xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_dir.c (revision 92c82aaee9430c329e5095550e89559ba0dd9fee)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Martin Matuska. All rights reserved.
25  * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
50 
51 /*
52  * Filesystem and Snapshot Limits
53  * ------------------------------
54  *
55  * These limits are used to restrict the number of filesystems and/or snapshots
56  * that can be created at a given level in the tree or below. A typical
57  * use-case is with a delegated dataset where the administrator wants to ensure
58  * that a user within the zone is not creating too many additional filesystems
59  * or snapshots, even though they're not exceeding their space quota.
60  *
61  * The filesystem and snapshot counts are stored as extensible properties. This
62  * capability is controlled by a feature flag and must be enabled to be used.
63  * Once enabled, the feature is not active until the first limit is set. At
64  * that point, future operations to create/destroy filesystems or snapshots
65  * will validate and update the counts.
66  *
67  * Because the count properties will not exist before the feature is active,
68  * the counts are updated when a limit is first set on an uninitialized
69  * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70  * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71  * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72  * snapshot count properties on a node indicate uninitialized counts on that
73  * node.) When first setting a limit on an uninitialized node, the code starts
74  * at the filesystem with the new limit and descends into all sub-filesystems
75  * to add the count properties.
76  *
77  * In practice this is lightweight since a limit is typically set when the
78  * filesystem is created and thus has no children. Once valid, changing the
79  * limit value won't require a re-traversal since the counts are already valid.
80  * When recursively fixing the counts, if a node with a limit is encountered
81  * during the descent, the counts are known to be valid and there is no need to
82  * descend into that filesystem's children. The counts on filesystems above the
83  * one with the new limit will still be uninitialized, unless a limit is
84  * eventually set on one of those filesystems. The counts are always recursively
85  * updated when a limit is set on a dataset, unless there is already a limit.
86  * When a new limit value is set on a filesystem with an existing limit, it is
87  * possible for the new limit to be less than the current count at that level
88  * since a user who can change the limit is also allowed to exceed the limit.
89  *
90  * Once the feature is active, then whenever a filesystem or snapshot is
91  * created, the code recurses up the tree, validating the new count against the
92  * limit at each initialized level. In practice, most levels will not have a
93  * limit set. If there is a limit at any initialized level up the tree, the
94  * check must pass or the creation will fail. Likewise, when a filesystem or
95  * snapshot is destroyed, the counts are recursively adjusted all the way up
96  * the initizized nodes in the tree. Renaming a filesystem into different point
97  * in the tree will first validate, then update the counts on each branch up to
98  * the common ancestor. A receive will also validate the counts and then update
99  * them.
100  *
101  * An exception to the above behavior is that the limit is not enforced if the
102  * user has permission to modify the limit. This is primarily so that
103  * recursive snapshots in the global zone always work. We want to prevent a
104  * denial-of-service in which a lower level delegated dataset could max out its
105  * limit and thus block recursive snapshots from being taken in the global zone.
106  * Because of this, it is possible for the snapshot count to be over the limit
107  * and snapshots taken in the global zone could cause a lower level dataset to
108  * hit or exceed its limit. The administrator taking the global zone recursive
109  * snapshot should be aware of this side-effect and behave accordingly.
110  * For consistency, the filesystem limit is also not enforced if the user can
111  * modify the limit.
112  *
113  * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114  * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115  * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116  * dsl_dir_init_fs_ss_count().
117  *
118  * There is a special case when we receive a filesystem that already exists. In
119  * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120  * never update the filesystem counts for temporary clones.
121  *
122  * Likewise, we do not update the snapshot counts for temporary snapshots,
123  * such as those created by zfs diff.
124  */
125 
126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
127 
128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
129 
130 static void
131 dsl_dir_evict_async(void *dbu)
132 {
133 	dsl_dir_t *dd = dbu;
134 	dsl_pool_t *dp = dd->dd_pool;
135 	int t;
136 
137 	dd->dd_dbuf = NULL;
138 
139 	for (t = 0; t < TXG_SIZE; t++) {
140 		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
141 		ASSERT(dd->dd_tempreserved[t] == 0);
142 		ASSERT(dd->dd_space_towrite[t] == 0);
143 	}
144 
145 	if (dd->dd_parent)
146 		dsl_dir_async_rele(dd->dd_parent, dd);
147 
148 	spa_async_close(dd->dd_pool->dp_spa, dd);
149 
150 	dsl_prop_fini(dd);
151 	mutex_destroy(&dd->dd_lock);
152 	kmem_free(dd, sizeof (dsl_dir_t));
153 }
154 
155 int
156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
157     const char *tail, void *tag, dsl_dir_t **ddp)
158 {
159 	dmu_buf_t *dbuf;
160 	dsl_dir_t *dd;
161 	int err;
162 
163 	ASSERT(dsl_pool_config_held(dp));
164 
165 	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
166 	if (err != 0)
167 		return (err);
168 	dd = dmu_buf_get_user(dbuf);
169 #ifdef ZFS_DEBUG
170 	{
171 		dmu_object_info_t doi;
172 		dmu_object_info_from_db(dbuf, &doi);
173 		ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
174 		ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
175 	}
176 #endif
177 	if (dd == NULL) {
178 		dsl_dir_t *winner;
179 
180 		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
181 		dd->dd_object = ddobj;
182 		dd->dd_dbuf = dbuf;
183 		dd->dd_pool = dp;
184 		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
185 		dsl_prop_init(dd);
186 
187 		dsl_dir_snap_cmtime_update(dd);
188 
189 		if (dsl_dir_phys(dd)->dd_parent_obj) {
190 			err = dsl_dir_hold_obj(dp,
191 			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
192 			    &dd->dd_parent);
193 			if (err != 0)
194 				goto errout;
195 			if (tail) {
196 #ifdef ZFS_DEBUG
197 				uint64_t foundobj;
198 
199 				err = zap_lookup(dp->dp_meta_objset,
200 				    dsl_dir_phys(dd->dd_parent)->
201 				    dd_child_dir_zapobj, tail,
202 				    sizeof (foundobj), 1, &foundobj);
203 				ASSERT(err || foundobj == ddobj);
204 #endif
205 				(void) strcpy(dd->dd_myname, tail);
206 			} else {
207 				err = zap_value_search(dp->dp_meta_objset,
208 				    dsl_dir_phys(dd->dd_parent)->
209 				    dd_child_dir_zapobj,
210 				    ddobj, 0, dd->dd_myname);
211 			}
212 			if (err != 0)
213 				goto errout;
214 		} else {
215 			(void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
216 		}
217 
218 		if (dsl_dir_is_clone(dd)) {
219 			dmu_buf_t *origin_bonus;
220 			dsl_dataset_phys_t *origin_phys;
221 
222 			/*
223 			 * We can't open the origin dataset, because
224 			 * that would require opening this dsl_dir.
225 			 * Just look at its phys directly instead.
226 			 */
227 			err = dmu_bonus_hold(dp->dp_meta_objset,
228 			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
229 			    &origin_bonus);
230 			if (err != 0)
231 				goto errout;
232 			origin_phys = origin_bonus->db_data;
233 			dd->dd_origin_txg =
234 			    origin_phys->ds_creation_txg;
235 			dmu_buf_rele(origin_bonus, FTAG);
236 		}
237 
238 		dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
239 		    &dd->dd_dbuf);
240 		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
241 		if (winner != NULL) {
242 			if (dd->dd_parent)
243 				dsl_dir_rele(dd->dd_parent, dd);
244 			dsl_prop_fini(dd);
245 			mutex_destroy(&dd->dd_lock);
246 			kmem_free(dd, sizeof (dsl_dir_t));
247 			dd = winner;
248 		} else {
249 			spa_open_ref(dp->dp_spa, dd);
250 		}
251 	}
252 
253 	/*
254 	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
255 	 * holds on the spa.  We need the open-to-close holds because
256 	 * otherwise the spa_refcnt wouldn't change when we open a
257 	 * dir which the spa also has open, so we could incorrectly
258 	 * think it was OK to unload/export/destroy the pool.  We need
259 	 * the instantiate-to-evict hold because the dsl_dir_t has a
260 	 * pointer to the dd_pool, which has a pointer to the spa_t.
261 	 */
262 	spa_open_ref(dp->dp_spa, tag);
263 	ASSERT3P(dd->dd_pool, ==, dp);
264 	ASSERT3U(dd->dd_object, ==, ddobj);
265 	ASSERT3P(dd->dd_dbuf, ==, dbuf);
266 	*ddp = dd;
267 	return (0);
268 
269 errout:
270 	if (dd->dd_parent)
271 		dsl_dir_rele(dd->dd_parent, dd);
272 	dsl_prop_fini(dd);
273 	mutex_destroy(&dd->dd_lock);
274 	kmem_free(dd, sizeof (dsl_dir_t));
275 	dmu_buf_rele(dbuf, tag);
276 	return (err);
277 }
278 
279 void
280 dsl_dir_rele(dsl_dir_t *dd, void *tag)
281 {
282 	dprintf_dd(dd, "%s\n", "");
283 	spa_close(dd->dd_pool->dp_spa, tag);
284 	dmu_buf_rele(dd->dd_dbuf, tag);
285 }
286 
287 /*
288  * Remove a reference to the given dsl dir that is being asynchronously
289  * released.  Async releases occur from a taskq performing eviction of
290  * dsl datasets and dirs.  This process is identical to a normal release
291  * with the exception of using the async API for releasing the reference on
292  * the spa.
293  */
294 void
295 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
296 {
297 	dprintf_dd(dd, "%s\n", "");
298 	spa_async_close(dd->dd_pool->dp_spa, tag);
299 	dmu_buf_rele(dd->dd_dbuf, tag);
300 }
301 
302 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
303 void
304 dsl_dir_name(dsl_dir_t *dd, char *buf)
305 {
306 	if (dd->dd_parent) {
307 		dsl_dir_name(dd->dd_parent, buf);
308 		VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
309 		    ZFS_MAX_DATASET_NAME_LEN);
310 	} else {
311 		buf[0] = '\0';
312 	}
313 	if (!MUTEX_HELD(&dd->dd_lock)) {
314 		/*
315 		 * recursive mutex so that we can use
316 		 * dprintf_dd() with dd_lock held
317 		 */
318 		mutex_enter(&dd->dd_lock);
319 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
320 		    <, ZFS_MAX_DATASET_NAME_LEN);
321 		mutex_exit(&dd->dd_lock);
322 	} else {
323 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
324 		    <, ZFS_MAX_DATASET_NAME_LEN);
325 	}
326 }
327 
328 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
329 int
330 dsl_dir_namelen(dsl_dir_t *dd)
331 {
332 	int result = 0;
333 
334 	if (dd->dd_parent) {
335 		/* parent's name + 1 for the "/" */
336 		result = dsl_dir_namelen(dd->dd_parent) + 1;
337 	}
338 
339 	if (!MUTEX_HELD(&dd->dd_lock)) {
340 		/* see dsl_dir_name */
341 		mutex_enter(&dd->dd_lock);
342 		result += strlen(dd->dd_myname);
343 		mutex_exit(&dd->dd_lock);
344 	} else {
345 		result += strlen(dd->dd_myname);
346 	}
347 
348 	return (result);
349 }
350 
351 static int
352 getcomponent(const char *path, char *component, const char **nextp)
353 {
354 	char *p;
355 
356 	if ((path == NULL) || (path[0] == '\0'))
357 		return (SET_ERROR(ENOENT));
358 	/* This would be a good place to reserve some namespace... */
359 	p = strpbrk(path, "/@");
360 	if (p && (p[1] == '/' || p[1] == '@')) {
361 		/* two separators in a row */
362 		return (SET_ERROR(EINVAL));
363 	}
364 	if (p == NULL || p == path) {
365 		/*
366 		 * if the first thing is an @ or /, it had better be an
367 		 * @ and it had better not have any more ats or slashes,
368 		 * and it had better have something after the @.
369 		 */
370 		if (p != NULL &&
371 		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
372 			return (SET_ERROR(EINVAL));
373 		if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
374 			return (SET_ERROR(ENAMETOOLONG));
375 		(void) strcpy(component, path);
376 		p = NULL;
377 	} else if (p[0] == '/') {
378 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
379 			return (SET_ERROR(ENAMETOOLONG));
380 		(void) strncpy(component, path, p - path);
381 		component[p - path] = '\0';
382 		p++;
383 	} else if (p[0] == '@') {
384 		/*
385 		 * if the next separator is an @, there better not be
386 		 * any more slashes.
387 		 */
388 		if (strchr(path, '/'))
389 			return (SET_ERROR(EINVAL));
390 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
391 			return (SET_ERROR(ENAMETOOLONG));
392 		(void) strncpy(component, path, p - path);
393 		component[p - path] = '\0';
394 	} else {
395 		panic("invalid p=%p", (void *)p);
396 	}
397 	*nextp = p;
398 	return (0);
399 }
400 
401 /*
402  * Return the dsl_dir_t, and possibly the last component which couldn't
403  * be found in *tail.  The name must be in the specified dsl_pool_t.  This
404  * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
405  * path is bogus, or if tail==NULL and we couldn't parse the whole name.
406  * (*tail)[0] == '@' means that the last component is a snapshot.
407  */
408 int
409 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
410     dsl_dir_t **ddp, const char **tailp)
411 {
412 	char buf[ZFS_MAX_DATASET_NAME_LEN];
413 	const char *spaname, *next, *nextnext = NULL;
414 	int err;
415 	dsl_dir_t *dd;
416 	uint64_t ddobj;
417 
418 	err = getcomponent(name, buf, &next);
419 	if (err != 0)
420 		return (err);
421 
422 	/* Make sure the name is in the specified pool. */
423 	spaname = spa_name(dp->dp_spa);
424 	if (strcmp(buf, spaname) != 0)
425 		return (SET_ERROR(EXDEV));
426 
427 	ASSERT(dsl_pool_config_held(dp));
428 
429 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
430 	if (err != 0) {
431 		return (err);
432 	}
433 
434 	while (next != NULL) {
435 		dsl_dir_t *child_dd;
436 		err = getcomponent(next, buf, &nextnext);
437 		if (err != 0)
438 			break;
439 		ASSERT(next[0] != '\0');
440 		if (next[0] == '@')
441 			break;
442 		dprintf("looking up %s in obj%lld\n",
443 		    buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
444 
445 		err = zap_lookup(dp->dp_meta_objset,
446 		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
447 		    buf, sizeof (ddobj), 1, &ddobj);
448 		if (err != 0) {
449 			if (err == ENOENT)
450 				err = 0;
451 			break;
452 		}
453 
454 		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
455 		if (err != 0)
456 			break;
457 		dsl_dir_rele(dd, tag);
458 		dd = child_dd;
459 		next = nextnext;
460 	}
461 
462 	if (err != 0) {
463 		dsl_dir_rele(dd, tag);
464 		return (err);
465 	}
466 
467 	/*
468 	 * It's an error if there's more than one component left, or
469 	 * tailp==NULL and there's any component left.
470 	 */
471 	if (next != NULL &&
472 	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
473 		/* bad path name */
474 		dsl_dir_rele(dd, tag);
475 		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
476 		err = SET_ERROR(ENOENT);
477 	}
478 	if (tailp != NULL)
479 		*tailp = next;
480 	*ddp = dd;
481 	return (err);
482 }
483 
484 /*
485  * If the counts are already initialized for this filesystem and its
486  * descendants then do nothing, otherwise initialize the counts.
487  *
488  * The counts on this filesystem, and those below, may be uninitialized due to
489  * either the use of a pre-existing pool which did not support the
490  * filesystem/snapshot limit feature, or one in which the feature had not yet
491  * been enabled.
492  *
493  * Recursively descend the filesystem tree and update the filesystem/snapshot
494  * counts on each filesystem below, then update the cumulative count on the
495  * current filesystem. If the filesystem already has a count set on it,
496  * then we know that its counts, and the counts on the filesystems below it,
497  * are already correct, so we don't have to update this filesystem.
498  */
499 static void
500 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
501 {
502 	uint64_t my_fs_cnt = 0;
503 	uint64_t my_ss_cnt = 0;
504 	dsl_pool_t *dp = dd->dd_pool;
505 	objset_t *os = dp->dp_meta_objset;
506 	zap_cursor_t *zc;
507 	zap_attribute_t *za;
508 	dsl_dataset_t *ds;
509 
510 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
511 	ASSERT(dsl_pool_config_held(dp));
512 	ASSERT(dmu_tx_is_syncing(tx));
513 
514 	dsl_dir_zapify(dd, tx);
515 
516 	/*
517 	 * If the filesystem count has already been initialized then we
518 	 * don't need to recurse down any further.
519 	 */
520 	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
521 		return;
522 
523 	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
524 	za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
525 
526 	/* Iterate my child dirs */
527 	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
528 	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
529 		dsl_dir_t *chld_dd;
530 		uint64_t count;
531 
532 		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
533 		    &chld_dd));
534 
535 		/*
536 		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
537 		 * temporary datasets.
538 		 */
539 		if (chld_dd->dd_myname[0] == '$' ||
540 		    chld_dd->dd_myname[0] == '%') {
541 			dsl_dir_rele(chld_dd, FTAG);
542 			continue;
543 		}
544 
545 		my_fs_cnt++;	/* count this child */
546 
547 		dsl_dir_init_fs_ss_count(chld_dd, tx);
548 
549 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
550 		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
551 		my_fs_cnt += count;
552 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
553 		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
554 		my_ss_cnt += count;
555 
556 		dsl_dir_rele(chld_dd, FTAG);
557 	}
558 	zap_cursor_fini(zc);
559 	/* Count my snapshots (we counted children's snapshots above) */
560 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
561 	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
562 
563 	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
564 	    zap_cursor_retrieve(zc, za) == 0;
565 	    zap_cursor_advance(zc)) {
566 		/* Don't count temporary snapshots */
567 		if (za->za_name[0] != '%')
568 			my_ss_cnt++;
569 	}
570 	zap_cursor_fini(zc);
571 
572 	dsl_dataset_rele(ds, FTAG);
573 
574 	kmem_free(zc, sizeof (zap_cursor_t));
575 	kmem_free(za, sizeof (zap_attribute_t));
576 
577 	/* we're in a sync task, update counts */
578 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
579 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
580 	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
581 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
582 	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
583 }
584 
585 static int
586 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
587 {
588 	char *ddname = (char *)arg;
589 	dsl_pool_t *dp = dmu_tx_pool(tx);
590 	dsl_dataset_t *ds;
591 	dsl_dir_t *dd;
592 	int error;
593 
594 	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
595 	if (error != 0)
596 		return (error);
597 
598 	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
599 		dsl_dataset_rele(ds, FTAG);
600 		return (SET_ERROR(ENOTSUP));
601 	}
602 
603 	dd = ds->ds_dir;
604 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
605 	    dsl_dir_is_zapified(dd) &&
606 	    zap_contains(dp->dp_meta_objset, dd->dd_object,
607 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
608 		dsl_dataset_rele(ds, FTAG);
609 		return (SET_ERROR(EALREADY));
610 	}
611 
612 	dsl_dataset_rele(ds, FTAG);
613 	return (0);
614 }
615 
616 static void
617 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
618 {
619 	char *ddname = (char *)arg;
620 	dsl_pool_t *dp = dmu_tx_pool(tx);
621 	dsl_dataset_t *ds;
622 	spa_t *spa;
623 
624 	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
625 
626 	spa = dsl_dataset_get_spa(ds);
627 
628 	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
629 		/*
630 		 * Since the feature was not active and we're now setting a
631 		 * limit, increment the feature-active counter so that the
632 		 * feature becomes active for the first time.
633 		 *
634 		 * We are already in a sync task so we can update the MOS.
635 		 */
636 		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
637 	}
638 
639 	/*
640 	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
641 	 * we need to ensure the counts are correct. Descend down the tree from
642 	 * this point and update all of the counts to be accurate.
643 	 */
644 	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
645 
646 	dsl_dataset_rele(ds, FTAG);
647 }
648 
649 /*
650  * Make sure the feature is enabled and activate it if necessary.
651  * Since we're setting a limit, ensure the on-disk counts are valid.
652  * This is only called by the ioctl path when setting a limit value.
653  *
654  * We do not need to validate the new limit, since users who can change the
655  * limit are also allowed to exceed the limit.
656  */
657 int
658 dsl_dir_activate_fs_ss_limit(const char *ddname)
659 {
660 	int error;
661 
662 	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
663 	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
664 	    ZFS_SPACE_CHECK_RESERVED);
665 
666 	if (error == EALREADY)
667 		error = 0;
668 
669 	return (error);
670 }
671 
672 /*
673  * Used to determine if the filesystem_limit or snapshot_limit should be
674  * enforced. We allow the limit to be exceeded if the user has permission to
675  * write the property value. We pass in the creds that we got in the open
676  * context since we will always be the GZ root in syncing context. We also have
677  * to handle the case where we are allowed to change the limit on the current
678  * dataset, but there may be another limit in the tree above.
679  *
680  * We can never modify these two properties within a non-global zone. In
681  * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
682  * can't use that function since we are already holding the dp_config_rwlock.
683  * In addition, we already have the dd and dealing with snapshots is simplified
684  * in this code.
685  */
686 
687 typedef enum {
688 	ENFORCE_ALWAYS,
689 	ENFORCE_NEVER,
690 	ENFORCE_ABOVE
691 } enforce_res_t;
692 
693 static enforce_res_t
694 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
695 {
696 	enforce_res_t enforce = ENFORCE_ALWAYS;
697 	uint64_t obj;
698 	dsl_dataset_t *ds;
699 	uint64_t zoned;
700 
701 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
702 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
703 
704 #ifdef _KERNEL
705 	if (crgetzoneid(cr) != GLOBAL_ZONEID)
706 		return (ENFORCE_ALWAYS);
707 
708 	if (secpolicy_zfs(cr) == 0)
709 		return (ENFORCE_NEVER);
710 #endif
711 
712 	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
713 		return (ENFORCE_ALWAYS);
714 
715 	ASSERT(dsl_pool_config_held(dd->dd_pool));
716 
717 	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
718 		return (ENFORCE_ALWAYS);
719 
720 	if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
721 		/* Only root can access zoned fs's from the GZ */
722 		enforce = ENFORCE_ALWAYS;
723 	} else {
724 		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
725 			enforce = ENFORCE_ABOVE;
726 	}
727 
728 	dsl_dataset_rele(ds, FTAG);
729 	return (enforce);
730 }
731 
732 /*
733  * Check if adding additional child filesystem(s) would exceed any filesystem
734  * limits or adding additional snapshot(s) would exceed any snapshot limits.
735  * The prop argument indicates which limit to check.
736  *
737  * Note that all filesystem limits up to the root (or the highest
738  * initialized) filesystem or the given ancestor must be satisfied.
739  */
740 int
741 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
742     dsl_dir_t *ancestor, cred_t *cr)
743 {
744 	objset_t *os = dd->dd_pool->dp_meta_objset;
745 	uint64_t limit, count;
746 	char *count_prop;
747 	enforce_res_t enforce;
748 	int err = 0;
749 
750 	ASSERT(dsl_pool_config_held(dd->dd_pool));
751 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
752 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
753 
754 	/*
755 	 * If we're allowed to change the limit, don't enforce the limit
756 	 * e.g. this can happen if a snapshot is taken by an administrative
757 	 * user in the global zone (i.e. a recursive snapshot by root).
758 	 * However, we must handle the case of delegated permissions where we
759 	 * are allowed to change the limit on the current dataset, but there
760 	 * is another limit in the tree above.
761 	 */
762 	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
763 	if (enforce == ENFORCE_NEVER)
764 		return (0);
765 
766 	/*
767 	 * e.g. if renaming a dataset with no snapshots, count adjustment
768 	 * is 0.
769 	 */
770 	if (delta == 0)
771 		return (0);
772 
773 	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
774 		/*
775 		 * We don't enforce the limit for temporary snapshots. This is
776 		 * indicated by a NULL cred_t argument.
777 		 */
778 		if (cr == NULL)
779 			return (0);
780 
781 		count_prop = DD_FIELD_SNAPSHOT_COUNT;
782 	} else {
783 		count_prop = DD_FIELD_FILESYSTEM_COUNT;
784 	}
785 
786 	/*
787 	 * If an ancestor has been provided, stop checking the limit once we
788 	 * hit that dir. We need this during rename so that we don't overcount
789 	 * the check once we recurse up to the common ancestor.
790 	 */
791 	if (ancestor == dd)
792 		return (0);
793 
794 	/*
795 	 * If we hit an uninitialized node while recursing up the tree, we can
796 	 * stop since we know there is no limit here (or above). The counts are
797 	 * not valid on this node and we know we won't touch this node's counts.
798 	 */
799 	if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
800 	    count_prop, sizeof (count), 1, &count) == ENOENT)
801 		return (0);
802 
803 	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
804 	    B_FALSE);
805 	if (err != 0)
806 		return (err);
807 
808 	/* Is there a limit which we've hit? */
809 	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
810 		return (SET_ERROR(EDQUOT));
811 
812 	if (dd->dd_parent != NULL)
813 		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
814 		    ancestor, cr);
815 
816 	return (err);
817 }
818 
819 /*
820  * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
821  * parents. When a new filesystem/snapshot is created, increment the count on
822  * all parents, and when a filesystem/snapshot is destroyed, decrement the
823  * count.
824  */
825 void
826 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
827     dmu_tx_t *tx)
828 {
829 	int err;
830 	objset_t *os = dd->dd_pool->dp_meta_objset;
831 	uint64_t count;
832 
833 	ASSERT(dsl_pool_config_held(dd->dd_pool));
834 	ASSERT(dmu_tx_is_syncing(tx));
835 	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
836 	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
837 
838 	/*
839 	 * When we receive an incremental stream into a filesystem that already
840 	 * exists, a temporary clone is created.  We don't count this temporary
841 	 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
842 	 * $MOS & $ORIGIN) objsets.
843 	 */
844 	if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
845 	    strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
846 		return;
847 
848 	/*
849 	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
850 	 */
851 	if (delta == 0)
852 		return;
853 
854 	/*
855 	 * If we hit an uninitialized node while recursing up the tree, we can
856 	 * stop since we know the counts are not valid on this node and we
857 	 * know we shouldn't touch this node's counts. An uninitialized count
858 	 * on the node indicates that either the feature has not yet been
859 	 * activated or there are no limits on this part of the tree.
860 	 */
861 	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
862 	    prop, sizeof (count), 1, &count)) == ENOENT)
863 		return;
864 	VERIFY0(err);
865 
866 	count += delta;
867 	/* Use a signed verify to make sure we're not neg. */
868 	VERIFY3S(count, >=, 0);
869 
870 	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
871 	    tx));
872 
873 	/* Roll up this additional count into our ancestors */
874 	if (dd->dd_parent != NULL)
875 		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
876 }
877 
878 uint64_t
879 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
880     dmu_tx_t *tx)
881 {
882 	objset_t *mos = dp->dp_meta_objset;
883 	uint64_t ddobj;
884 	dsl_dir_phys_t *ddphys;
885 	dmu_buf_t *dbuf;
886 
887 	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
888 	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
889 	if (pds) {
890 		VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
891 		    name, sizeof (uint64_t), 1, &ddobj, tx));
892 	} else {
893 		/* it's the root dir */
894 		VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
895 		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
896 	}
897 	VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
898 	dmu_buf_will_dirty(dbuf, tx);
899 	ddphys = dbuf->db_data;
900 
901 	ddphys->dd_creation_time = gethrestime_sec();
902 	if (pds) {
903 		ddphys->dd_parent_obj = pds->dd_object;
904 
905 		/* update the filesystem counts */
906 		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
907 	}
908 	ddphys->dd_props_zapobj = zap_create(mos,
909 	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
910 	ddphys->dd_child_dir_zapobj = zap_create(mos,
911 	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
912 	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
913 		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
914 	dmu_buf_rele(dbuf, FTAG);
915 
916 	return (ddobj);
917 }
918 
919 boolean_t
920 dsl_dir_is_clone(dsl_dir_t *dd)
921 {
922 	return (dsl_dir_phys(dd)->dd_origin_obj &&
923 	    (dd->dd_pool->dp_origin_snap == NULL ||
924 	    dsl_dir_phys(dd)->dd_origin_obj !=
925 	    dd->dd_pool->dp_origin_snap->ds_object));
926 }
927 
928 void
929 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
930 {
931 	mutex_enter(&dd->dd_lock);
932 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
933 	    dsl_dir_phys(dd)->dd_used_bytes);
934 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
935 	    dsl_dir_phys(dd)->dd_quota);
936 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
937 	    dsl_dir_phys(dd)->dd_reserved);
938 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
939 	    dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
940 	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
941 	    dsl_dir_phys(dd)->dd_compressed_bytes));
942 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
943 	    dsl_dir_phys(dd)->dd_uncompressed_bytes);
944 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
945 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
946 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
947 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
948 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
949 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
950 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
951 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
952 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
953 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
954 	}
955 	mutex_exit(&dd->dd_lock);
956 
957 	if (dsl_dir_is_zapified(dd)) {
958 		uint64_t count;
959 		objset_t *os = dd->dd_pool->dp_meta_objset;
960 
961 		if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
962 		    sizeof (count), 1, &count) == 0) {
963 			dsl_prop_nvlist_add_uint64(nv,
964 			    ZFS_PROP_FILESYSTEM_COUNT, count);
965 		}
966 		if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
967 		    sizeof (count), 1, &count) == 0) {
968 			dsl_prop_nvlist_add_uint64(nv,
969 			    ZFS_PROP_SNAPSHOT_COUNT, count);
970 		}
971 	}
972 
973 	if (dsl_dir_is_clone(dd)) {
974 		dsl_dataset_t *ds;
975 		char buf[ZFS_MAX_DATASET_NAME_LEN];
976 
977 		VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
978 		    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
979 		dsl_dataset_name(ds, buf);
980 		dsl_dataset_rele(ds, FTAG);
981 		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
982 	}
983 }
984 
985 void
986 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
987 {
988 	dsl_pool_t *dp = dd->dd_pool;
989 
990 	ASSERT(dsl_dir_phys(dd));
991 
992 	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
993 		/* up the hold count until we can be written out */
994 		dmu_buf_add_ref(dd->dd_dbuf, dd);
995 	}
996 }
997 
998 static int64_t
999 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1000 {
1001 	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1002 	uint64_t new_accounted =
1003 	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1004 	return (new_accounted - old_accounted);
1005 }
1006 
1007 void
1008 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1009 {
1010 	ASSERT(dmu_tx_is_syncing(tx));
1011 
1012 	mutex_enter(&dd->dd_lock);
1013 	ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1014 	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1015 	    dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1016 	dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1017 	mutex_exit(&dd->dd_lock);
1018 
1019 	/* release the hold from dsl_dir_dirty */
1020 	dmu_buf_rele(dd->dd_dbuf, dd);
1021 }
1022 
1023 static uint64_t
1024 dsl_dir_space_towrite(dsl_dir_t *dd)
1025 {
1026 	uint64_t space = 0;
1027 
1028 	ASSERT(MUTEX_HELD(&dd->dd_lock));
1029 
1030 	for (int i = 0; i < TXG_SIZE; i++) {
1031 		space += dd->dd_space_towrite[i & TXG_MASK];
1032 		ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1033 	}
1034 	return (space);
1035 }
1036 
1037 /*
1038  * How much space would dd have available if ancestor had delta applied
1039  * to it?  If ondiskonly is set, we're only interested in what's
1040  * on-disk, not estimated pending changes.
1041  */
1042 uint64_t
1043 dsl_dir_space_available(dsl_dir_t *dd,
1044     dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1045 {
1046 	uint64_t parentspace, myspace, quota, used;
1047 
1048 	/*
1049 	 * If there are no restrictions otherwise, assume we have
1050 	 * unlimited space available.
1051 	 */
1052 	quota = UINT64_MAX;
1053 	parentspace = UINT64_MAX;
1054 
1055 	if (dd->dd_parent != NULL) {
1056 		parentspace = dsl_dir_space_available(dd->dd_parent,
1057 		    ancestor, delta, ondiskonly);
1058 	}
1059 
1060 	mutex_enter(&dd->dd_lock);
1061 	if (dsl_dir_phys(dd)->dd_quota != 0)
1062 		quota = dsl_dir_phys(dd)->dd_quota;
1063 	used = dsl_dir_phys(dd)->dd_used_bytes;
1064 	if (!ondiskonly)
1065 		used += dsl_dir_space_towrite(dd);
1066 
1067 	if (dd->dd_parent == NULL) {
1068 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1069 		quota = MIN(quota, poolsize);
1070 	}
1071 
1072 	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1073 		/*
1074 		 * We have some space reserved, in addition to what our
1075 		 * parent gave us.
1076 		 */
1077 		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1078 	}
1079 
1080 	if (dd == ancestor) {
1081 		ASSERT(delta <= 0);
1082 		ASSERT(used >= -delta);
1083 		used += delta;
1084 		if (parentspace != UINT64_MAX)
1085 			parentspace -= delta;
1086 	}
1087 
1088 	if (used > quota) {
1089 		/* over quota */
1090 		myspace = 0;
1091 	} else {
1092 		/*
1093 		 * the lesser of the space provided by our parent and
1094 		 * the space left in our quota
1095 		 */
1096 		myspace = MIN(parentspace, quota - used);
1097 	}
1098 
1099 	mutex_exit(&dd->dd_lock);
1100 
1101 	return (myspace);
1102 }
1103 
1104 struct tempreserve {
1105 	list_node_t tr_node;
1106 	dsl_dir_t *tr_ds;
1107 	uint64_t tr_size;
1108 };
1109 
1110 static int
1111 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1112     boolean_t ignorequota, list_t *tr_list,
1113     dmu_tx_t *tx, boolean_t first)
1114 {
1115 	uint64_t txg = tx->tx_txg;
1116 	uint64_t quota;
1117 	struct tempreserve *tr;
1118 	int retval = EDQUOT;
1119 	uint64_t ref_rsrv = 0;
1120 
1121 	ASSERT3U(txg, !=, 0);
1122 	ASSERT3S(asize, >, 0);
1123 
1124 	mutex_enter(&dd->dd_lock);
1125 
1126 	/*
1127 	 * Check against the dsl_dir's quota.  We don't add in the delta
1128 	 * when checking for over-quota because they get one free hit.
1129 	 */
1130 	uint64_t est_inflight = dsl_dir_space_towrite(dd);
1131 	for (int i = 0; i < TXG_SIZE; i++)
1132 		est_inflight += dd->dd_tempreserved[i];
1133 	uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1134 
1135 	/*
1136 	 * On the first iteration, fetch the dataset's used-on-disk and
1137 	 * refreservation values. Also, if checkrefquota is set, test if
1138 	 * allocating this space would exceed the dataset's refquota.
1139 	 */
1140 	if (first && tx->tx_objset) {
1141 		int error;
1142 		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1143 
1144 		error = dsl_dataset_check_quota(ds, !netfree,
1145 		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1146 		if (error != 0) {
1147 			mutex_exit(&dd->dd_lock);
1148 			return (error);
1149 		}
1150 	}
1151 
1152 	/*
1153 	 * If this transaction will result in a net free of space,
1154 	 * we want to let it through.
1155 	 */
1156 	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1157 		quota = UINT64_MAX;
1158 	else
1159 		quota = dsl_dir_phys(dd)->dd_quota;
1160 
1161 	/*
1162 	 * Adjust the quota against the actual pool size at the root
1163 	 * minus any outstanding deferred frees.
1164 	 * To ensure that it's possible to remove files from a full
1165 	 * pool without inducing transient overcommits, we throttle
1166 	 * netfree transactions against a quota that is slightly larger,
1167 	 * but still within the pool's allocation slop.  In cases where
1168 	 * we're very close to full, this will allow a steady trickle of
1169 	 * removes to get through.
1170 	 */
1171 	uint64_t deferred = 0;
1172 	if (dd->dd_parent == NULL) {
1173 		spa_t *spa = dd->dd_pool->dp_spa;
1174 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1175 		deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1176 		if (poolsize - deferred < quota) {
1177 			quota = poolsize - deferred;
1178 			retval = ENOSPC;
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * If they are requesting more space, and our current estimate
1184 	 * is over quota, they get to try again unless the actual
1185 	 * on-disk is over quota and there are no pending changes (which
1186 	 * may free up space for us).
1187 	 */
1188 	if (used_on_disk + est_inflight >= quota) {
1189 		if (est_inflight > 0 || used_on_disk < quota ||
1190 		    (retval == ENOSPC && used_on_disk < quota + deferred))
1191 			retval = ERESTART;
1192 		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1193 		    "quota=%lluK tr=%lluK err=%d\n",
1194 		    used_on_disk>>10, est_inflight>>10,
1195 		    quota>>10, asize>>10, retval);
1196 		mutex_exit(&dd->dd_lock);
1197 		return (SET_ERROR(retval));
1198 	}
1199 
1200 	/* We need to up our estimated delta before dropping dd_lock */
1201 	dd->dd_tempreserved[txg & TXG_MASK] += asize;
1202 
1203 	uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1204 	    asize - ref_rsrv);
1205 	mutex_exit(&dd->dd_lock);
1206 
1207 	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1208 	tr->tr_ds = dd;
1209 	tr->tr_size = asize;
1210 	list_insert_tail(tr_list, tr);
1211 
1212 	/* see if it's OK with our parent */
1213 	if (dd->dd_parent != NULL && parent_rsrv != 0) {
1214 		boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1215 
1216 		return (dsl_dir_tempreserve_impl(dd->dd_parent,
1217 		    parent_rsrv, netfree, ismos, tr_list, tx, B_FALSE));
1218 	} else {
1219 		return (0);
1220 	}
1221 }
1222 
1223 /*
1224  * Reserve space in this dsl_dir, to be used in this tx's txg.
1225  * After the space has been dirtied (and dsl_dir_willuse_space()
1226  * has been called), the reservation should be canceled, using
1227  * dsl_dir_tempreserve_clear().
1228  */
1229 int
1230 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1231     boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1232 {
1233 	int err;
1234 	list_t *tr_list;
1235 
1236 	if (asize == 0) {
1237 		*tr_cookiep = NULL;
1238 		return (0);
1239 	}
1240 
1241 	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1242 	list_create(tr_list, sizeof (struct tempreserve),
1243 	    offsetof(struct tempreserve, tr_node));
1244 	ASSERT3S(asize, >, 0);
1245 
1246 	err = arc_tempreserve_space(lsize, tx->tx_txg);
1247 	if (err == 0) {
1248 		struct tempreserve *tr;
1249 
1250 		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1251 		tr->tr_size = lsize;
1252 		list_insert_tail(tr_list, tr);
1253 	} else {
1254 		if (err == EAGAIN) {
1255 			/*
1256 			 * If arc_memory_throttle() detected that pageout
1257 			 * is running and we are low on memory, we delay new
1258 			 * non-pageout transactions to give pageout an
1259 			 * advantage.
1260 			 *
1261 			 * It is unfortunate to be delaying while the caller's
1262 			 * locks are held.
1263 			 */
1264 			txg_delay(dd->dd_pool, tx->tx_txg,
1265 			    MSEC2NSEC(10), MSEC2NSEC(10));
1266 			err = SET_ERROR(ERESTART);
1267 		}
1268 	}
1269 
1270 	if (err == 0) {
1271 		err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1272 		    B_FALSE, tr_list, tx, B_TRUE);
1273 	}
1274 
1275 	if (err != 0)
1276 		dsl_dir_tempreserve_clear(tr_list, tx);
1277 	else
1278 		*tr_cookiep = tr_list;
1279 
1280 	return (err);
1281 }
1282 
1283 /*
1284  * Clear a temporary reservation that we previously made with
1285  * dsl_dir_tempreserve_space().
1286  */
1287 void
1288 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1289 {
1290 	int txgidx = tx->tx_txg & TXG_MASK;
1291 	list_t *tr_list = tr_cookie;
1292 	struct tempreserve *tr;
1293 
1294 	ASSERT3U(tx->tx_txg, !=, 0);
1295 
1296 	if (tr_cookie == NULL)
1297 		return;
1298 
1299 	while ((tr = list_head(tr_list)) != NULL) {
1300 		if (tr->tr_ds) {
1301 			mutex_enter(&tr->tr_ds->dd_lock);
1302 			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1303 			    tr->tr_size);
1304 			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1305 			mutex_exit(&tr->tr_ds->dd_lock);
1306 		} else {
1307 			arc_tempreserve_clear(tr->tr_size);
1308 		}
1309 		list_remove(tr_list, tr);
1310 		kmem_free(tr, sizeof (struct tempreserve));
1311 	}
1312 
1313 	kmem_free(tr_list, sizeof (list_t));
1314 }
1315 
1316 /*
1317  * This should be called from open context when we think we're going to write
1318  * or free space, for example when dirtying data. Be conservative; it's okay
1319  * to write less space or free more, but we don't want to write more or free
1320  * less than the amount specified.
1321  */
1322 void
1323 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1324 {
1325 	int64_t parent_space;
1326 	uint64_t est_used;
1327 
1328 	mutex_enter(&dd->dd_lock);
1329 	if (space > 0)
1330 		dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1331 
1332 	est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1333 	parent_space = parent_delta(dd, est_used, space);
1334 	mutex_exit(&dd->dd_lock);
1335 
1336 	/* Make sure that we clean up dd_space_to* */
1337 	dsl_dir_dirty(dd, tx);
1338 
1339 	/* XXX this is potentially expensive and unnecessary... */
1340 	if (parent_space && dd->dd_parent)
1341 		dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1342 }
1343 
1344 /* call from syncing context when we actually write/free space for this dd */
1345 void
1346 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1347     int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1348 {
1349 	int64_t accounted_delta;
1350 
1351 	/*
1352 	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1353 	 * dd_lock held, so that it can atomically update
1354 	 * ds->ds_reserved and the dsl_dir accounting, so that
1355 	 * dsl_dataset_check_quota() can see dataset and dir accounting
1356 	 * consistently.
1357 	 */
1358 	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1359 
1360 	ASSERT(dmu_tx_is_syncing(tx));
1361 	ASSERT(type < DD_USED_NUM);
1362 
1363 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1364 
1365 	if (needlock)
1366 		mutex_enter(&dd->dd_lock);
1367 	accounted_delta =
1368 	    parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1369 	ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1370 	ASSERT(compressed >= 0 ||
1371 	    dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1372 	ASSERT(uncompressed >= 0 ||
1373 	    dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1374 	dsl_dir_phys(dd)->dd_used_bytes += used;
1375 	dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1376 	dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1377 
1378 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1379 		ASSERT(used > 0 ||
1380 		    dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1381 		dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1382 #ifdef DEBUG
1383 		dd_used_t t;
1384 		uint64_t u = 0;
1385 		for (t = 0; t < DD_USED_NUM; t++)
1386 			u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1387 		ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1388 #endif
1389 	}
1390 	if (needlock)
1391 		mutex_exit(&dd->dd_lock);
1392 
1393 	if (dd->dd_parent != NULL) {
1394 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1395 		    accounted_delta, compressed, uncompressed, tx);
1396 		dsl_dir_transfer_space(dd->dd_parent,
1397 		    used - accounted_delta,
1398 		    DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1399 	}
1400 }
1401 
1402 void
1403 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1404     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1405 {
1406 	ASSERT(dmu_tx_is_syncing(tx));
1407 	ASSERT(oldtype < DD_USED_NUM);
1408 	ASSERT(newtype < DD_USED_NUM);
1409 
1410 	if (delta == 0 ||
1411 	    !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1412 		return;
1413 
1414 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1415 	mutex_enter(&dd->dd_lock);
1416 	ASSERT(delta > 0 ?
1417 	    dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1418 	    dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1419 	ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1420 	dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1421 	dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1422 	mutex_exit(&dd->dd_lock);
1423 }
1424 
1425 typedef struct dsl_dir_set_qr_arg {
1426 	const char *ddsqra_name;
1427 	zprop_source_t ddsqra_source;
1428 	uint64_t ddsqra_value;
1429 } dsl_dir_set_qr_arg_t;
1430 
1431 static int
1432 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1433 {
1434 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1435 	dsl_pool_t *dp = dmu_tx_pool(tx);
1436 	dsl_dataset_t *ds;
1437 	int error;
1438 	uint64_t towrite, newval;
1439 
1440 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1441 	if (error != 0)
1442 		return (error);
1443 
1444 	error = dsl_prop_predict(ds->ds_dir, "quota",
1445 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1446 	if (error != 0) {
1447 		dsl_dataset_rele(ds, FTAG);
1448 		return (error);
1449 	}
1450 
1451 	if (newval == 0) {
1452 		dsl_dataset_rele(ds, FTAG);
1453 		return (0);
1454 	}
1455 
1456 	mutex_enter(&ds->ds_dir->dd_lock);
1457 	/*
1458 	 * If we are doing the preliminary check in open context, and
1459 	 * there are pending changes, then don't fail it, since the
1460 	 * pending changes could under-estimate the amount of space to be
1461 	 * freed up.
1462 	 */
1463 	towrite = dsl_dir_space_towrite(ds->ds_dir);
1464 	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1465 	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1466 	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1467 		error = SET_ERROR(ENOSPC);
1468 	}
1469 	mutex_exit(&ds->ds_dir->dd_lock);
1470 	dsl_dataset_rele(ds, FTAG);
1471 	return (error);
1472 }
1473 
1474 static void
1475 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1476 {
1477 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1478 	dsl_pool_t *dp = dmu_tx_pool(tx);
1479 	dsl_dataset_t *ds;
1480 	uint64_t newval;
1481 
1482 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1483 
1484 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1485 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1486 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1487 		    &ddsqra->ddsqra_value, tx);
1488 
1489 		VERIFY0(dsl_prop_get_int_ds(ds,
1490 		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1491 	} else {
1492 		newval = ddsqra->ddsqra_value;
1493 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1494 		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1495 	}
1496 
1497 	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1498 	mutex_enter(&ds->ds_dir->dd_lock);
1499 	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1500 	mutex_exit(&ds->ds_dir->dd_lock);
1501 	dsl_dataset_rele(ds, FTAG);
1502 }
1503 
1504 int
1505 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1506 {
1507 	dsl_dir_set_qr_arg_t ddsqra;
1508 
1509 	ddsqra.ddsqra_name = ddname;
1510 	ddsqra.ddsqra_source = source;
1511 	ddsqra.ddsqra_value = quota;
1512 
1513 	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1514 	    dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1515 }
1516 
1517 int
1518 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1519 {
1520 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1521 	dsl_pool_t *dp = dmu_tx_pool(tx);
1522 	dsl_dataset_t *ds;
1523 	dsl_dir_t *dd;
1524 	uint64_t newval, used, avail;
1525 	int error;
1526 
1527 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1528 	if (error != 0)
1529 		return (error);
1530 	dd = ds->ds_dir;
1531 
1532 	/*
1533 	 * If we are doing the preliminary check in open context, the
1534 	 * space estimates may be inaccurate.
1535 	 */
1536 	if (!dmu_tx_is_syncing(tx)) {
1537 		dsl_dataset_rele(ds, FTAG);
1538 		return (0);
1539 	}
1540 
1541 	error = dsl_prop_predict(ds->ds_dir,
1542 	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1543 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1544 	if (error != 0) {
1545 		dsl_dataset_rele(ds, FTAG);
1546 		return (error);
1547 	}
1548 
1549 	mutex_enter(&dd->dd_lock);
1550 	used = dsl_dir_phys(dd)->dd_used_bytes;
1551 	mutex_exit(&dd->dd_lock);
1552 
1553 	if (dd->dd_parent) {
1554 		avail = dsl_dir_space_available(dd->dd_parent,
1555 		    NULL, 0, FALSE);
1556 	} else {
1557 		avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1558 	}
1559 
1560 	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1561 		uint64_t delta = MAX(used, newval) -
1562 		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1563 
1564 		if (delta > avail ||
1565 		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1566 		    newval > dsl_dir_phys(dd)->dd_quota))
1567 			error = SET_ERROR(ENOSPC);
1568 	}
1569 
1570 	dsl_dataset_rele(ds, FTAG);
1571 	return (error);
1572 }
1573 
1574 void
1575 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1576 {
1577 	uint64_t used;
1578 	int64_t delta;
1579 
1580 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1581 
1582 	mutex_enter(&dd->dd_lock);
1583 	used = dsl_dir_phys(dd)->dd_used_bytes;
1584 	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1585 	dsl_dir_phys(dd)->dd_reserved = value;
1586 
1587 	if (dd->dd_parent != NULL) {
1588 		/* Roll up this additional usage into our ancestors */
1589 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1590 		    delta, 0, 0, tx);
1591 	}
1592 	mutex_exit(&dd->dd_lock);
1593 }
1594 
1595 
1596 static void
1597 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1598 {
1599 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1600 	dsl_pool_t *dp = dmu_tx_pool(tx);
1601 	dsl_dataset_t *ds;
1602 	uint64_t newval;
1603 
1604 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1605 
1606 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1607 		dsl_prop_set_sync_impl(ds,
1608 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1609 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1610 		    &ddsqra->ddsqra_value, tx);
1611 
1612 		VERIFY0(dsl_prop_get_int_ds(ds,
1613 		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1614 	} else {
1615 		newval = ddsqra->ddsqra_value;
1616 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1617 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1618 		    (longlong_t)newval);
1619 	}
1620 
1621 	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1622 	dsl_dataset_rele(ds, FTAG);
1623 }
1624 
1625 int
1626 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1627     uint64_t reservation)
1628 {
1629 	dsl_dir_set_qr_arg_t ddsqra;
1630 
1631 	ddsqra.ddsqra_name = ddname;
1632 	ddsqra.ddsqra_source = source;
1633 	ddsqra.ddsqra_value = reservation;
1634 
1635 	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1636 	    dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1637 }
1638 
1639 static dsl_dir_t *
1640 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1641 {
1642 	for (; ds1; ds1 = ds1->dd_parent) {
1643 		dsl_dir_t *dd;
1644 		for (dd = ds2; dd; dd = dd->dd_parent) {
1645 			if (ds1 == dd)
1646 				return (dd);
1647 		}
1648 	}
1649 	return (NULL);
1650 }
1651 
1652 /*
1653  * If delta is applied to dd, how much of that delta would be applied to
1654  * ancestor?  Syncing context only.
1655  */
1656 static int64_t
1657 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1658 {
1659 	if (dd == ancestor)
1660 		return (delta);
1661 
1662 	mutex_enter(&dd->dd_lock);
1663 	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1664 	mutex_exit(&dd->dd_lock);
1665 	return (would_change(dd->dd_parent, delta, ancestor));
1666 }
1667 
1668 typedef struct dsl_dir_rename_arg {
1669 	const char *ddra_oldname;
1670 	const char *ddra_newname;
1671 	cred_t *ddra_cred;
1672 } dsl_dir_rename_arg_t;
1673 
1674 /* ARGSUSED */
1675 static int
1676 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1677 {
1678 	int *deltap = arg;
1679 	char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1680 
1681 	dsl_dataset_name(ds, namebuf);
1682 
1683 	if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN)
1684 		return (SET_ERROR(ENAMETOOLONG));
1685 	return (0);
1686 }
1687 
1688 static int
1689 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1690 {
1691 	dsl_dir_rename_arg_t *ddra = arg;
1692 	dsl_pool_t *dp = dmu_tx_pool(tx);
1693 	dsl_dir_t *dd, *newparent;
1694 	const char *mynewname;
1695 	int error;
1696 	int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1697 
1698 	/* target dir should exist */
1699 	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1700 	if (error != 0)
1701 		return (error);
1702 
1703 	/* new parent should exist */
1704 	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1705 	    &newparent, &mynewname);
1706 	if (error != 0) {
1707 		dsl_dir_rele(dd, FTAG);
1708 		return (error);
1709 	}
1710 
1711 	/* can't rename to different pool */
1712 	if (dd->dd_pool != newparent->dd_pool) {
1713 		dsl_dir_rele(newparent, FTAG);
1714 		dsl_dir_rele(dd, FTAG);
1715 		return (SET_ERROR(ENXIO));
1716 	}
1717 
1718 	/* new name should not already exist */
1719 	if (mynewname == NULL) {
1720 		dsl_dir_rele(newparent, FTAG);
1721 		dsl_dir_rele(dd, FTAG);
1722 		return (SET_ERROR(EEXIST));
1723 	}
1724 
1725 	/* if the name length is growing, validate child name lengths */
1726 	if (delta > 0) {
1727 		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1728 		    &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1729 		if (error != 0) {
1730 			dsl_dir_rele(newparent, FTAG);
1731 			dsl_dir_rele(dd, FTAG);
1732 			return (error);
1733 		}
1734 	}
1735 
1736 	if (dmu_tx_is_syncing(tx)) {
1737 		if (spa_feature_is_active(dp->dp_spa,
1738 		    SPA_FEATURE_FS_SS_LIMIT)) {
1739 			/*
1740 			 * Although this is the check function and we don't
1741 			 * normally make on-disk changes in check functions,
1742 			 * we need to do that here.
1743 			 *
1744 			 * Ensure this portion of the tree's counts have been
1745 			 * initialized in case the new parent has limits set.
1746 			 */
1747 			dsl_dir_init_fs_ss_count(dd, tx);
1748 		}
1749 	}
1750 
1751 	if (newparent != dd->dd_parent) {
1752 		/* is there enough space? */
1753 		uint64_t myspace =
1754 		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
1755 		    dsl_dir_phys(dd)->dd_reserved);
1756 		objset_t *os = dd->dd_pool->dp_meta_objset;
1757 		uint64_t fs_cnt = 0;
1758 		uint64_t ss_cnt = 0;
1759 
1760 		if (dsl_dir_is_zapified(dd)) {
1761 			int err;
1762 
1763 			err = zap_lookup(os, dd->dd_object,
1764 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1765 			    &fs_cnt);
1766 			if (err != ENOENT && err != 0) {
1767 				dsl_dir_rele(newparent, FTAG);
1768 				dsl_dir_rele(dd, FTAG);
1769 				return (err);
1770 			}
1771 
1772 			/*
1773 			 * have to add 1 for the filesystem itself that we're
1774 			 * moving
1775 			 */
1776 			fs_cnt++;
1777 
1778 			err = zap_lookup(os, dd->dd_object,
1779 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1780 			    &ss_cnt);
1781 			if (err != ENOENT && err != 0) {
1782 				dsl_dir_rele(newparent, FTAG);
1783 				dsl_dir_rele(dd, FTAG);
1784 				return (err);
1785 			}
1786 		}
1787 
1788 		/* no rename into our descendant */
1789 		if (closest_common_ancestor(dd, newparent) == dd) {
1790 			dsl_dir_rele(newparent, FTAG);
1791 			dsl_dir_rele(dd, FTAG);
1792 			return (SET_ERROR(EINVAL));
1793 		}
1794 
1795 		error = dsl_dir_transfer_possible(dd->dd_parent,
1796 		    newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1797 		if (error != 0) {
1798 			dsl_dir_rele(newparent, FTAG);
1799 			dsl_dir_rele(dd, FTAG);
1800 			return (error);
1801 		}
1802 	}
1803 
1804 	dsl_dir_rele(newparent, FTAG);
1805 	dsl_dir_rele(dd, FTAG);
1806 	return (0);
1807 }
1808 
1809 static void
1810 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1811 {
1812 	dsl_dir_rename_arg_t *ddra = arg;
1813 	dsl_pool_t *dp = dmu_tx_pool(tx);
1814 	dsl_dir_t *dd, *newparent;
1815 	const char *mynewname;
1816 	int error;
1817 	objset_t *mos = dp->dp_meta_objset;
1818 
1819 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1820 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1821 	    &mynewname));
1822 
1823 	/* Log this before we change the name. */
1824 	spa_history_log_internal_dd(dd, "rename", tx,
1825 	    "-> %s", ddra->ddra_newname);
1826 
1827 	if (newparent != dd->dd_parent) {
1828 		objset_t *os = dd->dd_pool->dp_meta_objset;
1829 		uint64_t fs_cnt = 0;
1830 		uint64_t ss_cnt = 0;
1831 
1832 		/*
1833 		 * We already made sure the dd counts were initialized in the
1834 		 * check function.
1835 		 */
1836 		if (spa_feature_is_active(dp->dp_spa,
1837 		    SPA_FEATURE_FS_SS_LIMIT)) {
1838 			VERIFY0(zap_lookup(os, dd->dd_object,
1839 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1840 			    &fs_cnt));
1841 			/* add 1 for the filesystem itself that we're moving */
1842 			fs_cnt++;
1843 
1844 			VERIFY0(zap_lookup(os, dd->dd_object,
1845 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1846 			    &ss_cnt));
1847 		}
1848 
1849 		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1850 		    DD_FIELD_FILESYSTEM_COUNT, tx);
1851 		dsl_fs_ss_count_adjust(newparent, fs_cnt,
1852 		    DD_FIELD_FILESYSTEM_COUNT, tx);
1853 
1854 		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1855 		    DD_FIELD_SNAPSHOT_COUNT, tx);
1856 		dsl_fs_ss_count_adjust(newparent, ss_cnt,
1857 		    DD_FIELD_SNAPSHOT_COUNT, tx);
1858 
1859 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1860 		    -dsl_dir_phys(dd)->dd_used_bytes,
1861 		    -dsl_dir_phys(dd)->dd_compressed_bytes,
1862 		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1863 		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1864 		    dsl_dir_phys(dd)->dd_used_bytes,
1865 		    dsl_dir_phys(dd)->dd_compressed_bytes,
1866 		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1867 
1868 		if (dsl_dir_phys(dd)->dd_reserved >
1869 		    dsl_dir_phys(dd)->dd_used_bytes) {
1870 			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1871 			    dsl_dir_phys(dd)->dd_used_bytes;
1872 
1873 			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1874 			    -unused_rsrv, 0, 0, tx);
1875 			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1876 			    unused_rsrv, 0, 0, tx);
1877 		}
1878 	}
1879 
1880 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1881 
1882 	/* remove from old parent zapobj */
1883 	error = zap_remove(mos,
1884 	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1885 	    dd->dd_myname, tx);
1886 	ASSERT0(error);
1887 
1888 	(void) strcpy(dd->dd_myname, mynewname);
1889 	dsl_dir_rele(dd->dd_parent, dd);
1890 	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1891 	VERIFY0(dsl_dir_hold_obj(dp,
1892 	    newparent->dd_object, NULL, dd, &dd->dd_parent));
1893 
1894 	/* add to new parent zapobj */
1895 	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1896 	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
1897 
1898 	dsl_prop_notify_all(dd);
1899 
1900 	dsl_dir_rele(newparent, FTAG);
1901 	dsl_dir_rele(dd, FTAG);
1902 }
1903 
1904 int
1905 dsl_dir_rename(const char *oldname, const char *newname)
1906 {
1907 	dsl_dir_rename_arg_t ddra;
1908 
1909 	ddra.ddra_oldname = oldname;
1910 	ddra.ddra_newname = newname;
1911 	ddra.ddra_cred = CRED();
1912 
1913 	return (dsl_sync_task(oldname,
1914 	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1915 	    3, ZFS_SPACE_CHECK_RESERVED));
1916 }
1917 
1918 int
1919 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1920     uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1921 {
1922 	dsl_dir_t *ancestor;
1923 	int64_t adelta;
1924 	uint64_t avail;
1925 	int err;
1926 
1927 	ancestor = closest_common_ancestor(sdd, tdd);
1928 	adelta = would_change(sdd, -space, ancestor);
1929 	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1930 	if (avail < space)
1931 		return (SET_ERROR(ENOSPC));
1932 
1933 	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1934 	    ancestor, cr);
1935 	if (err != 0)
1936 		return (err);
1937 	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1938 	    ancestor, cr);
1939 	if (err != 0)
1940 		return (err);
1941 
1942 	return (0);
1943 }
1944 
1945 timestruc_t
1946 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1947 {
1948 	timestruc_t t;
1949 
1950 	mutex_enter(&dd->dd_lock);
1951 	t = dd->dd_snap_cmtime;
1952 	mutex_exit(&dd->dd_lock);
1953 
1954 	return (t);
1955 }
1956 
1957 void
1958 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1959 {
1960 	timestruc_t t;
1961 
1962 	gethrestime(&t);
1963 	mutex_enter(&dd->dd_lock);
1964 	dd->dd_snap_cmtime = t;
1965 	mutex_exit(&dd->dd_lock);
1966 }
1967 
1968 void
1969 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1970 {
1971 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1972 	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1973 }
1974 
1975 boolean_t
1976 dsl_dir_is_zapified(dsl_dir_t *dd)
1977 {
1978 	dmu_object_info_t doi;
1979 
1980 	dmu_object_info_from_db(dd->dd_dbuf, &doi);
1981 	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
1982 }
1983