1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dmu.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_prop.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_deleg.h> 38 #include <sys/dmu_impl.h> 39 #include <sys/spa.h> 40 #include <sys/spa_impl.h> 41 #include <sys/metaslab.h> 42 #include <sys/zap.h> 43 #include <sys/zio.h> 44 #include <sys/arc.h> 45 #include <sys/sunddi.h> 46 #include <sys/zfeature.h> 47 #include <sys/policy.h> 48 #include <sys/zfs_znode.h> 49 #include "zfs_namecheck.h" 50 #include "zfs_prop.h" 51 52 /* 53 * Filesystem and Snapshot Limits 54 * ------------------------------ 55 * 56 * These limits are used to restrict the number of filesystems and/or snapshots 57 * that can be created at a given level in the tree or below. A typical 58 * use-case is with a delegated dataset where the administrator wants to ensure 59 * that a user within the zone is not creating too many additional filesystems 60 * or snapshots, even though they're not exceeding their space quota. 61 * 62 * The filesystem and snapshot counts are stored as extensible properties. This 63 * capability is controlled by a feature flag and must be enabled to be used. 64 * Once enabled, the feature is not active until the first limit is set. At 65 * that point, future operations to create/destroy filesystems or snapshots 66 * will validate and update the counts. 67 * 68 * Because the count properties will not exist before the feature is active, 69 * the counts are updated when a limit is first set on an uninitialized 70 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 71 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 72 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 73 * snapshot count properties on a node indicate uninitialized counts on that 74 * node.) When first setting a limit on an uninitialized node, the code starts 75 * at the filesystem with the new limit and descends into all sub-filesystems 76 * to add the count properties. 77 * 78 * In practice this is lightweight since a limit is typically set when the 79 * filesystem is created and thus has no children. Once valid, changing the 80 * limit value won't require a re-traversal since the counts are already valid. 81 * When recursively fixing the counts, if a node with a limit is encountered 82 * during the descent, the counts are known to be valid and there is no need to 83 * descend into that filesystem's children. The counts on filesystems above the 84 * one with the new limit will still be uninitialized, unless a limit is 85 * eventually set on one of those filesystems. The counts are always recursively 86 * updated when a limit is set on a dataset, unless there is already a limit. 87 * When a new limit value is set on a filesystem with an existing limit, it is 88 * possible for the new limit to be less than the current count at that level 89 * since a user who can change the limit is also allowed to exceed the limit. 90 * 91 * Once the feature is active, then whenever a filesystem or snapshot is 92 * created, the code recurses up the tree, validating the new count against the 93 * limit at each initialized level. In practice, most levels will not have a 94 * limit set. If there is a limit at any initialized level up the tree, the 95 * check must pass or the creation will fail. Likewise, when a filesystem or 96 * snapshot is destroyed, the counts are recursively adjusted all the way up 97 * the initizized nodes in the tree. Renaming a filesystem into different point 98 * in the tree will first validate, then update the counts on each branch up to 99 * the common ancestor. A receive will also validate the counts and then update 100 * them. 101 * 102 * An exception to the above behavior is that the limit is not enforced if the 103 * user has permission to modify the limit. This is primarily so that 104 * recursive snapshots in the global zone always work. We want to prevent a 105 * denial-of-service in which a lower level delegated dataset could max out its 106 * limit and thus block recursive snapshots from being taken in the global zone. 107 * Because of this, it is possible for the snapshot count to be over the limit 108 * and snapshots taken in the global zone could cause a lower level dataset to 109 * hit or exceed its limit. The administrator taking the global zone recursive 110 * snapshot should be aware of this side-effect and behave accordingly. 111 * For consistency, the filesystem limit is also not enforced if the user can 112 * modify the limit. 113 * 114 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 115 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 116 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 117 * dsl_dir_init_fs_ss_count(). 118 * 119 * There is a special case when we receive a filesystem that already exists. In 120 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 121 * never update the filesystem counts for temporary clones. 122 * 123 * Likewise, we do not update the snapshot counts for temporary snapshots, 124 * such as those created by zfs diff. 125 */ 126 127 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 128 129 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 130 131 typedef struct ddulrt_arg { 132 dsl_dir_t *ddulrta_dd; 133 uint64_t ddlrta_txg; 134 } ddulrt_arg_t; 135 136 static void 137 dsl_dir_evict_async(void *dbu) 138 { 139 dsl_dir_t *dd = dbu; 140 dsl_pool_t *dp = dd->dd_pool; 141 int t; 142 143 dd->dd_dbuf = NULL; 144 145 for (t = 0; t < TXG_SIZE; t++) { 146 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 147 ASSERT(dd->dd_tempreserved[t] == 0); 148 ASSERT(dd->dd_space_towrite[t] == 0); 149 } 150 151 if (dd->dd_parent) 152 dsl_dir_async_rele(dd->dd_parent, dd); 153 154 spa_async_close(dd->dd_pool->dp_spa, dd); 155 156 dsl_prop_fini(dd); 157 mutex_destroy(&dd->dd_lock); 158 kmem_free(dd, sizeof (dsl_dir_t)); 159 } 160 161 int 162 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 163 const char *tail, void *tag, dsl_dir_t **ddp) 164 { 165 dmu_buf_t *dbuf; 166 dsl_dir_t *dd; 167 dmu_object_info_t doi; 168 int err; 169 170 ASSERT(dsl_pool_config_held(dp)); 171 172 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 173 if (err != 0) 174 return (err); 175 dd = dmu_buf_get_user(dbuf); 176 177 dmu_object_info_from_db(dbuf, &doi); 178 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 179 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 180 181 if (dd == NULL) { 182 dsl_dir_t *winner; 183 184 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 185 dd->dd_object = ddobj; 186 dd->dd_dbuf = dbuf; 187 dd->dd_pool = dp; 188 189 if (dsl_dir_is_zapified(dd) && 190 zap_contains(dp->dp_meta_objset, ddobj, 191 DD_FIELD_CRYPTO_KEY_OBJ) == 0) { 192 VERIFY0(zap_lookup(dp->dp_meta_objset, 193 ddobj, DD_FIELD_CRYPTO_KEY_OBJ, 194 sizeof (uint64_t), 1, &dd->dd_crypto_obj)); 195 196 /* check for on-disk format errata */ 197 if (dsl_dir_incompatible_encryption_version(dd)) { 198 dp->dp_spa->spa_errata = 199 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION; 200 } 201 } 202 203 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 204 dsl_prop_init(dd); 205 206 dsl_dir_snap_cmtime_update(dd); 207 208 if (dsl_dir_phys(dd)->dd_parent_obj) { 209 err = dsl_dir_hold_obj(dp, 210 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 211 &dd->dd_parent); 212 if (err != 0) 213 goto errout; 214 if (tail) { 215 #ifdef ZFS_DEBUG 216 uint64_t foundobj; 217 218 err = zap_lookup(dp->dp_meta_objset, 219 dsl_dir_phys(dd->dd_parent)-> 220 dd_child_dir_zapobj, tail, 221 sizeof (foundobj), 1, &foundobj); 222 ASSERT(err || foundobj == ddobj); 223 #endif 224 (void) strcpy(dd->dd_myname, tail); 225 } else { 226 err = zap_value_search(dp->dp_meta_objset, 227 dsl_dir_phys(dd->dd_parent)-> 228 dd_child_dir_zapobj, 229 ddobj, 0, dd->dd_myname); 230 } 231 if (err != 0) 232 goto errout; 233 } else { 234 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 235 } 236 237 if (dsl_dir_is_clone(dd)) { 238 dmu_buf_t *origin_bonus; 239 dsl_dataset_phys_t *origin_phys; 240 241 /* 242 * We can't open the origin dataset, because 243 * that would require opening this dsl_dir. 244 * Just look at its phys directly instead. 245 */ 246 err = dmu_bonus_hold(dp->dp_meta_objset, 247 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 248 &origin_bonus); 249 if (err != 0) 250 goto errout; 251 origin_phys = origin_bonus->db_data; 252 dd->dd_origin_txg = 253 origin_phys->ds_creation_txg; 254 dmu_buf_rele(origin_bonus, FTAG); 255 } 256 257 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 258 &dd->dd_dbuf); 259 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 260 if (winner != NULL) { 261 if (dd->dd_parent) 262 dsl_dir_rele(dd->dd_parent, dd); 263 dsl_prop_fini(dd); 264 mutex_destroy(&dd->dd_lock); 265 kmem_free(dd, sizeof (dsl_dir_t)); 266 dd = winner; 267 } else { 268 spa_open_ref(dp->dp_spa, dd); 269 } 270 } 271 272 /* 273 * The dsl_dir_t has both open-to-close and instantiate-to-evict 274 * holds on the spa. We need the open-to-close holds because 275 * otherwise the spa_refcnt wouldn't change when we open a 276 * dir which the spa also has open, so we could incorrectly 277 * think it was OK to unload/export/destroy the pool. We need 278 * the instantiate-to-evict hold because the dsl_dir_t has a 279 * pointer to the dd_pool, which has a pointer to the spa_t. 280 */ 281 spa_open_ref(dp->dp_spa, tag); 282 ASSERT3P(dd->dd_pool, ==, dp); 283 ASSERT3U(dd->dd_object, ==, ddobj); 284 ASSERT3P(dd->dd_dbuf, ==, dbuf); 285 *ddp = dd; 286 return (0); 287 288 errout: 289 if (dd->dd_parent) 290 dsl_dir_rele(dd->dd_parent, dd); 291 dsl_prop_fini(dd); 292 mutex_destroy(&dd->dd_lock); 293 kmem_free(dd, sizeof (dsl_dir_t)); 294 dmu_buf_rele(dbuf, tag); 295 return (err); 296 } 297 298 void 299 dsl_dir_rele(dsl_dir_t *dd, void *tag) 300 { 301 dprintf_dd(dd, "%s\n", ""); 302 spa_close(dd->dd_pool->dp_spa, tag); 303 dmu_buf_rele(dd->dd_dbuf, tag); 304 } 305 306 /* 307 * Remove a reference to the given dsl dir that is being asynchronously 308 * released. Async releases occur from a taskq performing eviction of 309 * dsl datasets and dirs. This process is identical to a normal release 310 * with the exception of using the async API for releasing the reference on 311 * the spa. 312 */ 313 void 314 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 315 { 316 dprintf_dd(dd, "%s\n", ""); 317 spa_async_close(dd->dd_pool->dp_spa, tag); 318 dmu_buf_rele(dd->dd_dbuf, tag); 319 } 320 321 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 322 void 323 dsl_dir_name(dsl_dir_t *dd, char *buf) 324 { 325 if (dd->dd_parent) { 326 dsl_dir_name(dd->dd_parent, buf); 327 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 328 ZFS_MAX_DATASET_NAME_LEN); 329 } else { 330 buf[0] = '\0'; 331 } 332 if (!MUTEX_HELD(&dd->dd_lock)) { 333 /* 334 * recursive mutex so that we can use 335 * dprintf_dd() with dd_lock held 336 */ 337 mutex_enter(&dd->dd_lock); 338 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 339 <, ZFS_MAX_DATASET_NAME_LEN); 340 mutex_exit(&dd->dd_lock); 341 } else { 342 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 343 <, ZFS_MAX_DATASET_NAME_LEN); 344 } 345 } 346 347 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 348 int 349 dsl_dir_namelen(dsl_dir_t *dd) 350 { 351 int result = 0; 352 353 if (dd->dd_parent) { 354 /* parent's name + 1 for the "/" */ 355 result = dsl_dir_namelen(dd->dd_parent) + 1; 356 } 357 358 if (!MUTEX_HELD(&dd->dd_lock)) { 359 /* see dsl_dir_name */ 360 mutex_enter(&dd->dd_lock); 361 result += strlen(dd->dd_myname); 362 mutex_exit(&dd->dd_lock); 363 } else { 364 result += strlen(dd->dd_myname); 365 } 366 367 return (result); 368 } 369 370 static int 371 getcomponent(const char *path, char *component, const char **nextp) 372 { 373 char *p; 374 375 if ((path == NULL) || (path[0] == '\0')) 376 return (SET_ERROR(ENOENT)); 377 /* This would be a good place to reserve some namespace... */ 378 p = strpbrk(path, "/@"); 379 if (p && (p[1] == '/' || p[1] == '@')) { 380 /* two separators in a row */ 381 return (SET_ERROR(EINVAL)); 382 } 383 if (p == NULL || p == path) { 384 /* 385 * if the first thing is an @ or /, it had better be an 386 * @ and it had better not have any more ats or slashes, 387 * and it had better have something after the @. 388 */ 389 if (p != NULL && 390 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 391 return (SET_ERROR(EINVAL)); 392 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 393 return (SET_ERROR(ENAMETOOLONG)); 394 (void) strcpy(component, path); 395 p = NULL; 396 } else if (p[0] == '/') { 397 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 398 return (SET_ERROR(ENAMETOOLONG)); 399 (void) strncpy(component, path, p - path); 400 component[p - path] = '\0'; 401 p++; 402 } else if (p[0] == '@') { 403 /* 404 * if the next separator is an @, there better not be 405 * any more slashes. 406 */ 407 if (strchr(path, '/')) 408 return (SET_ERROR(EINVAL)); 409 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 410 return (SET_ERROR(ENAMETOOLONG)); 411 (void) strncpy(component, path, p - path); 412 component[p - path] = '\0'; 413 } else { 414 panic("invalid p=%p", (void *)p); 415 } 416 *nextp = p; 417 return (0); 418 } 419 420 /* 421 * Return the dsl_dir_t, and possibly the last component which couldn't 422 * be found in *tail. The name must be in the specified dsl_pool_t. This 423 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 424 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 425 * (*tail)[0] == '@' means that the last component is a snapshot. 426 */ 427 int 428 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 429 dsl_dir_t **ddp, const char **tailp) 430 { 431 char buf[ZFS_MAX_DATASET_NAME_LEN]; 432 const char *spaname, *next, *nextnext = NULL; 433 int err; 434 dsl_dir_t *dd; 435 uint64_t ddobj; 436 437 err = getcomponent(name, buf, &next); 438 if (err != 0) 439 return (err); 440 441 /* Make sure the name is in the specified pool. */ 442 spaname = spa_name(dp->dp_spa); 443 if (strcmp(buf, spaname) != 0) 444 return (SET_ERROR(EXDEV)); 445 446 ASSERT(dsl_pool_config_held(dp)); 447 448 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 449 if (err != 0) { 450 return (err); 451 } 452 453 while (next != NULL) { 454 dsl_dir_t *child_dd; 455 err = getcomponent(next, buf, &nextnext); 456 if (err != 0) 457 break; 458 ASSERT(next[0] != '\0'); 459 if (next[0] == '@') 460 break; 461 dprintf("looking up %s in obj%lld\n", 462 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj); 463 464 err = zap_lookup(dp->dp_meta_objset, 465 dsl_dir_phys(dd)->dd_child_dir_zapobj, 466 buf, sizeof (ddobj), 1, &ddobj); 467 if (err != 0) { 468 if (err == ENOENT) 469 err = 0; 470 break; 471 } 472 473 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 474 if (err != 0) 475 break; 476 dsl_dir_rele(dd, tag); 477 dd = child_dd; 478 next = nextnext; 479 } 480 481 if (err != 0) { 482 dsl_dir_rele(dd, tag); 483 return (err); 484 } 485 486 /* 487 * It's an error if there's more than one component left, or 488 * tailp==NULL and there's any component left. 489 */ 490 if (next != NULL && 491 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 492 /* bad path name */ 493 dsl_dir_rele(dd, tag); 494 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 495 err = SET_ERROR(ENOENT); 496 } 497 if (tailp != NULL) 498 *tailp = next; 499 *ddp = dd; 500 return (err); 501 } 502 503 /* 504 * If the counts are already initialized for this filesystem and its 505 * descendants then do nothing, otherwise initialize the counts. 506 * 507 * The counts on this filesystem, and those below, may be uninitialized due to 508 * either the use of a pre-existing pool which did not support the 509 * filesystem/snapshot limit feature, or one in which the feature had not yet 510 * been enabled. 511 * 512 * Recursively descend the filesystem tree and update the filesystem/snapshot 513 * counts on each filesystem below, then update the cumulative count on the 514 * current filesystem. If the filesystem already has a count set on it, 515 * then we know that its counts, and the counts on the filesystems below it, 516 * are already correct, so we don't have to update this filesystem. 517 */ 518 static void 519 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 520 { 521 uint64_t my_fs_cnt = 0; 522 uint64_t my_ss_cnt = 0; 523 dsl_pool_t *dp = dd->dd_pool; 524 objset_t *os = dp->dp_meta_objset; 525 zap_cursor_t *zc; 526 zap_attribute_t *za; 527 dsl_dataset_t *ds; 528 529 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 530 ASSERT(dsl_pool_config_held(dp)); 531 ASSERT(dmu_tx_is_syncing(tx)); 532 533 dsl_dir_zapify(dd, tx); 534 535 /* 536 * If the filesystem count has already been initialized then we 537 * don't need to recurse down any further. 538 */ 539 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 540 return; 541 542 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 543 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 544 545 /* Iterate my child dirs */ 546 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 547 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 548 dsl_dir_t *chld_dd; 549 uint64_t count; 550 551 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 552 &chld_dd)); 553 554 /* 555 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 556 * temporary datasets. 557 */ 558 if (chld_dd->dd_myname[0] == '$' || 559 chld_dd->dd_myname[0] == '%') { 560 dsl_dir_rele(chld_dd, FTAG); 561 continue; 562 } 563 564 my_fs_cnt++; /* count this child */ 565 566 dsl_dir_init_fs_ss_count(chld_dd, tx); 567 568 VERIFY0(zap_lookup(os, chld_dd->dd_object, 569 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 570 my_fs_cnt += count; 571 VERIFY0(zap_lookup(os, chld_dd->dd_object, 572 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 573 my_ss_cnt += count; 574 575 dsl_dir_rele(chld_dd, FTAG); 576 } 577 zap_cursor_fini(zc); 578 /* Count my snapshots (we counted children's snapshots above) */ 579 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 580 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 581 582 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 583 zap_cursor_retrieve(zc, za) == 0; 584 zap_cursor_advance(zc)) { 585 /* Don't count temporary snapshots */ 586 if (za->za_name[0] != '%') 587 my_ss_cnt++; 588 } 589 zap_cursor_fini(zc); 590 591 dsl_dataset_rele(ds, FTAG); 592 593 kmem_free(zc, sizeof (zap_cursor_t)); 594 kmem_free(za, sizeof (zap_attribute_t)); 595 596 /* we're in a sync task, update counts */ 597 dmu_buf_will_dirty(dd->dd_dbuf, tx); 598 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 599 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 600 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 601 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 602 } 603 604 static int 605 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 606 { 607 char *ddname = (char *)arg; 608 dsl_pool_t *dp = dmu_tx_pool(tx); 609 dsl_dataset_t *ds; 610 dsl_dir_t *dd; 611 int error; 612 613 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 614 if (error != 0) 615 return (error); 616 617 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 618 dsl_dataset_rele(ds, FTAG); 619 return (SET_ERROR(ENOTSUP)); 620 } 621 622 dd = ds->ds_dir; 623 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 624 dsl_dir_is_zapified(dd) && 625 zap_contains(dp->dp_meta_objset, dd->dd_object, 626 DD_FIELD_FILESYSTEM_COUNT) == 0) { 627 dsl_dataset_rele(ds, FTAG); 628 return (SET_ERROR(EALREADY)); 629 } 630 631 dsl_dataset_rele(ds, FTAG); 632 return (0); 633 } 634 635 static void 636 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 637 { 638 char *ddname = (char *)arg; 639 dsl_pool_t *dp = dmu_tx_pool(tx); 640 dsl_dataset_t *ds; 641 spa_t *spa; 642 643 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 644 645 spa = dsl_dataset_get_spa(ds); 646 647 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 648 /* 649 * Since the feature was not active and we're now setting a 650 * limit, increment the feature-active counter so that the 651 * feature becomes active for the first time. 652 * 653 * We are already in a sync task so we can update the MOS. 654 */ 655 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 656 } 657 658 /* 659 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 660 * we need to ensure the counts are correct. Descend down the tree from 661 * this point and update all of the counts to be accurate. 662 */ 663 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 664 665 dsl_dataset_rele(ds, FTAG); 666 } 667 668 /* 669 * Make sure the feature is enabled and activate it if necessary. 670 * Since we're setting a limit, ensure the on-disk counts are valid. 671 * This is only called by the ioctl path when setting a limit value. 672 * 673 * We do not need to validate the new limit, since users who can change the 674 * limit are also allowed to exceed the limit. 675 */ 676 int 677 dsl_dir_activate_fs_ss_limit(const char *ddname) 678 { 679 int error; 680 681 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 682 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 683 ZFS_SPACE_CHECK_RESERVED); 684 685 if (error == EALREADY) 686 error = 0; 687 688 return (error); 689 } 690 691 /* 692 * Used to determine if the filesystem_limit or snapshot_limit should be 693 * enforced. We allow the limit to be exceeded if the user has permission to 694 * write the property value. We pass in the creds that we got in the open 695 * context since we will always be the GZ root in syncing context. We also have 696 * to handle the case where we are allowed to change the limit on the current 697 * dataset, but there may be another limit in the tree above. 698 * 699 * We can never modify these two properties within a non-global zone. In 700 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 701 * can't use that function since we are already holding the dp_config_rwlock. 702 * In addition, we already have the dd and dealing with snapshots is simplified 703 * in this code. 704 */ 705 706 typedef enum { 707 ENFORCE_ALWAYS, 708 ENFORCE_NEVER, 709 ENFORCE_ABOVE 710 } enforce_res_t; 711 712 static enforce_res_t 713 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 714 { 715 enforce_res_t enforce = ENFORCE_ALWAYS; 716 uint64_t obj; 717 dsl_dataset_t *ds; 718 uint64_t zoned; 719 720 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 721 prop == ZFS_PROP_SNAPSHOT_LIMIT); 722 723 #ifdef _KERNEL 724 if (crgetzoneid(cr) != GLOBAL_ZONEID) 725 return (ENFORCE_ALWAYS); 726 727 if (secpolicy_zfs(cr) == 0) 728 return (ENFORCE_NEVER); 729 #endif 730 731 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 732 return (ENFORCE_ALWAYS); 733 734 ASSERT(dsl_pool_config_held(dd->dd_pool)); 735 736 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 737 return (ENFORCE_ALWAYS); 738 739 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 740 /* Only root can access zoned fs's from the GZ */ 741 enforce = ENFORCE_ALWAYS; 742 } else { 743 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 744 enforce = ENFORCE_ABOVE; 745 } 746 747 dsl_dataset_rele(ds, FTAG); 748 return (enforce); 749 } 750 751 static void 752 dsl_dir_update_last_remap_txg_sync(void *varg, dmu_tx_t *tx) 753 { 754 ddulrt_arg_t *arg = varg; 755 uint64_t last_remap_txg; 756 dsl_dir_t *dd = arg->ddulrta_dd; 757 objset_t *mos = dd->dd_pool->dp_meta_objset; 758 759 dsl_dir_zapify(dd, tx); 760 if (zap_lookup(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG, 761 sizeof (last_remap_txg), 1, &last_remap_txg) != 0 || 762 last_remap_txg < arg->ddlrta_txg) { 763 VERIFY0(zap_update(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG, 764 sizeof (arg->ddlrta_txg), 1, &arg->ddlrta_txg, tx)); 765 } 766 } 767 768 int 769 dsl_dir_update_last_remap_txg(dsl_dir_t *dd, uint64_t txg) 770 { 771 ddulrt_arg_t arg; 772 arg.ddulrta_dd = dd; 773 arg.ddlrta_txg = txg; 774 775 return (dsl_sync_task(spa_name(dd->dd_pool->dp_spa), 776 NULL, dsl_dir_update_last_remap_txg_sync, &arg, 777 1, ZFS_SPACE_CHECK_RESERVED)); 778 } 779 780 /* 781 * Check if adding additional child filesystem(s) would exceed any filesystem 782 * limits or adding additional snapshot(s) would exceed any snapshot limits. 783 * The prop argument indicates which limit to check. 784 * 785 * Note that all filesystem limits up to the root (or the highest 786 * initialized) filesystem or the given ancestor must be satisfied. 787 */ 788 int 789 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 790 dsl_dir_t *ancestor, cred_t *cr) 791 { 792 objset_t *os = dd->dd_pool->dp_meta_objset; 793 uint64_t limit, count; 794 char *count_prop; 795 enforce_res_t enforce; 796 int err = 0; 797 798 ASSERT(dsl_pool_config_held(dd->dd_pool)); 799 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 800 prop == ZFS_PROP_SNAPSHOT_LIMIT); 801 802 /* 803 * If we're allowed to change the limit, don't enforce the limit 804 * e.g. this can happen if a snapshot is taken by an administrative 805 * user in the global zone (i.e. a recursive snapshot by root). 806 * However, we must handle the case of delegated permissions where we 807 * are allowed to change the limit on the current dataset, but there 808 * is another limit in the tree above. 809 */ 810 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 811 if (enforce == ENFORCE_NEVER) 812 return (0); 813 814 /* 815 * e.g. if renaming a dataset with no snapshots, count adjustment 816 * is 0. 817 */ 818 if (delta == 0) 819 return (0); 820 821 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 822 /* 823 * We don't enforce the limit for temporary snapshots. This is 824 * indicated by a NULL cred_t argument. 825 */ 826 if (cr == NULL) 827 return (0); 828 829 count_prop = DD_FIELD_SNAPSHOT_COUNT; 830 } else { 831 count_prop = DD_FIELD_FILESYSTEM_COUNT; 832 } 833 834 /* 835 * If an ancestor has been provided, stop checking the limit once we 836 * hit that dir. We need this during rename so that we don't overcount 837 * the check once we recurse up to the common ancestor. 838 */ 839 if (ancestor == dd) 840 return (0); 841 842 /* 843 * If we hit an uninitialized node while recursing up the tree, we can 844 * stop since we know there is no limit here (or above). The counts are 845 * not valid on this node and we know we won't touch this node's counts. 846 */ 847 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 848 count_prop, sizeof (count), 1, &count) == ENOENT) 849 return (0); 850 851 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 852 B_FALSE); 853 if (err != 0) 854 return (err); 855 856 /* Is there a limit which we've hit? */ 857 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 858 return (SET_ERROR(EDQUOT)); 859 860 if (dd->dd_parent != NULL) 861 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 862 ancestor, cr); 863 864 return (err); 865 } 866 867 /* 868 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 869 * parents. When a new filesystem/snapshot is created, increment the count on 870 * all parents, and when a filesystem/snapshot is destroyed, decrement the 871 * count. 872 */ 873 void 874 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 875 dmu_tx_t *tx) 876 { 877 int err; 878 objset_t *os = dd->dd_pool->dp_meta_objset; 879 uint64_t count; 880 881 ASSERT(dsl_pool_config_held(dd->dd_pool)); 882 ASSERT(dmu_tx_is_syncing(tx)); 883 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 884 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 885 886 /* 887 * When we receive an incremental stream into a filesystem that already 888 * exists, a temporary clone is created. We don't count this temporary 889 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 890 * $MOS & $ORIGIN) objsets. 891 */ 892 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 893 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 894 return; 895 896 /* 897 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 898 */ 899 if (delta == 0) 900 return; 901 902 /* 903 * If we hit an uninitialized node while recursing up the tree, we can 904 * stop since we know the counts are not valid on this node and we 905 * know we shouldn't touch this node's counts. An uninitialized count 906 * on the node indicates that either the feature has not yet been 907 * activated or there are no limits on this part of the tree. 908 */ 909 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 910 prop, sizeof (count), 1, &count)) == ENOENT) 911 return; 912 VERIFY0(err); 913 914 count += delta; 915 /* Use a signed verify to make sure we're not neg. */ 916 VERIFY3S(count, >=, 0); 917 918 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 919 tx)); 920 921 /* Roll up this additional count into our ancestors */ 922 if (dd->dd_parent != NULL) 923 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 924 } 925 926 uint64_t 927 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 928 dmu_tx_t *tx) 929 { 930 objset_t *mos = dp->dp_meta_objset; 931 uint64_t ddobj; 932 dsl_dir_phys_t *ddphys; 933 dmu_buf_t *dbuf; 934 935 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 936 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 937 if (pds) { 938 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 939 name, sizeof (uint64_t), 1, &ddobj, tx)); 940 } else { 941 /* it's the root dir */ 942 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 943 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 944 } 945 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 946 dmu_buf_will_dirty(dbuf, tx); 947 ddphys = dbuf->db_data; 948 949 ddphys->dd_creation_time = gethrestime_sec(); 950 if (pds) { 951 ddphys->dd_parent_obj = pds->dd_object; 952 953 /* update the filesystem counts */ 954 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 955 } 956 ddphys->dd_props_zapobj = zap_create(mos, 957 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 958 ddphys->dd_child_dir_zapobj = zap_create(mos, 959 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 960 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 961 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 962 963 dmu_buf_rele(dbuf, FTAG); 964 965 return (ddobj); 966 } 967 968 boolean_t 969 dsl_dir_is_clone(dsl_dir_t *dd) 970 { 971 return (dsl_dir_phys(dd)->dd_origin_obj && 972 (dd->dd_pool->dp_origin_snap == NULL || 973 dsl_dir_phys(dd)->dd_origin_obj != 974 dd->dd_pool->dp_origin_snap->ds_object)); 975 } 976 977 978 uint64_t 979 dsl_dir_get_used(dsl_dir_t *dd) 980 { 981 return (dsl_dir_phys(dd)->dd_used_bytes); 982 } 983 984 uint64_t 985 dsl_dir_get_compressed(dsl_dir_t *dd) 986 { 987 return (dsl_dir_phys(dd)->dd_compressed_bytes); 988 } 989 990 uint64_t 991 dsl_dir_get_quota(dsl_dir_t *dd) 992 { 993 return (dsl_dir_phys(dd)->dd_quota); 994 } 995 996 uint64_t 997 dsl_dir_get_reservation(dsl_dir_t *dd) 998 { 999 return (dsl_dir_phys(dd)->dd_reserved); 1000 } 1001 1002 uint64_t 1003 dsl_dir_get_compressratio(dsl_dir_t *dd) 1004 { 1005 /* a fixed point number, 100x the ratio */ 1006 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 1007 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 1008 dsl_dir_phys(dd)->dd_compressed_bytes)); 1009 } 1010 1011 uint64_t 1012 dsl_dir_get_logicalused(dsl_dir_t *dd) 1013 { 1014 return (dsl_dir_phys(dd)->dd_uncompressed_bytes); 1015 } 1016 1017 uint64_t 1018 dsl_dir_get_usedsnap(dsl_dir_t *dd) 1019 { 1020 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 1021 } 1022 1023 uint64_t 1024 dsl_dir_get_usedds(dsl_dir_t *dd) 1025 { 1026 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 1027 } 1028 1029 uint64_t 1030 dsl_dir_get_usedrefreserv(dsl_dir_t *dd) 1031 { 1032 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 1033 } 1034 1035 uint64_t 1036 dsl_dir_get_usedchild(dsl_dir_t *dd) 1037 { 1038 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 1039 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 1040 } 1041 1042 void 1043 dsl_dir_get_origin(dsl_dir_t *dd, char *buf) 1044 { 1045 dsl_dataset_t *ds; 1046 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 1047 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 1048 1049 dsl_dataset_name(ds, buf); 1050 1051 dsl_dataset_rele(ds, FTAG); 1052 } 1053 1054 int 1055 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count) 1056 { 1057 if (dsl_dir_is_zapified(dd)) { 1058 objset_t *os = dd->dd_pool->dp_meta_objset; 1059 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 1060 sizeof (*count), 1, count)); 1061 } else { 1062 return (ENOENT); 1063 } 1064 } 1065 1066 int 1067 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count) 1068 { 1069 if (dsl_dir_is_zapified(dd)) { 1070 objset_t *os = dd->dd_pool->dp_meta_objset; 1071 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 1072 sizeof (*count), 1, count)); 1073 } else { 1074 return (ENOENT); 1075 } 1076 } 1077 1078 int 1079 dsl_dir_get_remaptxg(dsl_dir_t *dd, uint64_t *count) 1080 { 1081 if (dsl_dir_is_zapified(dd)) { 1082 objset_t *os = dd->dd_pool->dp_meta_objset; 1083 return (zap_lookup(os, dd->dd_object, DD_FIELD_LAST_REMAP_TXG, 1084 sizeof (*count), 1, count)); 1085 } else { 1086 return (ENOENT); 1087 } 1088 } 1089 1090 void 1091 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 1092 { 1093 mutex_enter(&dd->dd_lock); 1094 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 1095 dsl_dir_get_quota(dd)); 1096 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 1097 dsl_dir_get_reservation(dd)); 1098 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 1099 dsl_dir_get_logicalused(dd)); 1100 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1101 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 1102 dsl_dir_get_usedsnap(dd)); 1103 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 1104 dsl_dir_get_usedds(dd)); 1105 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 1106 dsl_dir_get_usedrefreserv(dd)); 1107 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 1108 dsl_dir_get_usedchild(dd)); 1109 } 1110 mutex_exit(&dd->dd_lock); 1111 1112 uint64_t count; 1113 if (dsl_dir_get_filesystem_count(dd, &count) == 0) { 1114 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT, 1115 count); 1116 } 1117 if (dsl_dir_get_snapshot_count(dd, &count) == 0) { 1118 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT, 1119 count); 1120 } 1121 if (dsl_dir_get_remaptxg(dd, &count) == 0) { 1122 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REMAPTXG, 1123 count); 1124 } 1125 1126 if (dsl_dir_is_clone(dd)) { 1127 char buf[ZFS_MAX_DATASET_NAME_LEN]; 1128 dsl_dir_get_origin(dd, buf); 1129 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1130 } 1131 1132 } 1133 1134 void 1135 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1136 { 1137 dsl_pool_t *dp = dd->dd_pool; 1138 1139 ASSERT(dsl_dir_phys(dd)); 1140 1141 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1142 /* up the hold count until we can be written out */ 1143 dmu_buf_add_ref(dd->dd_dbuf, dd); 1144 } 1145 } 1146 1147 static int64_t 1148 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1149 { 1150 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1151 uint64_t new_accounted = 1152 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1153 return (new_accounted - old_accounted); 1154 } 1155 1156 void 1157 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1158 { 1159 ASSERT(dmu_tx_is_syncing(tx)); 1160 1161 mutex_enter(&dd->dd_lock); 1162 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1163 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1164 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1165 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1166 mutex_exit(&dd->dd_lock); 1167 1168 /* release the hold from dsl_dir_dirty */ 1169 dmu_buf_rele(dd->dd_dbuf, dd); 1170 } 1171 1172 static uint64_t 1173 dsl_dir_space_towrite(dsl_dir_t *dd) 1174 { 1175 uint64_t space = 0; 1176 1177 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1178 1179 for (int i = 0; i < TXG_SIZE; i++) { 1180 space += dd->dd_space_towrite[i & TXG_MASK]; 1181 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0); 1182 } 1183 return (space); 1184 } 1185 1186 /* 1187 * How much space would dd have available if ancestor had delta applied 1188 * to it? If ondiskonly is set, we're only interested in what's 1189 * on-disk, not estimated pending changes. 1190 */ 1191 uint64_t 1192 dsl_dir_space_available(dsl_dir_t *dd, 1193 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1194 { 1195 uint64_t parentspace, myspace, quota, used; 1196 1197 /* 1198 * If there are no restrictions otherwise, assume we have 1199 * unlimited space available. 1200 */ 1201 quota = UINT64_MAX; 1202 parentspace = UINT64_MAX; 1203 1204 if (dd->dd_parent != NULL) { 1205 parentspace = dsl_dir_space_available(dd->dd_parent, 1206 ancestor, delta, ondiskonly); 1207 } 1208 1209 mutex_enter(&dd->dd_lock); 1210 if (dsl_dir_phys(dd)->dd_quota != 0) 1211 quota = dsl_dir_phys(dd)->dd_quota; 1212 used = dsl_dir_phys(dd)->dd_used_bytes; 1213 if (!ondiskonly) 1214 used += dsl_dir_space_towrite(dd); 1215 1216 if (dd->dd_parent == NULL) { 1217 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, 1218 ZFS_SPACE_CHECK_NORMAL); 1219 quota = MIN(quota, poolsize); 1220 } 1221 1222 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1223 /* 1224 * We have some space reserved, in addition to what our 1225 * parent gave us. 1226 */ 1227 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1228 } 1229 1230 if (dd == ancestor) { 1231 ASSERT(delta <= 0); 1232 ASSERT(used >= -delta); 1233 used += delta; 1234 if (parentspace != UINT64_MAX) 1235 parentspace -= delta; 1236 } 1237 1238 if (used > quota) { 1239 /* over quota */ 1240 myspace = 0; 1241 } else { 1242 /* 1243 * the lesser of the space provided by our parent and 1244 * the space left in our quota 1245 */ 1246 myspace = MIN(parentspace, quota - used); 1247 } 1248 1249 mutex_exit(&dd->dd_lock); 1250 1251 return (myspace); 1252 } 1253 1254 struct tempreserve { 1255 list_node_t tr_node; 1256 dsl_dir_t *tr_ds; 1257 uint64_t tr_size; 1258 }; 1259 1260 static int 1261 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1262 boolean_t ignorequota, list_t *tr_list, 1263 dmu_tx_t *tx, boolean_t first) 1264 { 1265 uint64_t txg = tx->tx_txg; 1266 uint64_t quota; 1267 struct tempreserve *tr; 1268 int retval = EDQUOT; 1269 uint64_t ref_rsrv = 0; 1270 1271 ASSERT3U(txg, !=, 0); 1272 ASSERT3S(asize, >, 0); 1273 1274 mutex_enter(&dd->dd_lock); 1275 1276 /* 1277 * Check against the dsl_dir's quota. We don't add in the delta 1278 * when checking for over-quota because they get one free hit. 1279 */ 1280 uint64_t est_inflight = dsl_dir_space_towrite(dd); 1281 for (int i = 0; i < TXG_SIZE; i++) 1282 est_inflight += dd->dd_tempreserved[i]; 1283 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1284 1285 /* 1286 * On the first iteration, fetch the dataset's used-on-disk and 1287 * refreservation values. Also, if checkrefquota is set, test if 1288 * allocating this space would exceed the dataset's refquota. 1289 */ 1290 if (first && tx->tx_objset) { 1291 int error; 1292 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1293 1294 error = dsl_dataset_check_quota(ds, !netfree, 1295 asize, est_inflight, &used_on_disk, &ref_rsrv); 1296 if (error != 0) { 1297 mutex_exit(&dd->dd_lock); 1298 return (error); 1299 } 1300 } 1301 1302 /* 1303 * If this transaction will result in a net free of space, 1304 * we want to let it through. 1305 */ 1306 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1307 quota = UINT64_MAX; 1308 else 1309 quota = dsl_dir_phys(dd)->dd_quota; 1310 1311 /* 1312 * Adjust the quota against the actual pool size at the root 1313 * minus any outstanding deferred frees. 1314 * To ensure that it's possible to remove files from a full 1315 * pool without inducing transient overcommits, we throttle 1316 * netfree transactions against a quota that is slightly larger, 1317 * but still within the pool's allocation slop. In cases where 1318 * we're very close to full, this will allow a steady trickle of 1319 * removes to get through. 1320 */ 1321 uint64_t deferred = 0; 1322 if (dd->dd_parent == NULL) { 1323 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool, 1324 (netfree) ? 1325 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL); 1326 1327 if (avail < quota) { 1328 quota = avail; 1329 retval = ENOSPC; 1330 } 1331 } 1332 1333 /* 1334 * If they are requesting more space, and our current estimate 1335 * is over quota, they get to try again unless the actual 1336 * on-disk is over quota and there are no pending changes (which 1337 * may free up space for us). 1338 */ 1339 if (used_on_disk + est_inflight >= quota) { 1340 if (est_inflight > 0 || used_on_disk < quota || 1341 (retval == ENOSPC && used_on_disk < quota + deferred)) 1342 retval = ERESTART; 1343 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1344 "quota=%lluK tr=%lluK err=%d\n", 1345 used_on_disk>>10, est_inflight>>10, 1346 quota>>10, asize>>10, retval); 1347 mutex_exit(&dd->dd_lock); 1348 return (SET_ERROR(retval)); 1349 } 1350 1351 /* We need to up our estimated delta before dropping dd_lock */ 1352 dd->dd_tempreserved[txg & TXG_MASK] += asize; 1353 1354 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1355 asize - ref_rsrv); 1356 mutex_exit(&dd->dd_lock); 1357 1358 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1359 tr->tr_ds = dd; 1360 tr->tr_size = asize; 1361 list_insert_tail(tr_list, tr); 1362 1363 /* see if it's OK with our parent */ 1364 if (dd->dd_parent != NULL && parent_rsrv != 0) { 1365 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1366 1367 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1368 parent_rsrv, netfree, ismos, tr_list, tx, B_FALSE)); 1369 } else { 1370 return (0); 1371 } 1372 } 1373 1374 /* 1375 * Reserve space in this dsl_dir, to be used in this tx's txg. 1376 * After the space has been dirtied (and dsl_dir_willuse_space() 1377 * has been called), the reservation should be canceled, using 1378 * dsl_dir_tempreserve_clear(). 1379 */ 1380 int 1381 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1382 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx) 1383 { 1384 int err; 1385 list_t *tr_list; 1386 1387 if (asize == 0) { 1388 *tr_cookiep = NULL; 1389 return (0); 1390 } 1391 1392 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1393 list_create(tr_list, sizeof (struct tempreserve), 1394 offsetof(struct tempreserve, tr_node)); 1395 ASSERT3S(asize, >, 0); 1396 1397 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg); 1398 if (err == 0) { 1399 struct tempreserve *tr; 1400 1401 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1402 tr->tr_size = lsize; 1403 list_insert_tail(tr_list, tr); 1404 } else { 1405 if (err == EAGAIN) { 1406 /* 1407 * If arc_memory_throttle() detected that pageout 1408 * is running and we are low on memory, we delay new 1409 * non-pageout transactions to give pageout an 1410 * advantage. 1411 * 1412 * It is unfortunate to be delaying while the caller's 1413 * locks are held. 1414 */ 1415 txg_delay(dd->dd_pool, tx->tx_txg, 1416 MSEC2NSEC(10), MSEC2NSEC(10)); 1417 err = SET_ERROR(ERESTART); 1418 } 1419 } 1420 1421 if (err == 0) { 1422 err = dsl_dir_tempreserve_impl(dd, asize, netfree, 1423 B_FALSE, tr_list, tx, B_TRUE); 1424 } 1425 1426 if (err != 0) 1427 dsl_dir_tempreserve_clear(tr_list, tx); 1428 else 1429 *tr_cookiep = tr_list; 1430 1431 return (err); 1432 } 1433 1434 /* 1435 * Clear a temporary reservation that we previously made with 1436 * dsl_dir_tempreserve_space(). 1437 */ 1438 void 1439 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1440 { 1441 int txgidx = tx->tx_txg & TXG_MASK; 1442 list_t *tr_list = tr_cookie; 1443 struct tempreserve *tr; 1444 1445 ASSERT3U(tx->tx_txg, !=, 0); 1446 1447 if (tr_cookie == NULL) 1448 return; 1449 1450 while ((tr = list_head(tr_list)) != NULL) { 1451 if (tr->tr_ds) { 1452 mutex_enter(&tr->tr_ds->dd_lock); 1453 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1454 tr->tr_size); 1455 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1456 mutex_exit(&tr->tr_ds->dd_lock); 1457 } else { 1458 arc_tempreserve_clear(tr->tr_size); 1459 } 1460 list_remove(tr_list, tr); 1461 kmem_free(tr, sizeof (struct tempreserve)); 1462 } 1463 1464 kmem_free(tr_list, sizeof (list_t)); 1465 } 1466 1467 /* 1468 * This should be called from open context when we think we're going to write 1469 * or free space, for example when dirtying data. Be conservative; it's okay 1470 * to write less space or free more, but we don't want to write more or free 1471 * less than the amount specified. 1472 */ 1473 void 1474 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1475 { 1476 int64_t parent_space; 1477 uint64_t est_used; 1478 1479 mutex_enter(&dd->dd_lock); 1480 if (space > 0) 1481 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1482 1483 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes; 1484 parent_space = parent_delta(dd, est_used, space); 1485 mutex_exit(&dd->dd_lock); 1486 1487 /* Make sure that we clean up dd_space_to* */ 1488 dsl_dir_dirty(dd, tx); 1489 1490 /* XXX this is potentially expensive and unnecessary... */ 1491 if (parent_space && dd->dd_parent) 1492 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1493 } 1494 1495 /* call from syncing context when we actually write/free space for this dd */ 1496 void 1497 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1498 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1499 { 1500 int64_t accounted_delta; 1501 1502 /* 1503 * dsl_dataset_set_refreservation_sync_impl() calls this with 1504 * dd_lock held, so that it can atomically update 1505 * ds->ds_reserved and the dsl_dir accounting, so that 1506 * dsl_dataset_check_quota() can see dataset and dir accounting 1507 * consistently. 1508 */ 1509 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1510 1511 ASSERT(dmu_tx_is_syncing(tx)); 1512 ASSERT(type < DD_USED_NUM); 1513 1514 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1515 1516 if (needlock) 1517 mutex_enter(&dd->dd_lock); 1518 accounted_delta = 1519 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used); 1520 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used); 1521 ASSERT(compressed >= 0 || 1522 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed); 1523 ASSERT(uncompressed >= 0 || 1524 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed); 1525 dsl_dir_phys(dd)->dd_used_bytes += used; 1526 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed; 1527 dsl_dir_phys(dd)->dd_compressed_bytes += compressed; 1528 1529 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1530 ASSERT(used > 0 || 1531 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used); 1532 dsl_dir_phys(dd)->dd_used_breakdown[type] += used; 1533 #ifdef DEBUG 1534 dd_used_t t; 1535 uint64_t u = 0; 1536 for (t = 0; t < DD_USED_NUM; t++) 1537 u += dsl_dir_phys(dd)->dd_used_breakdown[t]; 1538 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes); 1539 #endif 1540 } 1541 if (needlock) 1542 mutex_exit(&dd->dd_lock); 1543 1544 if (dd->dd_parent != NULL) { 1545 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1546 accounted_delta, compressed, uncompressed, tx); 1547 dsl_dir_transfer_space(dd->dd_parent, 1548 used - accounted_delta, 1549 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1550 } 1551 } 1552 1553 void 1554 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1555 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1556 { 1557 ASSERT(dmu_tx_is_syncing(tx)); 1558 ASSERT(oldtype < DD_USED_NUM); 1559 ASSERT(newtype < DD_USED_NUM); 1560 1561 if (delta == 0 || 1562 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1563 return; 1564 1565 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1566 mutex_enter(&dd->dd_lock); 1567 ASSERT(delta > 0 ? 1568 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta : 1569 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta); 1570 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta)); 1571 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta; 1572 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta; 1573 mutex_exit(&dd->dd_lock); 1574 } 1575 1576 typedef struct dsl_dir_set_qr_arg { 1577 const char *ddsqra_name; 1578 zprop_source_t ddsqra_source; 1579 uint64_t ddsqra_value; 1580 } dsl_dir_set_qr_arg_t; 1581 1582 static int 1583 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1584 { 1585 dsl_dir_set_qr_arg_t *ddsqra = arg; 1586 dsl_pool_t *dp = dmu_tx_pool(tx); 1587 dsl_dataset_t *ds; 1588 int error; 1589 uint64_t towrite, newval; 1590 1591 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1592 if (error != 0) 1593 return (error); 1594 1595 error = dsl_prop_predict(ds->ds_dir, "quota", 1596 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1597 if (error != 0) { 1598 dsl_dataset_rele(ds, FTAG); 1599 return (error); 1600 } 1601 1602 if (newval == 0) { 1603 dsl_dataset_rele(ds, FTAG); 1604 return (0); 1605 } 1606 1607 mutex_enter(&ds->ds_dir->dd_lock); 1608 /* 1609 * If we are doing the preliminary check in open context, and 1610 * there are pending changes, then don't fail it, since the 1611 * pending changes could under-estimate the amount of space to be 1612 * freed up. 1613 */ 1614 towrite = dsl_dir_space_towrite(ds->ds_dir); 1615 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1616 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1617 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1618 error = SET_ERROR(ENOSPC); 1619 } 1620 mutex_exit(&ds->ds_dir->dd_lock); 1621 dsl_dataset_rele(ds, FTAG); 1622 return (error); 1623 } 1624 1625 static void 1626 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1627 { 1628 dsl_dir_set_qr_arg_t *ddsqra = arg; 1629 dsl_pool_t *dp = dmu_tx_pool(tx); 1630 dsl_dataset_t *ds; 1631 uint64_t newval; 1632 1633 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1634 1635 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1636 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1637 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1638 &ddsqra->ddsqra_value, tx); 1639 1640 VERIFY0(dsl_prop_get_int_ds(ds, 1641 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1642 } else { 1643 newval = ddsqra->ddsqra_value; 1644 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1645 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1646 } 1647 1648 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1649 mutex_enter(&ds->ds_dir->dd_lock); 1650 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1651 mutex_exit(&ds->ds_dir->dd_lock); 1652 dsl_dataset_rele(ds, FTAG); 1653 } 1654 1655 int 1656 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1657 { 1658 dsl_dir_set_qr_arg_t ddsqra; 1659 1660 ddsqra.ddsqra_name = ddname; 1661 ddsqra.ddsqra_source = source; 1662 ddsqra.ddsqra_value = quota; 1663 1664 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1665 dsl_dir_set_quota_sync, &ddsqra, 0, 1666 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1667 } 1668 1669 int 1670 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1671 { 1672 dsl_dir_set_qr_arg_t *ddsqra = arg; 1673 dsl_pool_t *dp = dmu_tx_pool(tx); 1674 dsl_dataset_t *ds; 1675 dsl_dir_t *dd; 1676 uint64_t newval, used, avail; 1677 int error; 1678 1679 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1680 if (error != 0) 1681 return (error); 1682 dd = ds->ds_dir; 1683 1684 /* 1685 * If we are doing the preliminary check in open context, the 1686 * space estimates may be inaccurate. 1687 */ 1688 if (!dmu_tx_is_syncing(tx)) { 1689 dsl_dataset_rele(ds, FTAG); 1690 return (0); 1691 } 1692 1693 error = dsl_prop_predict(ds->ds_dir, 1694 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1695 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1696 if (error != 0) { 1697 dsl_dataset_rele(ds, FTAG); 1698 return (error); 1699 } 1700 1701 mutex_enter(&dd->dd_lock); 1702 used = dsl_dir_phys(dd)->dd_used_bytes; 1703 mutex_exit(&dd->dd_lock); 1704 1705 if (dd->dd_parent) { 1706 avail = dsl_dir_space_available(dd->dd_parent, 1707 NULL, 0, FALSE); 1708 } else { 1709 avail = dsl_pool_adjustedsize(dd->dd_pool, 1710 ZFS_SPACE_CHECK_NORMAL) - used; 1711 } 1712 1713 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1714 uint64_t delta = MAX(used, newval) - 1715 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1716 1717 if (delta > avail || 1718 (dsl_dir_phys(dd)->dd_quota > 0 && 1719 newval > dsl_dir_phys(dd)->dd_quota)) 1720 error = SET_ERROR(ENOSPC); 1721 } 1722 1723 dsl_dataset_rele(ds, FTAG); 1724 return (error); 1725 } 1726 1727 void 1728 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1729 { 1730 uint64_t used; 1731 int64_t delta; 1732 1733 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1734 1735 mutex_enter(&dd->dd_lock); 1736 used = dsl_dir_phys(dd)->dd_used_bytes; 1737 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1738 dsl_dir_phys(dd)->dd_reserved = value; 1739 1740 if (dd->dd_parent != NULL) { 1741 /* Roll up this additional usage into our ancestors */ 1742 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1743 delta, 0, 0, tx); 1744 } 1745 mutex_exit(&dd->dd_lock); 1746 } 1747 1748 1749 static void 1750 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1751 { 1752 dsl_dir_set_qr_arg_t *ddsqra = arg; 1753 dsl_pool_t *dp = dmu_tx_pool(tx); 1754 dsl_dataset_t *ds; 1755 uint64_t newval; 1756 1757 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1758 1759 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1760 dsl_prop_set_sync_impl(ds, 1761 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1762 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1763 &ddsqra->ddsqra_value, tx); 1764 1765 VERIFY0(dsl_prop_get_int_ds(ds, 1766 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1767 } else { 1768 newval = ddsqra->ddsqra_value; 1769 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1770 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1771 (longlong_t)newval); 1772 } 1773 1774 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1775 dsl_dataset_rele(ds, FTAG); 1776 } 1777 1778 int 1779 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1780 uint64_t reservation) 1781 { 1782 dsl_dir_set_qr_arg_t ddsqra; 1783 1784 ddsqra.ddsqra_name = ddname; 1785 ddsqra.ddsqra_source = source; 1786 ddsqra.ddsqra_value = reservation; 1787 1788 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1789 dsl_dir_set_reservation_sync, &ddsqra, 0, 1790 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1791 } 1792 1793 static dsl_dir_t * 1794 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1795 { 1796 for (; ds1; ds1 = ds1->dd_parent) { 1797 dsl_dir_t *dd; 1798 for (dd = ds2; dd; dd = dd->dd_parent) { 1799 if (ds1 == dd) 1800 return (dd); 1801 } 1802 } 1803 return (NULL); 1804 } 1805 1806 /* 1807 * If delta is applied to dd, how much of that delta would be applied to 1808 * ancestor? Syncing context only. 1809 */ 1810 static int64_t 1811 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1812 { 1813 if (dd == ancestor) 1814 return (delta); 1815 1816 mutex_enter(&dd->dd_lock); 1817 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1818 mutex_exit(&dd->dd_lock); 1819 return (would_change(dd->dd_parent, delta, ancestor)); 1820 } 1821 1822 typedef struct dsl_dir_rename_arg { 1823 const char *ddra_oldname; 1824 const char *ddra_newname; 1825 cred_t *ddra_cred; 1826 } dsl_dir_rename_arg_t; 1827 1828 typedef struct dsl_valid_rename_arg { 1829 int char_delta; 1830 int nest_delta; 1831 } dsl_valid_rename_arg_t; 1832 1833 /* ARGSUSED */ 1834 static int 1835 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1836 { 1837 dsl_valid_rename_arg_t *dvra = arg; 1838 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1839 1840 dsl_dataset_name(ds, namebuf); 1841 1842 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN), 1843 <, ZFS_MAX_DATASET_NAME_LEN); 1844 int namelen = strlen(namebuf) + dvra->char_delta; 1845 int depth = get_dataset_depth(namebuf) + dvra->nest_delta; 1846 1847 if (namelen >= ZFS_MAX_DATASET_NAME_LEN) 1848 return (SET_ERROR(ENAMETOOLONG)); 1849 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting) 1850 return (SET_ERROR(ENAMETOOLONG)); 1851 return (0); 1852 } 1853 1854 static int 1855 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1856 { 1857 dsl_dir_rename_arg_t *ddra = arg; 1858 dsl_pool_t *dp = dmu_tx_pool(tx); 1859 dsl_dir_t *dd, *newparent; 1860 dsl_valid_rename_arg_t dvra; 1861 const char *mynewname; 1862 int error; 1863 1864 /* target dir should exist */ 1865 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1866 if (error != 0) 1867 return (error); 1868 1869 /* new parent should exist */ 1870 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1871 &newparent, &mynewname); 1872 if (error != 0) { 1873 dsl_dir_rele(dd, FTAG); 1874 return (error); 1875 } 1876 1877 /* can't rename to different pool */ 1878 if (dd->dd_pool != newparent->dd_pool) { 1879 dsl_dir_rele(newparent, FTAG); 1880 dsl_dir_rele(dd, FTAG); 1881 return (SET_ERROR(ENXIO)); 1882 } 1883 1884 /* new name should not already exist */ 1885 if (mynewname == NULL) { 1886 dsl_dir_rele(newparent, FTAG); 1887 dsl_dir_rele(dd, FTAG); 1888 return (SET_ERROR(EEXIST)); 1889 } 1890 1891 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN), 1892 <, ZFS_MAX_DATASET_NAME_LEN); 1893 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN), 1894 <, ZFS_MAX_DATASET_NAME_LEN); 1895 dvra.char_delta = strlen(ddra->ddra_newname) 1896 - strlen(ddra->ddra_oldname); 1897 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname) 1898 - get_dataset_depth(ddra->ddra_oldname); 1899 1900 /* if the name length is growing, validate child name lengths */ 1901 if (dvra.char_delta > 0 || dvra.nest_delta > 0) { 1902 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1903 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1904 if (error != 0) { 1905 dsl_dir_rele(newparent, FTAG); 1906 dsl_dir_rele(dd, FTAG); 1907 return (error); 1908 } 1909 } 1910 1911 if (dmu_tx_is_syncing(tx)) { 1912 if (spa_feature_is_active(dp->dp_spa, 1913 SPA_FEATURE_FS_SS_LIMIT)) { 1914 /* 1915 * Although this is the check function and we don't 1916 * normally make on-disk changes in check functions, 1917 * we need to do that here. 1918 * 1919 * Ensure this portion of the tree's counts have been 1920 * initialized in case the new parent has limits set. 1921 */ 1922 dsl_dir_init_fs_ss_count(dd, tx); 1923 } 1924 } 1925 1926 if (newparent != dd->dd_parent) { 1927 /* is there enough space? */ 1928 uint64_t myspace = 1929 MAX(dsl_dir_phys(dd)->dd_used_bytes, 1930 dsl_dir_phys(dd)->dd_reserved); 1931 objset_t *os = dd->dd_pool->dp_meta_objset; 1932 uint64_t fs_cnt = 0; 1933 uint64_t ss_cnt = 0; 1934 1935 if (dsl_dir_is_zapified(dd)) { 1936 int err; 1937 1938 err = zap_lookup(os, dd->dd_object, 1939 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1940 &fs_cnt); 1941 if (err != ENOENT && err != 0) { 1942 dsl_dir_rele(newparent, FTAG); 1943 dsl_dir_rele(dd, FTAG); 1944 return (err); 1945 } 1946 1947 /* 1948 * have to add 1 for the filesystem itself that we're 1949 * moving 1950 */ 1951 fs_cnt++; 1952 1953 err = zap_lookup(os, dd->dd_object, 1954 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1955 &ss_cnt); 1956 if (err != ENOENT && err != 0) { 1957 dsl_dir_rele(newparent, FTAG); 1958 dsl_dir_rele(dd, FTAG); 1959 return (err); 1960 } 1961 } 1962 1963 /* check for encryption errors */ 1964 error = dsl_dir_rename_crypt_check(dd, newparent); 1965 if (error != 0) { 1966 dsl_dir_rele(newparent, FTAG); 1967 dsl_dir_rele(dd, FTAG); 1968 return (SET_ERROR(EACCES)); 1969 } 1970 1971 /* no rename into our descendant */ 1972 if (closest_common_ancestor(dd, newparent) == dd) { 1973 dsl_dir_rele(newparent, FTAG); 1974 dsl_dir_rele(dd, FTAG); 1975 return (SET_ERROR(EINVAL)); 1976 } 1977 1978 error = dsl_dir_transfer_possible(dd->dd_parent, 1979 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1980 if (error != 0) { 1981 dsl_dir_rele(newparent, FTAG); 1982 dsl_dir_rele(dd, FTAG); 1983 return (error); 1984 } 1985 } 1986 1987 dsl_dir_rele(newparent, FTAG); 1988 dsl_dir_rele(dd, FTAG); 1989 return (0); 1990 } 1991 1992 static void 1993 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1994 { 1995 dsl_dir_rename_arg_t *ddra = arg; 1996 dsl_pool_t *dp = dmu_tx_pool(tx); 1997 dsl_dir_t *dd, *newparent; 1998 const char *mynewname; 1999 int error; 2000 objset_t *mos = dp->dp_meta_objset; 2001 2002 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 2003 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 2004 &mynewname)); 2005 2006 /* Log this before we change the name. */ 2007 spa_history_log_internal_dd(dd, "rename", tx, 2008 "-> %s", ddra->ddra_newname); 2009 2010 if (newparent != dd->dd_parent) { 2011 objset_t *os = dd->dd_pool->dp_meta_objset; 2012 uint64_t fs_cnt = 0; 2013 uint64_t ss_cnt = 0; 2014 2015 /* 2016 * We already made sure the dd counts were initialized in the 2017 * check function. 2018 */ 2019 if (spa_feature_is_active(dp->dp_spa, 2020 SPA_FEATURE_FS_SS_LIMIT)) { 2021 VERIFY0(zap_lookup(os, dd->dd_object, 2022 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 2023 &fs_cnt)); 2024 /* add 1 for the filesystem itself that we're moving */ 2025 fs_cnt++; 2026 2027 VERIFY0(zap_lookup(os, dd->dd_object, 2028 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 2029 &ss_cnt)); 2030 } 2031 2032 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 2033 DD_FIELD_FILESYSTEM_COUNT, tx); 2034 dsl_fs_ss_count_adjust(newparent, fs_cnt, 2035 DD_FIELD_FILESYSTEM_COUNT, tx); 2036 2037 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 2038 DD_FIELD_SNAPSHOT_COUNT, tx); 2039 dsl_fs_ss_count_adjust(newparent, ss_cnt, 2040 DD_FIELD_SNAPSHOT_COUNT, tx); 2041 2042 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 2043 -dsl_dir_phys(dd)->dd_used_bytes, 2044 -dsl_dir_phys(dd)->dd_compressed_bytes, 2045 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2046 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 2047 dsl_dir_phys(dd)->dd_used_bytes, 2048 dsl_dir_phys(dd)->dd_compressed_bytes, 2049 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 2050 2051 if (dsl_dir_phys(dd)->dd_reserved > 2052 dsl_dir_phys(dd)->dd_used_bytes) { 2053 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 2054 dsl_dir_phys(dd)->dd_used_bytes; 2055 2056 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 2057 -unused_rsrv, 0, 0, tx); 2058 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 2059 unused_rsrv, 0, 0, tx); 2060 } 2061 } 2062 2063 dmu_buf_will_dirty(dd->dd_dbuf, tx); 2064 2065 /* remove from old parent zapobj */ 2066 error = zap_remove(mos, 2067 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 2068 dd->dd_myname, tx); 2069 ASSERT0(error); 2070 2071 (void) strcpy(dd->dd_myname, mynewname); 2072 dsl_dir_rele(dd->dd_parent, dd); 2073 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 2074 VERIFY0(dsl_dir_hold_obj(dp, 2075 newparent->dd_object, NULL, dd, &dd->dd_parent)); 2076 2077 /* add to new parent zapobj */ 2078 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 2079 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 2080 2081 dsl_prop_notify_all(dd); 2082 2083 dsl_dir_rele(newparent, FTAG); 2084 dsl_dir_rele(dd, FTAG); 2085 } 2086 2087 int 2088 dsl_dir_rename(const char *oldname, const char *newname) 2089 { 2090 dsl_dir_rename_arg_t ddra; 2091 2092 ddra.ddra_oldname = oldname; 2093 ddra.ddra_newname = newname; 2094 ddra.ddra_cred = CRED(); 2095 2096 return (dsl_sync_task(oldname, 2097 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 2098 3, ZFS_SPACE_CHECK_RESERVED)); 2099 } 2100 2101 int 2102 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 2103 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 2104 { 2105 dsl_dir_t *ancestor; 2106 int64_t adelta; 2107 uint64_t avail; 2108 int err; 2109 2110 ancestor = closest_common_ancestor(sdd, tdd); 2111 adelta = would_change(sdd, -space, ancestor); 2112 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 2113 if (avail < space) 2114 return (SET_ERROR(ENOSPC)); 2115 2116 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 2117 ancestor, cr); 2118 if (err != 0) 2119 return (err); 2120 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 2121 ancestor, cr); 2122 if (err != 0) 2123 return (err); 2124 2125 return (0); 2126 } 2127 2128 timestruc_t 2129 dsl_dir_snap_cmtime(dsl_dir_t *dd) 2130 { 2131 timestruc_t t; 2132 2133 mutex_enter(&dd->dd_lock); 2134 t = dd->dd_snap_cmtime; 2135 mutex_exit(&dd->dd_lock); 2136 2137 return (t); 2138 } 2139 2140 void 2141 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 2142 { 2143 timestruc_t t; 2144 2145 gethrestime(&t); 2146 mutex_enter(&dd->dd_lock); 2147 dd->dd_snap_cmtime = t; 2148 mutex_exit(&dd->dd_lock); 2149 } 2150 2151 void 2152 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 2153 { 2154 objset_t *mos = dd->dd_pool->dp_meta_objset; 2155 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 2156 } 2157 2158 boolean_t 2159 dsl_dir_is_zapified(dsl_dir_t *dd) 2160 { 2161 dmu_object_info_t doi; 2162 2163 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2164 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2165 } 2166