1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dmu.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_prop.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_deleg.h> 38 #include <sys/dmu_impl.h> 39 #include <sys/spa.h> 40 #include <sys/metaslab.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/arc.h> 44 #include <sys/sunddi.h> 45 #include <sys/zfeature.h> 46 #include <sys/policy.h> 47 #include <sys/zfs_znode.h> 48 #include "zfs_namecheck.h" 49 #include "zfs_prop.h" 50 51 /* 52 * Filesystem and Snapshot Limits 53 * ------------------------------ 54 * 55 * These limits are used to restrict the number of filesystems and/or snapshots 56 * that can be created at a given level in the tree or below. A typical 57 * use-case is with a delegated dataset where the administrator wants to ensure 58 * that a user within the zone is not creating too many additional filesystems 59 * or snapshots, even though they're not exceeding their space quota. 60 * 61 * The filesystem and snapshot counts are stored as extensible properties. This 62 * capability is controlled by a feature flag and must be enabled to be used. 63 * Once enabled, the feature is not active until the first limit is set. At 64 * that point, future operations to create/destroy filesystems or snapshots 65 * will validate and update the counts. 66 * 67 * Because the count properties will not exist before the feature is active, 68 * the counts are updated when a limit is first set on an uninitialized 69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 72 * snapshot count properties on a node indicate uninitialized counts on that 73 * node.) When first setting a limit on an uninitialized node, the code starts 74 * at the filesystem with the new limit and descends into all sub-filesystems 75 * to add the count properties. 76 * 77 * In practice this is lightweight since a limit is typically set when the 78 * filesystem is created and thus has no children. Once valid, changing the 79 * limit value won't require a re-traversal since the counts are already valid. 80 * When recursively fixing the counts, if a node with a limit is encountered 81 * during the descent, the counts are known to be valid and there is no need to 82 * descend into that filesystem's children. The counts on filesystems above the 83 * one with the new limit will still be uninitialized, unless a limit is 84 * eventually set on one of those filesystems. The counts are always recursively 85 * updated when a limit is set on a dataset, unless there is already a limit. 86 * When a new limit value is set on a filesystem with an existing limit, it is 87 * possible for the new limit to be less than the current count at that level 88 * since a user who can change the limit is also allowed to exceed the limit. 89 * 90 * Once the feature is active, then whenever a filesystem or snapshot is 91 * created, the code recurses up the tree, validating the new count against the 92 * limit at each initialized level. In practice, most levels will not have a 93 * limit set. If there is a limit at any initialized level up the tree, the 94 * check must pass or the creation will fail. Likewise, when a filesystem or 95 * snapshot is destroyed, the counts are recursively adjusted all the way up 96 * the initizized nodes in the tree. Renaming a filesystem into different point 97 * in the tree will first validate, then update the counts on each branch up to 98 * the common ancestor. A receive will also validate the counts and then update 99 * them. 100 * 101 * An exception to the above behavior is that the limit is not enforced if the 102 * user has permission to modify the limit. This is primarily so that 103 * recursive snapshots in the global zone always work. We want to prevent a 104 * denial-of-service in which a lower level delegated dataset could max out its 105 * limit and thus block recursive snapshots from being taken in the global zone. 106 * Because of this, it is possible for the snapshot count to be over the limit 107 * and snapshots taken in the global zone could cause a lower level dataset to 108 * hit or exceed its limit. The administrator taking the global zone recursive 109 * snapshot should be aware of this side-effect and behave accordingly. 110 * For consistency, the filesystem limit is also not enforced if the user can 111 * modify the limit. 112 * 113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 116 * dsl_dir_init_fs_ss_count(). 117 * 118 * There is a special case when we receive a filesystem that already exists. In 119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 120 * never update the filesystem counts for temporary clones. 121 * 122 * Likewise, we do not update the snapshot counts for temporary snapshots, 123 * such as those created by zfs diff. 124 */ 125 126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 127 128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 129 130 static void 131 dsl_dir_evict(void *dbu) 132 { 133 dsl_dir_t *dd = dbu; 134 dsl_pool_t *dp = dd->dd_pool; 135 int t; 136 137 dd->dd_dbuf = NULL; 138 139 for (t = 0; t < TXG_SIZE; t++) { 140 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 141 ASSERT(dd->dd_tempreserved[t] == 0); 142 ASSERT(dd->dd_space_towrite[t] == 0); 143 } 144 145 if (dd->dd_parent) 146 dsl_dir_async_rele(dd->dd_parent, dd); 147 148 spa_async_close(dd->dd_pool->dp_spa, dd); 149 150 dsl_prop_fini(dd); 151 mutex_destroy(&dd->dd_lock); 152 kmem_free(dd, sizeof (dsl_dir_t)); 153 } 154 155 int 156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 157 const char *tail, void *tag, dsl_dir_t **ddp) 158 { 159 dmu_buf_t *dbuf; 160 dsl_dir_t *dd; 161 int err; 162 163 ASSERT(dsl_pool_config_held(dp)); 164 165 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 166 if (err != 0) 167 return (err); 168 dd = dmu_buf_get_user(dbuf); 169 #ifdef ZFS_DEBUG 170 { 171 dmu_object_info_t doi; 172 dmu_object_info_from_db(dbuf, &doi); 173 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 174 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 175 } 176 #endif 177 if (dd == NULL) { 178 dsl_dir_t *winner; 179 180 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 181 dd->dd_object = ddobj; 182 dd->dd_dbuf = dbuf; 183 dd->dd_pool = dp; 184 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 185 dsl_prop_init(dd); 186 187 dsl_dir_snap_cmtime_update(dd); 188 189 if (dsl_dir_phys(dd)->dd_parent_obj) { 190 err = dsl_dir_hold_obj(dp, 191 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 192 &dd->dd_parent); 193 if (err != 0) 194 goto errout; 195 if (tail) { 196 #ifdef ZFS_DEBUG 197 uint64_t foundobj; 198 199 err = zap_lookup(dp->dp_meta_objset, 200 dsl_dir_phys(dd->dd_parent)-> 201 dd_child_dir_zapobj, tail, 202 sizeof (foundobj), 1, &foundobj); 203 ASSERT(err || foundobj == ddobj); 204 #endif 205 (void) strcpy(dd->dd_myname, tail); 206 } else { 207 err = zap_value_search(dp->dp_meta_objset, 208 dsl_dir_phys(dd->dd_parent)-> 209 dd_child_dir_zapobj, 210 ddobj, 0, dd->dd_myname); 211 } 212 if (err != 0) 213 goto errout; 214 } else { 215 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 216 } 217 218 if (dsl_dir_is_clone(dd)) { 219 dmu_buf_t *origin_bonus; 220 dsl_dataset_phys_t *origin_phys; 221 222 /* 223 * We can't open the origin dataset, because 224 * that would require opening this dsl_dir. 225 * Just look at its phys directly instead. 226 */ 227 err = dmu_bonus_hold(dp->dp_meta_objset, 228 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 229 &origin_bonus); 230 if (err != 0) 231 goto errout; 232 origin_phys = origin_bonus->db_data; 233 dd->dd_origin_txg = 234 origin_phys->ds_creation_txg; 235 dmu_buf_rele(origin_bonus, FTAG); 236 } 237 238 dmu_buf_init_user(&dd->dd_dbu, dsl_dir_evict, &dd->dd_dbuf); 239 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 240 if (winner != NULL) { 241 if (dd->dd_parent) 242 dsl_dir_rele(dd->dd_parent, dd); 243 dsl_prop_fini(dd); 244 mutex_destroy(&dd->dd_lock); 245 kmem_free(dd, sizeof (dsl_dir_t)); 246 dd = winner; 247 } else { 248 spa_open_ref(dp->dp_spa, dd); 249 } 250 } 251 252 /* 253 * The dsl_dir_t has both open-to-close and instantiate-to-evict 254 * holds on the spa. We need the open-to-close holds because 255 * otherwise the spa_refcnt wouldn't change when we open a 256 * dir which the spa also has open, so we could incorrectly 257 * think it was OK to unload/export/destroy the pool. We need 258 * the instantiate-to-evict hold because the dsl_dir_t has a 259 * pointer to the dd_pool, which has a pointer to the spa_t. 260 */ 261 spa_open_ref(dp->dp_spa, tag); 262 ASSERT3P(dd->dd_pool, ==, dp); 263 ASSERT3U(dd->dd_object, ==, ddobj); 264 ASSERT3P(dd->dd_dbuf, ==, dbuf); 265 *ddp = dd; 266 return (0); 267 268 errout: 269 if (dd->dd_parent) 270 dsl_dir_rele(dd->dd_parent, dd); 271 dsl_prop_fini(dd); 272 mutex_destroy(&dd->dd_lock); 273 kmem_free(dd, sizeof (dsl_dir_t)); 274 dmu_buf_rele(dbuf, tag); 275 return (err); 276 } 277 278 void 279 dsl_dir_rele(dsl_dir_t *dd, void *tag) 280 { 281 dprintf_dd(dd, "%s\n", ""); 282 spa_close(dd->dd_pool->dp_spa, tag); 283 dmu_buf_rele(dd->dd_dbuf, tag); 284 } 285 286 /* 287 * Remove a reference to the given dsl dir that is being asynchronously 288 * released. Async releases occur from a taskq performing eviction of 289 * dsl datasets and dirs. This process is identical to a normal release 290 * with the exception of using the async API for releasing the reference on 291 * the spa. 292 */ 293 void 294 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 295 { 296 dprintf_dd(dd, "%s\n", ""); 297 spa_async_close(dd->dd_pool->dp_spa, tag); 298 dmu_buf_rele(dd->dd_dbuf, tag); 299 } 300 301 /* buf must be long enough (MAXNAMELEN + strlen(MOS_DIR_NAME) + 1 should do) */ 302 void 303 dsl_dir_name(dsl_dir_t *dd, char *buf) 304 { 305 if (dd->dd_parent) { 306 dsl_dir_name(dd->dd_parent, buf); 307 (void) strcat(buf, "/"); 308 } else { 309 buf[0] = '\0'; 310 } 311 if (!MUTEX_HELD(&dd->dd_lock)) { 312 /* 313 * recursive mutex so that we can use 314 * dprintf_dd() with dd_lock held 315 */ 316 mutex_enter(&dd->dd_lock); 317 (void) strcat(buf, dd->dd_myname); 318 mutex_exit(&dd->dd_lock); 319 } else { 320 (void) strcat(buf, dd->dd_myname); 321 } 322 } 323 324 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 325 int 326 dsl_dir_namelen(dsl_dir_t *dd) 327 { 328 int result = 0; 329 330 if (dd->dd_parent) { 331 /* parent's name + 1 for the "/" */ 332 result = dsl_dir_namelen(dd->dd_parent) + 1; 333 } 334 335 if (!MUTEX_HELD(&dd->dd_lock)) { 336 /* see dsl_dir_name */ 337 mutex_enter(&dd->dd_lock); 338 result += strlen(dd->dd_myname); 339 mutex_exit(&dd->dd_lock); 340 } else { 341 result += strlen(dd->dd_myname); 342 } 343 344 return (result); 345 } 346 347 static int 348 getcomponent(const char *path, char *component, const char **nextp) 349 { 350 char *p; 351 352 if ((path == NULL) || (path[0] == '\0')) 353 return (SET_ERROR(ENOENT)); 354 /* This would be a good place to reserve some namespace... */ 355 p = strpbrk(path, "/@"); 356 if (p && (p[1] == '/' || p[1] == '@')) { 357 /* two separators in a row */ 358 return (SET_ERROR(EINVAL)); 359 } 360 if (p == NULL || p == path) { 361 /* 362 * if the first thing is an @ or /, it had better be an 363 * @ and it had better not have any more ats or slashes, 364 * and it had better have something after the @. 365 */ 366 if (p != NULL && 367 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 368 return (SET_ERROR(EINVAL)); 369 if (strlen(path) >= MAXNAMELEN) 370 return (SET_ERROR(ENAMETOOLONG)); 371 (void) strcpy(component, path); 372 p = NULL; 373 } else if (p[0] == '/') { 374 if (p - path >= MAXNAMELEN) 375 return (SET_ERROR(ENAMETOOLONG)); 376 (void) strncpy(component, path, p - path); 377 component[p - path] = '\0'; 378 p++; 379 } else if (p[0] == '@') { 380 /* 381 * if the next separator is an @, there better not be 382 * any more slashes. 383 */ 384 if (strchr(path, '/')) 385 return (SET_ERROR(EINVAL)); 386 if (p - path >= MAXNAMELEN) 387 return (SET_ERROR(ENAMETOOLONG)); 388 (void) strncpy(component, path, p - path); 389 component[p - path] = '\0'; 390 } else { 391 panic("invalid p=%p", (void *)p); 392 } 393 *nextp = p; 394 return (0); 395 } 396 397 /* 398 * Return the dsl_dir_t, and possibly the last component which couldn't 399 * be found in *tail. The name must be in the specified dsl_pool_t. This 400 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 401 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 402 * (*tail)[0] == '@' means that the last component is a snapshot. 403 */ 404 int 405 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 406 dsl_dir_t **ddp, const char **tailp) 407 { 408 char buf[MAXNAMELEN]; 409 const char *spaname, *next, *nextnext = NULL; 410 int err; 411 dsl_dir_t *dd; 412 uint64_t ddobj; 413 414 err = getcomponent(name, buf, &next); 415 if (err != 0) 416 return (err); 417 418 /* Make sure the name is in the specified pool. */ 419 spaname = spa_name(dp->dp_spa); 420 if (strcmp(buf, spaname) != 0) 421 return (SET_ERROR(EXDEV)); 422 423 ASSERT(dsl_pool_config_held(dp)); 424 425 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 426 if (err != 0) { 427 return (err); 428 } 429 430 while (next != NULL) { 431 dsl_dir_t *child_dd; 432 err = getcomponent(next, buf, &nextnext); 433 if (err != 0) 434 break; 435 ASSERT(next[0] != '\0'); 436 if (next[0] == '@') 437 break; 438 dprintf("looking up %s in obj%lld\n", 439 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj); 440 441 err = zap_lookup(dp->dp_meta_objset, 442 dsl_dir_phys(dd)->dd_child_dir_zapobj, 443 buf, sizeof (ddobj), 1, &ddobj); 444 if (err != 0) { 445 if (err == ENOENT) 446 err = 0; 447 break; 448 } 449 450 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 451 if (err != 0) 452 break; 453 dsl_dir_rele(dd, tag); 454 dd = child_dd; 455 next = nextnext; 456 } 457 458 if (err != 0) { 459 dsl_dir_rele(dd, tag); 460 return (err); 461 } 462 463 /* 464 * It's an error if there's more than one component left, or 465 * tailp==NULL and there's any component left. 466 */ 467 if (next != NULL && 468 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 469 /* bad path name */ 470 dsl_dir_rele(dd, tag); 471 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 472 err = SET_ERROR(ENOENT); 473 } 474 if (tailp != NULL) 475 *tailp = next; 476 *ddp = dd; 477 return (err); 478 } 479 480 /* 481 * If the counts are already initialized for this filesystem and its 482 * descendants then do nothing, otherwise initialize the counts. 483 * 484 * The counts on this filesystem, and those below, may be uninitialized due to 485 * either the use of a pre-existing pool which did not support the 486 * filesystem/snapshot limit feature, or one in which the feature had not yet 487 * been enabled. 488 * 489 * Recursively descend the filesystem tree and update the filesystem/snapshot 490 * counts on each filesystem below, then update the cumulative count on the 491 * current filesystem. If the filesystem already has a count set on it, 492 * then we know that its counts, and the counts on the filesystems below it, 493 * are already correct, so we don't have to update this filesystem. 494 */ 495 static void 496 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 497 { 498 uint64_t my_fs_cnt = 0; 499 uint64_t my_ss_cnt = 0; 500 dsl_pool_t *dp = dd->dd_pool; 501 objset_t *os = dp->dp_meta_objset; 502 zap_cursor_t *zc; 503 zap_attribute_t *za; 504 dsl_dataset_t *ds; 505 506 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 507 ASSERT(dsl_pool_config_held(dp)); 508 ASSERT(dmu_tx_is_syncing(tx)); 509 510 dsl_dir_zapify(dd, tx); 511 512 /* 513 * If the filesystem count has already been initialized then we 514 * don't need to recurse down any further. 515 */ 516 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 517 return; 518 519 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 520 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 521 522 /* Iterate my child dirs */ 523 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 524 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 525 dsl_dir_t *chld_dd; 526 uint64_t count; 527 528 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 529 &chld_dd)); 530 531 /* 532 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 533 * temporary datasets. 534 */ 535 if (chld_dd->dd_myname[0] == '$' || 536 chld_dd->dd_myname[0] == '%') { 537 dsl_dir_rele(chld_dd, FTAG); 538 continue; 539 } 540 541 my_fs_cnt++; /* count this child */ 542 543 dsl_dir_init_fs_ss_count(chld_dd, tx); 544 545 VERIFY0(zap_lookup(os, chld_dd->dd_object, 546 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 547 my_fs_cnt += count; 548 VERIFY0(zap_lookup(os, chld_dd->dd_object, 549 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 550 my_ss_cnt += count; 551 552 dsl_dir_rele(chld_dd, FTAG); 553 } 554 zap_cursor_fini(zc); 555 /* Count my snapshots (we counted children's snapshots above) */ 556 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 557 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 558 559 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 560 zap_cursor_retrieve(zc, za) == 0; 561 zap_cursor_advance(zc)) { 562 /* Don't count temporary snapshots */ 563 if (za->za_name[0] != '%') 564 my_ss_cnt++; 565 } 566 zap_cursor_fini(zc); 567 568 dsl_dataset_rele(ds, FTAG); 569 570 kmem_free(zc, sizeof (zap_cursor_t)); 571 kmem_free(za, sizeof (zap_attribute_t)); 572 573 /* we're in a sync task, update counts */ 574 dmu_buf_will_dirty(dd->dd_dbuf, tx); 575 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 576 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 577 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 578 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 579 } 580 581 static int 582 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 583 { 584 char *ddname = (char *)arg; 585 dsl_pool_t *dp = dmu_tx_pool(tx); 586 dsl_dataset_t *ds; 587 dsl_dir_t *dd; 588 int error; 589 590 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 591 if (error != 0) 592 return (error); 593 594 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 595 dsl_dataset_rele(ds, FTAG); 596 return (SET_ERROR(ENOTSUP)); 597 } 598 599 dd = ds->ds_dir; 600 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 601 dsl_dir_is_zapified(dd) && 602 zap_contains(dp->dp_meta_objset, dd->dd_object, 603 DD_FIELD_FILESYSTEM_COUNT) == 0) { 604 dsl_dataset_rele(ds, FTAG); 605 return (SET_ERROR(EALREADY)); 606 } 607 608 dsl_dataset_rele(ds, FTAG); 609 return (0); 610 } 611 612 static void 613 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 614 { 615 char *ddname = (char *)arg; 616 dsl_pool_t *dp = dmu_tx_pool(tx); 617 dsl_dataset_t *ds; 618 spa_t *spa; 619 620 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 621 622 spa = dsl_dataset_get_spa(ds); 623 624 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 625 /* 626 * Since the feature was not active and we're now setting a 627 * limit, increment the feature-active counter so that the 628 * feature becomes active for the first time. 629 * 630 * We are already in a sync task so we can update the MOS. 631 */ 632 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 633 } 634 635 /* 636 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 637 * we need to ensure the counts are correct. Descend down the tree from 638 * this point and update all of the counts to be accurate. 639 */ 640 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 641 642 dsl_dataset_rele(ds, FTAG); 643 } 644 645 /* 646 * Make sure the feature is enabled and activate it if necessary. 647 * Since we're setting a limit, ensure the on-disk counts are valid. 648 * This is only called by the ioctl path when setting a limit value. 649 * 650 * We do not need to validate the new limit, since users who can change the 651 * limit are also allowed to exceed the limit. 652 */ 653 int 654 dsl_dir_activate_fs_ss_limit(const char *ddname) 655 { 656 int error; 657 658 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 659 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 660 ZFS_SPACE_CHECK_RESERVED); 661 662 if (error == EALREADY) 663 error = 0; 664 665 return (error); 666 } 667 668 /* 669 * Used to determine if the filesystem_limit or snapshot_limit should be 670 * enforced. We allow the limit to be exceeded if the user has permission to 671 * write the property value. We pass in the creds that we got in the open 672 * context since we will always be the GZ root in syncing context. We also have 673 * to handle the case where we are allowed to change the limit on the current 674 * dataset, but there may be another limit in the tree above. 675 * 676 * We can never modify these two properties within a non-global zone. In 677 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 678 * can't use that function since we are already holding the dp_config_rwlock. 679 * In addition, we already have the dd and dealing with snapshots is simplified 680 * in this code. 681 */ 682 683 typedef enum { 684 ENFORCE_ALWAYS, 685 ENFORCE_NEVER, 686 ENFORCE_ABOVE 687 } enforce_res_t; 688 689 static enforce_res_t 690 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 691 { 692 enforce_res_t enforce = ENFORCE_ALWAYS; 693 uint64_t obj; 694 dsl_dataset_t *ds; 695 uint64_t zoned; 696 697 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 698 prop == ZFS_PROP_SNAPSHOT_LIMIT); 699 700 #ifdef _KERNEL 701 if (crgetzoneid(cr) != GLOBAL_ZONEID) 702 return (ENFORCE_ALWAYS); 703 704 if (secpolicy_zfs(cr) == 0) 705 return (ENFORCE_NEVER); 706 #endif 707 708 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 709 return (ENFORCE_ALWAYS); 710 711 ASSERT(dsl_pool_config_held(dd->dd_pool)); 712 713 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 714 return (ENFORCE_ALWAYS); 715 716 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 717 /* Only root can access zoned fs's from the GZ */ 718 enforce = ENFORCE_ALWAYS; 719 } else { 720 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 721 enforce = ENFORCE_ABOVE; 722 } 723 724 dsl_dataset_rele(ds, FTAG); 725 return (enforce); 726 } 727 728 /* 729 * Check if adding additional child filesystem(s) would exceed any filesystem 730 * limits or adding additional snapshot(s) would exceed any snapshot limits. 731 * The prop argument indicates which limit to check. 732 * 733 * Note that all filesystem limits up to the root (or the highest 734 * initialized) filesystem or the given ancestor must be satisfied. 735 */ 736 int 737 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 738 dsl_dir_t *ancestor, cred_t *cr) 739 { 740 objset_t *os = dd->dd_pool->dp_meta_objset; 741 uint64_t limit, count; 742 char *count_prop; 743 enforce_res_t enforce; 744 int err = 0; 745 746 ASSERT(dsl_pool_config_held(dd->dd_pool)); 747 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 748 prop == ZFS_PROP_SNAPSHOT_LIMIT); 749 750 /* 751 * If we're allowed to change the limit, don't enforce the limit 752 * e.g. this can happen if a snapshot is taken by an administrative 753 * user in the global zone (i.e. a recursive snapshot by root). 754 * However, we must handle the case of delegated permissions where we 755 * are allowed to change the limit on the current dataset, but there 756 * is another limit in the tree above. 757 */ 758 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 759 if (enforce == ENFORCE_NEVER) 760 return (0); 761 762 /* 763 * e.g. if renaming a dataset with no snapshots, count adjustment 764 * is 0. 765 */ 766 if (delta == 0) 767 return (0); 768 769 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 770 /* 771 * We don't enforce the limit for temporary snapshots. This is 772 * indicated by a NULL cred_t argument. 773 */ 774 if (cr == NULL) 775 return (0); 776 777 count_prop = DD_FIELD_SNAPSHOT_COUNT; 778 } else { 779 count_prop = DD_FIELD_FILESYSTEM_COUNT; 780 } 781 782 /* 783 * If an ancestor has been provided, stop checking the limit once we 784 * hit that dir. We need this during rename so that we don't overcount 785 * the check once we recurse up to the common ancestor. 786 */ 787 if (ancestor == dd) 788 return (0); 789 790 /* 791 * If we hit an uninitialized node while recursing up the tree, we can 792 * stop since we know there is no limit here (or above). The counts are 793 * not valid on this node and we know we won't touch this node's counts. 794 */ 795 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 796 count_prop, sizeof (count), 1, &count) == ENOENT) 797 return (0); 798 799 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 800 B_FALSE); 801 if (err != 0) 802 return (err); 803 804 /* Is there a limit which we've hit? */ 805 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 806 return (SET_ERROR(EDQUOT)); 807 808 if (dd->dd_parent != NULL) 809 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 810 ancestor, cr); 811 812 return (err); 813 } 814 815 /* 816 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 817 * parents. When a new filesystem/snapshot is created, increment the count on 818 * all parents, and when a filesystem/snapshot is destroyed, decrement the 819 * count. 820 */ 821 void 822 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 823 dmu_tx_t *tx) 824 { 825 int err; 826 objset_t *os = dd->dd_pool->dp_meta_objset; 827 uint64_t count; 828 829 ASSERT(dsl_pool_config_held(dd->dd_pool)); 830 ASSERT(dmu_tx_is_syncing(tx)); 831 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 832 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 833 834 /* 835 * When we receive an incremental stream into a filesystem that already 836 * exists, a temporary clone is created. We don't count this temporary 837 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 838 * $MOS & $ORIGIN) objsets. 839 */ 840 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 841 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 842 return; 843 844 /* 845 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 846 */ 847 if (delta == 0) 848 return; 849 850 /* 851 * If we hit an uninitialized node while recursing up the tree, we can 852 * stop since we know the counts are not valid on this node and we 853 * know we shouldn't touch this node's counts. An uninitialized count 854 * on the node indicates that either the feature has not yet been 855 * activated or there are no limits on this part of the tree. 856 */ 857 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 858 prop, sizeof (count), 1, &count)) == ENOENT) 859 return; 860 VERIFY0(err); 861 862 count += delta; 863 /* Use a signed verify to make sure we're not neg. */ 864 VERIFY3S(count, >=, 0); 865 866 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 867 tx)); 868 869 /* Roll up this additional count into our ancestors */ 870 if (dd->dd_parent != NULL) 871 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 872 } 873 874 uint64_t 875 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 876 dmu_tx_t *tx) 877 { 878 objset_t *mos = dp->dp_meta_objset; 879 uint64_t ddobj; 880 dsl_dir_phys_t *ddphys; 881 dmu_buf_t *dbuf; 882 883 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 884 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 885 if (pds) { 886 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 887 name, sizeof (uint64_t), 1, &ddobj, tx)); 888 } else { 889 /* it's the root dir */ 890 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 891 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 892 } 893 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 894 dmu_buf_will_dirty(dbuf, tx); 895 ddphys = dbuf->db_data; 896 897 ddphys->dd_creation_time = gethrestime_sec(); 898 if (pds) { 899 ddphys->dd_parent_obj = pds->dd_object; 900 901 /* update the filesystem counts */ 902 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 903 } 904 ddphys->dd_props_zapobj = zap_create(mos, 905 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 906 ddphys->dd_child_dir_zapobj = zap_create(mos, 907 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 908 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 909 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 910 dmu_buf_rele(dbuf, FTAG); 911 912 return (ddobj); 913 } 914 915 boolean_t 916 dsl_dir_is_clone(dsl_dir_t *dd) 917 { 918 return (dsl_dir_phys(dd)->dd_origin_obj && 919 (dd->dd_pool->dp_origin_snap == NULL || 920 dsl_dir_phys(dd)->dd_origin_obj != 921 dd->dd_pool->dp_origin_snap->ds_object)); 922 } 923 924 void 925 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 926 { 927 mutex_enter(&dd->dd_lock); 928 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, 929 dsl_dir_phys(dd)->dd_used_bytes); 930 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 931 dsl_dir_phys(dd)->dd_quota); 932 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 933 dsl_dir_phys(dd)->dd_reserved); 934 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, 935 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 936 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 937 dsl_dir_phys(dd)->dd_compressed_bytes)); 938 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 939 dsl_dir_phys(dd)->dd_uncompressed_bytes); 940 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 941 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 942 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 943 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 944 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 945 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 946 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 947 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 948 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 949 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 950 } 951 mutex_exit(&dd->dd_lock); 952 953 if (dsl_dir_is_zapified(dd)) { 954 uint64_t count; 955 objset_t *os = dd->dd_pool->dp_meta_objset; 956 957 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 958 sizeof (count), 1, &count) == 0) { 959 dsl_prop_nvlist_add_uint64(nv, 960 ZFS_PROP_FILESYSTEM_COUNT, count); 961 } 962 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 963 sizeof (count), 1, &count) == 0) { 964 dsl_prop_nvlist_add_uint64(nv, 965 ZFS_PROP_SNAPSHOT_COUNT, count); 966 } 967 } 968 969 if (dsl_dir_is_clone(dd)) { 970 dsl_dataset_t *ds; 971 char buf[MAXNAMELEN]; 972 973 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 974 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 975 dsl_dataset_name(ds, buf); 976 dsl_dataset_rele(ds, FTAG); 977 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 978 } 979 } 980 981 void 982 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 983 { 984 dsl_pool_t *dp = dd->dd_pool; 985 986 ASSERT(dsl_dir_phys(dd)); 987 988 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 989 /* up the hold count until we can be written out */ 990 dmu_buf_add_ref(dd->dd_dbuf, dd); 991 } 992 } 993 994 static int64_t 995 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 996 { 997 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 998 uint64_t new_accounted = 999 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1000 return (new_accounted - old_accounted); 1001 } 1002 1003 void 1004 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1005 { 1006 ASSERT(dmu_tx_is_syncing(tx)); 1007 1008 mutex_enter(&dd->dd_lock); 1009 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1010 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1011 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1012 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1013 mutex_exit(&dd->dd_lock); 1014 1015 /* release the hold from dsl_dir_dirty */ 1016 dmu_buf_rele(dd->dd_dbuf, dd); 1017 } 1018 1019 static uint64_t 1020 dsl_dir_space_towrite(dsl_dir_t *dd) 1021 { 1022 uint64_t space = 0; 1023 int i; 1024 1025 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1026 1027 for (i = 0; i < TXG_SIZE; i++) { 1028 space += dd->dd_space_towrite[i&TXG_MASK]; 1029 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0); 1030 } 1031 return (space); 1032 } 1033 1034 /* 1035 * How much space would dd have available if ancestor had delta applied 1036 * to it? If ondiskonly is set, we're only interested in what's 1037 * on-disk, not estimated pending changes. 1038 */ 1039 uint64_t 1040 dsl_dir_space_available(dsl_dir_t *dd, 1041 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1042 { 1043 uint64_t parentspace, myspace, quota, used; 1044 1045 /* 1046 * If there are no restrictions otherwise, assume we have 1047 * unlimited space available. 1048 */ 1049 quota = UINT64_MAX; 1050 parentspace = UINT64_MAX; 1051 1052 if (dd->dd_parent != NULL) { 1053 parentspace = dsl_dir_space_available(dd->dd_parent, 1054 ancestor, delta, ondiskonly); 1055 } 1056 1057 mutex_enter(&dd->dd_lock); 1058 if (dsl_dir_phys(dd)->dd_quota != 0) 1059 quota = dsl_dir_phys(dd)->dd_quota; 1060 used = dsl_dir_phys(dd)->dd_used_bytes; 1061 if (!ondiskonly) 1062 used += dsl_dir_space_towrite(dd); 1063 1064 if (dd->dd_parent == NULL) { 1065 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); 1066 quota = MIN(quota, poolsize); 1067 } 1068 1069 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1070 /* 1071 * We have some space reserved, in addition to what our 1072 * parent gave us. 1073 */ 1074 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1075 } 1076 1077 if (dd == ancestor) { 1078 ASSERT(delta <= 0); 1079 ASSERT(used >= -delta); 1080 used += delta; 1081 if (parentspace != UINT64_MAX) 1082 parentspace -= delta; 1083 } 1084 1085 if (used > quota) { 1086 /* over quota */ 1087 myspace = 0; 1088 } else { 1089 /* 1090 * the lesser of the space provided by our parent and 1091 * the space left in our quota 1092 */ 1093 myspace = MIN(parentspace, quota - used); 1094 } 1095 1096 mutex_exit(&dd->dd_lock); 1097 1098 return (myspace); 1099 } 1100 1101 struct tempreserve { 1102 list_node_t tr_node; 1103 dsl_dir_t *tr_ds; 1104 uint64_t tr_size; 1105 }; 1106 1107 static int 1108 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1109 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list, 1110 dmu_tx_t *tx, boolean_t first) 1111 { 1112 uint64_t txg = tx->tx_txg; 1113 uint64_t est_inflight, used_on_disk, quota, parent_rsrv; 1114 uint64_t deferred = 0; 1115 struct tempreserve *tr; 1116 int retval = EDQUOT; 1117 int txgidx = txg & TXG_MASK; 1118 int i; 1119 uint64_t ref_rsrv = 0; 1120 1121 ASSERT3U(txg, !=, 0); 1122 ASSERT3S(asize, >, 0); 1123 1124 mutex_enter(&dd->dd_lock); 1125 1126 /* 1127 * Check against the dsl_dir's quota. We don't add in the delta 1128 * when checking for over-quota because they get one free hit. 1129 */ 1130 est_inflight = dsl_dir_space_towrite(dd); 1131 for (i = 0; i < TXG_SIZE; i++) 1132 est_inflight += dd->dd_tempreserved[i]; 1133 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1134 1135 /* 1136 * On the first iteration, fetch the dataset's used-on-disk and 1137 * refreservation values. Also, if checkrefquota is set, test if 1138 * allocating this space would exceed the dataset's refquota. 1139 */ 1140 if (first && tx->tx_objset) { 1141 int error; 1142 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1143 1144 error = dsl_dataset_check_quota(ds, checkrefquota, 1145 asize, est_inflight, &used_on_disk, &ref_rsrv); 1146 if (error) { 1147 mutex_exit(&dd->dd_lock); 1148 return (error); 1149 } 1150 } 1151 1152 /* 1153 * If this transaction will result in a net free of space, 1154 * we want to let it through. 1155 */ 1156 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1157 quota = UINT64_MAX; 1158 else 1159 quota = dsl_dir_phys(dd)->dd_quota; 1160 1161 /* 1162 * Adjust the quota against the actual pool size at the root 1163 * minus any outstanding deferred frees. 1164 * To ensure that it's possible to remove files from a full 1165 * pool without inducing transient overcommits, we throttle 1166 * netfree transactions against a quota that is slightly larger, 1167 * but still within the pool's allocation slop. In cases where 1168 * we're very close to full, this will allow a steady trickle of 1169 * removes to get through. 1170 */ 1171 if (dd->dd_parent == NULL) { 1172 spa_t *spa = dd->dd_pool->dp_spa; 1173 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); 1174 deferred = metaslab_class_get_deferred(spa_normal_class(spa)); 1175 if (poolsize - deferred < quota) { 1176 quota = poolsize - deferred; 1177 retval = ENOSPC; 1178 } 1179 } 1180 1181 /* 1182 * If they are requesting more space, and our current estimate 1183 * is over quota, they get to try again unless the actual 1184 * on-disk is over quota and there are no pending changes (which 1185 * may free up space for us). 1186 */ 1187 if (used_on_disk + est_inflight >= quota) { 1188 if (est_inflight > 0 || used_on_disk < quota || 1189 (retval == ENOSPC && used_on_disk < quota + deferred)) 1190 retval = ERESTART; 1191 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1192 "quota=%lluK tr=%lluK err=%d\n", 1193 used_on_disk>>10, est_inflight>>10, 1194 quota>>10, asize>>10, retval); 1195 mutex_exit(&dd->dd_lock); 1196 return (SET_ERROR(retval)); 1197 } 1198 1199 /* We need to up our estimated delta before dropping dd_lock */ 1200 dd->dd_tempreserved[txgidx] += asize; 1201 1202 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1203 asize - ref_rsrv); 1204 mutex_exit(&dd->dd_lock); 1205 1206 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1207 tr->tr_ds = dd; 1208 tr->tr_size = asize; 1209 list_insert_tail(tr_list, tr); 1210 1211 /* see if it's OK with our parent */ 1212 if (dd->dd_parent && parent_rsrv) { 1213 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1214 1215 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1216 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE)); 1217 } else { 1218 return (0); 1219 } 1220 } 1221 1222 /* 1223 * Reserve space in this dsl_dir, to be used in this tx's txg. 1224 * After the space has been dirtied (and dsl_dir_willuse_space() 1225 * has been called), the reservation should be canceled, using 1226 * dsl_dir_tempreserve_clear(). 1227 */ 1228 int 1229 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1230 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx) 1231 { 1232 int err; 1233 list_t *tr_list; 1234 1235 if (asize == 0) { 1236 *tr_cookiep = NULL; 1237 return (0); 1238 } 1239 1240 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1241 list_create(tr_list, sizeof (struct tempreserve), 1242 offsetof(struct tempreserve, tr_node)); 1243 ASSERT3S(asize, >, 0); 1244 ASSERT3S(fsize, >=, 0); 1245 1246 err = arc_tempreserve_space(lsize, tx->tx_txg); 1247 if (err == 0) { 1248 struct tempreserve *tr; 1249 1250 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1251 tr->tr_size = lsize; 1252 list_insert_tail(tr_list, tr); 1253 } else { 1254 if (err == EAGAIN) { 1255 /* 1256 * If arc_memory_throttle() detected that pageout 1257 * is running and we are low on memory, we delay new 1258 * non-pageout transactions to give pageout an 1259 * advantage. 1260 * 1261 * It is unfortunate to be delaying while the caller's 1262 * locks are held. 1263 */ 1264 txg_delay(dd->dd_pool, tx->tx_txg, 1265 MSEC2NSEC(10), MSEC2NSEC(10)); 1266 err = SET_ERROR(ERESTART); 1267 } 1268 } 1269 1270 if (err == 0) { 1271 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize, 1272 FALSE, asize > usize, tr_list, tx, TRUE); 1273 } 1274 1275 if (err != 0) 1276 dsl_dir_tempreserve_clear(tr_list, tx); 1277 else 1278 *tr_cookiep = tr_list; 1279 1280 return (err); 1281 } 1282 1283 /* 1284 * Clear a temporary reservation that we previously made with 1285 * dsl_dir_tempreserve_space(). 1286 */ 1287 void 1288 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1289 { 1290 int txgidx = tx->tx_txg & TXG_MASK; 1291 list_t *tr_list = tr_cookie; 1292 struct tempreserve *tr; 1293 1294 ASSERT3U(tx->tx_txg, !=, 0); 1295 1296 if (tr_cookie == NULL) 1297 return; 1298 1299 while ((tr = list_head(tr_list)) != NULL) { 1300 if (tr->tr_ds) { 1301 mutex_enter(&tr->tr_ds->dd_lock); 1302 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1303 tr->tr_size); 1304 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1305 mutex_exit(&tr->tr_ds->dd_lock); 1306 } else { 1307 arc_tempreserve_clear(tr->tr_size); 1308 } 1309 list_remove(tr_list, tr); 1310 kmem_free(tr, sizeof (struct tempreserve)); 1311 } 1312 1313 kmem_free(tr_list, sizeof (list_t)); 1314 } 1315 1316 /* 1317 * This should be called from open context when we think we're going to write 1318 * or free space, for example when dirtying data. Be conservative; it's okay 1319 * to write less space or free more, but we don't want to write more or free 1320 * less than the amount specified. 1321 */ 1322 void 1323 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1324 { 1325 int64_t parent_space; 1326 uint64_t est_used; 1327 1328 mutex_enter(&dd->dd_lock); 1329 if (space > 0) 1330 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1331 1332 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes; 1333 parent_space = parent_delta(dd, est_used, space); 1334 mutex_exit(&dd->dd_lock); 1335 1336 /* Make sure that we clean up dd_space_to* */ 1337 dsl_dir_dirty(dd, tx); 1338 1339 /* XXX this is potentially expensive and unnecessary... */ 1340 if (parent_space && dd->dd_parent) 1341 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1342 } 1343 1344 /* call from syncing context when we actually write/free space for this dd */ 1345 void 1346 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1347 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1348 { 1349 int64_t accounted_delta; 1350 1351 /* 1352 * dsl_dataset_set_refreservation_sync_impl() calls this with 1353 * dd_lock held, so that it can atomically update 1354 * ds->ds_reserved and the dsl_dir accounting, so that 1355 * dsl_dataset_check_quota() can see dataset and dir accounting 1356 * consistently. 1357 */ 1358 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1359 1360 ASSERT(dmu_tx_is_syncing(tx)); 1361 ASSERT(type < DD_USED_NUM); 1362 1363 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1364 1365 if (needlock) 1366 mutex_enter(&dd->dd_lock); 1367 accounted_delta = 1368 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used); 1369 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used); 1370 ASSERT(compressed >= 0 || 1371 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed); 1372 ASSERT(uncompressed >= 0 || 1373 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed); 1374 dsl_dir_phys(dd)->dd_used_bytes += used; 1375 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed; 1376 dsl_dir_phys(dd)->dd_compressed_bytes += compressed; 1377 1378 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1379 ASSERT(used > 0 || 1380 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used); 1381 dsl_dir_phys(dd)->dd_used_breakdown[type] += used; 1382 #ifdef DEBUG 1383 dd_used_t t; 1384 uint64_t u = 0; 1385 for (t = 0; t < DD_USED_NUM; t++) 1386 u += dsl_dir_phys(dd)->dd_used_breakdown[t]; 1387 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes); 1388 #endif 1389 } 1390 if (needlock) 1391 mutex_exit(&dd->dd_lock); 1392 1393 if (dd->dd_parent != NULL) { 1394 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1395 accounted_delta, compressed, uncompressed, tx); 1396 dsl_dir_transfer_space(dd->dd_parent, 1397 used - accounted_delta, 1398 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1399 } 1400 } 1401 1402 void 1403 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1404 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1405 { 1406 ASSERT(dmu_tx_is_syncing(tx)); 1407 ASSERT(oldtype < DD_USED_NUM); 1408 ASSERT(newtype < DD_USED_NUM); 1409 1410 if (delta == 0 || 1411 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1412 return; 1413 1414 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1415 mutex_enter(&dd->dd_lock); 1416 ASSERT(delta > 0 ? 1417 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta : 1418 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta); 1419 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta)); 1420 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta; 1421 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta; 1422 mutex_exit(&dd->dd_lock); 1423 } 1424 1425 typedef struct dsl_dir_set_qr_arg { 1426 const char *ddsqra_name; 1427 zprop_source_t ddsqra_source; 1428 uint64_t ddsqra_value; 1429 } dsl_dir_set_qr_arg_t; 1430 1431 static int 1432 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1433 { 1434 dsl_dir_set_qr_arg_t *ddsqra = arg; 1435 dsl_pool_t *dp = dmu_tx_pool(tx); 1436 dsl_dataset_t *ds; 1437 int error; 1438 uint64_t towrite, newval; 1439 1440 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1441 if (error != 0) 1442 return (error); 1443 1444 error = dsl_prop_predict(ds->ds_dir, "quota", 1445 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1446 if (error != 0) { 1447 dsl_dataset_rele(ds, FTAG); 1448 return (error); 1449 } 1450 1451 if (newval == 0) { 1452 dsl_dataset_rele(ds, FTAG); 1453 return (0); 1454 } 1455 1456 mutex_enter(&ds->ds_dir->dd_lock); 1457 /* 1458 * If we are doing the preliminary check in open context, and 1459 * there are pending changes, then don't fail it, since the 1460 * pending changes could under-estimate the amount of space to be 1461 * freed up. 1462 */ 1463 towrite = dsl_dir_space_towrite(ds->ds_dir); 1464 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1465 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1466 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1467 error = SET_ERROR(ENOSPC); 1468 } 1469 mutex_exit(&ds->ds_dir->dd_lock); 1470 dsl_dataset_rele(ds, FTAG); 1471 return (error); 1472 } 1473 1474 static void 1475 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1476 { 1477 dsl_dir_set_qr_arg_t *ddsqra = arg; 1478 dsl_pool_t *dp = dmu_tx_pool(tx); 1479 dsl_dataset_t *ds; 1480 uint64_t newval; 1481 1482 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1483 1484 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1485 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1486 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1487 &ddsqra->ddsqra_value, tx); 1488 1489 VERIFY0(dsl_prop_get_int_ds(ds, 1490 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1491 } else { 1492 newval = ddsqra->ddsqra_value; 1493 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1494 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1495 } 1496 1497 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1498 mutex_enter(&ds->ds_dir->dd_lock); 1499 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1500 mutex_exit(&ds->ds_dir->dd_lock); 1501 dsl_dataset_rele(ds, FTAG); 1502 } 1503 1504 int 1505 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1506 { 1507 dsl_dir_set_qr_arg_t ddsqra; 1508 1509 ddsqra.ddsqra_name = ddname; 1510 ddsqra.ddsqra_source = source; 1511 ddsqra.ddsqra_value = quota; 1512 1513 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1514 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1515 } 1516 1517 int 1518 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1519 { 1520 dsl_dir_set_qr_arg_t *ddsqra = arg; 1521 dsl_pool_t *dp = dmu_tx_pool(tx); 1522 dsl_dataset_t *ds; 1523 dsl_dir_t *dd; 1524 uint64_t newval, used, avail; 1525 int error; 1526 1527 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1528 if (error != 0) 1529 return (error); 1530 dd = ds->ds_dir; 1531 1532 /* 1533 * If we are doing the preliminary check in open context, the 1534 * space estimates may be inaccurate. 1535 */ 1536 if (!dmu_tx_is_syncing(tx)) { 1537 dsl_dataset_rele(ds, FTAG); 1538 return (0); 1539 } 1540 1541 error = dsl_prop_predict(ds->ds_dir, 1542 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1543 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1544 if (error != 0) { 1545 dsl_dataset_rele(ds, FTAG); 1546 return (error); 1547 } 1548 1549 mutex_enter(&dd->dd_lock); 1550 used = dsl_dir_phys(dd)->dd_used_bytes; 1551 mutex_exit(&dd->dd_lock); 1552 1553 if (dd->dd_parent) { 1554 avail = dsl_dir_space_available(dd->dd_parent, 1555 NULL, 0, FALSE); 1556 } else { 1557 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; 1558 } 1559 1560 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1561 uint64_t delta = MAX(used, newval) - 1562 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1563 1564 if (delta > avail || 1565 (dsl_dir_phys(dd)->dd_quota > 0 && 1566 newval > dsl_dir_phys(dd)->dd_quota)) 1567 error = SET_ERROR(ENOSPC); 1568 } 1569 1570 dsl_dataset_rele(ds, FTAG); 1571 return (error); 1572 } 1573 1574 void 1575 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1576 { 1577 uint64_t used; 1578 int64_t delta; 1579 1580 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1581 1582 mutex_enter(&dd->dd_lock); 1583 used = dsl_dir_phys(dd)->dd_used_bytes; 1584 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1585 dsl_dir_phys(dd)->dd_reserved = value; 1586 1587 if (dd->dd_parent != NULL) { 1588 /* Roll up this additional usage into our ancestors */ 1589 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1590 delta, 0, 0, tx); 1591 } 1592 mutex_exit(&dd->dd_lock); 1593 } 1594 1595 1596 static void 1597 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1598 { 1599 dsl_dir_set_qr_arg_t *ddsqra = arg; 1600 dsl_pool_t *dp = dmu_tx_pool(tx); 1601 dsl_dataset_t *ds; 1602 uint64_t newval; 1603 1604 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1605 1606 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1607 dsl_prop_set_sync_impl(ds, 1608 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1609 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1610 &ddsqra->ddsqra_value, tx); 1611 1612 VERIFY0(dsl_prop_get_int_ds(ds, 1613 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1614 } else { 1615 newval = ddsqra->ddsqra_value; 1616 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1617 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1618 (longlong_t)newval); 1619 } 1620 1621 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1622 dsl_dataset_rele(ds, FTAG); 1623 } 1624 1625 int 1626 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1627 uint64_t reservation) 1628 { 1629 dsl_dir_set_qr_arg_t ddsqra; 1630 1631 ddsqra.ddsqra_name = ddname; 1632 ddsqra.ddsqra_source = source; 1633 ddsqra.ddsqra_value = reservation; 1634 1635 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1636 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1637 } 1638 1639 static dsl_dir_t * 1640 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1641 { 1642 for (; ds1; ds1 = ds1->dd_parent) { 1643 dsl_dir_t *dd; 1644 for (dd = ds2; dd; dd = dd->dd_parent) { 1645 if (ds1 == dd) 1646 return (dd); 1647 } 1648 } 1649 return (NULL); 1650 } 1651 1652 /* 1653 * If delta is applied to dd, how much of that delta would be applied to 1654 * ancestor? Syncing context only. 1655 */ 1656 static int64_t 1657 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1658 { 1659 if (dd == ancestor) 1660 return (delta); 1661 1662 mutex_enter(&dd->dd_lock); 1663 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1664 mutex_exit(&dd->dd_lock); 1665 return (would_change(dd->dd_parent, delta, ancestor)); 1666 } 1667 1668 typedef struct dsl_dir_rename_arg { 1669 const char *ddra_oldname; 1670 const char *ddra_newname; 1671 cred_t *ddra_cred; 1672 } dsl_dir_rename_arg_t; 1673 1674 /* ARGSUSED */ 1675 static int 1676 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1677 { 1678 int *deltap = arg; 1679 char namebuf[MAXNAMELEN]; 1680 1681 dsl_dataset_name(ds, namebuf); 1682 1683 if (strlen(namebuf) + *deltap >= MAXNAMELEN) 1684 return (SET_ERROR(ENAMETOOLONG)); 1685 return (0); 1686 } 1687 1688 static int 1689 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1690 { 1691 dsl_dir_rename_arg_t *ddra = arg; 1692 dsl_pool_t *dp = dmu_tx_pool(tx); 1693 dsl_dir_t *dd, *newparent; 1694 const char *mynewname; 1695 int error; 1696 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname); 1697 1698 /* target dir should exist */ 1699 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1700 if (error != 0) 1701 return (error); 1702 1703 /* new parent should exist */ 1704 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1705 &newparent, &mynewname); 1706 if (error != 0) { 1707 dsl_dir_rele(dd, FTAG); 1708 return (error); 1709 } 1710 1711 /* can't rename to different pool */ 1712 if (dd->dd_pool != newparent->dd_pool) { 1713 dsl_dir_rele(newparent, FTAG); 1714 dsl_dir_rele(dd, FTAG); 1715 return (SET_ERROR(ENXIO)); 1716 } 1717 1718 /* new name should not already exist */ 1719 if (mynewname == NULL) { 1720 dsl_dir_rele(newparent, FTAG); 1721 dsl_dir_rele(dd, FTAG); 1722 return (SET_ERROR(EEXIST)); 1723 } 1724 1725 /* if the name length is growing, validate child name lengths */ 1726 if (delta > 0) { 1727 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1728 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1729 if (error != 0) { 1730 dsl_dir_rele(newparent, FTAG); 1731 dsl_dir_rele(dd, FTAG); 1732 return (error); 1733 } 1734 } 1735 1736 if (dmu_tx_is_syncing(tx)) { 1737 if (spa_feature_is_active(dp->dp_spa, 1738 SPA_FEATURE_FS_SS_LIMIT)) { 1739 /* 1740 * Although this is the check function and we don't 1741 * normally make on-disk changes in check functions, 1742 * we need to do that here. 1743 * 1744 * Ensure this portion of the tree's counts have been 1745 * initialized in case the new parent has limits set. 1746 */ 1747 dsl_dir_init_fs_ss_count(dd, tx); 1748 } 1749 } 1750 1751 if (newparent != dd->dd_parent) { 1752 /* is there enough space? */ 1753 uint64_t myspace = 1754 MAX(dsl_dir_phys(dd)->dd_used_bytes, 1755 dsl_dir_phys(dd)->dd_reserved); 1756 objset_t *os = dd->dd_pool->dp_meta_objset; 1757 uint64_t fs_cnt = 0; 1758 uint64_t ss_cnt = 0; 1759 1760 if (dsl_dir_is_zapified(dd)) { 1761 int err; 1762 1763 err = zap_lookup(os, dd->dd_object, 1764 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1765 &fs_cnt); 1766 if (err != ENOENT && err != 0) { 1767 dsl_dir_rele(newparent, FTAG); 1768 dsl_dir_rele(dd, FTAG); 1769 return (err); 1770 } 1771 1772 /* 1773 * have to add 1 for the filesystem itself that we're 1774 * moving 1775 */ 1776 fs_cnt++; 1777 1778 err = zap_lookup(os, dd->dd_object, 1779 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1780 &ss_cnt); 1781 if (err != ENOENT && err != 0) { 1782 dsl_dir_rele(newparent, FTAG); 1783 dsl_dir_rele(dd, FTAG); 1784 return (err); 1785 } 1786 } 1787 1788 /* no rename into our descendant */ 1789 if (closest_common_ancestor(dd, newparent) == dd) { 1790 dsl_dir_rele(newparent, FTAG); 1791 dsl_dir_rele(dd, FTAG); 1792 return (SET_ERROR(EINVAL)); 1793 } 1794 1795 error = dsl_dir_transfer_possible(dd->dd_parent, 1796 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1797 if (error != 0) { 1798 dsl_dir_rele(newparent, FTAG); 1799 dsl_dir_rele(dd, FTAG); 1800 return (error); 1801 } 1802 } 1803 1804 dsl_dir_rele(newparent, FTAG); 1805 dsl_dir_rele(dd, FTAG); 1806 return (0); 1807 } 1808 1809 static void 1810 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1811 { 1812 dsl_dir_rename_arg_t *ddra = arg; 1813 dsl_pool_t *dp = dmu_tx_pool(tx); 1814 dsl_dir_t *dd, *newparent; 1815 const char *mynewname; 1816 int error; 1817 objset_t *mos = dp->dp_meta_objset; 1818 1819 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 1820 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 1821 &mynewname)); 1822 1823 /* Log this before we change the name. */ 1824 spa_history_log_internal_dd(dd, "rename", tx, 1825 "-> %s", ddra->ddra_newname); 1826 1827 if (newparent != dd->dd_parent) { 1828 objset_t *os = dd->dd_pool->dp_meta_objset; 1829 uint64_t fs_cnt = 0; 1830 uint64_t ss_cnt = 0; 1831 1832 /* 1833 * We already made sure the dd counts were initialized in the 1834 * check function. 1835 */ 1836 if (spa_feature_is_active(dp->dp_spa, 1837 SPA_FEATURE_FS_SS_LIMIT)) { 1838 VERIFY0(zap_lookup(os, dd->dd_object, 1839 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1840 &fs_cnt)); 1841 /* add 1 for the filesystem itself that we're moving */ 1842 fs_cnt++; 1843 1844 VERIFY0(zap_lookup(os, dd->dd_object, 1845 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1846 &ss_cnt)); 1847 } 1848 1849 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 1850 DD_FIELD_FILESYSTEM_COUNT, tx); 1851 dsl_fs_ss_count_adjust(newparent, fs_cnt, 1852 DD_FIELD_FILESYSTEM_COUNT, tx); 1853 1854 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 1855 DD_FIELD_SNAPSHOT_COUNT, tx); 1856 dsl_fs_ss_count_adjust(newparent, ss_cnt, 1857 DD_FIELD_SNAPSHOT_COUNT, tx); 1858 1859 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1860 -dsl_dir_phys(dd)->dd_used_bytes, 1861 -dsl_dir_phys(dd)->dd_compressed_bytes, 1862 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1863 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 1864 dsl_dir_phys(dd)->dd_used_bytes, 1865 dsl_dir_phys(dd)->dd_compressed_bytes, 1866 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1867 1868 if (dsl_dir_phys(dd)->dd_reserved > 1869 dsl_dir_phys(dd)->dd_used_bytes) { 1870 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 1871 dsl_dir_phys(dd)->dd_used_bytes; 1872 1873 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1874 -unused_rsrv, 0, 0, tx); 1875 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 1876 unused_rsrv, 0, 0, tx); 1877 } 1878 } 1879 1880 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1881 1882 /* remove from old parent zapobj */ 1883 error = zap_remove(mos, 1884 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 1885 dd->dd_myname, tx); 1886 ASSERT0(error); 1887 1888 (void) strcpy(dd->dd_myname, mynewname); 1889 dsl_dir_rele(dd->dd_parent, dd); 1890 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 1891 VERIFY0(dsl_dir_hold_obj(dp, 1892 newparent->dd_object, NULL, dd, &dd->dd_parent)); 1893 1894 /* add to new parent zapobj */ 1895 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 1896 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 1897 1898 dsl_prop_notify_all(dd); 1899 1900 dsl_dir_rele(newparent, FTAG); 1901 dsl_dir_rele(dd, FTAG); 1902 } 1903 1904 int 1905 dsl_dir_rename(const char *oldname, const char *newname) 1906 { 1907 dsl_dir_rename_arg_t ddra; 1908 1909 ddra.ddra_oldname = oldname; 1910 ddra.ddra_newname = newname; 1911 ddra.ddra_cred = CRED(); 1912 1913 return (dsl_sync_task(oldname, 1914 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 1915 3, ZFS_SPACE_CHECK_RESERVED)); 1916 } 1917 1918 int 1919 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 1920 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 1921 { 1922 dsl_dir_t *ancestor; 1923 int64_t adelta; 1924 uint64_t avail; 1925 int err; 1926 1927 ancestor = closest_common_ancestor(sdd, tdd); 1928 adelta = would_change(sdd, -space, ancestor); 1929 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 1930 if (avail < space) 1931 return (SET_ERROR(ENOSPC)); 1932 1933 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 1934 ancestor, cr); 1935 if (err != 0) 1936 return (err); 1937 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 1938 ancestor, cr); 1939 if (err != 0) 1940 return (err); 1941 1942 return (0); 1943 } 1944 1945 timestruc_t 1946 dsl_dir_snap_cmtime(dsl_dir_t *dd) 1947 { 1948 timestruc_t t; 1949 1950 mutex_enter(&dd->dd_lock); 1951 t = dd->dd_snap_cmtime; 1952 mutex_exit(&dd->dd_lock); 1953 1954 return (t); 1955 } 1956 1957 void 1958 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 1959 { 1960 timestruc_t t; 1961 1962 gethrestime(&t); 1963 mutex_enter(&dd->dd_lock); 1964 dd->dd_snap_cmtime = t; 1965 mutex_exit(&dd->dd_lock); 1966 } 1967 1968 void 1969 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 1970 { 1971 objset_t *mos = dd->dd_pool->dp_meta_objset; 1972 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 1973 } 1974 1975 boolean_t 1976 dsl_dir_is_zapified(dsl_dir_t *dd) 1977 { 1978 dmu_object_info_t doi; 1979 1980 dmu_object_info_from_db(dd->dd_dbuf, &doi); 1981 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 1982 } 1983