1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dsl_pool.h> 31 #include <sys/dsl_dataset.h> 32 #include <sys/dsl_prop.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_synctask.h> 35 #include <sys/dsl_scan.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/dsl_deadlist.h> 47 #include <sys/bptree.h> 48 #include <sys/zfeature.h> 49 #include <sys/zil_impl.h> 50 #include <sys/dsl_userhold.h> 51 52 /* 53 * ZFS Write Throttle 54 * ------------------ 55 * 56 * ZFS must limit the rate of incoming writes to the rate at which it is able 57 * to sync data modifications to the backend storage. Throttling by too much 58 * creates an artificial limit; throttling by too little can only be sustained 59 * for short periods and would lead to highly lumpy performance. On a per-pool 60 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 61 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 62 * of dirty data decreases. When the amount of dirty data exceeds a 63 * predetermined threshold further modifications are blocked until the amount 64 * of dirty data decreases (as data is synced out). 65 * 66 * The limit on dirty data is tunable, and should be adjusted according to 67 * both the IO capacity and available memory of the system. The larger the 68 * window, the more ZFS is able to aggregate and amortize metadata (and data) 69 * changes. However, memory is a limited resource, and allowing for more dirty 70 * data comes at the cost of keeping other useful data in memory (for example 71 * ZFS data cached by the ARC). 72 * 73 * Implementation 74 * 75 * As buffers are modified dsl_pool_willuse_space() increments both the per- 76 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 77 * dirty space used; dsl_pool_dirty_space() decrements those values as data 78 * is synced out from dsl_pool_sync(). While only the poolwide value is 79 * relevant, the per-txg value is useful for debugging. The tunable 80 * zfs_dirty_data_max determines the dirty space limit. Once that value is 81 * exceeded, new writes are halted until space frees up. 82 * 83 * The zfs_dirty_data_sync tunable dictates the threshold at which we 84 * ensure that there is a txg syncing (see the comment in txg.c for a full 85 * description of transaction group stages). 86 * 87 * The IO scheduler uses both the dirty space limit and current amount of 88 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 89 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 90 * 91 * The delay is also calculated based on the amount of dirty data. See the 92 * comment above dmu_tx_delay() for details. 93 */ 94 95 /* 96 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 97 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 98 */ 99 uint64_t zfs_dirty_data_max; 100 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 101 int zfs_dirty_data_max_percent = 10; 102 103 /* 104 * If there is at least this much dirty data, push out a txg. 105 */ 106 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 107 108 /* 109 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 110 * and delay each transaction. 111 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 112 */ 113 int zfs_delay_min_dirty_percent = 60; 114 115 /* 116 * This controls how quickly the delay approaches infinity. 117 * Larger values cause it to delay more for a given amount of dirty data. 118 * Therefore larger values will cause there to be less dirty data for a 119 * given throughput. 120 * 121 * For the smoothest delay, this value should be about 1 billion divided 122 * by the maximum number of operations per second. This will smoothly 123 * handle between 10x and 1/10th this number. 124 * 125 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 126 * multiply in dmu_tx_delay(). 127 */ 128 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 129 130 /* 131 * This determines the number of threads used by the dp_sync_taskq. 132 */ 133 int zfs_sync_taskq_batch_pct = 75; 134 135 /* 136 * These tunables determine the behavior of how zil_itxg_clean() is 137 * called via zil_clean() in the context of spa_sync(). When an itxg 138 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 139 * If the dispatch fails, the call to zil_itxg_clean() will occur 140 * synchronously in the context of spa_sync(), which can negatively 141 * impact the performance of spa_sync() (e.g. in the case of the itxg 142 * list having a large number of itxs that needs to be cleaned). 143 * 144 * Thus, these tunables can be used to manipulate the behavior of the 145 * taskq used by zil_clean(); they determine the number of taskq entries 146 * that are pre-populated when the taskq is first created (via the 147 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 148 * taskq entries that are cached after an on-demand allocation (via the 149 * "zfs_zil_clean_taskq_maxalloc"). 150 * 151 * The idea being, we want to try reasonably hard to ensure there will 152 * already be a taskq entry pre-allocated by the time that it is needed 153 * by zil_clean(). This way, we can avoid the possibility of an 154 * on-demand allocation of a new taskq entry from failing, which would 155 * result in zil_itxg_clean() being called synchronously from zil_clean() 156 * (which can adversely affect performance of spa_sync()). 157 * 158 * Additionally, the number of threads used by the taskq can be 159 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 160 */ 161 int zfs_zil_clean_taskq_nthr_pct = 100; 162 int zfs_zil_clean_taskq_minalloc = 1024; 163 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 164 165 int 166 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 167 { 168 uint64_t obj; 169 int err; 170 171 err = zap_lookup(dp->dp_meta_objset, 172 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 173 name, sizeof (obj), 1, &obj); 174 if (err) 175 return (err); 176 177 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 178 } 179 180 static dsl_pool_t * 181 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 182 { 183 dsl_pool_t *dp; 184 blkptr_t *bp = spa_get_rootblkptr(spa); 185 186 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 187 dp->dp_spa = spa; 188 dp->dp_meta_rootbp = *bp; 189 rrw_init(&dp->dp_config_rwlock, B_TRUE); 190 txg_init(dp, txg); 191 192 txg_list_create(&dp->dp_dirty_datasets, spa, 193 offsetof(dsl_dataset_t, ds_dirty_link)); 194 txg_list_create(&dp->dp_dirty_zilogs, spa, 195 offsetof(zilog_t, zl_dirty_link)); 196 txg_list_create(&dp->dp_dirty_dirs, spa, 197 offsetof(dsl_dir_t, dd_dirty_link)); 198 txg_list_create(&dp->dp_sync_tasks, spa, 199 offsetof(dsl_sync_task_t, dst_node)); 200 201 dp->dp_sync_taskq = taskq_create("dp_sync_taskq", 202 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX, 203 TASKQ_THREADS_CPU_PCT); 204 205 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 206 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 207 zfs_zil_clean_taskq_minalloc, 208 zfs_zil_clean_taskq_maxalloc, 209 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 210 211 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 212 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 213 214 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 215 1, 4, 0); 216 217 return (dp); 218 } 219 220 int 221 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 222 { 223 int err; 224 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 225 226 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 227 &dp->dp_meta_objset); 228 if (err != 0) 229 dsl_pool_close(dp); 230 else 231 *dpp = dp; 232 233 return (err); 234 } 235 236 int 237 dsl_pool_open(dsl_pool_t *dp) 238 { 239 int err; 240 dsl_dir_t *dd; 241 dsl_dataset_t *ds; 242 uint64_t obj; 243 244 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 245 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 246 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 247 &dp->dp_root_dir_obj); 248 if (err) 249 goto out; 250 251 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 252 NULL, dp, &dp->dp_root_dir); 253 if (err) 254 goto out; 255 256 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 257 if (err) 258 goto out; 259 260 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 261 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 262 if (err) 263 goto out; 264 err = dsl_dataset_hold_obj(dp, 265 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 266 if (err == 0) { 267 err = dsl_dataset_hold_obj(dp, 268 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 269 &dp->dp_origin_snap); 270 dsl_dataset_rele(ds, FTAG); 271 } 272 dsl_dir_rele(dd, dp); 273 if (err) 274 goto out; 275 } 276 277 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 278 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 279 &dp->dp_free_dir); 280 if (err) 281 goto out; 282 283 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 284 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 285 if (err) 286 goto out; 287 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 288 dp->dp_meta_objset, obj)); 289 } 290 291 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 292 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 293 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj); 294 if (err == 0) { 295 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, 296 dp->dp_meta_objset, obj)); 297 } else if (err == ENOENT) { 298 /* 299 * We might not have created the remap bpobj yet. 300 */ 301 err = 0; 302 } else { 303 goto out; 304 } 305 } 306 307 /* 308 * Note: errors ignored, because the these special dirs, used for 309 * space accounting, are only created on demand. 310 */ 311 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 312 &dp->dp_leak_dir); 313 314 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 315 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 316 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 317 &dp->dp_bptree_obj); 318 if (err != 0) 319 goto out; 320 } 321 322 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 323 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 324 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 325 &dp->dp_empty_bpobj); 326 if (err != 0) 327 goto out; 328 } 329 330 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 331 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 332 &dp->dp_tmp_userrefs_obj); 333 if (err == ENOENT) 334 err = 0; 335 if (err) 336 goto out; 337 338 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 339 340 out: 341 rrw_exit(&dp->dp_config_rwlock, FTAG); 342 return (err); 343 } 344 345 void 346 dsl_pool_close(dsl_pool_t *dp) 347 { 348 /* 349 * Drop our references from dsl_pool_open(). 350 * 351 * Since we held the origin_snap from "syncing" context (which 352 * includes pool-opening context), it actually only got a "ref" 353 * and not a hold, so just drop that here. 354 */ 355 if (dp->dp_origin_snap != NULL) 356 dsl_dataset_rele(dp->dp_origin_snap, dp); 357 if (dp->dp_mos_dir != NULL) 358 dsl_dir_rele(dp->dp_mos_dir, dp); 359 if (dp->dp_free_dir != NULL) 360 dsl_dir_rele(dp->dp_free_dir, dp); 361 if (dp->dp_leak_dir != NULL) 362 dsl_dir_rele(dp->dp_leak_dir, dp); 363 if (dp->dp_root_dir != NULL) 364 dsl_dir_rele(dp->dp_root_dir, dp); 365 366 bpobj_close(&dp->dp_free_bpobj); 367 bpobj_close(&dp->dp_obsolete_bpobj); 368 369 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 370 if (dp->dp_meta_objset != NULL) 371 dmu_objset_evict(dp->dp_meta_objset); 372 373 txg_list_destroy(&dp->dp_dirty_datasets); 374 txg_list_destroy(&dp->dp_dirty_zilogs); 375 txg_list_destroy(&dp->dp_sync_tasks); 376 txg_list_destroy(&dp->dp_dirty_dirs); 377 378 taskq_destroy(dp->dp_zil_clean_taskq); 379 taskq_destroy(dp->dp_sync_taskq); 380 381 /* 382 * We can't set retry to TRUE since we're explicitly specifying 383 * a spa to flush. This is good enough; any missed buffers for 384 * this spa won't cause trouble, and they'll eventually fall 385 * out of the ARC just like any other unused buffer. 386 */ 387 arc_flush(dp->dp_spa, FALSE); 388 389 txg_fini(dp); 390 dsl_scan_fini(dp); 391 dmu_buf_user_evict_wait(); 392 393 rrw_destroy(&dp->dp_config_rwlock); 394 mutex_destroy(&dp->dp_lock); 395 taskq_destroy(dp->dp_vnrele_taskq); 396 if (dp->dp_blkstats != NULL) 397 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 398 kmem_free(dp, sizeof (dsl_pool_t)); 399 } 400 401 void 402 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 403 { 404 uint64_t obj; 405 /* 406 * Currently, we only create the obsolete_bpobj where there are 407 * indirect vdevs with referenced mappings. 408 */ 409 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL)); 410 /* create and open the obsolete_bpobj */ 411 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 412 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj)); 413 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 414 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 415 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 416 } 417 418 void 419 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 420 { 421 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 422 VERIFY0(zap_remove(dp->dp_meta_objset, 423 DMU_POOL_DIRECTORY_OBJECT, 424 DMU_POOL_OBSOLETE_BPOBJ, tx)); 425 bpobj_free(dp->dp_meta_objset, 426 dp->dp_obsolete_bpobj.bpo_object, tx); 427 bpobj_close(&dp->dp_obsolete_bpobj); 428 } 429 430 dsl_pool_t * 431 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 432 { 433 int err; 434 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 435 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 436 dsl_dataset_t *ds; 437 uint64_t obj; 438 439 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 440 441 /* create and open the MOS (meta-objset) */ 442 dp->dp_meta_objset = dmu_objset_create_impl(spa, 443 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 444 445 /* create the pool directory */ 446 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 447 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 448 ASSERT0(err); 449 450 /* Initialize scan structures */ 451 VERIFY0(dsl_scan_init(dp, txg)); 452 453 /* create and open the root dir */ 454 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 455 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 456 NULL, dp, &dp->dp_root_dir)); 457 458 /* create and open the meta-objset dir */ 459 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 460 VERIFY0(dsl_pool_open_special_dir(dp, 461 MOS_DIR_NAME, &dp->dp_mos_dir)); 462 463 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 464 /* create and open the free dir */ 465 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 466 FREE_DIR_NAME, tx); 467 VERIFY0(dsl_pool_open_special_dir(dp, 468 FREE_DIR_NAME, &dp->dp_free_dir)); 469 470 /* create and open the free_bplist */ 471 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 472 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 473 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 474 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 475 dp->dp_meta_objset, obj)); 476 } 477 478 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 479 dsl_pool_create_origin(dp, tx); 480 481 /* create the root dataset */ 482 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 483 484 /* create the root objset */ 485 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 486 #ifdef _KERNEL 487 { 488 objset_t *os; 489 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 490 os = dmu_objset_create_impl(dp->dp_spa, ds, 491 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 492 rrw_exit(&ds->ds_bp_rwlock, FTAG); 493 zfs_create_fs(os, kcred, zplprops, tx); 494 } 495 #endif 496 dsl_dataset_rele(ds, FTAG); 497 498 dmu_tx_commit(tx); 499 500 rrw_exit(&dp->dp_config_rwlock, FTAG); 501 502 return (dp); 503 } 504 505 /* 506 * Account for the meta-objset space in its placeholder dsl_dir. 507 */ 508 void 509 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 510 int64_t used, int64_t comp, int64_t uncomp) 511 { 512 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 513 mutex_enter(&dp->dp_lock); 514 dp->dp_mos_used_delta += used; 515 dp->dp_mos_compressed_delta += comp; 516 dp->dp_mos_uncompressed_delta += uncomp; 517 mutex_exit(&dp->dp_lock); 518 } 519 520 static void 521 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 522 { 523 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 524 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 525 VERIFY0(zio_wait(zio)); 526 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 527 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 528 } 529 530 static void 531 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 532 { 533 ASSERT(MUTEX_HELD(&dp->dp_lock)); 534 535 if (delta < 0) 536 ASSERT3U(-delta, <=, dp->dp_dirty_total); 537 538 dp->dp_dirty_total += delta; 539 540 /* 541 * Note: we signal even when increasing dp_dirty_total. 542 * This ensures forward progress -- each thread wakes the next waiter. 543 */ 544 if (dp->dp_dirty_total < zfs_dirty_data_max) 545 cv_signal(&dp->dp_spaceavail_cv); 546 } 547 548 void 549 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 550 { 551 zio_t *zio; 552 dmu_tx_t *tx; 553 dsl_dir_t *dd; 554 dsl_dataset_t *ds; 555 objset_t *mos = dp->dp_meta_objset; 556 list_t synced_datasets; 557 558 list_create(&synced_datasets, sizeof (dsl_dataset_t), 559 offsetof(dsl_dataset_t, ds_synced_link)); 560 561 tx = dmu_tx_create_assigned(dp, txg); 562 563 /* 564 * Write out all dirty blocks of dirty datasets. 565 */ 566 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 567 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 568 /* 569 * We must not sync any non-MOS datasets twice, because 570 * we may have taken a snapshot of them. However, we 571 * may sync newly-created datasets on pass 2. 572 */ 573 ASSERT(!list_link_active(&ds->ds_synced_link)); 574 list_insert_tail(&synced_datasets, ds); 575 dsl_dataset_sync(ds, zio, tx); 576 } 577 VERIFY0(zio_wait(zio)); 578 579 /* 580 * We have written all of the accounted dirty data, so our 581 * dp_space_towrite should now be zero. However, some seldom-used 582 * code paths do not adhere to this (e.g. dbuf_undirty(), also 583 * rounding error in dbuf_write_physdone). 584 * Shore up the accounting of any dirtied space now. 585 */ 586 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 587 588 /* 589 * Update the long range free counter after 590 * we're done syncing user data 591 */ 592 mutex_enter(&dp->dp_lock); 593 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 594 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 595 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 596 mutex_exit(&dp->dp_lock); 597 598 /* 599 * After the data blocks have been written (ensured by the zio_wait() 600 * above), update the user/group space accounting. This happens 601 * in tasks dispatched to dp_sync_taskq, so wait for them before 602 * continuing. 603 */ 604 for (ds = list_head(&synced_datasets); ds != NULL; 605 ds = list_next(&synced_datasets, ds)) { 606 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 607 } 608 taskq_wait(dp->dp_sync_taskq); 609 610 /* 611 * Sync the datasets again to push out the changes due to 612 * userspace updates. This must be done before we process the 613 * sync tasks, so that any snapshots will have the correct 614 * user accounting information (and we won't get confused 615 * about which blocks are part of the snapshot). 616 */ 617 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 618 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 619 ASSERT(list_link_active(&ds->ds_synced_link)); 620 dmu_buf_rele(ds->ds_dbuf, ds); 621 dsl_dataset_sync(ds, zio, tx); 622 } 623 VERIFY0(zio_wait(zio)); 624 625 /* 626 * Now that the datasets have been completely synced, we can 627 * clean up our in-memory structures accumulated while syncing: 628 * 629 * - move dead blocks from the pending deadlist to the on-disk deadlist 630 * - release hold from dsl_dataset_dirty() 631 */ 632 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 633 dsl_dataset_sync_done(ds, tx); 634 } 635 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 636 dsl_dir_sync(dd, tx); 637 } 638 639 /* 640 * The MOS's space is accounted for in the pool/$MOS 641 * (dp_mos_dir). We can't modify the mos while we're syncing 642 * it, so we remember the deltas and apply them here. 643 */ 644 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 645 dp->dp_mos_uncompressed_delta != 0) { 646 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 647 dp->dp_mos_used_delta, 648 dp->dp_mos_compressed_delta, 649 dp->dp_mos_uncompressed_delta, tx); 650 dp->dp_mos_used_delta = 0; 651 dp->dp_mos_compressed_delta = 0; 652 dp->dp_mos_uncompressed_delta = 0; 653 } 654 655 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) { 656 dsl_pool_sync_mos(dp, tx); 657 } 658 659 /* 660 * If we modify a dataset in the same txg that we want to destroy it, 661 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 662 * dsl_dir_destroy_check() will fail if there are unexpected holds. 663 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 664 * and clearing the hold on it) before we process the sync_tasks. 665 * The MOS data dirtied by the sync_tasks will be synced on the next 666 * pass. 667 */ 668 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 669 dsl_sync_task_t *dst; 670 /* 671 * No more sync tasks should have been added while we 672 * were syncing. 673 */ 674 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 675 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 676 dsl_sync_task_sync(dst, tx); 677 } 678 679 dmu_tx_commit(tx); 680 681 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 682 } 683 684 void 685 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 686 { 687 zilog_t *zilog; 688 689 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) { 690 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 691 /* 692 * We don't remove the zilog from the dp_dirty_zilogs 693 * list until after we've cleaned it. This ensures that 694 * callers of zilog_is_dirty() receive an accurate 695 * answer when they are racing with the spa sync thread. 696 */ 697 zil_clean(zilog, txg); 698 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 699 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 700 dmu_buf_rele(ds->ds_dbuf, zilog); 701 } 702 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 703 } 704 705 /* 706 * TRUE if the current thread is the tx_sync_thread or if we 707 * are being called from SPA context during pool initialization. 708 */ 709 int 710 dsl_pool_sync_context(dsl_pool_t *dp) 711 { 712 return (curthread == dp->dp_tx.tx_sync_thread || 713 spa_is_initializing(dp->dp_spa) || 714 taskq_member(dp->dp_sync_taskq, curthread)); 715 } 716 717 uint64_t 718 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 719 { 720 uint64_t space, resv; 721 722 /* 723 * If we're trying to assess whether it's OK to do a free, 724 * cut the reservation in half to allow forward progress 725 * (e.g. make it possible to rm(1) files from a full pool). 726 */ 727 space = spa_get_dspace(dp->dp_spa); 728 resv = spa_get_slop_space(dp->dp_spa); 729 if (netfree) 730 resv >>= 1; 731 732 return (space - resv); 733 } 734 735 boolean_t 736 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 737 { 738 uint64_t delay_min_bytes = 739 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 740 boolean_t rv; 741 742 mutex_enter(&dp->dp_lock); 743 if (dp->dp_dirty_total > zfs_dirty_data_sync) 744 txg_kick(dp); 745 rv = (dp->dp_dirty_total > delay_min_bytes); 746 mutex_exit(&dp->dp_lock); 747 return (rv); 748 } 749 750 void 751 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 752 { 753 if (space > 0) { 754 mutex_enter(&dp->dp_lock); 755 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 756 dsl_pool_dirty_delta(dp, space); 757 mutex_exit(&dp->dp_lock); 758 } 759 } 760 761 void 762 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 763 { 764 ASSERT3S(space, >=, 0); 765 if (space == 0) 766 return; 767 mutex_enter(&dp->dp_lock); 768 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 769 /* XXX writing something we didn't dirty? */ 770 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 771 } 772 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 773 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 774 ASSERT3U(dp->dp_dirty_total, >=, space); 775 dsl_pool_dirty_delta(dp, -space); 776 mutex_exit(&dp->dp_lock); 777 } 778 779 /* ARGSUSED */ 780 static int 781 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 782 { 783 dmu_tx_t *tx = arg; 784 dsl_dataset_t *ds, *prev = NULL; 785 int err; 786 787 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 788 if (err) 789 return (err); 790 791 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 792 err = dsl_dataset_hold_obj(dp, 793 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 794 if (err) { 795 dsl_dataset_rele(ds, FTAG); 796 return (err); 797 } 798 799 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 800 break; 801 dsl_dataset_rele(ds, FTAG); 802 ds = prev; 803 prev = NULL; 804 } 805 806 if (prev == NULL) { 807 prev = dp->dp_origin_snap; 808 809 /* 810 * The $ORIGIN can't have any data, or the accounting 811 * will be wrong. 812 */ 813 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 814 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 815 rrw_exit(&ds->ds_bp_rwlock, FTAG); 816 817 /* The origin doesn't get attached to itself */ 818 if (ds->ds_object == prev->ds_object) { 819 dsl_dataset_rele(ds, FTAG); 820 return (0); 821 } 822 823 dmu_buf_will_dirty(ds->ds_dbuf, tx); 824 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 825 dsl_dataset_phys(ds)->ds_prev_snap_txg = 826 dsl_dataset_phys(prev)->ds_creation_txg; 827 828 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 829 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 830 831 dmu_buf_will_dirty(prev->ds_dbuf, tx); 832 dsl_dataset_phys(prev)->ds_num_children++; 833 834 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 835 ASSERT(ds->ds_prev == NULL); 836 VERIFY0(dsl_dataset_hold_obj(dp, 837 dsl_dataset_phys(ds)->ds_prev_snap_obj, 838 ds, &ds->ds_prev)); 839 } 840 } 841 842 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 843 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 844 845 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 846 dmu_buf_will_dirty(prev->ds_dbuf, tx); 847 dsl_dataset_phys(prev)->ds_next_clones_obj = 848 zap_create(dp->dp_meta_objset, 849 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 850 } 851 VERIFY0(zap_add_int(dp->dp_meta_objset, 852 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 853 854 dsl_dataset_rele(ds, FTAG); 855 if (prev != dp->dp_origin_snap) 856 dsl_dataset_rele(prev, FTAG); 857 return (0); 858 } 859 860 void 861 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 862 { 863 ASSERT(dmu_tx_is_syncing(tx)); 864 ASSERT(dp->dp_origin_snap != NULL); 865 866 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 867 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 868 } 869 870 /* ARGSUSED */ 871 static int 872 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 873 { 874 dmu_tx_t *tx = arg; 875 objset_t *mos = dp->dp_meta_objset; 876 877 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 878 dsl_dataset_t *origin; 879 880 VERIFY0(dsl_dataset_hold_obj(dp, 881 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 882 883 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 884 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 885 dsl_dir_phys(origin->ds_dir)->dd_clones = 886 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 887 0, tx); 888 } 889 890 VERIFY0(zap_add_int(dp->dp_meta_objset, 891 dsl_dir_phys(origin->ds_dir)->dd_clones, 892 ds->ds_object, tx)); 893 894 dsl_dataset_rele(origin, FTAG); 895 } 896 return (0); 897 } 898 899 void 900 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 901 { 902 ASSERT(dmu_tx_is_syncing(tx)); 903 uint64_t obj; 904 905 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 906 VERIFY0(dsl_pool_open_special_dir(dp, 907 FREE_DIR_NAME, &dp->dp_free_dir)); 908 909 /* 910 * We can't use bpobj_alloc(), because spa_version() still 911 * returns the old version, and we need a new-version bpobj with 912 * subobj support. So call dmu_object_alloc() directly. 913 */ 914 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 915 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 916 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 917 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 918 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 919 920 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 921 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 922 } 923 924 void 925 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 926 { 927 uint64_t dsobj; 928 dsl_dataset_t *ds; 929 930 ASSERT(dmu_tx_is_syncing(tx)); 931 ASSERT(dp->dp_origin_snap == NULL); 932 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 933 934 /* create the origin dir, ds, & snap-ds */ 935 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 936 NULL, 0, kcred, tx); 937 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 938 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 939 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 940 dp, &dp->dp_origin_snap)); 941 dsl_dataset_rele(ds, FTAG); 942 } 943 944 taskq_t * 945 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 946 { 947 return (dp->dp_vnrele_taskq); 948 } 949 950 /* 951 * Walk through the pool-wide zap object of temporary snapshot user holds 952 * and release them. 953 */ 954 void 955 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 956 { 957 zap_attribute_t za; 958 zap_cursor_t zc; 959 objset_t *mos = dp->dp_meta_objset; 960 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 961 nvlist_t *holds; 962 963 if (zapobj == 0) 964 return; 965 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 966 967 holds = fnvlist_alloc(); 968 969 for (zap_cursor_init(&zc, mos, zapobj); 970 zap_cursor_retrieve(&zc, &za) == 0; 971 zap_cursor_advance(&zc)) { 972 char *htag; 973 nvlist_t *tags; 974 975 htag = strchr(za.za_name, '-'); 976 *htag = '\0'; 977 ++htag; 978 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 979 tags = fnvlist_alloc(); 980 fnvlist_add_boolean(tags, htag); 981 fnvlist_add_nvlist(holds, za.za_name, tags); 982 fnvlist_free(tags); 983 } else { 984 fnvlist_add_boolean(tags, htag); 985 } 986 } 987 dsl_dataset_user_release_tmp(dp, holds); 988 fnvlist_free(holds); 989 zap_cursor_fini(&zc); 990 } 991 992 /* 993 * Create the pool-wide zap object for storing temporary snapshot holds. 994 */ 995 void 996 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 997 { 998 objset_t *mos = dp->dp_meta_objset; 999 1000 ASSERT(dp->dp_tmp_userrefs_obj == 0); 1001 ASSERT(dmu_tx_is_syncing(tx)); 1002 1003 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 1004 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 1005 } 1006 1007 static int 1008 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 1009 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 1010 { 1011 objset_t *mos = dp->dp_meta_objset; 1012 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1013 char *name; 1014 int error; 1015 1016 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1017 ASSERT(dmu_tx_is_syncing(tx)); 1018 1019 /* 1020 * If the pool was created prior to SPA_VERSION_USERREFS, the 1021 * zap object for temporary holds might not exist yet. 1022 */ 1023 if (zapobj == 0) { 1024 if (holding) { 1025 dsl_pool_user_hold_create_obj(dp, tx); 1026 zapobj = dp->dp_tmp_userrefs_obj; 1027 } else { 1028 return (SET_ERROR(ENOENT)); 1029 } 1030 } 1031 1032 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 1033 if (holding) 1034 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 1035 else 1036 error = zap_remove(mos, zapobj, name, tx); 1037 strfree(name); 1038 1039 return (error); 1040 } 1041 1042 /* 1043 * Add a temporary hold for the given dataset object and tag. 1044 */ 1045 int 1046 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1047 uint64_t now, dmu_tx_t *tx) 1048 { 1049 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1050 } 1051 1052 /* 1053 * Release a temporary hold for the given dataset object and tag. 1054 */ 1055 int 1056 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1057 dmu_tx_t *tx) 1058 { 1059 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 1060 tx, B_FALSE)); 1061 } 1062 1063 /* 1064 * DSL Pool Configuration Lock 1065 * 1066 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1067 * creation / destruction / rename / property setting). It must be held for 1068 * read to hold a dataset or dsl_dir. I.e. you must call 1069 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1070 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1071 * must be held continuously until all datasets and dsl_dirs are released. 1072 * 1073 * The only exception to this rule is that if a "long hold" is placed on 1074 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1075 * is still held. The long hold will prevent the dataset from being 1076 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1077 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1078 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1079 * 1080 * Legitimate long-holders (including owners) should be long-running, cancelable 1081 * tasks that should cause "zfs destroy" to fail. This includes DMU 1082 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1083 * "zfs send", and "zfs diff". There are several other long-holders whose 1084 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1085 * 1086 * The usual formula for long-holding would be: 1087 * dsl_pool_hold() 1088 * dsl_dataset_hold() 1089 * ... perform checks ... 1090 * dsl_dataset_long_hold() 1091 * dsl_pool_rele() 1092 * ... perform long-running task ... 1093 * dsl_dataset_long_rele() 1094 * dsl_dataset_rele() 1095 * 1096 * Note that when the long hold is released, the dataset is still held but 1097 * the pool is not held. The dataset may change arbitrarily during this time 1098 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1099 * dataset except release it. 1100 * 1101 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 1102 * or modifying operations. 1103 * 1104 * Modifying operations should generally use dsl_sync_task(). The synctask 1105 * infrastructure enforces proper locking strategy with respect to the 1106 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1107 * 1108 * Read-only operations will manually hold the pool, then the dataset, obtain 1109 * information from the dataset, then release the pool and dataset. 1110 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1111 * hold/rele. 1112 */ 1113 1114 int 1115 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1116 { 1117 spa_t *spa; 1118 int error; 1119 1120 error = spa_open(name, &spa, tag); 1121 if (error == 0) { 1122 *dp = spa_get_dsl(spa); 1123 dsl_pool_config_enter(*dp, tag); 1124 } 1125 return (error); 1126 } 1127 1128 void 1129 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1130 { 1131 dsl_pool_config_exit(dp, tag); 1132 spa_close(dp->dp_spa, tag); 1133 } 1134 1135 void 1136 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1137 { 1138 /* 1139 * We use a "reentrant" reader-writer lock, but not reentrantly. 1140 * 1141 * The rrwlock can (with the track_all flag) track all reading threads, 1142 * which is very useful for debugging which code path failed to release 1143 * the lock, and for verifying that the *current* thread does hold 1144 * the lock. 1145 * 1146 * (Unlike a rwlock, which knows that N threads hold it for 1147 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1148 * if any thread holds it for read, even if this thread doesn't). 1149 */ 1150 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1151 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1152 } 1153 1154 void 1155 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1156 { 1157 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1158 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1159 } 1160 1161 void 1162 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1163 { 1164 rrw_exit(&dp->dp_config_rwlock, tag); 1165 } 1166 1167 boolean_t 1168 dsl_pool_config_held(dsl_pool_t *dp) 1169 { 1170 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1171 } 1172 1173 boolean_t 1174 dsl_pool_config_held_writer(dsl_pool_t *dp) 1175 { 1176 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1177 } 1178