1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dmu.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_prop.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_deleg.h> 38 #include <sys/dmu_impl.h> 39 #include <sys/spa.h> 40 #include <sys/metaslab.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/arc.h> 44 #include <sys/sunddi.h> 45 #include <sys/zfeature.h> 46 #include <sys/policy.h> 47 #include <sys/zfs_znode.h> 48 #include "zfs_namecheck.h" 49 #include "zfs_prop.h" 50 51 /* 52 * Filesystem and Snapshot Limits 53 * ------------------------------ 54 * 55 * These limits are used to restrict the number of filesystems and/or snapshots 56 * that can be created at a given level in the tree or below. A typical 57 * use-case is with a delegated dataset where the administrator wants to ensure 58 * that a user within the zone is not creating too many additional filesystems 59 * or snapshots, even though they're not exceeding their space quota. 60 * 61 * The filesystem and snapshot counts are stored as extensible properties. This 62 * capability is controlled by a feature flag and must be enabled to be used. 63 * Once enabled, the feature is not active until the first limit is set. At 64 * that point, future operations to create/destroy filesystems or snapshots 65 * will validate and update the counts. 66 * 67 * Because the count properties will not exist before the feature is active, 68 * the counts are updated when a limit is first set on an uninitialized 69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 72 * snapshot count properties on a node indicate uninitialized counts on that 73 * node.) When first setting a limit on an uninitialized node, the code starts 74 * at the filesystem with the new limit and descends into all sub-filesystems 75 * to add the count properties. 76 * 77 * In practice this is lightweight since a limit is typically set when the 78 * filesystem is created and thus has no children. Once valid, changing the 79 * limit value won't require a re-traversal since the counts are already valid. 80 * When recursively fixing the counts, if a node with a limit is encountered 81 * during the descent, the counts are known to be valid and there is no need to 82 * descend into that filesystem's children. The counts on filesystems above the 83 * one with the new limit will still be uninitialized, unless a limit is 84 * eventually set on one of those filesystems. The counts are always recursively 85 * updated when a limit is set on a dataset, unless there is already a limit. 86 * When a new limit value is set on a filesystem with an existing limit, it is 87 * possible for the new limit to be less than the current count at that level 88 * since a user who can change the limit is also allowed to exceed the limit. 89 * 90 * Once the feature is active, then whenever a filesystem or snapshot is 91 * created, the code recurses up the tree, validating the new count against the 92 * limit at each initialized level. In practice, most levels will not have a 93 * limit set. If there is a limit at any initialized level up the tree, the 94 * check must pass or the creation will fail. Likewise, when a filesystem or 95 * snapshot is destroyed, the counts are recursively adjusted all the way up 96 * the initizized nodes in the tree. Renaming a filesystem into different point 97 * in the tree will first validate, then update the counts on each branch up to 98 * the common ancestor. A receive will also validate the counts and then update 99 * them. 100 * 101 * An exception to the above behavior is that the limit is not enforced if the 102 * user has permission to modify the limit. This is primarily so that 103 * recursive snapshots in the global zone always work. We want to prevent a 104 * denial-of-service in which a lower level delegated dataset could max out its 105 * limit and thus block recursive snapshots from being taken in the global zone. 106 * Because of this, it is possible for the snapshot count to be over the limit 107 * and snapshots taken in the global zone could cause a lower level dataset to 108 * hit or exceed its limit. The administrator taking the global zone recursive 109 * snapshot should be aware of this side-effect and behave accordingly. 110 * For consistency, the filesystem limit is also not enforced if the user can 111 * modify the limit. 112 * 113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 116 * dsl_dir_init_fs_ss_count(). 117 * 118 * There is a special case when we receive a filesystem that already exists. In 119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 120 * never update the filesystem counts for temporary clones. 121 * 122 * Likewise, we do not update the snapshot counts for temporary snapshots, 123 * such as those created by zfs diff. 124 */ 125 126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 127 128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 129 130 static void 131 dsl_dir_evict_async(void *dbu) 132 { 133 dsl_dir_t *dd = dbu; 134 dsl_pool_t *dp = dd->dd_pool; 135 int t; 136 137 dd->dd_dbuf = NULL; 138 139 for (t = 0; t < TXG_SIZE; t++) { 140 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 141 ASSERT(dd->dd_tempreserved[t] == 0); 142 ASSERT(dd->dd_space_towrite[t] == 0); 143 } 144 145 if (dd->dd_parent) 146 dsl_dir_async_rele(dd->dd_parent, dd); 147 148 spa_async_close(dd->dd_pool->dp_spa, dd); 149 150 dsl_prop_fini(dd); 151 mutex_destroy(&dd->dd_lock); 152 kmem_free(dd, sizeof (dsl_dir_t)); 153 } 154 155 int 156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 157 const char *tail, void *tag, dsl_dir_t **ddp) 158 { 159 dmu_buf_t *dbuf; 160 dsl_dir_t *dd; 161 int err; 162 163 ASSERT(dsl_pool_config_held(dp)); 164 165 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 166 if (err != 0) 167 return (err); 168 dd = dmu_buf_get_user(dbuf); 169 #ifdef ZFS_DEBUG 170 { 171 dmu_object_info_t doi; 172 dmu_object_info_from_db(dbuf, &doi); 173 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 174 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 175 } 176 #endif 177 if (dd == NULL) { 178 dsl_dir_t *winner; 179 180 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 181 dd->dd_object = ddobj; 182 dd->dd_dbuf = dbuf; 183 dd->dd_pool = dp; 184 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 185 dsl_prop_init(dd); 186 187 dsl_dir_snap_cmtime_update(dd); 188 189 if (dsl_dir_phys(dd)->dd_parent_obj) { 190 err = dsl_dir_hold_obj(dp, 191 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 192 &dd->dd_parent); 193 if (err != 0) 194 goto errout; 195 if (tail) { 196 #ifdef ZFS_DEBUG 197 uint64_t foundobj; 198 199 err = zap_lookup(dp->dp_meta_objset, 200 dsl_dir_phys(dd->dd_parent)-> 201 dd_child_dir_zapobj, tail, 202 sizeof (foundobj), 1, &foundobj); 203 ASSERT(err || foundobj == ddobj); 204 #endif 205 (void) strcpy(dd->dd_myname, tail); 206 } else { 207 err = zap_value_search(dp->dp_meta_objset, 208 dsl_dir_phys(dd->dd_parent)-> 209 dd_child_dir_zapobj, 210 ddobj, 0, dd->dd_myname); 211 } 212 if (err != 0) 213 goto errout; 214 } else { 215 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 216 } 217 218 if (dsl_dir_is_clone(dd)) { 219 dmu_buf_t *origin_bonus; 220 dsl_dataset_phys_t *origin_phys; 221 222 /* 223 * We can't open the origin dataset, because 224 * that would require opening this dsl_dir. 225 * Just look at its phys directly instead. 226 */ 227 err = dmu_bonus_hold(dp->dp_meta_objset, 228 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 229 &origin_bonus); 230 if (err != 0) 231 goto errout; 232 origin_phys = origin_bonus->db_data; 233 dd->dd_origin_txg = 234 origin_phys->ds_creation_txg; 235 dmu_buf_rele(origin_bonus, FTAG); 236 } 237 238 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 239 &dd->dd_dbuf); 240 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 241 if (winner != NULL) { 242 if (dd->dd_parent) 243 dsl_dir_rele(dd->dd_parent, dd); 244 dsl_prop_fini(dd); 245 mutex_destroy(&dd->dd_lock); 246 kmem_free(dd, sizeof (dsl_dir_t)); 247 dd = winner; 248 } else { 249 spa_open_ref(dp->dp_spa, dd); 250 } 251 } 252 253 /* 254 * The dsl_dir_t has both open-to-close and instantiate-to-evict 255 * holds on the spa. We need the open-to-close holds because 256 * otherwise the spa_refcnt wouldn't change when we open a 257 * dir which the spa also has open, so we could incorrectly 258 * think it was OK to unload/export/destroy the pool. We need 259 * the instantiate-to-evict hold because the dsl_dir_t has a 260 * pointer to the dd_pool, which has a pointer to the spa_t. 261 */ 262 spa_open_ref(dp->dp_spa, tag); 263 ASSERT3P(dd->dd_pool, ==, dp); 264 ASSERT3U(dd->dd_object, ==, ddobj); 265 ASSERT3P(dd->dd_dbuf, ==, dbuf); 266 *ddp = dd; 267 return (0); 268 269 errout: 270 if (dd->dd_parent) 271 dsl_dir_rele(dd->dd_parent, dd); 272 dsl_prop_fini(dd); 273 mutex_destroy(&dd->dd_lock); 274 kmem_free(dd, sizeof (dsl_dir_t)); 275 dmu_buf_rele(dbuf, tag); 276 return (err); 277 } 278 279 void 280 dsl_dir_rele(dsl_dir_t *dd, void *tag) 281 { 282 dprintf_dd(dd, "%s\n", ""); 283 spa_close(dd->dd_pool->dp_spa, tag); 284 dmu_buf_rele(dd->dd_dbuf, tag); 285 } 286 287 /* 288 * Remove a reference to the given dsl dir that is being asynchronously 289 * released. Async releases occur from a taskq performing eviction of 290 * dsl datasets and dirs. This process is identical to a normal release 291 * with the exception of using the async API for releasing the reference on 292 * the spa. 293 */ 294 void 295 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 296 { 297 dprintf_dd(dd, "%s\n", ""); 298 spa_async_close(dd->dd_pool->dp_spa, tag); 299 dmu_buf_rele(dd->dd_dbuf, tag); 300 } 301 302 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 303 void 304 dsl_dir_name(dsl_dir_t *dd, char *buf) 305 { 306 if (dd->dd_parent) { 307 dsl_dir_name(dd->dd_parent, buf); 308 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 309 ZFS_MAX_DATASET_NAME_LEN); 310 } else { 311 buf[0] = '\0'; 312 } 313 if (!MUTEX_HELD(&dd->dd_lock)) { 314 /* 315 * recursive mutex so that we can use 316 * dprintf_dd() with dd_lock held 317 */ 318 mutex_enter(&dd->dd_lock); 319 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 320 <, ZFS_MAX_DATASET_NAME_LEN); 321 mutex_exit(&dd->dd_lock); 322 } else { 323 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 324 <, ZFS_MAX_DATASET_NAME_LEN); 325 } 326 } 327 328 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 329 int 330 dsl_dir_namelen(dsl_dir_t *dd) 331 { 332 int result = 0; 333 334 if (dd->dd_parent) { 335 /* parent's name + 1 for the "/" */ 336 result = dsl_dir_namelen(dd->dd_parent) + 1; 337 } 338 339 if (!MUTEX_HELD(&dd->dd_lock)) { 340 /* see dsl_dir_name */ 341 mutex_enter(&dd->dd_lock); 342 result += strlen(dd->dd_myname); 343 mutex_exit(&dd->dd_lock); 344 } else { 345 result += strlen(dd->dd_myname); 346 } 347 348 return (result); 349 } 350 351 static int 352 getcomponent(const char *path, char *component, const char **nextp) 353 { 354 char *p; 355 356 if ((path == NULL) || (path[0] == '\0')) 357 return (SET_ERROR(ENOENT)); 358 /* This would be a good place to reserve some namespace... */ 359 p = strpbrk(path, "/@"); 360 if (p && (p[1] == '/' || p[1] == '@')) { 361 /* two separators in a row */ 362 return (SET_ERROR(EINVAL)); 363 } 364 if (p == NULL || p == path) { 365 /* 366 * if the first thing is an @ or /, it had better be an 367 * @ and it had better not have any more ats or slashes, 368 * and it had better have something after the @. 369 */ 370 if (p != NULL && 371 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 372 return (SET_ERROR(EINVAL)); 373 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 374 return (SET_ERROR(ENAMETOOLONG)); 375 (void) strcpy(component, path); 376 p = NULL; 377 } else if (p[0] == '/') { 378 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 379 return (SET_ERROR(ENAMETOOLONG)); 380 (void) strncpy(component, path, p - path); 381 component[p - path] = '\0'; 382 p++; 383 } else if (p[0] == '@') { 384 /* 385 * if the next separator is an @, there better not be 386 * any more slashes. 387 */ 388 if (strchr(path, '/')) 389 return (SET_ERROR(EINVAL)); 390 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 391 return (SET_ERROR(ENAMETOOLONG)); 392 (void) strncpy(component, path, p - path); 393 component[p - path] = '\0'; 394 } else { 395 panic("invalid p=%p", (void *)p); 396 } 397 *nextp = p; 398 return (0); 399 } 400 401 /* 402 * Return the dsl_dir_t, and possibly the last component which couldn't 403 * be found in *tail. The name must be in the specified dsl_pool_t. This 404 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 405 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 406 * (*tail)[0] == '@' means that the last component is a snapshot. 407 */ 408 int 409 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 410 dsl_dir_t **ddp, const char **tailp) 411 { 412 char buf[ZFS_MAX_DATASET_NAME_LEN]; 413 const char *spaname, *next, *nextnext = NULL; 414 int err; 415 dsl_dir_t *dd; 416 uint64_t ddobj; 417 418 err = getcomponent(name, buf, &next); 419 if (err != 0) 420 return (err); 421 422 /* Make sure the name is in the specified pool. */ 423 spaname = spa_name(dp->dp_spa); 424 if (strcmp(buf, spaname) != 0) 425 return (SET_ERROR(EXDEV)); 426 427 ASSERT(dsl_pool_config_held(dp)); 428 429 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 430 if (err != 0) { 431 return (err); 432 } 433 434 while (next != NULL) { 435 dsl_dir_t *child_dd; 436 err = getcomponent(next, buf, &nextnext); 437 if (err != 0) 438 break; 439 ASSERT(next[0] != '\0'); 440 if (next[0] == '@') 441 break; 442 dprintf("looking up %s in obj%lld\n", 443 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj); 444 445 err = zap_lookup(dp->dp_meta_objset, 446 dsl_dir_phys(dd)->dd_child_dir_zapobj, 447 buf, sizeof (ddobj), 1, &ddobj); 448 if (err != 0) { 449 if (err == ENOENT) 450 err = 0; 451 break; 452 } 453 454 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 455 if (err != 0) 456 break; 457 dsl_dir_rele(dd, tag); 458 dd = child_dd; 459 next = nextnext; 460 } 461 462 if (err != 0) { 463 dsl_dir_rele(dd, tag); 464 return (err); 465 } 466 467 /* 468 * It's an error if there's more than one component left, or 469 * tailp==NULL and there's any component left. 470 */ 471 if (next != NULL && 472 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 473 /* bad path name */ 474 dsl_dir_rele(dd, tag); 475 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 476 err = SET_ERROR(ENOENT); 477 } 478 if (tailp != NULL) 479 *tailp = next; 480 *ddp = dd; 481 return (err); 482 } 483 484 /* 485 * If the counts are already initialized for this filesystem and its 486 * descendants then do nothing, otherwise initialize the counts. 487 * 488 * The counts on this filesystem, and those below, may be uninitialized due to 489 * either the use of a pre-existing pool which did not support the 490 * filesystem/snapshot limit feature, or one in which the feature had not yet 491 * been enabled. 492 * 493 * Recursively descend the filesystem tree and update the filesystem/snapshot 494 * counts on each filesystem below, then update the cumulative count on the 495 * current filesystem. If the filesystem already has a count set on it, 496 * then we know that its counts, and the counts on the filesystems below it, 497 * are already correct, so we don't have to update this filesystem. 498 */ 499 static void 500 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 501 { 502 uint64_t my_fs_cnt = 0; 503 uint64_t my_ss_cnt = 0; 504 dsl_pool_t *dp = dd->dd_pool; 505 objset_t *os = dp->dp_meta_objset; 506 zap_cursor_t *zc; 507 zap_attribute_t *za; 508 dsl_dataset_t *ds; 509 510 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 511 ASSERT(dsl_pool_config_held(dp)); 512 ASSERT(dmu_tx_is_syncing(tx)); 513 514 dsl_dir_zapify(dd, tx); 515 516 /* 517 * If the filesystem count has already been initialized then we 518 * don't need to recurse down any further. 519 */ 520 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 521 return; 522 523 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 524 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 525 526 /* Iterate my child dirs */ 527 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 528 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 529 dsl_dir_t *chld_dd; 530 uint64_t count; 531 532 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 533 &chld_dd)); 534 535 /* 536 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 537 * temporary datasets. 538 */ 539 if (chld_dd->dd_myname[0] == '$' || 540 chld_dd->dd_myname[0] == '%') { 541 dsl_dir_rele(chld_dd, FTAG); 542 continue; 543 } 544 545 my_fs_cnt++; /* count this child */ 546 547 dsl_dir_init_fs_ss_count(chld_dd, tx); 548 549 VERIFY0(zap_lookup(os, chld_dd->dd_object, 550 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 551 my_fs_cnt += count; 552 VERIFY0(zap_lookup(os, chld_dd->dd_object, 553 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 554 my_ss_cnt += count; 555 556 dsl_dir_rele(chld_dd, FTAG); 557 } 558 zap_cursor_fini(zc); 559 /* Count my snapshots (we counted children's snapshots above) */ 560 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 561 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 562 563 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 564 zap_cursor_retrieve(zc, za) == 0; 565 zap_cursor_advance(zc)) { 566 /* Don't count temporary snapshots */ 567 if (za->za_name[0] != '%') 568 my_ss_cnt++; 569 } 570 zap_cursor_fini(zc); 571 572 dsl_dataset_rele(ds, FTAG); 573 574 kmem_free(zc, sizeof (zap_cursor_t)); 575 kmem_free(za, sizeof (zap_attribute_t)); 576 577 /* we're in a sync task, update counts */ 578 dmu_buf_will_dirty(dd->dd_dbuf, tx); 579 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 580 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 581 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 582 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 583 } 584 585 static int 586 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 587 { 588 char *ddname = (char *)arg; 589 dsl_pool_t *dp = dmu_tx_pool(tx); 590 dsl_dataset_t *ds; 591 dsl_dir_t *dd; 592 int error; 593 594 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 595 if (error != 0) 596 return (error); 597 598 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 599 dsl_dataset_rele(ds, FTAG); 600 return (SET_ERROR(ENOTSUP)); 601 } 602 603 dd = ds->ds_dir; 604 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 605 dsl_dir_is_zapified(dd) && 606 zap_contains(dp->dp_meta_objset, dd->dd_object, 607 DD_FIELD_FILESYSTEM_COUNT) == 0) { 608 dsl_dataset_rele(ds, FTAG); 609 return (SET_ERROR(EALREADY)); 610 } 611 612 dsl_dataset_rele(ds, FTAG); 613 return (0); 614 } 615 616 static void 617 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 618 { 619 char *ddname = (char *)arg; 620 dsl_pool_t *dp = dmu_tx_pool(tx); 621 dsl_dataset_t *ds; 622 spa_t *spa; 623 624 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 625 626 spa = dsl_dataset_get_spa(ds); 627 628 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 629 /* 630 * Since the feature was not active and we're now setting a 631 * limit, increment the feature-active counter so that the 632 * feature becomes active for the first time. 633 * 634 * We are already in a sync task so we can update the MOS. 635 */ 636 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 637 } 638 639 /* 640 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 641 * we need to ensure the counts are correct. Descend down the tree from 642 * this point and update all of the counts to be accurate. 643 */ 644 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 645 646 dsl_dataset_rele(ds, FTAG); 647 } 648 649 /* 650 * Make sure the feature is enabled and activate it if necessary. 651 * Since we're setting a limit, ensure the on-disk counts are valid. 652 * This is only called by the ioctl path when setting a limit value. 653 * 654 * We do not need to validate the new limit, since users who can change the 655 * limit are also allowed to exceed the limit. 656 */ 657 int 658 dsl_dir_activate_fs_ss_limit(const char *ddname) 659 { 660 int error; 661 662 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 663 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 664 ZFS_SPACE_CHECK_RESERVED); 665 666 if (error == EALREADY) 667 error = 0; 668 669 return (error); 670 } 671 672 /* 673 * Used to determine if the filesystem_limit or snapshot_limit should be 674 * enforced. We allow the limit to be exceeded if the user has permission to 675 * write the property value. We pass in the creds that we got in the open 676 * context since we will always be the GZ root in syncing context. We also have 677 * to handle the case where we are allowed to change the limit on the current 678 * dataset, but there may be another limit in the tree above. 679 * 680 * We can never modify these two properties within a non-global zone. In 681 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 682 * can't use that function since we are already holding the dp_config_rwlock. 683 * In addition, we already have the dd and dealing with snapshots is simplified 684 * in this code. 685 */ 686 687 typedef enum { 688 ENFORCE_ALWAYS, 689 ENFORCE_NEVER, 690 ENFORCE_ABOVE 691 } enforce_res_t; 692 693 static enforce_res_t 694 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 695 { 696 enforce_res_t enforce = ENFORCE_ALWAYS; 697 uint64_t obj; 698 dsl_dataset_t *ds; 699 uint64_t zoned; 700 701 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 702 prop == ZFS_PROP_SNAPSHOT_LIMIT); 703 704 #ifdef _KERNEL 705 if (crgetzoneid(cr) != GLOBAL_ZONEID) 706 return (ENFORCE_ALWAYS); 707 708 if (secpolicy_zfs(cr) == 0) 709 return (ENFORCE_NEVER); 710 #endif 711 712 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 713 return (ENFORCE_ALWAYS); 714 715 ASSERT(dsl_pool_config_held(dd->dd_pool)); 716 717 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 718 return (ENFORCE_ALWAYS); 719 720 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 721 /* Only root can access zoned fs's from the GZ */ 722 enforce = ENFORCE_ALWAYS; 723 } else { 724 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 725 enforce = ENFORCE_ABOVE; 726 } 727 728 dsl_dataset_rele(ds, FTAG); 729 return (enforce); 730 } 731 732 /* 733 * Check if adding additional child filesystem(s) would exceed any filesystem 734 * limits or adding additional snapshot(s) would exceed any snapshot limits. 735 * The prop argument indicates which limit to check. 736 * 737 * Note that all filesystem limits up to the root (or the highest 738 * initialized) filesystem or the given ancestor must be satisfied. 739 */ 740 int 741 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 742 dsl_dir_t *ancestor, cred_t *cr) 743 { 744 objset_t *os = dd->dd_pool->dp_meta_objset; 745 uint64_t limit, count; 746 char *count_prop; 747 enforce_res_t enforce; 748 int err = 0; 749 750 ASSERT(dsl_pool_config_held(dd->dd_pool)); 751 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 752 prop == ZFS_PROP_SNAPSHOT_LIMIT); 753 754 /* 755 * If we're allowed to change the limit, don't enforce the limit 756 * e.g. this can happen if a snapshot is taken by an administrative 757 * user in the global zone (i.e. a recursive snapshot by root). 758 * However, we must handle the case of delegated permissions where we 759 * are allowed to change the limit on the current dataset, but there 760 * is another limit in the tree above. 761 */ 762 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 763 if (enforce == ENFORCE_NEVER) 764 return (0); 765 766 /* 767 * e.g. if renaming a dataset with no snapshots, count adjustment 768 * is 0. 769 */ 770 if (delta == 0) 771 return (0); 772 773 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 774 /* 775 * We don't enforce the limit for temporary snapshots. This is 776 * indicated by a NULL cred_t argument. 777 */ 778 if (cr == NULL) 779 return (0); 780 781 count_prop = DD_FIELD_SNAPSHOT_COUNT; 782 } else { 783 count_prop = DD_FIELD_FILESYSTEM_COUNT; 784 } 785 786 /* 787 * If an ancestor has been provided, stop checking the limit once we 788 * hit that dir. We need this during rename so that we don't overcount 789 * the check once we recurse up to the common ancestor. 790 */ 791 if (ancestor == dd) 792 return (0); 793 794 /* 795 * If we hit an uninitialized node while recursing up the tree, we can 796 * stop since we know there is no limit here (or above). The counts are 797 * not valid on this node and we know we won't touch this node's counts. 798 */ 799 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 800 count_prop, sizeof (count), 1, &count) == ENOENT) 801 return (0); 802 803 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 804 B_FALSE); 805 if (err != 0) 806 return (err); 807 808 /* Is there a limit which we've hit? */ 809 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 810 return (SET_ERROR(EDQUOT)); 811 812 if (dd->dd_parent != NULL) 813 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 814 ancestor, cr); 815 816 return (err); 817 } 818 819 /* 820 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 821 * parents. When a new filesystem/snapshot is created, increment the count on 822 * all parents, and when a filesystem/snapshot is destroyed, decrement the 823 * count. 824 */ 825 void 826 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 827 dmu_tx_t *tx) 828 { 829 int err; 830 objset_t *os = dd->dd_pool->dp_meta_objset; 831 uint64_t count; 832 833 ASSERT(dsl_pool_config_held(dd->dd_pool)); 834 ASSERT(dmu_tx_is_syncing(tx)); 835 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 836 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 837 838 /* 839 * When we receive an incremental stream into a filesystem that already 840 * exists, a temporary clone is created. We don't count this temporary 841 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 842 * $MOS & $ORIGIN) objsets. 843 */ 844 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 845 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 846 return; 847 848 /* 849 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 850 */ 851 if (delta == 0) 852 return; 853 854 /* 855 * If we hit an uninitialized node while recursing up the tree, we can 856 * stop since we know the counts are not valid on this node and we 857 * know we shouldn't touch this node's counts. An uninitialized count 858 * on the node indicates that either the feature has not yet been 859 * activated or there are no limits on this part of the tree. 860 */ 861 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 862 prop, sizeof (count), 1, &count)) == ENOENT) 863 return; 864 VERIFY0(err); 865 866 count += delta; 867 /* Use a signed verify to make sure we're not neg. */ 868 VERIFY3S(count, >=, 0); 869 870 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 871 tx)); 872 873 /* Roll up this additional count into our ancestors */ 874 if (dd->dd_parent != NULL) 875 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 876 } 877 878 uint64_t 879 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 880 dmu_tx_t *tx) 881 { 882 objset_t *mos = dp->dp_meta_objset; 883 uint64_t ddobj; 884 dsl_dir_phys_t *ddphys; 885 dmu_buf_t *dbuf; 886 887 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 888 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 889 if (pds) { 890 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 891 name, sizeof (uint64_t), 1, &ddobj, tx)); 892 } else { 893 /* it's the root dir */ 894 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 895 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 896 } 897 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 898 dmu_buf_will_dirty(dbuf, tx); 899 ddphys = dbuf->db_data; 900 901 ddphys->dd_creation_time = gethrestime_sec(); 902 if (pds) { 903 ddphys->dd_parent_obj = pds->dd_object; 904 905 /* update the filesystem counts */ 906 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 907 } 908 ddphys->dd_props_zapobj = zap_create(mos, 909 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 910 ddphys->dd_child_dir_zapobj = zap_create(mos, 911 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 912 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 913 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 914 dmu_buf_rele(dbuf, FTAG); 915 916 return (ddobj); 917 } 918 919 boolean_t 920 dsl_dir_is_clone(dsl_dir_t *dd) 921 { 922 return (dsl_dir_phys(dd)->dd_origin_obj && 923 (dd->dd_pool->dp_origin_snap == NULL || 924 dsl_dir_phys(dd)->dd_origin_obj != 925 dd->dd_pool->dp_origin_snap->ds_object)); 926 } 927 928 929 uint64_t 930 dsl_dir_get_used(dsl_dir_t *dd) 931 { 932 return (dsl_dir_phys(dd)->dd_used_bytes); 933 } 934 935 uint64_t 936 dsl_dir_get_quota(dsl_dir_t *dd) 937 { 938 return (dsl_dir_phys(dd)->dd_quota); 939 } 940 941 uint64_t 942 dsl_dir_get_reservation(dsl_dir_t *dd) 943 { 944 return (dsl_dir_phys(dd)->dd_reserved); 945 } 946 947 uint64_t 948 dsl_dir_get_compressratio(dsl_dir_t *dd) 949 { 950 /* a fixed point number, 100x the ratio */ 951 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 952 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 953 dsl_dir_phys(dd)->dd_compressed_bytes)); 954 } 955 956 uint64_t 957 dsl_dir_get_logicalused(dsl_dir_t *dd) 958 { 959 return (dsl_dir_phys(dd)->dd_uncompressed_bytes); 960 } 961 962 uint64_t 963 dsl_dir_get_usedsnap(dsl_dir_t *dd) 964 { 965 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 966 } 967 968 uint64_t 969 dsl_dir_get_usedds(dsl_dir_t *dd) 970 { 971 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 972 } 973 974 uint64_t 975 dsl_dir_get_usedrefreserv(dsl_dir_t *dd) 976 { 977 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 978 } 979 980 uint64_t 981 dsl_dir_get_usedchild(dsl_dir_t *dd) 982 { 983 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 984 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 985 } 986 987 void 988 dsl_dir_get_origin(dsl_dir_t *dd, char *buf) 989 { 990 dsl_dataset_t *ds; 991 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 992 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 993 994 dsl_dataset_name(ds, buf); 995 996 dsl_dataset_rele(ds, FTAG); 997 } 998 999 int 1000 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count) 1001 { 1002 if (dsl_dir_is_zapified(dd)) { 1003 objset_t *os = dd->dd_pool->dp_meta_objset; 1004 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 1005 sizeof (*count), 1, count)); 1006 } else { 1007 return (ENOENT); 1008 } 1009 } 1010 1011 int 1012 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count) 1013 { 1014 if (dsl_dir_is_zapified(dd)) { 1015 objset_t *os = dd->dd_pool->dp_meta_objset; 1016 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 1017 sizeof (*count), 1, count)); 1018 } else { 1019 return (ENOENT); 1020 } 1021 } 1022 1023 void 1024 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1025 { 1026 mutex_enter(&dd->dd_lock); 1027 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 1028 dsl_dir_get_quota(dd)); 1029 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1030 dsl_dir_get_reservation(dd)); 1031 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 1032 dsl_dir_get_logicalused(dd)); 1033 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1034 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1035 dsl_dir_get_usedsnap(dd)); 1036 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1037 dsl_dir_get_usedds(dd)); 1038 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1039 dsl_dir_get_usedrefreserv(dd)); 1040 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1041 dsl_dir_get_usedchild(dd)); 1042 } 1043 mutex_exit(&dd->dd_lock); 1044 1045 uint64_t count; 1046 if (dsl_dir_get_filesystem_count(dd, &count) == 0) { 1047 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT, 1048 count); 1049 } 1050 if (dsl_dir_get_snapshot_count(dd, &count) == 0) { 1051 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT, 1052 count); 1053 } 1054 1055 if (dsl_dir_is_clone(dd)) { 1056 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1057 dsl_dir_get_origin(dd, buf); 1058 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1059 } 1060 1061 } 1062 1063 void 1064 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1065 { 1066 dsl_pool_t *dp = dd->dd_pool; 1067 1068 ASSERT(dsl_dir_phys(dd)); 1069 1070 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1071 /* up the hold count until we can be written out */ 1072 dmu_buf_add_ref(dd->dd_dbuf, dd); 1073 } 1074 } 1075 1076 static int64_t 1077 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1078 { 1079 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1080 uint64_t new_accounted = 1081 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1082 return (new_accounted - old_accounted); 1083 } 1084 1085 void 1086 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1087 { 1088 ASSERT(dmu_tx_is_syncing(tx)); 1089 1090 mutex_enter(&dd->dd_lock); 1091 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1092 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1093 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1094 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1095 mutex_exit(&dd->dd_lock); 1096 1097 /* release the hold from dsl_dir_dirty */ 1098 dmu_buf_rele(dd->dd_dbuf, dd); 1099 } 1100 1101 static uint64_t 1102 dsl_dir_space_towrite(dsl_dir_t *dd) 1103 { 1104 uint64_t space = 0; 1105 1106 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1107 1108 for (int i = 0; i < TXG_SIZE; i++) { 1109 space += dd->dd_space_towrite[i & TXG_MASK]; 1110 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0); 1111 } 1112 return (space); 1113 } 1114 1115 /* 1116 * How much space would dd have available if ancestor had delta applied 1117 * to it? If ondiskonly is set, we're only interested in what's 1118 * on-disk, not estimated pending changes. 1119 */ 1120 uint64_t 1121 dsl_dir_space_available(dsl_dir_t *dd, 1122 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1123 { 1124 uint64_t parentspace, myspace, quota, used; 1125 1126 /* 1127 * If there are no restrictions otherwise, assume we have 1128 * unlimited space available. 1129 */ 1130 quota = UINT64_MAX; 1131 parentspace = UINT64_MAX; 1132 1133 if (dd->dd_parent != NULL) { 1134 parentspace = dsl_dir_space_available(dd->dd_parent, 1135 ancestor, delta, ondiskonly); 1136 } 1137 1138 mutex_enter(&dd->dd_lock); 1139 if (dsl_dir_phys(dd)->dd_quota != 0) 1140 quota = dsl_dir_phys(dd)->dd_quota; 1141 used = dsl_dir_phys(dd)->dd_used_bytes; 1142 if (!ondiskonly) 1143 used += dsl_dir_space_towrite(dd); 1144 1145 if (dd->dd_parent == NULL) { 1146 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); 1147 quota = MIN(quota, poolsize); 1148 } 1149 1150 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1151 /* 1152 * We have some space reserved, in addition to what our 1153 * parent gave us. 1154 */ 1155 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1156 } 1157 1158 if (dd == ancestor) { 1159 ASSERT(delta <= 0); 1160 ASSERT(used >= -delta); 1161 used += delta; 1162 if (parentspace != UINT64_MAX) 1163 parentspace -= delta; 1164 } 1165 1166 if (used > quota) { 1167 /* over quota */ 1168 myspace = 0; 1169 } else { 1170 /* 1171 * the lesser of the space provided by our parent and 1172 * the space left in our quota 1173 */ 1174 myspace = MIN(parentspace, quota - used); 1175 } 1176 1177 mutex_exit(&dd->dd_lock); 1178 1179 return (myspace); 1180 } 1181 1182 struct tempreserve { 1183 list_node_t tr_node; 1184 dsl_dir_t *tr_ds; 1185 uint64_t tr_size; 1186 }; 1187 1188 static int 1189 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1190 boolean_t ignorequota, list_t *tr_list, 1191 dmu_tx_t *tx, boolean_t first) 1192 { 1193 uint64_t txg = tx->tx_txg; 1194 uint64_t quota; 1195 struct tempreserve *tr; 1196 int retval = EDQUOT; 1197 uint64_t ref_rsrv = 0; 1198 1199 ASSERT3U(txg, !=, 0); 1200 ASSERT3S(asize, >, 0); 1201 1202 mutex_enter(&dd->dd_lock); 1203 1204 /* 1205 * Check against the dsl_dir's quota. We don't add in the delta 1206 * when checking for over-quota because they get one free hit. 1207 */ 1208 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1209 for (int i = 0; i < TXG_SIZE; i++) 1210 est_inflight += dd->dd_tempreserved[i]; 1211 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1212 1213 /* 1214 * On the first iteration, fetch the dataset's used-on-disk and 1215 * refreservation values. Also, if checkrefquota is set, test if 1216 * allocating this space would exceed the dataset's refquota. 1217 */ 1218 if (first && tx->tx_objset) { 1219 int error; 1220 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1221 1222 error = dsl_dataset_check_quota(ds, !netfree, 1223 asize, est_inflight, &used_on_disk, &ref_rsrv); 1224 if (error != 0) { 1225 mutex_exit(&dd->dd_lock); 1226 return (error); 1227 } 1228 } 1229 1230 /* 1231 * If this transaction will result in a net free of space, 1232 * we want to let it through. 1233 */ 1234 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1235 quota = UINT64_MAX; 1236 else 1237 quota = dsl_dir_phys(dd)->dd_quota; 1238 1239 /* 1240 * Adjust the quota against the actual pool size at the root 1241 * minus any outstanding deferred frees. 1242 * To ensure that it's possible to remove files from a full 1243 * pool without inducing transient overcommits, we throttle 1244 * netfree transactions against a quota that is slightly larger, 1245 * but still within the pool's allocation slop. In cases where 1246 * we're very close to full, this will allow a steady trickle of 1247 * removes to get through. 1248 */ 1249 uint64_t deferred = 0; 1250 if (dd->dd_parent == NULL) { 1251 spa_t *spa = dd->dd_pool->dp_spa; 1252 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); 1253 deferred = metaslab_class_get_deferred(spa_normal_class(spa)); 1254 if (poolsize - deferred < quota) { 1255 quota = poolsize - deferred; 1256 retval = ENOSPC; 1257 } 1258 } 1259 1260 /* 1261 * If they are requesting more space, and our current estimate 1262 * is over quota, they get to try again unless the actual 1263 * on-disk is over quota and there are no pending changes (which 1264 * may free up space for us). 1265 */ 1266 if (used_on_disk + est_inflight >= quota) { 1267 if (est_inflight > 0 || used_on_disk < quota || 1268 (retval == ENOSPC && used_on_disk < quota + deferred)) 1269 retval = ERESTART; 1270 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1271 "quota=%lluK tr=%lluK err=%d\n", 1272 used_on_disk>>10, est_inflight>>10, 1273 quota>>10, asize>>10, retval); 1274 mutex_exit(&dd->dd_lock); 1275 return (SET_ERROR(retval)); 1276 } 1277 1278 /* We need to up our estimated delta before dropping dd_lock */ 1279 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1280 1281 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1282 asize - ref_rsrv); 1283 mutex_exit(&dd->dd_lock); 1284 1285 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1286 tr->tr_ds = dd; 1287 tr->tr_size = asize; 1288 list_insert_tail(tr_list, tr); 1289 1290 /* see if it's OK with our parent */ 1291 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1292 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1293 1294 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1295 parent_rsrv, netfree, ismos, tr_list, tx, B_FALSE)); 1296 } else { 1297 return (0); 1298 } 1299 } 1300 1301 /* 1302 * Reserve space in this dsl_dir, to be used in this tx's txg. 1303 * After the space has been dirtied (and dsl_dir_willuse_space() 1304 * has been called), the reservation should be canceled, using 1305 * dsl_dir_tempreserve_clear(). 1306 */ 1307 int 1308 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1309 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1310 { 1311 int err; 1312 list_t *tr_list; 1313 1314 if (asize == 0) { 1315 *tr_cookiep = NULL; 1316 return (0); 1317 } 1318 1319 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1320 list_create(tr_list, sizeof (struct tempreserve), 1321 offsetof(struct tempreserve, tr_node)); 1322 ASSERT3S(asize, >, 0); 1323 1324 err = arc_tempreserve_space(lsize, tx->tx_txg); 1325 if (err == 0) { 1326 struct tempreserve *tr; 1327 1328 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1329 tr->tr_size = lsize; 1330 list_insert_tail(tr_list, tr); 1331 } else { 1332 if (err == EAGAIN) { 1333 /* 1334 * If arc_memory_throttle() detected that pageout 1335 * is running and we are low on memory, we delay new 1336 * non-pageout transactions to give pageout an 1337 * advantage. 1338 * 1339 * It is unfortunate to be delaying while the caller's 1340 * locks are held. 1341 */ 1342 txg_delay(dd->dd_pool, tx->tx_txg, 1343 MSEC2NSEC(10), MSEC2NSEC(10)); 1344 err = SET_ERROR(ERESTART); 1345 } 1346 } 1347 1348 if (err == 0) { 1349 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1350 B_FALSE, tr_list, tx, B_TRUE); 1351 } 1352 1353 if (err != 0) 1354 dsl_dir_tempreserve_clear(tr_list, tx); 1355 else 1356 *tr_cookiep = tr_list; 1357 1358 return (err); 1359 } 1360 1361 /* 1362 * Clear a temporary reservation that we previously made with 1363 * dsl_dir_tempreserve_space(). 1364 */ 1365 void 1366 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1367 { 1368 int txgidx = tx->tx_txg & TXG_MASK; 1369 list_t *tr_list = tr_cookie; 1370 struct tempreserve *tr; 1371 1372 ASSERT3U(tx->tx_txg, !=, 0); 1373 1374 if (tr_cookie == NULL) 1375 return; 1376 1377 while ((tr = list_head(tr_list)) != NULL) { 1378 if (tr->tr_ds) { 1379 mutex_enter(&tr->tr_ds->dd_lock); 1380 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1381 tr->tr_size); 1382 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1383 mutex_exit(&tr->tr_ds->dd_lock); 1384 } else { 1385 arc_tempreserve_clear(tr->tr_size); 1386 } 1387 list_remove(tr_list, tr); 1388 kmem_free(tr, sizeof (struct tempreserve)); 1389 } 1390 1391 kmem_free(tr_list, sizeof (list_t)); 1392 } 1393 1394 /* 1395 * This should be called from open context when we think we're going to write 1396 * or free space, for example when dirtying data. Be conservative; it's okay 1397 * to write less space or free more, but we don't want to write more or free 1398 * less than the amount specified. 1399 */ 1400 void 1401 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1402 { 1403 int64_t parent_space; 1404 uint64_t est_used; 1405 1406 mutex_enter(&dd->dd_lock); 1407 if (space > 0) 1408 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1409 1410 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes; 1411 parent_space = parent_delta(dd, est_used, space); 1412 mutex_exit(&dd->dd_lock); 1413 1414 /* Make sure that we clean up dd_space_to* */ 1415 dsl_dir_dirty(dd, tx); 1416 1417 /* XXX this is potentially expensive and unnecessary... */ 1418 if (parent_space && dd->dd_parent) 1419 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1420 } 1421 1422 /* call from syncing context when we actually write/free space for this dd */ 1423 void 1424 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1425 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1426 { 1427 int64_t accounted_delta; 1428 1429 /* 1430 * dsl_dataset_set_refreservation_sync_impl() calls this with 1431 * dd_lock held, so that it can atomically update 1432 * ds->ds_reserved and the dsl_dir accounting, so that 1433 * dsl_dataset_check_quota() can see dataset and dir accounting 1434 * consistently. 1435 */ 1436 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1437 1438 ASSERT(dmu_tx_is_syncing(tx)); 1439 ASSERT(type < DD_USED_NUM); 1440 1441 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1442 1443 if (needlock) 1444 mutex_enter(&dd->dd_lock); 1445 accounted_delta = 1446 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used); 1447 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used); 1448 ASSERT(compressed >= 0 || 1449 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed); 1450 ASSERT(uncompressed >= 0 || 1451 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed); 1452 dsl_dir_phys(dd)->dd_used_bytes += used; 1453 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed; 1454 dsl_dir_phys(dd)->dd_compressed_bytes += compressed; 1455 1456 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1457 ASSERT(used > 0 || 1458 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used); 1459 dsl_dir_phys(dd)->dd_used_breakdown[type] += used; 1460 #ifdef DEBUG 1461 dd_used_t t; 1462 uint64_t u = 0; 1463 for (t = 0; t < DD_USED_NUM; t++) 1464 u += dsl_dir_phys(dd)->dd_used_breakdown[t]; 1465 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes); 1466 #endif 1467 } 1468 if (needlock) 1469 mutex_exit(&dd->dd_lock); 1470 1471 if (dd->dd_parent != NULL) { 1472 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1473 accounted_delta, compressed, uncompressed, tx); 1474 dsl_dir_transfer_space(dd->dd_parent, 1475 used - accounted_delta, 1476 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1477 } 1478 } 1479 1480 void 1481 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1482 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1483 { 1484 ASSERT(dmu_tx_is_syncing(tx)); 1485 ASSERT(oldtype < DD_USED_NUM); 1486 ASSERT(newtype < DD_USED_NUM); 1487 1488 if (delta == 0 || 1489 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1490 return; 1491 1492 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1493 mutex_enter(&dd->dd_lock); 1494 ASSERT(delta > 0 ? 1495 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta : 1496 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta); 1497 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta)); 1498 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta; 1499 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta; 1500 mutex_exit(&dd->dd_lock); 1501 } 1502 1503 typedef struct dsl_dir_set_qr_arg { 1504 const char *ddsqra_name; 1505 zprop_source_t ddsqra_source; 1506 uint64_t ddsqra_value; 1507 } dsl_dir_set_qr_arg_t; 1508 1509 static int 1510 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1511 { 1512 dsl_dir_set_qr_arg_t *ddsqra = arg; 1513 dsl_pool_t *dp = dmu_tx_pool(tx); 1514 dsl_dataset_t *ds; 1515 int error; 1516 uint64_t towrite, newval; 1517 1518 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1519 if (error != 0) 1520 return (error); 1521 1522 error = dsl_prop_predict(ds->ds_dir, "quota", 1523 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1524 if (error != 0) { 1525 dsl_dataset_rele(ds, FTAG); 1526 return (error); 1527 } 1528 1529 if (newval == 0) { 1530 dsl_dataset_rele(ds, FTAG); 1531 return (0); 1532 } 1533 1534 mutex_enter(&ds->ds_dir->dd_lock); 1535 /* 1536 * If we are doing the preliminary check in open context, and 1537 * there are pending changes, then don't fail it, since the 1538 * pending changes could under-estimate the amount of space to be 1539 * freed up. 1540 */ 1541 towrite = dsl_dir_space_towrite(ds->ds_dir); 1542 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1543 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1544 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1545 error = SET_ERROR(ENOSPC); 1546 } 1547 mutex_exit(&ds->ds_dir->dd_lock); 1548 dsl_dataset_rele(ds, FTAG); 1549 return (error); 1550 } 1551 1552 static void 1553 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1554 { 1555 dsl_dir_set_qr_arg_t *ddsqra = arg; 1556 dsl_pool_t *dp = dmu_tx_pool(tx); 1557 dsl_dataset_t *ds; 1558 uint64_t newval; 1559 1560 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1561 1562 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1563 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1564 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1565 &ddsqra->ddsqra_value, tx); 1566 1567 VERIFY0(dsl_prop_get_int_ds(ds, 1568 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1569 } else { 1570 newval = ddsqra->ddsqra_value; 1571 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1572 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1573 } 1574 1575 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1576 mutex_enter(&ds->ds_dir->dd_lock); 1577 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1578 mutex_exit(&ds->ds_dir->dd_lock); 1579 dsl_dataset_rele(ds, FTAG); 1580 } 1581 1582 int 1583 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1584 { 1585 dsl_dir_set_qr_arg_t ddsqra; 1586 1587 ddsqra.ddsqra_name = ddname; 1588 ddsqra.ddsqra_source = source; 1589 ddsqra.ddsqra_value = quota; 1590 1591 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1592 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1593 } 1594 1595 int 1596 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1597 { 1598 dsl_dir_set_qr_arg_t *ddsqra = arg; 1599 dsl_pool_t *dp = dmu_tx_pool(tx); 1600 dsl_dataset_t *ds; 1601 dsl_dir_t *dd; 1602 uint64_t newval, used, avail; 1603 int error; 1604 1605 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1606 if (error != 0) 1607 return (error); 1608 dd = ds->ds_dir; 1609 1610 /* 1611 * If we are doing the preliminary check in open context, the 1612 * space estimates may be inaccurate. 1613 */ 1614 if (!dmu_tx_is_syncing(tx)) { 1615 dsl_dataset_rele(ds, FTAG); 1616 return (0); 1617 } 1618 1619 error = dsl_prop_predict(ds->ds_dir, 1620 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1621 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1622 if (error != 0) { 1623 dsl_dataset_rele(ds, FTAG); 1624 return (error); 1625 } 1626 1627 mutex_enter(&dd->dd_lock); 1628 used = dsl_dir_phys(dd)->dd_used_bytes; 1629 mutex_exit(&dd->dd_lock); 1630 1631 if (dd->dd_parent) { 1632 avail = dsl_dir_space_available(dd->dd_parent, 1633 NULL, 0, FALSE); 1634 } else { 1635 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; 1636 } 1637 1638 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1639 uint64_t delta = MAX(used, newval) - 1640 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1641 1642 if (delta > avail || 1643 (dsl_dir_phys(dd)->dd_quota > 0 && 1644 newval > dsl_dir_phys(dd)->dd_quota)) 1645 error = SET_ERROR(ENOSPC); 1646 } 1647 1648 dsl_dataset_rele(ds, FTAG); 1649 return (error); 1650 } 1651 1652 void 1653 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1654 { 1655 uint64_t used; 1656 int64_t delta; 1657 1658 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1659 1660 mutex_enter(&dd->dd_lock); 1661 used = dsl_dir_phys(dd)->dd_used_bytes; 1662 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1663 dsl_dir_phys(dd)->dd_reserved = value; 1664 1665 if (dd->dd_parent != NULL) { 1666 /* Roll up this additional usage into our ancestors */ 1667 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1668 delta, 0, 0, tx); 1669 } 1670 mutex_exit(&dd->dd_lock); 1671 } 1672 1673 1674 static void 1675 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1676 { 1677 dsl_dir_set_qr_arg_t *ddsqra = arg; 1678 dsl_pool_t *dp = dmu_tx_pool(tx); 1679 dsl_dataset_t *ds; 1680 uint64_t newval; 1681 1682 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1683 1684 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1685 dsl_prop_set_sync_impl(ds, 1686 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1687 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1688 &ddsqra->ddsqra_value, tx); 1689 1690 VERIFY0(dsl_prop_get_int_ds(ds, 1691 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1692 } else { 1693 newval = ddsqra->ddsqra_value; 1694 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1695 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1696 (longlong_t)newval); 1697 } 1698 1699 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1700 dsl_dataset_rele(ds, FTAG); 1701 } 1702 1703 int 1704 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1705 uint64_t reservation) 1706 { 1707 dsl_dir_set_qr_arg_t ddsqra; 1708 1709 ddsqra.ddsqra_name = ddname; 1710 ddsqra.ddsqra_source = source; 1711 ddsqra.ddsqra_value = reservation; 1712 1713 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1714 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1715 } 1716 1717 static dsl_dir_t * 1718 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1719 { 1720 for (; ds1; ds1 = ds1->dd_parent) { 1721 dsl_dir_t *dd; 1722 for (dd = ds2; dd; dd = dd->dd_parent) { 1723 if (ds1 == dd) 1724 return (dd); 1725 } 1726 } 1727 return (NULL); 1728 } 1729 1730 /* 1731 * If delta is applied to dd, how much of that delta would be applied to 1732 * ancestor? Syncing context only. 1733 */ 1734 static int64_t 1735 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1736 { 1737 if (dd == ancestor) 1738 return (delta); 1739 1740 mutex_enter(&dd->dd_lock); 1741 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1742 mutex_exit(&dd->dd_lock); 1743 return (would_change(dd->dd_parent, delta, ancestor)); 1744 } 1745 1746 typedef struct dsl_dir_rename_arg { 1747 const char *ddra_oldname; 1748 const char *ddra_newname; 1749 cred_t *ddra_cred; 1750 } dsl_dir_rename_arg_t; 1751 1752 /* ARGSUSED */ 1753 static int 1754 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1755 { 1756 int *deltap = arg; 1757 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1758 1759 dsl_dataset_name(ds, namebuf); 1760 1761 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN) 1762 return (SET_ERROR(ENAMETOOLONG)); 1763 return (0); 1764 } 1765 1766 static int 1767 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1768 { 1769 dsl_dir_rename_arg_t *ddra = arg; 1770 dsl_pool_t *dp = dmu_tx_pool(tx); 1771 dsl_dir_t *dd, *newparent; 1772 const char *mynewname; 1773 int error; 1774 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname); 1775 1776 /* target dir should exist */ 1777 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1778 if (error != 0) 1779 return (error); 1780 1781 /* new parent should exist */ 1782 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1783 &newparent, &mynewname); 1784 if (error != 0) { 1785 dsl_dir_rele(dd, FTAG); 1786 return (error); 1787 } 1788 1789 /* can't rename to different pool */ 1790 if (dd->dd_pool != newparent->dd_pool) { 1791 dsl_dir_rele(newparent, FTAG); 1792 dsl_dir_rele(dd, FTAG); 1793 return (SET_ERROR(ENXIO)); 1794 } 1795 1796 /* new name should not already exist */ 1797 if (mynewname == NULL) { 1798 dsl_dir_rele(newparent, FTAG); 1799 dsl_dir_rele(dd, FTAG); 1800 return (SET_ERROR(EEXIST)); 1801 } 1802 1803 /* if the name length is growing, validate child name lengths */ 1804 if (delta > 0) { 1805 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1806 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1807 if (error != 0) { 1808 dsl_dir_rele(newparent, FTAG); 1809 dsl_dir_rele(dd, FTAG); 1810 return (error); 1811 } 1812 } 1813 1814 if (dmu_tx_is_syncing(tx)) { 1815 if (spa_feature_is_active(dp->dp_spa, 1816 SPA_FEATURE_FS_SS_LIMIT)) { 1817 /* 1818 * Although this is the check function and we don't 1819 * normally make on-disk changes in check functions, 1820 * we need to do that here. 1821 * 1822 * Ensure this portion of the tree's counts have been 1823 * initialized in case the new parent has limits set. 1824 */ 1825 dsl_dir_init_fs_ss_count(dd, tx); 1826 } 1827 } 1828 1829 if (newparent != dd->dd_parent) { 1830 /* is there enough space? */ 1831 uint64_t myspace = 1832 MAX(dsl_dir_phys(dd)->dd_used_bytes, 1833 dsl_dir_phys(dd)->dd_reserved); 1834 objset_t *os = dd->dd_pool->dp_meta_objset; 1835 uint64_t fs_cnt = 0; 1836 uint64_t ss_cnt = 0; 1837 1838 if (dsl_dir_is_zapified(dd)) { 1839 int err; 1840 1841 err = zap_lookup(os, dd->dd_object, 1842 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1843 &fs_cnt); 1844 if (err != ENOENT && err != 0) { 1845 dsl_dir_rele(newparent, FTAG); 1846 dsl_dir_rele(dd, FTAG); 1847 return (err); 1848 } 1849 1850 /* 1851 * have to add 1 for the filesystem itself that we're 1852 * moving 1853 */ 1854 fs_cnt++; 1855 1856 err = zap_lookup(os, dd->dd_object, 1857 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1858 &ss_cnt); 1859 if (err != ENOENT && err != 0) { 1860 dsl_dir_rele(newparent, FTAG); 1861 dsl_dir_rele(dd, FTAG); 1862 return (err); 1863 } 1864 } 1865 1866 /* no rename into our descendant */ 1867 if (closest_common_ancestor(dd, newparent) == dd) { 1868 dsl_dir_rele(newparent, FTAG); 1869 dsl_dir_rele(dd, FTAG); 1870 return (SET_ERROR(EINVAL)); 1871 } 1872 1873 error = dsl_dir_transfer_possible(dd->dd_parent, 1874 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1875 if (error != 0) { 1876 dsl_dir_rele(newparent, FTAG); 1877 dsl_dir_rele(dd, FTAG); 1878 return (error); 1879 } 1880 } 1881 1882 dsl_dir_rele(newparent, FTAG); 1883 dsl_dir_rele(dd, FTAG); 1884 return (0); 1885 } 1886 1887 static void 1888 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1889 { 1890 dsl_dir_rename_arg_t *ddra = arg; 1891 dsl_pool_t *dp = dmu_tx_pool(tx); 1892 dsl_dir_t *dd, *newparent; 1893 const char *mynewname; 1894 int error; 1895 objset_t *mos = dp->dp_meta_objset; 1896 1897 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 1898 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 1899 &mynewname)); 1900 1901 /* Log this before we change the name. */ 1902 spa_history_log_internal_dd(dd, "rename", tx, 1903 "-> %s", ddra->ddra_newname); 1904 1905 if (newparent != dd->dd_parent) { 1906 objset_t *os = dd->dd_pool->dp_meta_objset; 1907 uint64_t fs_cnt = 0; 1908 uint64_t ss_cnt = 0; 1909 1910 /* 1911 * We already made sure the dd counts were initialized in the 1912 * check function. 1913 */ 1914 if (spa_feature_is_active(dp->dp_spa, 1915 SPA_FEATURE_FS_SS_LIMIT)) { 1916 VERIFY0(zap_lookup(os, dd->dd_object, 1917 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1918 &fs_cnt)); 1919 /* add 1 for the filesystem itself that we're moving */ 1920 fs_cnt++; 1921 1922 VERIFY0(zap_lookup(os, dd->dd_object, 1923 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1924 &ss_cnt)); 1925 } 1926 1927 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 1928 DD_FIELD_FILESYSTEM_COUNT, tx); 1929 dsl_fs_ss_count_adjust(newparent, fs_cnt, 1930 DD_FIELD_FILESYSTEM_COUNT, tx); 1931 1932 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 1933 DD_FIELD_SNAPSHOT_COUNT, tx); 1934 dsl_fs_ss_count_adjust(newparent, ss_cnt, 1935 DD_FIELD_SNAPSHOT_COUNT, tx); 1936 1937 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1938 -dsl_dir_phys(dd)->dd_used_bytes, 1939 -dsl_dir_phys(dd)->dd_compressed_bytes, 1940 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1941 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 1942 dsl_dir_phys(dd)->dd_used_bytes, 1943 dsl_dir_phys(dd)->dd_compressed_bytes, 1944 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1945 1946 if (dsl_dir_phys(dd)->dd_reserved > 1947 dsl_dir_phys(dd)->dd_used_bytes) { 1948 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 1949 dsl_dir_phys(dd)->dd_used_bytes; 1950 1951 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1952 -unused_rsrv, 0, 0, tx); 1953 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 1954 unused_rsrv, 0, 0, tx); 1955 } 1956 } 1957 1958 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1959 1960 /* remove from old parent zapobj */ 1961 error = zap_remove(mos, 1962 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 1963 dd->dd_myname, tx); 1964 ASSERT0(error); 1965 1966 (void) strcpy(dd->dd_myname, mynewname); 1967 dsl_dir_rele(dd->dd_parent, dd); 1968 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 1969 VERIFY0(dsl_dir_hold_obj(dp, 1970 newparent->dd_object, NULL, dd, &dd->dd_parent)); 1971 1972 /* add to new parent zapobj */ 1973 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 1974 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 1975 1976 dsl_prop_notify_all(dd); 1977 1978 dsl_dir_rele(newparent, FTAG); 1979 dsl_dir_rele(dd, FTAG); 1980 } 1981 1982 int 1983 dsl_dir_rename(const char *oldname, const char *newname) 1984 { 1985 dsl_dir_rename_arg_t ddra; 1986 1987 ddra.ddra_oldname = oldname; 1988 ddra.ddra_newname = newname; 1989 ddra.ddra_cred = CRED(); 1990 1991 return (dsl_sync_task(oldname, 1992 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 1993 3, ZFS_SPACE_CHECK_RESERVED)); 1994 } 1995 1996 int 1997 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 1998 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 1999 { 2000 dsl_dir_t *ancestor; 2001 int64_t adelta; 2002 uint64_t avail; 2003 int err; 2004 2005 ancestor = closest_common_ancestor(sdd, tdd); 2006 adelta = would_change(sdd, -space, ancestor); 2007 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 2008 if (avail < space) 2009 return (SET_ERROR(ENOSPC)); 2010 2011 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 2012 ancestor, cr); 2013 if (err != 0) 2014 return (err); 2015 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 2016 ancestor, cr); 2017 if (err != 0) 2018 return (err); 2019 2020 return (0); 2021 } 2022 2023 timestruc_t 2024 dsl_dir_snap_cmtime(dsl_dir_t *dd) 2025 { 2026 timestruc_t t; 2027 2028 mutex_enter(&dd->dd_lock); 2029 t = dd->dd_snap_cmtime; 2030 mutex_exit(&dd->dd_lock); 2031 2032 return (t); 2033 } 2034 2035 void 2036 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 2037 { 2038 timestruc_t t; 2039 2040 gethrestime(&t); 2041 mutex_enter(&dd->dd_lock); 2042 dd->dd_snap_cmtime = t; 2043 mutex_exit(&dd->dd_lock); 2044 } 2045 2046 void 2047 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 2048 { 2049 objset_t *mos = dd->dd_pool->dp_meta_objset; 2050 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 2051 } 2052 2053 boolean_t 2054 dsl_dir_is_zapified(dsl_dir_t *dd) 2055 { 2056 dmu_object_info_t doi; 2057 2058 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2059 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2060 } 2061