1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Steven Hartland. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 */ 27 28 #include <sys/dsl_pool.h> 29 #include <sys/dsl_dataset.h> 30 #include <sys/dsl_prop.h> 31 #include <sys/dsl_dir.h> 32 #include <sys/dsl_synctask.h> 33 #include <sys/dsl_scan.h> 34 #include <sys/dnode.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/arc.h> 38 #include <sys/zap.h> 39 #include <sys/zio.h> 40 #include <sys/zfs_context.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/zfs_znode.h> 43 #include <sys/spa_impl.h> 44 #include <sys/dsl_deadlist.h> 45 #include <sys/bptree.h> 46 #include <sys/zfeature.h> 47 #include <sys/zil_impl.h> 48 #include <sys/dsl_userhold.h> 49 50 /* 51 * ZFS Write Throttle 52 * ------------------ 53 * 54 * ZFS must limit the rate of incoming writes to the rate at which it is able 55 * to sync data modifications to the backend storage. Throttling by too much 56 * creates an artificial limit; throttling by too little can only be sustained 57 * for short periods and would lead to highly lumpy performance. On a per-pool 58 * basis, ZFS tracks the amount of modified (dirty) data. As operations change 59 * data, the amount of dirty data increases; as ZFS syncs out data, the amount 60 * of dirty data decreases. When the amount of dirty data exceeds a 61 * predetermined threshold further modifications are blocked until the amount 62 * of dirty data decreases (as data is synced out). 63 * 64 * The limit on dirty data is tunable, and should be adjusted according to 65 * both the IO capacity and available memory of the system. The larger the 66 * window, the more ZFS is able to aggregate and amortize metadata (and data) 67 * changes. However, memory is a limited resource, and allowing for more dirty 68 * data comes at the cost of keeping other useful data in memory (for example 69 * ZFS data cached by the ARC). 70 * 71 * Implementation 72 * 73 * As buffers are modified dsl_pool_willuse_space() increments both the per- 74 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of 75 * dirty space used; dsl_pool_dirty_space() decrements those values as data 76 * is synced out from dsl_pool_sync(). While only the poolwide value is 77 * relevant, the per-txg value is useful for debugging. The tunable 78 * zfs_dirty_data_max determines the dirty space limit. Once that value is 79 * exceeded, new writes are halted until space frees up. 80 * 81 * The zfs_dirty_data_sync tunable dictates the threshold at which we 82 * ensure that there is a txg syncing (see the comment in txg.c for a full 83 * description of transaction group stages). 84 * 85 * The IO scheduler uses both the dirty space limit and current amount of 86 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS 87 * issues. See the comment in vdev_queue.c for details of the IO scheduler. 88 * 89 * The delay is also calculated based on the amount of dirty data. See the 90 * comment above dmu_tx_delay() for details. 91 */ 92 93 /* 94 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, 95 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system. 96 */ 97 uint64_t zfs_dirty_data_max; 98 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024; 99 int zfs_dirty_data_max_percent = 10; 100 101 /* 102 * If there is at least this much dirty data, push out a txg. 103 */ 104 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024; 105 106 /* 107 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in 108 * and delay each transaction. 109 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. 110 */ 111 int zfs_delay_min_dirty_percent = 60; 112 113 /* 114 * This controls how quickly the delay approaches infinity. 115 * Larger values cause it to delay more for a given amount of dirty data. 116 * Therefore larger values will cause there to be less dirty data for a 117 * given throughput. 118 * 119 * For the smoothest delay, this value should be about 1 billion divided 120 * by the maximum number of operations per second. This will smoothly 121 * handle between 10x and 1/10th this number. 122 * 123 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the 124 * multiply in dmu_tx_delay(). 125 */ 126 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000; 127 128 129 hrtime_t zfs_throttle_delay = MSEC2NSEC(10); 130 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); 131 132 int 133 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp) 134 { 135 uint64_t obj; 136 int err; 137 138 err = zap_lookup(dp->dp_meta_objset, 139 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj, 140 name, sizeof (obj), 1, &obj); 141 if (err) 142 return (err); 143 144 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp)); 145 } 146 147 static dsl_pool_t * 148 dsl_pool_open_impl(spa_t *spa, uint64_t txg) 149 { 150 dsl_pool_t *dp; 151 blkptr_t *bp = spa_get_rootblkptr(spa); 152 153 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP); 154 dp->dp_spa = spa; 155 dp->dp_meta_rootbp = *bp; 156 rrw_init(&dp->dp_config_rwlock, B_TRUE); 157 txg_init(dp, txg); 158 159 txg_list_create(&dp->dp_dirty_datasets, 160 offsetof(dsl_dataset_t, ds_dirty_link)); 161 txg_list_create(&dp->dp_dirty_zilogs, 162 offsetof(zilog_t, zl_dirty_link)); 163 txg_list_create(&dp->dp_dirty_dirs, 164 offsetof(dsl_dir_t, dd_dirty_link)); 165 txg_list_create(&dp->dp_sync_tasks, 166 offsetof(dsl_sync_task_t, dst_node)); 167 168 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); 169 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); 170 171 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri, 172 1, 4, 0); 173 174 return (dp); 175 } 176 177 int 178 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp) 179 { 180 int err; 181 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 182 183 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp, 184 &dp->dp_meta_objset); 185 if (err != 0) 186 dsl_pool_close(dp); 187 else 188 *dpp = dp; 189 190 return (err); 191 } 192 193 int 194 dsl_pool_open(dsl_pool_t *dp) 195 { 196 int err; 197 dsl_dir_t *dd; 198 dsl_dataset_t *ds; 199 uint64_t obj; 200 201 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 202 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 203 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, 204 &dp->dp_root_dir_obj); 205 if (err) 206 goto out; 207 208 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 209 NULL, dp, &dp->dp_root_dir); 210 if (err) 211 goto out; 212 213 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir); 214 if (err) 215 goto out; 216 217 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) { 218 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd); 219 if (err) 220 goto out; 221 err = dsl_dataset_hold_obj(dp, 222 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds); 223 if (err == 0) { 224 err = dsl_dataset_hold_obj(dp, 225 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp, 226 &dp->dp_origin_snap); 227 dsl_dataset_rele(ds, FTAG); 228 } 229 dsl_dir_rele(dd, dp); 230 if (err) 231 goto out; 232 } 233 234 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 235 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME, 236 &dp->dp_free_dir); 237 if (err) 238 goto out; 239 240 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 241 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj); 242 if (err) 243 goto out; 244 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 245 dp->dp_meta_objset, obj)); 246 } 247 248 /* 249 * Note: errors ignored, because the leak dir will not exist if we 250 * have not encountered a leak yet. 251 */ 252 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME, 253 &dp->dp_leak_dir); 254 255 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) { 256 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 257 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1, 258 &dp->dp_bptree_obj); 259 if (err != 0) 260 goto out; 261 } 262 263 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) { 264 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 265 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1, 266 &dp->dp_empty_bpobj); 267 if (err != 0) 268 goto out; 269 } 270 271 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 272 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1, 273 &dp->dp_tmp_userrefs_obj); 274 if (err == ENOENT) 275 err = 0; 276 if (err) 277 goto out; 278 279 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg); 280 281 out: 282 rrw_exit(&dp->dp_config_rwlock, FTAG); 283 return (err); 284 } 285 286 void 287 dsl_pool_close(dsl_pool_t *dp) 288 { 289 /* 290 * Drop our references from dsl_pool_open(). 291 * 292 * Since we held the origin_snap from "syncing" context (which 293 * includes pool-opening context), it actually only got a "ref" 294 * and not a hold, so just drop that here. 295 */ 296 if (dp->dp_origin_snap) 297 dsl_dataset_rele(dp->dp_origin_snap, dp); 298 if (dp->dp_mos_dir) 299 dsl_dir_rele(dp->dp_mos_dir, dp); 300 if (dp->dp_free_dir) 301 dsl_dir_rele(dp->dp_free_dir, dp); 302 if (dp->dp_leak_dir) 303 dsl_dir_rele(dp->dp_leak_dir, dp); 304 if (dp->dp_root_dir) 305 dsl_dir_rele(dp->dp_root_dir, dp); 306 307 bpobj_close(&dp->dp_free_bpobj); 308 309 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */ 310 if (dp->dp_meta_objset) 311 dmu_objset_evict(dp->dp_meta_objset); 312 313 txg_list_destroy(&dp->dp_dirty_datasets); 314 txg_list_destroy(&dp->dp_dirty_zilogs); 315 txg_list_destroy(&dp->dp_sync_tasks); 316 txg_list_destroy(&dp->dp_dirty_dirs); 317 318 /* 319 * We can't set retry to TRUE since we're explicitly specifying 320 * a spa to flush. This is good enough; any missed buffers for 321 * this spa won't cause trouble, and they'll eventually fall 322 * out of the ARC just like any other unused buffer. 323 */ 324 arc_flush(dp->dp_spa, FALSE); 325 326 txg_fini(dp); 327 dsl_scan_fini(dp); 328 dmu_buf_user_evict_wait(); 329 330 rrw_destroy(&dp->dp_config_rwlock); 331 mutex_destroy(&dp->dp_lock); 332 taskq_destroy(dp->dp_vnrele_taskq); 333 if (dp->dp_blkstats) 334 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 335 kmem_free(dp, sizeof (dsl_pool_t)); 336 } 337 338 dsl_pool_t * 339 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg) 340 { 341 int err; 342 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg); 343 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 344 objset_t *os; 345 dsl_dataset_t *ds; 346 uint64_t obj; 347 348 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 349 350 /* create and open the MOS (meta-objset) */ 351 dp->dp_meta_objset = dmu_objset_create_impl(spa, 352 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx); 353 354 /* create the pool directory */ 355 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 356 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx); 357 ASSERT0(err); 358 359 /* Initialize scan structures */ 360 VERIFY0(dsl_scan_init(dp, txg)); 361 362 /* create and open the root dir */ 363 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx); 364 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, 365 NULL, dp, &dp->dp_root_dir)); 366 367 /* create and open the meta-objset dir */ 368 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx); 369 VERIFY0(dsl_pool_open_special_dir(dp, 370 MOS_DIR_NAME, &dp->dp_mos_dir)); 371 372 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 373 /* create and open the free dir */ 374 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 375 FREE_DIR_NAME, tx); 376 VERIFY0(dsl_pool_open_special_dir(dp, 377 FREE_DIR_NAME, &dp->dp_free_dir)); 378 379 /* create and open the free_bplist */ 380 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx); 381 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 382 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0); 383 VERIFY0(bpobj_open(&dp->dp_free_bpobj, 384 dp->dp_meta_objset, obj)); 385 } 386 387 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) 388 dsl_pool_create_origin(dp, tx); 389 390 /* create the root dataset */ 391 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx); 392 393 /* create the root objset */ 394 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds)); 395 os = dmu_objset_create_impl(dp->dp_spa, ds, 396 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx); 397 #ifdef _KERNEL 398 zfs_create_fs(os, kcred, zplprops, tx); 399 #endif 400 dsl_dataset_rele(ds, FTAG); 401 402 dmu_tx_commit(tx); 403 404 rrw_exit(&dp->dp_config_rwlock, FTAG); 405 406 return (dp); 407 } 408 409 /* 410 * Account for the meta-objset space in its placeholder dsl_dir. 411 */ 412 void 413 dsl_pool_mos_diduse_space(dsl_pool_t *dp, 414 int64_t used, int64_t comp, int64_t uncomp) 415 { 416 ASSERT3U(comp, ==, uncomp); /* it's all metadata */ 417 mutex_enter(&dp->dp_lock); 418 dp->dp_mos_used_delta += used; 419 dp->dp_mos_compressed_delta += comp; 420 dp->dp_mos_uncompressed_delta += uncomp; 421 mutex_exit(&dp->dp_lock); 422 } 423 424 static int 425 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 426 { 427 dsl_deadlist_t *dl = arg; 428 dsl_deadlist_insert(dl, bp, tx); 429 return (0); 430 } 431 432 static void 433 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) 434 { 435 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 436 dmu_objset_sync(dp->dp_meta_objset, zio, tx); 437 VERIFY0(zio_wait(zio)); 438 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); 439 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 440 } 441 442 static void 443 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) 444 { 445 ASSERT(MUTEX_HELD(&dp->dp_lock)); 446 447 if (delta < 0) 448 ASSERT3U(-delta, <=, dp->dp_dirty_total); 449 450 dp->dp_dirty_total += delta; 451 452 /* 453 * Note: we signal even when increasing dp_dirty_total. 454 * This ensures forward progress -- each thread wakes the next waiter. 455 */ 456 if (dp->dp_dirty_total <= zfs_dirty_data_max) 457 cv_signal(&dp->dp_spaceavail_cv); 458 } 459 460 void 461 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) 462 { 463 zio_t *zio; 464 dmu_tx_t *tx; 465 dsl_dir_t *dd; 466 dsl_dataset_t *ds; 467 objset_t *mos = dp->dp_meta_objset; 468 list_t synced_datasets; 469 470 list_create(&synced_datasets, sizeof (dsl_dataset_t), 471 offsetof(dsl_dataset_t, ds_synced_link)); 472 473 tx = dmu_tx_create_assigned(dp, txg); 474 475 /* 476 * Write out all dirty blocks of dirty datasets. 477 */ 478 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 479 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 480 /* 481 * We must not sync any non-MOS datasets twice, because 482 * we may have taken a snapshot of them. However, we 483 * may sync newly-created datasets on pass 2. 484 */ 485 ASSERT(!list_link_active(&ds->ds_synced_link)); 486 list_insert_tail(&synced_datasets, ds); 487 dsl_dataset_sync(ds, zio, tx); 488 } 489 VERIFY0(zio_wait(zio)); 490 491 /* 492 * We have written all of the accounted dirty data, so our 493 * dp_space_towrite should now be zero. However, some seldom-used 494 * code paths do not adhere to this (e.g. dbuf_undirty(), also 495 * rounding error in dbuf_write_physdone). 496 * Shore up the accounting of any dirtied space now. 497 */ 498 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); 499 500 /* 501 * After the data blocks have been written (ensured by the zio_wait() 502 * above), update the user/group space accounting. 503 */ 504 for (ds = list_head(&synced_datasets); ds != NULL; 505 ds = list_next(&synced_datasets, ds)) { 506 dmu_objset_do_userquota_updates(ds->ds_objset, tx); 507 } 508 509 /* 510 * Sync the datasets again to push out the changes due to 511 * userspace updates. This must be done before we process the 512 * sync tasks, so that any snapshots will have the correct 513 * user accounting information (and we won't get confused 514 * about which blocks are part of the snapshot). 515 */ 516 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); 517 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { 518 ASSERT(list_link_active(&ds->ds_synced_link)); 519 dmu_buf_rele(ds->ds_dbuf, ds); 520 dsl_dataset_sync(ds, zio, tx); 521 } 522 VERIFY0(zio_wait(zio)); 523 524 /* 525 * Now that the datasets have been completely synced, we can 526 * clean up our in-memory structures accumulated while syncing: 527 * 528 * - move dead blocks from the pending deadlist to the on-disk deadlist 529 * - release hold from dsl_dataset_dirty() 530 */ 531 while ((ds = list_remove_head(&synced_datasets)) != NULL) { 532 objset_t *os = ds->ds_objset; 533 bplist_iterate(&ds->ds_pending_deadlist, 534 deadlist_enqueue_cb, &ds->ds_deadlist, tx); 535 ASSERT(!dmu_objset_is_dirty(os, txg)); 536 dmu_buf_rele(ds->ds_dbuf, ds); 537 } 538 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { 539 dsl_dir_sync(dd, tx); 540 } 541 542 /* 543 * The MOS's space is accounted for in the pool/$MOS 544 * (dp_mos_dir). We can't modify the mos while we're syncing 545 * it, so we remember the deltas and apply them here. 546 */ 547 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 || 548 dp->dp_mos_uncompressed_delta != 0) { 549 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD, 550 dp->dp_mos_used_delta, 551 dp->dp_mos_compressed_delta, 552 dp->dp_mos_uncompressed_delta, tx); 553 dp->dp_mos_used_delta = 0; 554 dp->dp_mos_compressed_delta = 0; 555 dp->dp_mos_uncompressed_delta = 0; 556 } 557 558 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || 559 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { 560 dsl_pool_sync_mos(dp, tx); 561 } 562 563 /* 564 * If we modify a dataset in the same txg that we want to destroy it, 565 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it. 566 * dsl_dir_destroy_check() will fail if there are unexpected holds. 567 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf 568 * and clearing the hold on it) before we process the sync_tasks. 569 * The MOS data dirtied by the sync_tasks will be synced on the next 570 * pass. 571 */ 572 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { 573 dsl_sync_task_t *dst; 574 /* 575 * No more sync tasks should have been added while we 576 * were syncing. 577 */ 578 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); 579 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) 580 dsl_sync_task_sync(dst, tx); 581 } 582 583 dmu_tx_commit(tx); 584 585 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); 586 } 587 588 void 589 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) 590 { 591 zilog_t *zilog; 592 593 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) { 594 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 595 zil_clean(zilog, txg); 596 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); 597 dmu_buf_rele(ds->ds_dbuf, zilog); 598 } 599 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg)); 600 } 601 602 /* 603 * TRUE if the current thread is the tx_sync_thread or if we 604 * are being called from SPA context during pool initialization. 605 */ 606 int 607 dsl_pool_sync_context(dsl_pool_t *dp) 608 { 609 return (curthread == dp->dp_tx.tx_sync_thread || 610 spa_is_initializing(dp->dp_spa)); 611 } 612 613 uint64_t 614 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) 615 { 616 uint64_t space, resv; 617 618 /* 619 * If we're trying to assess whether it's OK to do a free, 620 * cut the reservation in half to allow forward progress 621 * (e.g. make it possible to rm(1) files from a full pool). 622 */ 623 space = spa_get_dspace(dp->dp_spa); 624 resv = spa_get_slop_space(dp->dp_spa); 625 if (netfree) 626 resv >>= 1; 627 628 return (space - resv); 629 } 630 631 boolean_t 632 dsl_pool_need_dirty_delay(dsl_pool_t *dp) 633 { 634 uint64_t delay_min_bytes = 635 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; 636 boolean_t rv; 637 638 mutex_enter(&dp->dp_lock); 639 if (dp->dp_dirty_total > zfs_dirty_data_sync) 640 txg_kick(dp); 641 rv = (dp->dp_dirty_total > delay_min_bytes); 642 mutex_exit(&dp->dp_lock); 643 return (rv); 644 } 645 646 void 647 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) 648 { 649 if (space > 0) { 650 mutex_enter(&dp->dp_lock); 651 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; 652 dsl_pool_dirty_delta(dp, space); 653 mutex_exit(&dp->dp_lock); 654 } 655 } 656 657 void 658 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) 659 { 660 ASSERT3S(space, >=, 0); 661 if (space == 0) 662 return; 663 mutex_enter(&dp->dp_lock); 664 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { 665 /* XXX writing something we didn't dirty? */ 666 space = dp->dp_dirty_pertxg[txg & TXG_MASK]; 667 } 668 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); 669 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; 670 ASSERT3U(dp->dp_dirty_total, >=, space); 671 dsl_pool_dirty_delta(dp, -space); 672 mutex_exit(&dp->dp_lock); 673 } 674 675 /* ARGSUSED */ 676 static int 677 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 678 { 679 dmu_tx_t *tx = arg; 680 dsl_dataset_t *ds, *prev = NULL; 681 int err; 682 683 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 684 if (err) 685 return (err); 686 687 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 688 err = dsl_dataset_hold_obj(dp, 689 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 690 if (err) { 691 dsl_dataset_rele(ds, FTAG); 692 return (err); 693 } 694 695 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) 696 break; 697 dsl_dataset_rele(ds, FTAG); 698 ds = prev; 699 prev = NULL; 700 } 701 702 if (prev == NULL) { 703 prev = dp->dp_origin_snap; 704 705 /* 706 * The $ORIGIN can't have any data, or the accounting 707 * will be wrong. 708 */ 709 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth); 710 711 /* The origin doesn't get attached to itself */ 712 if (ds->ds_object == prev->ds_object) { 713 dsl_dataset_rele(ds, FTAG); 714 return (0); 715 } 716 717 dmu_buf_will_dirty(ds->ds_dbuf, tx); 718 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object; 719 dsl_dataset_phys(ds)->ds_prev_snap_txg = 720 dsl_dataset_phys(prev)->ds_creation_txg; 721 722 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 723 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object; 724 725 dmu_buf_will_dirty(prev->ds_dbuf, tx); 726 dsl_dataset_phys(prev)->ds_num_children++; 727 728 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) { 729 ASSERT(ds->ds_prev == NULL); 730 VERIFY0(dsl_dataset_hold_obj(dp, 731 dsl_dataset_phys(ds)->ds_prev_snap_obj, 732 ds, &ds->ds_prev)); 733 } 734 } 735 736 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object); 737 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object); 738 739 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) { 740 dmu_buf_will_dirty(prev->ds_dbuf, tx); 741 dsl_dataset_phys(prev)->ds_next_clones_obj = 742 zap_create(dp->dp_meta_objset, 743 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx); 744 } 745 VERIFY0(zap_add_int(dp->dp_meta_objset, 746 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx)); 747 748 dsl_dataset_rele(ds, FTAG); 749 if (prev != dp->dp_origin_snap) 750 dsl_dataset_rele(prev, FTAG); 751 return (0); 752 } 753 754 void 755 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx) 756 { 757 ASSERT(dmu_tx_is_syncing(tx)); 758 ASSERT(dp->dp_origin_snap != NULL); 759 760 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb, 761 tx, DS_FIND_CHILDREN)); 762 } 763 764 /* ARGSUSED */ 765 static int 766 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 767 { 768 dmu_tx_t *tx = arg; 769 objset_t *mos = dp->dp_meta_objset; 770 771 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) { 772 dsl_dataset_t *origin; 773 774 VERIFY0(dsl_dataset_hold_obj(dp, 775 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin)); 776 777 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) { 778 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx); 779 dsl_dir_phys(origin->ds_dir)->dd_clones = 780 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE, 781 0, tx); 782 } 783 784 VERIFY0(zap_add_int(dp->dp_meta_objset, 785 dsl_dir_phys(origin->ds_dir)->dd_clones, 786 ds->ds_object, tx)); 787 788 dsl_dataset_rele(origin, FTAG); 789 } 790 return (0); 791 } 792 793 void 794 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx) 795 { 796 ASSERT(dmu_tx_is_syncing(tx)); 797 uint64_t obj; 798 799 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx); 800 VERIFY0(dsl_pool_open_special_dir(dp, 801 FREE_DIR_NAME, &dp->dp_free_dir)); 802 803 /* 804 * We can't use bpobj_alloc(), because spa_version() still 805 * returns the old version, and we need a new-version bpobj with 806 * subobj support. So call dmu_object_alloc() directly. 807 */ 808 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ, 809 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx); 810 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 811 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx)); 812 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj)); 813 814 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 815 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN)); 816 } 817 818 void 819 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx) 820 { 821 uint64_t dsobj; 822 dsl_dataset_t *ds; 823 824 ASSERT(dmu_tx_is_syncing(tx)); 825 ASSERT(dp->dp_origin_snap == NULL); 826 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER)); 827 828 /* create the origin dir, ds, & snap-ds */ 829 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME, 830 NULL, 0, kcred, tx); 831 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 832 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx); 833 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj, 834 dp, &dp->dp_origin_snap)); 835 dsl_dataset_rele(ds, FTAG); 836 } 837 838 taskq_t * 839 dsl_pool_vnrele_taskq(dsl_pool_t *dp) 840 { 841 return (dp->dp_vnrele_taskq); 842 } 843 844 /* 845 * Walk through the pool-wide zap object of temporary snapshot user holds 846 * and release them. 847 */ 848 void 849 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp) 850 { 851 zap_attribute_t za; 852 zap_cursor_t zc; 853 objset_t *mos = dp->dp_meta_objset; 854 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 855 nvlist_t *holds; 856 857 if (zapobj == 0) 858 return; 859 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 860 861 holds = fnvlist_alloc(); 862 863 for (zap_cursor_init(&zc, mos, zapobj); 864 zap_cursor_retrieve(&zc, &za) == 0; 865 zap_cursor_advance(&zc)) { 866 char *htag; 867 nvlist_t *tags; 868 869 htag = strchr(za.za_name, '-'); 870 *htag = '\0'; 871 ++htag; 872 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) { 873 tags = fnvlist_alloc(); 874 fnvlist_add_boolean(tags, htag); 875 fnvlist_add_nvlist(holds, za.za_name, tags); 876 fnvlist_free(tags); 877 } else { 878 fnvlist_add_boolean(tags, htag); 879 } 880 } 881 dsl_dataset_user_release_tmp(dp, holds); 882 fnvlist_free(holds); 883 zap_cursor_fini(&zc); 884 } 885 886 /* 887 * Create the pool-wide zap object for storing temporary snapshot holds. 888 */ 889 void 890 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx) 891 { 892 objset_t *mos = dp->dp_meta_objset; 893 894 ASSERT(dp->dp_tmp_userrefs_obj == 0); 895 ASSERT(dmu_tx_is_syncing(tx)); 896 897 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS, 898 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx); 899 } 900 901 static int 902 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj, 903 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding) 904 { 905 objset_t *mos = dp->dp_meta_objset; 906 uint64_t zapobj = dp->dp_tmp_userrefs_obj; 907 char *name; 908 int error; 909 910 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS); 911 ASSERT(dmu_tx_is_syncing(tx)); 912 913 /* 914 * If the pool was created prior to SPA_VERSION_USERREFS, the 915 * zap object for temporary holds might not exist yet. 916 */ 917 if (zapobj == 0) { 918 if (holding) { 919 dsl_pool_user_hold_create_obj(dp, tx); 920 zapobj = dp->dp_tmp_userrefs_obj; 921 } else { 922 return (SET_ERROR(ENOENT)); 923 } 924 } 925 926 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag); 927 if (holding) 928 error = zap_add(mos, zapobj, name, 8, 1, &now, tx); 929 else 930 error = zap_remove(mos, zapobj, name, tx); 931 strfree(name); 932 933 return (error); 934 } 935 936 /* 937 * Add a temporary hold for the given dataset object and tag. 938 */ 939 int 940 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 941 uint64_t now, dmu_tx_t *tx) 942 { 943 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE)); 944 } 945 946 /* 947 * Release a temporary hold for the given dataset object and tag. 948 */ 949 int 950 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag, 951 dmu_tx_t *tx) 952 { 953 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL, 954 tx, B_FALSE)); 955 } 956 957 /* 958 * DSL Pool Configuration Lock 959 * 960 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset 961 * creation / destruction / rename / property setting). It must be held for 962 * read to hold a dataset or dsl_dir. I.e. you must call 963 * dsl_pool_config_enter() or dsl_pool_hold() before calling 964 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock 965 * must be held continuously until all datasets and dsl_dirs are released. 966 * 967 * The only exception to this rule is that if a "long hold" is placed on 968 * a dataset, then the dp_config_rwlock may be dropped while the dataset 969 * is still held. The long hold will prevent the dataset from being 970 * destroyed -- the destroy will fail with EBUSY. A long hold can be 971 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset 972 * (by calling dsl_{dataset,objset}_{try}own{_obj}). 973 * 974 * Legitimate long-holders (including owners) should be long-running, cancelable 975 * tasks that should cause "zfs destroy" to fail. This includes DMU 976 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open), 977 * "zfs send", and "zfs diff". There are several other long-holders whose 978 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()). 979 * 980 * The usual formula for long-holding would be: 981 * dsl_pool_hold() 982 * dsl_dataset_hold() 983 * ... perform checks ... 984 * dsl_dataset_long_hold() 985 * dsl_pool_rele() 986 * ... perform long-running task ... 987 * dsl_dataset_long_rele() 988 * dsl_dataset_rele() 989 * 990 * Note that when the long hold is released, the dataset is still held but 991 * the pool is not held. The dataset may change arbitrarily during this time 992 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the 993 * dataset except release it. 994 * 995 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only 996 * or modifying operations. 997 * 998 * Modifying operations should generally use dsl_sync_task(). The synctask 999 * infrastructure enforces proper locking strategy with respect to the 1000 * dp_config_rwlock. See the comment above dsl_sync_task() for details. 1001 * 1002 * Read-only operations will manually hold the pool, then the dataset, obtain 1003 * information from the dataset, then release the pool and dataset. 1004 * dmu_objset_{hold,rele}() are convenience routines that also do the pool 1005 * hold/rele. 1006 */ 1007 1008 int 1009 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp) 1010 { 1011 spa_t *spa; 1012 int error; 1013 1014 error = spa_open(name, &spa, tag); 1015 if (error == 0) { 1016 *dp = spa_get_dsl(spa); 1017 dsl_pool_config_enter(*dp, tag); 1018 } 1019 return (error); 1020 } 1021 1022 void 1023 dsl_pool_rele(dsl_pool_t *dp, void *tag) 1024 { 1025 dsl_pool_config_exit(dp, tag); 1026 spa_close(dp->dp_spa, tag); 1027 } 1028 1029 void 1030 dsl_pool_config_enter(dsl_pool_t *dp, void *tag) 1031 { 1032 /* 1033 * We use a "reentrant" reader-writer lock, but not reentrantly. 1034 * 1035 * The rrwlock can (with the track_all flag) track all reading threads, 1036 * which is very useful for debugging which code path failed to release 1037 * the lock, and for verifying that the *current* thread does hold 1038 * the lock. 1039 * 1040 * (Unlike a rwlock, which knows that N threads hold it for 1041 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE 1042 * if any thread holds it for read, even if this thread doesn't). 1043 */ 1044 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER)); 1045 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag); 1046 } 1047 1048 void 1049 dsl_pool_config_exit(dsl_pool_t *dp, void *tag) 1050 { 1051 rrw_exit(&dp->dp_config_rwlock, tag); 1052 } 1053 1054 boolean_t 1055 dsl_pool_config_held(dsl_pool_t *dp) 1056 { 1057 return (RRW_LOCK_HELD(&dp->dp_config_rwlock)); 1058 } 1059