1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dsl_pool.h> 31 #include <sys/dsl_dataset.h> 32 #include <sys/dsl_prop.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_synctask.h> 35 #include <sys/dsl_scan.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/dsl_deadlist.h> 47 #include <sys/bptree.h> 48 #include <sys/zfeature.h> 49 #include <sys/zil_impl.h> 50 #include <sys/dsl_userhold.h> 51 52 /* 53 * ZFS Write Throttle 54 * ------------------ 55 * 56 * ZFS must limit the rate of incoming writes to the rate at which it is able 57 * to sync data modifications to the backend storage. Throttling by too much 58 * creates an artificial limit; throttling by too little can only be sustained 59 * for short periods and would lead to highly lumpy performance. On a per-pool 60 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 61 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 62 * of dirty data decreases. When the amount of dirty data exceeds a 63 * predetermined threshold further modifications are blocked until the amount 64 * of dirty data decreases (as data is synced out). 65 * 66 * The limit on dirty data is tunable, and should be adjusted according to 67 * both the IO capacity and available memory of the system. The larger the 68 * window, the more ZFS is able to aggregate and amortize metadata (and data) 69 * changes. However, memory is a limited resource, and allowing for more dirty 70 * data comes at the cost of keeping other useful data in memory (for example 71 * ZFS data cached by the ARC). 72 * 73 * Implementation 74 * 75 * As buffers are modified dsl_pool_willuse_space() increments both the per- 76 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 77 * dirty space used; dsl_pool_dirty_space() decrements those values as data 78 * is synced out from dsl_pool_sync(). While only the poolwide value is 79 * relevant, the per-txg value is useful for debugging. The tunable 80 * zfs_dirty_data_max determines the dirty space limit. Once that value is 81 * exceeded, new writes are halted until space frees up. 82 * 83 * The zfs_dirty_data_sync tunable dictates the threshold at which we 84 * ensure that there is a txg syncing (see the comment in txg.c for a full 85 * description of transaction group stages). 86 * 87 * The IO scheduler uses both the dirty space limit and current amount of 88 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 89 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 90 * 91 * The delay is also calculated based on the amount of dirty data. See the 92 * comment above dmu_tx_delay() for details. 93 */ 94 95 /* 96 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 97 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 98 */ 99 uint64_t zfs_dirty_data_max; 100 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 101 int zfs_dirty_data_max_percent = 10; 102 103 /* 104 * If there is at least this much dirty data, push out a txg. 105 */ 106 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 107 108 /* 109 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 110 * and delay each transaction. 111 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 112 */ 113 int zfs_delay_min_dirty_percent = 60; 114 115 /* 116 * This controls how quickly the delay approaches infinity. 117 * Larger values cause it to delay more for a given amount of dirty data. 118 * Therefore larger values will cause there to be less dirty data for a 119 * given throughput. 120 * 121 * For the smoothest delay, this value should be about 1 billion divided 122 * by the maximum number of operations per second. This will smoothly 123 * handle between 10x and 1/10th this number. 124 * 125 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 126 * multiply in dmu_tx_delay(). 127 */ 128 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 129 130 /* 131 * This determines the number of threads used by the dp_sync_taskq. 132 */ 133 int zfs_sync_taskq_batch_pct = 75; 134 135 /* 136 * These tunables determine the behavior of how zil_itxg_clean() is 137 * called via zil_clean() in the context of spa_sync(). When an itxg 138 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 139 * If the dispatch fails, the call to zil_itxg_clean() will occur 140 * synchronously in the context of spa_sync(), which can negatively 141 * impact the performance of spa_sync() (e.g. in the case of the itxg 142 * list having a large number of itxs that needs to be cleaned). 143 * 144 * Thus, these tunables can be used to manipulate the behavior of the 145 * taskq used by zil_clean(); they determine the number of taskq entries 146 * that are pre-populated when the taskq is first created (via the 147 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 148 * taskq entries that are cached after an on-demand allocation (via the 149 * "zfs_zil_clean_taskq_maxalloc"). 150 * 151 * The idea being, we want to try reasonably hard to ensure there will 152 * already be a taskq entry pre-allocated by the time that it is needed 153 * by zil_clean(). This way, we can avoid the possibility of an 154 * on-demand allocation of a new taskq entry from failing, which would 155 * result in zil_itxg_clean() being called synchronously from zil_clean() 156 * (which can adversely affect performance of spa_sync()). 157 * 158 * Additionally, the number of threads used by the taskq can be 159 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 160 */ 161 int zfs_zil_clean_taskq_nthr_pct = 100; 162 int zfs_zil_clean_taskq_minalloc = 1024; 163 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 164 165 int 166 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 167 { 168 uint64_t obj; 169 int err; 170 171 err = zap_lookup(dp->dp_meta_objset, 172 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 173 name, sizeof (obj), 1, &obj); 174 if (err) 175 return (err); 176 177 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 178 } 179 180 static dsl_pool_t * 181 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 182 { 183 dsl_pool_t *dp; 184 blkptr_t *bp = spa_get_rootblkptr(spa); 185 186 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 187 dp->dp_spa = spa; 188 dp->dp_meta_rootbp = *bp; 189 rrw_init(&dp->dp_config_rwlock, B_TRUE); 190 txg_init(dp, txg); 191 192 txg_list_create(&dp->dp_dirty_datasets, spa, 193 offsetof(dsl_dataset_t, ds_dirty_link)); 194 txg_list_create(&dp->dp_dirty_zilogs, spa, 195 offsetof(zilog_t, zl_dirty_link)); 196 txg_list_create(&dp->dp_dirty_dirs, spa, 197 offsetof(dsl_dir_t, dd_dirty_link)); 198 txg_list_create(&dp->dp_sync_tasks, spa, 199 offsetof(dsl_sync_task_t, dst_node)); 200 201 dp->dp_sync_taskq = taskq_create("dp_sync_taskq", 202 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX, 203 TASKQ_THREADS_CPU_PCT); 204 205 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 206 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 207 zfs_zil_clean_taskq_minalloc, 208 zfs_zil_clean_taskq_maxalloc, 209 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 210 211 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 212 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 213 214 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 215 1, 4, 0); 216 217 return (dp); 218 } 219 220 int 221 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 222 { 223 int err; 224 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 225 226 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 227 &dp->dp_meta_objset); 228 if (err != 0) 229 dsl_pool_close(dp); 230 else 231 *dpp = dp; 232 233 return (err); 234 } 235 236 int 237 dsl_pool_open(dsl_pool_t *dp) 238 { 239 int err; 240 dsl_dir_t *dd; 241 dsl_dataset_t *ds; 242 uint64_t obj; 243 244 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 245 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 246 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 247 &dp->dp_root_dir_obj); 248 if (err) 249 goto out; 250 251 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 252 NULL, dp, &dp->dp_root_dir); 253 if (err) 254 goto out; 255 256 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 257 if (err) 258 goto out; 259 260 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 261 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 262 if (err) 263 goto out; 264 err = dsl_dataset_hold_obj(dp, 265 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 266 if (err == 0) { 267 err = dsl_dataset_hold_obj(dp, 268 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 269 &dp->dp_origin_snap); 270 dsl_dataset_rele(ds, FTAG); 271 } 272 dsl_dir_rele(dd, dp); 273 if (err) 274 goto out; 275 } 276 277 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 278 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 279 &dp->dp_free_dir); 280 if (err) 281 goto out; 282 283 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 284 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 285 if (err) 286 goto out; 287 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 288 dp->dp_meta_objset, obj)); 289 } 290 291 /* 292 * Note: errors ignored, because the leak dir will not exist if we 293 * have not encountered a leak yet. 294 */ 295 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 296 &dp->dp_leak_dir); 297 298 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 299 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 300 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 301 &dp->dp_bptree_obj); 302 if (err != 0) 303 goto out; 304 } 305 306 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 307 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 308 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 309 &dp->dp_empty_bpobj); 310 if (err != 0) 311 goto out; 312 } 313 314 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 315 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 316 &dp->dp_tmp_userrefs_obj); 317 if (err == ENOENT) 318 err = 0; 319 if (err) 320 goto out; 321 322 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 323 324 out: 325 rrw_exit(&dp->dp_config_rwlock, FTAG); 326 return (err); 327 } 328 329 void 330 dsl_pool_close(dsl_pool_t *dp) 331 { 332 /* 333 * Drop our references from dsl_pool_open(). 334 * 335 * Since we held the origin_snap from "syncing" context (which 336 * includes pool-opening context), it actually only got a "ref" 337 * and not a hold, so just drop that here. 338 */ 339 if (dp->dp_origin_snap) 340 dsl_dataset_rele(dp->dp_origin_snap, dp); 341 if (dp->dp_mos_dir) 342 dsl_dir_rele(dp->dp_mos_dir, dp); 343 if (dp->dp_free_dir) 344 dsl_dir_rele(dp->dp_free_dir, dp); 345 if (dp->dp_leak_dir) 346 dsl_dir_rele(dp->dp_leak_dir, dp); 347 if (dp->dp_root_dir) 348 dsl_dir_rele(dp->dp_root_dir, dp); 349 350 bpobj_close(&dp->dp_free_bpobj); 351 352 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 353 if (dp->dp_meta_objset) 354 dmu_objset_evict(dp->dp_meta_objset); 355 356 txg_list_destroy(&dp->dp_dirty_datasets); 357 txg_list_destroy(&dp->dp_dirty_zilogs); 358 txg_list_destroy(&dp->dp_sync_tasks); 359 txg_list_destroy(&dp->dp_dirty_dirs); 360 361 taskq_destroy(dp->dp_zil_clean_taskq); 362 taskq_destroy(dp->dp_sync_taskq); 363 364 /* 365 * We can't set retry to TRUE since we're explicitly specifying 366 * a spa to flush. This is good enough; any missed buffers for 367 * this spa won't cause trouble, and they'll eventually fall 368 * out of the ARC just like any other unused buffer. 369 */ 370 arc_flush(dp->dp_spa, FALSE); 371 372 txg_fini(dp); 373 dsl_scan_fini(dp); 374 dmu_buf_user_evict_wait(); 375 376 rrw_destroy(&dp->dp_config_rwlock); 377 mutex_destroy(&dp->dp_lock); 378 taskq_destroy(dp->dp_vnrele_taskq); 379 if (dp->dp_blkstats) 380 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 381 kmem_free(dp, sizeof (dsl_pool_t)); 382 } 383 384 dsl_pool_t * 385 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 386 { 387 int err; 388 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 389 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 390 dsl_dataset_t *ds; 391 uint64_t obj; 392 393 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 394 395 /* create and open the MOS (meta-objset) */ 396 dp->dp_meta_objset = dmu_objset_create_impl(spa, 397 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 398 399 /* create the pool directory */ 400 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 401 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 402 ASSERT0(err); 403 404 /* Initialize scan structures */ 405 VERIFY0(dsl_scan_init(dp, txg)); 406 407 /* create and open the root dir */ 408 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 409 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 410 NULL, dp, &dp->dp_root_dir)); 411 412 /* create and open the meta-objset dir */ 413 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 414 VERIFY0(dsl_pool_open_special_dir(dp, 415 MOS_DIR_NAME, &dp->dp_mos_dir)); 416 417 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 418 /* create and open the free dir */ 419 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 420 FREE_DIR_NAME, tx); 421 VERIFY0(dsl_pool_open_special_dir(dp, 422 FREE_DIR_NAME, &dp->dp_free_dir)); 423 424 /* create and open the free_bplist */ 425 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 426 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 427 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 428 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 429 dp->dp_meta_objset, obj)); 430 } 431 432 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 433 dsl_pool_create_origin(dp, tx); 434 435 /* create the root dataset */ 436 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 437 438 /* create the root objset */ 439 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 440 #ifdef _KERNEL 441 { 442 objset_t *os; 443 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 444 os = dmu_objset_create_impl(dp->dp_spa, ds, 445 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 446 rrw_exit(&ds->ds_bp_rwlock, FTAG); 447 zfs_create_fs(os, kcred, zplprops, tx); 448 } 449 #endif 450 dsl_dataset_rele(ds, FTAG); 451 452 dmu_tx_commit(tx); 453 454 rrw_exit(&dp->dp_config_rwlock, FTAG); 455 456 return (dp); 457 } 458 459 /* 460 * Account for the meta-objset space in its placeholder dsl_dir. 461 */ 462 void 463 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 464 int64_t used, int64_t comp, int64_t uncomp) 465 { 466 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 467 mutex_enter(&dp->dp_lock); 468 dp->dp_mos_used_delta += used; 469 dp->dp_mos_compressed_delta += comp; 470 dp->dp_mos_uncompressed_delta += uncomp; 471 mutex_exit(&dp->dp_lock); 472 } 473 474 static void 475 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 476 { 477 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 478 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 479 VERIFY0(zio_wait(zio)); 480 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 481 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 482 } 483 484 static void 485 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 486 { 487 ASSERT(MUTEX_HELD(&dp->dp_lock)); 488 489 if (delta < 0) 490 ASSERT3U(-delta, <=, dp->dp_dirty_total); 491 492 dp->dp_dirty_total += delta; 493 494 /* 495 * Note: we signal even when increasing dp_dirty_total. 496 * This ensures forward progress -- each thread wakes the next waiter. 497 */ 498 if (dp->dp_dirty_total < zfs_dirty_data_max) 499 cv_signal(&dp->dp_spaceavail_cv); 500 } 501 502 void 503 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 504 { 505 zio_t *zio; 506 dmu_tx_t *tx; 507 dsl_dir_t *dd; 508 dsl_dataset_t *ds; 509 objset_t *mos = dp->dp_meta_objset; 510 list_t synced_datasets; 511 512 list_create(&synced_datasets, sizeof (dsl_dataset_t), 513 offsetof(dsl_dataset_t, ds_synced_link)); 514 515 tx = dmu_tx_create_assigned(dp, txg); 516 517 /* 518 * Write out all dirty blocks of dirty datasets. 519 */ 520 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 521 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 522 /* 523 * We must not sync any non-MOS datasets twice, because 524 * we may have taken a snapshot of them. However, we 525 * may sync newly-created datasets on pass 2. 526 */ 527 ASSERT(!list_link_active(&ds->ds_synced_link)); 528 list_insert_tail(&synced_datasets, ds); 529 dsl_dataset_sync(ds, zio, tx); 530 } 531 VERIFY0(zio_wait(zio)); 532 533 /* 534 * We have written all of the accounted dirty data, so our 535 * dp_space_towrite should now be zero. However, some seldom-used 536 * code paths do not adhere to this (e.g. dbuf_undirty(), also 537 * rounding error in dbuf_write_physdone). 538 * Shore up the accounting of any dirtied space now. 539 */ 540 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 541 542 /* 543 * Update the long range free counter after 544 * we're done syncing user data 545 */ 546 mutex_enter(&dp->dp_lock); 547 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 548 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 549 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 550 mutex_exit(&dp->dp_lock); 551 552 /* 553 * After the data blocks have been written (ensured by the zio_wait() 554 * above), update the user/group space accounting. This happens 555 * in tasks dispatched to dp_sync_taskq, so wait for them before 556 * continuing. 557 */ 558 for (ds = list_head(&synced_datasets); ds != NULL; 559 ds = list_next(&synced_datasets, ds)) { 560 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 561 } 562 taskq_wait(dp->dp_sync_taskq); 563 564 /* 565 * Sync the datasets again to push out the changes due to 566 * userspace updates. This must be done before we process the 567 * sync tasks, so that any snapshots will have the correct 568 * user accounting information (and we won't get confused 569 * about which blocks are part of the snapshot). 570 */ 571 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 572 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 573 ASSERT(list_link_active(&ds->ds_synced_link)); 574 dmu_buf_rele(ds->ds_dbuf, ds); 575 dsl_dataset_sync(ds, zio, tx); 576 } 577 VERIFY0(zio_wait(zio)); 578 579 /* 580 * Now that the datasets have been completely synced, we can 581 * clean up our in-memory structures accumulated while syncing: 582 * 583 * - move dead blocks from the pending deadlist to the on-disk deadlist 584 * - release hold from dsl_dataset_dirty() 585 */ 586 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 587 dsl_dataset_sync_done(ds, tx); 588 } 589 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 590 dsl_dir_sync(dd, tx); 591 } 592 593 /* 594 * The MOS's space is accounted for in the pool/$MOS 595 * (dp_mos_dir). We can't modify the mos while we're syncing 596 * it, so we remember the deltas and apply them here. 597 */ 598 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 599 dp->dp_mos_uncompressed_delta != 0) { 600 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 601 dp->dp_mos_used_delta, 602 dp->dp_mos_compressed_delta, 603 dp->dp_mos_uncompressed_delta, tx); 604 dp->dp_mos_used_delta = 0; 605 dp->dp_mos_compressed_delta = 0; 606 dp->dp_mos_uncompressed_delta = 0; 607 } 608 609 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) { 610 dsl_pool_sync_mos(dp, tx); 611 } 612 613 /* 614 * If we modify a dataset in the same txg that we want to destroy it, 615 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 616 * dsl_dir_destroy_check() will fail if there are unexpected holds. 617 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 618 * and clearing the hold on it) before we process the sync_tasks. 619 * The MOS data dirtied by the sync_tasks will be synced on the next 620 * pass. 621 */ 622 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 623 dsl_sync_task_t *dst; 624 /* 625 * No more sync tasks should have been added while we 626 * were syncing. 627 */ 628 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 629 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 630 dsl_sync_task_sync(dst, tx); 631 } 632 633 dmu_tx_commit(tx); 634 635 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 636 } 637 638 void 639 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 640 { 641 zilog_t *zilog; 642 643 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) { 644 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 645 /* 646 * We don't remove the zilog from the dp_dirty_zilogs 647 * list until after we've cleaned it. This ensures that 648 * callers of zilog_is_dirty() receive an accurate 649 * answer when they are racing with the spa sync thread. 650 */ 651 zil_clean(zilog, txg); 652 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 653 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 654 dmu_buf_rele(ds->ds_dbuf, zilog); 655 } 656 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 657 } 658 659 /* 660 * TRUE if the current thread is the tx_sync_thread or if we 661 * are being called from SPA context during pool initialization. 662 */ 663 int 664 dsl_pool_sync_context(dsl_pool_t *dp) 665 { 666 return (curthread == dp->dp_tx.tx_sync_thread || 667 spa_is_initializing(dp->dp_spa) || 668 taskq_member(dp->dp_sync_taskq, curthread)); 669 } 670 671 uint64_t 672 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 673 { 674 uint64_t space, resv; 675 676 /* 677 * If we're trying to assess whether it's OK to do a free, 678 * cut the reservation in half to allow forward progress 679 * (e.g. make it possible to rm(1) files from a full pool). 680 */ 681 space = spa_get_dspace(dp->dp_spa); 682 resv = spa_get_slop_space(dp->dp_spa); 683 if (netfree) 684 resv >>= 1; 685 686 return (space - resv); 687 } 688 689 boolean_t 690 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 691 { 692 uint64_t delay_min_bytes = 693 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 694 boolean_t rv; 695 696 mutex_enter(&dp->dp_lock); 697 if (dp->dp_dirty_total > zfs_dirty_data_sync) 698 txg_kick(dp); 699 rv = (dp->dp_dirty_total > delay_min_bytes); 700 mutex_exit(&dp->dp_lock); 701 return (rv); 702 } 703 704 void 705 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 706 { 707 if (space > 0) { 708 mutex_enter(&dp->dp_lock); 709 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 710 dsl_pool_dirty_delta(dp, space); 711 mutex_exit(&dp->dp_lock); 712 } 713 } 714 715 void 716 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 717 { 718 ASSERT3S(space, >=, 0); 719 if (space == 0) 720 return; 721 mutex_enter(&dp->dp_lock); 722 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 723 /* XXX writing something we didn't dirty? */ 724 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 725 } 726 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 727 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 728 ASSERT3U(dp->dp_dirty_total, >=, space); 729 dsl_pool_dirty_delta(dp, -space); 730 mutex_exit(&dp->dp_lock); 731 } 732 733 /* ARGSUSED */ 734 static int 735 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 736 { 737 dmu_tx_t *tx = arg; 738 dsl_dataset_t *ds, *prev = NULL; 739 int err; 740 741 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 742 if (err) 743 return (err); 744 745 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 746 err = dsl_dataset_hold_obj(dp, 747 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 748 if (err) { 749 dsl_dataset_rele(ds, FTAG); 750 return (err); 751 } 752 753 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 754 break; 755 dsl_dataset_rele(ds, FTAG); 756 ds = prev; 757 prev = NULL; 758 } 759 760 if (prev == NULL) { 761 prev = dp->dp_origin_snap; 762 763 /* 764 * The $ORIGIN can't have any data, or the accounting 765 * will be wrong. 766 */ 767 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 768 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 769 rrw_exit(&ds->ds_bp_rwlock, FTAG); 770 771 /* The origin doesn't get attached to itself */ 772 if (ds->ds_object == prev->ds_object) { 773 dsl_dataset_rele(ds, FTAG); 774 return (0); 775 } 776 777 dmu_buf_will_dirty(ds->ds_dbuf, tx); 778 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 779 dsl_dataset_phys(ds)->ds_prev_snap_txg = 780 dsl_dataset_phys(prev)->ds_creation_txg; 781 782 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 783 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 784 785 dmu_buf_will_dirty(prev->ds_dbuf, tx); 786 dsl_dataset_phys(prev)->ds_num_children++; 787 788 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 789 ASSERT(ds->ds_prev == NULL); 790 VERIFY0(dsl_dataset_hold_obj(dp, 791 dsl_dataset_phys(ds)->ds_prev_snap_obj, 792 ds, &ds->ds_prev)); 793 } 794 } 795 796 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 797 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 798 799 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 800 dmu_buf_will_dirty(prev->ds_dbuf, tx); 801 dsl_dataset_phys(prev)->ds_next_clones_obj = 802 zap_create(dp->dp_meta_objset, 803 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 804 } 805 VERIFY0(zap_add_int(dp->dp_meta_objset, 806 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 807 808 dsl_dataset_rele(ds, FTAG); 809 if (prev != dp->dp_origin_snap) 810 dsl_dataset_rele(prev, FTAG); 811 return (0); 812 } 813 814 void 815 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 816 { 817 ASSERT(dmu_tx_is_syncing(tx)); 818 ASSERT(dp->dp_origin_snap != NULL); 819 820 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 821 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 822 } 823 824 /* ARGSUSED */ 825 static int 826 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 827 { 828 dmu_tx_t *tx = arg; 829 objset_t *mos = dp->dp_meta_objset; 830 831 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 832 dsl_dataset_t *origin; 833 834 VERIFY0(dsl_dataset_hold_obj(dp, 835 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 836 837 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 838 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 839 dsl_dir_phys(origin->ds_dir)->dd_clones = 840 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 841 0, tx); 842 } 843 844 VERIFY0(zap_add_int(dp->dp_meta_objset, 845 dsl_dir_phys(origin->ds_dir)->dd_clones, 846 ds->ds_object, tx)); 847 848 dsl_dataset_rele(origin, FTAG); 849 } 850 return (0); 851 } 852 853 void 854 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 855 { 856 ASSERT(dmu_tx_is_syncing(tx)); 857 uint64_t obj; 858 859 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 860 VERIFY0(dsl_pool_open_special_dir(dp, 861 FREE_DIR_NAME, &dp->dp_free_dir)); 862 863 /* 864 * We can't use bpobj_alloc(), because spa_version() still 865 * returns the old version, and we need a new-version bpobj with 866 * subobj support. So call dmu_object_alloc() directly. 867 */ 868 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 869 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 870 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 871 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 872 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 873 874 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 875 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 876 } 877 878 void 879 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 880 { 881 uint64_t dsobj; 882 dsl_dataset_t *ds; 883 884 ASSERT(dmu_tx_is_syncing(tx)); 885 ASSERT(dp->dp_origin_snap == NULL); 886 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 887 888 /* create the origin dir, ds, & snap-ds */ 889 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 890 NULL, 0, kcred, tx); 891 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 892 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 893 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 894 dp, &dp->dp_origin_snap)); 895 dsl_dataset_rele(ds, FTAG); 896 } 897 898 taskq_t * 899 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 900 { 901 return (dp->dp_vnrele_taskq); 902 } 903 904 /* 905 * Walk through the pool-wide zap object of temporary snapshot user holds 906 * and release them. 907 */ 908 void 909 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 910 { 911 zap_attribute_t za; 912 zap_cursor_t zc; 913 objset_t *mos = dp->dp_meta_objset; 914 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 915 nvlist_t *holds; 916 917 if (zapobj == 0) 918 return; 919 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 920 921 holds = fnvlist_alloc(); 922 923 for (zap_cursor_init(&zc, mos, zapobj); 924 zap_cursor_retrieve(&zc, &za) == 0; 925 zap_cursor_advance(&zc)) { 926 char *htag; 927 nvlist_t *tags; 928 929 htag = strchr(za.za_name, '-'); 930 *htag = '\0'; 931 ++htag; 932 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 933 tags = fnvlist_alloc(); 934 fnvlist_add_boolean(tags, htag); 935 fnvlist_add_nvlist(holds, za.za_name, tags); 936 fnvlist_free(tags); 937 } else { 938 fnvlist_add_boolean(tags, htag); 939 } 940 } 941 dsl_dataset_user_release_tmp(dp, holds); 942 fnvlist_free(holds); 943 zap_cursor_fini(&zc); 944 } 945 946 /* 947 * Create the pool-wide zap object for storing temporary snapshot holds. 948 */ 949 void 950 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 951 { 952 objset_t *mos = dp->dp_meta_objset; 953 954 ASSERT(dp->dp_tmp_userrefs_obj == 0); 955 ASSERT(dmu_tx_is_syncing(tx)); 956 957 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 958 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 959 } 960 961 static int 962 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 963 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 964 { 965 objset_t *mos = dp->dp_meta_objset; 966 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 967 char *name; 968 int error; 969 970 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 971 ASSERT(dmu_tx_is_syncing(tx)); 972 973 /* 974 * If the pool was created prior to SPA_VERSION_USERREFS, the 975 * zap object for temporary holds might not exist yet. 976 */ 977 if (zapobj == 0) { 978 if (holding) { 979 dsl_pool_user_hold_create_obj(dp, tx); 980 zapobj = dp->dp_tmp_userrefs_obj; 981 } else { 982 return (SET_ERROR(ENOENT)); 983 } 984 } 985 986 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 987 if (holding) 988 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 989 else 990 error = zap_remove(mos, zapobj, name, tx); 991 strfree(name); 992 993 return (error); 994 } 995 996 /* 997 * Add a temporary hold for the given dataset object and tag. 998 */ 999 int 1000 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1001 uint64_t now, dmu_tx_t *tx) 1002 { 1003 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1004 } 1005 1006 /* 1007 * Release a temporary hold for the given dataset object and tag. 1008 */ 1009 int 1010 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1011 dmu_tx_t *tx) 1012 { 1013 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 1014 tx, B_FALSE)); 1015 } 1016 1017 /* 1018 * DSL Pool Configuration Lock 1019 * 1020 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1021 * creation / destruction / rename / property setting). It must be held for 1022 * read to hold a dataset or dsl_dir. I.e. you must call 1023 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1024 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1025 * must be held continuously until all datasets and dsl_dirs are released. 1026 * 1027 * The only exception to this rule is that if a "long hold" is placed on 1028 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1029 * is still held. The long hold will prevent the dataset from being 1030 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1031 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1032 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1033 * 1034 * Legitimate long-holders (including owners) should be long-running, cancelable 1035 * tasks that should cause "zfs destroy" to fail. This includes DMU 1036 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1037 * "zfs send", and "zfs diff". There are several other long-holders whose 1038 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1039 * 1040 * The usual formula for long-holding would be: 1041 * dsl_pool_hold() 1042 * dsl_dataset_hold() 1043 * ... perform checks ... 1044 * dsl_dataset_long_hold() 1045 * dsl_pool_rele() 1046 * ... perform long-running task ... 1047 * dsl_dataset_long_rele() 1048 * dsl_dataset_rele() 1049 * 1050 * Note that when the long hold is released, the dataset is still held but 1051 * the pool is not held. The dataset may change arbitrarily during this time 1052 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1053 * dataset except release it. 1054 * 1055 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 1056 * or modifying operations. 1057 * 1058 * Modifying operations should generally use dsl_sync_task(). The synctask 1059 * infrastructure enforces proper locking strategy with respect to the 1060 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1061 * 1062 * Read-only operations will manually hold the pool, then the dataset, obtain 1063 * information from the dataset, then release the pool and dataset. 1064 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1065 * hold/rele. 1066 */ 1067 1068 int 1069 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1070 { 1071 spa_t *spa; 1072 int error; 1073 1074 error = spa_open(name, &spa, tag); 1075 if (error == 0) { 1076 *dp = spa_get_dsl(spa); 1077 dsl_pool_config_enter(*dp, tag); 1078 } 1079 return (error); 1080 } 1081 1082 void 1083 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1084 { 1085 dsl_pool_config_exit(dp, tag); 1086 spa_close(dp->dp_spa, tag); 1087 } 1088 1089 void 1090 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1091 { 1092 /* 1093 * We use a "reentrant" reader-writer lock, but not reentrantly. 1094 * 1095 * The rrwlock can (with the track_all flag) track all reading threads, 1096 * which is very useful for debugging which code path failed to release 1097 * the lock, and for verifying that the *current* thread does hold 1098 * the lock. 1099 * 1100 * (Unlike a rwlock, which knows that N threads hold it for 1101 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1102 * if any thread holds it for read, even if this thread doesn't). 1103 */ 1104 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1105 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1106 } 1107 1108 void 1109 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1110 { 1111 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1112 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1113 } 1114 1115 void 1116 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1117 { 1118 rrw_exit(&dp->dp_config_rwlock, tag); 1119 } 1120 1121 boolean_t 1122 dsl_pool_config_held(dsl_pool_t *dp) 1123 { 1124 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1125 } 1126 1127 boolean_t 1128 dsl_pool_config_held_writer(dsl_pool_t *dp) 1129 { 1130 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1131 } 1132