1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 */ 28 29 #include <sys/dsl_pool.h> 30 #include <sys/dsl_dataset.h> 31 #include <sys/dsl_prop.h> 32 #include <sys/dsl_dir.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/dsl_scan.h> 35 #include <sys/dnode.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/arc.h> 39 #include <sys/zap.h> 40 #include <sys/zio.h> 41 #include <sys/zfs_context.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/zfs_znode.h> 44 #include <sys/spa_impl.h> 45 #include <sys/dsl_deadlist.h> 46 #include <sys/bptree.h> 47 #include <sys/zfeature.h> 48 #include <sys/zil_impl.h> 49 #include <sys/dsl_userhold.h> 50 51 /* 52 * ZFS Write Throttle 53 * ------------------ 54 * 55 * ZFS must limit the rate of incoming writes to the rate at which it is able 56 * to sync data modifications to the backend storage. Throttling by too much 57 * creates an artificial limit; throttling by too little can only be sustained 58 * for short periods and would lead to highly lumpy performance. On a per-pool 59 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 60 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 61 * of dirty data decreases. When the amount of dirty data exceeds a 62 * predetermined threshold further modifications are blocked until the amount 63 * of dirty data decreases (as data is synced out). 64 * 65 * The limit on dirty data is tunable, and should be adjusted according to 66 * both the IO capacity and available memory of the system. The larger the 67 * window, the more ZFS is able to aggregate and amortize metadata (and data) 68 * changes. However, memory is a limited resource, and allowing for more dirty 69 * data comes at the cost of keeping other useful data in memory (for example 70 * ZFS data cached by the ARC). 71 * 72 * Implementation 73 * 74 * As buffers are modified dsl_pool_willuse_space() increments both the per- 75 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 76 * dirty space used; dsl_pool_dirty_space() decrements those values as data 77 * is synced out from dsl_pool_sync(). While only the poolwide value is 78 * relevant, the per-txg value is useful for debugging. The tunable 79 * zfs_dirty_data_max determines the dirty space limit. Once that value is 80 * exceeded, new writes are halted until space frees up. 81 * 82 * The zfs_dirty_data_sync tunable dictates the threshold at which we 83 * ensure that there is a txg syncing (see the comment in txg.c for a full 84 * description of transaction group stages). 85 * 86 * The IO scheduler uses both the dirty space limit and current amount of 87 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 88 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 89 * 90 * The delay is also calculated based on the amount of dirty data. See the 91 * comment above dmu_tx_delay() for details. 92 */ 93 94 /* 95 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 96 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 97 */ 98 uint64_t zfs_dirty_data_max; 99 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 100 int zfs_dirty_data_max_percent = 10; 101 102 /* 103 * If there is at least this much dirty data, push out a txg. 104 */ 105 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 106 107 /* 108 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 109 * and delay each transaction. 110 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 111 */ 112 int zfs_delay_min_dirty_percent = 60; 113 114 /* 115 * This controls how quickly the delay approaches infinity. 116 * Larger values cause it to delay more for a given amount of dirty data. 117 * Therefore larger values will cause there to be less dirty data for a 118 * given throughput. 119 * 120 * For the smoothest delay, this value should be about 1 billion divided 121 * by the maximum number of operations per second. This will smoothly 122 * handle between 10x and 1/10th this number. 123 * 124 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 125 * multiply in dmu_tx_delay(). 126 */ 127 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 128 129 130 hrtime_t zfs_throttle_delay = MSEC2NSEC(10); 131 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); 132 133 int 134 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 135 { 136 uint64_t obj; 137 int err; 138 139 err = zap_lookup(dp->dp_meta_objset, 140 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 141 name, sizeof (obj), 1, &obj); 142 if (err) 143 return (err); 144 145 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 146 } 147 148 static dsl_pool_t * 149 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 150 { 151 dsl_pool_t *dp; 152 blkptr_t *bp = spa_get_rootblkptr(spa); 153 154 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 155 dp->dp_spa = spa; 156 dp->dp_meta_rootbp = *bp; 157 rrw_init(&dp->dp_config_rwlock, B_TRUE); 158 txg_init(dp, txg); 159 160 txg_list_create(&dp->dp_dirty_datasets, 161 offsetof(dsl_dataset_t, ds_dirty_link)); 162 txg_list_create(&dp->dp_dirty_zilogs, 163 offsetof(zilog_t, zl_dirty_link)); 164 txg_list_create(&dp->dp_dirty_dirs, 165 offsetof(dsl_dir_t, dd_dirty_link)); 166 txg_list_create(&dp->dp_sync_tasks, 167 offsetof(dsl_sync_task_t, dst_node)); 168 169 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 170 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 171 172 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 173 1, 4, 0); 174 175 return (dp); 176 } 177 178 int 179 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 180 { 181 int err; 182 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 183 184 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 185 &dp->dp_meta_objset); 186 if (err != 0) 187 dsl_pool_close(dp); 188 else 189 *dpp = dp; 190 191 return (err); 192 } 193 194 int 195 dsl_pool_open(dsl_pool_t *dp) 196 { 197 int err; 198 dsl_dir_t *dd; 199 dsl_dataset_t *ds; 200 uint64_t obj; 201 202 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 203 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 204 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 205 &dp->dp_root_dir_obj); 206 if (err) 207 goto out; 208 209 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 210 NULL, dp, &dp->dp_root_dir); 211 if (err) 212 goto out; 213 214 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 215 if (err) 216 goto out; 217 218 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 219 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 220 if (err) 221 goto out; 222 err = dsl_dataset_hold_obj(dp, 223 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 224 if (err == 0) { 225 err = dsl_dataset_hold_obj(dp, 226 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 227 &dp->dp_origin_snap); 228 dsl_dataset_rele(ds, FTAG); 229 } 230 dsl_dir_rele(dd, dp); 231 if (err) 232 goto out; 233 } 234 235 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 236 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 237 &dp->dp_free_dir); 238 if (err) 239 goto out; 240 241 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 242 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 243 if (err) 244 goto out; 245 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 246 dp->dp_meta_objset, obj)); 247 } 248 249 /* 250 * Note: errors ignored, because the leak dir will not exist if we 251 * have not encountered a leak yet. 252 */ 253 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 254 &dp->dp_leak_dir); 255 256 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 257 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 258 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 259 &dp->dp_bptree_obj); 260 if (err != 0) 261 goto out; 262 } 263 264 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 265 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 266 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 267 &dp->dp_empty_bpobj); 268 if (err != 0) 269 goto out; 270 } 271 272 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 273 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 274 &dp->dp_tmp_userrefs_obj); 275 if (err == ENOENT) 276 err = 0; 277 if (err) 278 goto out; 279 280 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 281 282 out: 283 rrw_exit(&dp->dp_config_rwlock, FTAG); 284 return (err); 285 } 286 287 void 288 dsl_pool_close(dsl_pool_t *dp) 289 { 290 /* 291 * Drop our references from dsl_pool_open(). 292 * 293 * Since we held the origin_snap from "syncing" context (which 294 * includes pool-opening context), it actually only got a "ref" 295 * and not a hold, so just drop that here. 296 */ 297 if (dp->dp_origin_snap) 298 dsl_dataset_rele(dp->dp_origin_snap, dp); 299 if (dp->dp_mos_dir) 300 dsl_dir_rele(dp->dp_mos_dir, dp); 301 if (dp->dp_free_dir) 302 dsl_dir_rele(dp->dp_free_dir, dp); 303 if (dp->dp_leak_dir) 304 dsl_dir_rele(dp->dp_leak_dir, dp); 305 if (dp->dp_root_dir) 306 dsl_dir_rele(dp->dp_root_dir, dp); 307 308 bpobj_close(&dp->dp_free_bpobj); 309 310 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 311 if (dp->dp_meta_objset) 312 dmu_objset_evict(dp->dp_meta_objset); 313 314 txg_list_destroy(&dp->dp_dirty_datasets); 315 txg_list_destroy(&dp->dp_dirty_zilogs); 316 txg_list_destroy(&dp->dp_sync_tasks); 317 txg_list_destroy(&dp->dp_dirty_dirs); 318 319 /* 320 * We can't set retry to TRUE since we're explicitly specifying 321 * a spa to flush. This is good enough; any missed buffers for 322 * this spa won't cause trouble, and they'll eventually fall 323 * out of the ARC just like any other unused buffer. 324 */ 325 arc_flush(dp->dp_spa, FALSE); 326 327 txg_fini(dp); 328 dsl_scan_fini(dp); 329 dmu_buf_user_evict_wait(); 330 331 rrw_destroy(&dp->dp_config_rwlock); 332 mutex_destroy(&dp->dp_lock); 333 taskq_destroy(dp->dp_vnrele_taskq); 334 if (dp->dp_blkstats) 335 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 336 kmem_free(dp, sizeof (dsl_pool_t)); 337 } 338 339 dsl_pool_t * 340 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 341 { 342 int err; 343 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 344 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 345 objset_t *os; 346 dsl_dataset_t *ds; 347 uint64_t obj; 348 349 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 350 351 /* create and open the MOS (meta-objset) */ 352 dp->dp_meta_objset = dmu_objset_create_impl(spa, 353 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 354 355 /* create the pool directory */ 356 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 357 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 358 ASSERT0(err); 359 360 /* Initialize scan structures */ 361 VERIFY0(dsl_scan_init(dp, txg)); 362 363 /* create and open the root dir */ 364 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 365 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 366 NULL, dp, &dp->dp_root_dir)); 367 368 /* create and open the meta-objset dir */ 369 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 370 VERIFY0(dsl_pool_open_special_dir(dp, 371 MOS_DIR_NAME, &dp->dp_mos_dir)); 372 373 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 374 /* create and open the free dir */ 375 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 376 FREE_DIR_NAME, tx); 377 VERIFY0(dsl_pool_open_special_dir(dp, 378 FREE_DIR_NAME, &dp->dp_free_dir)); 379 380 /* create and open the free_bplist */ 381 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 382 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 383 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 384 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 385 dp->dp_meta_objset, obj)); 386 } 387 388 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 389 dsl_pool_create_origin(dp, tx); 390 391 /* create the root dataset */ 392 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 393 394 /* create the root objset */ 395 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 396 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 397 os = dmu_objset_create_impl(dp->dp_spa, ds, 398 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 399 rrw_exit(&ds->ds_bp_rwlock, FTAG); 400 #ifdef _KERNEL 401 zfs_create_fs(os, kcred, zplprops, tx); 402 #endif 403 dsl_dataset_rele(ds, FTAG); 404 405 dmu_tx_commit(tx); 406 407 rrw_exit(&dp->dp_config_rwlock, FTAG); 408 409 return (dp); 410 } 411 412 /* 413 * Account for the meta-objset space in its placeholder dsl_dir. 414 */ 415 void 416 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 417 int64_t used, int64_t comp, int64_t uncomp) 418 { 419 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 420 mutex_enter(&dp->dp_lock); 421 dp->dp_mos_used_delta += used; 422 dp->dp_mos_compressed_delta += comp; 423 dp->dp_mos_uncompressed_delta += uncomp; 424 mutex_exit(&dp->dp_lock); 425 } 426 427 static int 428 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 429 { 430 dsl_deadlist_t *dl = arg; 431 dsl_deadlist_insert(dl, bp, tx); 432 return (0); 433 } 434 435 static void 436 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 437 { 438 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 439 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 440 VERIFY0(zio_wait(zio)); 441 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 442 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 443 } 444 445 static void 446 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 447 { 448 ASSERT(MUTEX_HELD(&dp->dp_lock)); 449 450 if (delta < 0) 451 ASSERT3U(-delta, <=, dp->dp_dirty_total); 452 453 dp->dp_dirty_total += delta; 454 455 /* 456 * Note: we signal even when increasing dp_dirty_total. 457 * This ensures forward progress -- each thread wakes the next waiter. 458 */ 459 if (dp->dp_dirty_total <= zfs_dirty_data_max) 460 cv_signal(&dp->dp_spaceavail_cv); 461 } 462 463 void 464 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 465 { 466 zio_t *zio; 467 dmu_tx_t *tx; 468 dsl_dir_t *dd; 469 dsl_dataset_t *ds; 470 objset_t *mos = dp->dp_meta_objset; 471 list_t synced_datasets; 472 473 list_create(&synced_datasets, sizeof (dsl_dataset_t), 474 offsetof(dsl_dataset_t, ds_synced_link)); 475 476 tx = dmu_tx_create_assigned(dp, txg); 477 478 /* 479 * Write out all dirty blocks of dirty datasets. 480 */ 481 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 482 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 483 /* 484 * We must not sync any non-MOS datasets twice, because 485 * we may have taken a snapshot of them. However, we 486 * may sync newly-created datasets on pass 2. 487 */ 488 ASSERT(!list_link_active(&ds->ds_synced_link)); 489 list_insert_tail(&synced_datasets, ds); 490 dsl_dataset_sync(ds, zio, tx); 491 } 492 VERIFY0(zio_wait(zio)); 493 494 /* 495 * We have written all of the accounted dirty data, so our 496 * dp_space_towrite should now be zero. However, some seldom-used 497 * code paths do not adhere to this (e.g. dbuf_undirty(), also 498 * rounding error in dbuf_write_physdone). 499 * Shore up the accounting of any dirtied space now. 500 */ 501 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 502 503 /* 504 * After the data blocks have been written (ensured by the zio_wait() 505 * above), update the user/group space accounting. 506 */ 507 for (ds = list_head(&synced_datasets); ds != NULL; 508 ds = list_next(&synced_datasets, ds)) { 509 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 510 } 511 512 /* 513 * Sync the datasets again to push out the changes due to 514 * userspace updates. This must be done before we process the 515 * sync tasks, so that any snapshots will have the correct 516 * user accounting information (and we won't get confused 517 * about which blocks are part of the snapshot). 518 */ 519 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 520 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 521 ASSERT(list_link_active(&ds->ds_synced_link)); 522 dmu_buf_rele(ds->ds_dbuf, ds); 523 dsl_dataset_sync(ds, zio, tx); 524 } 525 VERIFY0(zio_wait(zio)); 526 527 /* 528 * Now that the datasets have been completely synced, we can 529 * clean up our in-memory structures accumulated while syncing: 530 * 531 * - move dead blocks from the pending deadlist to the on-disk deadlist 532 * - release hold from dsl_dataset_dirty() 533 */ 534 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 535 objset_t *os = ds->ds_objset; 536 bplist_iterate(&ds->ds_pending_deadlist, 537 deadlist_enqueue_cb, &ds->ds_deadlist, tx); 538 ASSERT(!dmu_objset_is_dirty(os, txg)); 539 dmu_buf_rele(ds->ds_dbuf, ds); 540 } 541 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 542 dsl_dir_sync(dd, tx); 543 } 544 545 /* 546 * The MOS's space is accounted for in the pool/$MOS 547 * (dp_mos_dir). We can't modify the mos while we're syncing 548 * it, so we remember the deltas and apply them here. 549 */ 550 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 551 dp->dp_mos_uncompressed_delta != 0) { 552 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 553 dp->dp_mos_used_delta, 554 dp->dp_mos_compressed_delta, 555 dp->dp_mos_uncompressed_delta, tx); 556 dp->dp_mos_used_delta = 0; 557 dp->dp_mos_compressed_delta = 0; 558 dp->dp_mos_uncompressed_delta = 0; 559 } 560 561 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || 562 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { 563 dsl_pool_sync_mos(dp, tx); 564 } 565 566 /* 567 * If we modify a dataset in the same txg that we want to destroy it, 568 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 569 * dsl_dir_destroy_check() will fail if there are unexpected holds. 570 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 571 * and clearing the hold on it) before we process the sync_tasks. 572 * The MOS data dirtied by the sync_tasks will be synced on the next 573 * pass. 574 */ 575 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 576 dsl_sync_task_t *dst; 577 /* 578 * No more sync tasks should have been added while we 579 * were syncing. 580 */ 581 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 582 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 583 dsl_sync_task_sync(dst, tx); 584 } 585 586 dmu_tx_commit(tx); 587 588 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 589 } 590 591 void 592 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 593 { 594 zilog_t *zilog; 595 596 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { 597 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 598 zil_clean(zilog, txg); 599 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 600 dmu_buf_rele(ds->ds_dbuf, zilog); 601 } 602 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 603 } 604 605 /* 606 * TRUE if the current thread is the tx_sync_thread or if we 607 * are being called from SPA context during pool initialization. 608 */ 609 int 610 dsl_pool_sync_context(dsl_pool_t *dp) 611 { 612 return (curthread == dp->dp_tx.tx_sync_thread || 613 spa_is_initializing(dp->dp_spa)); 614 } 615 616 uint64_t 617 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 618 { 619 uint64_t space, resv; 620 621 /* 622 * If we're trying to assess whether it's OK to do a free, 623 * cut the reservation in half to allow forward progress 624 * (e.g. make it possible to rm(1) files from a full pool). 625 */ 626 space = spa_get_dspace(dp->dp_spa); 627 resv = spa_get_slop_space(dp->dp_spa); 628 if (netfree) 629 resv >>= 1; 630 631 return (space - resv); 632 } 633 634 boolean_t 635 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 636 { 637 uint64_t delay_min_bytes = 638 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 639 boolean_t rv; 640 641 mutex_enter(&dp->dp_lock); 642 if (dp->dp_dirty_total > zfs_dirty_data_sync) 643 txg_kick(dp); 644 rv = (dp->dp_dirty_total > delay_min_bytes); 645 mutex_exit(&dp->dp_lock); 646 return (rv); 647 } 648 649 void 650 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 651 { 652 if (space > 0) { 653 mutex_enter(&dp->dp_lock); 654 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 655 dsl_pool_dirty_delta(dp, space); 656 mutex_exit(&dp->dp_lock); 657 } 658 } 659 660 void 661 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 662 { 663 ASSERT3S(space, >=, 0); 664 if (space == 0) 665 return; 666 mutex_enter(&dp->dp_lock); 667 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 668 /* XXX writing something we didn't dirty? */ 669 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 670 } 671 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 672 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 673 ASSERT3U(dp->dp_dirty_total, >=, space); 674 dsl_pool_dirty_delta(dp, -space); 675 mutex_exit(&dp->dp_lock); 676 } 677 678 /* ARGSUSED */ 679 static int 680 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 681 { 682 dmu_tx_t *tx = arg; 683 dsl_dataset_t *ds, *prev = NULL; 684 int err; 685 686 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 687 if (err) 688 return (err); 689 690 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 691 err = dsl_dataset_hold_obj(dp, 692 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 693 if (err) { 694 dsl_dataset_rele(ds, FTAG); 695 return (err); 696 } 697 698 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 699 break; 700 dsl_dataset_rele(ds, FTAG); 701 ds = prev; 702 prev = NULL; 703 } 704 705 if (prev == NULL) { 706 prev = dp->dp_origin_snap; 707 708 /* 709 * The $ORIGIN can't have any data, or the accounting 710 * will be wrong. 711 */ 712 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 713 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 714 rrw_exit(&ds->ds_bp_rwlock, FTAG); 715 716 /* The origin doesn't get attached to itself */ 717 if (ds->ds_object == prev->ds_object) { 718 dsl_dataset_rele(ds, FTAG); 719 return (0); 720 } 721 722 dmu_buf_will_dirty(ds->ds_dbuf, tx); 723 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 724 dsl_dataset_phys(ds)->ds_prev_snap_txg = 725 dsl_dataset_phys(prev)->ds_creation_txg; 726 727 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 728 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 729 730 dmu_buf_will_dirty(prev->ds_dbuf, tx); 731 dsl_dataset_phys(prev)->ds_num_children++; 732 733 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 734 ASSERT(ds->ds_prev == NULL); 735 VERIFY0(dsl_dataset_hold_obj(dp, 736 dsl_dataset_phys(ds)->ds_prev_snap_obj, 737 ds, &ds->ds_prev)); 738 } 739 } 740 741 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 742 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 743 744 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 745 dmu_buf_will_dirty(prev->ds_dbuf, tx); 746 dsl_dataset_phys(prev)->ds_next_clones_obj = 747 zap_create(dp->dp_meta_objset, 748 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 749 } 750 VERIFY0(zap_add_int(dp->dp_meta_objset, 751 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 752 753 dsl_dataset_rele(ds, FTAG); 754 if (prev != dp->dp_origin_snap) 755 dsl_dataset_rele(prev, FTAG); 756 return (0); 757 } 758 759 void 760 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 761 { 762 ASSERT(dmu_tx_is_syncing(tx)); 763 ASSERT(dp->dp_origin_snap != NULL); 764 765 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 766 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 767 } 768 769 /* ARGSUSED */ 770 static int 771 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 772 { 773 dmu_tx_t *tx = arg; 774 objset_t *mos = dp->dp_meta_objset; 775 776 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 777 dsl_dataset_t *origin; 778 779 VERIFY0(dsl_dataset_hold_obj(dp, 780 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 781 782 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 783 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 784 dsl_dir_phys(origin->ds_dir)->dd_clones = 785 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 786 0, tx); 787 } 788 789 VERIFY0(zap_add_int(dp->dp_meta_objset, 790 dsl_dir_phys(origin->ds_dir)->dd_clones, 791 ds->ds_object, tx)); 792 793 dsl_dataset_rele(origin, FTAG); 794 } 795 return (0); 796 } 797 798 void 799 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 800 { 801 ASSERT(dmu_tx_is_syncing(tx)); 802 uint64_t obj; 803 804 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 805 VERIFY0(dsl_pool_open_special_dir(dp, 806 FREE_DIR_NAME, &dp->dp_free_dir)); 807 808 /* 809 * We can't use bpobj_alloc(), because spa_version() still 810 * returns the old version, and we need a new-version bpobj with 811 * subobj support. So call dmu_object_alloc() directly. 812 */ 813 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 814 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 815 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 816 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 817 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 818 819 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 820 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 821 } 822 823 void 824 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 825 { 826 uint64_t dsobj; 827 dsl_dataset_t *ds; 828 829 ASSERT(dmu_tx_is_syncing(tx)); 830 ASSERT(dp->dp_origin_snap == NULL); 831 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 832 833 /* create the origin dir, ds, & snap-ds */ 834 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 835 NULL, 0, kcred, tx); 836 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 837 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 838 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 839 dp, &dp->dp_origin_snap)); 840 dsl_dataset_rele(ds, FTAG); 841 } 842 843 taskq_t * 844 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 845 { 846 return (dp->dp_vnrele_taskq); 847 } 848 849 /* 850 * Walk through the pool-wide zap object of temporary snapshot user holds 851 * and release them. 852 */ 853 void 854 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 855 { 856 zap_attribute_t za; 857 zap_cursor_t zc; 858 objset_t *mos = dp->dp_meta_objset; 859 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 860 nvlist_t *holds; 861 862 if (zapobj == 0) 863 return; 864 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 865 866 holds = fnvlist_alloc(); 867 868 for (zap_cursor_init(&zc, mos, zapobj); 869 zap_cursor_retrieve(&zc, &za) == 0; 870 zap_cursor_advance(&zc)) { 871 char *htag; 872 nvlist_t *tags; 873 874 htag = strchr(za.za_name, '-'); 875 *htag = '\0'; 876 ++htag; 877 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 878 tags = fnvlist_alloc(); 879 fnvlist_add_boolean(tags, htag); 880 fnvlist_add_nvlist(holds, za.za_name, tags); 881 fnvlist_free(tags); 882 } else { 883 fnvlist_add_boolean(tags, htag); 884 } 885 } 886 dsl_dataset_user_release_tmp(dp, holds); 887 fnvlist_free(holds); 888 zap_cursor_fini(&zc); 889 } 890 891 /* 892 * Create the pool-wide zap object for storing temporary snapshot holds. 893 */ 894 void 895 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 896 { 897 objset_t *mos = dp->dp_meta_objset; 898 899 ASSERT(dp->dp_tmp_userrefs_obj == 0); 900 ASSERT(dmu_tx_is_syncing(tx)); 901 902 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 903 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 904 } 905 906 static int 907 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 908 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 909 { 910 objset_t *mos = dp->dp_meta_objset; 911 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 912 char *name; 913 int error; 914 915 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 916 ASSERT(dmu_tx_is_syncing(tx)); 917 918 /* 919 * If the pool was created prior to SPA_VERSION_USERREFS, the 920 * zap object for temporary holds might not exist yet. 921 */ 922 if (zapobj == 0) { 923 if (holding) { 924 dsl_pool_user_hold_create_obj(dp, tx); 925 zapobj = dp->dp_tmp_userrefs_obj; 926 } else { 927 return (SET_ERROR(ENOENT)); 928 } 929 } 930 931 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 932 if (holding) 933 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 934 else 935 error = zap_remove(mos, zapobj, name, tx); 936 strfree(name); 937 938 return (error); 939 } 940 941 /* 942 * Add a temporary hold for the given dataset object and tag. 943 */ 944 int 945 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 946 uint64_t now, dmu_tx_t *tx) 947 { 948 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 949 } 950 951 /* 952 * Release a temporary hold for the given dataset object and tag. 953 */ 954 int 955 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 956 dmu_tx_t *tx) 957 { 958 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 959 tx, B_FALSE)); 960 } 961 962 /* 963 * DSL Pool Configuration Lock 964 * 965 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 966 * creation / destruction / rename / property setting). It must be held for 967 * read to hold a dataset or dsl_dir. I.e. you must call 968 * dsl_pool_config_enter() or dsl_pool_hold() before calling 969 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 970 * must be held continuously until all datasets and dsl_dirs are released. 971 * 972 * The only exception to this rule is that if a "long hold" is placed on 973 * a dataset, then the dp_config_rwlock may be dropped while the dataset 974 * is still held. The long hold will prevent the dataset from being 975 * destroyed -- the destroy will fail with EBUSY. A long hold can be 976 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 977 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 978 * 979 * Legitimate long-holders (including owners) should be long-running, cancelable 980 * tasks that should cause "zfs destroy" to fail. This includes DMU 981 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 982 * "zfs send", and "zfs diff". There are several other long-holders whose 983 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 984 * 985 * The usual formula for long-holding would be: 986 * dsl_pool_hold() 987 * dsl_dataset_hold() 988 * ... perform checks ... 989 * dsl_dataset_long_hold() 990 * dsl_pool_rele() 991 * ... perform long-running task ... 992 * dsl_dataset_long_rele() 993 * dsl_dataset_rele() 994 * 995 * Note that when the long hold is released, the dataset is still held but 996 * the pool is not held. The dataset may change arbitrarily during this time 997 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 998 * dataset except release it. 999 * 1000 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 1001 * or modifying operations. 1002 * 1003 * Modifying operations should generally use dsl_sync_task(). The synctask 1004 * infrastructure enforces proper locking strategy with respect to the 1005 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1006 * 1007 * Read-only operations will manually hold the pool, then the dataset, obtain 1008 * information from the dataset, then release the pool and dataset. 1009 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1010 * hold/rele. 1011 */ 1012 1013 int 1014 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1015 { 1016 spa_t *spa; 1017 int error; 1018 1019 error = spa_open(name, &spa, tag); 1020 if (error == 0) { 1021 *dp = spa_get_dsl(spa); 1022 dsl_pool_config_enter(*dp, tag); 1023 } 1024 return (error); 1025 } 1026 1027 void 1028 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1029 { 1030 dsl_pool_config_exit(dp, tag); 1031 spa_close(dp->dp_spa, tag); 1032 } 1033 1034 void 1035 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1036 { 1037 /* 1038 * We use a "reentrant" reader-writer lock, but not reentrantly. 1039 * 1040 * The rrwlock can (with the track_all flag) track all reading threads, 1041 * which is very useful for debugging which code path failed to release 1042 * the lock, and for verifying that the *current* thread does hold 1043 * the lock. 1044 * 1045 * (Unlike a rwlock, which knows that N threads hold it for 1046 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1047 * if any thread holds it for read, even if this thread doesn't). 1048 */ 1049 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1050 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1051 } 1052 1053 void 1054 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1055 { 1056 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1057 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1058 } 1059 1060 void 1061 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1062 { 1063 rrw_exit(&dp->dp_config_rwlock, tag); 1064 } 1065 1066 boolean_t 1067 dsl_pool_config_held(dsl_pool_t *dp) 1068 { 1069 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1070 } 1071 1072 boolean_t 1073 dsl_pool_config_held_writer(dsl_pool_t *dp) 1074 { 1075 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1076 } 1077