include <sys/zfeature.h> 51 #include <sys/zil_impl.h> 52 #include <sys/dsl_userhold.h> 53 #include <sys/mmp.h> 54 55 /* 56 * ZFS Write Throttle 57 * ------------------ 58 * 59 * ZFS must limit the rate of incoming writes to the rate at which it is able 60 * to sync data modifications to the backend storage. Throttling by too much 61 * creates an artificial limit; throttling by too little can only be sustained 62 * for short periods and would lead to highly lumpy performance. On a per-pool 63 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 64 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 65 * of dirty data decreases. When the amount of dirty data exceeds a 66 * predetermined threshold further modifications are blocked until the amount 67 * of dirty data decreases (as data is synced out). 68 * 69 * The limit on dirty data is tunable, and should be adjusted according to 70 * both the IO capacity and available memory of the system. The larger the 71 * window, the more ZFS is able to aggregate and amortize metadata (and data) 72 * changes. However, memory is a limited resource, and allowing for more dirty 73 * data comes at the cost of keeping other useful data in memory (for example 74 * ZFS data cached by the ARC). 75 * 76 * Implementation 77 * 78 * As buffers are modified dsl_pool_willuse_space() increments both the per- 79 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 80 * dirty space used; dsl_pool_dirty_space() decrements those values as data 81 * is synced out from dsl_pool_sync(). While only the poolwide value is 82 * relevant, the per-txg value is useful for debugging. The tunable 83 * zfs_dirty_data_max determines the dirty space limit. Once that value is 84 * exceeded, new writes are halted until space frees up. 85 * 86 * The zfs_dirty_data_sync tunable dictates the threshold at which we 87 * ensure that there is a txg syncing (see the comment in txg.c for a full 88 * description of transaction group stages). 89 * 90 * The IO scheduler uses both the dirty space limit and current amount of 91 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 92 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 93 * 94 * The delay is also calculated based on the amount of dirty data. See the 95 * comment above dmu_tx_delay() for details. 96 */ 97 98 /* 99 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 100 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 101 */ 102 uint64_t zfs_dirty_data_max; 103 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 104 int zfs_dirty_data_max_percent = 10; 105 106 /* 107 * If there's at least this much dirty data (as a percentage of 108 * zfs_dirty_data_max), push out a txg. This should be less than 109 * zfs_vdev_async_write_active_min_dirty_percent. 110 */ 111 uint64_t zfs_dirty_data_sync_pct = 20; 112 113 /* 114 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 115 * and delay each transaction. 116 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 117 */ 118 int zfs_delay_min_dirty_percent = 60; 119 120 /* 121 * This controls how quickly the delay approaches infinity. 122 * Larger values cause it to delay more for a given amount of dirty data. 123 * Therefore larger values will cause there to be less dirty data for a 124 * given throughput. 125 * 126 * For the smoothest delay, this value should be about 1 billion divided 127 * by the maximum number of operations per second. This will smoothly 128 * handle between 10x and 1/10th this number. 129 * 130 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 131 * multiply in dmu_tx_delay(). 132 */ 133 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 134 135 /* 136 * This determines the number of threads used by the dp_sync_taskq. 137 */ 138 int zfs_sync_taskq_batch_pct = 75; 139 140 /* 141 * These tunables determine the behavior of how zil_itxg_clean() is 142 * called via zil_clean() in the context of spa_sync(). When an itxg 143 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 144 * If the dispatch fails, the call to zil_itxg_clean() will occur 145 * synchronously in the context of spa_sync(), which can negatively 146 * impact the performance of spa_sync() (e.g. in the case of the itxg 147 * list having a large number of itxs that needs to be cleaned). 148 * 149 * Thus, these tunables can be used to manipulate the behavior of the 150 * taskq used by zil_clean(); they determine the number of taskq entries 151 * that are pre-populated when the taskq is first created (via the 152 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 153 * taskq entries that are cached after an on-demand allocation (via the 154 * "zfs_zil_clean_taskq_maxalloc"). 155 * 156 * The idea being, we want to try reasonably hard to ensure there will 157 * already be a taskq entry pre-allocated by the time that it is needed 158 * by zil_clean(). This way, we can avoid the possibility of an 159 * on-demand allocation of a new taskq entry from failing, which would 160 * result in zil_itxg_clean() being called synchronously from zil_clean() 161 * (which can adversely affect performance of spa_sync()). 162 * 163 * Additionally, the number of threads used by the taskq can be 164 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 165 */ 166 int zfs_zil_clean_taskq_nthr_pct = 100; 167 int zfs_zil_clean_taskq_minalloc = 1024; 168 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 169 170 int 171 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 172 { 173 uint64_t obj; 174 int err; 175 176 err = zap_lookup(dp->dp_meta_objset, 177 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 178 name, sizeof (obj), 1, &obj); 179 if (err) 180 return (err); 181 182 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 183 } 184 185 static dsl_pool_t * 186 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 187 { 188 dsl_pool_t *dp; 189 blkptr_t *bp = spa_get_rootblkptr(spa); 190 191 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 192 dp->dp_spa = spa; 193 dp->dp_meta_rootbp = *bp; 194 rrw_init(&dp->dp_config_rwlock, B_TRUE); 195 txg_init(dp, txg); 196 mmp_init(spa); 197 198 txg_list_create(&dp->dp_dirty_datasets, spa, 199 offsetof(dsl_dataset_t, ds_dirty_link)); 200 txg_list_create(&dp->dp_dirty_zilogs, spa, 201 offsetof(zilog_t, zl_dirty_link)); 202 txg_list_create(&dp->dp_dirty_dirs, spa, 203 offsetof(dsl_dir_t, dd_dirty_link)); 204 txg_list_create(&dp->dp_sync_tasks, spa, 205 offsetof(dsl_sync_task_t, dst_node)); 206 txg_list_create(&dp->dp_early_sync_tasks, spa, 207 offsetof(dsl_sync_task_t, dst_node)); 208 209 dp->dp_sync_taskq = taskq_create("dp_sync_taskq", 210 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX, 211 TASKQ_THREADS_CPU_PCT); 212 213 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 214 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 215 zfs_zil_clean_taskq_minalloc, 216 zfs_zil_clean_taskq_maxalloc, 217 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 218 219 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 220 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 221 222 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 223 1, 4, 0); 224 225 return (dp); 226 } 227 228 int 229 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 230 { 231 int err; 232 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 233 234 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 235 &dp->dp_meta_objset); 236 if (err != 0) 237 dsl_pool_close(dp); 238 else 239 *dpp = dp; 240 241 return (err); 242 } 243 244 int 245 dsl_pool_open(dsl_pool_t *dp) 246 { 247 int err; 248 dsl_dir_t *dd; 249 dsl_dataset_t *ds; 250 uint64_t obj; 251 252 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 253 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 254 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 255 &dp->dp_root_dir_obj); 256 if (err) 257 goto out; 258 259 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 260 NULL, dp, &dp->dp_root_dir); 261 if (err) 262 goto out; 263 264 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 265 if (err) 266 goto out; 267 268 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 269 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 270 if (err) 271 goto out; 272 err = dsl_dataset_hold_obj(dp, 273 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 274 if (err == 0) { 275 err = dsl_dataset_hold_obj(dp, 276 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 277 &dp->dp_origin_snap); 278 dsl_dataset_rele(ds, FTAG); 279 } 280 dsl_dir_rele(dd, dp); 281 if (err) 282 goto out; 283 } 284 285 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 286 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 287 &dp->dp_free_dir); 288 if (err) 289 goto out; 290 291 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 292 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 293 if (err) 294 goto out; 295 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 296 dp->dp_meta_objset, obj)); 297 } 298 299 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 300 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 301 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj); 302 if (err == 0) { 303 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, 304 dp->dp_meta_objset, obj)); 305 } else if (err == ENOENT) { 306 /* 307 * We might not have created the remap bpobj yet. 308 */ 309 err = 0; 310 } else { 311 goto out; 312 } 313 } 314 315 /* 316 * Note: errors ignored, because the these special dirs, used for 317 * space accounting, are only created on demand. 318 */ 319 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 320 &dp->dp_leak_dir); 321 322 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 323 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 324 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 325 &dp->dp_bptree_obj); 326 if (err != 0) 327 goto out; 328 } 329 330 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 331 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 332 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 333 &dp->dp_empty_bpobj); 334 if (err != 0) 335 goto out; 336 } 337 338 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 339 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 340 &dp->dp_tmp_userrefs_obj); 341 if (err == ENOENT) 342 err = 0; 343 if (err) 344 goto out; 345 346 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 347 348 out: 349 rrw_exit(&dp->dp_config_rwlock, FTAG); 350 return (err); 351 } 352 353 void 354 dsl_pool_close(dsl_pool_t *dp) 355 { 356 /* 357 * Drop our references from dsl_pool_open(). 358 * 359 * Since we held the origin_snap from "syncing" context (which 360 * includes pool-opening context), it actually only got a "ref" 361 * and not a hold, so just drop that here. 362 */ 363 if (dp->dp_origin_snap != NULL) 364 dsl_dataset_rele(dp->dp_origin_snap, dp); 365 if (dp->dp_mos_dir != NULL) 366 dsl_dir_rele(dp->dp_mos_dir, dp); 367 if (dp->dp_free_dir != NULL) 368 dsl_dir_rele(dp->dp_free_dir, dp); 369 if (dp->dp_leak_dir != NULL) 370 dsl_dir_rele(dp->dp_leak_dir, dp); 371 if (dp->dp_root_dir != NULL) 372 dsl_dir_rele(dp->dp_root_dir, dp); 373 374 bpobj_close(&dp->dp_free_bpobj); 375 bpobj_close(&dp->dp_obsolete_bpobj); 376 377 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 378 if (dp->dp_meta_objset != NULL) 379 dmu_objset_evict(dp->dp_meta_objset); 380 381 txg_list_destroy(&dp->dp_dirty_datasets); 382 txg_list_destroy(&dp->dp_dirty_zilogs); 383 txg_list_destroy(&dp->dp_sync_tasks); 384 txg_list_destroy(&dp->dp_early_sync_tasks); 385 txg_list_destroy(&dp->dp_dirty_dirs); 386 387 taskq_destroy(dp->dp_zil_clean_taskq); 388 taskq_destroy(dp->dp_sync_taskq); 389 390 /* 391 * We can't set retry to TRUE since we're explicitly specifying 392 * a spa to flush. This is good enough; any missed buffers for 393 * this spa won't cause trouble, and they'll eventually fall 394 * out of the ARC just like any other unused buffer. 395 */ 396 arc_flush(dp->dp_spa, FALSE); 397 398 mmp_fini(dp->dp_spa); 399 txg_fini(dp); 400 dsl_scan_fini(dp); 401 dmu_buf_user_evict_wait(); 402 403 rrw_destroy(&dp->dp_config_rwlock); 404 mutex_destroy(&dp->dp_lock); 405 taskq_destroy(dp->dp_vnrele_taskq); 406 if (dp->dp_blkstats != NULL) 407 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 408 kmem_free(dp, sizeof (dsl_pool_t)); 409 } 410 411 void 412 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 413 { 414 uint64_t obj; 415 /* 416 * Currently, we only create the obsolete_bpobj where there are 417 * indirect vdevs with referenced mappings. 418 */ 419 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL)); 420 /* create and open the obsolete_bpobj */ 421 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 422 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj)); 423 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 424 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 425 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 426 } 427 428 void 429 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 430 { 431 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 432 VERIFY0(zap_remove(dp->dp_meta_objset, 433 DMU_POOL_DIRECTORY_OBJECT, 434 DMU_POOL_OBSOLETE_BPOBJ, tx)); 435 bpobj_free(dp->dp_meta_objset, 436 dp->dp_obsolete_bpobj.bpo_object, tx); 437 bpobj_close(&dp->dp_obsolete_bpobj); 438 } 439 440 dsl_pool_t * 441 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 442 { 443 int err; 444 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 445 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 446 dsl_dataset_t *ds; 447 uint64_t obj; 448 449 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 450 451 /* create and open the MOS (meta-objset) */ 452 dp->dp_meta_objset = dmu_objset_create_impl(spa, 453 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 454 455 /* create the pool directory */ 456 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 457 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 458 ASSERT0(err); 459 460 /* Initialize scan structures */ 461 VERIFY0(dsl_scan_init(dp, txg)); 462 463 /* create and open the root dir */ 464 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 465 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 466 NULL, dp, &dp->dp_root_dir)); 467 468 /* create and open the meta-objset dir */ 469 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 470 VERIFY0(dsl_pool_open_special_dir(dp, 471 MOS_DIR_NAME, &dp->dp_mos_dir)); 472 473 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 474 /* create and open the free dir */ 475 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 476 FREE_DIR_NAME, tx); 477 VERIFY0(dsl_pool_open_special_dir(dp, 478 FREE_DIR_NAME, &dp->dp_free_dir)); 479 480 /* create and open the free_bplist */ 481 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 482 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 483 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 484 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 485 dp->dp_meta_objset, obj)); 486 } 487 488 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 489 dsl_pool_create_origin(dp, tx); 490 491 /* create the root dataset */ 492 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 493 494 /* create the root objset */ 495 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 496 #ifdef _KERNEL 497 { 498 objset_t *os; 499 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 500 os = dmu_objset_create_impl(dp->dp_spa, ds, 501 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 502 rrw_exit(&ds->ds_bp_rwlock, FTAG); 503 zfs_create_fs(os, kcred, zplprops, tx); 504 } 505 #endif 506 dsl_dataset_rele(ds, FTAG); 507 508 dmu_tx_commit(tx); 509 510 rrw_exit(&dp->dp_config_rwlock, FTAG); 511 512 return (dp); 513 } 514 515 /* 516 * Account for the meta-objset space in its placeholder dsl_dir. 517 */ 518 void 519 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 520 int64_t used, int64_t comp, int64_t uncomp) 521 { 522 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 523 mutex_enter(&dp->dp_lock); 524 dp->dp_mos_used_delta += used; 525 dp->dp_mos_compressed_delta += comp; 526 dp->dp_mos_uncompressed_delta += uncomp; 527 mutex_exit(&dp->dp_lock); 528 } 529 530 static void 531 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 532 { 533 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 534 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 535 VERIFY0(zio_wait(zio)); 536 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 537 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 538 } 539 540 static void 541 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 542 { 543 ASSERT(MUTEX_HELD(&dp->dp_lock)); 544 545 if (delta < 0) 546 ASSERT3U(-delta, <=, dp->dp_dirty_total); 547 548 dp->dp_dirty_total += delta; 549 550 /* 551 * Note: we signal even when increasing dp_dirty_total. 552 * This ensures forward progress -- each thread wakes the next waiter. 553 */ 554 if (dp->dp_dirty_total < zfs_dirty_data_max) 555 cv_signal(&dp->dp_spaceavail_cv); 556 } 557 558 static boolean_t 559 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg) 560 { 561 spa_t *spa = dp->dp_spa; 562 vdev_t *rvd = spa->spa_root_vdev; 563 564 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 565 vdev_t *vd = rvd->vdev_child[c]; 566 txg_list_t *tl = &vd->vdev_ms_list; 567 metaslab_t *ms; 568 569 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms; 570 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) { 571 VERIFY(range_tree_is_empty(ms->ms_freeing)); 572 VERIFY(range_tree_is_empty(ms->ms_checkpointing)); 573 } 574 } 575 576 return (B_TRUE); 577 } 578 579 void 580 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 581 { 582 zio_t *zio; 583 dmu_tx_t *tx; 584 dsl_dir_t *dd; 585 dsl_dataset_t *ds; 586 objset_t *mos = dp->dp_meta_objset; 587 list_t synced_datasets; 588 589 list_create(&synced_datasets, sizeof (dsl_dataset_t), 590 offsetof(dsl_dataset_t, ds_synced_link)); 591 592 tx = dmu_tx_create_assigned(dp, txg); 593 594 /* 595 * Run all early sync tasks before writing out any dirty blocks. 596 * For more info on early sync tasks see block comment in 597 * dsl_early_sync_task(). 598 */ 599 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) { 600 dsl_sync_task_t *dst; 601 602 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 603 while ((dst = 604 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) { 605 ASSERT(dsl_early_sync_task_verify(dp, txg)); 606 dsl_sync_task_sync(dst, tx); 607 } 608 ASSERT(dsl_early_sync_task_verify(dp, txg)); 609 } 610 611 /* 612 * Write out all dirty blocks of dirty datasets. 613 */ 614 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 615 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 616 /* 617 * We must not sync any non-MOS datasets twice, because 618 * we may have taken a snapshot of them. However, we 619 * may sync newly-created datasets on pass 2. 620 */ 621 ASSERT(!list_link_active(&ds->ds_synced_link)); 622 list_insert_tail(&synced_datasets, ds); 623 dsl_dataset_sync(ds, zio, tx); 624 } 625 VERIFY0(zio_wait(zio)); 626 627 /* 628 * We have written all of the accounted dirty data, so our 629 * dp_space_towrite should now be zero. However, some seldom-used 630 * code paths do not adhere to this (e.g. dbuf_undirty(), also 631 * rounding error in dbuf_write_physdone). 632 * Shore up the accounting of any dirtied space now. 633 */ 634 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 635 636 /* 637 * Update the long range free counter after 638 * we're done syncing user data 639 */ 640 mutex_enter(&dp->dp_lock); 641 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 642 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 643 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 644 mutex_exit(&dp->dp_lock); 645 646 /* 647 * After the data blocks have been written (ensured by the zio_wait() 648 * above), update the user/group space accounting. This happens 649 * in tasks dispatched to dp_sync_taskq, so wait for them before 650 * continuing. 651 */ 652 for (ds = list_head(&synced_datasets); ds != NULL; 653 ds = list_next(&synced_datasets, ds)) { 654 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 655 } 656 taskq_wait(dp->dp_sync_taskq); 657 658 /* 659 * Sync the datasets again to push out the changes due to 660 * userspace updates. This must be done before we process the 661 * sync tasks, so that any snapshots will have the correct 662 * user accounting information (and we won't get confused 663 * about which blocks are part of the snapshot). 664 */ 665 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 666 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 667 ASSERT(list_link_active(&ds->ds_synced_link)); 668 dmu_buf_rele(ds->ds_dbuf, ds); 669 dsl_dataset_sync(ds, zio, tx); 670 } 671 VERIFY0(zio_wait(zio)); 672 673 /* 674 * Now that the datasets have been completely synced, we can 675 * clean up our in-memory structures accumulated while syncing: 676 * 677 * - move dead blocks from the pending deadlist to the on-disk deadlist 678 * - release hold from dsl_dataset_dirty() 679 */ 680 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 681 dsl_dataset_sync_done(ds, tx); 682 } 683 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 684 dsl_dir_sync(dd, tx); 685 } 686 687 /* 688 * The MOS's space is accounted for in the pool/$MOS 689 * (dp_mos_dir). We can't modify the mos while we're syncing 690 * it, so we remember the deltas and apply them here. 691 */ 692 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 693 dp->dp_mos_uncompressed_delta != 0) { 694 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 695 dp->dp_mos_used_delta, 696 dp->dp_mos_compressed_delta, 697 dp->dp_mos_uncompressed_delta, tx); 698 dp->dp_mos_used_delta = 0; 699 dp->dp_mos_compressed_delta = 0; 700 dp->dp_mos_uncompressed_delta = 0; 701 } 702 703 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) { 704 dsl_pool_sync_mos(dp, tx); 705 } 706 707 /* 708 * If we modify a dataset in the same txg that we want to destroy it, 709 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 710 * dsl_dir_destroy_check() will fail if there are unexpected holds. 711 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 712 * and clearing the hold on it) before we process the sync_tasks. 713 * The MOS data dirtied by the sync_tasks will be synced on the next 714 * pass. 715 */ 716 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 717 dsl_sync_task_t *dst; 718 /* 719 * No more sync tasks should have been added while we 720 * were syncing. 721 */ 722 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 723 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 724 dsl_sync_task_sync(dst, tx); 725 } 726 727 dmu_tx_commit(tx); 728 729 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 730 } 731 732 void 733 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 734 { 735 zilog_t *zilog; 736 737 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) { 738 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 739 /* 740 * We don't remove the zilog from the dp_dirty_zilogs 741 * list until after we've cleaned it. This ensures that 742 * callers of zilog_is_dirty() receive an accurate 743 * answer when they are racing with the spa sync thread. 744 */ 745 zil_clean(zilog, txg); 746 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 747 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 748 dmu_buf_rele(ds->ds_dbuf, zilog); 749 } 750 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 751 } 752 753 /* 754 * TRUE if the current thread is the tx_sync_thread or if we 755 * are being called from SPA context during pool initialization. 756 */ 757 int 758 dsl_pool_sync_context(dsl_pool_t *dp) 759 { 760 return (curthread == dp->dp_tx.tx_sync_thread || 761 spa_is_initializing(dp->dp_spa) || 762 taskq_member(dp->dp_sync_taskq, curthread)); 763 } 764 765 /* 766 * This function returns the amount of allocatable space in the pool 767 * minus whatever space is currently reserved by ZFS for specific 768 * purposes. Specifically: 769 * 770 * 1] Any reserved SLOP space 771 * 2] Any space used by the checkpoint 772 * 3] Any space used for deferred frees 773 * 774 * The latter 2 are especially important because they are needed to 775 * rectify the SPA's and DMU's different understanding of how much space 776 * is used. Now the DMU is aware of that extra space tracked by the SPA 777 * without having to maintain a separate special dir (e.g similar to 778 * $MOS, $FREEING, and $LEAKED). 779 * 780 * Note: By deferred frees here, we mean the frees that were deferred 781 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the 782 * segments placed in ms_defer trees during metaslab_sync_done(). 783 */ 784 uint64_t 785 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy) 786 { 787 spa_t *spa = dp->dp_spa; 788 uint64_t space, resv, adjustedsize; 789 uint64_t spa_deferred_frees = 790 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes; 791 792 space = spa_get_dspace(spa) 793 - spa_get_checkpoint_space(spa) - spa_deferred_frees; 794 resv = spa_get_slop_space(spa); 795 796 switch (slop_policy) { 797 case ZFS_SPACE_CHECK_NORMAL: 798 break; 799 case ZFS_SPACE_CHECK_RESERVED: 800 resv >>= 1; 801 break; 802 case ZFS_SPACE_CHECK_EXTRA_RESERVED: 803 resv >>= 2; 804 break; 805 case ZFS_SPACE_CHECK_NONE: 806 resv = 0; 807 break; 808 default: 809 panic("invalid slop policy value: %d", slop_policy); 810 break; 811 } 812 adjustedsize = (space >= resv) ? (space - resv) : 0; 813 814 return (adjustedsize); 815 } 816 817 uint64_t 818 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy) 819 { 820 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy); 821 uint64_t deferred = 822 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)); 823 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0; 824 return (quota); 825 } 826 827 boolean_t 828 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 829 { 830 uint64_t delay_min_bytes = 831 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 832 uint64_t dirty_min_bytes = 833 zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100; 834 boolean_t rv; 835 836 mutex_enter(&dp->dp_lock); 837 if (dp->dp_dirty_total > dirty_min_bytes) 838 txg_kick(dp); 839 rv = (dp->dp_dirty_total > delay_min_bytes); 840 mutex_exit(&dp->dp_lock); 841 return (rv); 842 } 843 844 void 845 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 846 { 847 if (space > 0) { 848 mutex_enter(&dp->dp_lock); 849 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 850 dsl_pool_dirty_delta(dp, space); 851 mutex_exit(&dp->dp_lock); 852 } 853 } 854 855 void 856 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 857 { 858 ASSERT3S(space, >=, 0); 859 if (space == 0) 860 return; 861 mutex_enter(&dp->dp_lock); 862 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 863 /* XXX writing something we didn't dirty? */ 864 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 865 } 866 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 867 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 868 ASSERT3U(dp->dp_dirty_total, >=, space); 869 dsl_pool_dirty_delta(dp, -space); 870 mutex_exit(&dp->dp_lock); 871 } 872 873 /* ARGSUSED */ 874 static int 875 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 876 { 877 dmu_tx_t *tx = arg; 878 dsl_dataset_t *ds, *prev = NULL; 879 int err; 880 881 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 882 if (err) 883 return (err); 884 885 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 886 err = dsl_dataset_hold_obj(dp, 887 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 888 if (err) { 889 dsl_dataset_rele(ds, FTAG); 890 return (err); 891 } 892 893 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 894 break; 895 dsl_dataset_rele(ds, FTAG); 896 ds = prev; 897 prev = NULL; 898 } 899 900 if (prev == NULL) { 901 prev = dp->dp_origin_snap; 902 903 /* 904 * The $ORIGIN can't have any data, or the accounting 905 * will be wrong. 906 */ 907 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 908 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 909 rrw_exit(&ds->ds_bp_rwlock, FTAG); 910 911 /* The origin doesn't get attached to itself */ 912 if (ds->ds_object == prev->ds_object) { 913 dsl_dataset_rele(ds, FTAG); 914 return (0); 915 } 916 917 dmu_buf_will_dirty(ds->ds_dbuf, tx); 918 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 919 dsl_dataset_phys(ds)->ds_prev_snap_txg = 920 dsl_dataset_phys(prev)->ds_creation_txg; 921 922 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 923 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 924 925 dmu_buf_will_dirty(prev->ds_dbuf, tx); 926 dsl_dataset_phys(prev)->ds_num_children++; 927 928 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 929 ASSERT(ds->ds_prev == NULL); 930 VERIFY0(dsl_dataset_hold_obj(dp, 931 dsl_dataset_phys(ds)->ds_prev_snap_obj, 932 ds, &ds->ds_prev)); 933 } 934 } 935 936 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 937 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 938 939 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 940 dmu_buf_will_dirty(prev->ds_dbuf, tx); 941 dsl_dataset_phys(prev)->ds_next_clones_obj = 942 zap_create(dp->dp_meta_objset, 943 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 944 } 945 VERIFY0(zap_add_int(dp->dp_meta_objset, 946 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 947 948 dsl_dataset_rele(ds, FTAG); 949 if (prev != dp->dp_origin_snap) 950 dsl_dataset_rele(prev, FTAG); 951 return (0); 952 } 953 954 void 955 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 956 { 957 ASSERT(dmu_tx_is_syncing(tx)); 958 ASSERT(dp->dp_origin_snap != NULL); 959 960 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 961 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 962 } 963 964 /* ARGSUSED */ 965 static int 966 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 967 { 968 dmu_tx_t *tx = arg; 969 objset_t *mos = dp->dp_meta_objset; 970 971 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 972 dsl_dataset_t *origin; 973 974 VERIFY0(dsl_dataset_hold_obj(dp, 975 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 976 977 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 978 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 979 dsl_dir_phys(origin->ds_dir)->dd_clones = 980 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 981 0, tx); 982 } 983 984 VERIFY0(zap_add_int(dp->dp_meta_objset, 985 dsl_dir_phys(origin->ds_dir)->dd_clones, 986 ds->ds_object, tx)); 987 988 dsl_dataset_rele(origin, FTAG); 989 } 990 return (0); 991 } 992 993 void 994 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 995 { 996 ASSERT(dmu_tx_is_syncing(tx)); 997 uint64_t obj; 998 999 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 1000 VERIFY0(dsl_pool_open_special_dir(dp, 1001 FREE_DIR_NAME, &dp->dp_free_dir)); 1002 1003 /* 1004 * We can't use bpobj_alloc(), because spa_version() still 1005 * returns the old version, and we need a new-version bpobj with 1006 * subobj support. So call dmu_object_alloc() directly. 1007 */ 1008 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 1009 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 1010 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1011 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 1012 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 1013 1014 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1015 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1016 } 1017 1018 void 1019 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 1020 { 1021 uint64_t dsobj; 1022 dsl_dataset_t *ds; 1023 1024 ASSERT(dmu_tx_is_syncing(tx)); 1025 ASSERT(dp->dp_origin_snap == NULL); 1026 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 1027 1028 /* create the origin dir, ds, & snap-ds */ 1029 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 1030 NULL, 0, kcred, tx); 1031 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 1032 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 1033 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 1034 dp, &dp->dp_origin_snap)); 1035 dsl_dataset_rele(ds, FTAG); 1036 } 1037 1038 taskq_t * 1039 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 1040 { 1041 return (dp->dp_vnrele_taskq); 1042 } 1043 1044 /* 1045 * Walk through the pool-wide zap object of temporary snapshot user holds 1046 * and release them. 1047 */ 1048 void 1049 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 1050 { 1051 zap_attribute_t za; 1052 zap_cursor_t zc; 1053 objset_t *mos = dp->dp_meta_objset; 1054 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1055 nvlist_t *holds; 1056 1057 if (zapobj == 0) 1058 return; 1059 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1060 1061 holds = fnvlist_alloc(); 1062 1063 for (zap_cursor_init(&zc, mos, zapobj); 1064 zap_cursor_retrieve(&zc, &za) == 0; 1065 zap_cursor_advance(&zc)) { 1066 char *htag; 1067 nvlist_t *tags; 1068 1069 htag = strchr(za.za_name, '-'); 1070 *htag = '\0'; 1071 ++htag; 1072 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 1073 tags = fnvlist_alloc(); 1074 fnvlist_add_boolean(tags, htag); 1075 fnvlist_add_nvlist(holds, za.za_name, tags); 1076 fnvlist_free(tags); 1077 } else { 1078 fnvlist_add_boolean(tags, htag); 1079 } 1080 } 1081 dsl_dataset_user_release_tmp(dp, holds); 1082 fnvlist_free(holds); 1083 zap_cursor_fini(&zc); 1084 } 1085 1086 /* 1087 * Create the pool-wide zap object for storing temporary snapshot holds. 1088 */ 1089 void 1090 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 1091 { 1092 objset_t *mos = dp->dp_meta_objset; 1093 1094 ASSERT(dp->dp_tmp_userrefs_obj == 0); 1095 ASSERT(dmu_tx_is_syncing(tx)); 1096 1097 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 1098 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 1099 } 1100 1101 static int 1102 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 1103 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 1104 { 1105 objset_t *mos = dp->dp_meta_objset; 1106 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1107 char *name; 1108 int error; 1109 1110 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1111 ASSERT(dmu_tx_is_syncing(tx)); 1112 1113 /* 1114 * If the pool was created prior to SPA_VERSION_USERREFS, the 1115 * zap object for temporary holds might not exist yet. 1116 */ 1117 if (zapobj == 0) { 1118 if (holding) { 1119 dsl_pool_user_hold_create_obj(dp, tx); 1120 zapobj = dp->dp_tmp_userrefs_obj; 1121 } else { 1122 return (SET_ERROR(ENOENT)); 1123 } 1124 } 1125 1126 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 1127 if (holding) 1128 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 1129 else 1130 error = zap_remove(mos, zapobj, name, tx); 1131 strfree(name); 1132 1133 return (error); 1134 } 1135 1136 /* 1137 * Add a temporary hold for the given dataset object and tag. 1138 */ 1139 int 1140 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1141 uint64_t now, dmu_tx_t *tx) 1142 { 1143 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1144 } 1145 1146 /* 1147 * Release a temporary hold for the given dataset object and tag. 1148 */ 1149 int 1150 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1151 dmu_tx_t *tx) 1152 { 1153 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 1154 tx, B_FALSE)); 1155 } 1156 1157 /* 1158 * DSL Pool Configuration Lock 1159 * 1160 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1161 * creation / destruction / rename / property setting). It must be held for 1162 * read to hold a dataset or dsl_dir. I.e. you must call 1163 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1164 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1165 * must be held continuously until all datasets and dsl_dirs are released. 1166 * 1167 * The only exception to this rule is that if a "long hold" is placed on 1168 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1169 * is still held. The long hold will prevent the dataset from being 1170 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1171 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1172 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1173 * 1174 * Legitimate long-holders (including owners) should be long-running, cancelable 1175 * tasks that should cause "zfs destroy" to fail. This includes DMU 1176 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1177 * "zfs send", and "zfs diff". There are several other long-holders whose 1178 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1179 * 1180 * The usual formula for long-holding would be: 1181 * dsl_pool_hold() 1182 * dsl_dataset_hold() 1183 * ... perform checks ... 1184 * dsl_dataset_long_hold() 1185 * dsl_pool_rele() 1186 * ... perform long-running task ... 1187 * dsl_dataset_long_rele() 1188 * dsl_dataset_rele() 1189 * 1190 * Note that when the long hold is released, the dataset is still held but 1191 * the pool is not held. The dataset may change arbitrarily during this time 1192 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1193 * dataset except release it. 1194 * 1195 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 1196 * or modifying operations. 1197 * 1198 * Modifying operations should generally use dsl_sync_task(). The synctask 1199 * infrastructure enforces proper locking strategy with respect to the 1200 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1201 * 1202 * Read-only operations will manually hold the pool, then the dataset, obtain 1203 * information from the dataset, then release the pool and dataset. 1204 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1205 * hold/rele. 1206 */ 1207 1208 int 1209 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1210 { 1211 spa_t *spa; 1212 int error; 1213 1214 error = spa_open(name, &spa, tag); 1215 if (error == 0) { 1216 *dp = spa_get_dsl(spa); 1217 dsl_pool_config_enter(*dp, tag); 1218 } 1219 return (error); 1220 } 1221 1222 void 1223 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1224 { 1225 dsl_pool_config_exit(dp, tag); 1226 spa_close(dp->dp_spa, tag); 1227 } 1228 1229 void 1230 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1231 { 1232 /* 1233 * We use a "reentrant" reader-writer lock, but not reentrantly. 1234 * 1235 * The rrwlock can (with the track_all flag) track all reading threads, 1236 * which is very useful for debugging which code path failed to release 1237 * the lock, and for verifying that the *current* thread does hold 1238 * the lock. 1239 * 1240 * (Unlike a rwlock, which knows that N threads hold it for 1241 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1242 * if any thread holds it for read, even if this thread doesn't). 1243 */ 1244 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1245 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1246 } 1247 1248 void 1249 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1250 { 1251 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1252 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1253 } 1254 1255 void 1256 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1257 { 1258 rrw_exit(&dp->dp_config_rwlock, tag); 1259 } 1260 1261 boolean_t 1262 dsl_pool_config_held(dsl_pool_t *dp) 1263 { 1264 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1265 } 1266 1267 boolean_t 1268 dsl_pool_config_held_writer(dsl_pool_t *dp) 1269 { 1270 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1271 } 1272