1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2020 Oxide Computer Company 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/dmu_recv.h> 36 #include <sys/dsl_dataset.h> 37 #include <sys/spa.h> 38 #include <sys/range_tree.h> 39 #include <sys/zfeature.h> 40 41 static void 42 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx) 43 { 44 dmu_buf_impl_t *db; 45 int txgoff = tx->tx_txg & TXG_MASK; 46 int nblkptr = dn->dn_phys->dn_nblkptr; 47 int old_toplvl = dn->dn_phys->dn_nlevels - 1; 48 int new_level = dn->dn_next_nlevels[txgoff]; 49 int i; 50 51 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 52 53 /* this dnode can't be paged out because it's dirty */ 54 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 55 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0); 56 57 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG); 58 ASSERT(db != NULL); 59 60 dn->dn_phys->dn_nlevels = new_level; 61 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset, 62 dn->dn_object, dn->dn_phys->dn_nlevels); 63 64 /* 65 * Lock ordering requires that we hold the children's db_mutexes (by 66 * calling dbuf_find()) before holding the parent's db_rwlock. The lock 67 * order is imposed by dbuf_read's steps of "grab the lock to protect 68 * db_parent, get db_parent, hold db_parent's db_rwlock". 69 */ 70 dmu_buf_impl_t *children[DN_MAX_NBLKPTR]; 71 ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR); 72 for (i = 0; i < nblkptr; i++) { 73 children[i] = 74 dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i); 75 } 76 77 /* transfer dnode's block pointers to new indirect block */ 78 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT); 79 if (dn->dn_dbuf != NULL) 80 rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER); 81 rw_enter(&db->db_rwlock, RW_WRITER); 82 ASSERT(db->db.db_data); 83 ASSERT(arc_released(db->db_buf)); 84 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size); 85 bcopy(dn->dn_phys->dn_blkptr, db->db.db_data, 86 sizeof (blkptr_t) * nblkptr); 87 arc_buf_freeze(db->db_buf); 88 89 /* set dbuf's parent pointers to new indirect buf */ 90 for (i = 0; i < nblkptr; i++) { 91 dmu_buf_impl_t *child = children[i]; 92 93 if (child == NULL) 94 continue; 95 #ifdef DEBUG 96 DB_DNODE_ENTER(child); 97 ASSERT3P(DB_DNODE(child), ==, dn); 98 DB_DNODE_EXIT(child); 99 #endif /* DEBUG */ 100 if (child->db_parent && child->db_parent != dn->dn_dbuf) { 101 ASSERT(child->db_parent->db_level == db->db_level); 102 ASSERT(child->db_blkptr != 103 &dn->dn_phys->dn_blkptr[child->db_blkid]); 104 mutex_exit(&child->db_mtx); 105 continue; 106 } 107 ASSERT(child->db_parent == NULL || 108 child->db_parent == dn->dn_dbuf); 109 110 child->db_parent = db; 111 dbuf_add_ref(db, child); 112 if (db->db.db_data) 113 child->db_blkptr = (blkptr_t *)db->db.db_data + i; 114 else 115 child->db_blkptr = NULL; 116 dprintf_dbuf_bp(child, child->db_blkptr, 117 "changed db_blkptr to new indirect %s", ""); 118 119 mutex_exit(&child->db_mtx); 120 } 121 122 bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr); 123 124 rw_exit(&db->db_rwlock); 125 if (dn->dn_dbuf != NULL) 126 rw_exit(&dn->dn_dbuf->db_rwlock); 127 128 dbuf_rele(db, FTAG); 129 130 rw_exit(&dn->dn_struct_rwlock); 131 } 132 133 static void 134 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx) 135 { 136 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 137 uint64_t bytesfreed = 0; 138 139 dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num); 140 141 for (int i = 0; i < num; i++, bp++) { 142 if (BP_IS_HOLE(bp)) 143 continue; 144 145 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE); 146 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys)); 147 148 /* 149 * Save some useful information on the holes being 150 * punched, including logical size, type, and indirection 151 * level. Retaining birth time enables detection of when 152 * holes are punched for reducing the number of free 153 * records transmitted during a zfs send. 154 */ 155 156 uint64_t lsize = BP_GET_LSIZE(bp); 157 dmu_object_type_t type = BP_GET_TYPE(bp); 158 uint64_t lvl = BP_GET_LEVEL(bp); 159 160 bzero(bp, sizeof (blkptr_t)); 161 162 if (spa_feature_is_active(dn->dn_objset->os_spa, 163 SPA_FEATURE_HOLE_BIRTH)) { 164 BP_SET_LSIZE(bp, lsize); 165 BP_SET_TYPE(bp, type); 166 BP_SET_LEVEL(bp, lvl); 167 BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0); 168 } 169 } 170 dnode_diduse_space(dn, -bytesfreed); 171 } 172 173 #ifdef ZFS_DEBUG 174 static void 175 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx) 176 { 177 int off, num; 178 int i, err, epbs; 179 uint64_t txg = tx->tx_txg; 180 dnode_t *dn; 181 182 DB_DNODE_ENTER(db); 183 dn = DB_DNODE(db); 184 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 185 off = start - (db->db_blkid * 1<<epbs); 186 num = end - start + 1; 187 188 ASSERT3U(off, >=, 0); 189 ASSERT3U(num, >=, 0); 190 ASSERT3U(db->db_level, >, 0); 191 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 192 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT); 193 ASSERT(db->db_blkptr != NULL); 194 195 for (i = off; i < off+num; i++) { 196 uint64_t *buf; 197 dmu_buf_impl_t *child; 198 dbuf_dirty_record_t *dr; 199 int j; 200 201 ASSERT(db->db_level == 1); 202 203 rw_enter(&dn->dn_struct_rwlock, RW_READER); 204 err = dbuf_hold_impl(dn, db->db_level - 1, 205 (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child); 206 rw_exit(&dn->dn_struct_rwlock); 207 if (err == ENOENT) 208 continue; 209 ASSERT(err == 0); 210 ASSERT(child->db_level == 0); 211 dr = child->db_last_dirty; 212 while (dr && dr->dr_txg > txg) 213 dr = dr->dr_next; 214 ASSERT(dr == NULL || dr->dr_txg == txg); 215 216 /* data_old better be zeroed */ 217 if (dr) { 218 buf = dr->dt.dl.dr_data->b_data; 219 for (j = 0; j < child->db.db_size >> 3; j++) { 220 if (buf[j] != 0) { 221 panic("freed data not zero: " 222 "child=%p i=%d off=%d num=%d\n", 223 (void *)child, i, off, num); 224 } 225 } 226 } 227 228 /* 229 * db_data better be zeroed unless it's dirty in a 230 * future txg. 231 */ 232 mutex_enter(&child->db_mtx); 233 buf = child->db.db_data; 234 if (buf != NULL && child->db_state != DB_FILL && 235 child->db_last_dirty == NULL) { 236 for (j = 0; j < child->db.db_size >> 3; j++) { 237 if (buf[j] != 0) { 238 panic("freed data not zero: " 239 "child=%p i=%d off=%d num=%d\n", 240 (void *)child, i, off, num); 241 } 242 } 243 } 244 mutex_exit(&child->db_mtx); 245 246 dbuf_rele(child, FTAG); 247 } 248 DB_DNODE_EXIT(db); 249 } 250 #endif 251 252 /* 253 * We don't usually free the indirect blocks here. If in one txg we have a 254 * free_range and a write to the same indirect block, it's important that we 255 * preserve the hole's birth times. Therefore, we don't free any any indirect 256 * blocks in free_children(). If an indirect block happens to turn into all 257 * holes, it will be freed by dbuf_write_children_ready, which happens at a 258 * point in the syncing process where we know for certain the contents of the 259 * indirect block. 260 * 261 * However, if we're freeing a dnode, its space accounting must go to zero 262 * before we actually try to free the dnode, or we will trip an assertion. In 263 * addition, we know the case described above cannot occur, because the dnode is 264 * being freed. Therefore, we free the indirect blocks immediately in that 265 * case. 266 */ 267 static void 268 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks, 269 boolean_t free_indirects, dmu_tx_t *tx) 270 { 271 dnode_t *dn; 272 blkptr_t *bp; 273 dmu_buf_impl_t *subdb; 274 uint64_t start, end, dbstart, dbend; 275 unsigned int epbs, shift, i; 276 277 /* 278 * There is a small possibility that this block will not be cached: 279 * 1 - if level > 1 and there are no children with level <= 1 280 * 2 - if this block was evicted since we read it from 281 * dmu_tx_hold_free(). 282 */ 283 if (db->db_state != DB_CACHED) 284 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 285 286 /* 287 * If we modify this indirect block, and we are not freeing the 288 * dnode (!free_indirects), then this indirect block needs to get 289 * written to disk by dbuf_write(). If it is dirty, we know it will 290 * be written (otherwise, we would have incorrect on-disk state 291 * because the space would be freed but still referenced by the BP 292 * in this indirect block). Therefore we VERIFY that it is 293 * dirty. 294 * 295 * Our VERIFY covers some cases that do not actually have to be 296 * dirty, but the open-context code happens to dirty. E.g. if the 297 * blocks we are freeing are all holes, because in that case, we 298 * are only freeing part of this indirect block, so it is an 299 * ancestor of the first or last block to be freed. The first and 300 * last L1 indirect blocks are always dirtied by dnode_free_range(). 301 */ 302 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 303 VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0); 304 dmu_buf_unlock_parent(db, dblt, FTAG); 305 306 dbuf_release_bp(db); 307 bp = db->db.db_data; 308 309 DB_DNODE_ENTER(db); 310 dn = DB_DNODE(db); 311 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 312 ASSERT3U(epbs, <, 31); 313 shift = (db->db_level - 1) * epbs; 314 dbstart = db->db_blkid << epbs; 315 start = blkid >> shift; 316 if (dbstart < start) { 317 bp += start - dbstart; 318 } else { 319 start = dbstart; 320 } 321 dbend = ((db->db_blkid + 1) << epbs) - 1; 322 end = (blkid + nblks - 1) >> shift; 323 if (dbend <= end) 324 end = dbend; 325 326 ASSERT3U(start, <=, end); 327 328 if (db->db_level == 1) { 329 FREE_VERIFY(db, start, end, tx); 330 rw_enter(&db->db_rwlock, RW_WRITER); 331 free_blocks(dn, bp, end - start + 1, tx); 332 rw_exit(&db->db_rwlock); 333 } else { 334 for (uint64_t id = start; id <= end; id++, bp++) { 335 if (BP_IS_HOLE(bp)) 336 continue; 337 rw_enter(&dn->dn_struct_rwlock, RW_READER); 338 VERIFY0(dbuf_hold_impl(dn, db->db_level - 1, 339 id, TRUE, FALSE, FTAG, &subdb)); 340 rw_exit(&dn->dn_struct_rwlock); 341 ASSERT3P(bp, ==, subdb->db_blkptr); 342 343 free_children(subdb, blkid, nblks, free_indirects, tx); 344 dbuf_rele(subdb, FTAG); 345 } 346 } 347 348 if (free_indirects) { 349 rw_enter(&db->db_rwlock, RW_WRITER); 350 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) 351 ASSERT(BP_IS_HOLE(bp)); 352 bzero(db->db.db_data, db->db.db_size); 353 free_blocks(dn, db->db_blkptr, 1, tx); 354 rw_exit(&db->db_rwlock); 355 } 356 357 DB_DNODE_EXIT(db); 358 arc_buf_freeze(db->db_buf); 359 } 360 361 /* 362 * Traverse the indicated range of the provided file 363 * and "free" all the blocks contained there. 364 */ 365 static void 366 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks, 367 boolean_t free_indirects, dmu_tx_t *tx) 368 { 369 blkptr_t *bp = dn->dn_phys->dn_blkptr; 370 int dnlevel = dn->dn_phys->dn_nlevels; 371 boolean_t trunc = B_FALSE; 372 373 if (blkid > dn->dn_phys->dn_maxblkid) 374 return; 375 376 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX); 377 if (blkid + nblks > dn->dn_phys->dn_maxblkid) { 378 nblks = dn->dn_phys->dn_maxblkid - blkid + 1; 379 trunc = B_TRUE; 380 } 381 382 /* There are no indirect blocks in the object */ 383 if (dnlevel == 1) { 384 if (blkid >= dn->dn_phys->dn_nblkptr) { 385 /* this range was never made persistent */ 386 return; 387 } 388 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr); 389 free_blocks(dn, bp + blkid, nblks, tx); 390 } else { 391 int shift = (dnlevel - 1) * 392 (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT); 393 int start = blkid >> shift; 394 int end = (blkid + nblks - 1) >> shift; 395 dmu_buf_impl_t *db; 396 397 ASSERT(start < dn->dn_phys->dn_nblkptr); 398 bp += start; 399 for (int i = start; i <= end; i++, bp++) { 400 if (BP_IS_HOLE(bp)) 401 continue; 402 rw_enter(&dn->dn_struct_rwlock, RW_READER); 403 VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i, 404 TRUE, FALSE, FTAG, &db)); 405 rw_exit(&dn->dn_struct_rwlock); 406 free_children(db, blkid, nblks, free_indirects, tx); 407 dbuf_rele(db, FTAG); 408 } 409 } 410 411 /* 412 * Do not truncate the maxblkid if we are performing a raw 413 * receive. The raw receive sets the maxblkid manually and 414 * must not be overridden. Usually, the last DRR_FREE record 415 * will be at the maxblkid, because the source system sets 416 * the maxblkid when truncating. However, if the last block 417 * was freed by overwriting with zeros and being compressed 418 * away to a hole, the source system will generate a DRR_FREE 419 * record while leaving the maxblkid after the end of that 420 * record. In this case we need to leave the maxblkid as 421 * indicated in the DRR_OBJECT record, so that it matches the 422 * source system, ensuring that the cryptographic hashes will 423 * match. 424 */ 425 if (trunc && !dn->dn_objset->os_raw_receive) { 426 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1; 427 428 uint64_t off = (dn->dn_phys->dn_maxblkid + 1) * 429 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT); 430 ASSERT(off < dn->dn_phys->dn_maxblkid || 431 dn->dn_phys->dn_maxblkid == 0 || 432 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0); 433 } 434 } 435 436 typedef struct dnode_sync_free_range_arg { 437 dnode_t *dsfra_dnode; 438 dmu_tx_t *dsfra_tx; 439 boolean_t dsfra_free_indirects; 440 } dnode_sync_free_range_arg_t; 441 442 static void 443 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks) 444 { 445 dnode_sync_free_range_arg_t *dsfra = arg; 446 dnode_t *dn = dsfra->dsfra_dnode; 447 448 mutex_exit(&dn->dn_mtx); 449 dnode_sync_free_range_impl(dn, blkid, nblks, 450 dsfra->dsfra_free_indirects, dsfra->dsfra_tx); 451 mutex_enter(&dn->dn_mtx); 452 } 453 454 /* 455 * Try to kick all the dnode's dbufs out of the cache... 456 */ 457 void 458 dnode_evict_dbufs(dnode_t *dn) 459 { 460 dmu_buf_impl_t db_marker; 461 dmu_buf_impl_t *db, *db_next; 462 463 mutex_enter(&dn->dn_dbufs_mtx); 464 for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) { 465 466 #ifdef DEBUG 467 DB_DNODE_ENTER(db); 468 ASSERT3P(DB_DNODE(db), ==, dn); 469 DB_DNODE_EXIT(db); 470 #endif /* DEBUG */ 471 472 mutex_enter(&db->db_mtx); 473 if (db->db_state != DB_EVICTING && 474 zfs_refcount_is_zero(&db->db_holds)) { 475 db_marker.db_level = db->db_level; 476 db_marker.db_blkid = db->db_blkid; 477 db_marker.db_state = DB_SEARCH; 478 avl_insert_here(&dn->dn_dbufs, &db_marker, db, 479 AVL_BEFORE); 480 481 /* 482 * We need to use the "marker" dbuf rather than 483 * simply getting the next dbuf, because 484 * dbuf_destroy() may actually remove multiple dbufs. 485 * It can call itself recursively on the parent dbuf, 486 * which may also be removed from dn_dbufs. The code 487 * flow would look like: 488 * 489 * dbuf_destroy(): 490 * dnode_rele_and_unlock(parent_dbuf, evicting=TRUE): 491 * if (!cacheable || pending_evict) 492 * dbuf_destroy() 493 */ 494 dbuf_destroy(db); 495 496 db_next = AVL_NEXT(&dn->dn_dbufs, &db_marker); 497 avl_remove(&dn->dn_dbufs, &db_marker); 498 } else { 499 db->db_pending_evict = TRUE; 500 mutex_exit(&db->db_mtx); 501 db_next = AVL_NEXT(&dn->dn_dbufs, db); 502 } 503 } 504 mutex_exit(&dn->dn_dbufs_mtx); 505 506 dnode_evict_bonus(dn); 507 } 508 509 void 510 dnode_evict_bonus(dnode_t *dn) 511 { 512 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 513 if (dn->dn_bonus != NULL) { 514 if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) { 515 mutex_enter(&dn->dn_bonus->db_mtx); 516 dbuf_destroy(dn->dn_bonus); 517 dn->dn_bonus = NULL; 518 } else { 519 dn->dn_bonus->db_pending_evict = TRUE; 520 } 521 } 522 rw_exit(&dn->dn_struct_rwlock); 523 } 524 525 static void 526 dnode_undirty_dbufs(list_t *list) 527 { 528 dbuf_dirty_record_t *dr; 529 530 while (dr = list_head(list)) { 531 dmu_buf_impl_t *db = dr->dr_dbuf; 532 uint64_t txg = dr->dr_txg; 533 534 if (db->db_level != 0) 535 dnode_undirty_dbufs(&dr->dt.di.dr_children); 536 537 mutex_enter(&db->db_mtx); 538 /* XXX - use dbuf_undirty()? */ 539 list_remove(list, dr); 540 ASSERT(db->db_last_dirty == dr); 541 db->db_last_dirty = NULL; 542 db->db_dirtycnt -= 1; 543 if (db->db_level == 0) { 544 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 545 dr->dt.dl.dr_data == db->db_buf); 546 dbuf_unoverride(dr); 547 } else { 548 mutex_destroy(&dr->dt.di.dr_mtx); 549 list_destroy(&dr->dt.di.dr_children); 550 } 551 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 552 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); 553 } 554 } 555 556 static void 557 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx) 558 { 559 int txgoff = tx->tx_txg & TXG_MASK; 560 561 ASSERT(dmu_tx_is_syncing(tx)); 562 563 /* 564 * Our contents should have been freed in dnode_sync() by the 565 * free range record inserted by the caller of dnode_free(). 566 */ 567 ASSERT0(DN_USED_BYTES(dn->dn_phys)); 568 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr)); 569 570 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]); 571 dnode_evict_dbufs(dn); 572 573 /* 574 * XXX - It would be nice to assert this, but we may still 575 * have residual holds from async evictions from the arc... 576 * 577 * zfs_obj_to_path() also depends on this being 578 * commented out. 579 * 580 * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1); 581 */ 582 583 /* Undirty next bits */ 584 dn->dn_next_nlevels[txgoff] = 0; 585 dn->dn_next_indblkshift[txgoff] = 0; 586 dn->dn_next_blksz[txgoff] = 0; 587 dn->dn_next_maxblkid[txgoff] = 0; 588 589 /* ASSERT(blkptrs are zero); */ 590 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 591 ASSERT(dn->dn_type != DMU_OT_NONE); 592 593 ASSERT(dn->dn_free_txg > 0); 594 if (dn->dn_allocated_txg != dn->dn_free_txg) 595 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx); 596 bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots); 597 dnode_free_interior_slots(dn); 598 599 mutex_enter(&dn->dn_mtx); 600 dn->dn_type = DMU_OT_NONE; 601 dn->dn_maxblkid = 0; 602 dn->dn_allocated_txg = 0; 603 dn->dn_free_txg = 0; 604 dn->dn_have_spill = B_FALSE; 605 dn->dn_num_slots = 1; 606 mutex_exit(&dn->dn_mtx); 607 608 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 609 610 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 611 /* 612 * Now that we've released our hold, the dnode may 613 * be evicted, so we mustn't access it. 614 */ 615 } 616 617 /* 618 * Write out the dnode's dirty buffers. 619 */ 620 void 621 dnode_sync(dnode_t *dn, dmu_tx_t *tx) 622 { 623 objset_t *os = dn->dn_objset; 624 dnode_phys_t *dnp = dn->dn_phys; 625 int txgoff = tx->tx_txg & TXG_MASK; 626 list_t *list = &dn->dn_dirty_records[txgoff]; 627 static const dnode_phys_t zerodn = { 0 }; 628 boolean_t kill_spill = B_FALSE; 629 630 ASSERT(dmu_tx_is_syncing(tx)); 631 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg); 632 ASSERT(dnp->dn_type != DMU_OT_NONE || 633 bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0); 634 DNODE_VERIFY(dn); 635 636 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf)); 637 638 /* 639 * Do user accounting if it is enabled and this is not 640 * an encrypted receive. 641 */ 642 if (dmu_objset_userused_enabled(os) && 643 !DMU_OBJECT_IS_SPECIAL(dn->dn_object) && 644 (!os->os_encrypted || !dmu_objset_is_receiving(os))) { 645 mutex_enter(&dn->dn_mtx); 646 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys); 647 dn->dn_oldflags = dn->dn_phys->dn_flags; 648 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED; 649 if (dmu_objset_userobjused_enabled(dn->dn_objset)) 650 dn->dn_phys->dn_flags |= 651 DNODE_FLAG_USEROBJUSED_ACCOUNTED; 652 mutex_exit(&dn->dn_mtx); 653 dmu_objset_userquota_get_ids(dn, B_FALSE, tx); 654 } else { 655 /* Once we account for it, we should always account for it */ 656 ASSERT(!(dn->dn_phys->dn_flags & 657 DNODE_FLAG_USERUSED_ACCOUNTED)); 658 ASSERT(!(dn->dn_phys->dn_flags & 659 DNODE_FLAG_USEROBJUSED_ACCOUNTED)); 660 } 661 662 mutex_enter(&dn->dn_mtx); 663 if (dn->dn_allocated_txg == tx->tx_txg) { 664 /* The dnode is newly allocated or reallocated */ 665 if (dnp->dn_type == DMU_OT_NONE) { 666 /* this is a first alloc, not a realloc */ 667 dnp->dn_nlevels = 1; 668 dnp->dn_nblkptr = dn->dn_nblkptr; 669 } 670 671 dnp->dn_type = dn->dn_type; 672 dnp->dn_bonustype = dn->dn_bonustype; 673 dnp->dn_bonuslen = dn->dn_bonuslen; 674 } 675 676 dnp->dn_extra_slots = dn->dn_num_slots - 1; 677 678 ASSERT(dnp->dn_nlevels > 1 || 679 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 680 BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) || 681 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 682 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 683 ASSERT(dnp->dn_nlevels < 2 || 684 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 685 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift); 686 687 if (dn->dn_next_type[txgoff] != 0) { 688 dnp->dn_type = dn->dn_type; 689 dn->dn_next_type[txgoff] = 0; 690 } 691 692 if (dn->dn_next_blksz[txgoff] != 0) { 693 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff], 694 SPA_MINBLOCKSIZE) == 0); 695 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) || 696 dn->dn_maxblkid == 0 || list_head(list) != NULL || 697 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT == 698 dnp->dn_datablkszsec || 699 !range_tree_is_empty(dn->dn_free_ranges[txgoff])); 700 dnp->dn_datablkszsec = 701 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT; 702 dn->dn_next_blksz[txgoff] = 0; 703 } 704 705 if (dn->dn_next_bonuslen[txgoff] != 0) { 706 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN) 707 dnp->dn_bonuslen = 0; 708 else 709 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff]; 710 ASSERT(dnp->dn_bonuslen <= 711 DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1)); 712 dn->dn_next_bonuslen[txgoff] = 0; 713 } 714 715 if (dn->dn_next_bonustype[txgoff] != 0) { 716 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff])); 717 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff]; 718 dn->dn_next_bonustype[txgoff] = 0; 719 } 720 721 boolean_t freeing_dnode = dn->dn_free_txg > 0 && 722 dn->dn_free_txg <= tx->tx_txg; 723 724 /* 725 * Remove the spill block if we have been explicitly asked to 726 * remove it, or if the object is being removed. 727 */ 728 if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) { 729 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 730 kill_spill = B_TRUE; 731 dn->dn_rm_spillblk[txgoff] = 0; 732 } 733 734 if (dn->dn_next_indblkshift[txgoff] != 0) { 735 ASSERT(dnp->dn_nlevels == 1); 736 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff]; 737 dn->dn_next_indblkshift[txgoff] = 0; 738 } 739 740 /* 741 * Just take the live (open-context) values for checksum and compress. 742 * Strictly speaking it's a future leak, but nothing bad happens if we 743 * start using the new checksum or compress algorithm a little early. 744 */ 745 dnp->dn_checksum = dn->dn_checksum; 746 dnp->dn_compress = dn->dn_compress; 747 748 mutex_exit(&dn->dn_mtx); 749 750 if (kill_spill) { 751 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx); 752 mutex_enter(&dn->dn_mtx); 753 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR; 754 mutex_exit(&dn->dn_mtx); 755 } 756 757 /* process all the "freed" ranges in the file */ 758 if (dn->dn_free_ranges[txgoff] != NULL) { 759 dnode_sync_free_range_arg_t dsfra; 760 dsfra.dsfra_dnode = dn; 761 dsfra.dsfra_tx = tx; 762 dsfra.dsfra_free_indirects = freeing_dnode; 763 mutex_enter(&dn->dn_mtx); 764 if (freeing_dnode) { 765 ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff], 766 0, dn->dn_maxblkid + 1)); 767 } 768 /* 769 * Because dnode_sync_free_range() must drop dn_mtx during its 770 * processing, using it as a callback to range_tree_vacate() is 771 * not safe. No other operations (besides destroy) are allowed 772 * once range_tree_vacate() has begun, and dropping dn_mtx 773 * would leave a window open for another thread to observe that 774 * invalid (and unsafe) state. 775 */ 776 range_tree_walk(dn->dn_free_ranges[txgoff], 777 dnode_sync_free_range, &dsfra); 778 range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL); 779 range_tree_destroy(dn->dn_free_ranges[txgoff]); 780 dn->dn_free_ranges[txgoff] = NULL; 781 mutex_exit(&dn->dn_mtx); 782 } 783 784 if (freeing_dnode) { 785 dn->dn_objset->os_freed_dnodes++; 786 dnode_sync_free(dn, tx); 787 return; 788 } 789 790 if (dn->dn_num_slots > DNODE_MIN_SLOTS) { 791 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 792 mutex_enter(&ds->ds_lock); 793 ds->ds_feature_activation_needed[SPA_FEATURE_LARGE_DNODE] = 794 B_TRUE; 795 mutex_exit(&ds->ds_lock); 796 } 797 798 if (dn->dn_next_nlevels[txgoff]) { 799 dnode_increase_indirection(dn, tx); 800 dn->dn_next_nlevels[txgoff] = 0; 801 } 802 803 /* 804 * This must be done after dnode_sync_free_range() 805 * and dnode_increase_indirection(). See dnode_new_blkid() 806 * for an explanation of the high bit being set. 807 */ 808 if (dn->dn_next_maxblkid[txgoff]) { 809 mutex_enter(&dn->dn_mtx); 810 dnp->dn_maxblkid = 811 dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET; 812 dn->dn_next_maxblkid[txgoff] = 0; 813 mutex_exit(&dn->dn_mtx); 814 } 815 816 if (dn->dn_next_nblkptr[txgoff]) { 817 /* this should only happen on a realloc */ 818 ASSERT(dn->dn_allocated_txg == tx->tx_txg); 819 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) { 820 /* zero the new blkptrs we are gaining */ 821 bzero(dnp->dn_blkptr + dnp->dn_nblkptr, 822 sizeof (blkptr_t) * 823 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr)); 824 #ifdef ZFS_DEBUG 825 } else { 826 int i; 827 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr); 828 /* the blkptrs we are losing better be unallocated */ 829 for (i = dn->dn_next_nblkptr[txgoff]; 830 i < dnp->dn_nblkptr; i++) 831 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i])); 832 #endif 833 } 834 mutex_enter(&dn->dn_mtx); 835 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff]; 836 dn->dn_next_nblkptr[txgoff] = 0; 837 mutex_exit(&dn->dn_mtx); 838 } 839 840 dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx); 841 842 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 843 ASSERT3P(list_head(list), ==, NULL); 844 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 845 } 846 847 /* 848 * Although we have dropped our reference to the dnode, it 849 * can't be evicted until its written, and we haven't yet 850 * initiated the IO for the dnode's dbuf. 851 */ 852 } 853