1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dsl_pool.h> 31 #include <sys/dsl_dataset.h> 32 #include <sys/dsl_prop.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_synctask.h> 35 #include <sys/dsl_scan.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/dsl_deadlist.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/bptree.h> 50 #include <sys/zfeature.h> 51 #include <sys/zil_impl.h> 52 #include <sys/dsl_userhold.h> 53 #include <sys/mmp.h> 54 55 /* 56 * ZFS Write Throttle 57 * ------------------ 58 * 59 * ZFS must limit the rate of incoming writes to the rate at which it is able 60 * to sync data modifications to the backend storage. Throttling by too much 61 * creates an artificial limit; throttling by too little can only be sustained 62 * for short periods and would lead to highly lumpy performance. On a per-pool 63 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 64 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 65 * of dirty data decreases. When the amount of dirty data exceeds a 66 * predetermined threshold further modifications are blocked until the amount 67 * of dirty data decreases (as data is synced out). 68 * 69 * The limit on dirty data is tunable, and should be adjusted according to 70 * both the IO capacity and available memory of the system. The larger the 71 * window, the more ZFS is able to aggregate and amortize metadata (and data) 72 * changes. However, memory is a limited resource, and allowing for more dirty 73 * data comes at the cost of keeping other useful data in memory (for example 74 * ZFS data cached by the ARC). 75 * 76 * Implementation 77 * 78 * As buffers are modified dsl_pool_willuse_space() increments both the per- 79 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 80 * dirty space used; dsl_pool_dirty_space() decrements those values as data 81 * is synced out from dsl_pool_sync(). While only the poolwide value is 82 * relevant, the per-txg value is useful for debugging. The tunable 83 * zfs_dirty_data_max determines the dirty space limit. Once that value is 84 * exceeded, new writes are halted until space frees up. 85 * 86 * The zfs_dirty_data_sync tunable dictates the threshold at which we 87 * ensure that there is a txg syncing (see the comment in txg.c for a full 88 * description of transaction group stages). 89 * 90 * The IO scheduler uses both the dirty space limit and current amount of 91 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 92 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 93 * 94 * The delay is also calculated based on the amount of dirty data. See the 95 * comment above dmu_tx_delay() for details. 96 */ 97 98 /* 99 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 100 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 101 */ 102 uint64_t zfs_dirty_data_max; 103 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 104 int zfs_dirty_data_max_percent = 10; 105 106 /* 107 * If there's at least this much dirty data (as a percentage of 108 * zfs_dirty_data_max), push out a txg. This should be less than 109 * zfs_vdev_async_write_active_min_dirty_percent. 110 */ 111 uint64_t zfs_dirty_data_sync_pct = 20; 112 113 /* 114 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 115 * and delay each transaction. 116 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 117 */ 118 int zfs_delay_min_dirty_percent = 60; 119 120 /* 121 * This controls how quickly the delay approaches infinity. 122 * Larger values cause it to delay more for a given amount of dirty data. 123 * Therefore larger values will cause there to be less dirty data for a 124 * given throughput. 125 * 126 * For the smoothest delay, this value should be about 1 billion divided 127 * by the maximum number of operations per second. This will smoothly 128 * handle between 10x and 1/10th this number. 129 * 130 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 131 * multiply in dmu_tx_delay(). 132 */ 133 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 134 135 /* 136 * This determines the number of threads used by the dp_sync_taskq. 137 */ 138 int zfs_sync_taskq_batch_pct = 75; 139 140 /* 141 * These tunables determine the behavior of how zil_itxg_clean() is 142 * called via zil_clean() in the context of spa_sync(). When an itxg 143 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 144 * If the dispatch fails, the call to zil_itxg_clean() will occur 145 * synchronously in the context of spa_sync(), which can negatively 146 * impact the performance of spa_sync() (e.g. in the case of the itxg 147 * list having a large number of itxs that needs to be cleaned). 148 * 149 * Thus, these tunables can be used to manipulate the behavior of the 150 * taskq used by zil_clean(); they determine the number of taskq entries 151 * that are pre-populated when the taskq is first created (via the 152 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 153 * taskq entries that are cached after an on-demand allocation (via the 154 * "zfs_zil_clean_taskq_maxalloc"). 155 * 156 * The idea being, we want to try reasonably hard to ensure there will 157 * already be a taskq entry pre-allocated by the time that it is needed 158 * by zil_clean(). This way, we can avoid the possibility of an 159 * on-demand allocation of a new taskq entry from failing, which would 160 * result in zil_itxg_clean() being called synchronously from zil_clean() 161 * (which can adversely affect performance of spa_sync()). 162 * 163 * Additionally, the number of threads used by the taskq can be 164 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 165 */ 166 int zfs_zil_clean_taskq_nthr_pct = 100; 167 int zfs_zil_clean_taskq_minalloc = 1024; 168 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 169 170 int 171 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 172 { 173 uint64_t obj; 174 int err; 175 176 err = zap_lookup(dp->dp_meta_objset, 177 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 178 name, sizeof (obj), 1, &obj); 179 if (err) 180 return (err); 181 182 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 183 } 184 185 static dsl_pool_t * 186 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 187 { 188 dsl_pool_t *dp; 189 blkptr_t *bp = spa_get_rootblkptr(spa); 190 191 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 192 dp->dp_spa = spa; 193 dp->dp_meta_rootbp = *bp; 194 rrw_init(&dp->dp_config_rwlock, B_TRUE); 195 txg_init(dp, txg); 196 mmp_init(spa); 197 198 txg_list_create(&dp->dp_dirty_datasets, spa, 199 offsetof(dsl_dataset_t, ds_dirty_link)); 200 txg_list_create(&dp->dp_dirty_zilogs, spa, 201 offsetof(zilog_t, zl_dirty_link)); 202 txg_list_create(&dp->dp_dirty_dirs, spa, 203 offsetof(dsl_dir_t, dd_dirty_link)); 204 txg_list_create(&dp->dp_sync_tasks, spa, 205 offsetof(dsl_sync_task_t, dst_node)); 206 txg_list_create(&dp->dp_early_sync_tasks, spa, 207 offsetof(dsl_sync_task_t, dst_node)); 208 209 dp->dp_sync_taskq = taskq_create("dp_sync_taskq", 210 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX, 211 TASKQ_THREADS_CPU_PCT); 212 213 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 214 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 215 zfs_zil_clean_taskq_minalloc, 216 zfs_zil_clean_taskq_maxalloc, 217 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 218 219 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 220 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 221 222 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 223 1, 4, 0); 224 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain", 225 max_ncpus, minclsyspri, max_ncpus, INT_MAX, 226 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 227 228 return (dp); 229 } 230 231 int 232 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 233 { 234 int err; 235 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 236 237 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 238 &dp->dp_meta_objset); 239 if (err != 0) 240 dsl_pool_close(dp); 241 else 242 *dpp = dp; 243 244 return (err); 245 } 246 247 int 248 dsl_pool_open(dsl_pool_t *dp) 249 { 250 int err; 251 dsl_dir_t *dd; 252 dsl_dataset_t *ds; 253 uint64_t obj; 254 255 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 256 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 257 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 258 &dp->dp_root_dir_obj); 259 if (err) 260 goto out; 261 262 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 263 NULL, dp, &dp->dp_root_dir); 264 if (err) 265 goto out; 266 267 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 268 if (err) 269 goto out; 270 271 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 272 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 273 if (err) 274 goto out; 275 err = dsl_dataset_hold_obj(dp, 276 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 277 if (err == 0) { 278 err = dsl_dataset_hold_obj(dp, 279 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 280 &dp->dp_origin_snap); 281 dsl_dataset_rele(ds, FTAG); 282 } 283 dsl_dir_rele(dd, dp); 284 if (err) 285 goto out; 286 } 287 288 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 289 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 290 &dp->dp_free_dir); 291 if (err) 292 goto out; 293 294 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 295 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 296 if (err) 297 goto out; 298 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 299 dp->dp_meta_objset, obj)); 300 } 301 302 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 303 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 304 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj); 305 if (err == 0) { 306 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, 307 dp->dp_meta_objset, obj)); 308 } else if (err == ENOENT) { 309 /* 310 * We might not have created the remap bpobj yet. 311 */ 312 err = 0; 313 } else { 314 goto out; 315 } 316 } 317 318 /* 319 * Note: errors ignored, because the these special dirs, used for 320 * space accounting, are only created on demand. 321 */ 322 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 323 &dp->dp_leak_dir); 324 325 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 326 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 327 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 328 &dp->dp_bptree_obj); 329 if (err != 0) 330 goto out; 331 } 332 333 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 334 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 335 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 336 &dp->dp_empty_bpobj); 337 if (err != 0) 338 goto out; 339 } 340 341 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 342 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 343 &dp->dp_tmp_userrefs_obj); 344 if (err == ENOENT) 345 err = 0; 346 if (err) 347 goto out; 348 349 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 350 351 out: 352 rrw_exit(&dp->dp_config_rwlock, FTAG); 353 return (err); 354 } 355 356 void 357 dsl_pool_close(dsl_pool_t *dp) 358 { 359 /* 360 * Drop our references from dsl_pool_open(). 361 * 362 * Since we held the origin_snap from "syncing" context (which 363 * includes pool-opening context), it actually only got a "ref" 364 * and not a hold, so just drop that here. 365 */ 366 if (dp->dp_origin_snap != NULL) 367 dsl_dataset_rele(dp->dp_origin_snap, dp); 368 if (dp->dp_mos_dir != NULL) 369 dsl_dir_rele(dp->dp_mos_dir, dp); 370 if (dp->dp_free_dir != NULL) 371 dsl_dir_rele(dp->dp_free_dir, dp); 372 if (dp->dp_leak_dir != NULL) 373 dsl_dir_rele(dp->dp_leak_dir, dp); 374 if (dp->dp_root_dir != NULL) 375 dsl_dir_rele(dp->dp_root_dir, dp); 376 377 bpobj_close(&dp->dp_free_bpobj); 378 bpobj_close(&dp->dp_obsolete_bpobj); 379 380 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 381 if (dp->dp_meta_objset != NULL) 382 dmu_objset_evict(dp->dp_meta_objset); 383 384 txg_list_destroy(&dp->dp_dirty_datasets); 385 txg_list_destroy(&dp->dp_dirty_zilogs); 386 txg_list_destroy(&dp->dp_sync_tasks); 387 txg_list_destroy(&dp->dp_early_sync_tasks); 388 txg_list_destroy(&dp->dp_dirty_dirs); 389 390 taskq_destroy(dp->dp_zil_clean_taskq); 391 taskq_destroy(dp->dp_sync_taskq); 392 393 /* 394 * We can't set retry to TRUE since we're explicitly specifying 395 * a spa to flush. This is good enough; any missed buffers for 396 * this spa won't cause trouble, and they'll eventually fall 397 * out of the ARC just like any other unused buffer. 398 */ 399 arc_flush(dp->dp_spa, FALSE); 400 401 mmp_fini(dp->dp_spa); 402 txg_fini(dp); 403 dsl_scan_fini(dp); 404 dmu_buf_user_evict_wait(); 405 406 rrw_destroy(&dp->dp_config_rwlock); 407 mutex_destroy(&dp->dp_lock); 408 taskq_destroy(dp->dp_unlinked_drain_taskq); 409 taskq_destroy(dp->dp_vnrele_taskq); 410 if (dp->dp_blkstats != NULL) 411 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 412 kmem_free(dp, sizeof (dsl_pool_t)); 413 } 414 415 void 416 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 417 { 418 uint64_t obj; 419 /* 420 * Currently, we only create the obsolete_bpobj where there are 421 * indirect vdevs with referenced mappings. 422 */ 423 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL)); 424 /* create and open the obsolete_bpobj */ 425 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 426 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj)); 427 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 428 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 429 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 430 } 431 432 void 433 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 434 { 435 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 436 VERIFY0(zap_remove(dp->dp_meta_objset, 437 DMU_POOL_DIRECTORY_OBJECT, 438 DMU_POOL_OBSOLETE_BPOBJ, tx)); 439 bpobj_free(dp->dp_meta_objset, 440 dp->dp_obsolete_bpobj.bpo_object, tx); 441 bpobj_close(&dp->dp_obsolete_bpobj); 442 } 443 444 dsl_pool_t * 445 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp, 446 uint64_t txg) 447 { 448 int err; 449 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 450 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 451 dsl_dataset_t *ds; 452 uint64_t obj; 453 454 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 455 456 /* create and open the MOS (meta-objset) */ 457 dp->dp_meta_objset = dmu_objset_create_impl(spa, 458 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 459 spa->spa_meta_objset = dp->dp_meta_objset; 460 461 /* create the pool directory */ 462 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 463 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 464 ASSERT0(err); 465 466 /* Initialize scan structures */ 467 VERIFY0(dsl_scan_init(dp, txg)); 468 469 /* create and open the root dir */ 470 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 471 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 472 NULL, dp, &dp->dp_root_dir)); 473 474 /* create and open the meta-objset dir */ 475 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 476 VERIFY0(dsl_pool_open_special_dir(dp, 477 MOS_DIR_NAME, &dp->dp_mos_dir)); 478 479 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 480 /* create and open the free dir */ 481 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 482 FREE_DIR_NAME, tx); 483 VERIFY0(dsl_pool_open_special_dir(dp, 484 FREE_DIR_NAME, &dp->dp_free_dir)); 485 486 /* create and open the free_bplist */ 487 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 488 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 489 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 490 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 491 dp->dp_meta_objset, obj)); 492 } 493 494 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 495 dsl_pool_create_origin(dp, tx); 496 497 /* 498 * Some features may be needed when creating the root dataset, so we 499 * create the feature objects here. 500 */ 501 if (spa_version(spa) >= SPA_VERSION_FEATURES) 502 spa_feature_create_zap_objects(spa, tx); 503 504 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF && 505 dcp->cp_crypt != ZIO_CRYPT_INHERIT) 506 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx); 507 508 /* create the root dataset */ 509 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx); 510 511 /* create the root objset */ 512 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj, 513 DS_HOLD_FLAG_DECRYPT, FTAG, &ds)); 514 #ifdef _KERNEL 515 { 516 objset_t *os; 517 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 518 os = dmu_objset_create_impl(dp->dp_spa, ds, 519 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 520 rrw_exit(&ds->ds_bp_rwlock, FTAG); 521 zfs_create_fs(os, kcred, zplprops, tx); 522 } 523 #endif 524 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 525 526 dmu_tx_commit(tx); 527 528 rrw_exit(&dp->dp_config_rwlock, FTAG); 529 530 return (dp); 531 } 532 533 /* 534 * Account for the meta-objset space in its placeholder dsl_dir. 535 */ 536 void 537 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 538 int64_t used, int64_t comp, int64_t uncomp) 539 { 540 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 541 mutex_enter(&dp->dp_lock); 542 dp->dp_mos_used_delta += used; 543 dp->dp_mos_compressed_delta += comp; 544 dp->dp_mos_uncompressed_delta += uncomp; 545 mutex_exit(&dp->dp_lock); 546 } 547 548 static void 549 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 550 { 551 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 552 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 553 VERIFY0(zio_wait(zio)); 554 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 555 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 556 } 557 558 static void 559 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 560 { 561 ASSERT(MUTEX_HELD(&dp->dp_lock)); 562 563 if (delta < 0) 564 ASSERT3U(-delta, <=, dp->dp_dirty_total); 565 566 dp->dp_dirty_total += delta; 567 568 /* 569 * Note: we signal even when increasing dp_dirty_total. 570 * This ensures forward progress -- each thread wakes the next waiter. 571 */ 572 if (dp->dp_dirty_total < zfs_dirty_data_max) 573 cv_signal(&dp->dp_spaceavail_cv); 574 } 575 576 static boolean_t 577 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg) 578 { 579 spa_t *spa = dp->dp_spa; 580 vdev_t *rvd = spa->spa_root_vdev; 581 582 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 583 vdev_t *vd = rvd->vdev_child[c]; 584 txg_list_t *tl = &vd->vdev_ms_list; 585 metaslab_t *ms; 586 587 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms; 588 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) { 589 VERIFY(range_tree_is_empty(ms->ms_freeing)); 590 VERIFY(range_tree_is_empty(ms->ms_checkpointing)); 591 } 592 } 593 594 return (B_TRUE); 595 } 596 597 void 598 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 599 { 600 zio_t *zio; 601 dmu_tx_t *tx; 602 dsl_dir_t *dd; 603 dsl_dataset_t *ds; 604 objset_t *mos = dp->dp_meta_objset; 605 list_t synced_datasets; 606 607 list_create(&synced_datasets, sizeof (dsl_dataset_t), 608 offsetof(dsl_dataset_t, ds_synced_link)); 609 610 tx = dmu_tx_create_assigned(dp, txg); 611 612 /* 613 * Run all early sync tasks before writing out any dirty blocks. 614 * For more info on early sync tasks see block comment in 615 * dsl_early_sync_task(). 616 */ 617 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) { 618 dsl_sync_task_t *dst; 619 620 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 621 while ((dst = 622 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) { 623 ASSERT(dsl_early_sync_task_verify(dp, txg)); 624 dsl_sync_task_sync(dst, tx); 625 } 626 ASSERT(dsl_early_sync_task_verify(dp, txg)); 627 } 628 629 /* 630 * Write out all dirty blocks of dirty datasets. 631 */ 632 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 633 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 634 /* 635 * We must not sync any non-MOS datasets twice, because 636 * we may have taken a snapshot of them. However, we 637 * may sync newly-created datasets on pass 2. 638 */ 639 ASSERT(!list_link_active(&ds->ds_synced_link)); 640 list_insert_tail(&synced_datasets, ds); 641 dsl_dataset_sync(ds, zio, tx); 642 } 643 VERIFY0(zio_wait(zio)); 644 645 /* 646 * We have written all of the accounted dirty data, so our 647 * dp_space_towrite should now be zero. However, some seldom-used 648 * code paths do not adhere to this (e.g. dbuf_undirty(), also 649 * rounding error in dbuf_write_physdone). 650 * Shore up the accounting of any dirtied space now. 651 */ 652 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 653 654 /* 655 * Update the long range free counter after 656 * we're done syncing user data 657 */ 658 mutex_enter(&dp->dp_lock); 659 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 660 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 661 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 662 mutex_exit(&dp->dp_lock); 663 664 /* 665 * After the data blocks have been written (ensured by the zio_wait() 666 * above), update the user/group/project space accounting. This happens 667 * in tasks dispatched to dp_sync_taskq, so wait for them before 668 * continuing. 669 */ 670 for (ds = list_head(&synced_datasets); ds != NULL; 671 ds = list_next(&synced_datasets, ds)) { 672 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 673 } 674 taskq_wait(dp->dp_sync_taskq); 675 676 /* 677 * Sync the datasets again to push out the changes due to 678 * userspace updates. This must be done before we process the 679 * sync tasks, so that any snapshots will have the correct 680 * user accounting information (and we won't get confused 681 * about which blocks are part of the snapshot). 682 */ 683 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 684 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 685 objset_t *os = ds->ds_objset; 686 687 ASSERT(list_link_active(&ds->ds_synced_link)); 688 dmu_buf_rele(ds->ds_dbuf, ds); 689 dsl_dataset_sync(ds, zio, tx); 690 691 /* 692 * Release any key mappings created by calls to 693 * dsl_dataset_dirty() from the userquota accounting 694 * code paths. 695 */ 696 if (os->os_encrypted && !os->os_raw_receive && 697 !os->os_next_write_raw[txg & TXG_MASK]) { 698 ASSERT3P(ds->ds_key_mapping, !=, NULL); 699 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 700 } 701 } 702 VERIFY0(zio_wait(zio)); 703 704 /* 705 * Now that the datasets have been completely synced, we can 706 * clean up our in-memory structures accumulated while syncing: 707 * 708 * - move dead blocks from the pending deadlist to the on-disk deadlist 709 * - release hold from dsl_dataset_dirty() 710 * - release key mapping hold from dsl_dataset_dirty() 711 */ 712 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 713 objset_t *os = ds->ds_objset; 714 715 if (os->os_encrypted && !os->os_raw_receive && 716 !os->os_next_write_raw[txg & TXG_MASK]) { 717 ASSERT3P(ds->ds_key_mapping, !=, NULL); 718 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds); 719 } 720 721 dsl_dataset_sync_done(ds, tx); 722 } 723 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 724 dsl_dir_sync(dd, tx); 725 } 726 727 /* 728 * The MOS's space is accounted for in the pool/$MOS 729 * (dp_mos_dir). We can't modify the mos while we're syncing 730 * it, so we remember the deltas and apply them here. 731 */ 732 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 733 dp->dp_mos_uncompressed_delta != 0) { 734 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 735 dp->dp_mos_used_delta, 736 dp->dp_mos_compressed_delta, 737 dp->dp_mos_uncompressed_delta, tx); 738 dp->dp_mos_used_delta = 0; 739 dp->dp_mos_compressed_delta = 0; 740 dp->dp_mos_uncompressed_delta = 0; 741 } 742 743 if (dmu_objset_is_dirty(mos, txg)) { 744 dsl_pool_sync_mos(dp, tx); 745 } 746 747 /* 748 * If we modify a dataset in the same txg that we want to destroy it, 749 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 750 * dsl_dir_destroy_check() will fail if there are unexpected holds. 751 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 752 * and clearing the hold on it) before we process the sync_tasks. 753 * The MOS data dirtied by the sync_tasks will be synced on the next 754 * pass. 755 */ 756 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 757 dsl_sync_task_t *dst; 758 /* 759 * No more sync tasks should have been added while we 760 * were syncing. 761 */ 762 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 763 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 764 dsl_sync_task_sync(dst, tx); 765 } 766 767 dmu_tx_commit(tx); 768 769 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 770 } 771 772 void 773 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 774 { 775 zilog_t *zilog; 776 777 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) { 778 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 779 /* 780 * We don't remove the zilog from the dp_dirty_zilogs 781 * list until after we've cleaned it. This ensures that 782 * callers of zilog_is_dirty() receive an accurate 783 * answer when they are racing with the spa sync thread. 784 */ 785 zil_clean(zilog, txg); 786 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 787 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 788 dmu_buf_rele(ds->ds_dbuf, zilog); 789 } 790 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 791 } 792 793 /* 794 * TRUE if the current thread is the tx_sync_thread or if we 795 * are being called from SPA context during pool initialization. 796 */ 797 int 798 dsl_pool_sync_context(dsl_pool_t *dp) 799 { 800 return (curthread == dp->dp_tx.tx_sync_thread || 801 spa_is_initializing(dp->dp_spa) || 802 taskq_member(dp->dp_sync_taskq, curthread)); 803 } 804 805 /* 806 * This function returns the amount of allocatable space in the pool 807 * minus whatever space is currently reserved by ZFS for specific 808 * purposes. Specifically: 809 * 810 * 1] Any reserved SLOP space 811 * 2] Any space used by the checkpoint 812 * 3] Any space used for deferred frees 813 * 814 * The latter 2 are especially important because they are needed to 815 * rectify the SPA's and DMU's different understanding of how much space 816 * is used. Now the DMU is aware of that extra space tracked by the SPA 817 * without having to maintain a separate special dir (e.g similar to 818 * $MOS, $FREEING, and $LEAKED). 819 * 820 * Note: By deferred frees here, we mean the frees that were deferred 821 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the 822 * segments placed in ms_defer trees during metaslab_sync_done(). 823 */ 824 uint64_t 825 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy) 826 { 827 spa_t *spa = dp->dp_spa; 828 uint64_t space, resv, adjustedsize; 829 uint64_t spa_deferred_frees = 830 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes; 831 832 space = spa_get_dspace(spa) 833 - spa_get_checkpoint_space(spa) - spa_deferred_frees; 834 resv = spa_get_slop_space(spa); 835 836 switch (slop_policy) { 837 case ZFS_SPACE_CHECK_NORMAL: 838 break; 839 case ZFS_SPACE_CHECK_RESERVED: 840 resv >>= 1; 841 break; 842 case ZFS_SPACE_CHECK_EXTRA_RESERVED: 843 resv >>= 2; 844 break; 845 case ZFS_SPACE_CHECK_NONE: 846 resv = 0; 847 break; 848 default: 849 panic("invalid slop policy value: %d", slop_policy); 850 break; 851 } 852 adjustedsize = (space >= resv) ? (space - resv) : 0; 853 854 return (adjustedsize); 855 } 856 857 uint64_t 858 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy) 859 { 860 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy); 861 uint64_t deferred = 862 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)); 863 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0; 864 return (quota); 865 } 866 867 boolean_t 868 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 869 { 870 uint64_t delay_min_bytes = 871 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 872 uint64_t dirty_min_bytes = 873 zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100; 874 boolean_t rv; 875 876 mutex_enter(&dp->dp_lock); 877 if (dp->dp_dirty_total > dirty_min_bytes) 878 txg_kick(dp); 879 rv = (dp->dp_dirty_total > delay_min_bytes); 880 mutex_exit(&dp->dp_lock); 881 return (rv); 882 } 883 884 void 885 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 886 { 887 if (space > 0) { 888 mutex_enter(&dp->dp_lock); 889 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 890 dsl_pool_dirty_delta(dp, space); 891 mutex_exit(&dp->dp_lock); 892 } 893 } 894 895 void 896 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 897 { 898 ASSERT3S(space, >=, 0); 899 if (space == 0) 900 return; 901 mutex_enter(&dp->dp_lock); 902 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 903 /* XXX writing something we didn't dirty? */ 904 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 905 } 906 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 907 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 908 ASSERT3U(dp->dp_dirty_total, >=, space); 909 dsl_pool_dirty_delta(dp, -space); 910 mutex_exit(&dp->dp_lock); 911 } 912 913 /* ARGSUSED */ 914 static int 915 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 916 { 917 dmu_tx_t *tx = arg; 918 dsl_dataset_t *ds, *prev = NULL; 919 int err; 920 921 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 922 if (err) 923 return (err); 924 925 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 926 err = dsl_dataset_hold_obj(dp, 927 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 928 if (err) { 929 dsl_dataset_rele(ds, FTAG); 930 return (err); 931 } 932 933 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 934 break; 935 dsl_dataset_rele(ds, FTAG); 936 ds = prev; 937 prev = NULL; 938 } 939 940 if (prev == NULL) { 941 prev = dp->dp_origin_snap; 942 943 /* 944 * The $ORIGIN can't have any data, or the accounting 945 * will be wrong. 946 */ 947 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 948 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 949 rrw_exit(&ds->ds_bp_rwlock, FTAG); 950 951 /* The origin doesn't get attached to itself */ 952 if (ds->ds_object == prev->ds_object) { 953 dsl_dataset_rele(ds, FTAG); 954 return (0); 955 } 956 957 dmu_buf_will_dirty(ds->ds_dbuf, tx); 958 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 959 dsl_dataset_phys(ds)->ds_prev_snap_txg = 960 dsl_dataset_phys(prev)->ds_creation_txg; 961 962 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 963 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 964 965 dmu_buf_will_dirty(prev->ds_dbuf, tx); 966 dsl_dataset_phys(prev)->ds_num_children++; 967 968 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 969 ASSERT(ds->ds_prev == NULL); 970 VERIFY0(dsl_dataset_hold_obj(dp, 971 dsl_dataset_phys(ds)->ds_prev_snap_obj, 972 ds, &ds->ds_prev)); 973 } 974 } 975 976 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 977 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 978 979 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 980 dmu_buf_will_dirty(prev->ds_dbuf, tx); 981 dsl_dataset_phys(prev)->ds_next_clones_obj = 982 zap_create(dp->dp_meta_objset, 983 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 984 } 985 VERIFY0(zap_add_int(dp->dp_meta_objset, 986 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 987 988 dsl_dataset_rele(ds, FTAG); 989 if (prev != dp->dp_origin_snap) 990 dsl_dataset_rele(prev, FTAG); 991 return (0); 992 } 993 994 void 995 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 996 { 997 ASSERT(dmu_tx_is_syncing(tx)); 998 ASSERT(dp->dp_origin_snap != NULL); 999 1000 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 1001 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1002 } 1003 1004 /* ARGSUSED */ 1005 static int 1006 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1007 { 1008 dmu_tx_t *tx = arg; 1009 objset_t *mos = dp->dp_meta_objset; 1010 1011 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 1012 dsl_dataset_t *origin; 1013 1014 VERIFY0(dsl_dataset_hold_obj(dp, 1015 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 1016 1017 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 1018 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 1019 dsl_dir_phys(origin->ds_dir)->dd_clones = 1020 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 1021 0, tx); 1022 } 1023 1024 VERIFY0(zap_add_int(dp->dp_meta_objset, 1025 dsl_dir_phys(origin->ds_dir)->dd_clones, 1026 ds->ds_object, tx)); 1027 1028 dsl_dataset_rele(origin, FTAG); 1029 } 1030 return (0); 1031 } 1032 1033 void 1034 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 1035 { 1036 ASSERT(dmu_tx_is_syncing(tx)); 1037 uint64_t obj; 1038 1039 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 1040 VERIFY0(dsl_pool_open_special_dir(dp, 1041 FREE_DIR_NAME, &dp->dp_free_dir)); 1042 1043 /* 1044 * We can't use bpobj_alloc(), because spa_version() still 1045 * returns the old version, and we need a new-version bpobj with 1046 * subobj support. So call dmu_object_alloc() directly. 1047 */ 1048 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 1049 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 1050 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1051 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 1052 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 1053 1054 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1055 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1056 } 1057 1058 void 1059 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 1060 { 1061 uint64_t dsobj; 1062 dsl_dataset_t *ds; 1063 1064 ASSERT(dmu_tx_is_syncing(tx)); 1065 ASSERT(dp->dp_origin_snap == NULL); 1066 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 1067 1068 /* create the origin dir, ds, & snap-ds */ 1069 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 1070 NULL, 0, kcred, NULL, tx); 1071 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 1072 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 1073 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 1074 dp, &dp->dp_origin_snap)); 1075 dsl_dataset_rele(ds, FTAG); 1076 } 1077 1078 taskq_t * 1079 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 1080 { 1081 return (dp->dp_vnrele_taskq); 1082 } 1083 1084 taskq_t * 1085 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp) 1086 { 1087 return (dp->dp_unlinked_drain_taskq); 1088 } 1089 1090 /* 1091 * Walk through the pool-wide zap object of temporary snapshot user holds 1092 * and release them. 1093 */ 1094 void 1095 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 1096 { 1097 zap_attribute_t za; 1098 zap_cursor_t zc; 1099 objset_t *mos = dp->dp_meta_objset; 1100 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1101 nvlist_t *holds; 1102 1103 if (zapobj == 0) 1104 return; 1105 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1106 1107 holds = fnvlist_alloc(); 1108 1109 for (zap_cursor_init(&zc, mos, zapobj); 1110 zap_cursor_retrieve(&zc, &za) == 0; 1111 zap_cursor_advance(&zc)) { 1112 char *htag; 1113 nvlist_t *tags; 1114 1115 htag = strchr(za.za_name, '-'); 1116 *htag = '\0'; 1117 ++htag; 1118 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 1119 tags = fnvlist_alloc(); 1120 fnvlist_add_boolean(tags, htag); 1121 fnvlist_add_nvlist(holds, za.za_name, tags); 1122 fnvlist_free(tags); 1123 } else { 1124 fnvlist_add_boolean(tags, htag); 1125 } 1126 } 1127 dsl_dataset_user_release_tmp(dp, holds); 1128 fnvlist_free(holds); 1129 zap_cursor_fini(&zc); 1130 } 1131 1132 /* 1133 * Create the pool-wide zap object for storing temporary snapshot holds. 1134 */ 1135 void 1136 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 1137 { 1138 objset_t *mos = dp->dp_meta_objset; 1139 1140 ASSERT(dp->dp_tmp_userrefs_obj == 0); 1141 ASSERT(dmu_tx_is_syncing(tx)); 1142 1143 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 1144 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 1145 } 1146 1147 static int 1148 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 1149 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 1150 { 1151 objset_t *mos = dp->dp_meta_objset; 1152 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1153 char *name; 1154 int error; 1155 1156 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1157 ASSERT(dmu_tx_is_syncing(tx)); 1158 1159 /* 1160 * If the pool was created prior to SPA_VERSION_USERREFS, the 1161 * zap object for temporary holds might not exist yet. 1162 */ 1163 if (zapobj == 0) { 1164 if (holding) { 1165 dsl_pool_user_hold_create_obj(dp, tx); 1166 zapobj = dp->dp_tmp_userrefs_obj; 1167 } else { 1168 return (SET_ERROR(ENOENT)); 1169 } 1170 } 1171 1172 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 1173 if (holding) 1174 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 1175 else 1176 error = zap_remove(mos, zapobj, name, tx); 1177 strfree(name); 1178 1179 return (error); 1180 } 1181 1182 /* 1183 * Add a temporary hold for the given dataset object and tag. 1184 */ 1185 int 1186 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1187 uint64_t now, dmu_tx_t *tx) 1188 { 1189 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1190 } 1191 1192 /* 1193 * Release a temporary hold for the given dataset object and tag. 1194 */ 1195 int 1196 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1197 dmu_tx_t *tx) 1198 { 1199 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0, tx, B_FALSE)); 1200 } 1201 1202 /* 1203 * DSL Pool Configuration Lock 1204 * 1205 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1206 * creation / destruction / rename / property setting). It must be held for 1207 * read to hold a dataset or dsl_dir. I.e. you must call 1208 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1209 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1210 * must be held continuously until all datasets and dsl_dirs are released. 1211 * 1212 * The only exception to this rule is that if a "long hold" is placed on 1213 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1214 * is still held. The long hold will prevent the dataset from being 1215 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1216 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1217 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1218 * 1219 * Legitimate long-holders (including owners) should be long-running, cancelable 1220 * tasks that should cause "zfs destroy" to fail. This includes DMU 1221 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1222 * "zfs send", and "zfs diff". There are several other long-holders whose 1223 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1224 * 1225 * The usual formula for long-holding would be: 1226 * dsl_pool_hold() 1227 * dsl_dataset_hold() 1228 * ... perform checks ... 1229 * dsl_dataset_long_hold() 1230 * dsl_pool_rele() 1231 * ... perform long-running task ... 1232 * dsl_dataset_long_rele() 1233 * dsl_dataset_rele() 1234 * 1235 * Note that when the long hold is released, the dataset is still held but 1236 * the pool is not held. The dataset may change arbitrarily during this time 1237 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1238 * dataset except release it. 1239 * 1240 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 1241 * or modifying operations. 1242 * 1243 * Modifying operations should generally use dsl_sync_task(). The synctask 1244 * infrastructure enforces proper locking strategy with respect to the 1245 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1246 * 1247 * Read-only operations will manually hold the pool, then the dataset, obtain 1248 * information from the dataset, then release the pool and dataset. 1249 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1250 * hold/rele. 1251 */ 1252 1253 int 1254 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1255 { 1256 spa_t *spa; 1257 int error; 1258 1259 error = spa_open(name, &spa, tag); 1260 if (error == 0) { 1261 *dp = spa_get_dsl(spa); 1262 dsl_pool_config_enter(*dp, tag); 1263 } 1264 return (error); 1265 } 1266 1267 void 1268 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1269 { 1270 dsl_pool_config_exit(dp, tag); 1271 spa_close(dp->dp_spa, tag); 1272 } 1273 1274 void 1275 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1276 { 1277 /* 1278 * We use a "reentrant" reader-writer lock, but not reentrantly. 1279 * 1280 * The rrwlock can (with the track_all flag) track all reading threads, 1281 * which is very useful for debugging which code path failed to release 1282 * the lock, and for verifying that the *current* thread does hold 1283 * the lock. 1284 * 1285 * (Unlike a rwlock, which knows that N threads hold it for 1286 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1287 * if any thread holds it for read, even if this thread doesn't). 1288 */ 1289 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1290 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1291 } 1292 1293 void 1294 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1295 { 1296 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1297 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1298 } 1299 1300 void 1301 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1302 { 1303 rrw_exit(&dp->dp_config_rwlock, tag); 1304 } 1305 1306 boolean_t 1307 dsl_pool_config_held(dsl_pool_t *dp) 1308 { 1309 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1310 } 1311 1312 boolean_t 1313 dsl_pool_config_held_writer(dsl_pool_t *dp) 1314 { 1315 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1316 } 1317