xref: /illumos-gate/usr/src/uts/common/fs/zfs/dnode_sync.c (revision 8a2b682e57a046b828f37bcde1776f131ef4629f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_recv.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/range_tree.h>
38 #include <sys/zfeature.h>
39 
40 static void
41 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
42 {
43 	dmu_buf_impl_t *db;
44 	int txgoff = tx->tx_txg & TXG_MASK;
45 	int nblkptr = dn->dn_phys->dn_nblkptr;
46 	int old_toplvl = dn->dn_phys->dn_nlevels - 1;
47 	int new_level = dn->dn_next_nlevels[txgoff];
48 	int i;
49 
50 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
51 
52 	/* this dnode can't be paged out because it's dirty */
53 	ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
54 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
55 	ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
56 
57 	db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
58 	ASSERT(db != NULL);
59 
60 	dn->dn_phys->dn_nlevels = new_level;
61 	dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
62 	    dn->dn_object, dn->dn_phys->dn_nlevels);
63 
64 	/* transfer dnode's block pointers to new indirect block */
65 	(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
66 	ASSERT(db->db.db_data);
67 	ASSERT(arc_released(db->db_buf));
68 	ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
69 	bcopy(dn->dn_phys->dn_blkptr, db->db.db_data,
70 	    sizeof (blkptr_t) * nblkptr);
71 	arc_buf_freeze(db->db_buf);
72 
73 	/* set dbuf's parent pointers to new indirect buf */
74 	for (i = 0; i < nblkptr; i++) {
75 		dmu_buf_impl_t *child =
76 		    dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
77 
78 		if (child == NULL)
79 			continue;
80 #ifdef	DEBUG
81 		DB_DNODE_ENTER(child);
82 		ASSERT3P(DB_DNODE(child), ==, dn);
83 		DB_DNODE_EXIT(child);
84 #endif	/* DEBUG */
85 		if (child->db_parent && child->db_parent != dn->dn_dbuf) {
86 			ASSERT(child->db_parent->db_level == db->db_level);
87 			ASSERT(child->db_blkptr !=
88 			    &dn->dn_phys->dn_blkptr[child->db_blkid]);
89 			mutex_exit(&child->db_mtx);
90 			continue;
91 		}
92 		ASSERT(child->db_parent == NULL ||
93 		    child->db_parent == dn->dn_dbuf);
94 
95 		child->db_parent = db;
96 		dbuf_add_ref(db, child);
97 		if (db->db.db_data)
98 			child->db_blkptr = (blkptr_t *)db->db.db_data + i;
99 		else
100 			child->db_blkptr = NULL;
101 		dprintf_dbuf_bp(child, child->db_blkptr,
102 		    "changed db_blkptr to new indirect %s", "");
103 
104 		mutex_exit(&child->db_mtx);
105 	}
106 
107 	bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr);
108 
109 	dbuf_rele(db, FTAG);
110 
111 	rw_exit(&dn->dn_struct_rwlock);
112 }
113 
114 static void
115 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
116 {
117 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
118 	uint64_t bytesfreed = 0;
119 
120 	dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num);
121 
122 	for (int i = 0; i < num; i++, bp++) {
123 		if (BP_IS_HOLE(bp))
124 			continue;
125 
126 		bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
127 		ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
128 
129 		/*
130 		 * Save some useful information on the holes being
131 		 * punched, including logical size, type, and indirection
132 		 * level. Retaining birth time enables detection of when
133 		 * holes are punched for reducing the number of free
134 		 * records transmitted during a zfs send.
135 		 */
136 
137 		uint64_t lsize = BP_GET_LSIZE(bp);
138 		dmu_object_type_t type = BP_GET_TYPE(bp);
139 		uint64_t lvl = BP_GET_LEVEL(bp);
140 
141 		bzero(bp, sizeof (blkptr_t));
142 
143 		if (spa_feature_is_active(dn->dn_objset->os_spa,
144 		    SPA_FEATURE_HOLE_BIRTH)) {
145 			BP_SET_LSIZE(bp, lsize);
146 			BP_SET_TYPE(bp, type);
147 			BP_SET_LEVEL(bp, lvl);
148 			BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
149 		}
150 	}
151 	dnode_diduse_space(dn, -bytesfreed);
152 }
153 
154 #ifdef ZFS_DEBUG
155 static void
156 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
157 {
158 	int off, num;
159 	int i, err, epbs;
160 	uint64_t txg = tx->tx_txg;
161 	dnode_t *dn;
162 
163 	DB_DNODE_ENTER(db);
164 	dn = DB_DNODE(db);
165 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
166 	off = start - (db->db_blkid * 1<<epbs);
167 	num = end - start + 1;
168 
169 	ASSERT3U(off, >=, 0);
170 	ASSERT3U(num, >=, 0);
171 	ASSERT3U(db->db_level, >, 0);
172 	ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
173 	ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
174 	ASSERT(db->db_blkptr != NULL);
175 
176 	for (i = off; i < off+num; i++) {
177 		uint64_t *buf;
178 		dmu_buf_impl_t *child;
179 		dbuf_dirty_record_t *dr;
180 		int j;
181 
182 		ASSERT(db->db_level == 1);
183 
184 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
185 		err = dbuf_hold_impl(dn, db->db_level-1,
186 		    (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
187 		rw_exit(&dn->dn_struct_rwlock);
188 		if (err == ENOENT)
189 			continue;
190 		ASSERT(err == 0);
191 		ASSERT(child->db_level == 0);
192 		dr = child->db_last_dirty;
193 		while (dr && dr->dr_txg > txg)
194 			dr = dr->dr_next;
195 		ASSERT(dr == NULL || dr->dr_txg == txg);
196 
197 		/* data_old better be zeroed */
198 		if (dr) {
199 			buf = dr->dt.dl.dr_data->b_data;
200 			for (j = 0; j < child->db.db_size >> 3; j++) {
201 				if (buf[j] != 0) {
202 					panic("freed data not zero: "
203 					    "child=%p i=%d off=%d num=%d\n",
204 					    (void *)child, i, off, num);
205 				}
206 			}
207 		}
208 
209 		/*
210 		 * db_data better be zeroed unless it's dirty in a
211 		 * future txg.
212 		 */
213 		mutex_enter(&child->db_mtx);
214 		buf = child->db.db_data;
215 		if (buf != NULL && child->db_state != DB_FILL &&
216 		    child->db_last_dirty == NULL) {
217 			for (j = 0; j < child->db.db_size >> 3; j++) {
218 				if (buf[j] != 0) {
219 					panic("freed data not zero: "
220 					    "child=%p i=%d off=%d num=%d\n",
221 					    (void *)child, i, off, num);
222 				}
223 			}
224 		}
225 		mutex_exit(&child->db_mtx);
226 
227 		dbuf_rele(child, FTAG);
228 	}
229 	DB_DNODE_EXIT(db);
230 }
231 #endif
232 
233 /*
234  * We don't usually free the indirect blocks here.  If in one txg we have a
235  * free_range and a write to the same indirect block, it's important that we
236  * preserve the hole's birth times. Therefore, we don't free any any indirect
237  * blocks in free_children().  If an indirect block happens to turn into all
238  * holes, it will be freed by dbuf_write_children_ready, which happens at a
239  * point in the syncing process where we know for certain the contents of the
240  * indirect block.
241  *
242  * However, if we're freeing a dnode, its space accounting must go to zero
243  * before we actually try to free the dnode, or we will trip an assertion. In
244  * addition, we know the case described above cannot occur, because the dnode is
245  * being freed.  Therefore, we free the indirect blocks immediately in that
246  * case.
247  */
248 static void
249 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
250     boolean_t free_indirects, dmu_tx_t *tx)
251 {
252 	dnode_t *dn;
253 	blkptr_t *bp;
254 	dmu_buf_impl_t *subdb;
255 	uint64_t start, end, dbstart, dbend;
256 	unsigned int epbs, shift, i;
257 
258 	/*
259 	 * There is a small possibility that this block will not be cached:
260 	 *   1 - if level > 1 and there are no children with level <= 1
261 	 *   2 - if this block was evicted since we read it from
262 	 *	 dmu_tx_hold_free().
263 	 */
264 	if (db->db_state != DB_CACHED)
265 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
266 
267 	/*
268 	 * If we modify this indirect block, and we are not freeing the
269 	 * dnode (!free_indirects), then this indirect block needs to get
270 	 * written to disk by dbuf_write().  If it is dirty, we know it will
271 	 * be written (otherwise, we would have incorrect on-disk state
272 	 * because the space would be freed but still referenced by the BP
273 	 * in this indirect block).  Therefore we VERIFY that it is
274 	 * dirty.
275 	 *
276 	 * Our VERIFY covers some cases that do not actually have to be
277 	 * dirty, but the open-context code happens to dirty.  E.g. if the
278 	 * blocks we are freeing are all holes, because in that case, we
279 	 * are only freeing part of this indirect block, so it is an
280 	 * ancestor of the first or last block to be freed.  The first and
281 	 * last L1 indirect blocks are always dirtied by dnode_free_range().
282 	 */
283 	VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
284 
285 	dbuf_release_bp(db);
286 	bp = db->db.db_data;
287 
288 	DB_DNODE_ENTER(db);
289 	dn = DB_DNODE(db);
290 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
291 	ASSERT3U(epbs, <, 31);
292 	shift = (db->db_level - 1) * epbs;
293 	dbstart = db->db_blkid << epbs;
294 	start = blkid >> shift;
295 	if (dbstart < start) {
296 		bp += start - dbstart;
297 	} else {
298 		start = dbstart;
299 	}
300 	dbend = ((db->db_blkid + 1) << epbs) - 1;
301 	end = (blkid + nblks - 1) >> shift;
302 	if (dbend <= end)
303 		end = dbend;
304 
305 	ASSERT3U(start, <=, end);
306 
307 	if (db->db_level == 1) {
308 		FREE_VERIFY(db, start, end, tx);
309 		free_blocks(dn, bp, end-start+1, tx);
310 	} else {
311 		for (uint64_t id = start; id <= end; id++, bp++) {
312 			if (BP_IS_HOLE(bp))
313 				continue;
314 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
315 			VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
316 			    id, TRUE, FALSE, FTAG, &subdb));
317 			rw_exit(&dn->dn_struct_rwlock);
318 			ASSERT3P(bp, ==, subdb->db_blkptr);
319 
320 			free_children(subdb, blkid, nblks, free_indirects, tx);
321 			dbuf_rele(subdb, FTAG);
322 		}
323 	}
324 
325 	if (free_indirects) {
326 		for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
327 			ASSERT(BP_IS_HOLE(bp));
328 		bzero(db->db.db_data, db->db.db_size);
329 		free_blocks(dn, db->db_blkptr, 1, tx);
330 	}
331 
332 	DB_DNODE_EXIT(db);
333 	arc_buf_freeze(db->db_buf);
334 }
335 
336 /*
337  * Traverse the indicated range of the provided file
338  * and "free" all the blocks contained there.
339  */
340 static void
341 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
342     boolean_t free_indirects, dmu_tx_t *tx)
343 {
344 	blkptr_t *bp = dn->dn_phys->dn_blkptr;
345 	int dnlevel = dn->dn_phys->dn_nlevels;
346 	boolean_t trunc = B_FALSE;
347 
348 	if (blkid > dn->dn_phys->dn_maxblkid)
349 		return;
350 
351 	ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
352 	if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
353 		nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
354 		trunc = B_TRUE;
355 	}
356 
357 	/* There are no indirect blocks in the object */
358 	if (dnlevel == 1) {
359 		if (blkid >= dn->dn_phys->dn_nblkptr) {
360 			/* this range was never made persistent */
361 			return;
362 		}
363 		ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
364 		free_blocks(dn, bp + blkid, nblks, tx);
365 	} else {
366 		int shift = (dnlevel - 1) *
367 		    (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
368 		int start = blkid >> shift;
369 		int end = (blkid + nblks - 1) >> shift;
370 		dmu_buf_impl_t *db;
371 
372 		ASSERT(start < dn->dn_phys->dn_nblkptr);
373 		bp += start;
374 		for (int i = start; i <= end; i++, bp++) {
375 			if (BP_IS_HOLE(bp))
376 				continue;
377 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
378 			VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
379 			    TRUE, FALSE, FTAG, &db));
380 			rw_exit(&dn->dn_struct_rwlock);
381 
382 			free_children(db, blkid, nblks, free_indirects, tx);
383 			dbuf_rele(db, FTAG);
384 		}
385 	}
386 
387 	/*
388 	 * Do not truncate the maxblkid if we are performing a raw
389 	 * receive. The raw receive sets the maxblkid manually and
390 	 * must not be overridden. Usually, the last DRR_FREE record
391 	 * will be at the maxblkid, because the source system sets
392 	 * the maxblkid when truncating. However, if the last block
393 	 * was freed by overwriting with zeros and being compressed
394 	 * away to a hole, the source system will generate a DRR_FREE
395 	 * record while leaving the maxblkid after the end of that
396 	 * record. In this case we need to leave the maxblkid as
397 	 * indicated in the DRR_OBJECT record, so that it matches the
398 	 * source system, ensuring that the cryptographic hashes will
399 	 * match.
400 	 */
401 	if (trunc && !dn->dn_objset->os_raw_receive) {
402 		dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
403 
404 		uint64_t off = (dn->dn_phys->dn_maxblkid + 1) *
405 		    (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
406 		ASSERT(off < dn->dn_phys->dn_maxblkid ||
407 		    dn->dn_phys->dn_maxblkid == 0 ||
408 		    dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
409 	}
410 }
411 
412 typedef struct dnode_sync_free_range_arg {
413 	dnode_t *dsfra_dnode;
414 	dmu_tx_t *dsfra_tx;
415 	boolean_t dsfra_free_indirects;
416 } dnode_sync_free_range_arg_t;
417 
418 static void
419 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
420 {
421 	dnode_sync_free_range_arg_t *dsfra = arg;
422 	dnode_t *dn = dsfra->dsfra_dnode;
423 
424 	mutex_exit(&dn->dn_mtx);
425 	dnode_sync_free_range_impl(dn, blkid, nblks,
426 	    dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
427 	mutex_enter(&dn->dn_mtx);
428 }
429 
430 /*
431  * Try to kick all the dnode's dbufs out of the cache...
432  */
433 void
434 dnode_evict_dbufs(dnode_t *dn)
435 {
436 	dmu_buf_impl_t db_marker;
437 	dmu_buf_impl_t *db, *db_next;
438 
439 	mutex_enter(&dn->dn_dbufs_mtx);
440 	for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
441 
442 #ifdef	DEBUG
443 		DB_DNODE_ENTER(db);
444 		ASSERT3P(DB_DNODE(db), ==, dn);
445 		DB_DNODE_EXIT(db);
446 #endif	/* DEBUG */
447 
448 		mutex_enter(&db->db_mtx);
449 		if (db->db_state != DB_EVICTING &&
450 		    zfs_refcount_is_zero(&db->db_holds)) {
451 			db_marker.db_level = db->db_level;
452 			db_marker.db_blkid = db->db_blkid;
453 			db_marker.db_state = DB_SEARCH;
454 			avl_insert_here(&dn->dn_dbufs, &db_marker, db,
455 			    AVL_BEFORE);
456 
457 			/*
458 			 * We need to use the "marker" dbuf rather than
459 			 * simply getting the next dbuf, because
460 			 * dbuf_destroy() may actually remove multiple dbufs.
461 			 * It can call itself recursively on the parent dbuf,
462 			 * which may also be removed from dn_dbufs.  The code
463 			 * flow would look like:
464 			 *
465 			 * dbuf_destroy():
466 			 *   dnode_rele_and_unlock(parent_dbuf, evicting=TRUE):
467 			 *	if (!cacheable || pending_evict)
468 			 *	  dbuf_destroy()
469 			 */
470 			dbuf_destroy(db);
471 
472 			db_next = AVL_NEXT(&dn->dn_dbufs, &db_marker);
473 			avl_remove(&dn->dn_dbufs, &db_marker);
474 		} else {
475 			db->db_pending_evict = TRUE;
476 			mutex_exit(&db->db_mtx);
477 			db_next = AVL_NEXT(&dn->dn_dbufs, db);
478 		}
479 	}
480 	mutex_exit(&dn->dn_dbufs_mtx);
481 
482 	dnode_evict_bonus(dn);
483 }
484 
485 void
486 dnode_evict_bonus(dnode_t *dn)
487 {
488 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
489 	if (dn->dn_bonus != NULL) {
490 		if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) {
491 			mutex_enter(&dn->dn_bonus->db_mtx);
492 			dbuf_destroy(dn->dn_bonus);
493 			dn->dn_bonus = NULL;
494 		} else {
495 			dn->dn_bonus->db_pending_evict = TRUE;
496 		}
497 	}
498 	rw_exit(&dn->dn_struct_rwlock);
499 }
500 
501 static void
502 dnode_undirty_dbufs(list_t *list)
503 {
504 	dbuf_dirty_record_t *dr;
505 
506 	while (dr = list_head(list)) {
507 		dmu_buf_impl_t *db = dr->dr_dbuf;
508 		uint64_t txg = dr->dr_txg;
509 
510 		if (db->db_level != 0)
511 			dnode_undirty_dbufs(&dr->dt.di.dr_children);
512 
513 		mutex_enter(&db->db_mtx);
514 		/* XXX - use dbuf_undirty()? */
515 		list_remove(list, dr);
516 		ASSERT(db->db_last_dirty == dr);
517 		db->db_last_dirty = NULL;
518 		db->db_dirtycnt -= 1;
519 		if (db->db_level == 0) {
520 			ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
521 			    dr->dt.dl.dr_data == db->db_buf);
522 			dbuf_unoverride(dr);
523 		} else {
524 			mutex_destroy(&dr->dt.di.dr_mtx);
525 			list_destroy(&dr->dt.di.dr_children);
526 		}
527 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
528 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
529 	}
530 }
531 
532 static void
533 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
534 {
535 	int txgoff = tx->tx_txg & TXG_MASK;
536 
537 	ASSERT(dmu_tx_is_syncing(tx));
538 
539 	/*
540 	 * Our contents should have been freed in dnode_sync() by the
541 	 * free range record inserted by the caller of dnode_free().
542 	 */
543 	ASSERT0(DN_USED_BYTES(dn->dn_phys));
544 	ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
545 
546 	dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
547 	dnode_evict_dbufs(dn);
548 
549 	/*
550 	 * XXX - It would be nice to assert this, but we may still
551 	 * have residual holds from async evictions from the arc...
552 	 *
553 	 * zfs_obj_to_path() also depends on this being
554 	 * commented out.
555 	 *
556 	 * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1);
557 	 */
558 
559 	/* Undirty next bits */
560 	dn->dn_next_nlevels[txgoff] = 0;
561 	dn->dn_next_indblkshift[txgoff] = 0;
562 	dn->dn_next_blksz[txgoff] = 0;
563 	dn->dn_next_maxblkid[txgoff] = 0;
564 
565 	/* ASSERT(blkptrs are zero); */
566 	ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
567 	ASSERT(dn->dn_type != DMU_OT_NONE);
568 
569 	ASSERT(dn->dn_free_txg > 0);
570 	if (dn->dn_allocated_txg != dn->dn_free_txg)
571 		dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
572 	bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots);
573 	dnode_free_interior_slots(dn);
574 
575 	mutex_enter(&dn->dn_mtx);
576 	dn->dn_type = DMU_OT_NONE;
577 	dn->dn_maxblkid = 0;
578 	dn->dn_allocated_txg = 0;
579 	dn->dn_free_txg = 0;
580 	dn->dn_have_spill = B_FALSE;
581 	dn->dn_num_slots = 1;
582 	mutex_exit(&dn->dn_mtx);
583 
584 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
585 
586 	dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
587 	/*
588 	 * Now that we've released our hold, the dnode may
589 	 * be evicted, so we mustn't access it.
590 	 */
591 }
592 
593 /*
594  * Write out the dnode's dirty buffers.
595  */
596 void
597 dnode_sync(dnode_t *dn, dmu_tx_t *tx)
598 {
599 	objset_t *os = dn->dn_objset;
600 	dnode_phys_t *dnp = dn->dn_phys;
601 	int txgoff = tx->tx_txg & TXG_MASK;
602 	list_t *list = &dn->dn_dirty_records[txgoff];
603 	static const dnode_phys_t zerodn = { 0 };
604 	boolean_t kill_spill = B_FALSE;
605 
606 	ASSERT(dmu_tx_is_syncing(tx));
607 	ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
608 	ASSERT(dnp->dn_type != DMU_OT_NONE ||
609 	    bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
610 	DNODE_VERIFY(dn);
611 
612 	ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
613 
614 	/*
615 	 * Do user accounting if it is enabled and this is not
616 	 * an encrypted receive.
617 	 */
618 	if (dmu_objset_userused_enabled(os) &&
619 	    !DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
620 	    (!os->os_encrypted || !dmu_objset_is_receiving(os))) {
621 		mutex_enter(&dn->dn_mtx);
622 		dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
623 		dn->dn_oldflags = dn->dn_phys->dn_flags;
624 		dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
625 		if (dmu_objset_userobjused_enabled(dn->dn_objset))
626 			dn->dn_phys->dn_flags |=
627 			    DNODE_FLAG_USEROBJUSED_ACCOUNTED;
628 		mutex_exit(&dn->dn_mtx);
629 		dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
630 	} else {
631 		/* Once we account for it, we should always account for it */
632 		ASSERT(!(dn->dn_phys->dn_flags &
633 		    DNODE_FLAG_USERUSED_ACCOUNTED));
634 		ASSERT(!(dn->dn_phys->dn_flags &
635 		    DNODE_FLAG_USEROBJUSED_ACCOUNTED));
636 	}
637 
638 	mutex_enter(&dn->dn_mtx);
639 	if (dn->dn_allocated_txg == tx->tx_txg) {
640 		/* The dnode is newly allocated or reallocated */
641 		if (dnp->dn_type == DMU_OT_NONE) {
642 			/* this is a first alloc, not a realloc */
643 			dnp->dn_nlevels = 1;
644 			dnp->dn_nblkptr = dn->dn_nblkptr;
645 		}
646 
647 		dnp->dn_type = dn->dn_type;
648 		dnp->dn_bonustype = dn->dn_bonustype;
649 		dnp->dn_bonuslen = dn->dn_bonuslen;
650 	}
651 
652 	dnp->dn_extra_slots = dn->dn_num_slots - 1;
653 
654 	ASSERT(dnp->dn_nlevels > 1 ||
655 	    BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
656 	    BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
657 	    BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
658 	    dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
659 	ASSERT(dnp->dn_nlevels < 2 ||
660 	    BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
661 	    BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
662 
663 	if (dn->dn_next_type[txgoff] != 0) {
664 		dnp->dn_type = dn->dn_type;
665 		dn->dn_next_type[txgoff] = 0;
666 	}
667 
668 	if (dn->dn_next_blksz[txgoff] != 0) {
669 		ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
670 		    SPA_MINBLOCKSIZE) == 0);
671 		ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
672 		    dn->dn_maxblkid == 0 || list_head(list) != NULL ||
673 		    dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
674 		    dnp->dn_datablkszsec ||
675 		    !range_tree_is_empty(dn->dn_free_ranges[txgoff]));
676 		dnp->dn_datablkszsec =
677 		    dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
678 		dn->dn_next_blksz[txgoff] = 0;
679 	}
680 
681 	if (dn->dn_next_bonuslen[txgoff] != 0) {
682 		if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
683 			dnp->dn_bonuslen = 0;
684 		else
685 			dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
686 		ASSERT(dnp->dn_bonuslen <=
687 		    DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
688 		dn->dn_next_bonuslen[txgoff] = 0;
689 	}
690 
691 	if (dn->dn_next_bonustype[txgoff] != 0) {
692 		ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
693 		dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
694 		dn->dn_next_bonustype[txgoff] = 0;
695 	}
696 
697 	boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
698 	    dn->dn_free_txg <= tx->tx_txg;
699 
700 	/*
701 	 * Remove the spill block if we have been explicitly asked to
702 	 * remove it, or if the object is being removed.
703 	 */
704 	if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
705 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
706 			kill_spill = B_TRUE;
707 		dn->dn_rm_spillblk[txgoff] = 0;
708 	}
709 
710 	if (dn->dn_next_indblkshift[txgoff] != 0) {
711 		ASSERT(dnp->dn_nlevels == 1);
712 		dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
713 		dn->dn_next_indblkshift[txgoff] = 0;
714 	}
715 
716 	/*
717 	 * Just take the live (open-context) values for checksum and compress.
718 	 * Strictly speaking it's a future leak, but nothing bad happens if we
719 	 * start using the new checksum or compress algorithm a little early.
720 	 */
721 	dnp->dn_checksum = dn->dn_checksum;
722 	dnp->dn_compress = dn->dn_compress;
723 
724 	mutex_exit(&dn->dn_mtx);
725 
726 	if (kill_spill) {
727 		free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
728 		mutex_enter(&dn->dn_mtx);
729 		dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
730 		mutex_exit(&dn->dn_mtx);
731 	}
732 
733 	/* process all the "freed" ranges in the file */
734 	if (dn->dn_free_ranges[txgoff] != NULL) {
735 		dnode_sync_free_range_arg_t dsfra;
736 		dsfra.dsfra_dnode = dn;
737 		dsfra.dsfra_tx = tx;
738 		dsfra.dsfra_free_indirects = freeing_dnode;
739 		if (freeing_dnode) {
740 			ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
741 			    0, dn->dn_maxblkid + 1));
742 		}
743 		mutex_enter(&dn->dn_mtx);
744 		range_tree_vacate(dn->dn_free_ranges[txgoff],
745 		    dnode_sync_free_range, &dsfra);
746 		range_tree_destroy(dn->dn_free_ranges[txgoff]);
747 		dn->dn_free_ranges[txgoff] = NULL;
748 		mutex_exit(&dn->dn_mtx);
749 	}
750 
751 	if (freeing_dnode) {
752 		dn->dn_objset->os_freed_dnodes++;
753 		dnode_sync_free(dn, tx);
754 		return;
755 	}
756 
757 	if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
758 		dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
759 		mutex_enter(&ds->ds_lock);
760 		ds->ds_feature_activation_needed[SPA_FEATURE_LARGE_DNODE] =
761 		    B_TRUE;
762 		mutex_exit(&ds->ds_lock);
763 	}
764 
765 	if (dn->dn_next_nlevels[txgoff]) {
766 		dnode_increase_indirection(dn, tx);
767 		dn->dn_next_nlevels[txgoff] = 0;
768 	}
769 
770 	/*
771 	 * This must be done after dnode_sync_free_range()
772 	 * and dnode_increase_indirection(). See dnode_new_blkid()
773 	 * for an explanation of the high bit being set.
774 	 */
775 	if (dn->dn_next_maxblkid[txgoff]) {
776 		mutex_enter(&dn->dn_mtx);
777 		dnp->dn_maxblkid =
778 		    dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET;
779 		dn->dn_next_maxblkid[txgoff] = 0;
780 		mutex_exit(&dn->dn_mtx);
781 	}
782 
783 	if (dn->dn_next_nblkptr[txgoff]) {
784 		/* this should only happen on a realloc */
785 		ASSERT(dn->dn_allocated_txg == tx->tx_txg);
786 		if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
787 			/* zero the new blkptrs we are gaining */
788 			bzero(dnp->dn_blkptr + dnp->dn_nblkptr,
789 			    sizeof (blkptr_t) *
790 			    (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
791 #ifdef ZFS_DEBUG
792 		} else {
793 			int i;
794 			ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
795 			/* the blkptrs we are losing better be unallocated */
796 			for (i = dn->dn_next_nblkptr[txgoff];
797 			    i < dnp->dn_nblkptr; i++)
798 				ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
799 #endif
800 		}
801 		mutex_enter(&dn->dn_mtx);
802 		dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
803 		dn->dn_next_nblkptr[txgoff] = 0;
804 		mutex_exit(&dn->dn_mtx);
805 	}
806 
807 	dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
808 
809 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
810 		ASSERT3P(list_head(list), ==, NULL);
811 		dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
812 	}
813 
814 	/*
815 	 * Although we have dropped our reference to the dnode, it
816 	 * can't be evicted until its written, and we haven't yet
817 	 * initiated the IO for the dnode's dbuf.
818 	 */
819 }
820