1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dsl_pool.h> 31 #include <sys/dsl_dataset.h> 32 #include <sys/dsl_prop.h> 33 #include <sys/dsl_dir.h> 34 #include <sys/dsl_synctask.h> 35 #include <sys/dsl_scan.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/dsl_deadlist.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/bptree.h> 50 #include <sys/zfeature.h> 51 #include <sys/zil_impl.h> 52 #include <sys/dsl_userhold.h> 53 54 /* 55 * ZFS Write Throttle 56 * ------------------ 57 * 58 * ZFS must limit the rate of incoming writes to the rate at which it is able 59 * to sync data modifications to the backend storage. Throttling by too much 60 * creates an artificial limit; throttling by too little can only be sustained 61 * for short periods and would lead to highly lumpy performance. On a per-pool 62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 64 * of dirty data decreases. When the amount of dirty data exceeds a 65 * predetermined threshold further modifications are blocked until the amount 66 * of dirty data decreases (as data is synced out). 67 * 68 * The limit on dirty data is tunable, and should be adjusted according to 69 * both the IO capacity and available memory of the system. The larger the 70 * window, the more ZFS is able to aggregate and amortize metadata (and data) 71 * changes. However, memory is a limited resource, and allowing for more dirty 72 * data comes at the cost of keeping other useful data in memory (for example 73 * ZFS data cached by the ARC). 74 * 75 * Implementation 76 * 77 * As buffers are modified dsl_pool_willuse_space() increments both the per- 78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 79 * dirty space used; dsl_pool_dirty_space() decrements those values as data 80 * is synced out from dsl_pool_sync(). While only the poolwide value is 81 * relevant, the per-txg value is useful for debugging. The tunable 82 * zfs_dirty_data_max determines the dirty space limit. Once that value is 83 * exceeded, new writes are halted until space frees up. 84 * 85 * The zfs_dirty_data_sync tunable dictates the threshold at which we 86 * ensure that there is a txg syncing (see the comment in txg.c for a full 87 * description of transaction group stages). 88 * 89 * The IO scheduler uses both the dirty space limit and current amount of 90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 91 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 92 * 93 * The delay is also calculated based on the amount of dirty data. See the 94 * comment above dmu_tx_delay() for details. 95 */ 96 97 /* 98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 99 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 100 */ 101 uint64_t zfs_dirty_data_max; 102 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 103 int zfs_dirty_data_max_percent = 10; 104 105 /* 106 * If there is at least this much dirty data, push out a txg. 107 */ 108 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 109 110 /* 111 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 112 * and delay each transaction. 113 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 114 */ 115 int zfs_delay_min_dirty_percent = 60; 116 117 /* 118 * This controls how quickly the delay approaches infinity. 119 * Larger values cause it to delay more for a given amount of dirty data. 120 * Therefore larger values will cause there to be less dirty data for a 121 * given throughput. 122 * 123 * For the smoothest delay, this value should be about 1 billion divided 124 * by the maximum number of operations per second. This will smoothly 125 * handle between 10x and 1/10th this number. 126 * 127 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 128 * multiply in dmu_tx_delay(). 129 */ 130 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 131 132 /* 133 * This determines the number of threads used by the dp_sync_taskq. 134 */ 135 int zfs_sync_taskq_batch_pct = 75; 136 137 /* 138 * These tunables determine the behavior of how zil_itxg_clean() is 139 * called via zil_clean() in the context of spa_sync(). When an itxg 140 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching. 141 * If the dispatch fails, the call to zil_itxg_clean() will occur 142 * synchronously in the context of spa_sync(), which can negatively 143 * impact the performance of spa_sync() (e.g. in the case of the itxg 144 * list having a large number of itxs that needs to be cleaned). 145 * 146 * Thus, these tunables can be used to manipulate the behavior of the 147 * taskq used by zil_clean(); they determine the number of taskq entries 148 * that are pre-populated when the taskq is first created (via the 149 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of 150 * taskq entries that are cached after an on-demand allocation (via the 151 * "zfs_zil_clean_taskq_maxalloc"). 152 * 153 * The idea being, we want to try reasonably hard to ensure there will 154 * already be a taskq entry pre-allocated by the time that it is needed 155 * by zil_clean(). This way, we can avoid the possibility of an 156 * on-demand allocation of a new taskq entry from failing, which would 157 * result in zil_itxg_clean() being called synchronously from zil_clean() 158 * (which can adversely affect performance of spa_sync()). 159 * 160 * Additionally, the number of threads used by the taskq can be 161 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable. 162 */ 163 int zfs_zil_clean_taskq_nthr_pct = 100; 164 int zfs_zil_clean_taskq_minalloc = 1024; 165 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024; 166 167 int 168 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 169 { 170 uint64_t obj; 171 int err; 172 173 err = zap_lookup(dp->dp_meta_objset, 174 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 175 name, sizeof (obj), 1, &obj); 176 if (err) 177 return (err); 178 179 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 180 } 181 182 static dsl_pool_t * 183 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 184 { 185 dsl_pool_t *dp; 186 blkptr_t *bp = spa_get_rootblkptr(spa); 187 188 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 189 dp->dp_spa = spa; 190 dp->dp_meta_rootbp = *bp; 191 rrw_init(&dp->dp_config_rwlock, B_TRUE); 192 txg_init(dp, txg); 193 194 txg_list_create(&dp->dp_dirty_datasets, spa, 195 offsetof(dsl_dataset_t, ds_dirty_link)); 196 txg_list_create(&dp->dp_dirty_zilogs, spa, 197 offsetof(zilog_t, zl_dirty_link)); 198 txg_list_create(&dp->dp_dirty_dirs, spa, 199 offsetof(dsl_dir_t, dd_dirty_link)); 200 txg_list_create(&dp->dp_sync_tasks, spa, 201 offsetof(dsl_sync_task_t, dst_node)); 202 txg_list_create(&dp->dp_early_sync_tasks, spa, 203 offsetof(dsl_sync_task_t, dst_node)); 204 205 dp->dp_sync_taskq = taskq_create("dp_sync_taskq", 206 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX, 207 TASKQ_THREADS_CPU_PCT); 208 209 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq", 210 zfs_zil_clean_taskq_nthr_pct, minclsyspri, 211 zfs_zil_clean_taskq_minalloc, 212 zfs_zil_clean_taskq_maxalloc, 213 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT); 214 215 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 216 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 217 218 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 219 1, 4, 0); 220 221 return (dp); 222 } 223 224 int 225 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 226 { 227 int err; 228 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 229 230 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 231 &dp->dp_meta_objset); 232 if (err != 0) 233 dsl_pool_close(dp); 234 else 235 *dpp = dp; 236 237 return (err); 238 } 239 240 int 241 dsl_pool_open(dsl_pool_t *dp) 242 { 243 int err; 244 dsl_dir_t *dd; 245 dsl_dataset_t *ds; 246 uint64_t obj; 247 248 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 249 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 250 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 251 &dp->dp_root_dir_obj); 252 if (err) 253 goto out; 254 255 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 256 NULL, dp, &dp->dp_root_dir); 257 if (err) 258 goto out; 259 260 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 261 if (err) 262 goto out; 263 264 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 265 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 266 if (err) 267 goto out; 268 err = dsl_dataset_hold_obj(dp, 269 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 270 if (err == 0) { 271 err = dsl_dataset_hold_obj(dp, 272 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 273 &dp->dp_origin_snap); 274 dsl_dataset_rele(ds, FTAG); 275 } 276 dsl_dir_rele(dd, dp); 277 if (err) 278 goto out; 279 } 280 281 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 282 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 283 &dp->dp_free_dir); 284 if (err) 285 goto out; 286 287 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 288 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 289 if (err) 290 goto out; 291 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 292 dp->dp_meta_objset, obj)); 293 } 294 295 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 296 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 297 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj); 298 if (err == 0) { 299 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, 300 dp->dp_meta_objset, obj)); 301 } else if (err == ENOENT) { 302 /* 303 * We might not have created the remap bpobj yet. 304 */ 305 err = 0; 306 } else { 307 goto out; 308 } 309 } 310 311 /* 312 * Note: errors ignored, because the these special dirs, used for 313 * space accounting, are only created on demand. 314 */ 315 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 316 &dp->dp_leak_dir); 317 318 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 319 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 320 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 321 &dp->dp_bptree_obj); 322 if (err != 0) 323 goto out; 324 } 325 326 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 327 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 328 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 329 &dp->dp_empty_bpobj); 330 if (err != 0) 331 goto out; 332 } 333 334 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 335 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 336 &dp->dp_tmp_userrefs_obj); 337 if (err == ENOENT) 338 err = 0; 339 if (err) 340 goto out; 341 342 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 343 344 out: 345 rrw_exit(&dp->dp_config_rwlock, FTAG); 346 return (err); 347 } 348 349 void 350 dsl_pool_close(dsl_pool_t *dp) 351 { 352 /* 353 * Drop our references from dsl_pool_open(). 354 * 355 * Since we held the origin_snap from "syncing" context (which 356 * includes pool-opening context), it actually only got a "ref" 357 * and not a hold, so just drop that here. 358 */ 359 if (dp->dp_origin_snap != NULL) 360 dsl_dataset_rele(dp->dp_origin_snap, dp); 361 if (dp->dp_mos_dir != NULL) 362 dsl_dir_rele(dp->dp_mos_dir, dp); 363 if (dp->dp_free_dir != NULL) 364 dsl_dir_rele(dp->dp_free_dir, dp); 365 if (dp->dp_leak_dir != NULL) 366 dsl_dir_rele(dp->dp_leak_dir, dp); 367 if (dp->dp_root_dir != NULL) 368 dsl_dir_rele(dp->dp_root_dir, dp); 369 370 bpobj_close(&dp->dp_free_bpobj); 371 bpobj_close(&dp->dp_obsolete_bpobj); 372 373 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 374 if (dp->dp_meta_objset != NULL) 375 dmu_objset_evict(dp->dp_meta_objset); 376 377 txg_list_destroy(&dp->dp_dirty_datasets); 378 txg_list_destroy(&dp->dp_dirty_zilogs); 379 txg_list_destroy(&dp->dp_sync_tasks); 380 txg_list_destroy(&dp->dp_early_sync_tasks); 381 txg_list_destroy(&dp->dp_dirty_dirs); 382 383 taskq_destroy(dp->dp_zil_clean_taskq); 384 taskq_destroy(dp->dp_sync_taskq); 385 386 /* 387 * We can't set retry to TRUE since we're explicitly specifying 388 * a spa to flush. This is good enough; any missed buffers for 389 * this spa won't cause trouble, and they'll eventually fall 390 * out of the ARC just like any other unused buffer. 391 */ 392 arc_flush(dp->dp_spa, FALSE); 393 394 txg_fini(dp); 395 dsl_scan_fini(dp); 396 dmu_buf_user_evict_wait(); 397 398 rrw_destroy(&dp->dp_config_rwlock); 399 mutex_destroy(&dp->dp_lock); 400 taskq_destroy(dp->dp_vnrele_taskq); 401 if (dp->dp_blkstats != NULL) 402 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 403 kmem_free(dp, sizeof (dsl_pool_t)); 404 } 405 406 void 407 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 408 { 409 uint64_t obj; 410 /* 411 * Currently, we only create the obsolete_bpobj where there are 412 * indirect vdevs with referenced mappings. 413 */ 414 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL)); 415 /* create and open the obsolete_bpobj */ 416 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 417 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj)); 418 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 419 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 420 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 421 } 422 423 void 424 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx) 425 { 426 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 427 VERIFY0(zap_remove(dp->dp_meta_objset, 428 DMU_POOL_DIRECTORY_OBJECT, 429 DMU_POOL_OBSOLETE_BPOBJ, tx)); 430 bpobj_free(dp->dp_meta_objset, 431 dp->dp_obsolete_bpobj.bpo_object, tx); 432 bpobj_close(&dp->dp_obsolete_bpobj); 433 } 434 435 dsl_pool_t * 436 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 437 { 438 int err; 439 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 440 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 441 dsl_dataset_t *ds; 442 uint64_t obj; 443 444 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 445 446 /* create and open the MOS (meta-objset) */ 447 dp->dp_meta_objset = dmu_objset_create_impl(spa, 448 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 449 450 /* create the pool directory */ 451 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 452 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 453 ASSERT0(err); 454 455 /* Initialize scan structures */ 456 VERIFY0(dsl_scan_init(dp, txg)); 457 458 /* create and open the root dir */ 459 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 460 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 461 NULL, dp, &dp->dp_root_dir)); 462 463 /* create and open the meta-objset dir */ 464 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 465 VERIFY0(dsl_pool_open_special_dir(dp, 466 MOS_DIR_NAME, &dp->dp_mos_dir)); 467 468 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 469 /* create and open the free dir */ 470 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 471 FREE_DIR_NAME, tx); 472 VERIFY0(dsl_pool_open_special_dir(dp, 473 FREE_DIR_NAME, &dp->dp_free_dir)); 474 475 /* create and open the free_bplist */ 476 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 477 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 478 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 479 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 480 dp->dp_meta_objset, obj)); 481 } 482 483 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 484 dsl_pool_create_origin(dp, tx); 485 486 /* create the root dataset */ 487 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 488 489 /* create the root objset */ 490 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 491 #ifdef _KERNEL 492 { 493 objset_t *os; 494 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 495 os = dmu_objset_create_impl(dp->dp_spa, ds, 496 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 497 rrw_exit(&ds->ds_bp_rwlock, FTAG); 498 zfs_create_fs(os, kcred, zplprops, tx); 499 } 500 #endif 501 dsl_dataset_rele(ds, FTAG); 502 503 dmu_tx_commit(tx); 504 505 rrw_exit(&dp->dp_config_rwlock, FTAG); 506 507 return (dp); 508 } 509 510 /* 511 * Account for the meta-objset space in its placeholder dsl_dir. 512 */ 513 void 514 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 515 int64_t used, int64_t comp, int64_t uncomp) 516 { 517 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 518 mutex_enter(&dp->dp_lock); 519 dp->dp_mos_used_delta += used; 520 dp->dp_mos_compressed_delta += comp; 521 dp->dp_mos_uncompressed_delta += uncomp; 522 mutex_exit(&dp->dp_lock); 523 } 524 525 static void 526 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 527 { 528 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 529 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 530 VERIFY0(zio_wait(zio)); 531 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 532 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 533 } 534 535 static void 536 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 537 { 538 ASSERT(MUTEX_HELD(&dp->dp_lock)); 539 540 if (delta < 0) 541 ASSERT3U(-delta, <=, dp->dp_dirty_total); 542 543 dp->dp_dirty_total += delta; 544 545 /* 546 * Note: we signal even when increasing dp_dirty_total. 547 * This ensures forward progress -- each thread wakes the next waiter. 548 */ 549 if (dp->dp_dirty_total < zfs_dirty_data_max) 550 cv_signal(&dp->dp_spaceavail_cv); 551 } 552 553 static boolean_t 554 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg) 555 { 556 spa_t *spa = dp->dp_spa; 557 vdev_t *rvd = spa->spa_root_vdev; 558 559 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 560 vdev_t *vd = rvd->vdev_child[c]; 561 txg_list_t *tl = &vd->vdev_ms_list; 562 metaslab_t *ms; 563 564 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms; 565 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) { 566 VERIFY(range_tree_is_empty(ms->ms_freeing)); 567 VERIFY(range_tree_is_empty(ms->ms_checkpointing)); 568 } 569 } 570 571 return (B_TRUE); 572 } 573 574 void 575 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 576 { 577 zio_t *zio; 578 dmu_tx_t *tx; 579 dsl_dir_t *dd; 580 dsl_dataset_t *ds; 581 objset_t *mos = dp->dp_meta_objset; 582 list_t synced_datasets; 583 584 list_create(&synced_datasets, sizeof (dsl_dataset_t), 585 offsetof(dsl_dataset_t, ds_synced_link)); 586 587 tx = dmu_tx_create_assigned(dp, txg); 588 589 /* 590 * Run all early sync tasks before writing out any dirty blocks. 591 * For more info on early sync tasks see block comment in 592 * dsl_early_sync_task(). 593 */ 594 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) { 595 dsl_sync_task_t *dst; 596 597 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 598 while ((dst = 599 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) { 600 ASSERT(dsl_early_sync_task_verify(dp, txg)); 601 dsl_sync_task_sync(dst, tx); 602 } 603 ASSERT(dsl_early_sync_task_verify(dp, txg)); 604 } 605 606 /* 607 * Write out all dirty blocks of dirty datasets. 608 */ 609 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 610 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 611 /* 612 * We must not sync any non-MOS datasets twice, because 613 * we may have taken a snapshot of them. However, we 614 * may sync newly-created datasets on pass 2. 615 */ 616 ASSERT(!list_link_active(&ds->ds_synced_link)); 617 list_insert_tail(&synced_datasets, ds); 618 dsl_dataset_sync(ds, zio, tx); 619 } 620 VERIFY0(zio_wait(zio)); 621 622 /* 623 * We have written all of the accounted dirty data, so our 624 * dp_space_towrite should now be zero. However, some seldom-used 625 * code paths do not adhere to this (e.g. dbuf_undirty(), also 626 * rounding error in dbuf_write_physdone). 627 * Shore up the accounting of any dirtied space now. 628 */ 629 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 630 631 /* 632 * Update the long range free counter after 633 * we're done syncing user data 634 */ 635 mutex_enter(&dp->dp_lock); 636 ASSERT(spa_sync_pass(dp->dp_spa) == 1 || 637 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0); 638 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0; 639 mutex_exit(&dp->dp_lock); 640 641 /* 642 * After the data blocks have been written (ensured by the zio_wait() 643 * above), update the user/group space accounting. This happens 644 * in tasks dispatched to dp_sync_taskq, so wait for them before 645 * continuing. 646 */ 647 for (ds = list_head(&synced_datasets); ds != NULL; 648 ds = list_next(&synced_datasets, ds)) { 649 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 650 } 651 taskq_wait(dp->dp_sync_taskq); 652 653 /* 654 * Sync the datasets again to push out the changes due to 655 * userspace updates. This must be done before we process the 656 * sync tasks, so that any snapshots will have the correct 657 * user accounting information (and we won't get confused 658 * about which blocks are part of the snapshot). 659 */ 660 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 661 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 662 ASSERT(list_link_active(&ds->ds_synced_link)); 663 dmu_buf_rele(ds->ds_dbuf, ds); 664 dsl_dataset_sync(ds, zio, tx); 665 } 666 VERIFY0(zio_wait(zio)); 667 668 /* 669 * Now that the datasets have been completely synced, we can 670 * clean up our in-memory structures accumulated while syncing: 671 * 672 * - move dead blocks from the pending deadlist to the on-disk deadlist 673 * - release hold from dsl_dataset_dirty() 674 */ 675 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 676 dsl_dataset_sync_done(ds, tx); 677 } 678 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 679 dsl_dir_sync(dd, tx); 680 } 681 682 /* 683 * The MOS's space is accounted for in the pool/$MOS 684 * (dp_mos_dir). We can't modify the mos while we're syncing 685 * it, so we remember the deltas and apply them here. 686 */ 687 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 688 dp->dp_mos_uncompressed_delta != 0) { 689 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 690 dp->dp_mos_used_delta, 691 dp->dp_mos_compressed_delta, 692 dp->dp_mos_uncompressed_delta, tx); 693 dp->dp_mos_used_delta = 0; 694 dp->dp_mos_compressed_delta = 0; 695 dp->dp_mos_uncompressed_delta = 0; 696 } 697 698 if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) { 699 dsl_pool_sync_mos(dp, tx); 700 } 701 702 /* 703 * If we modify a dataset in the same txg that we want to destroy it, 704 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 705 * dsl_dir_destroy_check() will fail if there are unexpected holds. 706 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 707 * and clearing the hold on it) before we process the sync_tasks. 708 * The MOS data dirtied by the sync_tasks will be synced on the next 709 * pass. 710 */ 711 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 712 dsl_sync_task_t *dst; 713 /* 714 * No more sync tasks should have been added while we 715 * were syncing. 716 */ 717 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 718 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 719 dsl_sync_task_sync(dst, tx); 720 } 721 722 dmu_tx_commit(tx); 723 724 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 725 } 726 727 void 728 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 729 { 730 zilog_t *zilog; 731 732 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) { 733 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 734 /* 735 * We don't remove the zilog from the dp_dirty_zilogs 736 * list until after we've cleaned it. This ensures that 737 * callers of zilog_is_dirty() receive an accurate 738 * answer when they are racing with the spa sync thread. 739 */ 740 zil_clean(zilog, txg); 741 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg); 742 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 743 dmu_buf_rele(ds->ds_dbuf, zilog); 744 } 745 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 746 } 747 748 /* 749 * TRUE if the current thread is the tx_sync_thread or if we 750 * are being called from SPA context during pool initialization. 751 */ 752 int 753 dsl_pool_sync_context(dsl_pool_t *dp) 754 { 755 return (curthread == dp->dp_tx.tx_sync_thread || 756 spa_is_initializing(dp->dp_spa) || 757 taskq_member(dp->dp_sync_taskq, curthread)); 758 } 759 760 /* 761 * This function returns the amount of allocatable space in the pool 762 * minus whatever space is currently reserved by ZFS for specific 763 * purposes. Specifically: 764 * 765 * 1] Any reserved SLOP space 766 * 2] Any space used by the checkpoint 767 * 3] Any space used for deferred frees 768 * 769 * The latter 2 are especially important because they are needed to 770 * rectify the SPA's and DMU's different understanding of how much space 771 * is used. Now the DMU is aware of that extra space tracked by the SPA 772 * without having to maintain a separate special dir (e.g similar to 773 * $MOS, $FREEING, and $LEAKED). 774 * 775 * Note: By deferred frees here, we mean the frees that were deferred 776 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the 777 * segments placed in ms_defer trees during metaslab_sync_done(). 778 */ 779 uint64_t 780 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy) 781 { 782 spa_t *spa = dp->dp_spa; 783 uint64_t space, resv, adjustedsize; 784 uint64_t spa_deferred_frees = 785 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes; 786 787 space = spa_get_dspace(spa) 788 - spa_get_checkpoint_space(spa) - spa_deferred_frees; 789 resv = spa_get_slop_space(spa); 790 791 switch (slop_policy) { 792 case ZFS_SPACE_CHECK_NORMAL: 793 break; 794 case ZFS_SPACE_CHECK_RESERVED: 795 resv >>= 1; 796 break; 797 case ZFS_SPACE_CHECK_EXTRA_RESERVED: 798 resv >>= 2; 799 break; 800 case ZFS_SPACE_CHECK_NONE: 801 resv = 0; 802 break; 803 default: 804 panic("invalid slop policy value: %d", slop_policy); 805 break; 806 } 807 adjustedsize = (space >= resv) ? (space - resv) : 0; 808 809 return (adjustedsize); 810 } 811 812 uint64_t 813 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy) 814 { 815 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy); 816 uint64_t deferred = 817 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)); 818 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0; 819 return (quota); 820 } 821 822 boolean_t 823 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 824 { 825 uint64_t delay_min_bytes = 826 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 827 boolean_t rv; 828 829 mutex_enter(&dp->dp_lock); 830 if (dp->dp_dirty_total > zfs_dirty_data_sync) 831 txg_kick(dp); 832 rv = (dp->dp_dirty_total > delay_min_bytes); 833 mutex_exit(&dp->dp_lock); 834 return (rv); 835 } 836 837 void 838 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 839 { 840 if (space > 0) { 841 mutex_enter(&dp->dp_lock); 842 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 843 dsl_pool_dirty_delta(dp, space); 844 mutex_exit(&dp->dp_lock); 845 } 846 } 847 848 void 849 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 850 { 851 ASSERT3S(space, >=, 0); 852 if (space == 0) 853 return; 854 mutex_enter(&dp->dp_lock); 855 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 856 /* XXX writing something we didn't dirty? */ 857 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 858 } 859 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 860 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 861 ASSERT3U(dp->dp_dirty_total, >=, space); 862 dsl_pool_dirty_delta(dp, -space); 863 mutex_exit(&dp->dp_lock); 864 } 865 866 /* ARGSUSED */ 867 static int 868 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 869 { 870 dmu_tx_t *tx = arg; 871 dsl_dataset_t *ds, *prev = NULL; 872 int err; 873 874 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 875 if (err) 876 return (err); 877 878 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 879 err = dsl_dataset_hold_obj(dp, 880 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 881 if (err) { 882 dsl_dataset_rele(ds, FTAG); 883 return (err); 884 } 885 886 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 887 break; 888 dsl_dataset_rele(ds, FTAG); 889 ds = prev; 890 prev = NULL; 891 } 892 893 if (prev == NULL) { 894 prev = dp->dp_origin_snap; 895 896 /* 897 * The $ORIGIN can't have any data, or the accounting 898 * will be wrong. 899 */ 900 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 901 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 902 rrw_exit(&ds->ds_bp_rwlock, FTAG); 903 904 /* The origin doesn't get attached to itself */ 905 if (ds->ds_object == prev->ds_object) { 906 dsl_dataset_rele(ds, FTAG); 907 return (0); 908 } 909 910 dmu_buf_will_dirty(ds->ds_dbuf, tx); 911 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 912 dsl_dataset_phys(ds)->ds_prev_snap_txg = 913 dsl_dataset_phys(prev)->ds_creation_txg; 914 915 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 916 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 917 918 dmu_buf_will_dirty(prev->ds_dbuf, tx); 919 dsl_dataset_phys(prev)->ds_num_children++; 920 921 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 922 ASSERT(ds->ds_prev == NULL); 923 VERIFY0(dsl_dataset_hold_obj(dp, 924 dsl_dataset_phys(ds)->ds_prev_snap_obj, 925 ds, &ds->ds_prev)); 926 } 927 } 928 929 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 930 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 931 932 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 933 dmu_buf_will_dirty(prev->ds_dbuf, tx); 934 dsl_dataset_phys(prev)->ds_next_clones_obj = 935 zap_create(dp->dp_meta_objset, 936 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 937 } 938 VERIFY0(zap_add_int(dp->dp_meta_objset, 939 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 940 941 dsl_dataset_rele(ds, FTAG); 942 if (prev != dp->dp_origin_snap) 943 dsl_dataset_rele(prev, FTAG); 944 return (0); 945 } 946 947 void 948 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 949 { 950 ASSERT(dmu_tx_is_syncing(tx)); 951 ASSERT(dp->dp_origin_snap != NULL); 952 953 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 954 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 955 } 956 957 /* ARGSUSED */ 958 static int 959 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 960 { 961 dmu_tx_t *tx = arg; 962 objset_t *mos = dp->dp_meta_objset; 963 964 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 965 dsl_dataset_t *origin; 966 967 VERIFY0(dsl_dataset_hold_obj(dp, 968 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 969 970 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 971 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 972 dsl_dir_phys(origin->ds_dir)->dd_clones = 973 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 974 0, tx); 975 } 976 977 VERIFY0(zap_add_int(dp->dp_meta_objset, 978 dsl_dir_phys(origin->ds_dir)->dd_clones, 979 ds->ds_object, tx)); 980 981 dsl_dataset_rele(origin, FTAG); 982 } 983 return (0); 984 } 985 986 void 987 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 988 { 989 ASSERT(dmu_tx_is_syncing(tx)); 990 uint64_t obj; 991 992 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 993 VERIFY0(dsl_pool_open_special_dir(dp, 994 FREE_DIR_NAME, &dp->dp_free_dir)); 995 996 /* 997 * We can't use bpobj_alloc(), because spa_version() still 998 * returns the old version, and we need a new-version bpobj with 999 * subobj support. So call dmu_object_alloc() directly. 1000 */ 1001 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 1002 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 1003 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1004 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 1005 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 1006 1007 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 1008 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE)); 1009 } 1010 1011 void 1012 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 1013 { 1014 uint64_t dsobj; 1015 dsl_dataset_t *ds; 1016 1017 ASSERT(dmu_tx_is_syncing(tx)); 1018 ASSERT(dp->dp_origin_snap == NULL); 1019 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 1020 1021 /* create the origin dir, ds, & snap-ds */ 1022 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 1023 NULL, 0, kcred, tx); 1024 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 1025 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 1026 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 1027 dp, &dp->dp_origin_snap)); 1028 dsl_dataset_rele(ds, FTAG); 1029 } 1030 1031 taskq_t * 1032 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 1033 { 1034 return (dp->dp_vnrele_taskq); 1035 } 1036 1037 /* 1038 * Walk through the pool-wide zap object of temporary snapshot user holds 1039 * and release them. 1040 */ 1041 void 1042 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 1043 { 1044 zap_attribute_t za; 1045 zap_cursor_t zc; 1046 objset_t *mos = dp->dp_meta_objset; 1047 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1048 nvlist_t *holds; 1049 1050 if (zapobj == 0) 1051 return; 1052 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1053 1054 holds = fnvlist_alloc(); 1055 1056 for (zap_cursor_init(&zc, mos, zapobj); 1057 zap_cursor_retrieve(&zc, &za) == 0; 1058 zap_cursor_advance(&zc)) { 1059 char *htag; 1060 nvlist_t *tags; 1061 1062 htag = strchr(za.za_name, '-'); 1063 *htag = '\0'; 1064 ++htag; 1065 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 1066 tags = fnvlist_alloc(); 1067 fnvlist_add_boolean(tags, htag); 1068 fnvlist_add_nvlist(holds, za.za_name, tags); 1069 fnvlist_free(tags); 1070 } else { 1071 fnvlist_add_boolean(tags, htag); 1072 } 1073 } 1074 dsl_dataset_user_release_tmp(dp, holds); 1075 fnvlist_free(holds); 1076 zap_cursor_fini(&zc); 1077 } 1078 1079 /* 1080 * Create the pool-wide zap object for storing temporary snapshot holds. 1081 */ 1082 void 1083 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 1084 { 1085 objset_t *mos = dp->dp_meta_objset; 1086 1087 ASSERT(dp->dp_tmp_userrefs_obj == 0); 1088 ASSERT(dmu_tx_is_syncing(tx)); 1089 1090 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 1091 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 1092 } 1093 1094 static int 1095 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 1096 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 1097 { 1098 objset_t *mos = dp->dp_meta_objset; 1099 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 1100 char *name; 1101 int error; 1102 1103 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 1104 ASSERT(dmu_tx_is_syncing(tx)); 1105 1106 /* 1107 * If the pool was created prior to SPA_VERSION_USERREFS, the 1108 * zap object for temporary holds might not exist yet. 1109 */ 1110 if (zapobj == 0) { 1111 if (holding) { 1112 dsl_pool_user_hold_create_obj(dp, tx); 1113 zapobj = dp->dp_tmp_userrefs_obj; 1114 } else { 1115 return (SET_ERROR(ENOENT)); 1116 } 1117 } 1118 1119 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 1120 if (holding) 1121 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 1122 else 1123 error = zap_remove(mos, zapobj, name, tx); 1124 strfree(name); 1125 1126 return (error); 1127 } 1128 1129 /* 1130 * Add a temporary hold for the given dataset object and tag. 1131 */ 1132 int 1133 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1134 uint64_t now, dmu_tx_t *tx) 1135 { 1136 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 1137 } 1138 1139 /* 1140 * Release a temporary hold for the given dataset object and tag. 1141 */ 1142 int 1143 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 1144 dmu_tx_t *tx) 1145 { 1146 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 1147 tx, B_FALSE)); 1148 } 1149 1150 /* 1151 * DSL Pool Configuration Lock 1152 * 1153 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 1154 * creation / destruction / rename / property setting). It must be held for 1155 * read to hold a dataset or dsl_dir. I.e. you must call 1156 * dsl_pool_config_enter() or dsl_pool_hold() before calling 1157 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 1158 * must be held continuously until all datasets and dsl_dirs are released. 1159 * 1160 * The only exception to this rule is that if a "long hold" is placed on 1161 * a dataset, then the dp_config_rwlock may be dropped while the dataset 1162 * is still held. The long hold will prevent the dataset from being 1163 * destroyed -- the destroy will fail with EBUSY. A long hold can be 1164 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 1165 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 1166 * 1167 * Legitimate long-holders (including owners) should be long-running, cancelable 1168 * tasks that should cause "zfs destroy" to fail. This includes DMU 1169 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 1170 * "zfs send", and "zfs diff". There are several other long-holders whose 1171 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 1172 * 1173 * The usual formula for long-holding would be: 1174 * dsl_pool_hold() 1175 * dsl_dataset_hold() 1176 * ... perform checks ... 1177 * dsl_dataset_long_hold() 1178 * dsl_pool_rele() 1179 * ... perform long-running task ... 1180 * dsl_dataset_long_rele() 1181 * dsl_dataset_rele() 1182 * 1183 * Note that when the long hold is released, the dataset is still held but 1184 * the pool is not held. The dataset may change arbitrarily during this time 1185 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 1186 * dataset except release it. 1187 * 1188 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 1189 * or modifying operations. 1190 * 1191 * Modifying operations should generally use dsl_sync_task(). The synctask 1192 * infrastructure enforces proper locking strategy with respect to the 1193 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1194 * 1195 * Read-only operations will manually hold the pool, then the dataset, obtain 1196 * information from the dataset, then release the pool and dataset. 1197 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1198 * hold/rele. 1199 */ 1200 1201 int 1202 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1203 { 1204 spa_t *spa; 1205 int error; 1206 1207 error = spa_open(name, &spa, tag); 1208 if (error == 0) { 1209 *dp = spa_get_dsl(spa); 1210 dsl_pool_config_enter(*dp, tag); 1211 } 1212 return (error); 1213 } 1214 1215 void 1216 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1217 { 1218 dsl_pool_config_exit(dp, tag); 1219 spa_close(dp->dp_spa, tag); 1220 } 1221 1222 void 1223 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1224 { 1225 /* 1226 * We use a "reentrant" reader-writer lock, but not reentrantly. 1227 * 1228 * The rrwlock can (with the track_all flag) track all reading threads, 1229 * which is very useful for debugging which code path failed to release 1230 * the lock, and for verifying that the *current* thread does hold 1231 * the lock. 1232 * 1233 * (Unlike a rwlock, which knows that N threads hold it for 1234 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1235 * if any thread holds it for read, even if this thread doesn't). 1236 */ 1237 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1238 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1239 } 1240 1241 void 1242 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag) 1243 { 1244 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1245 rrw_enter_read_prio(&dp->dp_config_rwlock, tag); 1246 } 1247 1248 void 1249 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1250 { 1251 rrw_exit(&dp->dp_config_rwlock, tag); 1252 } 1253 1254 boolean_t 1255 dsl_pool_config_held(dsl_pool_t *dp) 1256 { 1257 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1258 } 1259 1260 boolean_t 1261 dsl_pool_config_held_writer(dsl_pool_t *dp) 1262 { 1263 return (RRW_WRITE_HELD(&dp->dp_config_rwlock)); 1264 } 1265