xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_dir.c (revision 28b6fd27d5ff75fe6fdeb119a21575b0652a7e70)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Martin Matuska. All rights reserved.
25  * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
50 
51 /*
52  * Filesystem and Snapshot Limits
53  * ------------------------------
54  *
55  * These limits are used to restrict the number of filesystems and/or snapshots
56  * that can be created at a given level in the tree or below. A typical
57  * use-case is with a delegated dataset where the administrator wants to ensure
58  * that a user within the zone is not creating too many additional filesystems
59  * or snapshots, even though they're not exceeding their space quota.
60  *
61  * The filesystem and snapshot counts are stored as extensible properties. This
62  * capability is controlled by a feature flag and must be enabled to be used.
63  * Once enabled, the feature is not active until the first limit is set. At
64  * that point, future operations to create/destroy filesystems or snapshots
65  * will validate and update the counts.
66  *
67  * Because the count properties will not exist before the feature is active,
68  * the counts are updated when a limit is first set on an uninitialized
69  * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70  * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71  * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72  * snapshot count properties on a node indicate uninitialized counts on that
73  * node.) When first setting a limit on an uninitialized node, the code starts
74  * at the filesystem with the new limit and descends into all sub-filesystems
75  * to add the count properties.
76  *
77  * In practice this is lightweight since a limit is typically set when the
78  * filesystem is created and thus has no children. Once valid, changing the
79  * limit value won't require a re-traversal since the counts are already valid.
80  * When recursively fixing the counts, if a node with a limit is encountered
81  * during the descent, the counts are known to be valid and there is no need to
82  * descend into that filesystem's children. The counts on filesystems above the
83  * one with the new limit will still be uninitialized, unless a limit is
84  * eventually set on one of those filesystems. The counts are always recursively
85  * updated when a limit is set on a dataset, unless there is already a limit.
86  * When a new limit value is set on a filesystem with an existing limit, it is
87  * possible for the new limit to be less than the current count at that level
88  * since a user who can change the limit is also allowed to exceed the limit.
89  *
90  * Once the feature is active, then whenever a filesystem or snapshot is
91  * created, the code recurses up the tree, validating the new count against the
92  * limit at each initialized level. In practice, most levels will not have a
93  * limit set. If there is a limit at any initialized level up the tree, the
94  * check must pass or the creation will fail. Likewise, when a filesystem or
95  * snapshot is destroyed, the counts are recursively adjusted all the way up
96  * the initizized nodes in the tree. Renaming a filesystem into different point
97  * in the tree will first validate, then update the counts on each branch up to
98  * the common ancestor. A receive will also validate the counts and then update
99  * them.
100  *
101  * An exception to the above behavior is that the limit is not enforced if the
102  * user has permission to modify the limit. This is primarily so that
103  * recursive snapshots in the global zone always work. We want to prevent a
104  * denial-of-service in which a lower level delegated dataset could max out its
105  * limit and thus block recursive snapshots from being taken in the global zone.
106  * Because of this, it is possible for the snapshot count to be over the limit
107  * and snapshots taken in the global zone could cause a lower level dataset to
108  * hit or exceed its limit. The administrator taking the global zone recursive
109  * snapshot should be aware of this side-effect and behave accordingly.
110  * For consistency, the filesystem limit is also not enforced if the user can
111  * modify the limit.
112  *
113  * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114  * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115  * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116  * dsl_dir_init_fs_ss_count().
117  *
118  * There is a special case when we receive a filesystem that already exists. In
119  * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120  * never update the filesystem counts for temporary clones.
121  *
122  * Likewise, we do not update the snapshot counts for temporary snapshots,
123  * such as those created by zfs diff.
124  */
125 
126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
127 
128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
129 
130 static void
131 dsl_dir_evict(void *dbu)
132 {
133 	dsl_dir_t *dd = dbu;
134 	dsl_pool_t *dp = dd->dd_pool;
135 	int t;
136 
137 	dd->dd_dbuf = NULL;
138 
139 	for (t = 0; t < TXG_SIZE; t++) {
140 		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
141 		ASSERT(dd->dd_tempreserved[t] == 0);
142 		ASSERT(dd->dd_space_towrite[t] == 0);
143 	}
144 
145 	if (dd->dd_parent)
146 		dsl_dir_async_rele(dd->dd_parent, dd);
147 
148 	spa_async_close(dd->dd_pool->dp_spa, dd);
149 
150 	dsl_prop_fini(dd);
151 	mutex_destroy(&dd->dd_lock);
152 	kmem_free(dd, sizeof (dsl_dir_t));
153 }
154 
155 int
156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
157     const char *tail, void *tag, dsl_dir_t **ddp)
158 {
159 	dmu_buf_t *dbuf;
160 	dsl_dir_t *dd;
161 	int err;
162 
163 	ASSERT(dsl_pool_config_held(dp));
164 
165 	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
166 	if (err != 0)
167 		return (err);
168 	dd = dmu_buf_get_user(dbuf);
169 #ifdef ZFS_DEBUG
170 	{
171 		dmu_object_info_t doi;
172 		dmu_object_info_from_db(dbuf, &doi);
173 		ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
174 		ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
175 	}
176 #endif
177 	if (dd == NULL) {
178 		dsl_dir_t *winner;
179 
180 		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
181 		dd->dd_object = ddobj;
182 		dd->dd_dbuf = dbuf;
183 		dd->dd_pool = dp;
184 		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
185 		dsl_prop_init(dd);
186 
187 		dsl_dir_snap_cmtime_update(dd);
188 
189 		if (dsl_dir_phys(dd)->dd_parent_obj) {
190 			err = dsl_dir_hold_obj(dp,
191 			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
192 			    &dd->dd_parent);
193 			if (err != 0)
194 				goto errout;
195 			if (tail) {
196 #ifdef ZFS_DEBUG
197 				uint64_t foundobj;
198 
199 				err = zap_lookup(dp->dp_meta_objset,
200 				    dsl_dir_phys(dd->dd_parent)->
201 				    dd_child_dir_zapobj, tail,
202 				    sizeof (foundobj), 1, &foundobj);
203 				ASSERT(err || foundobj == ddobj);
204 #endif
205 				(void) strcpy(dd->dd_myname, tail);
206 			} else {
207 				err = zap_value_search(dp->dp_meta_objset,
208 				    dsl_dir_phys(dd->dd_parent)->
209 				    dd_child_dir_zapobj,
210 				    ddobj, 0, dd->dd_myname);
211 			}
212 			if (err != 0)
213 				goto errout;
214 		} else {
215 			(void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
216 		}
217 
218 		if (dsl_dir_is_clone(dd)) {
219 			dmu_buf_t *origin_bonus;
220 			dsl_dataset_phys_t *origin_phys;
221 
222 			/*
223 			 * We can't open the origin dataset, because
224 			 * that would require opening this dsl_dir.
225 			 * Just look at its phys directly instead.
226 			 */
227 			err = dmu_bonus_hold(dp->dp_meta_objset,
228 			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
229 			    &origin_bonus);
230 			if (err != 0)
231 				goto errout;
232 			origin_phys = origin_bonus->db_data;
233 			dd->dd_origin_txg =
234 			    origin_phys->ds_creation_txg;
235 			dmu_buf_rele(origin_bonus, FTAG);
236 		}
237 
238 		dmu_buf_init_user(&dd->dd_dbu, dsl_dir_evict, &dd->dd_dbuf);
239 		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
240 		if (winner != NULL) {
241 			if (dd->dd_parent)
242 				dsl_dir_rele(dd->dd_parent, dd);
243 			dsl_prop_fini(dd);
244 			mutex_destroy(&dd->dd_lock);
245 			kmem_free(dd, sizeof (dsl_dir_t));
246 			dd = winner;
247 		} else {
248 			spa_open_ref(dp->dp_spa, dd);
249 		}
250 	}
251 
252 	/*
253 	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
254 	 * holds on the spa.  We need the open-to-close holds because
255 	 * otherwise the spa_refcnt wouldn't change when we open a
256 	 * dir which the spa also has open, so we could incorrectly
257 	 * think it was OK to unload/export/destroy the pool.  We need
258 	 * the instantiate-to-evict hold because the dsl_dir_t has a
259 	 * pointer to the dd_pool, which has a pointer to the spa_t.
260 	 */
261 	spa_open_ref(dp->dp_spa, tag);
262 	ASSERT3P(dd->dd_pool, ==, dp);
263 	ASSERT3U(dd->dd_object, ==, ddobj);
264 	ASSERT3P(dd->dd_dbuf, ==, dbuf);
265 	*ddp = dd;
266 	return (0);
267 
268 errout:
269 	if (dd->dd_parent)
270 		dsl_dir_rele(dd->dd_parent, dd);
271 	dsl_prop_fini(dd);
272 	mutex_destroy(&dd->dd_lock);
273 	kmem_free(dd, sizeof (dsl_dir_t));
274 	dmu_buf_rele(dbuf, tag);
275 	return (err);
276 }
277 
278 void
279 dsl_dir_rele(dsl_dir_t *dd, void *tag)
280 {
281 	dprintf_dd(dd, "%s\n", "");
282 	spa_close(dd->dd_pool->dp_spa, tag);
283 	dmu_buf_rele(dd->dd_dbuf, tag);
284 }
285 
286 /*
287  * Remove a reference to the given dsl dir that is being asynchronously
288  * released.  Async releases occur from a taskq performing eviction of
289  * dsl datasets and dirs.  This process is identical to a normal release
290  * with the exception of using the async API for releasing the reference on
291  * the spa.
292  */
293 void
294 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
295 {
296 	dprintf_dd(dd, "%s\n", "");
297 	spa_async_close(dd->dd_pool->dp_spa, tag);
298 	dmu_buf_rele(dd->dd_dbuf, tag);
299 }
300 
301 /* buf must be long enough (MAXNAMELEN + strlen(MOS_DIR_NAME) + 1 should do) */
302 void
303 dsl_dir_name(dsl_dir_t *dd, char *buf)
304 {
305 	if (dd->dd_parent) {
306 		dsl_dir_name(dd->dd_parent, buf);
307 		(void) strcat(buf, "/");
308 	} else {
309 		buf[0] = '\0';
310 	}
311 	if (!MUTEX_HELD(&dd->dd_lock)) {
312 		/*
313 		 * recursive mutex so that we can use
314 		 * dprintf_dd() with dd_lock held
315 		 */
316 		mutex_enter(&dd->dd_lock);
317 		(void) strcat(buf, dd->dd_myname);
318 		mutex_exit(&dd->dd_lock);
319 	} else {
320 		(void) strcat(buf, dd->dd_myname);
321 	}
322 }
323 
324 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
325 int
326 dsl_dir_namelen(dsl_dir_t *dd)
327 {
328 	int result = 0;
329 
330 	if (dd->dd_parent) {
331 		/* parent's name + 1 for the "/" */
332 		result = dsl_dir_namelen(dd->dd_parent) + 1;
333 	}
334 
335 	if (!MUTEX_HELD(&dd->dd_lock)) {
336 		/* see dsl_dir_name */
337 		mutex_enter(&dd->dd_lock);
338 		result += strlen(dd->dd_myname);
339 		mutex_exit(&dd->dd_lock);
340 	} else {
341 		result += strlen(dd->dd_myname);
342 	}
343 
344 	return (result);
345 }
346 
347 static int
348 getcomponent(const char *path, char *component, const char **nextp)
349 {
350 	char *p;
351 
352 	if ((path == NULL) || (path[0] == '\0'))
353 		return (SET_ERROR(ENOENT));
354 	/* This would be a good place to reserve some namespace... */
355 	p = strpbrk(path, "/@");
356 	if (p && (p[1] == '/' || p[1] == '@')) {
357 		/* two separators in a row */
358 		return (SET_ERROR(EINVAL));
359 	}
360 	if (p == NULL || p == path) {
361 		/*
362 		 * if the first thing is an @ or /, it had better be an
363 		 * @ and it had better not have any more ats or slashes,
364 		 * and it had better have something after the @.
365 		 */
366 		if (p != NULL &&
367 		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
368 			return (SET_ERROR(EINVAL));
369 		if (strlen(path) >= MAXNAMELEN)
370 			return (SET_ERROR(ENAMETOOLONG));
371 		(void) strcpy(component, path);
372 		p = NULL;
373 	} else if (p[0] == '/') {
374 		if (p - path >= MAXNAMELEN)
375 			return (SET_ERROR(ENAMETOOLONG));
376 		(void) strncpy(component, path, p - path);
377 		component[p - path] = '\0';
378 		p++;
379 	} else if (p[0] == '@') {
380 		/*
381 		 * if the next separator is an @, there better not be
382 		 * any more slashes.
383 		 */
384 		if (strchr(path, '/'))
385 			return (SET_ERROR(EINVAL));
386 		if (p - path >= MAXNAMELEN)
387 			return (SET_ERROR(ENAMETOOLONG));
388 		(void) strncpy(component, path, p - path);
389 		component[p - path] = '\0';
390 	} else {
391 		panic("invalid p=%p", (void *)p);
392 	}
393 	*nextp = p;
394 	return (0);
395 }
396 
397 /*
398  * Return the dsl_dir_t, and possibly the last component which couldn't
399  * be found in *tail.  The name must be in the specified dsl_pool_t.  This
400  * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
401  * path is bogus, or if tail==NULL and we couldn't parse the whole name.
402  * (*tail)[0] == '@' means that the last component is a snapshot.
403  */
404 int
405 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
406     dsl_dir_t **ddp, const char **tailp)
407 {
408 	char buf[MAXNAMELEN];
409 	const char *spaname, *next, *nextnext = NULL;
410 	int err;
411 	dsl_dir_t *dd;
412 	uint64_t ddobj;
413 
414 	err = getcomponent(name, buf, &next);
415 	if (err != 0)
416 		return (err);
417 
418 	/* Make sure the name is in the specified pool. */
419 	spaname = spa_name(dp->dp_spa);
420 	if (strcmp(buf, spaname) != 0)
421 		return (SET_ERROR(EXDEV));
422 
423 	ASSERT(dsl_pool_config_held(dp));
424 
425 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
426 	if (err != 0) {
427 		return (err);
428 	}
429 
430 	while (next != NULL) {
431 		dsl_dir_t *child_dd;
432 		err = getcomponent(next, buf, &nextnext);
433 		if (err != 0)
434 			break;
435 		ASSERT(next[0] != '\0');
436 		if (next[0] == '@')
437 			break;
438 		dprintf("looking up %s in obj%lld\n",
439 		    buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
440 
441 		err = zap_lookup(dp->dp_meta_objset,
442 		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
443 		    buf, sizeof (ddobj), 1, &ddobj);
444 		if (err != 0) {
445 			if (err == ENOENT)
446 				err = 0;
447 			break;
448 		}
449 
450 		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
451 		if (err != 0)
452 			break;
453 		dsl_dir_rele(dd, tag);
454 		dd = child_dd;
455 		next = nextnext;
456 	}
457 
458 	if (err != 0) {
459 		dsl_dir_rele(dd, tag);
460 		return (err);
461 	}
462 
463 	/*
464 	 * It's an error if there's more than one component left, or
465 	 * tailp==NULL and there's any component left.
466 	 */
467 	if (next != NULL &&
468 	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
469 		/* bad path name */
470 		dsl_dir_rele(dd, tag);
471 		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
472 		err = SET_ERROR(ENOENT);
473 	}
474 	if (tailp != NULL)
475 		*tailp = next;
476 	*ddp = dd;
477 	return (err);
478 }
479 
480 /*
481  * If the counts are already initialized for this filesystem and its
482  * descendants then do nothing, otherwise initialize the counts.
483  *
484  * The counts on this filesystem, and those below, may be uninitialized due to
485  * either the use of a pre-existing pool which did not support the
486  * filesystem/snapshot limit feature, or one in which the feature had not yet
487  * been enabled.
488  *
489  * Recursively descend the filesystem tree and update the filesystem/snapshot
490  * counts on each filesystem below, then update the cumulative count on the
491  * current filesystem. If the filesystem already has a count set on it,
492  * then we know that its counts, and the counts on the filesystems below it,
493  * are already correct, so we don't have to update this filesystem.
494  */
495 static void
496 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
497 {
498 	uint64_t my_fs_cnt = 0;
499 	uint64_t my_ss_cnt = 0;
500 	dsl_pool_t *dp = dd->dd_pool;
501 	objset_t *os = dp->dp_meta_objset;
502 	zap_cursor_t *zc;
503 	zap_attribute_t *za;
504 	dsl_dataset_t *ds;
505 
506 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
507 	ASSERT(dsl_pool_config_held(dp));
508 	ASSERT(dmu_tx_is_syncing(tx));
509 
510 	dsl_dir_zapify(dd, tx);
511 
512 	/*
513 	 * If the filesystem count has already been initialized then we
514 	 * don't need to recurse down any further.
515 	 */
516 	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
517 		return;
518 
519 	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
520 	za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
521 
522 	/* Iterate my child dirs */
523 	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
524 	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
525 		dsl_dir_t *chld_dd;
526 		uint64_t count;
527 
528 		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
529 		    &chld_dd));
530 
531 		/*
532 		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
533 		 * temporary datasets.
534 		 */
535 		if (chld_dd->dd_myname[0] == '$' ||
536 		    chld_dd->dd_myname[0] == '%') {
537 			dsl_dir_rele(chld_dd, FTAG);
538 			continue;
539 		}
540 
541 		my_fs_cnt++;	/* count this child */
542 
543 		dsl_dir_init_fs_ss_count(chld_dd, tx);
544 
545 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
546 		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
547 		my_fs_cnt += count;
548 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
549 		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
550 		my_ss_cnt += count;
551 
552 		dsl_dir_rele(chld_dd, FTAG);
553 	}
554 	zap_cursor_fini(zc);
555 	/* Count my snapshots (we counted children's snapshots above) */
556 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
557 	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
558 
559 	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
560 	    zap_cursor_retrieve(zc, za) == 0;
561 	    zap_cursor_advance(zc)) {
562 		/* Don't count temporary snapshots */
563 		if (za->za_name[0] != '%')
564 			my_ss_cnt++;
565 	}
566 	zap_cursor_fini(zc);
567 
568 	dsl_dataset_rele(ds, FTAG);
569 
570 	kmem_free(zc, sizeof (zap_cursor_t));
571 	kmem_free(za, sizeof (zap_attribute_t));
572 
573 	/* we're in a sync task, update counts */
574 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
575 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
576 	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
577 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
578 	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
579 }
580 
581 static int
582 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
583 {
584 	char *ddname = (char *)arg;
585 	dsl_pool_t *dp = dmu_tx_pool(tx);
586 	dsl_dataset_t *ds;
587 	dsl_dir_t *dd;
588 	int error;
589 
590 	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
591 	if (error != 0)
592 		return (error);
593 
594 	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
595 		dsl_dataset_rele(ds, FTAG);
596 		return (SET_ERROR(ENOTSUP));
597 	}
598 
599 	dd = ds->ds_dir;
600 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
601 	    dsl_dir_is_zapified(dd) &&
602 	    zap_contains(dp->dp_meta_objset, dd->dd_object,
603 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
604 		dsl_dataset_rele(ds, FTAG);
605 		return (SET_ERROR(EALREADY));
606 	}
607 
608 	dsl_dataset_rele(ds, FTAG);
609 	return (0);
610 }
611 
612 static void
613 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
614 {
615 	char *ddname = (char *)arg;
616 	dsl_pool_t *dp = dmu_tx_pool(tx);
617 	dsl_dataset_t *ds;
618 	spa_t *spa;
619 
620 	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
621 
622 	spa = dsl_dataset_get_spa(ds);
623 
624 	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
625 		/*
626 		 * Since the feature was not active and we're now setting a
627 		 * limit, increment the feature-active counter so that the
628 		 * feature becomes active for the first time.
629 		 *
630 		 * We are already in a sync task so we can update the MOS.
631 		 */
632 		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
633 	}
634 
635 	/*
636 	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
637 	 * we need to ensure the counts are correct. Descend down the tree from
638 	 * this point and update all of the counts to be accurate.
639 	 */
640 	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
641 
642 	dsl_dataset_rele(ds, FTAG);
643 }
644 
645 /*
646  * Make sure the feature is enabled and activate it if necessary.
647  * Since we're setting a limit, ensure the on-disk counts are valid.
648  * This is only called by the ioctl path when setting a limit value.
649  *
650  * We do not need to validate the new limit, since users who can change the
651  * limit are also allowed to exceed the limit.
652  */
653 int
654 dsl_dir_activate_fs_ss_limit(const char *ddname)
655 {
656 	int error;
657 
658 	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
659 	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
660 	    ZFS_SPACE_CHECK_RESERVED);
661 
662 	if (error == EALREADY)
663 		error = 0;
664 
665 	return (error);
666 }
667 
668 /*
669  * Used to determine if the filesystem_limit or snapshot_limit should be
670  * enforced. We allow the limit to be exceeded if the user has permission to
671  * write the property value. We pass in the creds that we got in the open
672  * context since we will always be the GZ root in syncing context. We also have
673  * to handle the case where we are allowed to change the limit on the current
674  * dataset, but there may be another limit in the tree above.
675  *
676  * We can never modify these two properties within a non-global zone. In
677  * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
678  * can't use that function since we are already holding the dp_config_rwlock.
679  * In addition, we already have the dd and dealing with snapshots is simplified
680  * in this code.
681  */
682 
683 typedef enum {
684 	ENFORCE_ALWAYS,
685 	ENFORCE_NEVER,
686 	ENFORCE_ABOVE
687 } enforce_res_t;
688 
689 static enforce_res_t
690 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
691 {
692 	enforce_res_t enforce = ENFORCE_ALWAYS;
693 	uint64_t obj;
694 	dsl_dataset_t *ds;
695 	uint64_t zoned;
696 
697 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
698 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
699 
700 #ifdef _KERNEL
701 	if (crgetzoneid(cr) != GLOBAL_ZONEID)
702 		return (ENFORCE_ALWAYS);
703 
704 	if (secpolicy_zfs(cr) == 0)
705 		return (ENFORCE_NEVER);
706 #endif
707 
708 	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
709 		return (ENFORCE_ALWAYS);
710 
711 	ASSERT(dsl_pool_config_held(dd->dd_pool));
712 
713 	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
714 		return (ENFORCE_ALWAYS);
715 
716 	if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
717 		/* Only root can access zoned fs's from the GZ */
718 		enforce = ENFORCE_ALWAYS;
719 	} else {
720 		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
721 			enforce = ENFORCE_ABOVE;
722 	}
723 
724 	dsl_dataset_rele(ds, FTAG);
725 	return (enforce);
726 }
727 
728 /*
729  * Check if adding additional child filesystem(s) would exceed any filesystem
730  * limits or adding additional snapshot(s) would exceed any snapshot limits.
731  * The prop argument indicates which limit to check.
732  *
733  * Note that all filesystem limits up to the root (or the highest
734  * initialized) filesystem or the given ancestor must be satisfied.
735  */
736 int
737 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
738     dsl_dir_t *ancestor, cred_t *cr)
739 {
740 	objset_t *os = dd->dd_pool->dp_meta_objset;
741 	uint64_t limit, count;
742 	char *count_prop;
743 	enforce_res_t enforce;
744 	int err = 0;
745 
746 	ASSERT(dsl_pool_config_held(dd->dd_pool));
747 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
748 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
749 
750 	/*
751 	 * If we're allowed to change the limit, don't enforce the limit
752 	 * e.g. this can happen if a snapshot is taken by an administrative
753 	 * user in the global zone (i.e. a recursive snapshot by root).
754 	 * However, we must handle the case of delegated permissions where we
755 	 * are allowed to change the limit on the current dataset, but there
756 	 * is another limit in the tree above.
757 	 */
758 	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
759 	if (enforce == ENFORCE_NEVER)
760 		return (0);
761 
762 	/*
763 	 * e.g. if renaming a dataset with no snapshots, count adjustment
764 	 * is 0.
765 	 */
766 	if (delta == 0)
767 		return (0);
768 
769 	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
770 		/*
771 		 * We don't enforce the limit for temporary snapshots. This is
772 		 * indicated by a NULL cred_t argument.
773 		 */
774 		if (cr == NULL)
775 			return (0);
776 
777 		count_prop = DD_FIELD_SNAPSHOT_COUNT;
778 	} else {
779 		count_prop = DD_FIELD_FILESYSTEM_COUNT;
780 	}
781 
782 	/*
783 	 * If an ancestor has been provided, stop checking the limit once we
784 	 * hit that dir. We need this during rename so that we don't overcount
785 	 * the check once we recurse up to the common ancestor.
786 	 */
787 	if (ancestor == dd)
788 		return (0);
789 
790 	/*
791 	 * If we hit an uninitialized node while recursing up the tree, we can
792 	 * stop since we know there is no limit here (or above). The counts are
793 	 * not valid on this node and we know we won't touch this node's counts.
794 	 */
795 	if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
796 	    count_prop, sizeof (count), 1, &count) == ENOENT)
797 		return (0);
798 
799 	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
800 	    B_FALSE);
801 	if (err != 0)
802 		return (err);
803 
804 	/* Is there a limit which we've hit? */
805 	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
806 		return (SET_ERROR(EDQUOT));
807 
808 	if (dd->dd_parent != NULL)
809 		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
810 		    ancestor, cr);
811 
812 	return (err);
813 }
814 
815 /*
816  * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
817  * parents. When a new filesystem/snapshot is created, increment the count on
818  * all parents, and when a filesystem/snapshot is destroyed, decrement the
819  * count.
820  */
821 void
822 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
823     dmu_tx_t *tx)
824 {
825 	int err;
826 	objset_t *os = dd->dd_pool->dp_meta_objset;
827 	uint64_t count;
828 
829 	ASSERT(dsl_pool_config_held(dd->dd_pool));
830 	ASSERT(dmu_tx_is_syncing(tx));
831 	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
832 	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
833 
834 	/*
835 	 * When we receive an incremental stream into a filesystem that already
836 	 * exists, a temporary clone is created.  We don't count this temporary
837 	 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
838 	 * $MOS & $ORIGIN) objsets.
839 	 */
840 	if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
841 	    strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
842 		return;
843 
844 	/*
845 	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
846 	 */
847 	if (delta == 0)
848 		return;
849 
850 	/*
851 	 * If we hit an uninitialized node while recursing up the tree, we can
852 	 * stop since we know the counts are not valid on this node and we
853 	 * know we shouldn't touch this node's counts. An uninitialized count
854 	 * on the node indicates that either the feature has not yet been
855 	 * activated or there are no limits on this part of the tree.
856 	 */
857 	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
858 	    prop, sizeof (count), 1, &count)) == ENOENT)
859 		return;
860 	VERIFY0(err);
861 
862 	count += delta;
863 	/* Use a signed verify to make sure we're not neg. */
864 	VERIFY3S(count, >=, 0);
865 
866 	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
867 	    tx));
868 
869 	/* Roll up this additional count into our ancestors */
870 	if (dd->dd_parent != NULL)
871 		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
872 }
873 
874 uint64_t
875 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
876     dmu_tx_t *tx)
877 {
878 	objset_t *mos = dp->dp_meta_objset;
879 	uint64_t ddobj;
880 	dsl_dir_phys_t *ddphys;
881 	dmu_buf_t *dbuf;
882 
883 	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
884 	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
885 	if (pds) {
886 		VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
887 		    name, sizeof (uint64_t), 1, &ddobj, tx));
888 	} else {
889 		/* it's the root dir */
890 		VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
891 		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
892 	}
893 	VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
894 	dmu_buf_will_dirty(dbuf, tx);
895 	ddphys = dbuf->db_data;
896 
897 	ddphys->dd_creation_time = gethrestime_sec();
898 	if (pds) {
899 		ddphys->dd_parent_obj = pds->dd_object;
900 
901 		/* update the filesystem counts */
902 		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
903 	}
904 	ddphys->dd_props_zapobj = zap_create(mos,
905 	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
906 	ddphys->dd_child_dir_zapobj = zap_create(mos,
907 	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
908 	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
909 		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
910 	dmu_buf_rele(dbuf, FTAG);
911 
912 	return (ddobj);
913 }
914 
915 boolean_t
916 dsl_dir_is_clone(dsl_dir_t *dd)
917 {
918 	return (dsl_dir_phys(dd)->dd_origin_obj &&
919 	    (dd->dd_pool->dp_origin_snap == NULL ||
920 	    dsl_dir_phys(dd)->dd_origin_obj !=
921 	    dd->dd_pool->dp_origin_snap->ds_object));
922 }
923 
924 void
925 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
926 {
927 	mutex_enter(&dd->dd_lock);
928 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
929 	    dsl_dir_phys(dd)->dd_used_bytes);
930 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
931 	    dsl_dir_phys(dd)->dd_quota);
932 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
933 	    dsl_dir_phys(dd)->dd_reserved);
934 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
935 	    dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
936 	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
937 	    dsl_dir_phys(dd)->dd_compressed_bytes));
938 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
939 	    dsl_dir_phys(dd)->dd_uncompressed_bytes);
940 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
941 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
942 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
943 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
944 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
945 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
946 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
947 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
948 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
949 		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
950 	}
951 	mutex_exit(&dd->dd_lock);
952 
953 	if (dsl_dir_is_zapified(dd)) {
954 		uint64_t count;
955 		objset_t *os = dd->dd_pool->dp_meta_objset;
956 
957 		if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
958 		    sizeof (count), 1, &count) == 0) {
959 			dsl_prop_nvlist_add_uint64(nv,
960 			    ZFS_PROP_FILESYSTEM_COUNT, count);
961 		}
962 		if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
963 		    sizeof (count), 1, &count) == 0) {
964 			dsl_prop_nvlist_add_uint64(nv,
965 			    ZFS_PROP_SNAPSHOT_COUNT, count);
966 		}
967 	}
968 
969 	if (dsl_dir_is_clone(dd)) {
970 		dsl_dataset_t *ds;
971 		char buf[MAXNAMELEN];
972 
973 		VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
974 		    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
975 		dsl_dataset_name(ds, buf);
976 		dsl_dataset_rele(ds, FTAG);
977 		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
978 	}
979 }
980 
981 void
982 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
983 {
984 	dsl_pool_t *dp = dd->dd_pool;
985 
986 	ASSERT(dsl_dir_phys(dd));
987 
988 	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
989 		/* up the hold count until we can be written out */
990 		dmu_buf_add_ref(dd->dd_dbuf, dd);
991 	}
992 }
993 
994 static int64_t
995 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
996 {
997 	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
998 	uint64_t new_accounted =
999 	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1000 	return (new_accounted - old_accounted);
1001 }
1002 
1003 void
1004 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1005 {
1006 	ASSERT(dmu_tx_is_syncing(tx));
1007 
1008 	mutex_enter(&dd->dd_lock);
1009 	ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1010 	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1011 	    dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1012 	dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1013 	mutex_exit(&dd->dd_lock);
1014 
1015 	/* release the hold from dsl_dir_dirty */
1016 	dmu_buf_rele(dd->dd_dbuf, dd);
1017 }
1018 
1019 static uint64_t
1020 dsl_dir_space_towrite(dsl_dir_t *dd)
1021 {
1022 	uint64_t space = 0;
1023 	int i;
1024 
1025 	ASSERT(MUTEX_HELD(&dd->dd_lock));
1026 
1027 	for (i = 0; i < TXG_SIZE; i++) {
1028 		space += dd->dd_space_towrite[i&TXG_MASK];
1029 		ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0);
1030 	}
1031 	return (space);
1032 }
1033 
1034 /*
1035  * How much space would dd have available if ancestor had delta applied
1036  * to it?  If ondiskonly is set, we're only interested in what's
1037  * on-disk, not estimated pending changes.
1038  */
1039 uint64_t
1040 dsl_dir_space_available(dsl_dir_t *dd,
1041     dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1042 {
1043 	uint64_t parentspace, myspace, quota, used;
1044 
1045 	/*
1046 	 * If there are no restrictions otherwise, assume we have
1047 	 * unlimited space available.
1048 	 */
1049 	quota = UINT64_MAX;
1050 	parentspace = UINT64_MAX;
1051 
1052 	if (dd->dd_parent != NULL) {
1053 		parentspace = dsl_dir_space_available(dd->dd_parent,
1054 		    ancestor, delta, ondiskonly);
1055 	}
1056 
1057 	mutex_enter(&dd->dd_lock);
1058 	if (dsl_dir_phys(dd)->dd_quota != 0)
1059 		quota = dsl_dir_phys(dd)->dd_quota;
1060 	used = dsl_dir_phys(dd)->dd_used_bytes;
1061 	if (!ondiskonly)
1062 		used += dsl_dir_space_towrite(dd);
1063 
1064 	if (dd->dd_parent == NULL) {
1065 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1066 		quota = MIN(quota, poolsize);
1067 	}
1068 
1069 	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1070 		/*
1071 		 * We have some space reserved, in addition to what our
1072 		 * parent gave us.
1073 		 */
1074 		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1075 	}
1076 
1077 	if (dd == ancestor) {
1078 		ASSERT(delta <= 0);
1079 		ASSERT(used >= -delta);
1080 		used += delta;
1081 		if (parentspace != UINT64_MAX)
1082 			parentspace -= delta;
1083 	}
1084 
1085 	if (used > quota) {
1086 		/* over quota */
1087 		myspace = 0;
1088 	} else {
1089 		/*
1090 		 * the lesser of the space provided by our parent and
1091 		 * the space left in our quota
1092 		 */
1093 		myspace = MIN(parentspace, quota - used);
1094 	}
1095 
1096 	mutex_exit(&dd->dd_lock);
1097 
1098 	return (myspace);
1099 }
1100 
1101 struct tempreserve {
1102 	list_node_t tr_node;
1103 	dsl_dir_t *tr_ds;
1104 	uint64_t tr_size;
1105 };
1106 
1107 static int
1108 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1109     boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list,
1110     dmu_tx_t *tx, boolean_t first)
1111 {
1112 	uint64_t txg = tx->tx_txg;
1113 	uint64_t est_inflight, used_on_disk, quota, parent_rsrv;
1114 	uint64_t deferred = 0;
1115 	struct tempreserve *tr;
1116 	int retval = EDQUOT;
1117 	int txgidx = txg & TXG_MASK;
1118 	int i;
1119 	uint64_t ref_rsrv = 0;
1120 
1121 	ASSERT3U(txg, !=, 0);
1122 	ASSERT3S(asize, >, 0);
1123 
1124 	mutex_enter(&dd->dd_lock);
1125 
1126 	/*
1127 	 * Check against the dsl_dir's quota.  We don't add in the delta
1128 	 * when checking for over-quota because they get one free hit.
1129 	 */
1130 	est_inflight = dsl_dir_space_towrite(dd);
1131 	for (i = 0; i < TXG_SIZE; i++)
1132 		est_inflight += dd->dd_tempreserved[i];
1133 	used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1134 
1135 	/*
1136 	 * On the first iteration, fetch the dataset's used-on-disk and
1137 	 * refreservation values. Also, if checkrefquota is set, test if
1138 	 * allocating this space would exceed the dataset's refquota.
1139 	 */
1140 	if (first && tx->tx_objset) {
1141 		int error;
1142 		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1143 
1144 		error = dsl_dataset_check_quota(ds, checkrefquota,
1145 		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1146 		if (error) {
1147 			mutex_exit(&dd->dd_lock);
1148 			return (error);
1149 		}
1150 	}
1151 
1152 	/*
1153 	 * If this transaction will result in a net free of space,
1154 	 * we want to let it through.
1155 	 */
1156 	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1157 		quota = UINT64_MAX;
1158 	else
1159 		quota = dsl_dir_phys(dd)->dd_quota;
1160 
1161 	/*
1162 	 * Adjust the quota against the actual pool size at the root
1163 	 * minus any outstanding deferred frees.
1164 	 * To ensure that it's possible to remove files from a full
1165 	 * pool without inducing transient overcommits, we throttle
1166 	 * netfree transactions against a quota that is slightly larger,
1167 	 * but still within the pool's allocation slop.  In cases where
1168 	 * we're very close to full, this will allow a steady trickle of
1169 	 * removes to get through.
1170 	 */
1171 	if (dd->dd_parent == NULL) {
1172 		spa_t *spa = dd->dd_pool->dp_spa;
1173 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1174 		deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1175 		if (poolsize - deferred < quota) {
1176 			quota = poolsize - deferred;
1177 			retval = ENOSPC;
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * If they are requesting more space, and our current estimate
1183 	 * is over quota, they get to try again unless the actual
1184 	 * on-disk is over quota and there are no pending changes (which
1185 	 * may free up space for us).
1186 	 */
1187 	if (used_on_disk + est_inflight >= quota) {
1188 		if (est_inflight > 0 || used_on_disk < quota ||
1189 		    (retval == ENOSPC && used_on_disk < quota + deferred))
1190 			retval = ERESTART;
1191 		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1192 		    "quota=%lluK tr=%lluK err=%d\n",
1193 		    used_on_disk>>10, est_inflight>>10,
1194 		    quota>>10, asize>>10, retval);
1195 		mutex_exit(&dd->dd_lock);
1196 		return (SET_ERROR(retval));
1197 	}
1198 
1199 	/* We need to up our estimated delta before dropping dd_lock */
1200 	dd->dd_tempreserved[txgidx] += asize;
1201 
1202 	parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1203 	    asize - ref_rsrv);
1204 	mutex_exit(&dd->dd_lock);
1205 
1206 	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1207 	tr->tr_ds = dd;
1208 	tr->tr_size = asize;
1209 	list_insert_tail(tr_list, tr);
1210 
1211 	/* see if it's OK with our parent */
1212 	if (dd->dd_parent && parent_rsrv) {
1213 		boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1214 
1215 		return (dsl_dir_tempreserve_impl(dd->dd_parent,
1216 		    parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE));
1217 	} else {
1218 		return (0);
1219 	}
1220 }
1221 
1222 /*
1223  * Reserve space in this dsl_dir, to be used in this tx's txg.
1224  * After the space has been dirtied (and dsl_dir_willuse_space()
1225  * has been called), the reservation should be canceled, using
1226  * dsl_dir_tempreserve_clear().
1227  */
1228 int
1229 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1230     uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx)
1231 {
1232 	int err;
1233 	list_t *tr_list;
1234 
1235 	if (asize == 0) {
1236 		*tr_cookiep = NULL;
1237 		return (0);
1238 	}
1239 
1240 	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1241 	list_create(tr_list, sizeof (struct tempreserve),
1242 	    offsetof(struct tempreserve, tr_node));
1243 	ASSERT3S(asize, >, 0);
1244 	ASSERT3S(fsize, >=, 0);
1245 
1246 	err = arc_tempreserve_space(lsize, tx->tx_txg);
1247 	if (err == 0) {
1248 		struct tempreserve *tr;
1249 
1250 		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1251 		tr->tr_size = lsize;
1252 		list_insert_tail(tr_list, tr);
1253 	} else {
1254 		if (err == EAGAIN) {
1255 			/*
1256 			 * If arc_memory_throttle() detected that pageout
1257 			 * is running and we are low on memory, we delay new
1258 			 * non-pageout transactions to give pageout an
1259 			 * advantage.
1260 			 *
1261 			 * It is unfortunate to be delaying while the caller's
1262 			 * locks are held.
1263 			 */
1264 			txg_delay(dd->dd_pool, tx->tx_txg,
1265 			    MSEC2NSEC(10), MSEC2NSEC(10));
1266 			err = SET_ERROR(ERESTART);
1267 		}
1268 	}
1269 
1270 	if (err == 0) {
1271 		err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize,
1272 		    FALSE, asize > usize, tr_list, tx, TRUE);
1273 	}
1274 
1275 	if (err != 0)
1276 		dsl_dir_tempreserve_clear(tr_list, tx);
1277 	else
1278 		*tr_cookiep = tr_list;
1279 
1280 	return (err);
1281 }
1282 
1283 /*
1284  * Clear a temporary reservation that we previously made with
1285  * dsl_dir_tempreserve_space().
1286  */
1287 void
1288 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1289 {
1290 	int txgidx = tx->tx_txg & TXG_MASK;
1291 	list_t *tr_list = tr_cookie;
1292 	struct tempreserve *tr;
1293 
1294 	ASSERT3U(tx->tx_txg, !=, 0);
1295 
1296 	if (tr_cookie == NULL)
1297 		return;
1298 
1299 	while ((tr = list_head(tr_list)) != NULL) {
1300 		if (tr->tr_ds) {
1301 			mutex_enter(&tr->tr_ds->dd_lock);
1302 			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1303 			    tr->tr_size);
1304 			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1305 			mutex_exit(&tr->tr_ds->dd_lock);
1306 		} else {
1307 			arc_tempreserve_clear(tr->tr_size);
1308 		}
1309 		list_remove(tr_list, tr);
1310 		kmem_free(tr, sizeof (struct tempreserve));
1311 	}
1312 
1313 	kmem_free(tr_list, sizeof (list_t));
1314 }
1315 
1316 /*
1317  * This should be called from open context when we think we're going to write
1318  * or free space, for example when dirtying data. Be conservative; it's okay
1319  * to write less space or free more, but we don't want to write more or free
1320  * less than the amount specified.
1321  */
1322 void
1323 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1324 {
1325 	int64_t parent_space;
1326 	uint64_t est_used;
1327 
1328 	mutex_enter(&dd->dd_lock);
1329 	if (space > 0)
1330 		dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1331 
1332 	est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1333 	parent_space = parent_delta(dd, est_used, space);
1334 	mutex_exit(&dd->dd_lock);
1335 
1336 	/* Make sure that we clean up dd_space_to* */
1337 	dsl_dir_dirty(dd, tx);
1338 
1339 	/* XXX this is potentially expensive and unnecessary... */
1340 	if (parent_space && dd->dd_parent)
1341 		dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1342 }
1343 
1344 /* call from syncing context when we actually write/free space for this dd */
1345 void
1346 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1347     int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1348 {
1349 	int64_t accounted_delta;
1350 
1351 	/*
1352 	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1353 	 * dd_lock held, so that it can atomically update
1354 	 * ds->ds_reserved and the dsl_dir accounting, so that
1355 	 * dsl_dataset_check_quota() can see dataset and dir accounting
1356 	 * consistently.
1357 	 */
1358 	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1359 
1360 	ASSERT(dmu_tx_is_syncing(tx));
1361 	ASSERT(type < DD_USED_NUM);
1362 
1363 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1364 
1365 	if (needlock)
1366 		mutex_enter(&dd->dd_lock);
1367 	accounted_delta =
1368 	    parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1369 	ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1370 	ASSERT(compressed >= 0 ||
1371 	    dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1372 	ASSERT(uncompressed >= 0 ||
1373 	    dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1374 	dsl_dir_phys(dd)->dd_used_bytes += used;
1375 	dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1376 	dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1377 
1378 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1379 		ASSERT(used > 0 ||
1380 		    dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1381 		dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1382 #ifdef DEBUG
1383 		dd_used_t t;
1384 		uint64_t u = 0;
1385 		for (t = 0; t < DD_USED_NUM; t++)
1386 			u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1387 		ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1388 #endif
1389 	}
1390 	if (needlock)
1391 		mutex_exit(&dd->dd_lock);
1392 
1393 	if (dd->dd_parent != NULL) {
1394 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1395 		    accounted_delta, compressed, uncompressed, tx);
1396 		dsl_dir_transfer_space(dd->dd_parent,
1397 		    used - accounted_delta,
1398 		    DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1399 	}
1400 }
1401 
1402 void
1403 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1404     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1405 {
1406 	ASSERT(dmu_tx_is_syncing(tx));
1407 	ASSERT(oldtype < DD_USED_NUM);
1408 	ASSERT(newtype < DD_USED_NUM);
1409 
1410 	if (delta == 0 ||
1411 	    !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1412 		return;
1413 
1414 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1415 	mutex_enter(&dd->dd_lock);
1416 	ASSERT(delta > 0 ?
1417 	    dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1418 	    dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1419 	ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1420 	dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1421 	dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1422 	mutex_exit(&dd->dd_lock);
1423 }
1424 
1425 typedef struct dsl_dir_set_qr_arg {
1426 	const char *ddsqra_name;
1427 	zprop_source_t ddsqra_source;
1428 	uint64_t ddsqra_value;
1429 } dsl_dir_set_qr_arg_t;
1430 
1431 static int
1432 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1433 {
1434 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1435 	dsl_pool_t *dp = dmu_tx_pool(tx);
1436 	dsl_dataset_t *ds;
1437 	int error;
1438 	uint64_t towrite, newval;
1439 
1440 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1441 	if (error != 0)
1442 		return (error);
1443 
1444 	error = dsl_prop_predict(ds->ds_dir, "quota",
1445 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1446 	if (error != 0) {
1447 		dsl_dataset_rele(ds, FTAG);
1448 		return (error);
1449 	}
1450 
1451 	if (newval == 0) {
1452 		dsl_dataset_rele(ds, FTAG);
1453 		return (0);
1454 	}
1455 
1456 	mutex_enter(&ds->ds_dir->dd_lock);
1457 	/*
1458 	 * If we are doing the preliminary check in open context, and
1459 	 * there are pending changes, then don't fail it, since the
1460 	 * pending changes could under-estimate the amount of space to be
1461 	 * freed up.
1462 	 */
1463 	towrite = dsl_dir_space_towrite(ds->ds_dir);
1464 	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1465 	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1466 	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1467 		error = SET_ERROR(ENOSPC);
1468 	}
1469 	mutex_exit(&ds->ds_dir->dd_lock);
1470 	dsl_dataset_rele(ds, FTAG);
1471 	return (error);
1472 }
1473 
1474 static void
1475 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1476 {
1477 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1478 	dsl_pool_t *dp = dmu_tx_pool(tx);
1479 	dsl_dataset_t *ds;
1480 	uint64_t newval;
1481 
1482 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1483 
1484 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1485 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1486 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1487 		    &ddsqra->ddsqra_value, tx);
1488 
1489 		VERIFY0(dsl_prop_get_int_ds(ds,
1490 		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1491 	} else {
1492 		newval = ddsqra->ddsqra_value;
1493 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1494 		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1495 	}
1496 
1497 	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1498 	mutex_enter(&ds->ds_dir->dd_lock);
1499 	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1500 	mutex_exit(&ds->ds_dir->dd_lock);
1501 	dsl_dataset_rele(ds, FTAG);
1502 }
1503 
1504 int
1505 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1506 {
1507 	dsl_dir_set_qr_arg_t ddsqra;
1508 
1509 	ddsqra.ddsqra_name = ddname;
1510 	ddsqra.ddsqra_source = source;
1511 	ddsqra.ddsqra_value = quota;
1512 
1513 	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1514 	    dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1515 }
1516 
1517 int
1518 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1519 {
1520 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1521 	dsl_pool_t *dp = dmu_tx_pool(tx);
1522 	dsl_dataset_t *ds;
1523 	dsl_dir_t *dd;
1524 	uint64_t newval, used, avail;
1525 	int error;
1526 
1527 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1528 	if (error != 0)
1529 		return (error);
1530 	dd = ds->ds_dir;
1531 
1532 	/*
1533 	 * If we are doing the preliminary check in open context, the
1534 	 * space estimates may be inaccurate.
1535 	 */
1536 	if (!dmu_tx_is_syncing(tx)) {
1537 		dsl_dataset_rele(ds, FTAG);
1538 		return (0);
1539 	}
1540 
1541 	error = dsl_prop_predict(ds->ds_dir,
1542 	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1543 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1544 	if (error != 0) {
1545 		dsl_dataset_rele(ds, FTAG);
1546 		return (error);
1547 	}
1548 
1549 	mutex_enter(&dd->dd_lock);
1550 	used = dsl_dir_phys(dd)->dd_used_bytes;
1551 	mutex_exit(&dd->dd_lock);
1552 
1553 	if (dd->dd_parent) {
1554 		avail = dsl_dir_space_available(dd->dd_parent,
1555 		    NULL, 0, FALSE);
1556 	} else {
1557 		avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1558 	}
1559 
1560 	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1561 		uint64_t delta = MAX(used, newval) -
1562 		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1563 
1564 		if (delta > avail ||
1565 		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1566 		    newval > dsl_dir_phys(dd)->dd_quota))
1567 			error = SET_ERROR(ENOSPC);
1568 	}
1569 
1570 	dsl_dataset_rele(ds, FTAG);
1571 	return (error);
1572 }
1573 
1574 void
1575 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1576 {
1577 	uint64_t used;
1578 	int64_t delta;
1579 
1580 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1581 
1582 	mutex_enter(&dd->dd_lock);
1583 	used = dsl_dir_phys(dd)->dd_used_bytes;
1584 	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1585 	dsl_dir_phys(dd)->dd_reserved = value;
1586 
1587 	if (dd->dd_parent != NULL) {
1588 		/* Roll up this additional usage into our ancestors */
1589 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1590 		    delta, 0, 0, tx);
1591 	}
1592 	mutex_exit(&dd->dd_lock);
1593 }
1594 
1595 
1596 static void
1597 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1598 {
1599 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1600 	dsl_pool_t *dp = dmu_tx_pool(tx);
1601 	dsl_dataset_t *ds;
1602 	uint64_t newval;
1603 
1604 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1605 
1606 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1607 		dsl_prop_set_sync_impl(ds,
1608 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1609 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1610 		    &ddsqra->ddsqra_value, tx);
1611 
1612 		VERIFY0(dsl_prop_get_int_ds(ds,
1613 		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1614 	} else {
1615 		newval = ddsqra->ddsqra_value;
1616 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1617 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1618 		    (longlong_t)newval);
1619 	}
1620 
1621 	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1622 	dsl_dataset_rele(ds, FTAG);
1623 }
1624 
1625 int
1626 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1627     uint64_t reservation)
1628 {
1629 	dsl_dir_set_qr_arg_t ddsqra;
1630 
1631 	ddsqra.ddsqra_name = ddname;
1632 	ddsqra.ddsqra_source = source;
1633 	ddsqra.ddsqra_value = reservation;
1634 
1635 	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1636 	    dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1637 }
1638 
1639 static dsl_dir_t *
1640 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1641 {
1642 	for (; ds1; ds1 = ds1->dd_parent) {
1643 		dsl_dir_t *dd;
1644 		for (dd = ds2; dd; dd = dd->dd_parent) {
1645 			if (ds1 == dd)
1646 				return (dd);
1647 		}
1648 	}
1649 	return (NULL);
1650 }
1651 
1652 /*
1653  * If delta is applied to dd, how much of that delta would be applied to
1654  * ancestor?  Syncing context only.
1655  */
1656 static int64_t
1657 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1658 {
1659 	if (dd == ancestor)
1660 		return (delta);
1661 
1662 	mutex_enter(&dd->dd_lock);
1663 	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1664 	mutex_exit(&dd->dd_lock);
1665 	return (would_change(dd->dd_parent, delta, ancestor));
1666 }
1667 
1668 typedef struct dsl_dir_rename_arg {
1669 	const char *ddra_oldname;
1670 	const char *ddra_newname;
1671 	cred_t *ddra_cred;
1672 } dsl_dir_rename_arg_t;
1673 
1674 /* ARGSUSED */
1675 static int
1676 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1677 {
1678 	int *deltap = arg;
1679 	char namebuf[MAXNAMELEN];
1680 
1681 	dsl_dataset_name(ds, namebuf);
1682 
1683 	if (strlen(namebuf) + *deltap >= MAXNAMELEN)
1684 		return (SET_ERROR(ENAMETOOLONG));
1685 	return (0);
1686 }
1687 
1688 static int
1689 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1690 {
1691 	dsl_dir_rename_arg_t *ddra = arg;
1692 	dsl_pool_t *dp = dmu_tx_pool(tx);
1693 	dsl_dir_t *dd, *newparent;
1694 	const char *mynewname;
1695 	int error;
1696 	int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1697 
1698 	/* target dir should exist */
1699 	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1700 	if (error != 0)
1701 		return (error);
1702 
1703 	/* new parent should exist */
1704 	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1705 	    &newparent, &mynewname);
1706 	if (error != 0) {
1707 		dsl_dir_rele(dd, FTAG);
1708 		return (error);
1709 	}
1710 
1711 	/* can't rename to different pool */
1712 	if (dd->dd_pool != newparent->dd_pool) {
1713 		dsl_dir_rele(newparent, FTAG);
1714 		dsl_dir_rele(dd, FTAG);
1715 		return (SET_ERROR(ENXIO));
1716 	}
1717 
1718 	/* new name should not already exist */
1719 	if (mynewname == NULL) {
1720 		dsl_dir_rele(newparent, FTAG);
1721 		dsl_dir_rele(dd, FTAG);
1722 		return (SET_ERROR(EEXIST));
1723 	}
1724 
1725 	/* if the name length is growing, validate child name lengths */
1726 	if (delta > 0) {
1727 		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1728 		    &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1729 		if (error != 0) {
1730 			dsl_dir_rele(newparent, FTAG);
1731 			dsl_dir_rele(dd, FTAG);
1732 			return (error);
1733 		}
1734 	}
1735 
1736 	if (dmu_tx_is_syncing(tx)) {
1737 		if (spa_feature_is_active(dp->dp_spa,
1738 		    SPA_FEATURE_FS_SS_LIMIT)) {
1739 			/*
1740 			 * Although this is the check function and we don't
1741 			 * normally make on-disk changes in check functions,
1742 			 * we need to do that here.
1743 			 *
1744 			 * Ensure this portion of the tree's counts have been
1745 			 * initialized in case the new parent has limits set.
1746 			 */
1747 			dsl_dir_init_fs_ss_count(dd, tx);
1748 		}
1749 	}
1750 
1751 	if (newparent != dd->dd_parent) {
1752 		/* is there enough space? */
1753 		uint64_t myspace =
1754 		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
1755 		    dsl_dir_phys(dd)->dd_reserved);
1756 		objset_t *os = dd->dd_pool->dp_meta_objset;
1757 		uint64_t fs_cnt = 0;
1758 		uint64_t ss_cnt = 0;
1759 
1760 		if (dsl_dir_is_zapified(dd)) {
1761 			int err;
1762 
1763 			err = zap_lookup(os, dd->dd_object,
1764 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1765 			    &fs_cnt);
1766 			if (err != ENOENT && err != 0) {
1767 				dsl_dir_rele(newparent, FTAG);
1768 				dsl_dir_rele(dd, FTAG);
1769 				return (err);
1770 			}
1771 
1772 			/*
1773 			 * have to add 1 for the filesystem itself that we're
1774 			 * moving
1775 			 */
1776 			fs_cnt++;
1777 
1778 			err = zap_lookup(os, dd->dd_object,
1779 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1780 			    &ss_cnt);
1781 			if (err != ENOENT && err != 0) {
1782 				dsl_dir_rele(newparent, FTAG);
1783 				dsl_dir_rele(dd, FTAG);
1784 				return (err);
1785 			}
1786 		}
1787 
1788 		/* no rename into our descendant */
1789 		if (closest_common_ancestor(dd, newparent) == dd) {
1790 			dsl_dir_rele(newparent, FTAG);
1791 			dsl_dir_rele(dd, FTAG);
1792 			return (SET_ERROR(EINVAL));
1793 		}
1794 
1795 		error = dsl_dir_transfer_possible(dd->dd_parent,
1796 		    newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1797 		if (error != 0) {
1798 			dsl_dir_rele(newparent, FTAG);
1799 			dsl_dir_rele(dd, FTAG);
1800 			return (error);
1801 		}
1802 	}
1803 
1804 	dsl_dir_rele(newparent, FTAG);
1805 	dsl_dir_rele(dd, FTAG);
1806 	return (0);
1807 }
1808 
1809 static void
1810 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1811 {
1812 	dsl_dir_rename_arg_t *ddra = arg;
1813 	dsl_pool_t *dp = dmu_tx_pool(tx);
1814 	dsl_dir_t *dd, *newparent;
1815 	const char *mynewname;
1816 	int error;
1817 	objset_t *mos = dp->dp_meta_objset;
1818 
1819 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1820 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1821 	    &mynewname));
1822 
1823 	/* Log this before we change the name. */
1824 	spa_history_log_internal_dd(dd, "rename", tx,
1825 	    "-> %s", ddra->ddra_newname);
1826 
1827 	if (newparent != dd->dd_parent) {
1828 		objset_t *os = dd->dd_pool->dp_meta_objset;
1829 		uint64_t fs_cnt = 0;
1830 		uint64_t ss_cnt = 0;
1831 
1832 		/*
1833 		 * We already made sure the dd counts were initialized in the
1834 		 * check function.
1835 		 */
1836 		if (spa_feature_is_active(dp->dp_spa,
1837 		    SPA_FEATURE_FS_SS_LIMIT)) {
1838 			VERIFY0(zap_lookup(os, dd->dd_object,
1839 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1840 			    &fs_cnt));
1841 			/* add 1 for the filesystem itself that we're moving */
1842 			fs_cnt++;
1843 
1844 			VERIFY0(zap_lookup(os, dd->dd_object,
1845 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1846 			    &ss_cnt));
1847 		}
1848 
1849 		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1850 		    DD_FIELD_FILESYSTEM_COUNT, tx);
1851 		dsl_fs_ss_count_adjust(newparent, fs_cnt,
1852 		    DD_FIELD_FILESYSTEM_COUNT, tx);
1853 
1854 		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1855 		    DD_FIELD_SNAPSHOT_COUNT, tx);
1856 		dsl_fs_ss_count_adjust(newparent, ss_cnt,
1857 		    DD_FIELD_SNAPSHOT_COUNT, tx);
1858 
1859 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1860 		    -dsl_dir_phys(dd)->dd_used_bytes,
1861 		    -dsl_dir_phys(dd)->dd_compressed_bytes,
1862 		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1863 		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1864 		    dsl_dir_phys(dd)->dd_used_bytes,
1865 		    dsl_dir_phys(dd)->dd_compressed_bytes,
1866 		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1867 
1868 		if (dsl_dir_phys(dd)->dd_reserved >
1869 		    dsl_dir_phys(dd)->dd_used_bytes) {
1870 			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1871 			    dsl_dir_phys(dd)->dd_used_bytes;
1872 
1873 			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1874 			    -unused_rsrv, 0, 0, tx);
1875 			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1876 			    unused_rsrv, 0, 0, tx);
1877 		}
1878 	}
1879 
1880 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1881 
1882 	/* remove from old parent zapobj */
1883 	error = zap_remove(mos,
1884 	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1885 	    dd->dd_myname, tx);
1886 	ASSERT0(error);
1887 
1888 	(void) strcpy(dd->dd_myname, mynewname);
1889 	dsl_dir_rele(dd->dd_parent, dd);
1890 	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1891 	VERIFY0(dsl_dir_hold_obj(dp,
1892 	    newparent->dd_object, NULL, dd, &dd->dd_parent));
1893 
1894 	/* add to new parent zapobj */
1895 	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1896 	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
1897 
1898 	dsl_prop_notify_all(dd);
1899 
1900 	dsl_dir_rele(newparent, FTAG);
1901 	dsl_dir_rele(dd, FTAG);
1902 }
1903 
1904 int
1905 dsl_dir_rename(const char *oldname, const char *newname)
1906 {
1907 	dsl_dir_rename_arg_t ddra;
1908 
1909 	ddra.ddra_oldname = oldname;
1910 	ddra.ddra_newname = newname;
1911 	ddra.ddra_cred = CRED();
1912 
1913 	return (dsl_sync_task(oldname,
1914 	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1915 	    3, ZFS_SPACE_CHECK_RESERVED));
1916 }
1917 
1918 int
1919 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1920     uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1921 {
1922 	dsl_dir_t *ancestor;
1923 	int64_t adelta;
1924 	uint64_t avail;
1925 	int err;
1926 
1927 	ancestor = closest_common_ancestor(sdd, tdd);
1928 	adelta = would_change(sdd, -space, ancestor);
1929 	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1930 	if (avail < space)
1931 		return (SET_ERROR(ENOSPC));
1932 
1933 	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1934 	    ancestor, cr);
1935 	if (err != 0)
1936 		return (err);
1937 	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1938 	    ancestor, cr);
1939 	if (err != 0)
1940 		return (err);
1941 
1942 	return (0);
1943 }
1944 
1945 timestruc_t
1946 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1947 {
1948 	timestruc_t t;
1949 
1950 	mutex_enter(&dd->dd_lock);
1951 	t = dd->dd_snap_cmtime;
1952 	mutex_exit(&dd->dd_lock);
1953 
1954 	return (t);
1955 }
1956 
1957 void
1958 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1959 {
1960 	timestruc_t t;
1961 
1962 	gethrestime(&t);
1963 	mutex_enter(&dd->dd_lock);
1964 	dd->dd_snap_cmtime = t;
1965 	mutex_exit(&dd->dd_lock);
1966 }
1967 
1968 void
1969 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1970 {
1971 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1972 	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1973 }
1974 
1975 boolean_t
1976 dsl_dir_is_zapified(dsl_dir_t *dd)
1977 {
1978 	dmu_object_info_t doi;
1979 
1980 	dmu_object_info_from_db(dd->dd_dbuf, &doi);
1981 	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
1982 }
1983