xref: /illumos-gate/usr/src/uts/common/fs/zfs/dsl_dir.c (revision 202ca9ae460faf1825ede303c46abd4e1f6cee28)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Martin Matuska. All rights reserved.
25  * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
50 
51 /*
52  * Filesystem and Snapshot Limits
53  * ------------------------------
54  *
55  * These limits are used to restrict the number of filesystems and/or snapshots
56  * that can be created at a given level in the tree or below. A typical
57  * use-case is with a delegated dataset where the administrator wants to ensure
58  * that a user within the zone is not creating too many additional filesystems
59  * or snapshots, even though they're not exceeding their space quota.
60  *
61  * The filesystem and snapshot counts are stored as extensible properties. This
62  * capability is controlled by a feature flag and must be enabled to be used.
63  * Once enabled, the feature is not active until the first limit is set. At
64  * that point, future operations to create/destroy filesystems or snapshots
65  * will validate and update the counts.
66  *
67  * Because the count properties will not exist before the feature is active,
68  * the counts are updated when a limit is first set on an uninitialized
69  * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70  * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71  * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72  * snapshot count properties on a node indicate uninitialized counts on that
73  * node.) When first setting a limit on an uninitialized node, the code starts
74  * at the filesystem with the new limit and descends into all sub-filesystems
75  * to add the count properties.
76  *
77  * In practice this is lightweight since a limit is typically set when the
78  * filesystem is created and thus has no children. Once valid, changing the
79  * limit value won't require a re-traversal since the counts are already valid.
80  * When recursively fixing the counts, if a node with a limit is encountered
81  * during the descent, the counts are known to be valid and there is no need to
82  * descend into that filesystem's children. The counts on filesystems above the
83  * one with the new limit will still be uninitialized, unless a limit is
84  * eventually set on one of those filesystems. The counts are always recursively
85  * updated when a limit is set on a dataset, unless there is already a limit.
86  * When a new limit value is set on a filesystem with an existing limit, it is
87  * possible for the new limit to be less than the current count at that level
88  * since a user who can change the limit is also allowed to exceed the limit.
89  *
90  * Once the feature is active, then whenever a filesystem or snapshot is
91  * created, the code recurses up the tree, validating the new count against the
92  * limit at each initialized level. In practice, most levels will not have a
93  * limit set. If there is a limit at any initialized level up the tree, the
94  * check must pass or the creation will fail. Likewise, when a filesystem or
95  * snapshot is destroyed, the counts are recursively adjusted all the way up
96  * the initizized nodes in the tree. Renaming a filesystem into different point
97  * in the tree will first validate, then update the counts on each branch up to
98  * the common ancestor. A receive will also validate the counts and then update
99  * them.
100  *
101  * An exception to the above behavior is that the limit is not enforced if the
102  * user has permission to modify the limit. This is primarily so that
103  * recursive snapshots in the global zone always work. We want to prevent a
104  * denial-of-service in which a lower level delegated dataset could max out its
105  * limit and thus block recursive snapshots from being taken in the global zone.
106  * Because of this, it is possible for the snapshot count to be over the limit
107  * and snapshots taken in the global zone could cause a lower level dataset to
108  * hit or exceed its limit. The administrator taking the global zone recursive
109  * snapshot should be aware of this side-effect and behave accordingly.
110  * For consistency, the filesystem limit is also not enforced if the user can
111  * modify the limit.
112  *
113  * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114  * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115  * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116  * dsl_dir_init_fs_ss_count().
117  *
118  * There is a special case when we receive a filesystem that already exists. In
119  * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120  * never update the filesystem counts for temporary clones.
121  *
122  * Likewise, we do not update the snapshot counts for temporary snapshots,
123  * such as those created by zfs diff.
124  */
125 
126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
127 
128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
129 
130 static void
131 dsl_dir_evict_async(void *dbu)
132 {
133 	dsl_dir_t *dd = dbu;
134 	dsl_pool_t *dp = dd->dd_pool;
135 	int t;
136 
137 	dd->dd_dbuf = NULL;
138 
139 	for (t = 0; t < TXG_SIZE; t++) {
140 		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
141 		ASSERT(dd->dd_tempreserved[t] == 0);
142 		ASSERT(dd->dd_space_towrite[t] == 0);
143 	}
144 
145 	if (dd->dd_parent)
146 		dsl_dir_async_rele(dd->dd_parent, dd);
147 
148 	spa_async_close(dd->dd_pool->dp_spa, dd);
149 
150 	dsl_prop_fini(dd);
151 	mutex_destroy(&dd->dd_lock);
152 	kmem_free(dd, sizeof (dsl_dir_t));
153 }
154 
155 int
156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
157     const char *tail, void *tag, dsl_dir_t **ddp)
158 {
159 	dmu_buf_t *dbuf;
160 	dsl_dir_t *dd;
161 	int err;
162 
163 	ASSERT(dsl_pool_config_held(dp));
164 
165 	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
166 	if (err != 0)
167 		return (err);
168 	dd = dmu_buf_get_user(dbuf);
169 #ifdef ZFS_DEBUG
170 	{
171 		dmu_object_info_t doi;
172 		dmu_object_info_from_db(dbuf, &doi);
173 		ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
174 		ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
175 	}
176 #endif
177 	if (dd == NULL) {
178 		dsl_dir_t *winner;
179 
180 		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
181 		dd->dd_object = ddobj;
182 		dd->dd_dbuf = dbuf;
183 		dd->dd_pool = dp;
184 		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
185 		dsl_prop_init(dd);
186 
187 		dsl_dir_snap_cmtime_update(dd);
188 
189 		if (dsl_dir_phys(dd)->dd_parent_obj) {
190 			err = dsl_dir_hold_obj(dp,
191 			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
192 			    &dd->dd_parent);
193 			if (err != 0)
194 				goto errout;
195 			if (tail) {
196 #ifdef ZFS_DEBUG
197 				uint64_t foundobj;
198 
199 				err = zap_lookup(dp->dp_meta_objset,
200 				    dsl_dir_phys(dd->dd_parent)->
201 				    dd_child_dir_zapobj, tail,
202 				    sizeof (foundobj), 1, &foundobj);
203 				ASSERT(err || foundobj == ddobj);
204 #endif
205 				(void) strcpy(dd->dd_myname, tail);
206 			} else {
207 				err = zap_value_search(dp->dp_meta_objset,
208 				    dsl_dir_phys(dd->dd_parent)->
209 				    dd_child_dir_zapobj,
210 				    ddobj, 0, dd->dd_myname);
211 			}
212 			if (err != 0)
213 				goto errout;
214 		} else {
215 			(void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
216 		}
217 
218 		if (dsl_dir_is_clone(dd)) {
219 			dmu_buf_t *origin_bonus;
220 			dsl_dataset_phys_t *origin_phys;
221 
222 			/*
223 			 * We can't open the origin dataset, because
224 			 * that would require opening this dsl_dir.
225 			 * Just look at its phys directly instead.
226 			 */
227 			err = dmu_bonus_hold(dp->dp_meta_objset,
228 			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
229 			    &origin_bonus);
230 			if (err != 0)
231 				goto errout;
232 			origin_phys = origin_bonus->db_data;
233 			dd->dd_origin_txg =
234 			    origin_phys->ds_creation_txg;
235 			dmu_buf_rele(origin_bonus, FTAG);
236 		}
237 
238 		dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
239 		    &dd->dd_dbuf);
240 		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
241 		if (winner != NULL) {
242 			if (dd->dd_parent)
243 				dsl_dir_rele(dd->dd_parent, dd);
244 			dsl_prop_fini(dd);
245 			mutex_destroy(&dd->dd_lock);
246 			kmem_free(dd, sizeof (dsl_dir_t));
247 			dd = winner;
248 		} else {
249 			spa_open_ref(dp->dp_spa, dd);
250 		}
251 	}
252 
253 	/*
254 	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
255 	 * holds on the spa.  We need the open-to-close holds because
256 	 * otherwise the spa_refcnt wouldn't change when we open a
257 	 * dir which the spa also has open, so we could incorrectly
258 	 * think it was OK to unload/export/destroy the pool.  We need
259 	 * the instantiate-to-evict hold because the dsl_dir_t has a
260 	 * pointer to the dd_pool, which has a pointer to the spa_t.
261 	 */
262 	spa_open_ref(dp->dp_spa, tag);
263 	ASSERT3P(dd->dd_pool, ==, dp);
264 	ASSERT3U(dd->dd_object, ==, ddobj);
265 	ASSERT3P(dd->dd_dbuf, ==, dbuf);
266 	*ddp = dd;
267 	return (0);
268 
269 errout:
270 	if (dd->dd_parent)
271 		dsl_dir_rele(dd->dd_parent, dd);
272 	dsl_prop_fini(dd);
273 	mutex_destroy(&dd->dd_lock);
274 	kmem_free(dd, sizeof (dsl_dir_t));
275 	dmu_buf_rele(dbuf, tag);
276 	return (err);
277 }
278 
279 void
280 dsl_dir_rele(dsl_dir_t *dd, void *tag)
281 {
282 	dprintf_dd(dd, "%s\n", "");
283 	spa_close(dd->dd_pool->dp_spa, tag);
284 	dmu_buf_rele(dd->dd_dbuf, tag);
285 }
286 
287 /*
288  * Remove a reference to the given dsl dir that is being asynchronously
289  * released.  Async releases occur from a taskq performing eviction of
290  * dsl datasets and dirs.  This process is identical to a normal release
291  * with the exception of using the async API for releasing the reference on
292  * the spa.
293  */
294 void
295 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
296 {
297 	dprintf_dd(dd, "%s\n", "");
298 	spa_async_close(dd->dd_pool->dp_spa, tag);
299 	dmu_buf_rele(dd->dd_dbuf, tag);
300 }
301 
302 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
303 void
304 dsl_dir_name(dsl_dir_t *dd, char *buf)
305 {
306 	if (dd->dd_parent) {
307 		dsl_dir_name(dd->dd_parent, buf);
308 		VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
309 		    ZFS_MAX_DATASET_NAME_LEN);
310 	} else {
311 		buf[0] = '\0';
312 	}
313 	if (!MUTEX_HELD(&dd->dd_lock)) {
314 		/*
315 		 * recursive mutex so that we can use
316 		 * dprintf_dd() with dd_lock held
317 		 */
318 		mutex_enter(&dd->dd_lock);
319 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
320 		    <, ZFS_MAX_DATASET_NAME_LEN);
321 		mutex_exit(&dd->dd_lock);
322 	} else {
323 		VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
324 		    <, ZFS_MAX_DATASET_NAME_LEN);
325 	}
326 }
327 
328 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
329 int
330 dsl_dir_namelen(dsl_dir_t *dd)
331 {
332 	int result = 0;
333 
334 	if (dd->dd_parent) {
335 		/* parent's name + 1 for the "/" */
336 		result = dsl_dir_namelen(dd->dd_parent) + 1;
337 	}
338 
339 	if (!MUTEX_HELD(&dd->dd_lock)) {
340 		/* see dsl_dir_name */
341 		mutex_enter(&dd->dd_lock);
342 		result += strlen(dd->dd_myname);
343 		mutex_exit(&dd->dd_lock);
344 	} else {
345 		result += strlen(dd->dd_myname);
346 	}
347 
348 	return (result);
349 }
350 
351 static int
352 getcomponent(const char *path, char *component, const char **nextp)
353 {
354 	char *p;
355 
356 	if ((path == NULL) || (path[0] == '\0'))
357 		return (SET_ERROR(ENOENT));
358 	/* This would be a good place to reserve some namespace... */
359 	p = strpbrk(path, "/@");
360 	if (p && (p[1] == '/' || p[1] == '@')) {
361 		/* two separators in a row */
362 		return (SET_ERROR(EINVAL));
363 	}
364 	if (p == NULL || p == path) {
365 		/*
366 		 * if the first thing is an @ or /, it had better be an
367 		 * @ and it had better not have any more ats or slashes,
368 		 * and it had better have something after the @.
369 		 */
370 		if (p != NULL &&
371 		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
372 			return (SET_ERROR(EINVAL));
373 		if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
374 			return (SET_ERROR(ENAMETOOLONG));
375 		(void) strcpy(component, path);
376 		p = NULL;
377 	} else if (p[0] == '/') {
378 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
379 			return (SET_ERROR(ENAMETOOLONG));
380 		(void) strncpy(component, path, p - path);
381 		component[p - path] = '\0';
382 		p++;
383 	} else if (p[0] == '@') {
384 		/*
385 		 * if the next separator is an @, there better not be
386 		 * any more slashes.
387 		 */
388 		if (strchr(path, '/'))
389 			return (SET_ERROR(EINVAL));
390 		if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
391 			return (SET_ERROR(ENAMETOOLONG));
392 		(void) strncpy(component, path, p - path);
393 		component[p - path] = '\0';
394 	} else {
395 		panic("invalid p=%p", (void *)p);
396 	}
397 	*nextp = p;
398 	return (0);
399 }
400 
401 /*
402  * Return the dsl_dir_t, and possibly the last component which couldn't
403  * be found in *tail.  The name must be in the specified dsl_pool_t.  This
404  * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
405  * path is bogus, or if tail==NULL and we couldn't parse the whole name.
406  * (*tail)[0] == '@' means that the last component is a snapshot.
407  */
408 int
409 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
410     dsl_dir_t **ddp, const char **tailp)
411 {
412 	char buf[ZFS_MAX_DATASET_NAME_LEN];
413 	const char *spaname, *next, *nextnext = NULL;
414 	int err;
415 	dsl_dir_t *dd;
416 	uint64_t ddobj;
417 
418 	err = getcomponent(name, buf, &next);
419 	if (err != 0)
420 		return (err);
421 
422 	/* Make sure the name is in the specified pool. */
423 	spaname = spa_name(dp->dp_spa);
424 	if (strcmp(buf, spaname) != 0)
425 		return (SET_ERROR(EXDEV));
426 
427 	ASSERT(dsl_pool_config_held(dp));
428 
429 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
430 	if (err != 0) {
431 		return (err);
432 	}
433 
434 	while (next != NULL) {
435 		dsl_dir_t *child_dd;
436 		err = getcomponent(next, buf, &nextnext);
437 		if (err != 0)
438 			break;
439 		ASSERT(next[0] != '\0');
440 		if (next[0] == '@')
441 			break;
442 		dprintf("looking up %s in obj%lld\n",
443 		    buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
444 
445 		err = zap_lookup(dp->dp_meta_objset,
446 		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
447 		    buf, sizeof (ddobj), 1, &ddobj);
448 		if (err != 0) {
449 			if (err == ENOENT)
450 				err = 0;
451 			break;
452 		}
453 
454 		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
455 		if (err != 0)
456 			break;
457 		dsl_dir_rele(dd, tag);
458 		dd = child_dd;
459 		next = nextnext;
460 	}
461 
462 	if (err != 0) {
463 		dsl_dir_rele(dd, tag);
464 		return (err);
465 	}
466 
467 	/*
468 	 * It's an error if there's more than one component left, or
469 	 * tailp==NULL and there's any component left.
470 	 */
471 	if (next != NULL &&
472 	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
473 		/* bad path name */
474 		dsl_dir_rele(dd, tag);
475 		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
476 		err = SET_ERROR(ENOENT);
477 	}
478 	if (tailp != NULL)
479 		*tailp = next;
480 	*ddp = dd;
481 	return (err);
482 }
483 
484 /*
485  * If the counts are already initialized for this filesystem and its
486  * descendants then do nothing, otherwise initialize the counts.
487  *
488  * The counts on this filesystem, and those below, may be uninitialized due to
489  * either the use of a pre-existing pool which did not support the
490  * filesystem/snapshot limit feature, or one in which the feature had not yet
491  * been enabled.
492  *
493  * Recursively descend the filesystem tree and update the filesystem/snapshot
494  * counts on each filesystem below, then update the cumulative count on the
495  * current filesystem. If the filesystem already has a count set on it,
496  * then we know that its counts, and the counts on the filesystems below it,
497  * are already correct, so we don't have to update this filesystem.
498  */
499 static void
500 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
501 {
502 	uint64_t my_fs_cnt = 0;
503 	uint64_t my_ss_cnt = 0;
504 	dsl_pool_t *dp = dd->dd_pool;
505 	objset_t *os = dp->dp_meta_objset;
506 	zap_cursor_t *zc;
507 	zap_attribute_t *za;
508 	dsl_dataset_t *ds;
509 
510 	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
511 	ASSERT(dsl_pool_config_held(dp));
512 	ASSERT(dmu_tx_is_syncing(tx));
513 
514 	dsl_dir_zapify(dd, tx);
515 
516 	/*
517 	 * If the filesystem count has already been initialized then we
518 	 * don't need to recurse down any further.
519 	 */
520 	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
521 		return;
522 
523 	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
524 	za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
525 
526 	/* Iterate my child dirs */
527 	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
528 	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
529 		dsl_dir_t *chld_dd;
530 		uint64_t count;
531 
532 		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
533 		    &chld_dd));
534 
535 		/*
536 		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
537 		 * temporary datasets.
538 		 */
539 		if (chld_dd->dd_myname[0] == '$' ||
540 		    chld_dd->dd_myname[0] == '%') {
541 			dsl_dir_rele(chld_dd, FTAG);
542 			continue;
543 		}
544 
545 		my_fs_cnt++;	/* count this child */
546 
547 		dsl_dir_init_fs_ss_count(chld_dd, tx);
548 
549 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
550 		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
551 		my_fs_cnt += count;
552 		VERIFY0(zap_lookup(os, chld_dd->dd_object,
553 		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
554 		my_ss_cnt += count;
555 
556 		dsl_dir_rele(chld_dd, FTAG);
557 	}
558 	zap_cursor_fini(zc);
559 	/* Count my snapshots (we counted children's snapshots above) */
560 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
561 	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
562 
563 	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
564 	    zap_cursor_retrieve(zc, za) == 0;
565 	    zap_cursor_advance(zc)) {
566 		/* Don't count temporary snapshots */
567 		if (za->za_name[0] != '%')
568 			my_ss_cnt++;
569 	}
570 	zap_cursor_fini(zc);
571 
572 	dsl_dataset_rele(ds, FTAG);
573 
574 	kmem_free(zc, sizeof (zap_cursor_t));
575 	kmem_free(za, sizeof (zap_attribute_t));
576 
577 	/* we're in a sync task, update counts */
578 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
579 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
580 	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
581 	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
582 	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
583 }
584 
585 static int
586 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
587 {
588 	char *ddname = (char *)arg;
589 	dsl_pool_t *dp = dmu_tx_pool(tx);
590 	dsl_dataset_t *ds;
591 	dsl_dir_t *dd;
592 	int error;
593 
594 	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
595 	if (error != 0)
596 		return (error);
597 
598 	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
599 		dsl_dataset_rele(ds, FTAG);
600 		return (SET_ERROR(ENOTSUP));
601 	}
602 
603 	dd = ds->ds_dir;
604 	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
605 	    dsl_dir_is_zapified(dd) &&
606 	    zap_contains(dp->dp_meta_objset, dd->dd_object,
607 	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
608 		dsl_dataset_rele(ds, FTAG);
609 		return (SET_ERROR(EALREADY));
610 	}
611 
612 	dsl_dataset_rele(ds, FTAG);
613 	return (0);
614 }
615 
616 static void
617 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
618 {
619 	char *ddname = (char *)arg;
620 	dsl_pool_t *dp = dmu_tx_pool(tx);
621 	dsl_dataset_t *ds;
622 	spa_t *spa;
623 
624 	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
625 
626 	spa = dsl_dataset_get_spa(ds);
627 
628 	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
629 		/*
630 		 * Since the feature was not active and we're now setting a
631 		 * limit, increment the feature-active counter so that the
632 		 * feature becomes active for the first time.
633 		 *
634 		 * We are already in a sync task so we can update the MOS.
635 		 */
636 		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
637 	}
638 
639 	/*
640 	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
641 	 * we need to ensure the counts are correct. Descend down the tree from
642 	 * this point and update all of the counts to be accurate.
643 	 */
644 	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
645 
646 	dsl_dataset_rele(ds, FTAG);
647 }
648 
649 /*
650  * Make sure the feature is enabled and activate it if necessary.
651  * Since we're setting a limit, ensure the on-disk counts are valid.
652  * This is only called by the ioctl path when setting a limit value.
653  *
654  * We do not need to validate the new limit, since users who can change the
655  * limit are also allowed to exceed the limit.
656  */
657 int
658 dsl_dir_activate_fs_ss_limit(const char *ddname)
659 {
660 	int error;
661 
662 	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
663 	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
664 	    ZFS_SPACE_CHECK_RESERVED);
665 
666 	if (error == EALREADY)
667 		error = 0;
668 
669 	return (error);
670 }
671 
672 /*
673  * Used to determine if the filesystem_limit or snapshot_limit should be
674  * enforced. We allow the limit to be exceeded if the user has permission to
675  * write the property value. We pass in the creds that we got in the open
676  * context since we will always be the GZ root in syncing context. We also have
677  * to handle the case where we are allowed to change the limit on the current
678  * dataset, but there may be another limit in the tree above.
679  *
680  * We can never modify these two properties within a non-global zone. In
681  * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
682  * can't use that function since we are already holding the dp_config_rwlock.
683  * In addition, we already have the dd and dealing with snapshots is simplified
684  * in this code.
685  */
686 
687 typedef enum {
688 	ENFORCE_ALWAYS,
689 	ENFORCE_NEVER,
690 	ENFORCE_ABOVE
691 } enforce_res_t;
692 
693 static enforce_res_t
694 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
695 {
696 	enforce_res_t enforce = ENFORCE_ALWAYS;
697 	uint64_t obj;
698 	dsl_dataset_t *ds;
699 	uint64_t zoned;
700 
701 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
702 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
703 
704 #ifdef _KERNEL
705 	if (crgetzoneid(cr) != GLOBAL_ZONEID)
706 		return (ENFORCE_ALWAYS);
707 
708 	if (secpolicy_zfs(cr) == 0)
709 		return (ENFORCE_NEVER);
710 #endif
711 
712 	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
713 		return (ENFORCE_ALWAYS);
714 
715 	ASSERT(dsl_pool_config_held(dd->dd_pool));
716 
717 	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
718 		return (ENFORCE_ALWAYS);
719 
720 	if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
721 		/* Only root can access zoned fs's from the GZ */
722 		enforce = ENFORCE_ALWAYS;
723 	} else {
724 		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
725 			enforce = ENFORCE_ABOVE;
726 	}
727 
728 	dsl_dataset_rele(ds, FTAG);
729 	return (enforce);
730 }
731 
732 /*
733  * Check if adding additional child filesystem(s) would exceed any filesystem
734  * limits or adding additional snapshot(s) would exceed any snapshot limits.
735  * The prop argument indicates which limit to check.
736  *
737  * Note that all filesystem limits up to the root (or the highest
738  * initialized) filesystem or the given ancestor must be satisfied.
739  */
740 int
741 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
742     dsl_dir_t *ancestor, cred_t *cr)
743 {
744 	objset_t *os = dd->dd_pool->dp_meta_objset;
745 	uint64_t limit, count;
746 	char *count_prop;
747 	enforce_res_t enforce;
748 	int err = 0;
749 
750 	ASSERT(dsl_pool_config_held(dd->dd_pool));
751 	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
752 	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
753 
754 	/*
755 	 * If we're allowed to change the limit, don't enforce the limit
756 	 * e.g. this can happen if a snapshot is taken by an administrative
757 	 * user in the global zone (i.e. a recursive snapshot by root).
758 	 * However, we must handle the case of delegated permissions where we
759 	 * are allowed to change the limit on the current dataset, but there
760 	 * is another limit in the tree above.
761 	 */
762 	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
763 	if (enforce == ENFORCE_NEVER)
764 		return (0);
765 
766 	/*
767 	 * e.g. if renaming a dataset with no snapshots, count adjustment
768 	 * is 0.
769 	 */
770 	if (delta == 0)
771 		return (0);
772 
773 	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
774 		/*
775 		 * We don't enforce the limit for temporary snapshots. This is
776 		 * indicated by a NULL cred_t argument.
777 		 */
778 		if (cr == NULL)
779 			return (0);
780 
781 		count_prop = DD_FIELD_SNAPSHOT_COUNT;
782 	} else {
783 		count_prop = DD_FIELD_FILESYSTEM_COUNT;
784 	}
785 
786 	/*
787 	 * If an ancestor has been provided, stop checking the limit once we
788 	 * hit that dir. We need this during rename so that we don't overcount
789 	 * the check once we recurse up to the common ancestor.
790 	 */
791 	if (ancestor == dd)
792 		return (0);
793 
794 	/*
795 	 * If we hit an uninitialized node while recursing up the tree, we can
796 	 * stop since we know there is no limit here (or above). The counts are
797 	 * not valid on this node and we know we won't touch this node's counts.
798 	 */
799 	if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
800 	    count_prop, sizeof (count), 1, &count) == ENOENT)
801 		return (0);
802 
803 	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
804 	    B_FALSE);
805 	if (err != 0)
806 		return (err);
807 
808 	/* Is there a limit which we've hit? */
809 	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
810 		return (SET_ERROR(EDQUOT));
811 
812 	if (dd->dd_parent != NULL)
813 		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
814 		    ancestor, cr);
815 
816 	return (err);
817 }
818 
819 /*
820  * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
821  * parents. When a new filesystem/snapshot is created, increment the count on
822  * all parents, and when a filesystem/snapshot is destroyed, decrement the
823  * count.
824  */
825 void
826 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
827     dmu_tx_t *tx)
828 {
829 	int err;
830 	objset_t *os = dd->dd_pool->dp_meta_objset;
831 	uint64_t count;
832 
833 	ASSERT(dsl_pool_config_held(dd->dd_pool));
834 	ASSERT(dmu_tx_is_syncing(tx));
835 	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
836 	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
837 
838 	/*
839 	 * When we receive an incremental stream into a filesystem that already
840 	 * exists, a temporary clone is created.  We don't count this temporary
841 	 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
842 	 * $MOS & $ORIGIN) objsets.
843 	 */
844 	if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
845 	    strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
846 		return;
847 
848 	/*
849 	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
850 	 */
851 	if (delta == 0)
852 		return;
853 
854 	/*
855 	 * If we hit an uninitialized node while recursing up the tree, we can
856 	 * stop since we know the counts are not valid on this node and we
857 	 * know we shouldn't touch this node's counts. An uninitialized count
858 	 * on the node indicates that either the feature has not yet been
859 	 * activated or there are no limits on this part of the tree.
860 	 */
861 	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
862 	    prop, sizeof (count), 1, &count)) == ENOENT)
863 		return;
864 	VERIFY0(err);
865 
866 	count += delta;
867 	/* Use a signed verify to make sure we're not neg. */
868 	VERIFY3S(count, >=, 0);
869 
870 	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
871 	    tx));
872 
873 	/* Roll up this additional count into our ancestors */
874 	if (dd->dd_parent != NULL)
875 		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
876 }
877 
878 uint64_t
879 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
880     dmu_tx_t *tx)
881 {
882 	objset_t *mos = dp->dp_meta_objset;
883 	uint64_t ddobj;
884 	dsl_dir_phys_t *ddphys;
885 	dmu_buf_t *dbuf;
886 
887 	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
888 	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
889 	if (pds) {
890 		VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
891 		    name, sizeof (uint64_t), 1, &ddobj, tx));
892 	} else {
893 		/* it's the root dir */
894 		VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
895 		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
896 	}
897 	VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
898 	dmu_buf_will_dirty(dbuf, tx);
899 	ddphys = dbuf->db_data;
900 
901 	ddphys->dd_creation_time = gethrestime_sec();
902 	if (pds) {
903 		ddphys->dd_parent_obj = pds->dd_object;
904 
905 		/* update the filesystem counts */
906 		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
907 	}
908 	ddphys->dd_props_zapobj = zap_create(mos,
909 	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
910 	ddphys->dd_child_dir_zapobj = zap_create(mos,
911 	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
912 	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
913 		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
914 	dmu_buf_rele(dbuf, FTAG);
915 
916 	return (ddobj);
917 }
918 
919 boolean_t
920 dsl_dir_is_clone(dsl_dir_t *dd)
921 {
922 	return (dsl_dir_phys(dd)->dd_origin_obj &&
923 	    (dd->dd_pool->dp_origin_snap == NULL ||
924 	    dsl_dir_phys(dd)->dd_origin_obj !=
925 	    dd->dd_pool->dp_origin_snap->ds_object));
926 }
927 
928 
929 uint64_t
930 dsl_dir_get_used(dsl_dir_t *dd)
931 {
932 	return (dsl_dir_phys(dd)->dd_used_bytes);
933 }
934 
935 uint64_t
936 dsl_dir_get_quota(dsl_dir_t *dd)
937 {
938 	return (dsl_dir_phys(dd)->dd_quota);
939 }
940 
941 uint64_t
942 dsl_dir_get_reservation(dsl_dir_t *dd)
943 {
944 	return (dsl_dir_phys(dd)->dd_reserved);
945 }
946 
947 uint64_t
948 dsl_dir_get_compressratio(dsl_dir_t *dd)
949 {
950 	/* a fixed point number, 100x the ratio */
951 	return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
952 	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
953 	    dsl_dir_phys(dd)->dd_compressed_bytes));
954 }
955 
956 uint64_t
957 dsl_dir_get_logicalused(dsl_dir_t *dd)
958 {
959 	return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
960 }
961 
962 uint64_t
963 dsl_dir_get_usedsnap(dsl_dir_t *dd)
964 {
965 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
966 }
967 
968 uint64_t
969 dsl_dir_get_usedds(dsl_dir_t *dd)
970 {
971 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
972 }
973 
974 uint64_t
975 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
976 {
977 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
978 }
979 
980 uint64_t
981 dsl_dir_get_usedchild(dsl_dir_t *dd)
982 {
983 	return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
984 	    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
985 }
986 
987 void
988 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
989 {
990 	dsl_dataset_t *ds;
991 	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
992 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
993 
994 	dsl_dataset_name(ds, buf);
995 
996 	dsl_dataset_rele(ds, FTAG);
997 }
998 
999 int
1000 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1001 {
1002 	if (dsl_dir_is_zapified(dd)) {
1003 		objset_t *os = dd->dd_pool->dp_meta_objset;
1004 		return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1005 		    sizeof (*count), 1, count));
1006 	} else {
1007 		return (ENOENT);
1008 	}
1009 }
1010 
1011 int
1012 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1013 {
1014 	if (dsl_dir_is_zapified(dd)) {
1015 		objset_t *os = dd->dd_pool->dp_meta_objset;
1016 		return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1017 		    sizeof (*count), 1, count));
1018 	} else {
1019 		return (ENOENT);
1020 	}
1021 }
1022 
1023 void
1024 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1025 {
1026 	mutex_enter(&dd->dd_lock);
1027 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1028 	    dsl_dir_get_quota(dd));
1029 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1030 	    dsl_dir_get_reservation(dd));
1031 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1032 	    dsl_dir_get_logicalused(dd));
1033 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1034 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1035 		    dsl_dir_get_usedsnap(dd));
1036 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1037 		    dsl_dir_get_usedds(dd));
1038 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1039 		    dsl_dir_get_usedrefreserv(dd));
1040 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1041 		    dsl_dir_get_usedchild(dd));
1042 	}
1043 	mutex_exit(&dd->dd_lock);
1044 
1045 	uint64_t count;
1046 	if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1047 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1048 		    count);
1049 	}
1050 	if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1051 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1052 		    count);
1053 	}
1054 
1055 	if (dsl_dir_is_clone(dd)) {
1056 		char buf[ZFS_MAX_DATASET_NAME_LEN];
1057 		dsl_dir_get_origin(dd, buf);
1058 		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1059 	}
1060 
1061 }
1062 
1063 void
1064 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1065 {
1066 	dsl_pool_t *dp = dd->dd_pool;
1067 
1068 	ASSERT(dsl_dir_phys(dd));
1069 
1070 	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1071 		/* up the hold count until we can be written out */
1072 		dmu_buf_add_ref(dd->dd_dbuf, dd);
1073 	}
1074 }
1075 
1076 static int64_t
1077 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1078 {
1079 	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1080 	uint64_t new_accounted =
1081 	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1082 	return (new_accounted - old_accounted);
1083 }
1084 
1085 void
1086 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1087 {
1088 	ASSERT(dmu_tx_is_syncing(tx));
1089 
1090 	mutex_enter(&dd->dd_lock);
1091 	ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1092 	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1093 	    dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1094 	dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1095 	mutex_exit(&dd->dd_lock);
1096 
1097 	/* release the hold from dsl_dir_dirty */
1098 	dmu_buf_rele(dd->dd_dbuf, dd);
1099 }
1100 
1101 static uint64_t
1102 dsl_dir_space_towrite(dsl_dir_t *dd)
1103 {
1104 	uint64_t space = 0;
1105 
1106 	ASSERT(MUTEX_HELD(&dd->dd_lock));
1107 
1108 	for (int i = 0; i < TXG_SIZE; i++) {
1109 		space += dd->dd_space_towrite[i & TXG_MASK];
1110 		ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1111 	}
1112 	return (space);
1113 }
1114 
1115 /*
1116  * How much space would dd have available if ancestor had delta applied
1117  * to it?  If ondiskonly is set, we're only interested in what's
1118  * on-disk, not estimated pending changes.
1119  */
1120 uint64_t
1121 dsl_dir_space_available(dsl_dir_t *dd,
1122     dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1123 {
1124 	uint64_t parentspace, myspace, quota, used;
1125 
1126 	/*
1127 	 * If there are no restrictions otherwise, assume we have
1128 	 * unlimited space available.
1129 	 */
1130 	quota = UINT64_MAX;
1131 	parentspace = UINT64_MAX;
1132 
1133 	if (dd->dd_parent != NULL) {
1134 		parentspace = dsl_dir_space_available(dd->dd_parent,
1135 		    ancestor, delta, ondiskonly);
1136 	}
1137 
1138 	mutex_enter(&dd->dd_lock);
1139 	if (dsl_dir_phys(dd)->dd_quota != 0)
1140 		quota = dsl_dir_phys(dd)->dd_quota;
1141 	used = dsl_dir_phys(dd)->dd_used_bytes;
1142 	if (!ondiskonly)
1143 		used += dsl_dir_space_towrite(dd);
1144 
1145 	if (dd->dd_parent == NULL) {
1146 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1147 		quota = MIN(quota, poolsize);
1148 	}
1149 
1150 	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1151 		/*
1152 		 * We have some space reserved, in addition to what our
1153 		 * parent gave us.
1154 		 */
1155 		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1156 	}
1157 
1158 	if (dd == ancestor) {
1159 		ASSERT(delta <= 0);
1160 		ASSERT(used >= -delta);
1161 		used += delta;
1162 		if (parentspace != UINT64_MAX)
1163 			parentspace -= delta;
1164 	}
1165 
1166 	if (used > quota) {
1167 		/* over quota */
1168 		myspace = 0;
1169 	} else {
1170 		/*
1171 		 * the lesser of the space provided by our parent and
1172 		 * the space left in our quota
1173 		 */
1174 		myspace = MIN(parentspace, quota - used);
1175 	}
1176 
1177 	mutex_exit(&dd->dd_lock);
1178 
1179 	return (myspace);
1180 }
1181 
1182 struct tempreserve {
1183 	list_node_t tr_node;
1184 	dsl_dir_t *tr_ds;
1185 	uint64_t tr_size;
1186 };
1187 
1188 static int
1189 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1190     boolean_t ignorequota, list_t *tr_list,
1191     dmu_tx_t *tx, boolean_t first)
1192 {
1193 	uint64_t txg = tx->tx_txg;
1194 	uint64_t quota;
1195 	struct tempreserve *tr;
1196 	int retval = EDQUOT;
1197 	uint64_t ref_rsrv = 0;
1198 
1199 	ASSERT3U(txg, !=, 0);
1200 	ASSERT3S(asize, >, 0);
1201 
1202 	mutex_enter(&dd->dd_lock);
1203 
1204 	/*
1205 	 * Check against the dsl_dir's quota.  We don't add in the delta
1206 	 * when checking for over-quota because they get one free hit.
1207 	 */
1208 	uint64_t est_inflight = dsl_dir_space_towrite(dd);
1209 	for (int i = 0; i < TXG_SIZE; i++)
1210 		est_inflight += dd->dd_tempreserved[i];
1211 	uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1212 
1213 	/*
1214 	 * On the first iteration, fetch the dataset's used-on-disk and
1215 	 * refreservation values. Also, if checkrefquota is set, test if
1216 	 * allocating this space would exceed the dataset's refquota.
1217 	 */
1218 	if (first && tx->tx_objset) {
1219 		int error;
1220 		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1221 
1222 		error = dsl_dataset_check_quota(ds, !netfree,
1223 		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1224 		if (error != 0) {
1225 			mutex_exit(&dd->dd_lock);
1226 			return (error);
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * If this transaction will result in a net free of space,
1232 	 * we want to let it through.
1233 	 */
1234 	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1235 		quota = UINT64_MAX;
1236 	else
1237 		quota = dsl_dir_phys(dd)->dd_quota;
1238 
1239 	/*
1240 	 * Adjust the quota against the actual pool size at the root
1241 	 * minus any outstanding deferred frees.
1242 	 * To ensure that it's possible to remove files from a full
1243 	 * pool without inducing transient overcommits, we throttle
1244 	 * netfree transactions against a quota that is slightly larger,
1245 	 * but still within the pool's allocation slop.  In cases where
1246 	 * we're very close to full, this will allow a steady trickle of
1247 	 * removes to get through.
1248 	 */
1249 	uint64_t deferred = 0;
1250 	if (dd->dd_parent == NULL) {
1251 		spa_t *spa = dd->dd_pool->dp_spa;
1252 		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1253 		deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1254 		if (poolsize - deferred < quota) {
1255 			quota = poolsize - deferred;
1256 			retval = ENOSPC;
1257 		}
1258 	}
1259 
1260 	/*
1261 	 * If they are requesting more space, and our current estimate
1262 	 * is over quota, they get to try again unless the actual
1263 	 * on-disk is over quota and there are no pending changes (which
1264 	 * may free up space for us).
1265 	 */
1266 	if (used_on_disk + est_inflight >= quota) {
1267 		if (est_inflight > 0 || used_on_disk < quota ||
1268 		    (retval == ENOSPC && used_on_disk < quota + deferred))
1269 			retval = ERESTART;
1270 		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1271 		    "quota=%lluK tr=%lluK err=%d\n",
1272 		    used_on_disk>>10, est_inflight>>10,
1273 		    quota>>10, asize>>10, retval);
1274 		mutex_exit(&dd->dd_lock);
1275 		return (SET_ERROR(retval));
1276 	}
1277 
1278 	/* We need to up our estimated delta before dropping dd_lock */
1279 	dd->dd_tempreserved[txg & TXG_MASK] += asize;
1280 
1281 	uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1282 	    asize - ref_rsrv);
1283 	mutex_exit(&dd->dd_lock);
1284 
1285 	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1286 	tr->tr_ds = dd;
1287 	tr->tr_size = asize;
1288 	list_insert_tail(tr_list, tr);
1289 
1290 	/* see if it's OK with our parent */
1291 	if (dd->dd_parent != NULL && parent_rsrv != 0) {
1292 		boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1293 
1294 		return (dsl_dir_tempreserve_impl(dd->dd_parent,
1295 		    parent_rsrv, netfree, ismos, tr_list, tx, B_FALSE));
1296 	} else {
1297 		return (0);
1298 	}
1299 }
1300 
1301 /*
1302  * Reserve space in this dsl_dir, to be used in this tx's txg.
1303  * After the space has been dirtied (and dsl_dir_willuse_space()
1304  * has been called), the reservation should be canceled, using
1305  * dsl_dir_tempreserve_clear().
1306  */
1307 int
1308 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1309     boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1310 {
1311 	int err;
1312 	list_t *tr_list;
1313 
1314 	if (asize == 0) {
1315 		*tr_cookiep = NULL;
1316 		return (0);
1317 	}
1318 
1319 	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1320 	list_create(tr_list, sizeof (struct tempreserve),
1321 	    offsetof(struct tempreserve, tr_node));
1322 	ASSERT3S(asize, >, 0);
1323 
1324 	err = arc_tempreserve_space(lsize, tx->tx_txg);
1325 	if (err == 0) {
1326 		struct tempreserve *tr;
1327 
1328 		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1329 		tr->tr_size = lsize;
1330 		list_insert_tail(tr_list, tr);
1331 	} else {
1332 		if (err == EAGAIN) {
1333 			/*
1334 			 * If arc_memory_throttle() detected that pageout
1335 			 * is running and we are low on memory, we delay new
1336 			 * non-pageout transactions to give pageout an
1337 			 * advantage.
1338 			 *
1339 			 * It is unfortunate to be delaying while the caller's
1340 			 * locks are held.
1341 			 */
1342 			txg_delay(dd->dd_pool, tx->tx_txg,
1343 			    MSEC2NSEC(10), MSEC2NSEC(10));
1344 			err = SET_ERROR(ERESTART);
1345 		}
1346 	}
1347 
1348 	if (err == 0) {
1349 		err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1350 		    B_FALSE, tr_list, tx, B_TRUE);
1351 	}
1352 
1353 	if (err != 0)
1354 		dsl_dir_tempreserve_clear(tr_list, tx);
1355 	else
1356 		*tr_cookiep = tr_list;
1357 
1358 	return (err);
1359 }
1360 
1361 /*
1362  * Clear a temporary reservation that we previously made with
1363  * dsl_dir_tempreserve_space().
1364  */
1365 void
1366 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1367 {
1368 	int txgidx = tx->tx_txg & TXG_MASK;
1369 	list_t *tr_list = tr_cookie;
1370 	struct tempreserve *tr;
1371 
1372 	ASSERT3U(tx->tx_txg, !=, 0);
1373 
1374 	if (tr_cookie == NULL)
1375 		return;
1376 
1377 	while ((tr = list_head(tr_list)) != NULL) {
1378 		if (tr->tr_ds) {
1379 			mutex_enter(&tr->tr_ds->dd_lock);
1380 			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1381 			    tr->tr_size);
1382 			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1383 			mutex_exit(&tr->tr_ds->dd_lock);
1384 		} else {
1385 			arc_tempreserve_clear(tr->tr_size);
1386 		}
1387 		list_remove(tr_list, tr);
1388 		kmem_free(tr, sizeof (struct tempreserve));
1389 	}
1390 
1391 	kmem_free(tr_list, sizeof (list_t));
1392 }
1393 
1394 /*
1395  * This should be called from open context when we think we're going to write
1396  * or free space, for example when dirtying data. Be conservative; it's okay
1397  * to write less space or free more, but we don't want to write more or free
1398  * less than the amount specified.
1399  */
1400 void
1401 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1402 {
1403 	int64_t parent_space;
1404 	uint64_t est_used;
1405 
1406 	mutex_enter(&dd->dd_lock);
1407 	if (space > 0)
1408 		dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1409 
1410 	est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1411 	parent_space = parent_delta(dd, est_used, space);
1412 	mutex_exit(&dd->dd_lock);
1413 
1414 	/* Make sure that we clean up dd_space_to* */
1415 	dsl_dir_dirty(dd, tx);
1416 
1417 	/* XXX this is potentially expensive and unnecessary... */
1418 	if (parent_space && dd->dd_parent)
1419 		dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1420 }
1421 
1422 /* call from syncing context when we actually write/free space for this dd */
1423 void
1424 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1425     int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1426 {
1427 	int64_t accounted_delta;
1428 
1429 	/*
1430 	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1431 	 * dd_lock held, so that it can atomically update
1432 	 * ds->ds_reserved and the dsl_dir accounting, so that
1433 	 * dsl_dataset_check_quota() can see dataset and dir accounting
1434 	 * consistently.
1435 	 */
1436 	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1437 
1438 	ASSERT(dmu_tx_is_syncing(tx));
1439 	ASSERT(type < DD_USED_NUM);
1440 
1441 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1442 
1443 	if (needlock)
1444 		mutex_enter(&dd->dd_lock);
1445 	accounted_delta =
1446 	    parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1447 	ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1448 	ASSERT(compressed >= 0 ||
1449 	    dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1450 	ASSERT(uncompressed >= 0 ||
1451 	    dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1452 	dsl_dir_phys(dd)->dd_used_bytes += used;
1453 	dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1454 	dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1455 
1456 	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1457 		ASSERT(used > 0 ||
1458 		    dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1459 		dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1460 #ifdef DEBUG
1461 		dd_used_t t;
1462 		uint64_t u = 0;
1463 		for (t = 0; t < DD_USED_NUM; t++)
1464 			u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1465 		ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1466 #endif
1467 	}
1468 	if (needlock)
1469 		mutex_exit(&dd->dd_lock);
1470 
1471 	if (dd->dd_parent != NULL) {
1472 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1473 		    accounted_delta, compressed, uncompressed, tx);
1474 		dsl_dir_transfer_space(dd->dd_parent,
1475 		    used - accounted_delta,
1476 		    DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1477 	}
1478 }
1479 
1480 void
1481 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1482     dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1483 {
1484 	ASSERT(dmu_tx_is_syncing(tx));
1485 	ASSERT(oldtype < DD_USED_NUM);
1486 	ASSERT(newtype < DD_USED_NUM);
1487 
1488 	if (delta == 0 ||
1489 	    !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1490 		return;
1491 
1492 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1493 	mutex_enter(&dd->dd_lock);
1494 	ASSERT(delta > 0 ?
1495 	    dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1496 	    dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1497 	ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1498 	dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1499 	dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1500 	mutex_exit(&dd->dd_lock);
1501 }
1502 
1503 typedef struct dsl_dir_set_qr_arg {
1504 	const char *ddsqra_name;
1505 	zprop_source_t ddsqra_source;
1506 	uint64_t ddsqra_value;
1507 } dsl_dir_set_qr_arg_t;
1508 
1509 static int
1510 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1511 {
1512 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1513 	dsl_pool_t *dp = dmu_tx_pool(tx);
1514 	dsl_dataset_t *ds;
1515 	int error;
1516 	uint64_t towrite, newval;
1517 
1518 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1519 	if (error != 0)
1520 		return (error);
1521 
1522 	error = dsl_prop_predict(ds->ds_dir, "quota",
1523 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1524 	if (error != 0) {
1525 		dsl_dataset_rele(ds, FTAG);
1526 		return (error);
1527 	}
1528 
1529 	if (newval == 0) {
1530 		dsl_dataset_rele(ds, FTAG);
1531 		return (0);
1532 	}
1533 
1534 	mutex_enter(&ds->ds_dir->dd_lock);
1535 	/*
1536 	 * If we are doing the preliminary check in open context, and
1537 	 * there are pending changes, then don't fail it, since the
1538 	 * pending changes could under-estimate the amount of space to be
1539 	 * freed up.
1540 	 */
1541 	towrite = dsl_dir_space_towrite(ds->ds_dir);
1542 	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1543 	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1544 	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1545 		error = SET_ERROR(ENOSPC);
1546 	}
1547 	mutex_exit(&ds->ds_dir->dd_lock);
1548 	dsl_dataset_rele(ds, FTAG);
1549 	return (error);
1550 }
1551 
1552 static void
1553 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1554 {
1555 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1556 	dsl_pool_t *dp = dmu_tx_pool(tx);
1557 	dsl_dataset_t *ds;
1558 	uint64_t newval;
1559 
1560 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1561 
1562 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1563 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1564 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1565 		    &ddsqra->ddsqra_value, tx);
1566 
1567 		VERIFY0(dsl_prop_get_int_ds(ds,
1568 		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1569 	} else {
1570 		newval = ddsqra->ddsqra_value;
1571 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1572 		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1573 	}
1574 
1575 	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1576 	mutex_enter(&ds->ds_dir->dd_lock);
1577 	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1578 	mutex_exit(&ds->ds_dir->dd_lock);
1579 	dsl_dataset_rele(ds, FTAG);
1580 }
1581 
1582 int
1583 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1584 {
1585 	dsl_dir_set_qr_arg_t ddsqra;
1586 
1587 	ddsqra.ddsqra_name = ddname;
1588 	ddsqra.ddsqra_source = source;
1589 	ddsqra.ddsqra_value = quota;
1590 
1591 	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1592 	    dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1593 }
1594 
1595 int
1596 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1597 {
1598 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1599 	dsl_pool_t *dp = dmu_tx_pool(tx);
1600 	dsl_dataset_t *ds;
1601 	dsl_dir_t *dd;
1602 	uint64_t newval, used, avail;
1603 	int error;
1604 
1605 	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1606 	if (error != 0)
1607 		return (error);
1608 	dd = ds->ds_dir;
1609 
1610 	/*
1611 	 * If we are doing the preliminary check in open context, the
1612 	 * space estimates may be inaccurate.
1613 	 */
1614 	if (!dmu_tx_is_syncing(tx)) {
1615 		dsl_dataset_rele(ds, FTAG);
1616 		return (0);
1617 	}
1618 
1619 	error = dsl_prop_predict(ds->ds_dir,
1620 	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1621 	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1622 	if (error != 0) {
1623 		dsl_dataset_rele(ds, FTAG);
1624 		return (error);
1625 	}
1626 
1627 	mutex_enter(&dd->dd_lock);
1628 	used = dsl_dir_phys(dd)->dd_used_bytes;
1629 	mutex_exit(&dd->dd_lock);
1630 
1631 	if (dd->dd_parent) {
1632 		avail = dsl_dir_space_available(dd->dd_parent,
1633 		    NULL, 0, FALSE);
1634 	} else {
1635 		avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1636 	}
1637 
1638 	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1639 		uint64_t delta = MAX(used, newval) -
1640 		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1641 
1642 		if (delta > avail ||
1643 		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1644 		    newval > dsl_dir_phys(dd)->dd_quota))
1645 			error = SET_ERROR(ENOSPC);
1646 	}
1647 
1648 	dsl_dataset_rele(ds, FTAG);
1649 	return (error);
1650 }
1651 
1652 void
1653 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1654 {
1655 	uint64_t used;
1656 	int64_t delta;
1657 
1658 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1659 
1660 	mutex_enter(&dd->dd_lock);
1661 	used = dsl_dir_phys(dd)->dd_used_bytes;
1662 	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1663 	dsl_dir_phys(dd)->dd_reserved = value;
1664 
1665 	if (dd->dd_parent != NULL) {
1666 		/* Roll up this additional usage into our ancestors */
1667 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1668 		    delta, 0, 0, tx);
1669 	}
1670 	mutex_exit(&dd->dd_lock);
1671 }
1672 
1673 
1674 static void
1675 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1676 {
1677 	dsl_dir_set_qr_arg_t *ddsqra = arg;
1678 	dsl_pool_t *dp = dmu_tx_pool(tx);
1679 	dsl_dataset_t *ds;
1680 	uint64_t newval;
1681 
1682 	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1683 
1684 	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1685 		dsl_prop_set_sync_impl(ds,
1686 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1687 		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1688 		    &ddsqra->ddsqra_value, tx);
1689 
1690 		VERIFY0(dsl_prop_get_int_ds(ds,
1691 		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1692 	} else {
1693 		newval = ddsqra->ddsqra_value;
1694 		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1695 		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1696 		    (longlong_t)newval);
1697 	}
1698 
1699 	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1700 	dsl_dataset_rele(ds, FTAG);
1701 }
1702 
1703 int
1704 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1705     uint64_t reservation)
1706 {
1707 	dsl_dir_set_qr_arg_t ddsqra;
1708 
1709 	ddsqra.ddsqra_name = ddname;
1710 	ddsqra.ddsqra_source = source;
1711 	ddsqra.ddsqra_value = reservation;
1712 
1713 	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1714 	    dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1715 }
1716 
1717 static dsl_dir_t *
1718 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1719 {
1720 	for (; ds1; ds1 = ds1->dd_parent) {
1721 		dsl_dir_t *dd;
1722 		for (dd = ds2; dd; dd = dd->dd_parent) {
1723 			if (ds1 == dd)
1724 				return (dd);
1725 		}
1726 	}
1727 	return (NULL);
1728 }
1729 
1730 /*
1731  * If delta is applied to dd, how much of that delta would be applied to
1732  * ancestor?  Syncing context only.
1733  */
1734 static int64_t
1735 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1736 {
1737 	if (dd == ancestor)
1738 		return (delta);
1739 
1740 	mutex_enter(&dd->dd_lock);
1741 	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1742 	mutex_exit(&dd->dd_lock);
1743 	return (would_change(dd->dd_parent, delta, ancestor));
1744 }
1745 
1746 typedef struct dsl_dir_rename_arg {
1747 	const char *ddra_oldname;
1748 	const char *ddra_newname;
1749 	cred_t *ddra_cred;
1750 } dsl_dir_rename_arg_t;
1751 
1752 /* ARGSUSED */
1753 static int
1754 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1755 {
1756 	int *deltap = arg;
1757 	char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1758 
1759 	dsl_dataset_name(ds, namebuf);
1760 
1761 	if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN)
1762 		return (SET_ERROR(ENAMETOOLONG));
1763 	return (0);
1764 }
1765 
1766 static int
1767 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1768 {
1769 	dsl_dir_rename_arg_t *ddra = arg;
1770 	dsl_pool_t *dp = dmu_tx_pool(tx);
1771 	dsl_dir_t *dd, *newparent;
1772 	const char *mynewname;
1773 	int error;
1774 	int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1775 
1776 	/* target dir should exist */
1777 	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1778 	if (error != 0)
1779 		return (error);
1780 
1781 	/* new parent should exist */
1782 	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1783 	    &newparent, &mynewname);
1784 	if (error != 0) {
1785 		dsl_dir_rele(dd, FTAG);
1786 		return (error);
1787 	}
1788 
1789 	/* can't rename to different pool */
1790 	if (dd->dd_pool != newparent->dd_pool) {
1791 		dsl_dir_rele(newparent, FTAG);
1792 		dsl_dir_rele(dd, FTAG);
1793 		return (SET_ERROR(ENXIO));
1794 	}
1795 
1796 	/* new name should not already exist */
1797 	if (mynewname == NULL) {
1798 		dsl_dir_rele(newparent, FTAG);
1799 		dsl_dir_rele(dd, FTAG);
1800 		return (SET_ERROR(EEXIST));
1801 	}
1802 
1803 	/* if the name length is growing, validate child name lengths */
1804 	if (delta > 0) {
1805 		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1806 		    &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1807 		if (error != 0) {
1808 			dsl_dir_rele(newparent, FTAG);
1809 			dsl_dir_rele(dd, FTAG);
1810 			return (error);
1811 		}
1812 	}
1813 
1814 	if (dmu_tx_is_syncing(tx)) {
1815 		if (spa_feature_is_active(dp->dp_spa,
1816 		    SPA_FEATURE_FS_SS_LIMIT)) {
1817 			/*
1818 			 * Although this is the check function and we don't
1819 			 * normally make on-disk changes in check functions,
1820 			 * we need to do that here.
1821 			 *
1822 			 * Ensure this portion of the tree's counts have been
1823 			 * initialized in case the new parent has limits set.
1824 			 */
1825 			dsl_dir_init_fs_ss_count(dd, tx);
1826 		}
1827 	}
1828 
1829 	if (newparent != dd->dd_parent) {
1830 		/* is there enough space? */
1831 		uint64_t myspace =
1832 		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
1833 		    dsl_dir_phys(dd)->dd_reserved);
1834 		objset_t *os = dd->dd_pool->dp_meta_objset;
1835 		uint64_t fs_cnt = 0;
1836 		uint64_t ss_cnt = 0;
1837 
1838 		if (dsl_dir_is_zapified(dd)) {
1839 			int err;
1840 
1841 			err = zap_lookup(os, dd->dd_object,
1842 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1843 			    &fs_cnt);
1844 			if (err != ENOENT && err != 0) {
1845 				dsl_dir_rele(newparent, FTAG);
1846 				dsl_dir_rele(dd, FTAG);
1847 				return (err);
1848 			}
1849 
1850 			/*
1851 			 * have to add 1 for the filesystem itself that we're
1852 			 * moving
1853 			 */
1854 			fs_cnt++;
1855 
1856 			err = zap_lookup(os, dd->dd_object,
1857 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1858 			    &ss_cnt);
1859 			if (err != ENOENT && err != 0) {
1860 				dsl_dir_rele(newparent, FTAG);
1861 				dsl_dir_rele(dd, FTAG);
1862 				return (err);
1863 			}
1864 		}
1865 
1866 		/* no rename into our descendant */
1867 		if (closest_common_ancestor(dd, newparent) == dd) {
1868 			dsl_dir_rele(newparent, FTAG);
1869 			dsl_dir_rele(dd, FTAG);
1870 			return (SET_ERROR(EINVAL));
1871 		}
1872 
1873 		error = dsl_dir_transfer_possible(dd->dd_parent,
1874 		    newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1875 		if (error != 0) {
1876 			dsl_dir_rele(newparent, FTAG);
1877 			dsl_dir_rele(dd, FTAG);
1878 			return (error);
1879 		}
1880 	}
1881 
1882 	dsl_dir_rele(newparent, FTAG);
1883 	dsl_dir_rele(dd, FTAG);
1884 	return (0);
1885 }
1886 
1887 static void
1888 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1889 {
1890 	dsl_dir_rename_arg_t *ddra = arg;
1891 	dsl_pool_t *dp = dmu_tx_pool(tx);
1892 	dsl_dir_t *dd, *newparent;
1893 	const char *mynewname;
1894 	int error;
1895 	objset_t *mos = dp->dp_meta_objset;
1896 
1897 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1898 	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1899 	    &mynewname));
1900 
1901 	/* Log this before we change the name. */
1902 	spa_history_log_internal_dd(dd, "rename", tx,
1903 	    "-> %s", ddra->ddra_newname);
1904 
1905 	if (newparent != dd->dd_parent) {
1906 		objset_t *os = dd->dd_pool->dp_meta_objset;
1907 		uint64_t fs_cnt = 0;
1908 		uint64_t ss_cnt = 0;
1909 
1910 		/*
1911 		 * We already made sure the dd counts were initialized in the
1912 		 * check function.
1913 		 */
1914 		if (spa_feature_is_active(dp->dp_spa,
1915 		    SPA_FEATURE_FS_SS_LIMIT)) {
1916 			VERIFY0(zap_lookup(os, dd->dd_object,
1917 			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1918 			    &fs_cnt));
1919 			/* add 1 for the filesystem itself that we're moving */
1920 			fs_cnt++;
1921 
1922 			VERIFY0(zap_lookup(os, dd->dd_object,
1923 			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1924 			    &ss_cnt));
1925 		}
1926 
1927 		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1928 		    DD_FIELD_FILESYSTEM_COUNT, tx);
1929 		dsl_fs_ss_count_adjust(newparent, fs_cnt,
1930 		    DD_FIELD_FILESYSTEM_COUNT, tx);
1931 
1932 		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1933 		    DD_FIELD_SNAPSHOT_COUNT, tx);
1934 		dsl_fs_ss_count_adjust(newparent, ss_cnt,
1935 		    DD_FIELD_SNAPSHOT_COUNT, tx);
1936 
1937 		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1938 		    -dsl_dir_phys(dd)->dd_used_bytes,
1939 		    -dsl_dir_phys(dd)->dd_compressed_bytes,
1940 		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1941 		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1942 		    dsl_dir_phys(dd)->dd_used_bytes,
1943 		    dsl_dir_phys(dd)->dd_compressed_bytes,
1944 		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1945 
1946 		if (dsl_dir_phys(dd)->dd_reserved >
1947 		    dsl_dir_phys(dd)->dd_used_bytes) {
1948 			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1949 			    dsl_dir_phys(dd)->dd_used_bytes;
1950 
1951 			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1952 			    -unused_rsrv, 0, 0, tx);
1953 			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1954 			    unused_rsrv, 0, 0, tx);
1955 		}
1956 	}
1957 
1958 	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1959 
1960 	/* remove from old parent zapobj */
1961 	error = zap_remove(mos,
1962 	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1963 	    dd->dd_myname, tx);
1964 	ASSERT0(error);
1965 
1966 	(void) strcpy(dd->dd_myname, mynewname);
1967 	dsl_dir_rele(dd->dd_parent, dd);
1968 	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1969 	VERIFY0(dsl_dir_hold_obj(dp,
1970 	    newparent->dd_object, NULL, dd, &dd->dd_parent));
1971 
1972 	/* add to new parent zapobj */
1973 	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1974 	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
1975 
1976 	dsl_prop_notify_all(dd);
1977 
1978 	dsl_dir_rele(newparent, FTAG);
1979 	dsl_dir_rele(dd, FTAG);
1980 }
1981 
1982 int
1983 dsl_dir_rename(const char *oldname, const char *newname)
1984 {
1985 	dsl_dir_rename_arg_t ddra;
1986 
1987 	ddra.ddra_oldname = oldname;
1988 	ddra.ddra_newname = newname;
1989 	ddra.ddra_cred = CRED();
1990 
1991 	return (dsl_sync_task(oldname,
1992 	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1993 	    3, ZFS_SPACE_CHECK_RESERVED));
1994 }
1995 
1996 int
1997 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1998     uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1999 {
2000 	dsl_dir_t *ancestor;
2001 	int64_t adelta;
2002 	uint64_t avail;
2003 	int err;
2004 
2005 	ancestor = closest_common_ancestor(sdd, tdd);
2006 	adelta = would_change(sdd, -space, ancestor);
2007 	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2008 	if (avail < space)
2009 		return (SET_ERROR(ENOSPC));
2010 
2011 	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2012 	    ancestor, cr);
2013 	if (err != 0)
2014 		return (err);
2015 	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2016 	    ancestor, cr);
2017 	if (err != 0)
2018 		return (err);
2019 
2020 	return (0);
2021 }
2022 
2023 timestruc_t
2024 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2025 {
2026 	timestruc_t t;
2027 
2028 	mutex_enter(&dd->dd_lock);
2029 	t = dd->dd_snap_cmtime;
2030 	mutex_exit(&dd->dd_lock);
2031 
2032 	return (t);
2033 }
2034 
2035 void
2036 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
2037 {
2038 	timestruc_t t;
2039 
2040 	gethrestime(&t);
2041 	mutex_enter(&dd->dd_lock);
2042 	dd->dd_snap_cmtime = t;
2043 	mutex_exit(&dd->dd_lock);
2044 }
2045 
2046 void
2047 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2048 {
2049 	objset_t *mos = dd->dd_pool->dp_meta_objset;
2050 	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2051 }
2052 
2053 boolean_t
2054 dsl_dir_is_zapified(dsl_dir_t *dd)
2055 {
2056 	dmu_object_info_t doi;
2057 
2058 	dmu_object_info_from_db(dd->dd_dbuf, &doi);
2059 	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2060 }
2061