1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dmu.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_prop.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_deleg.h> 38 #include <sys/dmu_impl.h> 39 #include <sys/spa.h> 40 #include <sys/metaslab.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/arc.h> 44 #include <sys/sunddi.h> 45 #include <sys/zfeature.h> 46 #include <sys/policy.h> 47 #include <sys/zfs_znode.h> 48 #include "zfs_namecheck.h" 49 #include "zfs_prop.h" 50 51 /* 52 * Filesystem and Snapshot Limits 53 * ------------------------------ 54 * 55 * These limits are used to restrict the number of filesystems and/or snapshots 56 * that can be created at a given level in the tree or below. A typical 57 * use-case is with a delegated dataset where the administrator wants to ensure 58 * that a user within the zone is not creating too many additional filesystems 59 * or snapshots, even though they're not exceeding their space quota. 60 * 61 * The filesystem and snapshot counts are stored as extensible properties. This 62 * capability is controlled by a feature flag and must be enabled to be used. 63 * Once enabled, the feature is not active until the first limit is set. At 64 * that point, future operations to create/destroy filesystems or snapshots 65 * will validate and update the counts. 66 * 67 * Because the count properties will not exist before the feature is active, 68 * the counts are updated when a limit is first set on an uninitialized 69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 72 * snapshot count properties on a node indicate uninitialized counts on that 73 * node.) When first setting a limit on an uninitialized node, the code starts 74 * at the filesystem with the new limit and descends into all sub-filesystems 75 * to add the count properties. 76 * 77 * In practice this is lightweight since a limit is typically set when the 78 * filesystem is created and thus has no children. Once valid, changing the 79 * limit value won't require a re-traversal since the counts are already valid. 80 * When recursively fixing the counts, if a node with a limit is encountered 81 * during the descent, the counts are known to be valid and there is no need to 82 * descend into that filesystem's children. The counts on filesystems above the 83 * one with the new limit will still be uninitialized, unless a limit is 84 * eventually set on one of those filesystems. The counts are always recursively 85 * updated when a limit is set on a dataset, unless there is already a limit. 86 * When a new limit value is set on a filesystem with an existing limit, it is 87 * possible for the new limit to be less than the current count at that level 88 * since a user who can change the limit is also allowed to exceed the limit. 89 * 90 * Once the feature is active, then whenever a filesystem or snapshot is 91 * created, the code recurses up the tree, validating the new count against the 92 * limit at each initialized level. In practice, most levels will not have a 93 * limit set. If there is a limit at any initialized level up the tree, the 94 * check must pass or the creation will fail. Likewise, when a filesystem or 95 * snapshot is destroyed, the counts are recursively adjusted all the way up 96 * the initizized nodes in the tree. Renaming a filesystem into different point 97 * in the tree will first validate, then update the counts on each branch up to 98 * the common ancestor. A receive will also validate the counts and then update 99 * them. 100 * 101 * An exception to the above behavior is that the limit is not enforced if the 102 * user has permission to modify the limit. This is primarily so that 103 * recursive snapshots in the global zone always work. We want to prevent a 104 * denial-of-service in which a lower level delegated dataset could max out its 105 * limit and thus block recursive snapshots from being taken in the global zone. 106 * Because of this, it is possible for the snapshot count to be over the limit 107 * and snapshots taken in the global zone could cause a lower level dataset to 108 * hit or exceed its limit. The administrator taking the global zone recursive 109 * snapshot should be aware of this side-effect and behave accordingly. 110 * For consistency, the filesystem limit is also not enforced if the user can 111 * modify the limit. 112 * 113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 116 * dsl_dir_init_fs_ss_count(). 117 * 118 * There is a special case when we receive a filesystem that already exists. In 119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 120 * never update the filesystem counts for temporary clones. 121 * 122 * Likewise, we do not update the snapshot counts for temporary snapshots, 123 * such as those created by zfs diff. 124 */ 125 126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 127 128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 129 130 static void 131 dsl_dir_evict_async(void *dbu) 132 { 133 dsl_dir_t *dd = dbu; 134 dsl_pool_t *dp = dd->dd_pool; 135 int t; 136 137 dd->dd_dbuf = NULL; 138 139 for (t = 0; t < TXG_SIZE; t++) { 140 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 141 ASSERT(dd->dd_tempreserved[t] == 0); 142 ASSERT(dd->dd_space_towrite[t] == 0); 143 } 144 145 if (dd->dd_parent) 146 dsl_dir_async_rele(dd->dd_parent, dd); 147 148 spa_async_close(dd->dd_pool->dp_spa, dd); 149 150 dsl_prop_fini(dd); 151 mutex_destroy(&dd->dd_lock); 152 kmem_free(dd, sizeof (dsl_dir_t)); 153 } 154 155 int 156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 157 const char *tail, void *tag, dsl_dir_t **ddp) 158 { 159 dmu_buf_t *dbuf; 160 dsl_dir_t *dd; 161 int err; 162 163 ASSERT(dsl_pool_config_held(dp)); 164 165 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 166 if (err != 0) 167 return (err); 168 dd = dmu_buf_get_user(dbuf); 169 #ifdef ZFS_DEBUG 170 { 171 dmu_object_info_t doi; 172 dmu_object_info_from_db(dbuf, &doi); 173 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 174 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 175 } 176 #endif 177 if (dd == NULL) { 178 dsl_dir_t *winner; 179 180 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 181 dd->dd_object = ddobj; 182 dd->dd_dbuf = dbuf; 183 dd->dd_pool = dp; 184 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 185 dsl_prop_init(dd); 186 187 dsl_dir_snap_cmtime_update(dd); 188 189 if (dsl_dir_phys(dd)->dd_parent_obj) { 190 err = dsl_dir_hold_obj(dp, 191 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 192 &dd->dd_parent); 193 if (err != 0) 194 goto errout; 195 if (tail) { 196 #ifdef ZFS_DEBUG 197 uint64_t foundobj; 198 199 err = zap_lookup(dp->dp_meta_objset, 200 dsl_dir_phys(dd->dd_parent)-> 201 dd_child_dir_zapobj, tail, 202 sizeof (foundobj), 1, &foundobj); 203 ASSERT(err || foundobj == ddobj); 204 #endif 205 (void) strcpy(dd->dd_myname, tail); 206 } else { 207 err = zap_value_search(dp->dp_meta_objset, 208 dsl_dir_phys(dd->dd_parent)-> 209 dd_child_dir_zapobj, 210 ddobj, 0, dd->dd_myname); 211 } 212 if (err != 0) 213 goto errout; 214 } else { 215 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 216 } 217 218 if (dsl_dir_is_clone(dd)) { 219 dmu_buf_t *origin_bonus; 220 dsl_dataset_phys_t *origin_phys; 221 222 /* 223 * We can't open the origin dataset, because 224 * that would require opening this dsl_dir. 225 * Just look at its phys directly instead. 226 */ 227 err = dmu_bonus_hold(dp->dp_meta_objset, 228 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 229 &origin_bonus); 230 if (err != 0) 231 goto errout; 232 origin_phys = origin_bonus->db_data; 233 dd->dd_origin_txg = 234 origin_phys->ds_creation_txg; 235 dmu_buf_rele(origin_bonus, FTAG); 236 } 237 238 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 239 &dd->dd_dbuf); 240 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 241 if (winner != NULL) { 242 if (dd->dd_parent) 243 dsl_dir_rele(dd->dd_parent, dd); 244 dsl_prop_fini(dd); 245 mutex_destroy(&dd->dd_lock); 246 kmem_free(dd, sizeof (dsl_dir_t)); 247 dd = winner; 248 } else { 249 spa_open_ref(dp->dp_spa, dd); 250 } 251 } 252 253 /* 254 * The dsl_dir_t has both open-to-close and instantiate-to-evict 255 * holds on the spa. We need the open-to-close holds because 256 * otherwise the spa_refcnt wouldn't change when we open a 257 * dir which the spa also has open, so we could incorrectly 258 * think it was OK to unload/export/destroy the pool. We need 259 * the instantiate-to-evict hold because the dsl_dir_t has a 260 * pointer to the dd_pool, which has a pointer to the spa_t. 261 */ 262 spa_open_ref(dp->dp_spa, tag); 263 ASSERT3P(dd->dd_pool, ==, dp); 264 ASSERT3U(dd->dd_object, ==, ddobj); 265 ASSERT3P(dd->dd_dbuf, ==, dbuf); 266 *ddp = dd; 267 return (0); 268 269 errout: 270 if (dd->dd_parent) 271 dsl_dir_rele(dd->dd_parent, dd); 272 dsl_prop_fini(dd); 273 mutex_destroy(&dd->dd_lock); 274 kmem_free(dd, sizeof (dsl_dir_t)); 275 dmu_buf_rele(dbuf, tag); 276 return (err); 277 } 278 279 void 280 dsl_dir_rele(dsl_dir_t *dd, void *tag) 281 { 282 dprintf_dd(dd, "%s\n", ""); 283 spa_close(dd->dd_pool->dp_spa, tag); 284 dmu_buf_rele(dd->dd_dbuf, tag); 285 } 286 287 /* 288 * Remove a reference to the given dsl dir that is being asynchronously 289 * released. Async releases occur from a taskq performing eviction of 290 * dsl datasets and dirs. This process is identical to a normal release 291 * with the exception of using the async API for releasing the reference on 292 * the spa. 293 */ 294 void 295 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 296 { 297 dprintf_dd(dd, "%s\n", ""); 298 spa_async_close(dd->dd_pool->dp_spa, tag); 299 dmu_buf_rele(dd->dd_dbuf, tag); 300 } 301 302 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 303 void 304 dsl_dir_name(dsl_dir_t *dd, char *buf) 305 { 306 if (dd->dd_parent) { 307 dsl_dir_name(dd->dd_parent, buf); 308 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 309 ZFS_MAX_DATASET_NAME_LEN); 310 } else { 311 buf[0] = '\0'; 312 } 313 if (!MUTEX_HELD(&dd->dd_lock)) { 314 /* 315 * recursive mutex so that we can use 316 * dprintf_dd() with dd_lock held 317 */ 318 mutex_enter(&dd->dd_lock); 319 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 320 <, ZFS_MAX_DATASET_NAME_LEN); 321 mutex_exit(&dd->dd_lock); 322 } else { 323 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 324 <, ZFS_MAX_DATASET_NAME_LEN); 325 } 326 } 327 328 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 329 int 330 dsl_dir_namelen(dsl_dir_t *dd) 331 { 332 int result = 0; 333 334 if (dd->dd_parent) { 335 /* parent's name + 1 for the "/" */ 336 result = dsl_dir_namelen(dd->dd_parent) + 1; 337 } 338 339 if (!MUTEX_HELD(&dd->dd_lock)) { 340 /* see dsl_dir_name */ 341 mutex_enter(&dd->dd_lock); 342 result += strlen(dd->dd_myname); 343 mutex_exit(&dd->dd_lock); 344 } else { 345 result += strlen(dd->dd_myname); 346 } 347 348 return (result); 349 } 350 351 static int 352 getcomponent(const char *path, char *component, const char **nextp) 353 { 354 char *p; 355 356 if ((path == NULL) || (path[0] == '\0')) 357 return (SET_ERROR(ENOENT)); 358 /* This would be a good place to reserve some namespace... */ 359 p = strpbrk(path, "/@"); 360 if (p && (p[1] == '/' || p[1] == '@')) { 361 /* two separators in a row */ 362 return (SET_ERROR(EINVAL)); 363 } 364 if (p == NULL || p == path) { 365 /* 366 * if the first thing is an @ or /, it had better be an 367 * @ and it had better not have any more ats or slashes, 368 * and it had better have something after the @. 369 */ 370 if (p != NULL && 371 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 372 return (SET_ERROR(EINVAL)); 373 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 374 return (SET_ERROR(ENAMETOOLONG)); 375 (void) strcpy(component, path); 376 p = NULL; 377 } else if (p[0] == '/') { 378 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 379 return (SET_ERROR(ENAMETOOLONG)); 380 (void) strncpy(component, path, p - path); 381 component[p - path] = '\0'; 382 p++; 383 } else if (p[0] == '@') { 384 /* 385 * if the next separator is an @, there better not be 386 * any more slashes. 387 */ 388 if (strchr(path, '/')) 389 return (SET_ERROR(EINVAL)); 390 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 391 return (SET_ERROR(ENAMETOOLONG)); 392 (void) strncpy(component, path, p - path); 393 component[p - path] = '\0'; 394 } else { 395 panic("invalid p=%p", (void *)p); 396 } 397 *nextp = p; 398 return (0); 399 } 400 401 /* 402 * Return the dsl_dir_t, and possibly the last component which couldn't 403 * be found in *tail. The name must be in the specified dsl_pool_t. This 404 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 405 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 406 * (*tail)[0] == '@' means that the last component is a snapshot. 407 */ 408 int 409 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 410 dsl_dir_t **ddp, const char **tailp) 411 { 412 char buf[ZFS_MAX_DATASET_NAME_LEN]; 413 const char *spaname, *next, *nextnext = NULL; 414 int err; 415 dsl_dir_t *dd; 416 uint64_t ddobj; 417 418 err = getcomponent(name, buf, &next); 419 if (err != 0) 420 return (err); 421 422 /* Make sure the name is in the specified pool. */ 423 spaname = spa_name(dp->dp_spa); 424 if (strcmp(buf, spaname) != 0) 425 return (SET_ERROR(EXDEV)); 426 427 ASSERT(dsl_pool_config_held(dp)); 428 429 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 430 if (err != 0) { 431 return (err); 432 } 433 434 while (next != NULL) { 435 dsl_dir_t *child_dd; 436 err = getcomponent(next, buf, &nextnext); 437 if (err != 0) 438 break; 439 ASSERT(next[0] != '\0'); 440 if (next[0] == '@') 441 break; 442 dprintf("looking up %s in obj%lld\n", 443 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj); 444 445 err = zap_lookup(dp->dp_meta_objset, 446 dsl_dir_phys(dd)->dd_child_dir_zapobj, 447 buf, sizeof (ddobj), 1, &ddobj); 448 if (err != 0) { 449 if (err == ENOENT) 450 err = 0; 451 break; 452 } 453 454 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 455 if (err != 0) 456 break; 457 dsl_dir_rele(dd, tag); 458 dd = child_dd; 459 next = nextnext; 460 } 461 462 if (err != 0) { 463 dsl_dir_rele(dd, tag); 464 return (err); 465 } 466 467 /* 468 * It's an error if there's more than one component left, or 469 * tailp==NULL and there's any component left. 470 */ 471 if (next != NULL && 472 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 473 /* bad path name */ 474 dsl_dir_rele(dd, tag); 475 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 476 err = SET_ERROR(ENOENT); 477 } 478 if (tailp != NULL) 479 *tailp = next; 480 *ddp = dd; 481 return (err); 482 } 483 484 /* 485 * If the counts are already initialized for this filesystem and its 486 * descendants then do nothing, otherwise initialize the counts. 487 * 488 * The counts on this filesystem, and those below, may be uninitialized due to 489 * either the use of a pre-existing pool which did not support the 490 * filesystem/snapshot limit feature, or one in which the feature had not yet 491 * been enabled. 492 * 493 * Recursively descend the filesystem tree and update the filesystem/snapshot 494 * counts on each filesystem below, then update the cumulative count on the 495 * current filesystem. If the filesystem already has a count set on it, 496 * then we know that its counts, and the counts on the filesystems below it, 497 * are already correct, so we don't have to update this filesystem. 498 */ 499 static void 500 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 501 { 502 uint64_t my_fs_cnt = 0; 503 uint64_t my_ss_cnt = 0; 504 dsl_pool_t *dp = dd->dd_pool; 505 objset_t *os = dp->dp_meta_objset; 506 zap_cursor_t *zc; 507 zap_attribute_t *za; 508 dsl_dataset_t *ds; 509 510 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 511 ASSERT(dsl_pool_config_held(dp)); 512 ASSERT(dmu_tx_is_syncing(tx)); 513 514 dsl_dir_zapify(dd, tx); 515 516 /* 517 * If the filesystem count has already been initialized then we 518 * don't need to recurse down any further. 519 */ 520 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 521 return; 522 523 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 524 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 525 526 /* Iterate my child dirs */ 527 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 528 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 529 dsl_dir_t *chld_dd; 530 uint64_t count; 531 532 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 533 &chld_dd)); 534 535 /* 536 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 537 * temporary datasets. 538 */ 539 if (chld_dd->dd_myname[0] == '$' || 540 chld_dd->dd_myname[0] == '%') { 541 dsl_dir_rele(chld_dd, FTAG); 542 continue; 543 } 544 545 my_fs_cnt++; /* count this child */ 546 547 dsl_dir_init_fs_ss_count(chld_dd, tx); 548 549 VERIFY0(zap_lookup(os, chld_dd->dd_object, 550 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 551 my_fs_cnt += count; 552 VERIFY0(zap_lookup(os, chld_dd->dd_object, 553 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 554 my_ss_cnt += count; 555 556 dsl_dir_rele(chld_dd, FTAG); 557 } 558 zap_cursor_fini(zc); 559 /* Count my snapshots (we counted children's snapshots above) */ 560 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 561 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 562 563 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 564 zap_cursor_retrieve(zc, za) == 0; 565 zap_cursor_advance(zc)) { 566 /* Don't count temporary snapshots */ 567 if (za->za_name[0] != '%') 568 my_ss_cnt++; 569 } 570 zap_cursor_fini(zc); 571 572 dsl_dataset_rele(ds, FTAG); 573 574 kmem_free(zc, sizeof (zap_cursor_t)); 575 kmem_free(za, sizeof (zap_attribute_t)); 576 577 /* we're in a sync task, update counts */ 578 dmu_buf_will_dirty(dd->dd_dbuf, tx); 579 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 580 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 581 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 582 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 583 } 584 585 static int 586 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 587 { 588 char *ddname = (char *)arg; 589 dsl_pool_t *dp = dmu_tx_pool(tx); 590 dsl_dataset_t *ds; 591 dsl_dir_t *dd; 592 int error; 593 594 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 595 if (error != 0) 596 return (error); 597 598 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 599 dsl_dataset_rele(ds, FTAG); 600 return (SET_ERROR(ENOTSUP)); 601 } 602 603 dd = ds->ds_dir; 604 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 605 dsl_dir_is_zapified(dd) && 606 zap_contains(dp->dp_meta_objset, dd->dd_object, 607 DD_FIELD_FILESYSTEM_COUNT) == 0) { 608 dsl_dataset_rele(ds, FTAG); 609 return (SET_ERROR(EALREADY)); 610 } 611 612 dsl_dataset_rele(ds, FTAG); 613 return (0); 614 } 615 616 static void 617 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 618 { 619 char *ddname = (char *)arg; 620 dsl_pool_t *dp = dmu_tx_pool(tx); 621 dsl_dataset_t *ds; 622 spa_t *spa; 623 624 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 625 626 spa = dsl_dataset_get_spa(ds); 627 628 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 629 /* 630 * Since the feature was not active and we're now setting a 631 * limit, increment the feature-active counter so that the 632 * feature becomes active for the first time. 633 * 634 * We are already in a sync task so we can update the MOS. 635 */ 636 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 637 } 638 639 /* 640 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 641 * we need to ensure the counts are correct. Descend down the tree from 642 * this point and update all of the counts to be accurate. 643 */ 644 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 645 646 dsl_dataset_rele(ds, FTAG); 647 } 648 649 /* 650 * Make sure the feature is enabled and activate it if necessary. 651 * Since we're setting a limit, ensure the on-disk counts are valid. 652 * This is only called by the ioctl path when setting a limit value. 653 * 654 * We do not need to validate the new limit, since users who can change the 655 * limit are also allowed to exceed the limit. 656 */ 657 int 658 dsl_dir_activate_fs_ss_limit(const char *ddname) 659 { 660 int error; 661 662 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 663 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 664 ZFS_SPACE_CHECK_RESERVED); 665 666 if (error == EALREADY) 667 error = 0; 668 669 return (error); 670 } 671 672 /* 673 * Used to determine if the filesystem_limit or snapshot_limit should be 674 * enforced. We allow the limit to be exceeded if the user has permission to 675 * write the property value. We pass in the creds that we got in the open 676 * context since we will always be the GZ root in syncing context. We also have 677 * to handle the case where we are allowed to change the limit on the current 678 * dataset, but there may be another limit in the tree above. 679 * 680 * We can never modify these two properties within a non-global zone. In 681 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 682 * can't use that function since we are already holding the dp_config_rwlock. 683 * In addition, we already have the dd and dealing with snapshots is simplified 684 * in this code. 685 */ 686 687 typedef enum { 688 ENFORCE_ALWAYS, 689 ENFORCE_NEVER, 690 ENFORCE_ABOVE 691 } enforce_res_t; 692 693 static enforce_res_t 694 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 695 { 696 enforce_res_t enforce = ENFORCE_ALWAYS; 697 uint64_t obj; 698 dsl_dataset_t *ds; 699 uint64_t zoned; 700 701 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 702 prop == ZFS_PROP_SNAPSHOT_LIMIT); 703 704 #ifdef _KERNEL 705 if (crgetzoneid(cr) != GLOBAL_ZONEID) 706 return (ENFORCE_ALWAYS); 707 708 if (secpolicy_zfs(cr) == 0) 709 return (ENFORCE_NEVER); 710 #endif 711 712 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 713 return (ENFORCE_ALWAYS); 714 715 ASSERT(dsl_pool_config_held(dd->dd_pool)); 716 717 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 718 return (ENFORCE_ALWAYS); 719 720 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 721 /* Only root can access zoned fs's from the GZ */ 722 enforce = ENFORCE_ALWAYS; 723 } else { 724 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 725 enforce = ENFORCE_ABOVE; 726 } 727 728 dsl_dataset_rele(ds, FTAG); 729 return (enforce); 730 } 731 732 /* 733 * Check if adding additional child filesystem(s) would exceed any filesystem 734 * limits or adding additional snapshot(s) would exceed any snapshot limits. 735 * The prop argument indicates which limit to check. 736 * 737 * Note that all filesystem limits up to the root (or the highest 738 * initialized) filesystem or the given ancestor must be satisfied. 739 */ 740 int 741 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 742 dsl_dir_t *ancestor, cred_t *cr) 743 { 744 objset_t *os = dd->dd_pool->dp_meta_objset; 745 uint64_t limit, count; 746 char *count_prop; 747 enforce_res_t enforce; 748 int err = 0; 749 750 ASSERT(dsl_pool_config_held(dd->dd_pool)); 751 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 752 prop == ZFS_PROP_SNAPSHOT_LIMIT); 753 754 /* 755 * If we're allowed to change the limit, don't enforce the limit 756 * e.g. this can happen if a snapshot is taken by an administrative 757 * user in the global zone (i.e. a recursive snapshot by root). 758 * However, we must handle the case of delegated permissions where we 759 * are allowed to change the limit on the current dataset, but there 760 * is another limit in the tree above. 761 */ 762 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 763 if (enforce == ENFORCE_NEVER) 764 return (0); 765 766 /* 767 * e.g. if renaming a dataset with no snapshots, count adjustment 768 * is 0. 769 */ 770 if (delta == 0) 771 return (0); 772 773 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 774 /* 775 * We don't enforce the limit for temporary snapshots. This is 776 * indicated by a NULL cred_t argument. 777 */ 778 if (cr == NULL) 779 return (0); 780 781 count_prop = DD_FIELD_SNAPSHOT_COUNT; 782 } else { 783 count_prop = DD_FIELD_FILESYSTEM_COUNT; 784 } 785 786 /* 787 * If an ancestor has been provided, stop checking the limit once we 788 * hit that dir. We need this during rename so that we don't overcount 789 * the check once we recurse up to the common ancestor. 790 */ 791 if (ancestor == dd) 792 return (0); 793 794 /* 795 * If we hit an uninitialized node while recursing up the tree, we can 796 * stop since we know there is no limit here (or above). The counts are 797 * not valid on this node and we know we won't touch this node's counts. 798 */ 799 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 800 count_prop, sizeof (count), 1, &count) == ENOENT) 801 return (0); 802 803 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 804 B_FALSE); 805 if (err != 0) 806 return (err); 807 808 /* Is there a limit which we've hit? */ 809 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 810 return (SET_ERROR(EDQUOT)); 811 812 if (dd->dd_parent != NULL) 813 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 814 ancestor, cr); 815 816 return (err); 817 } 818 819 /* 820 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 821 * parents. When a new filesystem/snapshot is created, increment the count on 822 * all parents, and when a filesystem/snapshot is destroyed, decrement the 823 * count. 824 */ 825 void 826 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 827 dmu_tx_t *tx) 828 { 829 int err; 830 objset_t *os = dd->dd_pool->dp_meta_objset; 831 uint64_t count; 832 833 ASSERT(dsl_pool_config_held(dd->dd_pool)); 834 ASSERT(dmu_tx_is_syncing(tx)); 835 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 836 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 837 838 /* 839 * When we receive an incremental stream into a filesystem that already 840 * exists, a temporary clone is created. We don't count this temporary 841 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 842 * $MOS & $ORIGIN) objsets. 843 */ 844 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 845 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 846 return; 847 848 /* 849 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 850 */ 851 if (delta == 0) 852 return; 853 854 /* 855 * If we hit an uninitialized node while recursing up the tree, we can 856 * stop since we know the counts are not valid on this node and we 857 * know we shouldn't touch this node's counts. An uninitialized count 858 * on the node indicates that either the feature has not yet been 859 * activated or there are no limits on this part of the tree. 860 */ 861 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 862 prop, sizeof (count), 1, &count)) == ENOENT) 863 return; 864 VERIFY0(err); 865 866 count += delta; 867 /* Use a signed verify to make sure we're not neg. */ 868 VERIFY3S(count, >=, 0); 869 870 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 871 tx)); 872 873 /* Roll up this additional count into our ancestors */ 874 if (dd->dd_parent != NULL) 875 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 876 } 877 878 uint64_t 879 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 880 dmu_tx_t *tx) 881 { 882 objset_t *mos = dp->dp_meta_objset; 883 uint64_t ddobj; 884 dsl_dir_phys_t *ddphys; 885 dmu_buf_t *dbuf; 886 887 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 888 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 889 if (pds) { 890 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 891 name, sizeof (uint64_t), 1, &ddobj, tx)); 892 } else { 893 /* it's the root dir */ 894 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 895 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 896 } 897 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 898 dmu_buf_will_dirty(dbuf, tx); 899 ddphys = dbuf->db_data; 900 901 ddphys->dd_creation_time = gethrestime_sec(); 902 if (pds) { 903 ddphys->dd_parent_obj = pds->dd_object; 904 905 /* update the filesystem counts */ 906 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 907 } 908 ddphys->dd_props_zapobj = zap_create(mos, 909 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 910 ddphys->dd_child_dir_zapobj = zap_create(mos, 911 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 912 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 913 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 914 dmu_buf_rele(dbuf, FTAG); 915 916 return (ddobj); 917 } 918 919 boolean_t 920 dsl_dir_is_clone(dsl_dir_t *dd) 921 { 922 return (dsl_dir_phys(dd)->dd_origin_obj && 923 (dd->dd_pool->dp_origin_snap == NULL || 924 dsl_dir_phys(dd)->dd_origin_obj != 925 dd->dd_pool->dp_origin_snap->ds_object)); 926 } 927 928 void 929 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 930 { 931 mutex_enter(&dd->dd_lock); 932 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, 933 dsl_dir_phys(dd)->dd_used_bytes); 934 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 935 dsl_dir_phys(dd)->dd_quota); 936 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 937 dsl_dir_phys(dd)->dd_reserved); 938 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, 939 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 940 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 941 dsl_dir_phys(dd)->dd_compressed_bytes)); 942 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 943 dsl_dir_phys(dd)->dd_uncompressed_bytes); 944 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 945 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 946 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 947 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 948 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 949 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 950 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 951 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 952 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 953 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 954 } 955 mutex_exit(&dd->dd_lock); 956 957 if (dsl_dir_is_zapified(dd)) { 958 uint64_t count; 959 objset_t *os = dd->dd_pool->dp_meta_objset; 960 961 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 962 sizeof (count), 1, &count) == 0) { 963 dsl_prop_nvlist_add_uint64(nv, 964 ZFS_PROP_FILESYSTEM_COUNT, count); 965 } 966 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 967 sizeof (count), 1, &count) == 0) { 968 dsl_prop_nvlist_add_uint64(nv, 969 ZFS_PROP_SNAPSHOT_COUNT, count); 970 } 971 } 972 973 if (dsl_dir_is_clone(dd)) { 974 dsl_dataset_t *ds; 975 char buf[ZFS_MAX_DATASET_NAME_LEN]; 976 977 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 978 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 979 dsl_dataset_name(ds, buf); 980 dsl_dataset_rele(ds, FTAG); 981 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 982 } 983 } 984 985 void 986 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 987 { 988 dsl_pool_t *dp = dd->dd_pool; 989 990 ASSERT(dsl_dir_phys(dd)); 991 992 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 993 /* up the hold count until we can be written out */ 994 dmu_buf_add_ref(dd->dd_dbuf, dd); 995 } 996 } 997 998 static int64_t 999 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1000 { 1001 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1002 uint64_t new_accounted = 1003 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1004 return (new_accounted - old_accounted); 1005 } 1006 1007 void 1008 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1009 { 1010 ASSERT(dmu_tx_is_syncing(tx)); 1011 1012 mutex_enter(&dd->dd_lock); 1013 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1014 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1015 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1016 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1017 mutex_exit(&dd->dd_lock); 1018 1019 /* release the hold from dsl_dir_dirty */ 1020 dmu_buf_rele(dd->dd_dbuf, dd); 1021 } 1022 1023 static uint64_t 1024 dsl_dir_space_towrite(dsl_dir_t *dd) 1025 { 1026 uint64_t space = 0; 1027 1028 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1029 1030 for (int i = 0; i < TXG_SIZE; i++) { 1031 space += dd->dd_space_towrite[i & TXG_MASK]; 1032 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0); 1033 } 1034 return (space); 1035 } 1036 1037 /* 1038 * How much space would dd have available if ancestor had delta applied 1039 * to it? If ondiskonly is set, we're only interested in what's 1040 * on-disk, not estimated pending changes. 1041 */ 1042 uint64_t 1043 dsl_dir_space_available(dsl_dir_t *dd, 1044 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1045 { 1046 uint64_t parentspace, myspace, quota, used; 1047 1048 /* 1049 * If there are no restrictions otherwise, assume we have 1050 * unlimited space available. 1051 */ 1052 quota = UINT64_MAX; 1053 parentspace = UINT64_MAX; 1054 1055 if (dd->dd_parent != NULL) { 1056 parentspace = dsl_dir_space_available(dd->dd_parent, 1057 ancestor, delta, ondiskonly); 1058 } 1059 1060 mutex_enter(&dd->dd_lock); 1061 if (dsl_dir_phys(dd)->dd_quota != 0) 1062 quota = dsl_dir_phys(dd)->dd_quota; 1063 used = dsl_dir_phys(dd)->dd_used_bytes; 1064 if (!ondiskonly) 1065 used += dsl_dir_space_towrite(dd); 1066 1067 if (dd->dd_parent == NULL) { 1068 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); 1069 quota = MIN(quota, poolsize); 1070 } 1071 1072 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1073 /* 1074 * We have some space reserved, in addition to what our 1075 * parent gave us. 1076 */ 1077 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1078 } 1079 1080 if (dd == ancestor) { 1081 ASSERT(delta <= 0); 1082 ASSERT(used >= -delta); 1083 used += delta; 1084 if (parentspace != UINT64_MAX) 1085 parentspace -= delta; 1086 } 1087 1088 if (used > quota) { 1089 /* over quota */ 1090 myspace = 0; 1091 } else { 1092 /* 1093 * the lesser of the space provided by our parent and 1094 * the space left in our quota 1095 */ 1096 myspace = MIN(parentspace, quota - used); 1097 } 1098 1099 mutex_exit(&dd->dd_lock); 1100 1101 return (myspace); 1102 } 1103 1104 struct tempreserve { 1105 list_node_t tr_node; 1106 dsl_dir_t *tr_ds; 1107 uint64_t tr_size; 1108 }; 1109 1110 static int 1111 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1112 boolean_t ignorequota, list_t *tr_list, 1113 dmu_tx_t *tx, boolean_t first) 1114 { 1115 uint64_t txg = tx->tx_txg; 1116 uint64_t quota; 1117 struct tempreserve *tr; 1118 int retval = EDQUOT; 1119 uint64_t ref_rsrv = 0; 1120 1121 ASSERT3U(txg, !=, 0); 1122 ASSERT3S(asize, >, 0); 1123 1124 mutex_enter(&dd->dd_lock); 1125 1126 /* 1127 * Check against the dsl_dir's quota. We don't add in the delta 1128 * when checking for over-quota because they get one free hit. 1129 */ 1130 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1131 for (int i = 0; i < TXG_SIZE; i++) 1132 est_inflight += dd->dd_tempreserved[i]; 1133 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1134 1135 /* 1136 * On the first iteration, fetch the dataset's used-on-disk and 1137 * refreservation values. Also, if checkrefquota is set, test if 1138 * allocating this space would exceed the dataset's refquota. 1139 */ 1140 if (first && tx->tx_objset) { 1141 int error; 1142 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1143 1144 error = dsl_dataset_check_quota(ds, !netfree, 1145 asize, est_inflight, &used_on_disk, &ref_rsrv); 1146 if (error != 0) { 1147 mutex_exit(&dd->dd_lock); 1148 return (error); 1149 } 1150 } 1151 1152 /* 1153 * If this transaction will result in a net free of space, 1154 * we want to let it through. 1155 */ 1156 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1157 quota = UINT64_MAX; 1158 else 1159 quota = dsl_dir_phys(dd)->dd_quota; 1160 1161 /* 1162 * Adjust the quota against the actual pool size at the root 1163 * minus any outstanding deferred frees. 1164 * To ensure that it's possible to remove files from a full 1165 * pool without inducing transient overcommits, we throttle 1166 * netfree transactions against a quota that is slightly larger, 1167 * but still within the pool's allocation slop. In cases where 1168 * we're very close to full, this will allow a steady trickle of 1169 * removes to get through. 1170 */ 1171 uint64_t deferred = 0; 1172 if (dd->dd_parent == NULL) { 1173 spa_t *spa = dd->dd_pool->dp_spa; 1174 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); 1175 deferred = metaslab_class_get_deferred(spa_normal_class(spa)); 1176 if (poolsize - deferred < quota) { 1177 quota = poolsize - deferred; 1178 retval = ENOSPC; 1179 } 1180 } 1181 1182 /* 1183 * If they are requesting more space, and our current estimate 1184 * is over quota, they get to try again unless the actual 1185 * on-disk is over quota and there are no pending changes (which 1186 * may free up space for us). 1187 */ 1188 if (used_on_disk + est_inflight >= quota) { 1189 if (est_inflight > 0 || used_on_disk < quota || 1190 (retval == ENOSPC && used_on_disk < quota + deferred)) 1191 retval = ERESTART; 1192 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1193 "quota=%lluK tr=%lluK err=%d\n", 1194 used_on_disk>>10, est_inflight>>10, 1195 quota>>10, asize>>10, retval); 1196 mutex_exit(&dd->dd_lock); 1197 return (SET_ERROR(retval)); 1198 } 1199 1200 /* We need to up our estimated delta before dropping dd_lock */ 1201 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1202 1203 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1204 asize - ref_rsrv); 1205 mutex_exit(&dd->dd_lock); 1206 1207 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1208 tr->tr_ds = dd; 1209 tr->tr_size = asize; 1210 list_insert_tail(tr_list, tr); 1211 1212 /* see if it's OK with our parent */ 1213 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1214 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1215 1216 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1217 parent_rsrv, netfree, ismos, tr_list, tx, B_FALSE)); 1218 } else { 1219 return (0); 1220 } 1221 } 1222 1223 /* 1224 * Reserve space in this dsl_dir, to be used in this tx's txg. 1225 * After the space has been dirtied (and dsl_dir_willuse_space() 1226 * has been called), the reservation should be canceled, using 1227 * dsl_dir_tempreserve_clear(). 1228 */ 1229 int 1230 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1231 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1232 { 1233 int err; 1234 list_t *tr_list; 1235 1236 if (asize == 0) { 1237 *tr_cookiep = NULL; 1238 return (0); 1239 } 1240 1241 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1242 list_create(tr_list, sizeof (struct tempreserve), 1243 offsetof(struct tempreserve, tr_node)); 1244 ASSERT3S(asize, >, 0); 1245 1246 err = arc_tempreserve_space(lsize, tx->tx_txg); 1247 if (err == 0) { 1248 struct tempreserve *tr; 1249 1250 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1251 tr->tr_size = lsize; 1252 list_insert_tail(tr_list, tr); 1253 } else { 1254 if (err == EAGAIN) { 1255 /* 1256 * If arc_memory_throttle() detected that pageout 1257 * is running and we are low on memory, we delay new 1258 * non-pageout transactions to give pageout an 1259 * advantage. 1260 * 1261 * It is unfortunate to be delaying while the caller's 1262 * locks are held. 1263 */ 1264 txg_delay(dd->dd_pool, tx->tx_txg, 1265 MSEC2NSEC(10), MSEC2NSEC(10)); 1266 err = SET_ERROR(ERESTART); 1267 } 1268 } 1269 1270 if (err == 0) { 1271 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1272 B_FALSE, tr_list, tx, B_TRUE); 1273 } 1274 1275 if (err != 0) 1276 dsl_dir_tempreserve_clear(tr_list, tx); 1277 else 1278 *tr_cookiep = tr_list; 1279 1280 return (err); 1281 } 1282 1283 /* 1284 * Clear a temporary reservation that we previously made with 1285 * dsl_dir_tempreserve_space(). 1286 */ 1287 void 1288 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1289 { 1290 int txgidx = tx->tx_txg & TXG_MASK; 1291 list_t *tr_list = tr_cookie; 1292 struct tempreserve *tr; 1293 1294 ASSERT3U(tx->tx_txg, !=, 0); 1295 1296 if (tr_cookie == NULL) 1297 return; 1298 1299 while ((tr = list_head(tr_list)) != NULL) { 1300 if (tr->tr_ds) { 1301 mutex_enter(&tr->tr_ds->dd_lock); 1302 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1303 tr->tr_size); 1304 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1305 mutex_exit(&tr->tr_ds->dd_lock); 1306 } else { 1307 arc_tempreserve_clear(tr->tr_size); 1308 } 1309 list_remove(tr_list, tr); 1310 kmem_free(tr, sizeof (struct tempreserve)); 1311 } 1312 1313 kmem_free(tr_list, sizeof (list_t)); 1314 } 1315 1316 /* 1317 * This should be called from open context when we think we're going to write 1318 * or free space, for example when dirtying data. Be conservative; it's okay 1319 * to write less space or free more, but we don't want to write more or free 1320 * less than the amount specified. 1321 */ 1322 void 1323 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1324 { 1325 int64_t parent_space; 1326 uint64_t est_used; 1327 1328 mutex_enter(&dd->dd_lock); 1329 if (space > 0) 1330 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1331 1332 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes; 1333 parent_space = parent_delta(dd, est_used, space); 1334 mutex_exit(&dd->dd_lock); 1335 1336 /* Make sure that we clean up dd_space_to* */ 1337 dsl_dir_dirty(dd, tx); 1338 1339 /* XXX this is potentially expensive and unnecessary... */ 1340 if (parent_space && dd->dd_parent) 1341 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1342 } 1343 1344 /* call from syncing context when we actually write/free space for this dd */ 1345 void 1346 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1347 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1348 { 1349 int64_t accounted_delta; 1350 1351 /* 1352 * dsl_dataset_set_refreservation_sync_impl() calls this with 1353 * dd_lock held, so that it can atomically update 1354 * ds->ds_reserved and the dsl_dir accounting, so that 1355 * dsl_dataset_check_quota() can see dataset and dir accounting 1356 * consistently. 1357 */ 1358 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1359 1360 ASSERT(dmu_tx_is_syncing(tx)); 1361 ASSERT(type < DD_USED_NUM); 1362 1363 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1364 1365 if (needlock) 1366 mutex_enter(&dd->dd_lock); 1367 accounted_delta = 1368 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used); 1369 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used); 1370 ASSERT(compressed >= 0 || 1371 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed); 1372 ASSERT(uncompressed >= 0 || 1373 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed); 1374 dsl_dir_phys(dd)->dd_used_bytes += used; 1375 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed; 1376 dsl_dir_phys(dd)->dd_compressed_bytes += compressed; 1377 1378 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1379 ASSERT(used > 0 || 1380 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used); 1381 dsl_dir_phys(dd)->dd_used_breakdown[type] += used; 1382 #ifdef DEBUG 1383 dd_used_t t; 1384 uint64_t u = 0; 1385 for (t = 0; t < DD_USED_NUM; t++) 1386 u += dsl_dir_phys(dd)->dd_used_breakdown[t]; 1387 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes); 1388 #endif 1389 } 1390 if (needlock) 1391 mutex_exit(&dd->dd_lock); 1392 1393 if (dd->dd_parent != NULL) { 1394 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1395 accounted_delta, compressed, uncompressed, tx); 1396 dsl_dir_transfer_space(dd->dd_parent, 1397 used - accounted_delta, 1398 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1399 } 1400 } 1401 1402 void 1403 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1404 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1405 { 1406 ASSERT(dmu_tx_is_syncing(tx)); 1407 ASSERT(oldtype < DD_USED_NUM); 1408 ASSERT(newtype < DD_USED_NUM); 1409 1410 if (delta == 0 || 1411 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1412 return; 1413 1414 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1415 mutex_enter(&dd->dd_lock); 1416 ASSERT(delta > 0 ? 1417 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta : 1418 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta); 1419 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta)); 1420 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta; 1421 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta; 1422 mutex_exit(&dd->dd_lock); 1423 } 1424 1425 typedef struct dsl_dir_set_qr_arg { 1426 const char *ddsqra_name; 1427 zprop_source_t ddsqra_source; 1428 uint64_t ddsqra_value; 1429 } dsl_dir_set_qr_arg_t; 1430 1431 static int 1432 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1433 { 1434 dsl_dir_set_qr_arg_t *ddsqra = arg; 1435 dsl_pool_t *dp = dmu_tx_pool(tx); 1436 dsl_dataset_t *ds; 1437 int error; 1438 uint64_t towrite, newval; 1439 1440 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1441 if (error != 0) 1442 return (error); 1443 1444 error = dsl_prop_predict(ds->ds_dir, "quota", 1445 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1446 if (error != 0) { 1447 dsl_dataset_rele(ds, FTAG); 1448 return (error); 1449 } 1450 1451 if (newval == 0) { 1452 dsl_dataset_rele(ds, FTAG); 1453 return (0); 1454 } 1455 1456 mutex_enter(&ds->ds_dir->dd_lock); 1457 /* 1458 * If we are doing the preliminary check in open context, and 1459 * there are pending changes, then don't fail it, since the 1460 * pending changes could under-estimate the amount of space to be 1461 * freed up. 1462 */ 1463 towrite = dsl_dir_space_towrite(ds->ds_dir); 1464 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1465 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1466 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1467 error = SET_ERROR(ENOSPC); 1468 } 1469 mutex_exit(&ds->ds_dir->dd_lock); 1470 dsl_dataset_rele(ds, FTAG); 1471 return (error); 1472 } 1473 1474 static void 1475 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1476 { 1477 dsl_dir_set_qr_arg_t *ddsqra = arg; 1478 dsl_pool_t *dp = dmu_tx_pool(tx); 1479 dsl_dataset_t *ds; 1480 uint64_t newval; 1481 1482 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1483 1484 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1485 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1486 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1487 &ddsqra->ddsqra_value, tx); 1488 1489 VERIFY0(dsl_prop_get_int_ds(ds, 1490 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1491 } else { 1492 newval = ddsqra->ddsqra_value; 1493 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1494 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1495 } 1496 1497 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1498 mutex_enter(&ds->ds_dir->dd_lock); 1499 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1500 mutex_exit(&ds->ds_dir->dd_lock); 1501 dsl_dataset_rele(ds, FTAG); 1502 } 1503 1504 int 1505 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1506 { 1507 dsl_dir_set_qr_arg_t ddsqra; 1508 1509 ddsqra.ddsqra_name = ddname; 1510 ddsqra.ddsqra_source = source; 1511 ddsqra.ddsqra_value = quota; 1512 1513 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1514 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1515 } 1516 1517 int 1518 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1519 { 1520 dsl_dir_set_qr_arg_t *ddsqra = arg; 1521 dsl_pool_t *dp = dmu_tx_pool(tx); 1522 dsl_dataset_t *ds; 1523 dsl_dir_t *dd; 1524 uint64_t newval, used, avail; 1525 int error; 1526 1527 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1528 if (error != 0) 1529 return (error); 1530 dd = ds->ds_dir; 1531 1532 /* 1533 * If we are doing the preliminary check in open context, the 1534 * space estimates may be inaccurate. 1535 */ 1536 if (!dmu_tx_is_syncing(tx)) { 1537 dsl_dataset_rele(ds, FTAG); 1538 return (0); 1539 } 1540 1541 error = dsl_prop_predict(ds->ds_dir, 1542 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1543 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1544 if (error != 0) { 1545 dsl_dataset_rele(ds, FTAG); 1546 return (error); 1547 } 1548 1549 mutex_enter(&dd->dd_lock); 1550 used = dsl_dir_phys(dd)->dd_used_bytes; 1551 mutex_exit(&dd->dd_lock); 1552 1553 if (dd->dd_parent) { 1554 avail = dsl_dir_space_available(dd->dd_parent, 1555 NULL, 0, FALSE); 1556 } else { 1557 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; 1558 } 1559 1560 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1561 uint64_t delta = MAX(used, newval) - 1562 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1563 1564 if (delta > avail || 1565 (dsl_dir_phys(dd)->dd_quota > 0 && 1566 newval > dsl_dir_phys(dd)->dd_quota)) 1567 error = SET_ERROR(ENOSPC); 1568 } 1569 1570 dsl_dataset_rele(ds, FTAG); 1571 return (error); 1572 } 1573 1574 void 1575 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1576 { 1577 uint64_t used; 1578 int64_t delta; 1579 1580 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1581 1582 mutex_enter(&dd->dd_lock); 1583 used = dsl_dir_phys(dd)->dd_used_bytes; 1584 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1585 dsl_dir_phys(dd)->dd_reserved = value; 1586 1587 if (dd->dd_parent != NULL) { 1588 /* Roll up this additional usage into our ancestors */ 1589 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1590 delta, 0, 0, tx); 1591 } 1592 mutex_exit(&dd->dd_lock); 1593 } 1594 1595 1596 static void 1597 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1598 { 1599 dsl_dir_set_qr_arg_t *ddsqra = arg; 1600 dsl_pool_t *dp = dmu_tx_pool(tx); 1601 dsl_dataset_t *ds; 1602 uint64_t newval; 1603 1604 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1605 1606 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1607 dsl_prop_set_sync_impl(ds, 1608 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1609 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1610 &ddsqra->ddsqra_value, tx); 1611 1612 VERIFY0(dsl_prop_get_int_ds(ds, 1613 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1614 } else { 1615 newval = ddsqra->ddsqra_value; 1616 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1617 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1618 (longlong_t)newval); 1619 } 1620 1621 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1622 dsl_dataset_rele(ds, FTAG); 1623 } 1624 1625 int 1626 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1627 uint64_t reservation) 1628 { 1629 dsl_dir_set_qr_arg_t ddsqra; 1630 1631 ddsqra.ddsqra_name = ddname; 1632 ddsqra.ddsqra_source = source; 1633 ddsqra.ddsqra_value = reservation; 1634 1635 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1636 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1637 } 1638 1639 static dsl_dir_t * 1640 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1641 { 1642 for (; ds1; ds1 = ds1->dd_parent) { 1643 dsl_dir_t *dd; 1644 for (dd = ds2; dd; dd = dd->dd_parent) { 1645 if (ds1 == dd) 1646 return (dd); 1647 } 1648 } 1649 return (NULL); 1650 } 1651 1652 /* 1653 * If delta is applied to dd, how much of that delta would be applied to 1654 * ancestor? Syncing context only. 1655 */ 1656 static int64_t 1657 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1658 { 1659 if (dd == ancestor) 1660 return (delta); 1661 1662 mutex_enter(&dd->dd_lock); 1663 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1664 mutex_exit(&dd->dd_lock); 1665 return (would_change(dd->dd_parent, delta, ancestor)); 1666 } 1667 1668 typedef struct dsl_dir_rename_arg { 1669 const char *ddra_oldname; 1670 const char *ddra_newname; 1671 cred_t *ddra_cred; 1672 } dsl_dir_rename_arg_t; 1673 1674 /* ARGSUSED */ 1675 static int 1676 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1677 { 1678 int *deltap = arg; 1679 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1680 1681 dsl_dataset_name(ds, namebuf); 1682 1683 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN) 1684 return (SET_ERROR(ENAMETOOLONG)); 1685 return (0); 1686 } 1687 1688 static int 1689 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1690 { 1691 dsl_dir_rename_arg_t *ddra = arg; 1692 dsl_pool_t *dp = dmu_tx_pool(tx); 1693 dsl_dir_t *dd, *newparent; 1694 const char *mynewname; 1695 int error; 1696 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname); 1697 1698 /* target dir should exist */ 1699 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1700 if (error != 0) 1701 return (error); 1702 1703 /* new parent should exist */ 1704 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1705 &newparent, &mynewname); 1706 if (error != 0) { 1707 dsl_dir_rele(dd, FTAG); 1708 return (error); 1709 } 1710 1711 /* can't rename to different pool */ 1712 if (dd->dd_pool != newparent->dd_pool) { 1713 dsl_dir_rele(newparent, FTAG); 1714 dsl_dir_rele(dd, FTAG); 1715 return (SET_ERROR(ENXIO)); 1716 } 1717 1718 /* new name should not already exist */ 1719 if (mynewname == NULL) { 1720 dsl_dir_rele(newparent, FTAG); 1721 dsl_dir_rele(dd, FTAG); 1722 return (SET_ERROR(EEXIST)); 1723 } 1724 1725 /* if the name length is growing, validate child name lengths */ 1726 if (delta > 0) { 1727 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1728 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1729 if (error != 0) { 1730 dsl_dir_rele(newparent, FTAG); 1731 dsl_dir_rele(dd, FTAG); 1732 return (error); 1733 } 1734 } 1735 1736 if (dmu_tx_is_syncing(tx)) { 1737 if (spa_feature_is_active(dp->dp_spa, 1738 SPA_FEATURE_FS_SS_LIMIT)) { 1739 /* 1740 * Although this is the check function and we don't 1741 * normally make on-disk changes in check functions, 1742 * we need to do that here. 1743 * 1744 * Ensure this portion of the tree's counts have been 1745 * initialized in case the new parent has limits set. 1746 */ 1747 dsl_dir_init_fs_ss_count(dd, tx); 1748 } 1749 } 1750 1751 if (newparent != dd->dd_parent) { 1752 /* is there enough space? */ 1753 uint64_t myspace = 1754 MAX(dsl_dir_phys(dd)->dd_used_bytes, 1755 dsl_dir_phys(dd)->dd_reserved); 1756 objset_t *os = dd->dd_pool->dp_meta_objset; 1757 uint64_t fs_cnt = 0; 1758 uint64_t ss_cnt = 0; 1759 1760 if (dsl_dir_is_zapified(dd)) { 1761 int err; 1762 1763 err = zap_lookup(os, dd->dd_object, 1764 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1765 &fs_cnt); 1766 if (err != ENOENT && err != 0) { 1767 dsl_dir_rele(newparent, FTAG); 1768 dsl_dir_rele(dd, FTAG); 1769 return (err); 1770 } 1771 1772 /* 1773 * have to add 1 for the filesystem itself that we're 1774 * moving 1775 */ 1776 fs_cnt++; 1777 1778 err = zap_lookup(os, dd->dd_object, 1779 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1780 &ss_cnt); 1781 if (err != ENOENT && err != 0) { 1782 dsl_dir_rele(newparent, FTAG); 1783 dsl_dir_rele(dd, FTAG); 1784 return (err); 1785 } 1786 } 1787 1788 /* no rename into our descendant */ 1789 if (closest_common_ancestor(dd, newparent) == dd) { 1790 dsl_dir_rele(newparent, FTAG); 1791 dsl_dir_rele(dd, FTAG); 1792 return (SET_ERROR(EINVAL)); 1793 } 1794 1795 error = dsl_dir_transfer_possible(dd->dd_parent, 1796 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1797 if (error != 0) { 1798 dsl_dir_rele(newparent, FTAG); 1799 dsl_dir_rele(dd, FTAG); 1800 return (error); 1801 } 1802 } 1803 1804 dsl_dir_rele(newparent, FTAG); 1805 dsl_dir_rele(dd, FTAG); 1806 return (0); 1807 } 1808 1809 static void 1810 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1811 { 1812 dsl_dir_rename_arg_t *ddra = arg; 1813 dsl_pool_t *dp = dmu_tx_pool(tx); 1814 dsl_dir_t *dd, *newparent; 1815 const char *mynewname; 1816 int error; 1817 objset_t *mos = dp->dp_meta_objset; 1818 1819 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 1820 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 1821 &mynewname)); 1822 1823 /* Log this before we change the name. */ 1824 spa_history_log_internal_dd(dd, "rename", tx, 1825 "-> %s", ddra->ddra_newname); 1826 1827 if (newparent != dd->dd_parent) { 1828 objset_t *os = dd->dd_pool->dp_meta_objset; 1829 uint64_t fs_cnt = 0; 1830 uint64_t ss_cnt = 0; 1831 1832 /* 1833 * We already made sure the dd counts were initialized in the 1834 * check function. 1835 */ 1836 if (spa_feature_is_active(dp->dp_spa, 1837 SPA_FEATURE_FS_SS_LIMIT)) { 1838 VERIFY0(zap_lookup(os, dd->dd_object, 1839 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1840 &fs_cnt)); 1841 /* add 1 for the filesystem itself that we're moving */ 1842 fs_cnt++; 1843 1844 VERIFY0(zap_lookup(os, dd->dd_object, 1845 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1846 &ss_cnt)); 1847 } 1848 1849 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 1850 DD_FIELD_FILESYSTEM_COUNT, tx); 1851 dsl_fs_ss_count_adjust(newparent, fs_cnt, 1852 DD_FIELD_FILESYSTEM_COUNT, tx); 1853 1854 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 1855 DD_FIELD_SNAPSHOT_COUNT, tx); 1856 dsl_fs_ss_count_adjust(newparent, ss_cnt, 1857 DD_FIELD_SNAPSHOT_COUNT, tx); 1858 1859 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1860 -dsl_dir_phys(dd)->dd_used_bytes, 1861 -dsl_dir_phys(dd)->dd_compressed_bytes, 1862 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1863 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 1864 dsl_dir_phys(dd)->dd_used_bytes, 1865 dsl_dir_phys(dd)->dd_compressed_bytes, 1866 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1867 1868 if (dsl_dir_phys(dd)->dd_reserved > 1869 dsl_dir_phys(dd)->dd_used_bytes) { 1870 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 1871 dsl_dir_phys(dd)->dd_used_bytes; 1872 1873 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1874 -unused_rsrv, 0, 0, tx); 1875 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 1876 unused_rsrv, 0, 0, tx); 1877 } 1878 } 1879 1880 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1881 1882 /* remove from old parent zapobj */ 1883 error = zap_remove(mos, 1884 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 1885 dd->dd_myname, tx); 1886 ASSERT0(error); 1887 1888 (void) strcpy(dd->dd_myname, mynewname); 1889 dsl_dir_rele(dd->dd_parent, dd); 1890 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 1891 VERIFY0(dsl_dir_hold_obj(dp, 1892 newparent->dd_object, NULL, dd, &dd->dd_parent)); 1893 1894 /* add to new parent zapobj */ 1895 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 1896 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 1897 1898 dsl_prop_notify_all(dd); 1899 1900 dsl_dir_rele(newparent, FTAG); 1901 dsl_dir_rele(dd, FTAG); 1902 } 1903 1904 int 1905 dsl_dir_rename(const char *oldname, const char *newname) 1906 { 1907 dsl_dir_rename_arg_t ddra; 1908 1909 ddra.ddra_oldname = oldname; 1910 ddra.ddra_newname = newname; 1911 ddra.ddra_cred = CRED(); 1912 1913 return (dsl_sync_task(oldname, 1914 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 1915 3, ZFS_SPACE_CHECK_RESERVED)); 1916 } 1917 1918 int 1919 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 1920 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 1921 { 1922 dsl_dir_t *ancestor; 1923 int64_t adelta; 1924 uint64_t avail; 1925 int err; 1926 1927 ancestor = closest_common_ancestor(sdd, tdd); 1928 adelta = would_change(sdd, -space, ancestor); 1929 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 1930 if (avail < space) 1931 return (SET_ERROR(ENOSPC)); 1932 1933 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 1934 ancestor, cr); 1935 if (err != 0) 1936 return (err); 1937 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 1938 ancestor, cr); 1939 if (err != 0) 1940 return (err); 1941 1942 return (0); 1943 } 1944 1945 timestruc_t 1946 dsl_dir_snap_cmtime(dsl_dir_t *dd) 1947 { 1948 timestruc_t t; 1949 1950 mutex_enter(&dd->dd_lock); 1951 t = dd->dd_snap_cmtime; 1952 mutex_exit(&dd->dd_lock); 1953 1954 return (t); 1955 } 1956 1957 void 1958 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 1959 { 1960 timestruc_t t; 1961 1962 gethrestime(&t); 1963 mutex_enter(&dd->dd_lock); 1964 dd->dd_snap_cmtime = t; 1965 mutex_exit(&dd->dd_lock); 1966 } 1967 1968 void 1969 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 1970 { 1971 objset_t *mos = dd->dd_pool->dp_meta_objset; 1972 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 1973 } 1974 1975 boolean_t 1976 dsl_dir_is_zapified(dsl_dir_t *dd) 1977 { 1978 dmu_object_info_t doi; 1979 1980 dmu_object_info_from_db(dd->dd_dbuf, &doi); 1981 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 1982 } 1983