xref: /illumos-gate/usr/src/uts/common/fs/zfs/dnode_sync.c (revision 638bc9f013400030354ab6566ae2a5726f7580fa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2020 Oxide Computer Company
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dbuf.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_recv.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/spa.h>
38 #include <sys/range_tree.h>
39 #include <sys/zfeature.h>
40 
41 static void
42 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
43 {
44 	dmu_buf_impl_t *db;
45 	int txgoff = tx->tx_txg & TXG_MASK;
46 	int nblkptr = dn->dn_phys->dn_nblkptr;
47 	int old_toplvl = dn->dn_phys->dn_nlevels - 1;
48 	int new_level = dn->dn_next_nlevels[txgoff];
49 	int i;
50 
51 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
52 
53 	/* this dnode can't be paged out because it's dirty */
54 	ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
55 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
56 	ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
57 
58 	db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
59 	ASSERT(db != NULL);
60 
61 	dn->dn_phys->dn_nlevels = new_level;
62 	dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
63 	    dn->dn_object, dn->dn_phys->dn_nlevels);
64 
65 	/* transfer dnode's block pointers to new indirect block */
66 	(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
67 	ASSERT(db->db.db_data);
68 	ASSERT(arc_released(db->db_buf));
69 	ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
70 	bcopy(dn->dn_phys->dn_blkptr, db->db.db_data,
71 	    sizeof (blkptr_t) * nblkptr);
72 	arc_buf_freeze(db->db_buf);
73 
74 	/* set dbuf's parent pointers to new indirect buf */
75 	for (i = 0; i < nblkptr; i++) {
76 		dmu_buf_impl_t *child =
77 		    dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
78 
79 		if (child == NULL)
80 			continue;
81 #ifdef	DEBUG
82 		DB_DNODE_ENTER(child);
83 		ASSERT3P(DB_DNODE(child), ==, dn);
84 		DB_DNODE_EXIT(child);
85 #endif	/* DEBUG */
86 		if (child->db_parent && child->db_parent != dn->dn_dbuf) {
87 			ASSERT(child->db_parent->db_level == db->db_level);
88 			ASSERT(child->db_blkptr !=
89 			    &dn->dn_phys->dn_blkptr[child->db_blkid]);
90 			mutex_exit(&child->db_mtx);
91 			continue;
92 		}
93 		ASSERT(child->db_parent == NULL ||
94 		    child->db_parent == dn->dn_dbuf);
95 
96 		child->db_parent = db;
97 		dbuf_add_ref(db, child);
98 		if (db->db.db_data)
99 			child->db_blkptr = (blkptr_t *)db->db.db_data + i;
100 		else
101 			child->db_blkptr = NULL;
102 		dprintf_dbuf_bp(child, child->db_blkptr,
103 		    "changed db_blkptr to new indirect %s", "");
104 
105 		mutex_exit(&child->db_mtx);
106 	}
107 
108 	bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr);
109 
110 	dbuf_rele(db, FTAG);
111 
112 	rw_exit(&dn->dn_struct_rwlock);
113 }
114 
115 static void
116 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
117 {
118 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
119 	uint64_t bytesfreed = 0;
120 
121 	dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num);
122 
123 	for (int i = 0; i < num; i++, bp++) {
124 		if (BP_IS_HOLE(bp))
125 			continue;
126 
127 		bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
128 		ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
129 
130 		/*
131 		 * Save some useful information on the holes being
132 		 * punched, including logical size, type, and indirection
133 		 * level. Retaining birth time enables detection of when
134 		 * holes are punched for reducing the number of free
135 		 * records transmitted during a zfs send.
136 		 */
137 
138 		uint64_t lsize = BP_GET_LSIZE(bp);
139 		dmu_object_type_t type = BP_GET_TYPE(bp);
140 		uint64_t lvl = BP_GET_LEVEL(bp);
141 
142 		bzero(bp, sizeof (blkptr_t));
143 
144 		if (spa_feature_is_active(dn->dn_objset->os_spa,
145 		    SPA_FEATURE_HOLE_BIRTH)) {
146 			BP_SET_LSIZE(bp, lsize);
147 			BP_SET_TYPE(bp, type);
148 			BP_SET_LEVEL(bp, lvl);
149 			BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
150 		}
151 	}
152 	dnode_diduse_space(dn, -bytesfreed);
153 }
154 
155 #ifdef ZFS_DEBUG
156 static void
157 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
158 {
159 	int off, num;
160 	int i, err, epbs;
161 	uint64_t txg = tx->tx_txg;
162 	dnode_t *dn;
163 
164 	DB_DNODE_ENTER(db);
165 	dn = DB_DNODE(db);
166 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
167 	off = start - (db->db_blkid * 1<<epbs);
168 	num = end - start + 1;
169 
170 	ASSERT3U(off, >=, 0);
171 	ASSERT3U(num, >=, 0);
172 	ASSERT3U(db->db_level, >, 0);
173 	ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
174 	ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
175 	ASSERT(db->db_blkptr != NULL);
176 
177 	for (i = off; i < off+num; i++) {
178 		uint64_t *buf;
179 		dmu_buf_impl_t *child;
180 		dbuf_dirty_record_t *dr;
181 		int j;
182 
183 		ASSERT(db->db_level == 1);
184 
185 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
186 		err = dbuf_hold_impl(dn, db->db_level-1,
187 		    (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
188 		rw_exit(&dn->dn_struct_rwlock);
189 		if (err == ENOENT)
190 			continue;
191 		ASSERT(err == 0);
192 		ASSERT(child->db_level == 0);
193 		dr = child->db_last_dirty;
194 		while (dr && dr->dr_txg > txg)
195 			dr = dr->dr_next;
196 		ASSERT(dr == NULL || dr->dr_txg == txg);
197 
198 		/* data_old better be zeroed */
199 		if (dr) {
200 			buf = dr->dt.dl.dr_data->b_data;
201 			for (j = 0; j < child->db.db_size >> 3; j++) {
202 				if (buf[j] != 0) {
203 					panic("freed data not zero: "
204 					    "child=%p i=%d off=%d num=%d\n",
205 					    (void *)child, i, off, num);
206 				}
207 			}
208 		}
209 
210 		/*
211 		 * db_data better be zeroed unless it's dirty in a
212 		 * future txg.
213 		 */
214 		mutex_enter(&child->db_mtx);
215 		buf = child->db.db_data;
216 		if (buf != NULL && child->db_state != DB_FILL &&
217 		    child->db_last_dirty == NULL) {
218 			for (j = 0; j < child->db.db_size >> 3; j++) {
219 				if (buf[j] != 0) {
220 					panic("freed data not zero: "
221 					    "child=%p i=%d off=%d num=%d\n",
222 					    (void *)child, i, off, num);
223 				}
224 			}
225 		}
226 		mutex_exit(&child->db_mtx);
227 
228 		dbuf_rele(child, FTAG);
229 	}
230 	DB_DNODE_EXIT(db);
231 }
232 #endif
233 
234 /*
235  * We don't usually free the indirect blocks here.  If in one txg we have a
236  * free_range and a write to the same indirect block, it's important that we
237  * preserve the hole's birth times. Therefore, we don't free any any indirect
238  * blocks in free_children().  If an indirect block happens to turn into all
239  * holes, it will be freed by dbuf_write_children_ready, which happens at a
240  * point in the syncing process where we know for certain the contents of the
241  * indirect block.
242  *
243  * However, if we're freeing a dnode, its space accounting must go to zero
244  * before we actually try to free the dnode, or we will trip an assertion. In
245  * addition, we know the case described above cannot occur, because the dnode is
246  * being freed.  Therefore, we free the indirect blocks immediately in that
247  * case.
248  */
249 static void
250 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
251     boolean_t free_indirects, dmu_tx_t *tx)
252 {
253 	dnode_t *dn;
254 	blkptr_t *bp;
255 	dmu_buf_impl_t *subdb;
256 	uint64_t start, end, dbstart, dbend;
257 	unsigned int epbs, shift, i;
258 
259 	/*
260 	 * There is a small possibility that this block will not be cached:
261 	 *   1 - if level > 1 and there are no children with level <= 1
262 	 *   2 - if this block was evicted since we read it from
263 	 *	 dmu_tx_hold_free().
264 	 */
265 	if (db->db_state != DB_CACHED)
266 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
267 
268 	/*
269 	 * If we modify this indirect block, and we are not freeing the
270 	 * dnode (!free_indirects), then this indirect block needs to get
271 	 * written to disk by dbuf_write().  If it is dirty, we know it will
272 	 * be written (otherwise, we would have incorrect on-disk state
273 	 * because the space would be freed but still referenced by the BP
274 	 * in this indirect block).  Therefore we VERIFY that it is
275 	 * dirty.
276 	 *
277 	 * Our VERIFY covers some cases that do not actually have to be
278 	 * dirty, but the open-context code happens to dirty.  E.g. if the
279 	 * blocks we are freeing are all holes, because in that case, we
280 	 * are only freeing part of this indirect block, so it is an
281 	 * ancestor of the first or last block to be freed.  The first and
282 	 * last L1 indirect blocks are always dirtied by dnode_free_range().
283 	 */
284 	VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
285 
286 	dbuf_release_bp(db);
287 	bp = db->db.db_data;
288 
289 	DB_DNODE_ENTER(db);
290 	dn = DB_DNODE(db);
291 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
292 	ASSERT3U(epbs, <, 31);
293 	shift = (db->db_level - 1) * epbs;
294 	dbstart = db->db_blkid << epbs;
295 	start = blkid >> shift;
296 	if (dbstart < start) {
297 		bp += start - dbstart;
298 	} else {
299 		start = dbstart;
300 	}
301 	dbend = ((db->db_blkid + 1) << epbs) - 1;
302 	end = (blkid + nblks - 1) >> shift;
303 	if (dbend <= end)
304 		end = dbend;
305 
306 	ASSERT3U(start, <=, end);
307 
308 	if (db->db_level == 1) {
309 		FREE_VERIFY(db, start, end, tx);
310 		free_blocks(dn, bp, end-start+1, tx);
311 	} else {
312 		for (uint64_t id = start; id <= end; id++, bp++) {
313 			if (BP_IS_HOLE(bp))
314 				continue;
315 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
316 			VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
317 			    id, TRUE, FALSE, FTAG, &subdb));
318 			rw_exit(&dn->dn_struct_rwlock);
319 			ASSERT3P(bp, ==, subdb->db_blkptr);
320 
321 			free_children(subdb, blkid, nblks, free_indirects, tx);
322 			dbuf_rele(subdb, FTAG);
323 		}
324 	}
325 
326 	if (free_indirects) {
327 		for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
328 			ASSERT(BP_IS_HOLE(bp));
329 		bzero(db->db.db_data, db->db.db_size);
330 		free_blocks(dn, db->db_blkptr, 1, tx);
331 	}
332 
333 	DB_DNODE_EXIT(db);
334 	arc_buf_freeze(db->db_buf);
335 }
336 
337 /*
338  * Traverse the indicated range of the provided file
339  * and "free" all the blocks contained there.
340  */
341 static void
342 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
343     boolean_t free_indirects, dmu_tx_t *tx)
344 {
345 	blkptr_t *bp = dn->dn_phys->dn_blkptr;
346 	int dnlevel = dn->dn_phys->dn_nlevels;
347 	boolean_t trunc = B_FALSE;
348 
349 	if (blkid > dn->dn_phys->dn_maxblkid)
350 		return;
351 
352 	ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
353 	if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
354 		nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
355 		trunc = B_TRUE;
356 	}
357 
358 	/* There are no indirect blocks in the object */
359 	if (dnlevel == 1) {
360 		if (blkid >= dn->dn_phys->dn_nblkptr) {
361 			/* this range was never made persistent */
362 			return;
363 		}
364 		ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
365 		free_blocks(dn, bp + blkid, nblks, tx);
366 	} else {
367 		int shift = (dnlevel - 1) *
368 		    (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
369 		int start = blkid >> shift;
370 		int end = (blkid + nblks - 1) >> shift;
371 		dmu_buf_impl_t *db;
372 
373 		ASSERT(start < dn->dn_phys->dn_nblkptr);
374 		bp += start;
375 		for (int i = start; i <= end; i++, bp++) {
376 			if (BP_IS_HOLE(bp))
377 				continue;
378 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 			VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
380 			    TRUE, FALSE, FTAG, &db));
381 			rw_exit(&dn->dn_struct_rwlock);
382 
383 			free_children(db, blkid, nblks, free_indirects, tx);
384 			dbuf_rele(db, FTAG);
385 		}
386 	}
387 
388 	/*
389 	 * Do not truncate the maxblkid if we are performing a raw
390 	 * receive. The raw receive sets the maxblkid manually and
391 	 * must not be overridden. Usually, the last DRR_FREE record
392 	 * will be at the maxblkid, because the source system sets
393 	 * the maxblkid when truncating. However, if the last block
394 	 * was freed by overwriting with zeros and being compressed
395 	 * away to a hole, the source system will generate a DRR_FREE
396 	 * record while leaving the maxblkid after the end of that
397 	 * record. In this case we need to leave the maxblkid as
398 	 * indicated in the DRR_OBJECT record, so that it matches the
399 	 * source system, ensuring that the cryptographic hashes will
400 	 * match.
401 	 */
402 	if (trunc && !dn->dn_objset->os_raw_receive) {
403 		dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
404 
405 		uint64_t off = (dn->dn_phys->dn_maxblkid + 1) *
406 		    (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
407 		ASSERT(off < dn->dn_phys->dn_maxblkid ||
408 		    dn->dn_phys->dn_maxblkid == 0 ||
409 		    dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
410 	}
411 }
412 
413 typedef struct dnode_sync_free_range_arg {
414 	dnode_t *dsfra_dnode;
415 	dmu_tx_t *dsfra_tx;
416 	boolean_t dsfra_free_indirects;
417 } dnode_sync_free_range_arg_t;
418 
419 static void
420 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
421 {
422 	dnode_sync_free_range_arg_t *dsfra = arg;
423 	dnode_t *dn = dsfra->dsfra_dnode;
424 
425 	mutex_exit(&dn->dn_mtx);
426 	dnode_sync_free_range_impl(dn, blkid, nblks,
427 	    dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
428 	mutex_enter(&dn->dn_mtx);
429 }
430 
431 /*
432  * Try to kick all the dnode's dbufs out of the cache...
433  */
434 void
435 dnode_evict_dbufs(dnode_t *dn)
436 {
437 	dmu_buf_impl_t db_marker;
438 	dmu_buf_impl_t *db, *db_next;
439 
440 	mutex_enter(&dn->dn_dbufs_mtx);
441 	for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
442 
443 #ifdef	DEBUG
444 		DB_DNODE_ENTER(db);
445 		ASSERT3P(DB_DNODE(db), ==, dn);
446 		DB_DNODE_EXIT(db);
447 #endif	/* DEBUG */
448 
449 		mutex_enter(&db->db_mtx);
450 		if (db->db_state != DB_EVICTING &&
451 		    zfs_refcount_is_zero(&db->db_holds)) {
452 			db_marker.db_level = db->db_level;
453 			db_marker.db_blkid = db->db_blkid;
454 			db_marker.db_state = DB_SEARCH;
455 			avl_insert_here(&dn->dn_dbufs, &db_marker, db,
456 			    AVL_BEFORE);
457 
458 			/*
459 			 * We need to use the "marker" dbuf rather than
460 			 * simply getting the next dbuf, because
461 			 * dbuf_destroy() may actually remove multiple dbufs.
462 			 * It can call itself recursively on the parent dbuf,
463 			 * which may also be removed from dn_dbufs.  The code
464 			 * flow would look like:
465 			 *
466 			 * dbuf_destroy():
467 			 *   dnode_rele_and_unlock(parent_dbuf, evicting=TRUE):
468 			 *	if (!cacheable || pending_evict)
469 			 *	  dbuf_destroy()
470 			 */
471 			dbuf_destroy(db);
472 
473 			db_next = AVL_NEXT(&dn->dn_dbufs, &db_marker);
474 			avl_remove(&dn->dn_dbufs, &db_marker);
475 		} else {
476 			db->db_pending_evict = TRUE;
477 			mutex_exit(&db->db_mtx);
478 			db_next = AVL_NEXT(&dn->dn_dbufs, db);
479 		}
480 	}
481 	mutex_exit(&dn->dn_dbufs_mtx);
482 
483 	dnode_evict_bonus(dn);
484 }
485 
486 void
487 dnode_evict_bonus(dnode_t *dn)
488 {
489 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
490 	if (dn->dn_bonus != NULL) {
491 		if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) {
492 			mutex_enter(&dn->dn_bonus->db_mtx);
493 			dbuf_destroy(dn->dn_bonus);
494 			dn->dn_bonus = NULL;
495 		} else {
496 			dn->dn_bonus->db_pending_evict = TRUE;
497 		}
498 	}
499 	rw_exit(&dn->dn_struct_rwlock);
500 }
501 
502 static void
503 dnode_undirty_dbufs(list_t *list)
504 {
505 	dbuf_dirty_record_t *dr;
506 
507 	while (dr = list_head(list)) {
508 		dmu_buf_impl_t *db = dr->dr_dbuf;
509 		uint64_t txg = dr->dr_txg;
510 
511 		if (db->db_level != 0)
512 			dnode_undirty_dbufs(&dr->dt.di.dr_children);
513 
514 		mutex_enter(&db->db_mtx);
515 		/* XXX - use dbuf_undirty()? */
516 		list_remove(list, dr);
517 		ASSERT(db->db_last_dirty == dr);
518 		db->db_last_dirty = NULL;
519 		db->db_dirtycnt -= 1;
520 		if (db->db_level == 0) {
521 			ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
522 			    dr->dt.dl.dr_data == db->db_buf);
523 			dbuf_unoverride(dr);
524 		} else {
525 			mutex_destroy(&dr->dt.di.dr_mtx);
526 			list_destroy(&dr->dt.di.dr_children);
527 		}
528 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
529 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
530 	}
531 }
532 
533 static void
534 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
535 {
536 	int txgoff = tx->tx_txg & TXG_MASK;
537 
538 	ASSERT(dmu_tx_is_syncing(tx));
539 
540 	/*
541 	 * Our contents should have been freed in dnode_sync() by the
542 	 * free range record inserted by the caller of dnode_free().
543 	 */
544 	ASSERT0(DN_USED_BYTES(dn->dn_phys));
545 	ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
546 
547 	dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
548 	dnode_evict_dbufs(dn);
549 
550 	/*
551 	 * XXX - It would be nice to assert this, but we may still
552 	 * have residual holds from async evictions from the arc...
553 	 *
554 	 * zfs_obj_to_path() also depends on this being
555 	 * commented out.
556 	 *
557 	 * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1);
558 	 */
559 
560 	/* Undirty next bits */
561 	dn->dn_next_nlevels[txgoff] = 0;
562 	dn->dn_next_indblkshift[txgoff] = 0;
563 	dn->dn_next_blksz[txgoff] = 0;
564 	dn->dn_next_maxblkid[txgoff] = 0;
565 
566 	/* ASSERT(blkptrs are zero); */
567 	ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
568 	ASSERT(dn->dn_type != DMU_OT_NONE);
569 
570 	ASSERT(dn->dn_free_txg > 0);
571 	if (dn->dn_allocated_txg != dn->dn_free_txg)
572 		dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
573 	bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots);
574 	dnode_free_interior_slots(dn);
575 
576 	mutex_enter(&dn->dn_mtx);
577 	dn->dn_type = DMU_OT_NONE;
578 	dn->dn_maxblkid = 0;
579 	dn->dn_allocated_txg = 0;
580 	dn->dn_free_txg = 0;
581 	dn->dn_have_spill = B_FALSE;
582 	dn->dn_num_slots = 1;
583 	mutex_exit(&dn->dn_mtx);
584 
585 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
586 
587 	dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
588 	/*
589 	 * Now that we've released our hold, the dnode may
590 	 * be evicted, so we mustn't access it.
591 	 */
592 }
593 
594 /*
595  * Write out the dnode's dirty buffers.
596  */
597 void
598 dnode_sync(dnode_t *dn, dmu_tx_t *tx)
599 {
600 	objset_t *os = dn->dn_objset;
601 	dnode_phys_t *dnp = dn->dn_phys;
602 	int txgoff = tx->tx_txg & TXG_MASK;
603 	list_t *list = &dn->dn_dirty_records[txgoff];
604 	static const dnode_phys_t zerodn = { 0 };
605 	boolean_t kill_spill = B_FALSE;
606 
607 	ASSERT(dmu_tx_is_syncing(tx));
608 	ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
609 	ASSERT(dnp->dn_type != DMU_OT_NONE ||
610 	    bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
611 	DNODE_VERIFY(dn);
612 
613 	ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
614 
615 	/*
616 	 * Do user accounting if it is enabled and this is not
617 	 * an encrypted receive.
618 	 */
619 	if (dmu_objset_userused_enabled(os) &&
620 	    !DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
621 	    (!os->os_encrypted || !dmu_objset_is_receiving(os))) {
622 		mutex_enter(&dn->dn_mtx);
623 		dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
624 		dn->dn_oldflags = dn->dn_phys->dn_flags;
625 		dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
626 		if (dmu_objset_userobjused_enabled(dn->dn_objset))
627 			dn->dn_phys->dn_flags |=
628 			    DNODE_FLAG_USEROBJUSED_ACCOUNTED;
629 		mutex_exit(&dn->dn_mtx);
630 		dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
631 	} else {
632 		/* Once we account for it, we should always account for it */
633 		ASSERT(!(dn->dn_phys->dn_flags &
634 		    DNODE_FLAG_USERUSED_ACCOUNTED));
635 		ASSERT(!(dn->dn_phys->dn_flags &
636 		    DNODE_FLAG_USEROBJUSED_ACCOUNTED));
637 	}
638 
639 	mutex_enter(&dn->dn_mtx);
640 	if (dn->dn_allocated_txg == tx->tx_txg) {
641 		/* The dnode is newly allocated or reallocated */
642 		if (dnp->dn_type == DMU_OT_NONE) {
643 			/* this is a first alloc, not a realloc */
644 			dnp->dn_nlevels = 1;
645 			dnp->dn_nblkptr = dn->dn_nblkptr;
646 		}
647 
648 		dnp->dn_type = dn->dn_type;
649 		dnp->dn_bonustype = dn->dn_bonustype;
650 		dnp->dn_bonuslen = dn->dn_bonuslen;
651 	}
652 
653 	dnp->dn_extra_slots = dn->dn_num_slots - 1;
654 
655 	ASSERT(dnp->dn_nlevels > 1 ||
656 	    BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
657 	    BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
658 	    BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
659 	    dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
660 	ASSERT(dnp->dn_nlevels < 2 ||
661 	    BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
662 	    BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
663 
664 	if (dn->dn_next_type[txgoff] != 0) {
665 		dnp->dn_type = dn->dn_type;
666 		dn->dn_next_type[txgoff] = 0;
667 	}
668 
669 	if (dn->dn_next_blksz[txgoff] != 0) {
670 		ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
671 		    SPA_MINBLOCKSIZE) == 0);
672 		ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
673 		    dn->dn_maxblkid == 0 || list_head(list) != NULL ||
674 		    dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
675 		    dnp->dn_datablkszsec ||
676 		    !range_tree_is_empty(dn->dn_free_ranges[txgoff]));
677 		dnp->dn_datablkszsec =
678 		    dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
679 		dn->dn_next_blksz[txgoff] = 0;
680 	}
681 
682 	if (dn->dn_next_bonuslen[txgoff] != 0) {
683 		if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
684 			dnp->dn_bonuslen = 0;
685 		else
686 			dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
687 		ASSERT(dnp->dn_bonuslen <=
688 		    DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
689 		dn->dn_next_bonuslen[txgoff] = 0;
690 	}
691 
692 	if (dn->dn_next_bonustype[txgoff] != 0) {
693 		ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
694 		dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
695 		dn->dn_next_bonustype[txgoff] = 0;
696 	}
697 
698 	boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
699 	    dn->dn_free_txg <= tx->tx_txg;
700 
701 	/*
702 	 * Remove the spill block if we have been explicitly asked to
703 	 * remove it, or if the object is being removed.
704 	 */
705 	if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
706 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
707 			kill_spill = B_TRUE;
708 		dn->dn_rm_spillblk[txgoff] = 0;
709 	}
710 
711 	if (dn->dn_next_indblkshift[txgoff] != 0) {
712 		ASSERT(dnp->dn_nlevels == 1);
713 		dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
714 		dn->dn_next_indblkshift[txgoff] = 0;
715 	}
716 
717 	/*
718 	 * Just take the live (open-context) values for checksum and compress.
719 	 * Strictly speaking it's a future leak, but nothing bad happens if we
720 	 * start using the new checksum or compress algorithm a little early.
721 	 */
722 	dnp->dn_checksum = dn->dn_checksum;
723 	dnp->dn_compress = dn->dn_compress;
724 
725 	mutex_exit(&dn->dn_mtx);
726 
727 	if (kill_spill) {
728 		free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
729 		mutex_enter(&dn->dn_mtx);
730 		dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
731 		mutex_exit(&dn->dn_mtx);
732 	}
733 
734 	/* process all the "freed" ranges in the file */
735 	if (dn->dn_free_ranges[txgoff] != NULL) {
736 		dnode_sync_free_range_arg_t dsfra;
737 		dsfra.dsfra_dnode = dn;
738 		dsfra.dsfra_tx = tx;
739 		dsfra.dsfra_free_indirects = freeing_dnode;
740 		mutex_enter(&dn->dn_mtx);
741 		if (freeing_dnode) {
742 			ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
743 			    0, dn->dn_maxblkid + 1));
744 		}
745 		/*
746 		 * Because dnode_sync_free_range() must drop dn_mtx during its
747 		 * processing, using it as a callback to range_tree_vacate() is
748 		 * not safe.  No other operations (besides destroy) are allowed
749 		 * once range_tree_vacate() has begun, and dropping dn_mtx
750 		 * would leave a window open for another thread to observe that
751 		 * invalid (and unsafe) state.
752 		 */
753 		range_tree_walk(dn->dn_free_ranges[txgoff],
754 		    dnode_sync_free_range, &dsfra);
755 		range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL);
756 		range_tree_destroy(dn->dn_free_ranges[txgoff]);
757 		dn->dn_free_ranges[txgoff] = NULL;
758 		mutex_exit(&dn->dn_mtx);
759 	}
760 
761 	if (freeing_dnode) {
762 		dn->dn_objset->os_freed_dnodes++;
763 		dnode_sync_free(dn, tx);
764 		return;
765 	}
766 
767 	if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
768 		dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
769 		mutex_enter(&ds->ds_lock);
770 		ds->ds_feature_activation_needed[SPA_FEATURE_LARGE_DNODE] =
771 		    B_TRUE;
772 		mutex_exit(&ds->ds_lock);
773 	}
774 
775 	if (dn->dn_next_nlevels[txgoff]) {
776 		dnode_increase_indirection(dn, tx);
777 		dn->dn_next_nlevels[txgoff] = 0;
778 	}
779 
780 	/*
781 	 * This must be done after dnode_sync_free_range()
782 	 * and dnode_increase_indirection(). See dnode_new_blkid()
783 	 * for an explanation of the high bit being set.
784 	 */
785 	if (dn->dn_next_maxblkid[txgoff]) {
786 		mutex_enter(&dn->dn_mtx);
787 		dnp->dn_maxblkid =
788 		    dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET;
789 		dn->dn_next_maxblkid[txgoff] = 0;
790 		mutex_exit(&dn->dn_mtx);
791 	}
792 
793 	if (dn->dn_next_nblkptr[txgoff]) {
794 		/* this should only happen on a realloc */
795 		ASSERT(dn->dn_allocated_txg == tx->tx_txg);
796 		if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
797 			/* zero the new blkptrs we are gaining */
798 			bzero(dnp->dn_blkptr + dnp->dn_nblkptr,
799 			    sizeof (blkptr_t) *
800 			    (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
801 #ifdef ZFS_DEBUG
802 		} else {
803 			int i;
804 			ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
805 			/* the blkptrs we are losing better be unallocated */
806 			for (i = dn->dn_next_nblkptr[txgoff];
807 			    i < dnp->dn_nblkptr; i++)
808 				ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
809 #endif
810 		}
811 		mutex_enter(&dn->dn_mtx);
812 		dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
813 		dn->dn_next_nblkptr[txgoff] = 0;
814 		mutex_exit(&dn->dn_mtx);
815 	}
816 
817 	dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
818 
819 	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
820 		ASSERT3P(list_head(list), ==, NULL);
821 		dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
822 	}
823 
824 	/*
825 	 * Although we have dropped our reference to the dnode, it
826 	 * can't be evicted until its written, and we haven't yet
827 	 * initiated the IO for the dnode's dbuf.
828 	 */
829 }
830