1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dmu.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_prop.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_deleg.h> 38 #include <sys/dmu_impl.h> 39 #include <sys/spa.h> 40 #include <sys/spa_impl.h> 41 #include <sys/metaslab.h> 42 #include <sys/zap.h> 43 #include <sys/zio.h> 44 #include <sys/arc.h> 45 #include <sys/sunddi.h> 46 #include <sys/zfeature.h> 47 #include <sys/policy.h> 48 #include <sys/zfs_znode.h> 49 #include "zfs_namecheck.h" 50 #include "zfs_prop.h" 51 52 /* 53 * Filesystem and Snapshot Limits 54 * ------------------------------ 55 * 56 * These limits are used to restrict the number of filesystems and/or snapshots 57 * that can be created at a given level in the tree or below. A typical 58 * use-case is with a delegated dataset where the administrator wants to ensure 59 * that a user within the zone is not creating too many additional filesystems 60 * or snapshots, even though they're not exceeding their space quota. 61 * 62 * The filesystem and snapshot counts are stored as extensible properties. This 63 * capability is controlled by a feature flag and must be enabled to be used. 64 * Once enabled, the feature is not active until the first limit is set. At 65 * that point, future operations to create/destroy filesystems or snapshots 66 * will validate and update the counts. 67 * 68 * Because the count properties will not exist before the feature is active, 69 * the counts are updated when a limit is first set on an uninitialized 70 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 71 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 72 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 73 * snapshot count properties on a node indicate uninitialized counts on that 74 * node.) When first setting a limit on an uninitialized node, the code starts 75 * at the filesystem with the new limit and descends into all sub-filesystems 76 * to add the count properties. 77 * 78 * In practice this is lightweight since a limit is typically set when the 79 * filesystem is created and thus has no children. Once valid, changing the 80 * limit value won't require a re-traversal since the counts are already valid. 81 * When recursively fixing the counts, if a node with a limit is encountered 82 * during the descent, the counts are known to be valid and there is no need to 83 * descend into that filesystem's children. The counts on filesystems above the 84 * one with the new limit will still be uninitialized, unless a limit is 85 * eventually set on one of those filesystems. The counts are always recursively 86 * updated when a limit is set on a dataset, unless there is already a limit. 87 * When a new limit value is set on a filesystem with an existing limit, it is 88 * possible for the new limit to be less than the current count at that level 89 * since a user who can change the limit is also allowed to exceed the limit. 90 * 91 * Once the feature is active, then whenever a filesystem or snapshot is 92 * created, the code recurses up the tree, validating the new count against the 93 * limit at each initialized level. In practice, most levels will not have a 94 * limit set. If there is a limit at any initialized level up the tree, the 95 * check must pass or the creation will fail. Likewise, when a filesystem or 96 * snapshot is destroyed, the counts are recursively adjusted all the way up 97 * the initizized nodes in the tree. Renaming a filesystem into different point 98 * in the tree will first validate, then update the counts on each branch up to 99 * the common ancestor. A receive will also validate the counts and then update 100 * them. 101 * 102 * An exception to the above behavior is that the limit is not enforced if the 103 * user has permission to modify the limit. This is primarily so that 104 * recursive snapshots in the global zone always work. We want to prevent a 105 * denial-of-service in which a lower level delegated dataset could max out its 106 * limit and thus block recursive snapshots from being taken in the global zone. 107 * Because of this, it is possible for the snapshot count to be over the limit 108 * and snapshots taken in the global zone could cause a lower level dataset to 109 * hit or exceed its limit. The administrator taking the global zone recursive 110 * snapshot should be aware of this side-effect and behave accordingly. 111 * For consistency, the filesystem limit is also not enforced if the user can 112 * modify the limit. 113 * 114 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 115 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 116 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 117 * dsl_dir_init_fs_ss_count(). 118 * 119 * There is a special case when we receive a filesystem that already exists. In 120 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 121 * never update the filesystem counts for temporary clones. 122 * 123 * Likewise, we do not update the snapshot counts for temporary snapshots, 124 * such as those created by zfs diff. 125 */ 126 127 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 128 129 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 130 131 typedef struct ddulrt_arg { 132 dsl_dir_t *ddulrta_dd; 133 uint64_t ddlrta_txg; 134 } ddulrt_arg_t; 135 136 static void 137 dsl_dir_evict_async(void *dbu) 138 { 139 dsl_dir_t *dd = dbu; 140 dsl_pool_t *dp = dd->dd_pool; 141 int t; 142 143 dd->dd_dbuf = NULL; 144 145 for (t = 0; t < TXG_SIZE; t++) { 146 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 147 ASSERT(dd->dd_tempreserved[t] == 0); 148 ASSERT(dd->dd_space_towrite[t] == 0); 149 } 150 151 if (dd->dd_parent) 152 dsl_dir_async_rele(dd->dd_parent, dd); 153 154 spa_async_close(dd->dd_pool->dp_spa, dd); 155 156 dsl_prop_fini(dd); 157 mutex_destroy(&dd->dd_lock); 158 kmem_free(dd, sizeof (dsl_dir_t)); 159 } 160 161 int 162 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 163 const char *tail, void *tag, dsl_dir_t **ddp) 164 { 165 dmu_buf_t *dbuf; 166 dsl_dir_t *dd; 167 dmu_object_info_t doi; 168 int err; 169 170 ASSERT(dsl_pool_config_held(dp)); 171 172 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 173 if (err != 0) 174 return (err); 175 dd = dmu_buf_get_user(dbuf); 176 177 dmu_object_info_from_db(dbuf, &doi); 178 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 179 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 180 181 if (dd == NULL) { 182 dsl_dir_t *winner; 183 184 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 185 dd->dd_object = ddobj; 186 dd->dd_dbuf = dbuf; 187 dd->dd_pool = dp; 188 189 if (dsl_dir_is_zapified(dd) && 190 zap_contains(dp->dp_meta_objset, ddobj, 191 DD_FIELD_CRYPTO_KEY_OBJ) == 0) { 192 VERIFY0(zap_lookup(dp->dp_meta_objset, 193 ddobj, DD_FIELD_CRYPTO_KEY_OBJ, 194 sizeof (uint64_t), 1, &dd->dd_crypto_obj)); 195 196 /* check for on-disk format errata */ 197 if (dsl_dir_incompatible_encryption_version(dd)) { 198 dp->dp_spa->spa_errata = 199 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION; 200 } 201 } 202 203 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 204 dsl_prop_init(dd); 205 206 dsl_dir_snap_cmtime_update(dd); 207 208 if (dsl_dir_phys(dd)->dd_parent_obj) { 209 err = dsl_dir_hold_obj(dp, 210 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 211 &dd->dd_parent); 212 if (err != 0) 213 goto errout; 214 if (tail) { 215 #ifdef ZFS_DEBUG 216 uint64_t foundobj; 217 218 err = zap_lookup(dp->dp_meta_objset, 219 dsl_dir_phys(dd->dd_parent)-> 220 dd_child_dir_zapobj, tail, 221 sizeof (foundobj), 1, &foundobj); 222 ASSERT(err || foundobj == ddobj); 223 #endif 224 (void) strcpy(dd->dd_myname, tail); 225 } else { 226 err = zap_value_search(dp->dp_meta_objset, 227 dsl_dir_phys(dd->dd_parent)-> 228 dd_child_dir_zapobj, 229 ddobj, 0, dd->dd_myname); 230 } 231 if (err != 0) 232 goto errout; 233 } else { 234 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 235 } 236 237 if (dsl_dir_is_clone(dd)) { 238 dmu_buf_t *origin_bonus; 239 dsl_dataset_phys_t *origin_phys; 240 241 /* 242 * We can't open the origin dataset, because 243 * that would require opening this dsl_dir. 244 * Just look at its phys directly instead. 245 */ 246 err = dmu_bonus_hold(dp->dp_meta_objset, 247 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 248 &origin_bonus); 249 if (err != 0) 250 goto errout; 251 origin_phys = origin_bonus->db_data; 252 dd->dd_origin_txg = 253 origin_phys->ds_creation_txg; 254 dmu_buf_rele(origin_bonus, FTAG); 255 } 256 257 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 258 &dd->dd_dbuf); 259 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 260 if (winner != NULL) { 261 if (dd->dd_parent) 262 dsl_dir_rele(dd->dd_parent, dd); 263 dsl_prop_fini(dd); 264 mutex_destroy(&dd->dd_lock); 265 kmem_free(dd, sizeof (dsl_dir_t)); 266 dd = winner; 267 } else { 268 spa_open_ref(dp->dp_spa, dd); 269 } 270 } 271 272 /* 273 * The dsl_dir_t has both open-to-close and instantiate-to-evict 274 * holds on the spa. We need the open-to-close holds because 275 * otherwise the spa_refcnt wouldn't change when we open a 276 * dir which the spa also has open, so we could incorrectly 277 * think it was OK to unload/export/destroy the pool. We need 278 * the instantiate-to-evict hold because the dsl_dir_t has a 279 * pointer to the dd_pool, which has a pointer to the spa_t. 280 */ 281 spa_open_ref(dp->dp_spa, tag); 282 ASSERT3P(dd->dd_pool, ==, dp); 283 ASSERT3U(dd->dd_object, ==, ddobj); 284 ASSERT3P(dd->dd_dbuf, ==, dbuf); 285 *ddp = dd; 286 return (0); 287 288 errout: 289 if (dd->dd_parent) 290 dsl_dir_rele(dd->dd_parent, dd); 291 dsl_prop_fini(dd); 292 mutex_destroy(&dd->dd_lock); 293 kmem_free(dd, sizeof (dsl_dir_t)); 294 dmu_buf_rele(dbuf, tag); 295 return (err); 296 } 297 298 void 299 dsl_dir_rele(dsl_dir_t *dd, void *tag) 300 { 301 dprintf_dd(dd, "%s\n", ""); 302 spa_close(dd->dd_pool->dp_spa, tag); 303 dmu_buf_rele(dd->dd_dbuf, tag); 304 } 305 306 /* 307 * Remove a reference to the given dsl dir that is being asynchronously 308 * released. Async releases occur from a taskq performing eviction of 309 * dsl datasets and dirs. This process is identical to a normal release 310 * with the exception of using the async API for releasing the reference on 311 * the spa. 312 */ 313 void 314 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 315 { 316 dprintf_dd(dd, "%s\n", ""); 317 spa_async_close(dd->dd_pool->dp_spa, tag); 318 dmu_buf_rele(dd->dd_dbuf, tag); 319 } 320 321 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 322 void 323 dsl_dir_name(dsl_dir_t *dd, char *buf) 324 { 325 if (dd->dd_parent) { 326 dsl_dir_name(dd->dd_parent, buf); 327 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 328 ZFS_MAX_DATASET_NAME_LEN); 329 } else { 330 buf[0] = '\0'; 331 } 332 if (!MUTEX_HELD(&dd->dd_lock)) { 333 /* 334 * recursive mutex so that we can use 335 * dprintf_dd() with dd_lock held 336 */ 337 mutex_enter(&dd->dd_lock); 338 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 339 <, ZFS_MAX_DATASET_NAME_LEN); 340 mutex_exit(&dd->dd_lock); 341 } else { 342 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 343 <, ZFS_MAX_DATASET_NAME_LEN); 344 } 345 } 346 347 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 348 int 349 dsl_dir_namelen(dsl_dir_t *dd) 350 { 351 int result = 0; 352 353 if (dd->dd_parent) { 354 /* parent's name + 1 for the "/" */ 355 result = dsl_dir_namelen(dd->dd_parent) + 1; 356 } 357 358 if (!MUTEX_HELD(&dd->dd_lock)) { 359 /* see dsl_dir_name */ 360 mutex_enter(&dd->dd_lock); 361 result += strlen(dd->dd_myname); 362 mutex_exit(&dd->dd_lock); 363 } else { 364 result += strlen(dd->dd_myname); 365 } 366 367 return (result); 368 } 369 370 static int 371 getcomponent(const char *path, char *component, const char **nextp) 372 { 373 char *p; 374 375 if ((path == NULL) || (path[0] == '\0')) 376 return (SET_ERROR(ENOENT)); 377 /* This would be a good place to reserve some namespace... */ 378 p = strpbrk(path, "/@"); 379 if (p && (p[1] == '/' || p[1] == '@')) { 380 /* two separators in a row */ 381 return (SET_ERROR(EINVAL)); 382 } 383 if (p == NULL || p == path) { 384 /* 385 * if the first thing is an @ or /, it had better be an 386 * @ and it had better not have any more ats or slashes, 387 * and it had better have something after the @. 388 */ 389 if (p != NULL && 390 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 391 return (SET_ERROR(EINVAL)); 392 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 393 return (SET_ERROR(ENAMETOOLONG)); 394 (void) strcpy(component, path); 395 p = NULL; 396 } else if (p[0] == '/') { 397 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 398 return (SET_ERROR(ENAMETOOLONG)); 399 (void) strncpy(component, path, p - path); 400 component[p - path] = '\0'; 401 p++; 402 } else if (p[0] == '@') { 403 /* 404 * if the next separator is an @, there better not be 405 * any more slashes. 406 */ 407 if (strchr(path, '/')) 408 return (SET_ERROR(EINVAL)); 409 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 410 return (SET_ERROR(ENAMETOOLONG)); 411 (void) strncpy(component, path, p - path); 412 component[p - path] = '\0'; 413 } else { 414 panic("invalid p=%p", (void *)p); 415 } 416 *nextp = p; 417 return (0); 418 } 419 420 /* 421 * Return the dsl_dir_t, and possibly the last component which couldn't 422 * be found in *tail. The name must be in the specified dsl_pool_t. This 423 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 424 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 425 * (*tail)[0] == '@' means that the last component is a snapshot. 426 */ 427 int 428 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 429 dsl_dir_t **ddp, const char **tailp) 430 { 431 char buf[ZFS_MAX_DATASET_NAME_LEN]; 432 const char *spaname, *next, *nextnext = NULL; 433 int err; 434 dsl_dir_t *dd; 435 uint64_t ddobj; 436 437 err = getcomponent(name, buf, &next); 438 if (err != 0) 439 return (err); 440 441 /* Make sure the name is in the specified pool. */ 442 spaname = spa_name(dp->dp_spa); 443 if (strcmp(buf, spaname) != 0) 444 return (SET_ERROR(EXDEV)); 445 446 ASSERT(dsl_pool_config_held(dp)); 447 448 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 449 if (err != 0) { 450 return (err); 451 } 452 453 while (next != NULL) { 454 dsl_dir_t *child_dd; 455 err = getcomponent(next, buf, &nextnext); 456 if (err != 0) 457 break; 458 ASSERT(next[0] != '\0'); 459 if (next[0] == '@') 460 break; 461 dprintf_zfs("looking up %s in obj%lld\n", 462 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj); 463 464 err = zap_lookup(dp->dp_meta_objset, 465 dsl_dir_phys(dd)->dd_child_dir_zapobj, 466 buf, sizeof (ddobj), 1, &ddobj); 467 if (err != 0) { 468 if (err == ENOENT) 469 err = 0; 470 break; 471 } 472 473 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 474 if (err != 0) 475 break; 476 dsl_dir_rele(dd, tag); 477 dd = child_dd; 478 next = nextnext; 479 } 480 481 if (err != 0) { 482 dsl_dir_rele(dd, tag); 483 return (err); 484 } 485 486 /* 487 * It's an error if there's more than one component left, or 488 * tailp==NULL and there's any component left. 489 */ 490 if (next != NULL && 491 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 492 /* bad path name */ 493 dsl_dir_rele(dd, tag); 494 dprintf_zfs("next=%p (%s) tail=%p\n", next, next ? next : "", 495 tailp); 496 err = SET_ERROR(ENOENT); 497 } 498 if (tailp != NULL) 499 *tailp = next; 500 *ddp = dd; 501 return (err); 502 } 503 504 /* 505 * If the counts are already initialized for this filesystem and its 506 * descendants then do nothing, otherwise initialize the counts. 507 * 508 * The counts on this filesystem, and those below, may be uninitialized due to 509 * either the use of a pre-existing pool which did not support the 510 * filesystem/snapshot limit feature, or one in which the feature had not yet 511 * been enabled. 512 * 513 * Recursively descend the filesystem tree and update the filesystem/snapshot 514 * counts on each filesystem below, then update the cumulative count on the 515 * current filesystem. If the filesystem already has a count set on it, 516 * then we know that its counts, and the counts on the filesystems below it, 517 * are already correct, so we don't have to update this filesystem. 518 */ 519 static void 520 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 521 { 522 uint64_t my_fs_cnt = 0; 523 uint64_t my_ss_cnt = 0; 524 dsl_pool_t *dp = dd->dd_pool; 525 objset_t *os = dp->dp_meta_objset; 526 zap_cursor_t *zc; 527 zap_attribute_t *za; 528 dsl_dataset_t *ds; 529 530 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 531 ASSERT(dsl_pool_config_held(dp)); 532 ASSERT(dmu_tx_is_syncing(tx)); 533 534 dsl_dir_zapify(dd, tx); 535 536 /* 537 * If the filesystem count has already been initialized then we 538 * don't need to recurse down any further. 539 */ 540 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 541 return; 542 543 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 544 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 545 546 /* Iterate my child dirs */ 547 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 548 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 549 dsl_dir_t *chld_dd; 550 uint64_t count; 551 552 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 553 &chld_dd)); 554 555 /* 556 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 557 * temporary datasets. 558 */ 559 if (chld_dd->dd_myname[0] == '$' || 560 chld_dd->dd_myname[0] == '%') { 561 dsl_dir_rele(chld_dd, FTAG); 562 continue; 563 } 564 565 my_fs_cnt++; /* count this child */ 566 567 dsl_dir_init_fs_ss_count(chld_dd, tx); 568 569 VERIFY0(zap_lookup(os, chld_dd->dd_object, 570 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 571 my_fs_cnt += count; 572 VERIFY0(zap_lookup(os, chld_dd->dd_object, 573 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 574 my_ss_cnt += count; 575 576 dsl_dir_rele(chld_dd, FTAG); 577 } 578 zap_cursor_fini(zc); 579 /* Count my snapshots (we counted children's snapshots above) */ 580 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 581 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 582 583 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 584 zap_cursor_retrieve(zc, za) == 0; 585 zap_cursor_advance(zc)) { 586 /* Don't count temporary snapshots */ 587 if (za->za_name[0] != '%') 588 my_ss_cnt++; 589 } 590 zap_cursor_fini(zc); 591 592 dsl_dataset_rele(ds, FTAG); 593 594 kmem_free(zc, sizeof (zap_cursor_t)); 595 kmem_free(za, sizeof (zap_attribute_t)); 596 597 /* we're in a sync task, update counts */ 598 dmu_buf_will_dirty(dd->dd_dbuf, tx); 599 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 600 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 601 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 602 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 603 } 604 605 static int 606 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 607 { 608 char *ddname = (char *)arg; 609 dsl_pool_t *dp = dmu_tx_pool(tx); 610 dsl_dataset_t *ds; 611 dsl_dir_t *dd; 612 int error; 613 614 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 615 if (error != 0) 616 return (error); 617 618 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 619 dsl_dataset_rele(ds, FTAG); 620 return (SET_ERROR(ENOTSUP)); 621 } 622 623 dd = ds->ds_dir; 624 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 625 dsl_dir_is_zapified(dd) && 626 zap_contains(dp->dp_meta_objset, dd->dd_object, 627 DD_FIELD_FILESYSTEM_COUNT) == 0) { 628 dsl_dataset_rele(ds, FTAG); 629 return (SET_ERROR(EALREADY)); 630 } 631 632 dsl_dataset_rele(ds, FTAG); 633 return (0); 634 } 635 636 static void 637 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 638 { 639 char *ddname = (char *)arg; 640 dsl_pool_t *dp = dmu_tx_pool(tx); 641 dsl_dataset_t *ds; 642 spa_t *spa; 643 644 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 645 646 spa = dsl_dataset_get_spa(ds); 647 648 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 649 /* 650 * Since the feature was not active and we're now setting a 651 * limit, increment the feature-active counter so that the 652 * feature becomes active for the first time. 653 * 654 * We are already in a sync task so we can update the MOS. 655 */ 656 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 657 } 658 659 /* 660 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 661 * we need to ensure the counts are correct. Descend down the tree from 662 * this point and update all of the counts to be accurate. 663 */ 664 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 665 666 dsl_dataset_rele(ds, FTAG); 667 } 668 669 /* 670 * Make sure the feature is enabled and activate it if necessary. 671 * Since we're setting a limit, ensure the on-disk counts are valid. 672 * This is only called by the ioctl path when setting a limit value. 673 * 674 * We do not need to validate the new limit, since users who can change the 675 * limit are also allowed to exceed the limit. 676 */ 677 int 678 dsl_dir_activate_fs_ss_limit(const char *ddname) 679 { 680 int error; 681 682 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 683 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 684 ZFS_SPACE_CHECK_RESERVED); 685 686 if (error == EALREADY) 687 error = 0; 688 689 return (error); 690 } 691 692 /* 693 * Used to determine if the filesystem_limit or snapshot_limit should be 694 * enforced. We allow the limit to be exceeded if the user has permission to 695 * write the property value. We pass in the creds that we got in the open 696 * context since we will always be the GZ root in syncing context. We also have 697 * to handle the case where we are allowed to change the limit on the current 698 * dataset, but there may be another limit in the tree above. 699 * 700 * We can never modify these two properties within a non-global zone. In 701 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 702 * can't use that function since we are already holding the dp_config_rwlock. 703 * In addition, we already have the dd and dealing with snapshots is simplified 704 * in this code. 705 */ 706 707 typedef enum { 708 ENFORCE_ALWAYS, 709 ENFORCE_NEVER, 710 ENFORCE_ABOVE 711 } enforce_res_t; 712 713 static enforce_res_t 714 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 715 { 716 enforce_res_t enforce = ENFORCE_ALWAYS; 717 uint64_t obj; 718 dsl_dataset_t *ds; 719 uint64_t zoned; 720 721 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 722 prop == ZFS_PROP_SNAPSHOT_LIMIT); 723 724 #ifdef _KERNEL 725 if (crgetzoneid(cr) != GLOBAL_ZONEID) 726 return (ENFORCE_ALWAYS); 727 728 if (secpolicy_zfs(cr) == 0) 729 return (ENFORCE_NEVER); 730 #endif 731 732 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 733 return (ENFORCE_ALWAYS); 734 735 ASSERT(dsl_pool_config_held(dd->dd_pool)); 736 737 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 738 return (ENFORCE_ALWAYS); 739 740 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 741 /* Only root can access zoned fs's from the GZ */ 742 enforce = ENFORCE_ALWAYS; 743 } else { 744 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 745 enforce = ENFORCE_ABOVE; 746 } 747 748 dsl_dataset_rele(ds, FTAG); 749 return (enforce); 750 } 751 752 static void 753 dsl_dir_update_last_remap_txg_sync(void *varg, dmu_tx_t *tx) 754 { 755 ddulrt_arg_t *arg = varg; 756 uint64_t last_remap_txg; 757 dsl_dir_t *dd = arg->ddulrta_dd; 758 objset_t *mos = dd->dd_pool->dp_meta_objset; 759 760 dsl_dir_zapify(dd, tx); 761 if (zap_lookup(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG, 762 sizeof (last_remap_txg), 1, &last_remap_txg) != 0 || 763 last_remap_txg < arg->ddlrta_txg) { 764 VERIFY0(zap_update(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG, 765 sizeof (arg->ddlrta_txg), 1, &arg->ddlrta_txg, tx)); 766 } 767 } 768 769 int 770 dsl_dir_update_last_remap_txg(dsl_dir_t *dd, uint64_t txg) 771 { 772 ddulrt_arg_t arg; 773 arg.ddulrta_dd = dd; 774 arg.ddlrta_txg = txg; 775 776 return (dsl_sync_task(spa_name(dd->dd_pool->dp_spa), 777 NULL, dsl_dir_update_last_remap_txg_sync, &arg, 778 1, ZFS_SPACE_CHECK_RESERVED)); 779 } 780 781 /* 782 * Check if adding additional child filesystem(s) would exceed any filesystem 783 * limits or adding additional snapshot(s) would exceed any snapshot limits. 784 * The prop argument indicates which limit to check. 785 * 786 * Note that all filesystem limits up to the root (or the highest 787 * initialized) filesystem or the given ancestor must be satisfied. 788 */ 789 int 790 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 791 dsl_dir_t *ancestor, cred_t *cr) 792 { 793 objset_t *os = dd->dd_pool->dp_meta_objset; 794 uint64_t limit, count; 795 char *count_prop; 796 enforce_res_t enforce; 797 int err = 0; 798 799 ASSERT(dsl_pool_config_held(dd->dd_pool)); 800 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 801 prop == ZFS_PROP_SNAPSHOT_LIMIT); 802 803 /* 804 * If we're allowed to change the limit, don't enforce the limit 805 * e.g. this can happen if a snapshot is taken by an administrative 806 * user in the global zone (i.e. a recursive snapshot by root). 807 * However, we must handle the case of delegated permissions where we 808 * are allowed to change the limit on the current dataset, but there 809 * is another limit in the tree above. 810 */ 811 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 812 if (enforce == ENFORCE_NEVER) 813 return (0); 814 815 /* 816 * e.g. if renaming a dataset with no snapshots, count adjustment 817 * is 0. 818 */ 819 if (delta == 0) 820 return (0); 821 822 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 823 /* 824 * We don't enforce the limit for temporary snapshots. This is 825 * indicated by a NULL cred_t argument. 826 */ 827 if (cr == NULL) 828 return (0); 829 830 count_prop = DD_FIELD_SNAPSHOT_COUNT; 831 } else { 832 count_prop = DD_FIELD_FILESYSTEM_COUNT; 833 } 834 835 /* 836 * If an ancestor has been provided, stop checking the limit once we 837 * hit that dir. We need this during rename so that we don't overcount 838 * the check once we recurse up to the common ancestor. 839 */ 840 if (ancestor == dd) 841 return (0); 842 843 /* 844 * If we hit an uninitialized node while recursing up the tree, we can 845 * stop since we know there is no limit here (or above). The counts are 846 * not valid on this node and we know we won't touch this node's counts. 847 */ 848 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 849 count_prop, sizeof (count), 1, &count) == ENOENT) 850 return (0); 851 852 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 853 B_FALSE); 854 if (err != 0) 855 return (err); 856 857 /* Is there a limit which we've hit? */ 858 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 859 return (SET_ERROR(EDQUOT)); 860 861 if (dd->dd_parent != NULL) 862 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 863 ancestor, cr); 864 865 return (err); 866 } 867 868 /* 869 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 870 * parents. When a new filesystem/snapshot is created, increment the count on 871 * all parents, and when a filesystem/snapshot is destroyed, decrement the 872 * count. 873 */ 874 void 875 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 876 dmu_tx_t *tx) 877 { 878 int err; 879 objset_t *os = dd->dd_pool->dp_meta_objset; 880 uint64_t count; 881 882 ASSERT(dsl_pool_config_held(dd->dd_pool)); 883 ASSERT(dmu_tx_is_syncing(tx)); 884 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 885 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 886 887 /* 888 * When we receive an incremental stream into a filesystem that already 889 * exists, a temporary clone is created. We don't count this temporary 890 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 891 * $MOS & $ORIGIN) objsets. 892 */ 893 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 894 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 895 return; 896 897 /* 898 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 899 */ 900 if (delta == 0) 901 return; 902 903 /* 904 * If we hit an uninitialized node while recursing up the tree, we can 905 * stop since we know the counts are not valid on this node and we 906 * know we shouldn't touch this node's counts. An uninitialized count 907 * on the node indicates that either the feature has not yet been 908 * activated or there are no limits on this part of the tree. 909 */ 910 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 911 prop, sizeof (count), 1, &count)) == ENOENT) 912 return; 913 VERIFY0(err); 914 915 count += delta; 916 /* Use a signed verify to make sure we're not neg. */ 917 VERIFY3S(count, >=, 0); 918 919 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 920 tx)); 921 922 /* Roll up this additional count into our ancestors */ 923 if (dd->dd_parent != NULL) 924 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 925 } 926 927 uint64_t 928 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 929 dmu_tx_t *tx) 930 { 931 objset_t *mos = dp->dp_meta_objset; 932 uint64_t ddobj; 933 dsl_dir_phys_t *ddphys; 934 dmu_buf_t *dbuf; 935 936 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 937 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 938 if (pds) { 939 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 940 name, sizeof (uint64_t), 1, &ddobj, tx)); 941 } else { 942 /* it's the root dir */ 943 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 944 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 945 } 946 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 947 dmu_buf_will_dirty(dbuf, tx); 948 ddphys = dbuf->db_data; 949 950 ddphys->dd_creation_time = gethrestime_sec(); 951 if (pds) { 952 ddphys->dd_parent_obj = pds->dd_object; 953 954 /* update the filesystem counts */ 955 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 956 } 957 ddphys->dd_props_zapobj = zap_create(mos, 958 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 959 ddphys->dd_child_dir_zapobj = zap_create(mos, 960 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 961 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 962 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 963 964 dmu_buf_rele(dbuf, FTAG); 965 966 return (ddobj); 967 } 968 969 boolean_t 970 dsl_dir_is_clone(dsl_dir_t *dd) 971 { 972 return (dsl_dir_phys(dd)->dd_origin_obj && 973 (dd->dd_pool->dp_origin_snap == NULL || 974 dsl_dir_phys(dd)->dd_origin_obj != 975 dd->dd_pool->dp_origin_snap->ds_object)); 976 } 977 978 979 uint64_t 980 dsl_dir_get_used(dsl_dir_t *dd) 981 { 982 return (dsl_dir_phys(dd)->dd_used_bytes); 983 } 984 985 uint64_t 986 dsl_dir_get_compressed(dsl_dir_t *dd) 987 { 988 return (dsl_dir_phys(dd)->dd_compressed_bytes); 989 } 990 991 uint64_t 992 dsl_dir_get_quota(dsl_dir_t *dd) 993 { 994 return (dsl_dir_phys(dd)->dd_quota); 995 } 996 997 uint64_t 998 dsl_dir_get_reservation(dsl_dir_t *dd) 999 { 1000 return (dsl_dir_phys(dd)->dd_reserved); 1001 } 1002 1003 uint64_t 1004 dsl_dir_get_compressratio(dsl_dir_t *dd) 1005 { 1006 /* a fixed point number, 100x the ratio */ 1007 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 1008 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 1009 dsl_dir_phys(dd)->dd_compressed_bytes)); 1010 } 1011 1012 uint64_t 1013 dsl_dir_get_logicalused(dsl_dir_t *dd) 1014 { 1015 return (dsl_dir_phys(dd)->dd_uncompressed_bytes); 1016 } 1017 1018 uint64_t 1019 dsl_dir_get_usedsnap(dsl_dir_t *dd) 1020 { 1021 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 1022 } 1023 1024 uint64_t 1025 dsl_dir_get_usedds(dsl_dir_t *dd) 1026 { 1027 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 1028 } 1029 1030 uint64_t 1031 dsl_dir_get_usedrefreserv(dsl_dir_t *dd) 1032 { 1033 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 1034 } 1035 1036 uint64_t 1037 dsl_dir_get_usedchild(dsl_dir_t *dd) 1038 { 1039 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 1040 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 1041 } 1042 1043 void 1044 dsl_dir_get_origin(dsl_dir_t *dd, char *buf) 1045 { 1046 dsl_dataset_t *ds; 1047 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 1048 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 1049 1050 dsl_dataset_name(ds, buf); 1051 1052 dsl_dataset_rele(ds, FTAG); 1053 } 1054 1055 int 1056 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count) 1057 { 1058 if (dsl_dir_is_zapified(dd)) { 1059 objset_t *os = dd->dd_pool->dp_meta_objset; 1060 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 1061 sizeof (*count), 1, count)); 1062 } else { 1063 return (ENOENT); 1064 } 1065 } 1066 1067 int 1068 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count) 1069 { 1070 if (dsl_dir_is_zapified(dd)) { 1071 objset_t *os = dd->dd_pool->dp_meta_objset; 1072 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 1073 sizeof (*count), 1, count)); 1074 } else { 1075 return (ENOENT); 1076 } 1077 } 1078 1079 int 1080 dsl_dir_get_remaptxg(dsl_dir_t *dd, uint64_t *count) 1081 { 1082 if (dsl_dir_is_zapified(dd)) { 1083 objset_t *os = dd->dd_pool->dp_meta_objset; 1084 return (zap_lookup(os, dd->dd_object, DD_FIELD_LAST_REMAP_TXG, 1085 sizeof (*count), 1, count)); 1086 } else { 1087 return (ENOENT); 1088 } 1089 } 1090 1091 void 1092 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1093 { 1094 mutex_enter(&dd->dd_lock); 1095 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 1096 dsl_dir_get_quota(dd)); 1097 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1098 dsl_dir_get_reservation(dd)); 1099 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 1100 dsl_dir_get_logicalused(dd)); 1101 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1102 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1103 dsl_dir_get_usedsnap(dd)); 1104 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1105 dsl_dir_get_usedds(dd)); 1106 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1107 dsl_dir_get_usedrefreserv(dd)); 1108 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1109 dsl_dir_get_usedchild(dd)); 1110 } 1111 mutex_exit(&dd->dd_lock); 1112 1113 uint64_t count; 1114 if (dsl_dir_get_filesystem_count(dd, &count) == 0) { 1115 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT, 1116 count); 1117 } 1118 if (dsl_dir_get_snapshot_count(dd, &count) == 0) { 1119 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT, 1120 count); 1121 } 1122 if (dsl_dir_get_remaptxg(dd, &count) == 0) { 1123 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REMAPTXG, 1124 count); 1125 } 1126 1127 if (dsl_dir_is_clone(dd)) { 1128 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1129 dsl_dir_get_origin(dd, buf); 1130 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1131 } 1132 1133 } 1134 1135 void 1136 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1137 { 1138 dsl_pool_t *dp = dd->dd_pool; 1139 1140 ASSERT(dsl_dir_phys(dd)); 1141 1142 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1143 /* up the hold count until we can be written out */ 1144 dmu_buf_add_ref(dd->dd_dbuf, dd); 1145 } 1146 } 1147 1148 static int64_t 1149 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1150 { 1151 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1152 uint64_t new_accounted = 1153 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1154 return (new_accounted - old_accounted); 1155 } 1156 1157 void 1158 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1159 { 1160 ASSERT(dmu_tx_is_syncing(tx)); 1161 1162 mutex_enter(&dd->dd_lock); 1163 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1164 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1165 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1166 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1167 mutex_exit(&dd->dd_lock); 1168 1169 /* release the hold from dsl_dir_dirty */ 1170 dmu_buf_rele(dd->dd_dbuf, dd); 1171 } 1172 1173 static uint64_t 1174 dsl_dir_space_towrite(dsl_dir_t *dd) 1175 { 1176 uint64_t space = 0; 1177 1178 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1179 1180 for (int i = 0; i < TXG_SIZE; i++) { 1181 space += dd->dd_space_towrite[i & TXG_MASK]; 1182 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0); 1183 } 1184 return (space); 1185 } 1186 1187 /* 1188 * How much space would dd have available if ancestor had delta applied 1189 * to it? If ondiskonly is set, we're only interested in what's 1190 * on-disk, not estimated pending changes. 1191 */ 1192 uint64_t 1193 dsl_dir_space_available(dsl_dir_t *dd, 1194 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1195 { 1196 uint64_t parentspace, myspace, quota, used; 1197 1198 /* 1199 * If there are no restrictions otherwise, assume we have 1200 * unlimited space available. 1201 */ 1202 quota = UINT64_MAX; 1203 parentspace = UINT64_MAX; 1204 1205 if (dd->dd_parent != NULL) { 1206 parentspace = dsl_dir_space_available(dd->dd_parent, 1207 ancestor, delta, ondiskonly); 1208 } 1209 1210 mutex_enter(&dd->dd_lock); 1211 if (dsl_dir_phys(dd)->dd_quota != 0) 1212 quota = dsl_dir_phys(dd)->dd_quota; 1213 used = dsl_dir_phys(dd)->dd_used_bytes; 1214 if (!ondiskonly) 1215 used += dsl_dir_space_towrite(dd); 1216 1217 if (dd->dd_parent == NULL) { 1218 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, 1219 ZFS_SPACE_CHECK_NORMAL); 1220 quota = MIN(quota, poolsize); 1221 } 1222 1223 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1224 /* 1225 * We have some space reserved, in addition to what our 1226 * parent gave us. 1227 */ 1228 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1229 } 1230 1231 if (dd == ancestor) { 1232 ASSERT(delta <= 0); 1233 ASSERT(used >= -delta); 1234 used += delta; 1235 if (parentspace != UINT64_MAX) 1236 parentspace -= delta; 1237 } 1238 1239 if (used > quota) { 1240 /* over quota */ 1241 myspace = 0; 1242 } else { 1243 /* 1244 * the lesser of the space provided by our parent and 1245 * the space left in our quota 1246 */ 1247 myspace = MIN(parentspace, quota - used); 1248 } 1249 1250 mutex_exit(&dd->dd_lock); 1251 1252 return (myspace); 1253 } 1254 1255 struct tempreserve { 1256 list_node_t tr_node; 1257 dsl_dir_t *tr_ds; 1258 uint64_t tr_size; 1259 }; 1260 1261 static int 1262 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1263 boolean_t ignorequota, list_t *tr_list, 1264 dmu_tx_t *tx, boolean_t first) 1265 { 1266 uint64_t txg = tx->tx_txg; 1267 uint64_t quota; 1268 struct tempreserve *tr; 1269 int retval = EDQUOT; 1270 uint64_t ref_rsrv = 0; 1271 1272 ASSERT3U(txg, !=, 0); 1273 ASSERT3S(asize, >, 0); 1274 1275 mutex_enter(&dd->dd_lock); 1276 1277 /* 1278 * Check against the dsl_dir's quota. We don't add in the delta 1279 * when checking for over-quota because they get one free hit. 1280 */ 1281 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1282 for (int i = 0; i < TXG_SIZE; i++) 1283 est_inflight += dd->dd_tempreserved[i]; 1284 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1285 1286 /* 1287 * On the first iteration, fetch the dataset's used-on-disk and 1288 * refreservation values. Also, if checkrefquota is set, test if 1289 * allocating this space would exceed the dataset's refquota. 1290 */ 1291 if (first && tx->tx_objset) { 1292 int error; 1293 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1294 1295 error = dsl_dataset_check_quota(ds, !netfree, 1296 asize, est_inflight, &used_on_disk, &ref_rsrv); 1297 if (error != 0) { 1298 mutex_exit(&dd->dd_lock); 1299 return (error); 1300 } 1301 } 1302 1303 /* 1304 * If this transaction will result in a net free of space, 1305 * we want to let it through. 1306 */ 1307 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1308 quota = UINT64_MAX; 1309 else 1310 quota = dsl_dir_phys(dd)->dd_quota; 1311 1312 /* 1313 * Adjust the quota against the actual pool size at the root 1314 * minus any outstanding deferred frees. 1315 * To ensure that it's possible to remove files from a full 1316 * pool without inducing transient overcommits, we throttle 1317 * netfree transactions against a quota that is slightly larger, 1318 * but still within the pool's allocation slop. In cases where 1319 * we're very close to full, this will allow a steady trickle of 1320 * removes to get through. 1321 */ 1322 uint64_t deferred = 0; 1323 if (dd->dd_parent == NULL) { 1324 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool, 1325 (netfree) ? 1326 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL); 1327 1328 if (avail < quota) { 1329 quota = avail; 1330 retval = ENOSPC; 1331 } 1332 } 1333 1334 /* 1335 * If they are requesting more space, and our current estimate 1336 * is over quota, they get to try again unless the actual 1337 * on-disk is over quota and there are no pending changes (which 1338 * may free up space for us). 1339 */ 1340 if (used_on_disk + est_inflight >= quota) { 1341 if (est_inflight > 0 || used_on_disk < quota || 1342 (retval == ENOSPC && used_on_disk < quota + deferred)) 1343 retval = ERESTART; 1344 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1345 "quota=%lluK tr=%lluK err=%d\n", 1346 used_on_disk>>10, est_inflight>>10, 1347 quota>>10, asize>>10, retval); 1348 mutex_exit(&dd->dd_lock); 1349 return (SET_ERROR(retval)); 1350 } 1351 1352 /* We need to up our estimated delta before dropping dd_lock */ 1353 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1354 1355 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1356 asize - ref_rsrv); 1357 mutex_exit(&dd->dd_lock); 1358 1359 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1360 tr->tr_ds = dd; 1361 tr->tr_size = asize; 1362 list_insert_tail(tr_list, tr); 1363 1364 /* see if it's OK with our parent */ 1365 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1366 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1367 1368 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1369 parent_rsrv, netfree, ismos, tr_list, tx, B_FALSE)); 1370 } else { 1371 return (0); 1372 } 1373 } 1374 1375 /* 1376 * Reserve space in this dsl_dir, to be used in this tx's txg. 1377 * After the space has been dirtied (and dsl_dir_willuse_space() 1378 * has been called), the reservation should be canceled, using 1379 * dsl_dir_tempreserve_clear(). 1380 */ 1381 int 1382 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1383 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1384 { 1385 int err; 1386 list_t *tr_list; 1387 1388 if (asize == 0) { 1389 *tr_cookiep = NULL; 1390 return (0); 1391 } 1392 1393 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1394 list_create(tr_list, sizeof (struct tempreserve), 1395 offsetof(struct tempreserve, tr_node)); 1396 ASSERT3S(asize, >, 0); 1397 1398 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg); 1399 if (err == 0) { 1400 struct tempreserve *tr; 1401 1402 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1403 tr->tr_size = lsize; 1404 list_insert_tail(tr_list, tr); 1405 } else { 1406 if (err == EAGAIN) { 1407 /* 1408 * If arc_memory_throttle() detected that pageout 1409 * is running and we are low on memory, we delay new 1410 * non-pageout transactions to give pageout an 1411 * advantage. 1412 * 1413 * It is unfortunate to be delaying while the caller's 1414 * locks are held. 1415 */ 1416 txg_delay(dd->dd_pool, tx->tx_txg, 1417 MSEC2NSEC(10), MSEC2NSEC(10)); 1418 err = SET_ERROR(ERESTART); 1419 } 1420 } 1421 1422 if (err == 0) { 1423 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1424 B_FALSE, tr_list, tx, B_TRUE); 1425 } 1426 1427 if (err != 0) 1428 dsl_dir_tempreserve_clear(tr_list, tx); 1429 else 1430 *tr_cookiep = tr_list; 1431 1432 return (err); 1433 } 1434 1435 /* 1436 * Clear a temporary reservation that we previously made with 1437 * dsl_dir_tempreserve_space(). 1438 */ 1439 void 1440 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1441 { 1442 int txgidx = tx->tx_txg & TXG_MASK; 1443 list_t *tr_list = tr_cookie; 1444 struct tempreserve *tr; 1445 1446 ASSERT3U(tx->tx_txg, !=, 0); 1447 1448 if (tr_cookie == NULL) 1449 return; 1450 1451 while ((tr = list_head(tr_list)) != NULL) { 1452 if (tr->tr_ds) { 1453 mutex_enter(&tr->tr_ds->dd_lock); 1454 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1455 tr->tr_size); 1456 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1457 mutex_exit(&tr->tr_ds->dd_lock); 1458 } else { 1459 arc_tempreserve_clear(tr->tr_size); 1460 } 1461 list_remove(tr_list, tr); 1462 kmem_free(tr, sizeof (struct tempreserve)); 1463 } 1464 1465 kmem_free(tr_list, sizeof (list_t)); 1466 } 1467 1468 /* 1469 * This should be called from open context when we think we're going to write 1470 * or free space, for example when dirtying data. Be conservative; it's okay 1471 * to write less space or free more, but we don't want to write more or free 1472 * less than the amount specified. 1473 */ 1474 void 1475 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1476 { 1477 int64_t parent_space; 1478 uint64_t est_used; 1479 1480 mutex_enter(&dd->dd_lock); 1481 if (space > 0) 1482 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1483 1484 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes; 1485 parent_space = parent_delta(dd, est_used, space); 1486 mutex_exit(&dd->dd_lock); 1487 1488 /* Make sure that we clean up dd_space_to* */ 1489 dsl_dir_dirty(dd, tx); 1490 1491 /* XXX this is potentially expensive and unnecessary... */ 1492 if (parent_space && dd->dd_parent) 1493 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1494 } 1495 1496 /* call from syncing context when we actually write/free space for this dd */ 1497 void 1498 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1499 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1500 { 1501 int64_t accounted_delta; 1502 1503 /* 1504 * dsl_dataset_set_refreservation_sync_impl() calls this with 1505 * dd_lock held, so that it can atomically update 1506 * ds->ds_reserved and the dsl_dir accounting, so that 1507 * dsl_dataset_check_quota() can see dataset and dir accounting 1508 * consistently. 1509 */ 1510 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1511 1512 ASSERT(dmu_tx_is_syncing(tx)); 1513 ASSERT(type < DD_USED_NUM); 1514 1515 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1516 1517 if (needlock) 1518 mutex_enter(&dd->dd_lock); 1519 accounted_delta = 1520 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used); 1521 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used); 1522 ASSERT(compressed >= 0 || 1523 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed); 1524 ASSERT(uncompressed >= 0 || 1525 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed); 1526 dsl_dir_phys(dd)->dd_used_bytes += used; 1527 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed; 1528 dsl_dir_phys(dd)->dd_compressed_bytes += compressed; 1529 1530 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1531 ASSERT(used > 0 || 1532 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used); 1533 dsl_dir_phys(dd)->dd_used_breakdown[type] += used; 1534 #ifdef DEBUG 1535 dd_used_t t; 1536 uint64_t u = 0; 1537 for (t = 0; t < DD_USED_NUM; t++) 1538 u += dsl_dir_phys(dd)->dd_used_breakdown[t]; 1539 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes); 1540 #endif 1541 } 1542 if (needlock) 1543 mutex_exit(&dd->dd_lock); 1544 1545 if (dd->dd_parent != NULL) { 1546 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1547 accounted_delta, compressed, uncompressed, tx); 1548 dsl_dir_transfer_space(dd->dd_parent, 1549 used - accounted_delta, 1550 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1551 } 1552 } 1553 1554 void 1555 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1556 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1557 { 1558 ASSERT(dmu_tx_is_syncing(tx)); 1559 ASSERT(oldtype < DD_USED_NUM); 1560 ASSERT(newtype < DD_USED_NUM); 1561 1562 if (delta == 0 || 1563 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1564 return; 1565 1566 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1567 mutex_enter(&dd->dd_lock); 1568 ASSERT(delta > 0 ? 1569 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta : 1570 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta); 1571 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta)); 1572 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta; 1573 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta; 1574 mutex_exit(&dd->dd_lock); 1575 } 1576 1577 typedef struct dsl_dir_set_qr_arg { 1578 const char *ddsqra_name; 1579 zprop_source_t ddsqra_source; 1580 uint64_t ddsqra_value; 1581 } dsl_dir_set_qr_arg_t; 1582 1583 static int 1584 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1585 { 1586 dsl_dir_set_qr_arg_t *ddsqra = arg; 1587 dsl_pool_t *dp = dmu_tx_pool(tx); 1588 dsl_dataset_t *ds; 1589 int error; 1590 uint64_t towrite, newval; 1591 1592 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1593 if (error != 0) 1594 return (error); 1595 1596 error = dsl_prop_predict(ds->ds_dir, "quota", 1597 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1598 if (error != 0) { 1599 dsl_dataset_rele(ds, FTAG); 1600 return (error); 1601 } 1602 1603 if (newval == 0) { 1604 dsl_dataset_rele(ds, FTAG); 1605 return (0); 1606 } 1607 1608 mutex_enter(&ds->ds_dir->dd_lock); 1609 /* 1610 * If we are doing the preliminary check in open context, and 1611 * there are pending changes, then don't fail it, since the 1612 * pending changes could under-estimate the amount of space to be 1613 * freed up. 1614 */ 1615 towrite = dsl_dir_space_towrite(ds->ds_dir); 1616 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1617 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1618 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1619 error = SET_ERROR(ENOSPC); 1620 } 1621 mutex_exit(&ds->ds_dir->dd_lock); 1622 dsl_dataset_rele(ds, FTAG); 1623 return (error); 1624 } 1625 1626 static void 1627 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1628 { 1629 dsl_dir_set_qr_arg_t *ddsqra = arg; 1630 dsl_pool_t *dp = dmu_tx_pool(tx); 1631 dsl_dataset_t *ds; 1632 uint64_t newval; 1633 1634 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1635 1636 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1637 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1638 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1639 &ddsqra->ddsqra_value, tx); 1640 1641 VERIFY0(dsl_prop_get_int_ds(ds, 1642 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1643 } else { 1644 newval = ddsqra->ddsqra_value; 1645 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1646 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1647 } 1648 1649 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1650 mutex_enter(&ds->ds_dir->dd_lock); 1651 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1652 mutex_exit(&ds->ds_dir->dd_lock); 1653 dsl_dataset_rele(ds, FTAG); 1654 } 1655 1656 int 1657 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1658 { 1659 dsl_dir_set_qr_arg_t ddsqra; 1660 1661 ddsqra.ddsqra_name = ddname; 1662 ddsqra.ddsqra_source = source; 1663 ddsqra.ddsqra_value = quota; 1664 1665 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1666 dsl_dir_set_quota_sync, &ddsqra, 0, 1667 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1668 } 1669 1670 int 1671 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1672 { 1673 dsl_dir_set_qr_arg_t *ddsqra = arg; 1674 dsl_pool_t *dp = dmu_tx_pool(tx); 1675 dsl_dataset_t *ds; 1676 dsl_dir_t *dd; 1677 uint64_t newval, used, avail; 1678 int error; 1679 1680 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1681 if (error != 0) 1682 return (error); 1683 dd = ds->ds_dir; 1684 1685 /* 1686 * If we are doing the preliminary check in open context, the 1687 * space estimates may be inaccurate. 1688 */ 1689 if (!dmu_tx_is_syncing(tx)) { 1690 dsl_dataset_rele(ds, FTAG); 1691 return (0); 1692 } 1693 1694 error = dsl_prop_predict(ds->ds_dir, 1695 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1696 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1697 if (error != 0) { 1698 dsl_dataset_rele(ds, FTAG); 1699 return (error); 1700 } 1701 1702 mutex_enter(&dd->dd_lock); 1703 used = dsl_dir_phys(dd)->dd_used_bytes; 1704 mutex_exit(&dd->dd_lock); 1705 1706 if (dd->dd_parent) { 1707 avail = dsl_dir_space_available(dd->dd_parent, 1708 NULL, 0, FALSE); 1709 } else { 1710 avail = dsl_pool_adjustedsize(dd->dd_pool, 1711 ZFS_SPACE_CHECK_NORMAL) - used; 1712 } 1713 1714 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1715 uint64_t delta = MAX(used, newval) - 1716 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1717 1718 if (delta > avail || 1719 (dsl_dir_phys(dd)->dd_quota > 0 && 1720 newval > dsl_dir_phys(dd)->dd_quota)) 1721 error = SET_ERROR(ENOSPC); 1722 } 1723 1724 dsl_dataset_rele(ds, FTAG); 1725 return (error); 1726 } 1727 1728 void 1729 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1730 { 1731 uint64_t used; 1732 int64_t delta; 1733 1734 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1735 1736 mutex_enter(&dd->dd_lock); 1737 used = dsl_dir_phys(dd)->dd_used_bytes; 1738 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1739 dsl_dir_phys(dd)->dd_reserved = value; 1740 1741 if (dd->dd_parent != NULL) { 1742 /* Roll up this additional usage into our ancestors */ 1743 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1744 delta, 0, 0, tx); 1745 } 1746 mutex_exit(&dd->dd_lock); 1747 } 1748 1749 1750 static void 1751 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1752 { 1753 dsl_dir_set_qr_arg_t *ddsqra = arg; 1754 dsl_pool_t *dp = dmu_tx_pool(tx); 1755 dsl_dataset_t *ds; 1756 uint64_t newval; 1757 1758 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1759 1760 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1761 dsl_prop_set_sync_impl(ds, 1762 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1763 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1764 &ddsqra->ddsqra_value, tx); 1765 1766 VERIFY0(dsl_prop_get_int_ds(ds, 1767 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1768 } else { 1769 newval = ddsqra->ddsqra_value; 1770 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1771 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1772 (longlong_t)newval); 1773 } 1774 1775 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1776 dsl_dataset_rele(ds, FTAG); 1777 } 1778 1779 int 1780 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1781 uint64_t reservation) 1782 { 1783 dsl_dir_set_qr_arg_t ddsqra; 1784 1785 ddsqra.ddsqra_name = ddname; 1786 ddsqra.ddsqra_source = source; 1787 ddsqra.ddsqra_value = reservation; 1788 1789 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1790 dsl_dir_set_reservation_sync, &ddsqra, 0, 1791 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1792 } 1793 1794 static dsl_dir_t * 1795 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1796 { 1797 for (; ds1; ds1 = ds1->dd_parent) { 1798 dsl_dir_t *dd; 1799 for (dd = ds2; dd; dd = dd->dd_parent) { 1800 if (ds1 == dd) 1801 return (dd); 1802 } 1803 } 1804 return (NULL); 1805 } 1806 1807 /* 1808 * If delta is applied to dd, how much of that delta would be applied to 1809 * ancestor? Syncing context only. 1810 */ 1811 static int64_t 1812 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1813 { 1814 if (dd == ancestor) 1815 return (delta); 1816 1817 mutex_enter(&dd->dd_lock); 1818 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1819 mutex_exit(&dd->dd_lock); 1820 return (would_change(dd->dd_parent, delta, ancestor)); 1821 } 1822 1823 typedef struct dsl_dir_rename_arg { 1824 const char *ddra_oldname; 1825 const char *ddra_newname; 1826 cred_t *ddra_cred; 1827 } dsl_dir_rename_arg_t; 1828 1829 typedef struct dsl_valid_rename_arg { 1830 int char_delta; 1831 int nest_delta; 1832 } dsl_valid_rename_arg_t; 1833 1834 /* ARGSUSED */ 1835 static int 1836 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1837 { 1838 dsl_valid_rename_arg_t *dvra = arg; 1839 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1840 1841 dsl_dataset_name(ds, namebuf); 1842 1843 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN), 1844 <, ZFS_MAX_DATASET_NAME_LEN); 1845 int namelen = strlen(namebuf) + dvra->char_delta; 1846 int depth = get_dataset_depth(namebuf) + dvra->nest_delta; 1847 1848 if (namelen >= ZFS_MAX_DATASET_NAME_LEN) 1849 return (SET_ERROR(ENAMETOOLONG)); 1850 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting) 1851 return (SET_ERROR(ENAMETOOLONG)); 1852 return (0); 1853 } 1854 1855 static int 1856 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1857 { 1858 dsl_dir_rename_arg_t *ddra = arg; 1859 dsl_pool_t *dp = dmu_tx_pool(tx); 1860 dsl_dir_t *dd, *newparent; 1861 dsl_valid_rename_arg_t dvra; 1862 const char *mynewname; 1863 int error; 1864 1865 /* target dir should exist */ 1866 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1867 if (error != 0) 1868 return (error); 1869 1870 /* new parent should exist */ 1871 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1872 &newparent, &mynewname); 1873 if (error != 0) { 1874 dsl_dir_rele(dd, FTAG); 1875 return (error); 1876 } 1877 1878 /* can't rename to different pool */ 1879 if (dd->dd_pool != newparent->dd_pool) { 1880 dsl_dir_rele(newparent, FTAG); 1881 dsl_dir_rele(dd, FTAG); 1882 return (SET_ERROR(ENXIO)); 1883 } 1884 1885 /* new name should not already exist */ 1886 if (mynewname == NULL) { 1887 dsl_dir_rele(newparent, FTAG); 1888 dsl_dir_rele(dd, FTAG); 1889 return (SET_ERROR(EEXIST)); 1890 } 1891 1892 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN), 1893 <, ZFS_MAX_DATASET_NAME_LEN); 1894 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN), 1895 <, ZFS_MAX_DATASET_NAME_LEN); 1896 dvra.char_delta = strlen(ddra->ddra_newname) 1897 - strlen(ddra->ddra_oldname); 1898 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname) 1899 - get_dataset_depth(ddra->ddra_oldname); 1900 1901 /* if the name length is growing, validate child name lengths */ 1902 if (dvra.char_delta > 0 || dvra.nest_delta > 0) { 1903 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1904 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1905 if (error != 0) { 1906 dsl_dir_rele(newparent, FTAG); 1907 dsl_dir_rele(dd, FTAG); 1908 return (error); 1909 } 1910 } 1911 1912 if (dmu_tx_is_syncing(tx)) { 1913 if (spa_feature_is_active(dp->dp_spa, 1914 SPA_FEATURE_FS_SS_LIMIT)) { 1915 /* 1916 * Although this is the check function and we don't 1917 * normally make on-disk changes in check functions, 1918 * we need to do that here. 1919 * 1920 * Ensure this portion of the tree's counts have been 1921 * initialized in case the new parent has limits set. 1922 */ 1923 dsl_dir_init_fs_ss_count(dd, tx); 1924 } 1925 } 1926 1927 if (newparent != dd->dd_parent) { 1928 /* is there enough space? */ 1929 uint64_t myspace = 1930 MAX(dsl_dir_phys(dd)->dd_used_bytes, 1931 dsl_dir_phys(dd)->dd_reserved); 1932 objset_t *os = dd->dd_pool->dp_meta_objset; 1933 uint64_t fs_cnt = 0; 1934 uint64_t ss_cnt = 0; 1935 1936 if (dsl_dir_is_zapified(dd)) { 1937 int err; 1938 1939 err = zap_lookup(os, dd->dd_object, 1940 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1941 &fs_cnt); 1942 if (err != ENOENT && err != 0) { 1943 dsl_dir_rele(newparent, FTAG); 1944 dsl_dir_rele(dd, FTAG); 1945 return (err); 1946 } 1947 1948 /* 1949 * have to add 1 for the filesystem itself that we're 1950 * moving 1951 */ 1952 fs_cnt++; 1953 1954 err = zap_lookup(os, dd->dd_object, 1955 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1956 &ss_cnt); 1957 if (err != ENOENT && err != 0) { 1958 dsl_dir_rele(newparent, FTAG); 1959 dsl_dir_rele(dd, FTAG); 1960 return (err); 1961 } 1962 } 1963 1964 /* check for encryption errors */ 1965 error = dsl_dir_rename_crypt_check(dd, newparent); 1966 if (error != 0) { 1967 dsl_dir_rele(newparent, FTAG); 1968 dsl_dir_rele(dd, FTAG); 1969 return (SET_ERROR(EACCES)); 1970 } 1971 1972 /* no rename into our descendant */ 1973 if (closest_common_ancestor(dd, newparent) == dd) { 1974 dsl_dir_rele(newparent, FTAG); 1975 dsl_dir_rele(dd, FTAG); 1976 return (SET_ERROR(EINVAL)); 1977 } 1978 1979 error = dsl_dir_transfer_possible(dd->dd_parent, 1980 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1981 if (error != 0) { 1982 dsl_dir_rele(newparent, FTAG); 1983 dsl_dir_rele(dd, FTAG); 1984 return (error); 1985 } 1986 } 1987 1988 dsl_dir_rele(newparent, FTAG); 1989 dsl_dir_rele(dd, FTAG); 1990 return (0); 1991 } 1992 1993 static void 1994 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1995 { 1996 dsl_dir_rename_arg_t *ddra = arg; 1997 dsl_pool_t *dp = dmu_tx_pool(tx); 1998 dsl_dir_t *dd, *newparent; 1999 const char *mynewname; 2000 int error; 2001 objset_t *mos = dp->dp_meta_objset; 2002 2003 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 2004 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 2005 &mynewname)); 2006 2007 /* Log this before we change the name. */ 2008 spa_history_log_internal_dd(dd, "rename", tx, 2009 "-> %s", ddra->ddra_newname); 2010 2011 if (newparent != dd->dd_parent) { 2012 objset_t *os = dd->dd_pool->dp_meta_objset; 2013 uint64_t fs_cnt = 0; 2014 uint64_t ss_cnt = 0; 2015 2016 /* 2017 * We already made sure the dd counts were initialized in the 2018 * check function. 2019 */ 2020 if (spa_feature_is_active(dp->dp_spa, 2021 SPA_FEATURE_FS_SS_LIMIT)) { 2022 VERIFY0(zap_lookup(os, dd->dd_object, 2023 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2024 &fs_cnt)); 2025 /* add 1 for the filesystem itself that we're moving */ 2026 fs_cnt++; 2027 2028 VERIFY0(zap_lookup(os, dd->dd_object, 2029 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2030 &ss_cnt)); 2031 } 2032 2033 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 2034 DD_FIELD_FILESYSTEM_COUNT, tx); 2035 dsl_fs_ss_count_adjust(newparent, fs_cnt, 2036 DD_FIELD_FILESYSTEM_COUNT, tx); 2037 2038 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 2039 DD_FIELD_SNAPSHOT_COUNT, tx); 2040 dsl_fs_ss_count_adjust(newparent, ss_cnt, 2041 DD_FIELD_SNAPSHOT_COUNT, tx); 2042 2043 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 2044 -dsl_dir_phys(dd)->dd_used_bytes, 2045 -dsl_dir_phys(dd)->dd_compressed_bytes, 2046 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2047 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 2048 dsl_dir_phys(dd)->dd_used_bytes, 2049 dsl_dir_phys(dd)->dd_compressed_bytes, 2050 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2051 2052 if (dsl_dir_phys(dd)->dd_reserved > 2053 dsl_dir_phys(dd)->dd_used_bytes) { 2054 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 2055 dsl_dir_phys(dd)->dd_used_bytes; 2056 2057 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 2058 -unused_rsrv, 0, 0, tx); 2059 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 2060 unused_rsrv, 0, 0, tx); 2061 } 2062 } 2063 2064 dmu_buf_will_dirty(dd->dd_dbuf, tx); 2065 2066 /* remove from old parent zapobj */ 2067 error = zap_remove(mos, 2068 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 2069 dd->dd_myname, tx); 2070 ASSERT0(error); 2071 2072 (void) strlcpy(dd->dd_myname, mynewname, 2073 sizeof (dd->dd_myname)); 2074 dsl_dir_rele(dd->dd_parent, dd); 2075 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 2076 VERIFY0(dsl_dir_hold_obj(dp, 2077 newparent->dd_object, NULL, dd, &dd->dd_parent)); 2078 2079 /* add to new parent zapobj */ 2080 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 2081 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 2082 2083 dsl_prop_notify_all(dd); 2084 2085 dsl_dir_rele(newparent, FTAG); 2086 dsl_dir_rele(dd, FTAG); 2087 } 2088 2089 int 2090 dsl_dir_rename(const char *oldname, const char *newname) 2091 { 2092 dsl_dir_rename_arg_t ddra; 2093 2094 ddra.ddra_oldname = oldname; 2095 ddra.ddra_newname = newname; 2096 ddra.ddra_cred = CRED(); 2097 2098 return (dsl_sync_task(oldname, 2099 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 2100 3, ZFS_SPACE_CHECK_RESERVED)); 2101 } 2102 2103 int 2104 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 2105 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 2106 { 2107 dsl_dir_t *ancestor; 2108 int64_t adelta; 2109 uint64_t avail; 2110 int err; 2111 2112 ancestor = closest_common_ancestor(sdd, tdd); 2113 adelta = would_change(sdd, -space, ancestor); 2114 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 2115 if (avail < space) 2116 return (SET_ERROR(ENOSPC)); 2117 2118 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 2119 ancestor, cr); 2120 if (err != 0) 2121 return (err); 2122 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 2123 ancestor, cr); 2124 if (err != 0) 2125 return (err); 2126 2127 return (0); 2128 } 2129 2130 timestruc_t 2131 dsl_dir_snap_cmtime(dsl_dir_t *dd) 2132 { 2133 timestruc_t t; 2134 2135 mutex_enter(&dd->dd_lock); 2136 t = dd->dd_snap_cmtime; 2137 mutex_exit(&dd->dd_lock); 2138 2139 return (t); 2140 } 2141 2142 void 2143 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 2144 { 2145 timestruc_t t; 2146 2147 gethrestime(&t); 2148 mutex_enter(&dd->dd_lock); 2149 dd->dd_snap_cmtime = t; 2150 mutex_exit(&dd->dd_lock); 2151 } 2152 2153 void 2154 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 2155 { 2156 objset_t *mos = dd->dd_pool->dp_meta_objset; 2157 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 2158 } 2159 2160 boolean_t 2161 dsl_dir_is_zapified(dsl_dir_t *dd) 2162 { 2163 dmu_object_info_t doi; 2164 2165 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2166 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2167 } 2168