1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/dbuf.h> 30 #include <sys/dnode.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dmu_objset.h> 34 #include <sys/dmu_recv.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/spa.h> 37 #include <sys/range_tree.h> 38 #include <sys/zfeature.h> 39 40 static void 41 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx) 42 { 43 dmu_buf_impl_t *db; 44 int txgoff = tx->tx_txg & TXG_MASK; 45 int nblkptr = dn->dn_phys->dn_nblkptr; 46 int old_toplvl = dn->dn_phys->dn_nlevels - 1; 47 int new_level = dn->dn_next_nlevels[txgoff]; 48 int i; 49 50 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 51 52 /* this dnode can't be paged out because it's dirty */ 53 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 54 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 55 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0); 56 57 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG); 58 ASSERT(db != NULL); 59 60 dn->dn_phys->dn_nlevels = new_level; 61 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset, 62 dn->dn_object, dn->dn_phys->dn_nlevels); 63 64 /* transfer dnode's block pointers to new indirect block */ 65 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT); 66 ASSERT(db->db.db_data); 67 ASSERT(arc_released(db->db_buf)); 68 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size); 69 bcopy(dn->dn_phys->dn_blkptr, db->db.db_data, 70 sizeof (blkptr_t) * nblkptr); 71 arc_buf_freeze(db->db_buf); 72 73 /* set dbuf's parent pointers to new indirect buf */ 74 for (i = 0; i < nblkptr; i++) { 75 dmu_buf_impl_t *child = 76 dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i); 77 78 if (child == NULL) 79 continue; 80 #ifdef DEBUG 81 DB_DNODE_ENTER(child); 82 ASSERT3P(DB_DNODE(child), ==, dn); 83 DB_DNODE_EXIT(child); 84 #endif /* DEBUG */ 85 if (child->db_parent && child->db_parent != dn->dn_dbuf) { 86 ASSERT(child->db_parent->db_level == db->db_level); 87 ASSERT(child->db_blkptr != 88 &dn->dn_phys->dn_blkptr[child->db_blkid]); 89 mutex_exit(&child->db_mtx); 90 continue; 91 } 92 ASSERT(child->db_parent == NULL || 93 child->db_parent == dn->dn_dbuf); 94 95 child->db_parent = db; 96 dbuf_add_ref(db, child); 97 if (db->db.db_data) 98 child->db_blkptr = (blkptr_t *)db->db.db_data + i; 99 else 100 child->db_blkptr = NULL; 101 dprintf_dbuf_bp(child, child->db_blkptr, 102 "changed db_blkptr to new indirect %s", ""); 103 104 mutex_exit(&child->db_mtx); 105 } 106 107 bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr); 108 109 dbuf_rele(db, FTAG); 110 111 rw_exit(&dn->dn_struct_rwlock); 112 } 113 114 static void 115 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx) 116 { 117 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 118 uint64_t bytesfreed = 0; 119 120 dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num); 121 122 for (int i = 0; i < num; i++, bp++) { 123 if (BP_IS_HOLE(bp)) 124 continue; 125 126 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE); 127 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys)); 128 129 /* 130 * Save some useful information on the holes being 131 * punched, including logical size, type, and indirection 132 * level. Retaining birth time enables detection of when 133 * holes are punched for reducing the number of free 134 * records transmitted during a zfs send. 135 */ 136 137 uint64_t lsize = BP_GET_LSIZE(bp); 138 dmu_object_type_t type = BP_GET_TYPE(bp); 139 uint64_t lvl = BP_GET_LEVEL(bp); 140 141 bzero(bp, sizeof (blkptr_t)); 142 143 if (spa_feature_is_active(dn->dn_objset->os_spa, 144 SPA_FEATURE_HOLE_BIRTH)) { 145 BP_SET_LSIZE(bp, lsize); 146 BP_SET_TYPE(bp, type); 147 BP_SET_LEVEL(bp, lvl); 148 BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0); 149 } 150 } 151 dnode_diduse_space(dn, -bytesfreed); 152 } 153 154 #ifdef ZFS_DEBUG 155 static void 156 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx) 157 { 158 int off, num; 159 int i, err, epbs; 160 uint64_t txg = tx->tx_txg; 161 dnode_t *dn; 162 163 DB_DNODE_ENTER(db); 164 dn = DB_DNODE(db); 165 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 166 off = start - (db->db_blkid * 1<<epbs); 167 num = end - start + 1; 168 169 ASSERT3U(off, >=, 0); 170 ASSERT3U(num, >=, 0); 171 ASSERT3U(db->db_level, >, 0); 172 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 173 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT); 174 ASSERT(db->db_blkptr != NULL); 175 176 for (i = off; i < off+num; i++) { 177 uint64_t *buf; 178 dmu_buf_impl_t *child; 179 dbuf_dirty_record_t *dr; 180 int j; 181 182 ASSERT(db->db_level == 1); 183 184 rw_enter(&dn->dn_struct_rwlock, RW_READER); 185 err = dbuf_hold_impl(dn, db->db_level-1, 186 (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child); 187 rw_exit(&dn->dn_struct_rwlock); 188 if (err == ENOENT) 189 continue; 190 ASSERT(err == 0); 191 ASSERT(child->db_level == 0); 192 dr = child->db_last_dirty; 193 while (dr && dr->dr_txg > txg) 194 dr = dr->dr_next; 195 ASSERT(dr == NULL || dr->dr_txg == txg); 196 197 /* data_old better be zeroed */ 198 if (dr) { 199 buf = dr->dt.dl.dr_data->b_data; 200 for (j = 0; j < child->db.db_size >> 3; j++) { 201 if (buf[j] != 0) { 202 panic("freed data not zero: " 203 "child=%p i=%d off=%d num=%d\n", 204 (void *)child, i, off, num); 205 } 206 } 207 } 208 209 /* 210 * db_data better be zeroed unless it's dirty in a 211 * future txg. 212 */ 213 mutex_enter(&child->db_mtx); 214 buf = child->db.db_data; 215 if (buf != NULL && child->db_state != DB_FILL && 216 child->db_last_dirty == NULL) { 217 for (j = 0; j < child->db.db_size >> 3; j++) { 218 if (buf[j] != 0) { 219 panic("freed data not zero: " 220 "child=%p i=%d off=%d num=%d\n", 221 (void *)child, i, off, num); 222 } 223 } 224 } 225 mutex_exit(&child->db_mtx); 226 227 dbuf_rele(child, FTAG); 228 } 229 DB_DNODE_EXIT(db); 230 } 231 #endif 232 233 /* 234 * We don't usually free the indirect blocks here. If in one txg we have a 235 * free_range and a write to the same indirect block, it's important that we 236 * preserve the hole's birth times. Therefore, we don't free any any indirect 237 * blocks in free_children(). If an indirect block happens to turn into all 238 * holes, it will be freed by dbuf_write_children_ready, which happens at a 239 * point in the syncing process where we know for certain the contents of the 240 * indirect block. 241 * 242 * However, if we're freeing a dnode, its space accounting must go to zero 243 * before we actually try to free the dnode, or we will trip an assertion. In 244 * addition, we know the case described above cannot occur, because the dnode is 245 * being freed. Therefore, we free the indirect blocks immediately in that 246 * case. 247 */ 248 static void 249 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks, 250 boolean_t free_indirects, dmu_tx_t *tx) 251 { 252 dnode_t *dn; 253 blkptr_t *bp; 254 dmu_buf_impl_t *subdb; 255 uint64_t start, end, dbstart, dbend; 256 unsigned int epbs, shift, i; 257 258 /* 259 * There is a small possibility that this block will not be cached: 260 * 1 - if level > 1 and there are no children with level <= 1 261 * 2 - if this block was evicted since we read it from 262 * dmu_tx_hold_free(). 263 */ 264 if (db->db_state != DB_CACHED) 265 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 266 267 /* 268 * If we modify this indirect block, and we are not freeing the 269 * dnode (!free_indirects), then this indirect block needs to get 270 * written to disk by dbuf_write(). If it is dirty, we know it will 271 * be written (otherwise, we would have incorrect on-disk state 272 * because the space would be freed but still referenced by the BP 273 * in this indirect block). Therefore we VERIFY that it is 274 * dirty. 275 * 276 * Our VERIFY covers some cases that do not actually have to be 277 * dirty, but the open-context code happens to dirty. E.g. if the 278 * blocks we are freeing are all holes, because in that case, we 279 * are only freeing part of this indirect block, so it is an 280 * ancestor of the first or last block to be freed. The first and 281 * last L1 indirect blocks are always dirtied by dnode_free_range(). 282 */ 283 VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0); 284 285 dbuf_release_bp(db); 286 bp = db->db.db_data; 287 288 DB_DNODE_ENTER(db); 289 dn = DB_DNODE(db); 290 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 291 ASSERT3U(epbs, <, 31); 292 shift = (db->db_level - 1) * epbs; 293 dbstart = db->db_blkid << epbs; 294 start = blkid >> shift; 295 if (dbstart < start) { 296 bp += start - dbstart; 297 } else { 298 start = dbstart; 299 } 300 dbend = ((db->db_blkid + 1) << epbs) - 1; 301 end = (blkid + nblks - 1) >> shift; 302 if (dbend <= end) 303 end = dbend; 304 305 ASSERT3U(start, <=, end); 306 307 if (db->db_level == 1) { 308 FREE_VERIFY(db, start, end, tx); 309 free_blocks(dn, bp, end-start+1, tx); 310 } else { 311 for (uint64_t id = start; id <= end; id++, bp++) { 312 if (BP_IS_HOLE(bp)) 313 continue; 314 rw_enter(&dn->dn_struct_rwlock, RW_READER); 315 VERIFY0(dbuf_hold_impl(dn, db->db_level - 1, 316 id, TRUE, FALSE, FTAG, &subdb)); 317 rw_exit(&dn->dn_struct_rwlock); 318 ASSERT3P(bp, ==, subdb->db_blkptr); 319 320 free_children(subdb, blkid, nblks, free_indirects, tx); 321 dbuf_rele(subdb, FTAG); 322 } 323 } 324 325 if (free_indirects) { 326 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) 327 ASSERT(BP_IS_HOLE(bp)); 328 bzero(db->db.db_data, db->db.db_size); 329 free_blocks(dn, db->db_blkptr, 1, tx); 330 } 331 332 DB_DNODE_EXIT(db); 333 arc_buf_freeze(db->db_buf); 334 } 335 336 /* 337 * Traverse the indicated range of the provided file 338 * and "free" all the blocks contained there. 339 */ 340 static void 341 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks, 342 boolean_t free_indirects, dmu_tx_t *tx) 343 { 344 blkptr_t *bp = dn->dn_phys->dn_blkptr; 345 int dnlevel = dn->dn_phys->dn_nlevels; 346 boolean_t trunc = B_FALSE; 347 348 if (blkid > dn->dn_phys->dn_maxblkid) 349 return; 350 351 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX); 352 if (blkid + nblks > dn->dn_phys->dn_maxblkid) { 353 nblks = dn->dn_phys->dn_maxblkid - blkid + 1; 354 trunc = B_TRUE; 355 } 356 357 /* There are no indirect blocks in the object */ 358 if (dnlevel == 1) { 359 if (blkid >= dn->dn_phys->dn_nblkptr) { 360 /* this range was never made persistent */ 361 return; 362 } 363 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr); 364 free_blocks(dn, bp + blkid, nblks, tx); 365 } else { 366 int shift = (dnlevel - 1) * 367 (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT); 368 int start = blkid >> shift; 369 int end = (blkid + nblks - 1) >> shift; 370 dmu_buf_impl_t *db; 371 372 ASSERT(start < dn->dn_phys->dn_nblkptr); 373 bp += start; 374 for (int i = start; i <= end; i++, bp++) { 375 if (BP_IS_HOLE(bp)) 376 continue; 377 rw_enter(&dn->dn_struct_rwlock, RW_READER); 378 VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i, 379 TRUE, FALSE, FTAG, &db)); 380 rw_exit(&dn->dn_struct_rwlock); 381 382 free_children(db, blkid, nblks, free_indirects, tx); 383 dbuf_rele(db, FTAG); 384 } 385 } 386 387 /* 388 * Do not truncate the maxblkid if we are performing a raw 389 * receive. The raw receive sets the maxblkid manually and 390 * must not be overridden. Usually, the last DRR_FREE record 391 * will be at the maxblkid, because the source system sets 392 * the maxblkid when truncating. However, if the last block 393 * was freed by overwriting with zeros and being compressed 394 * away to a hole, the source system will generate a DRR_FREE 395 * record while leaving the maxblkid after the end of that 396 * record. In this case we need to leave the maxblkid as 397 * indicated in the DRR_OBJECT record, so that it matches the 398 * source system, ensuring that the cryptographic hashes will 399 * match. 400 */ 401 if (trunc && !dn->dn_objset->os_raw_receive) { 402 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1; 403 404 uint64_t off = (dn->dn_phys->dn_maxblkid + 1) * 405 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT); 406 ASSERT(off < dn->dn_phys->dn_maxblkid || 407 dn->dn_phys->dn_maxblkid == 0 || 408 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0); 409 } 410 } 411 412 typedef struct dnode_sync_free_range_arg { 413 dnode_t *dsfra_dnode; 414 dmu_tx_t *dsfra_tx; 415 boolean_t dsfra_free_indirects; 416 } dnode_sync_free_range_arg_t; 417 418 static void 419 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks) 420 { 421 dnode_sync_free_range_arg_t *dsfra = arg; 422 dnode_t *dn = dsfra->dsfra_dnode; 423 424 mutex_exit(&dn->dn_mtx); 425 dnode_sync_free_range_impl(dn, blkid, nblks, 426 dsfra->dsfra_free_indirects, dsfra->dsfra_tx); 427 mutex_enter(&dn->dn_mtx); 428 } 429 430 /* 431 * Try to kick all the dnode's dbufs out of the cache... 432 */ 433 void 434 dnode_evict_dbufs(dnode_t *dn) 435 { 436 dmu_buf_impl_t db_marker; 437 dmu_buf_impl_t *db, *db_next; 438 439 mutex_enter(&dn->dn_dbufs_mtx); 440 for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) { 441 442 #ifdef DEBUG 443 DB_DNODE_ENTER(db); 444 ASSERT3P(DB_DNODE(db), ==, dn); 445 DB_DNODE_EXIT(db); 446 #endif /* DEBUG */ 447 448 mutex_enter(&db->db_mtx); 449 if (db->db_state != DB_EVICTING && 450 zfs_refcount_is_zero(&db->db_holds)) { 451 db_marker.db_level = db->db_level; 452 db_marker.db_blkid = db->db_blkid; 453 db_marker.db_state = DB_SEARCH; 454 avl_insert_here(&dn->dn_dbufs, &db_marker, db, 455 AVL_BEFORE); 456 457 /* 458 * We need to use the "marker" dbuf rather than 459 * simply getting the next dbuf, because 460 * dbuf_destroy() may actually remove multiple dbufs. 461 * It can call itself recursively on the parent dbuf, 462 * which may also be removed from dn_dbufs. The code 463 * flow would look like: 464 * 465 * dbuf_destroy(): 466 * dnode_rele_and_unlock(parent_dbuf, evicting=TRUE): 467 * if (!cacheable || pending_evict) 468 * dbuf_destroy() 469 */ 470 dbuf_destroy(db); 471 472 db_next = AVL_NEXT(&dn->dn_dbufs, &db_marker); 473 avl_remove(&dn->dn_dbufs, &db_marker); 474 } else { 475 db->db_pending_evict = TRUE; 476 mutex_exit(&db->db_mtx); 477 db_next = AVL_NEXT(&dn->dn_dbufs, db); 478 } 479 } 480 mutex_exit(&dn->dn_dbufs_mtx); 481 482 dnode_evict_bonus(dn); 483 } 484 485 void 486 dnode_evict_bonus(dnode_t *dn) 487 { 488 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 489 if (dn->dn_bonus != NULL) { 490 if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) { 491 mutex_enter(&dn->dn_bonus->db_mtx); 492 dbuf_destroy(dn->dn_bonus); 493 dn->dn_bonus = NULL; 494 } else { 495 dn->dn_bonus->db_pending_evict = TRUE; 496 } 497 } 498 rw_exit(&dn->dn_struct_rwlock); 499 } 500 501 static void 502 dnode_undirty_dbufs(list_t *list) 503 { 504 dbuf_dirty_record_t *dr; 505 506 while (dr = list_head(list)) { 507 dmu_buf_impl_t *db = dr->dr_dbuf; 508 uint64_t txg = dr->dr_txg; 509 510 if (db->db_level != 0) 511 dnode_undirty_dbufs(&dr->dt.di.dr_children); 512 513 mutex_enter(&db->db_mtx); 514 /* XXX - use dbuf_undirty()? */ 515 list_remove(list, dr); 516 ASSERT(db->db_last_dirty == dr); 517 db->db_last_dirty = NULL; 518 db->db_dirtycnt -= 1; 519 if (db->db_level == 0) { 520 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 521 dr->dt.dl.dr_data == db->db_buf); 522 dbuf_unoverride(dr); 523 } else { 524 mutex_destroy(&dr->dt.di.dr_mtx); 525 list_destroy(&dr->dt.di.dr_children); 526 } 527 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 528 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE); 529 } 530 } 531 532 static void 533 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx) 534 { 535 int txgoff = tx->tx_txg & TXG_MASK; 536 537 ASSERT(dmu_tx_is_syncing(tx)); 538 539 /* 540 * Our contents should have been freed in dnode_sync() by the 541 * free range record inserted by the caller of dnode_free(). 542 */ 543 ASSERT0(DN_USED_BYTES(dn->dn_phys)); 544 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr)); 545 546 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]); 547 dnode_evict_dbufs(dn); 548 549 /* 550 * XXX - It would be nice to assert this, but we may still 551 * have residual holds from async evictions from the arc... 552 * 553 * zfs_obj_to_path() also depends on this being 554 * commented out. 555 * 556 * ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1); 557 */ 558 559 /* Undirty next bits */ 560 dn->dn_next_nlevels[txgoff] = 0; 561 dn->dn_next_indblkshift[txgoff] = 0; 562 dn->dn_next_blksz[txgoff] = 0; 563 dn->dn_next_maxblkid[txgoff] = 0; 564 565 /* ASSERT(blkptrs are zero); */ 566 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 567 ASSERT(dn->dn_type != DMU_OT_NONE); 568 569 ASSERT(dn->dn_free_txg > 0); 570 if (dn->dn_allocated_txg != dn->dn_free_txg) 571 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx); 572 bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots); 573 dnode_free_interior_slots(dn); 574 575 mutex_enter(&dn->dn_mtx); 576 dn->dn_type = DMU_OT_NONE; 577 dn->dn_maxblkid = 0; 578 dn->dn_allocated_txg = 0; 579 dn->dn_free_txg = 0; 580 dn->dn_have_spill = B_FALSE; 581 dn->dn_num_slots = 1; 582 mutex_exit(&dn->dn_mtx); 583 584 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 585 586 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 587 /* 588 * Now that we've released our hold, the dnode may 589 * be evicted, so we mustn't access it. 590 */ 591 } 592 593 /* 594 * Write out the dnode's dirty buffers. 595 */ 596 void 597 dnode_sync(dnode_t *dn, dmu_tx_t *tx) 598 { 599 objset_t *os = dn->dn_objset; 600 dnode_phys_t *dnp = dn->dn_phys; 601 int txgoff = tx->tx_txg & TXG_MASK; 602 list_t *list = &dn->dn_dirty_records[txgoff]; 603 static const dnode_phys_t zerodn = { 0 }; 604 boolean_t kill_spill = B_FALSE; 605 606 ASSERT(dmu_tx_is_syncing(tx)); 607 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg); 608 ASSERT(dnp->dn_type != DMU_OT_NONE || 609 bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0); 610 DNODE_VERIFY(dn); 611 612 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf)); 613 614 /* 615 * Do user accounting if it is enabled and this is not 616 * an encrypted receive. 617 */ 618 if (dmu_objset_userused_enabled(os) && 619 !DMU_OBJECT_IS_SPECIAL(dn->dn_object) && 620 (!os->os_encrypted || !dmu_objset_is_receiving(os))) { 621 mutex_enter(&dn->dn_mtx); 622 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys); 623 dn->dn_oldflags = dn->dn_phys->dn_flags; 624 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED; 625 mutex_exit(&dn->dn_mtx); 626 dmu_objset_userquota_get_ids(dn, B_FALSE, tx); 627 } else { 628 /* Once we account for it, we should always account for it */ 629 ASSERT(!(dn->dn_phys->dn_flags & 630 DNODE_FLAG_USERUSED_ACCOUNTED)); 631 } 632 633 mutex_enter(&dn->dn_mtx); 634 if (dn->dn_allocated_txg == tx->tx_txg) { 635 /* The dnode is newly allocated or reallocated */ 636 if (dnp->dn_type == DMU_OT_NONE) { 637 /* this is a first alloc, not a realloc */ 638 dnp->dn_nlevels = 1; 639 dnp->dn_nblkptr = dn->dn_nblkptr; 640 } 641 642 dnp->dn_type = dn->dn_type; 643 dnp->dn_bonustype = dn->dn_bonustype; 644 dnp->dn_bonuslen = dn->dn_bonuslen; 645 } 646 647 dnp->dn_extra_slots = dn->dn_num_slots - 1; 648 649 ASSERT(dnp->dn_nlevels > 1 || 650 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 651 BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) || 652 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 653 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 654 ASSERT(dnp->dn_nlevels < 2 || 655 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 656 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift); 657 658 if (dn->dn_next_type[txgoff] != 0) { 659 dnp->dn_type = dn->dn_type; 660 dn->dn_next_type[txgoff] = 0; 661 } 662 663 if (dn->dn_next_blksz[txgoff] != 0) { 664 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff], 665 SPA_MINBLOCKSIZE) == 0); 666 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) || 667 dn->dn_maxblkid == 0 || list_head(list) != NULL || 668 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT == 669 dnp->dn_datablkszsec || 670 !range_tree_is_empty(dn->dn_free_ranges[txgoff])); 671 dnp->dn_datablkszsec = 672 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT; 673 dn->dn_next_blksz[txgoff] = 0; 674 } 675 676 if (dn->dn_next_bonuslen[txgoff] != 0) { 677 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN) 678 dnp->dn_bonuslen = 0; 679 else 680 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff]; 681 ASSERT(dnp->dn_bonuslen <= 682 DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1)); 683 dn->dn_next_bonuslen[txgoff] = 0; 684 } 685 686 if (dn->dn_next_bonustype[txgoff] != 0) { 687 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff])); 688 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff]; 689 dn->dn_next_bonustype[txgoff] = 0; 690 } 691 692 boolean_t freeing_dnode = dn->dn_free_txg > 0 && 693 dn->dn_free_txg <= tx->tx_txg; 694 695 /* 696 * Remove the spill block if we have been explicitly asked to 697 * remove it, or if the object is being removed. 698 */ 699 if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) { 700 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 701 kill_spill = B_TRUE; 702 dn->dn_rm_spillblk[txgoff] = 0; 703 } 704 705 if (dn->dn_next_indblkshift[txgoff] != 0) { 706 ASSERT(dnp->dn_nlevels == 1); 707 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff]; 708 dn->dn_next_indblkshift[txgoff] = 0; 709 } 710 711 /* 712 * Just take the live (open-context) values for checksum and compress. 713 * Strictly speaking it's a future leak, but nothing bad happens if we 714 * start using the new checksum or compress algorithm a little early. 715 */ 716 dnp->dn_checksum = dn->dn_checksum; 717 dnp->dn_compress = dn->dn_compress; 718 719 mutex_exit(&dn->dn_mtx); 720 721 if (kill_spill) { 722 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx); 723 mutex_enter(&dn->dn_mtx); 724 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR; 725 mutex_exit(&dn->dn_mtx); 726 } 727 728 /* process all the "freed" ranges in the file */ 729 if (dn->dn_free_ranges[txgoff] != NULL) { 730 dnode_sync_free_range_arg_t dsfra; 731 dsfra.dsfra_dnode = dn; 732 dsfra.dsfra_tx = tx; 733 dsfra.dsfra_free_indirects = freeing_dnode; 734 if (freeing_dnode) { 735 ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff], 736 0, dn->dn_maxblkid + 1)); 737 } 738 mutex_enter(&dn->dn_mtx); 739 range_tree_vacate(dn->dn_free_ranges[txgoff], 740 dnode_sync_free_range, &dsfra); 741 range_tree_destroy(dn->dn_free_ranges[txgoff]); 742 dn->dn_free_ranges[txgoff] = NULL; 743 mutex_exit(&dn->dn_mtx); 744 } 745 746 if (freeing_dnode) { 747 dn->dn_objset->os_freed_dnodes++; 748 dnode_sync_free(dn, tx); 749 return; 750 } 751 752 if (dn->dn_num_slots > DNODE_MIN_SLOTS) { 753 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 754 mutex_enter(&ds->ds_lock); 755 ds->ds_feature_activation_needed[SPA_FEATURE_LARGE_DNODE] = 756 B_TRUE; 757 mutex_exit(&ds->ds_lock); 758 } 759 760 if (dn->dn_next_nlevels[txgoff]) { 761 dnode_increase_indirection(dn, tx); 762 dn->dn_next_nlevels[txgoff] = 0; 763 } 764 765 /* 766 * This must be done after dnode_sync_free_range() 767 * and dnode_increase_indirection(). See dnode_new_blkid() 768 * for an explanation of the high bit being set. 769 */ 770 if (dn->dn_next_maxblkid[txgoff]) { 771 mutex_enter(&dn->dn_mtx); 772 dnp->dn_maxblkid = 773 dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET; 774 dn->dn_next_maxblkid[txgoff] = 0; 775 mutex_exit(&dn->dn_mtx); 776 } 777 778 if (dn->dn_next_nblkptr[txgoff]) { 779 /* this should only happen on a realloc */ 780 ASSERT(dn->dn_allocated_txg == tx->tx_txg); 781 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) { 782 /* zero the new blkptrs we are gaining */ 783 bzero(dnp->dn_blkptr + dnp->dn_nblkptr, 784 sizeof (blkptr_t) * 785 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr)); 786 #ifdef ZFS_DEBUG 787 } else { 788 int i; 789 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr); 790 /* the blkptrs we are losing better be unallocated */ 791 for (i = dn->dn_next_nblkptr[txgoff]; 792 i < dnp->dn_nblkptr; i++) 793 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i])); 794 #endif 795 } 796 mutex_enter(&dn->dn_mtx); 797 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff]; 798 dn->dn_next_nblkptr[txgoff] = 0; 799 mutex_exit(&dn->dn_mtx); 800 } 801 802 dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx); 803 804 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 805 ASSERT3P(list_head(list), ==, NULL); 806 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 807 } 808 809 /* 810 * Although we have dropped our reference to the dnode, it 811 * can't be evicted until its written, and we haven't yet 812 * initiated the IO for the dnode's dbuf. 813 */ 814 } 815